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Abstract

In the past probabilistic model checking hast mostly been restricted to finite state
models. This thesis explores the possibilities of model checking with continuous
stochastic logic (CSL) on infinite-state Markov chains. We present an in-depth treat-
ment of model checking algorithms for two special classes of infinite-state CTMCs:
(1) Quasi-birth-death processes (QBDs) are a special class of infinite-state CTMCs
that combines a large degree of modeling expressiveness with efficient solution meth-
ods. (ii) Jackson queuing networks (JQNs) are a very general class of queueing
networks that find their application in a variety of settings. The state space of the
CTMC that underlies a JQN, is highly structured, however, of infinite size in as
many dimensions as there are queues, whereas the underlying state-space of a QBD
can be seen as infinite in one dimension.

Using a new property-driven independency concept that is adapted to QBDs and
JQNs, accordingly, we provide model checking algorithms for all the CSL operators.
Special emphasis is given to the time-bounded until operator for which we present
a new and efficient computational procedure named uniformization with represen-
tatives. By the use of an application-driven dynamic termination criterion, the
algorithms stop whenever the property to be checked can be certified (or falsified).

Next to the above methodological contributions of this thesis, we also use the
new techniques for an extended case study on bottlenecks in wireless two-hop ad
hoc networks. The results of our analysis are compared with extensive simulations
and show excellent agreement for throughput, mean number of active sources and
mean buffer occupancy at the bottleneck station.
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Chapter 1

Introduction

As computer- and communication systems keep growing rapidly, it is very important
to be able to analyze the performance of such systems before they are actually built.
It is possible to analyze computer- and communication systems in a quantitative way
by using model-based performance evaluation. A variety of techniques and tools have
been developed to accommodate such evaluations, e.g., based on queueing networks
[25], stochastic Petri nets [4] and process algebras [44, 42].

First, a model of the real system has to be built. In the simplest case, the
model reflects all possible states that the system can reach and all possible transi-
tions between states. Continuous-time Markov chains (CTMCs) have been used
widely for modeling and performance and dependability evaluation of computer and
communication systems. CTMCs are well understood, mathematically attractive
while at the same time flexible enough to model complex systems. In practice, com-
munication systems usually need large buffer capacities, or even unbounded buffers.
Analyzing a structured CTMC with infinite-state space is, in some cases, easier than
analyzing a huge finite CTMC. Once the CTMC has been constructed, it is possible
to calculate some performance measures of the system with a number of well-known
numerical methods. Such performance measures are for example the utilization of
the server, the time a customer has to spend waiting in the line or the length of
the queue. For both, finite and infinite Markov chains, solution methods exist to
calculate the probabilities of residing in each single state.

Model-based performance evaluation is a method to analyze the system in a
quantitative way. Model checking, however, traditionally focuses on the qualita-
tive evaluation of the model. As formal verification method, model checking analyzes
the functionality of the system model. A property that needs to be analyzed has
to be specified in a logic with consistent syntax and semantics. For every state of
the model, it is then checked whether the property is valid or not. The Continuous
Stochastic Logic (CSL) [8] has been introduced to express quantitative properties on
finite CTMCs. Efficient computational algorithms have been developed for checking
finite CTMCs against formally specified properties expressed in these logic, cf. [7, 8],
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as well as supporting tools, cf. PRISM [53], and ETMC? [43], the APNN toolbox
[18], and recently MRMC [48]. Other tools, like GreatSPN [27] are used as front-end
to model checking tools like PRISM and MRMC. So far, the work on model checking
continuous-time Markov chains has focused on finite-state models. However, there
are many applications for which infinite-state models are more appropriate: think
of modeling systems with unbounded buffers, of models including variables, or of
approximating the behavior of very large-but-finite systems. Model checking all CSL
properties on general infinite-state CTMCs is, however, beyond reach.

Therefore, in this thesis we present new stochastic model checking algorithms for
two classes of structured infinite-state Markov chains. Next to the method-
ological contribution of this theses, we also use the new techniques for an extended
case study on bottlenecks in wireless two-hop ad hoc networks. We will address
these issues in more detail below.

Quasi-birth-death models

Quasi-birth-death models (QBDs) [61] comprise a very versatile yet well-understood
class of infinite-state CTMCs. It is not necessary to specify QBDs manually at the
state level, as high-level specifications, like, e.g., infinite stochastic Petri nets, do
exist [63].

In this thesis, we provide a complete description of CSL model checking algo-
rithms for QBDs, extending [65]. We show that the syntax and semantics of CSL as
for the finite case apply here as well. To facilitate the model checking algorithms,
we introduce a new independency concept for CSL formulas. For model checking
two of the most important CSL operators, that is, the steady-state and the proba-
bilistic path operator of, we have to develop new algorithms. For the steady-state
operator, we have to compute steady-state probabilities for QBDs; we can resort
to well-known algorithms for that purpose. However, for model checking the time-
bounded until operator of CSL, we also need efficient algorithms for the transient
analysis of QBDs. This can be done with a new and efficient uniformization-based
method, called uniformization with representatives which is presented in the context
of model checking. The feasibility of our approach is shown in a small case study
on connection management.

Jackson queueing networks

Queueing networks have been used for about half a century now, for modeling and
analyzing a wide variety of phenomena in computer, communication, and logistics
systems. Seminal work on queueing networks was done by Jackson in the 1950s [46,
47] in which he developed an important theorem that characterizes the steady-state



probabilities to reside in certain states in a restricted class of queueing networks.

In this thesis we develop a new CSL model checking procedure for the CTMCs
that underlie Jackson queueing networks (JQNs). As for CSL model checking of
CTMCs, we need to be able to compute both steady-state and transient state prob-
abilities for all states, and for all possible starting states. The key issue lies in the
fact that the CTMC underlying a JQN is infinite in as many dimensions as there
are queues in the JQN. For the steady-state probabilities we can rely on the seminal
work of Jackson [46, 47], however, for the transient state probabilities, no results are
readily available. Similar to the approach taken for QBDs, we use a uniformization-
based approach to compute the transient state probabilities in JQNs that are needed
to verify the validity of CSL properties. The highly structured state space allows
us to conclude the validity of CSL properties for groups of states on the basis of
the validity for a so-called representative state in such a group. This reduces the
infinite number of state probabilities to be computed to a finite number. A small
case study on an e-business site shows the feasibility or our approach.

IEEE 802.11e case study

Based on the algorithms derived for CSL model checking QBDs, we pursue an ex-
tended case study on the analysis of bottlenecks in IEEE 802.11e two-hop ad hoc
networks.

In such ad hoc networks, stations that are in reach of each other all contend
for the same resource, i.e., the shared ether as transmission medium. Research has
shown that, effectively, the transmission medium is equally shared among contending
stations [14, 58]. This leads to undesirable situations in case one of the nodes
happens to function as a bridge toward either another group of nodes, or to the
fixed internet, as visualized in Figure 1.1.

Recently, a quality-of-service (QoS) extension of the IEEE 802.11 standard has
been proposed. We present a versatile and accurate performance model to study
how these new QoS extensions can be used to improve the performance of wireless
nodes competing for the transmission medium in a two-hop ad hoc network.

We use the new model checking algorithms for QBDs to evaluate this model.
The results of our analysis are compared with extensive simulations (using OPNET),
and show excellent agreement for throughput, mean number of active sources and
mean buffer occupancy at the bottleneck station. An important asset of our model
and analysis technique is that it allows for very quick evaluations: where simulations
require up to one hour per scenario, our model is solved in seconds. Due to the speed
and the accuracy of our analysis we are able to find those parameter settings that
results in the maximum throughputs.
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Outline of the thesis

This thesis provides CSL model checking algorithms for two classes of well-structured
Markov chains. Furthermore we show the versatility of this approach with a detailed
case study.

Chapter 2 addresses CTMCs with both finite and infinite-state space. The
logic CSL is presented as a formalism to specify complex properties on states and

paths of CTMCs. Furthermore, we recapitulate how the next and the until operator
are model checked on finite CTMCs.

Chapter 3 introduces QBDs and addresses in detail the model checking for all
CSL operators. We present an efficient uniformization-based approach to compute
all required transient state probabilities. Based on this, we derive model checking
algorithms for the time-bounded until, the interval until and the point interval until
for infinite CTMCs of QBD type. A small case study shows the feasibility of our
approach.

In Chapter 4 we first introduce JQNs and their underlying state space, before
we present an approach to structurally decompose the infinite state space that al-
lows us to deal with it efficiently. Model checking all CSL operators is discussed,
before we present a uniformization-based approach to compute the transient state
probabilities, similar to the approach for QBDs. Again, this allows us to develop
efficient model checking algorithms for the different flavors of the until operator.
Finally, the scalability of an e-business site, modeled as JQN, is analyzed with the
presented model checking techniques.

In Chapter 5 we analyze for which extensions of QBDs, model checking with the
framework proposed in Chapter 3 is still feasible. Also for JQNs several extensions
and the model checking thereof are discussed. Furthermore, detailed links to related
work on transient analysis of infinite CTMCs and on model checking infinite Markov

=,
)
> ) I internet

bottleneck B
//ﬁ

sources

Figure 1.1: Bottleneck in a two-hop ad hoc network



chains are presented.

Then, in Chapter 6, we provide an elaborate case study on the analysis of
bottleneck situations in IEEE 802.11e two-hop ad hoc networks, validated by de-
tailed simulation studies performed with OPNET. The complete IEEE 802.11e access
mechanism, including the QoS parameters, is addressed. We present a hierarchical
modeling approach in detail and discuss the maximum throughput that can be ob-
tained for a given set of QoS parameters.

In Chapter 7 we summarize the contents of this thesis, and explicitly state the
contributions of this thesis.






Chapter 2

Foundations

In this chapter we introduce the foundations of model checking continuous-time
Markov chains (CTMCs) with continuous stochastic logic (CSL). In Section 2.1 we
present the class of continuous-time Markov chains with both finite and infinite state
space. Paths on CTMCs and their cylinder set are discussed in Section 2.2, before
we introduce two different types of state probabilities for CTMCs in Section 2.3.
The logic CSL is presented as a formalism to specify complex properties on states
and paths of CTMCs in Section 2.4. Section 2.5 summarizes how the next operator,
the time bounded until, the interval until and the point interval until are model
checked on finite CTMCs. In Section 2.6 we discuss the general model checking
routine via satisfaction sets, before we conclude in Section 2.7.

2.1 Continuous-time Markov chains

A continuous-time Markov chain (CTMC) is a stochastic process, characterized by
a discrete state space S = {0,1,...}, the continuous time domain 7 = [0, 00) and
the Markov property. This property states that the probability to reside in a given
state in the near future only depends on the current state and not on the states
visited before, and neither on the already passed residence time in the current state.
We first present the definition of a labeled CTMC before we discuss its properties.

Definition 1 (CTMC). A labeled CTMC M is a tuple (S, T, L) consisting of a
countable set of states S, a transition rate matrix T : S X S = R5( and a labeling
function L : S — 247 that assigns atomic propositions from a fixed finite set AP to
each state.

The value T(s,s), equals the rate at which the CTMC moves from a state s to
state s’ in one step. O

Based on the transition rate matrix it is possible to express a number of other
means to describe the behavior of the CTMC. The total rate at which any transition

7
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outgoing from state s is taken, is denoted

EGs)= > T(s5s). (2.1)

s€S, s#s/

A CTMC as defined above is a stochastic process { X (t)|t € T}, where X (t) € s
is random variable that gives the state occupied in the process at time ¢. For non-
negative tg < t; < ... <,y and xg, 21, ..., 2,11, the Markov property for a CTMC
can be stated as [79]:

Pr{X (t,411) = xnr1|X (o) = x0, ..., X(tn) = 2} = Pr{X(tn11) = 1| X (tn) = 0}

Furthermore, we require a CTMC to be time homogeneous, that is, invariant to
time-shifts (with ¢, s € 7, > s):

Pr{X(t) =2 | X(s) =25} =Pr{X(t —s) =2 | 2(0) = zs}.

In a CTMC, the state residence times must be exponentially distributed; this is
a result of the required memorylessness. The probability to leave state s before time
t is exponentially distributed:

Pr{leave s before t} =1 — ¢ B,

The embedded discrete-time Markov chain corresponding to the CTMC is de-

noted as
T(s,s)

E(s)
and expresses the probability that the CTMC moves from state s to state s’ in the
next step.

N(s,s') = (2.2)

The rate matrix T allows for self loops in the CTMC. This can be useful, because
it is possible for a CTMC derived from a high-level specification to contain self loops.
For performance measures and most algorithms presented in this theses, self loops
do not matter as residence times in a CTMC obey a memoryless distribution, hence
self loops can be eliminated. However, if only one-step probabilities are analyzed,
self loops can make a difference.

When self loops are removed from the transition matrix, we obtain a square
generator matrix Q : S x S — Ry, defined by

E(s), fors=¢/,

=T — E, with E(s,s') = .
Q (5:5) {O, otherwise.

The value Q(s,s'), for s # ¢, equals the rate at which a transition from state s
to state s’ occurs in the CTMC, whereas Q(s,s’) denotes the negative sum of the
off-diagonal entries in the same row of Q; its value represents the rate of leaving
state s (in the sense of an exponentially distributed residence time).
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Definition 2 (Irreducibility). A CTMC is called irreducible if for any two states
s,s' € S, there exists n € N such that T"(s,s’) > 0. O

The CTMC may contain states that cannot be left anymore. In this case all
outgoing rates from this state equal zero. The state is then called absorbing:

Definition 3 (Absorbing state). A state s of a CTMC is called absorbing if
T(s,s') =0, Vs’ €S. O

In order to describe the evolution of a CTMC in time completely, we need ini-
tial probabilities for the individual states. These are given by way of the initial
distribution, that assigns an initial probability to every state.

Definition 4 (Initial distribution). An initial distribution on M = (S, T, L) is
a function a : S — [0, 1] such that
ZSES Oz(S) =L O

Definition 5 (Recurrence). A state s is said to be recurrent if the probability to
return to that state is one. A recurrent state s is said to be positive recurrent if the
mean time between two successive visits to state s is finite. 0

Definition 6 (Ergodicity). A state s € S is called ergodic if it is positive recurrent
and aperiodic. A CTMC is called ergodic, if and only if the state space consists of
one irreducible set of ergodic states where from every state i € S every other state
j € S can be reached with a positive probability within a finite number of steps. [J

Note that CTMCs are aperiodic by definition. CTMCs can either have a finite
or an infinite countable state space s. The latter can be used to model systems with
infinite server capacity, as for example the infinite-server queue, or models with
infinite buffer. An important difference between finite and infinite-state CTMCs
is that the corresponding transition rate matrices of infinite CTMCs are of infinite
size.

In this thesis we deal with infinite CTMCs that exhibit a special structure. One
of the simplest infinite CTMC with a special structure is the so-called birth-death
process with constant rates, where from a state i for i > 0 only transitions to the
neighbors i — 1 and i+ 1 are allowed, as illustrated in Figure 2.1, where states are
depicted as nodes and transitions as arrows.

The state space S = {0, 1,...} is of infinite size and can be used, for example, to
represent the number of customers in a queue with negative exponentially distributed
inter-arrival and service times, the so-called M|M|1 queue [23]. In the following,
we deal with two main classes of infinite-state CTMCs, that can both be seen as an
extension of the birth-death process with constant rates.

e We address Quasi Birth Death (QBDs) processes in Chapter 3. In a QBD, we
have neighboring levels that consist of a group of finitely many states, instead



10 2 Foundations
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Figure 2.1: Birth-death process with constant rates

of just a single state. All levels are alike, except for the first one, that can
be different. Similar to a birth-death process, in a QBD, transitions may take
place between neighboring levels and within a level.

e We address the class of Jackson queueing networks (JQNs) in Chapter 4,
where a finite number of M|M|1 queues is interconnected to form an open
queueing network, with feedback. Customers then travel from queueing station
to queueing station in order to complete. A transition in such a JQN can either
be the arrival of a new customer, the departure of a customer from the JQN
or the routing of one customer from one queueing station to another one.

Note that the simplest QBD coincides with the simplest JQN, as both are just a
single birth-death process with constant rates, i.e. , an M|M|1 queue.

2.2 Paths

While the generator matrix only considers the one-step behavior of the CTMC, the
actual evolution of the CTMC over time is specified in detail with a path. In a path
states and transitions alternate, where the rates between any two successive states
have to be positive to assure that the path can actually be taken. Note that the
definition of paths is exactly the same for finite and infinite-state CTMCs.

Definition 7 (Infinite paths). Let M = (S5, T, L) be a CTMC. An infinite path

. t t t . .
o is a sequence sy — S, — Sy —» ... with, for i € N, s; € S and t; € Ry

such that T(s;,s;41) > 0 for all i. A finite path o of length [ + 1 is a sequence

t— . . .
So to, sy b, .si_1 — s, such that s; is absorbing, and T(si,si41) > 0 for all « < [.
O

For an infinite path o, o[i] = s; denotes for i € N the (i + 1)st state of path o.
The time spent in state s; is denoted by 6(o,i) = ¢;. Moreover, with i the smallest
index with ¢ < 7. _t;, let 0@t = ofi] be the state occupied at time ¢. For finite
paths o with length [+ 1, o[i] and (o, 7) are defined in the way described above for
i < lonly and §(0,l) = co and 6@t = s; for ¢t > Zé;lo t;. Path®(s) is the set of all
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finite and infinite paths of the CTMC Q that start in state s and Path© includes
all (finite and infinite) paths of the CTMC Q.

Now we need a way to state the probability for a given path to be taken while
time proceeds. In order to define such a probability measure Pr,, for an initial
distribution « on paths, we need to define cylinder sets first.

The cylinder set is a set of paths that is defined by a sequence of states and
time intervals of a given length k. The cylinder set then consists of all paths that
visit the states stated in the defining sequence in the right order and that change
states during the specified time intervals. Thus, the first k states of the paths in the
cylinder fit into the special structure specified through the sequence of states and
time intervals, while the further behavior remains unspecified.

Definition 8 (Cylinder set). Let sg,...,s; € S be a sequence of states with
positive rates T(s;,s;11) > 0 for (0 < i < k), and let Io,...,I;—1 be nonempty
intervals in Rsg. Then the cylinder set C(so, ly,s1, 11, ..., Ix—1,5k) consists of all
paths in o € Path™(sy) such that ofi] =s; for i < k and 0(0,4) € [; fori < k. [

Let a be an initial distribution of the CTMC. Then the probability measure Pr,,
on cylinder sets is defined by induction on the length of the defining sequence k, as
follows:

Basis: Pr,(C(sp)) = a(sp)
Induction step:  Pr,(C(so, lo,...,sx,I',s)) =
Pr,(C(so, lo, - .. ,s)) - N(sp, ') - (e Blr)a — oElse)b)

with £ > 0, and @ = inf I’ and b = supI’. If s is the only possible initial state
(a(s) = 1), we write Prs. Recall that N(sg,s’) is the one step probability in the
embedded discrete-time Markov chain, as defined in 2.2. For more details on the
probability measure on paths refer to [8] and [21].

2.3 Probabilities

Based on the probability measure on paths, two different types of state probabilities
can be distinguished for CTMCs. Transient state probabilities are presented in
Section 2.3.1 and the steady-state probabilities are presented in Section 2.3.2.

2.3.1 Transient state probability

The transient state probability is a time-dependent measure that considers the CTMC
M at a given time instant . The probability to be in state s’ at time instant ¢,
given initial state s, is denoted as:

VM(s, s t) = Pr(c € Path(s) | cQt = ).
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The transient probabilities are characterized by a linear system of differential equa-
tions of possibly infinite size. Let V(¢) be the matrix of transient state probabilities
at time t for all possible starting states s and for all possible goal states s’ (we
omit the superscript M for brevity here), then the so-called Kolmogorov’s forward
equations [38]:

d

SV = VD) Q.
describe the transient probabilities, where the initial probabilities are given as V(0).
For finite CTMCs the system of equations can be solved for example with a Taylor
series expansion or more efficiently with uniformization [36], also known as Jensen’s
method [34]. For infinite-state CTMCs, using a standard differential equation solver
is impossible since the number of differential equations is infinite. In Chapter 3, we
propose a technique called uniformization with representatives, which deals in an
efficient way with this differential equation system of infinite size for QBDs. A
similar method is developed for JQNs in Chapter 4. We discuss other approaches
to compute transient probabilities in Section 5.

2.3.2 Steady-state probability

The steady-state probabilities to be in state s’, given initial state s, are defined as

7M(s,s') = lim VM(s,s' 1),

t—o0

and indicate the probabilities to be in some state s’ “in the long run”. Furthermore,
if the CTMC is strongly connected, the initial state does not influence the steady-
state probabilities (we therefore often write 7(s’) instead of 7 (s,s’) for brevity). The
steady-state probability vector 7 then follows from the possibly infinite system of
linear equations and its normalization:

m-Q =0, and Zﬂ'szl.

For finite CTMCs this system of linear equations can be solved with numerical means
known from linear algebra [77]. For infinite-state CTMCs that exhibit a special
structure in their state space, this structure can often be exploited to solve the
infinite system of linear equations. For QBDs this system of equations can be solved
using so-called matrix-geometric methods which exploit the repetitive structure in
the matrix Q as explained in Appendix A. In the context of JQNs the steady-state
probabilities can be computed using so-called product-forms as presented in [46, 47].
More details on these methods in general can be found in [61].
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2.4 Continuous stochastic logic CSL

Now that we have defined labeled CTMCs we need a formalism to specify desirable
properties on states and paths. This can be done with the continuous stochastic
logic (CSL) [5], [8], which is a stochastic extension of CTL [20].

In the following we apply the logic CSL [8] on infinite-state CTMCs. The syntax
and semantics are the same as for finite CTMCs, with the only difference that we
now interpret the formulas over states and paths of infinite-state CTMCs. Therefore,
we introduce the syntax and semantics on CTMCs in general.

Definition 9 (CSL). Let p € [0, 1] be a real number, < € {<, <, >, >} a compar-
ison operator, I C R, a nonempty interval and AP a set of atomic propositions
with ap € AP. CSL state formulas ® are defined by

D=ttt [ap| P | PAP|Sqp(P) | Poop(9),
where ¢ is a CSL path formula defined on
=X |dUD. O

For a CSL state formula ® and a CTMC M, the satisfaction set Sat(®) contains
all states of M that fulfill . Satisfaction is stated in terms of a satisfaction relation,
denoted =, as follows.

Definition 10 (Satisfaction on state formulas). The relation |= for states and
CSL state formulas is defined as:

sE=tt forallses, sEOAVY  iffsE®ands U,
skEap iffap € L(s), s | Sup(®@) iff M (s, Sat(®)) < p,
sk iff s D, s | Pugp(®) iff Prob™(s, ¢) = p,

where mM(s, Sat(®)) = > seSat(®) 7M(s,s'), and Prob™(s, ) describes the proba-
bility measure of all paths o € Path(s) that satisfy ¢ when the system is starting
in state s, that is, Prob™(s, ¢) = Pr{oc € Path™(s) | o = ¢}. O

The steady-state operator S.,(®) denotes that the steady-state probability for
O-states meets the bound p. Pu,(p) asserts that the probability measure of the
paths satisfying ¢ meets the bound p.

Definition 11 (Satisfaction on path formulas). The relation |= for paths and
CSL path formulas is defined as:

ok X'® iff o[1] is defined and o[1] = ® and §(0,0) € I,
cEQUY  iff It el (ot =V AV €0,t)(cat | D))). O
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We consider the time interval of the next operator to I = [t1, t5] for t1,1s € Rxo.
The next operator X!1:%21® then states that a transition to a ®-state is made during
the time interval [t1,t5]. The until operator ® U’ asserts that ¥ is satisfied at
some time instant ¢ € I and that at all preceding time instants ® holds.

In the following, we deal with five different time intervals for the until operator:

e the bounded until operator with interval I = [0,¢] for ¢ € Ry,

e the time interval until with I = [t1,t5] for t1,1s € Ry and 1 < to,
e the point interval until with I = [t,¢] for t € R,

e the unbounded until operator with interval I = [0, 00) and

e the unbounded until operator with I = [¢, 00) for t € R.,.

Note that the path formula ® ¢! VU is not satisfiable for I = @. For a more detailed
description of CSL, see [8].

2.5 Model checking finite state CTMCs

Baier et al. recently proposed numerical methods for model checking CSL formulas
over finite state CTMCs [8]. We briefly rehearse the approach developed there, as
it forms the basis for our model checking approach for infinite-state CTMCs.

To model check the next operator ¢ = X’® we need the one step probabilities
to reach a state that fulfills ® within a time in [I.

Proposition 1 (Next operator [8]). For s € S, interval I C R, and a CSL state
formula ®:

T(s,s)
E(s)

Prob(s, X!®) = (¢ PO _ o ~Blyswl) 7

s'=d

In [8], it is shown that model checking the time bounded until, the interval until,
and the point interval until can be reduced to the problem of computing transient
probabilities for CTMCs. The idea is to use a transformed CTMC where several
states are made absorbing. As introduced in [8] this proceeds as follows:

Definition 12 (Absorbing). For CTMC M = (S, T, L) and CSL state formula
O let CTMC M[P] result from M by making all ¢ states in M absorbing, i.e.,
M[®] = (S,T',1), where T'(s,s') = T(s,s') if s [~ ® and 0 otherwise. O

The CSL path formula ¢ = ® U4 is valid if a W state is reached, before time
t via some ® path (that is a path via only ® states). Assoon as a W state is reached,
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the future behavior of the CTMC is irrelevant for the validity of ¢. Thus all ¥ states
can be made absorbing without affecting the satisfaction set of formula . As soon
as a (—® A W) state is reached, ¢ will be invalid, regardless of the future evolution
of the system. As a result we may switch from M to M[V]|[-® A -V] = M[~DV V],
as explained in [8].

Proposition 2 (Time bounded until [8]). For any CTMC M:

Prob™(s, ® UW) = Prob™(s, & U*Nw) = 3" 7MEP(s o 1), O
s'=U

For the interval until with time bound I = [t1,t5],0 < t; < {5 we again follow
the idea of CSL model checking. It is important to note that

Prob(s, ® Ul 210) # Prob(s, d U*1W) — Prob(s, & U 1),

For model checking a CSL formula that contains the interval Until operator, we
need to consider all possible paths, starting in a ® state at the actual time-instance
and reaching a U state during the time interval [t;,t5] by only visiting ® states on
the way. We can split such paths in two parts: the first part models the path from
the starting state s to a ® state s’ and the second part the path from s’ to a ¥
state s” only via ® states. We therefore need two transformed CTMCs: M[~®] and
M[=® V], where M[—=®] is used in the first part of the path and M[~®V U] in the
second. In the first part of the path, we only proceed along ® states, thus all states,
that do not satisfy ® do not need to be considered and can be made absorbing. As
we want to reach a U state via ® states in the second part, we can make all state
that do not fulfill & absorbing, because we cannot proceed along these states, and
all states that fulfill ¥, because we are done, as soon as we reach such a state.

In order to calculate the probability for such a path, we accumulate the multi-
plied transition probabilities for all triples (s,s’,s”), where s’ = ® and is reached
before time t; and s” = ¥ and is reached before time t5 — ¢;. This can be done,
because we use CTMCs that are time homogeneous.

Proposition 3 (Interval until [8]). For any CTMC M and (0 < t; < t5):

ProbM(s, ® Yt = Z Z aME(s o 1)) - MOV Sty — ). O

S'=d s =V

The point interval until can then be seen as a simplification of the interval until,
where the second part of the computation does not need to be considered. The CSL
path formula ¢ = ® UHUV is valid if a U state is reached, at time t via only ®
states, hence all states that do not satisfy ® do not need to be considered and can
be made absorbing. In the goal state s’ both ® and ¥ have to be valid.
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Proposition 4 (Point interval until [8]). For any CTMC M:

Prob™(s, ® UMW) = Prop™T%(s, @ ey = Y 2ME(s S ). O

= DAT

In Chapter 3 we show how this concept can be translated to QBDs and in
Chapter 4 we present how this approach operates on JQNs for the different intervals.

2.6 General model checking routine

One possibility for model checking that we are going to use is to develop the satis-
faction set Sat(®) = {s € S | s = @} for a given CSL formula ®. For every state
s € S it can then be checked whether s = ® by verifying whether s € Sat(®).

Algorithm 1 Sat(® : CSL state formula) : set of states
begin
if ® =+¢t then
return S;
else if & € AP then
return {s € S|P € L(s)};
else if ® = &; A §, then
return Sat(®;) N Sat(Py);
else if & = —-®; then
return S\Sat(P,);
else if ¢ = S,,,(®;) then
return Satgs(x< p, Oy);
else if ® = P,.,(X'®,) then
return Saty (< p, [, $);
else if @ = P, (P U'Py) then
return Saty (> p, I, &1, Dy);
else
no valid CSL operator;
end if
end

The construction of Sat(®) is done recursively and follows the inductive structure
of the CSL syntax. A CSL formula & is split into its sub-formulas and for every
sub-formula the model checker is invoked recursively, as illustrated in Algorithm
1. All seven CSL operators, as addressed in Section 2.4, are covered and a possibly
infinite satisfaction set is returned. The satisfaction set resulting from a steady-state
formula is denoted Satgs, the satisfaction set resulting from a next formula is denoted
Saty and the satisfaction set resulting from an until formula Sat;,;, respectively. The
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algorithms to compute these satisfaction sets will be introduced in Chapter 3 for

QBDs and for JQNs in Chapter 4.

In the following, this set of states will be a special data structure, in order to
deal with possibly infinite satisfaction sets. However, the data structure depends on
the type of infinite Markov chain that is model checked. We will introduce this data
structure for QBDs in Chapter 3 and for JQNs in Chapter 4.

2.7 Summary

In this chapter we introduced the foundations of stochastic model checking. We
presented labeled CTMCs with finite and infinite-state space in general, and an
infinite CTMC with highly structured state space in particular, namely a birth-death
process. We discussed paths on CTMCs and the probability measure on paths that
follows from the cylinder set. Furthermore, we introduced two different probability
measures on CTMCs, transient and steady-state probabilities. The syntax and
semantics of CSL have been shown to be the same on finite and on infinite-state
CTMCs. We discussed a general model checking routine based on satisfaction sets
and gave an overview on how the next and the until operator are model checked on

finite CTMCs.






Chapter 3

CSL model checking algorithms
for QBDs

In this chapter we describe CSL model checking algorithms for labeled QBDs. First,
the class of labeled QBD processes is introduced in Section 3.1. General algorithms
for CSL model checking of QBDs are then presented in Section 3.2. Section 3.3
presents uniformization for QBDs as needed for transient analysis of QBDs [70].
The details of model checking the until operator with its different time bounds are
described in Section 3.4. A small case study is presented in Section 3.5, before we
conclude in Section 3.6.

3.1 Labeled Quasi Birth Death processes

A special case of infinite-state CTMCs are CTMCs with so-called quasi birth-death
structure [61]. The infinite state space of a QBD can be viewed as a two-dimensional
strip, which is finite in one dimension and infinite in the other. The states in
this strip are grouped in so-called levels, according to their identity in the infinite
dimension. Figure 3.1 gives a graphical representation of a QBD.

Definition 13 (Labeled QBD). A labeled QBD Q of order (Ny, N) (with
Ny, N € N*T) is a labeled infinite-state continuous-time Markov chain, defined as
a tuple (S, T, L) with an infinite countable set of states S C N?, a transition rate
matrix T : S x S and the labeling function L : S — 247,

Transitions, represented by positive entries in T, can only occur between states
of the same level or between states of neighboring levels. Level 0 is called boundary
level, level 1 is called border level and all levels at least 1 are called repeating levels.
All repeating levels have the same inter-level and intra-level transition structure.

The block-tridiagonal generator matrix Q : S x S — Ry that is computed
by removing possible self loops from T, consists of the following finite matrices
describing the inter- and intra-level transitions, as shown in Figure 3.2:

19
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boundary level repeating levels

border level

Bo,1 Ay Ao Ao

0 1 2 3
BI,O A2 A2 A2

Bo,o Bi: A, A,

Figure 3.1: Sketch of the state space of a QBD

e By < RNoxNo: intra-level transition structure of the boundary level,

e By, € RY*N: inter-level transitions from the boundary level to the border
level,

e B, € RV*No: inter-level transitions from the border level to the boundary
level,

e B, € RN*N: intra-level transition structure of the border level,

o Ay € RV*V: inter-level transitions from one repeating level to the next higher
repeating level,

o A, ¢ RV*N: intra-level transitions for the repeating levels, and

o A, € RV*V: inter-level transitions from one repeating level to the next lower
repeating level.

O

Note that B, ; differs from A; only in the diagonal entries. From a fixed set AP
of atomic propositions the labeling function L : S — 247 assigns to each state the
set of valid atomic propositions in that state.

The set of states S can be partitioned into an infinite number of finite sets
S7.5=1{0,1,---}, each containing the states of one level, such that S = U;‘io SI =
{0,-+-,Ng — 1} x {0} U {0,---, N — 1} x N*, where the first part represents the
boundary level with N, states, and the second part the infinite number of repeating
levels, each with N states. We call the first repeating level the border level. Two
states (i1,71) and (ig, jo) are called corresponding states if iy = iy, j1,jo > 0 and
J1 # Jo.

The states of each level S for i@ > 0 are divided into three, not necessarily
disjoint, sets of states: S* = Sl U SH U SH

center out*
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boundary repeating levels
O——— border level

Bo,o Bo,1

Bio Bii | Ao

A, A, Ay

As | Ay Ay

Figure 3.2: Generator matrix for a QBDs

e The set Sh! comprises states that can be reached from the next lower level
(1—1) in one step, Ségnter comprises the states from which level i+ 1 cannot be

reached in one step, and S;’Jt comprises the states from which the next higher

level (i 4+ 1) can be reached in one step.

e Similarly, we define S5 to comprise the states that can be reached from the
next higher level in one step, S(Z;’elmer to comprise the states from which level
to comprise all states from which

t — 1 cannot be reached in one step and Sé’ult
the next lower level can be reached in one step.

Note that for the boundary level we have S = S%! U SS’Tt and S0 = %L U S

center U center in
because ng = @ and quﬁ = . The minimum number of steps that has to be
undertaken to reach sy from s; is given by g¢(si,ss) = |shortestpath(s;,ss)|. Let
d" > 1 be the so-called upward level diameter, that is, the minimum number of
state transitions needed to reach the next higher repeating level from a state in
Shldl = min{g(s;,ss) | s1 € S2l sy € SITTY. The downward level diameter d' is

defined along the same lines as d* = min{g(s;,s) | 51 € S}, s, € i1} We define

mn
d, the symmetric level diameter, as the minimum of the upward and downward level
diameter. Because the repeating levels of a QBD all exhibit the same structure,
they all have the same level diameter. However, the number of steps needed to cross

[ levels may be larger than [ - d, depending on the structure of the QBD.

Example 1. To illustrate the concept of the level diameter, Figure 3.3 shows three
successive levels of a QBD with five states per level. We derive the upwards and
the downwards level diameter by arranging the states of one level into the different
sets, as explained above.
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level 4 level i +1 level 7 + 2

e :

Figure 3.3: Three successive levels of a QBD to illustrate the concept of level diam-
eter

The set S© comprises the states {(1,7), (2,7)}, the set S=! .. comprises the states

- center
{(1,4),(2,1),(3,7)} and the set S comprises the states {(4,7),(5,4)}. Starting in
state (1,7) € S| and ending in state (2,74 1) € i7" yields the minimum number
of transitions to reach the next higher level. Hence, the upwards level diameter d'

1s set to 2.

For the downwards level diameter, Sb' = {(4,i)}, the set S%' . comprises

the states {(2,1),(3,4), (4,7),(5,4)} and the set Sht = {(1,i)}. Starting in state

Mout

(4,4 1) € S:T5 and ending in state (4,7) € S, yields the minimum number of
transitions to reach the next lower level. Hence, the downwards level diameter d'

equals 3. Consequently, the symmetric level diameter in this QBD is set to 2.

Clearly, for crossing the next two lower levels, more than d-2 steps are needed, as
the downwards level diameter is higher than the symmetric level diameter. However,
due to the special structure of the QBD, we also need more than d - 2 steps to cross
the next two higher levels. Since we always have to cross one of the two levels via the
longer path that contains state (3,7), we need 5 steps to cross the next two higher
levels.

3.2 Model checking algorithms

In this section we present the general algorithms for CSL model checking QBDs.
Section 3.2.1 introduces the concept of level independence for atomic properties. In
Section 3.2.2 this is extended to CSL formulas in general. We present the general
model checking routine for QBDs in Section 3.2.3. How to model check atomic
properties and logical operators is presented in Section 3.2.4. Model checking the
steady-state operator is introduced in Section 3.2.5, model checking the next opera-
tor in Section 3.2.6 and model checking the different until operators in Section 3.2.7.
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3.2.1 Level independent atomic properties

In the following we limit ourselves to strongly connected QBDs with so-called level
independent atomic propositions. That is, if an atomic proposition ap € AP is
valid in a certain state of an arbitrary repeating level, it has to be valid in the
corresponding states of all repeating levels. This limitation poses a true restriction
on the set of formulas we are able to check. In practice, this means that atomic
propositions must not refer to the level index in order to be level independent.

Definition 14 (Level independent atomic proposition). Let i € {0,..., N—1},
an atomic proposition ap € AP is level independent if

forall [,k > 1,ap € L(i, k) < ap € L(i,1). O

In order to develop efficient CSL model checking algorithms for QBDs, we need
to exploit the connection between the validity of state formulas and the special
structure of QBDs. At first glance one could think that in corresponding states of
all repeating levels the same CSL formulas hold. Unfortunately this is not the case,
which can easily be seen when considering the time-bounded next operator. In the
border level different next-formulas might be satisfied than in the other repeating
levels, because the boundary level is still reachable from the border level but not
from any other repeating level. Thus, if we want to check for example the formula
¢ = X!tlred and the property red is only valid in the boundary level, this property
¢ can be fulfilled by a path starting in the border level, but not when starting in any
other repeating level. A similar reasoning holds for the until operator, where not
only the border level is concerned but even more repeating levels, because with the
until operator not just one step is considered, but potentially an infinite number.
Thus, no two repeating levels can a priori be considered to satisfy the same path-
formulas.

3.2.2 Level independence of CSL formulas

Even though CSL formulas are not level independent in general, their validity does
not change arbitrarily between levels. Remember that we assume level independence
of atomic propositions for the QBDs we consider. For CSL formulas, we generalize
the idea of level independence: we show that the validity in a state is level inde-
pendent for repeating levels with an index of at least k for some k£ > 0. Thus, the
validity of a CSL formula changes between corresponding states of repeating levels,
but only up to repeating level £k — 1. From level k onwards, the validity remains
unchanged.

Definition 15 (Level independence of CSL formulas). Let Q be a QBD of
order (No, N). A CSL state formula ® is level independent as of level k > 1 (in
QBD Q) if and only if for levels above and including k, the validity of ® in a state
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does not depend on the level, that is, for alli € {0,...,N — 1} and for all [ > k :
(i,)) E® <~ (i,k) E . O

The following proposition states, under the assumption of level independent
atomic propositions, that such a k exists for any CSL state formula. We will jus-
tify this proposition inductively over the structure of the logic: in Section 3.2.4 for
atomic propositions and logical operators, in Section 3.2.5 for the steady-state op-
erator, in Section 3.2.6 for the next operator and in Section 3.4.6 for the different
until operators.

Note that atomic propositions do not have to be level-independent as of level 1.
In case the atomic propositions are level independent as of level k, we just extend
the boundary level to the first £ — 1 repeating levels.

Proposition 5 (Level independence on QBDs). Let Q be a QBD with level
independent atomic propositions and let & be a CSL state formula other than
Pop(® UTW). Then there exists a k € N, such that @ is level independent as of
level £ in O.

For the until operator P, (® U’ ¥) we require that for no state s the probability
measure is exactly equal to p, hence, Prob(s, ®U! W) # p. Under this assumption,
there exists a k € N, such that Puy,(® U ¥) is level independent as of level k in Q.
O

Furthermore, we assume that the QBDs under study are strongly connected,
because it simplifies checking the steady-state operator, as we do not have to consider
several parts of the QBD.

3.2.3 General model checking

For model checking a property ®, we compute the set Sat(®) with the recursive
descent procedure over the parse tree of ®, as presented in Section 2.6. For a state
formula ® that is level independent as of level k, only the first &k level satisfaction
sets have to be computed.

Definition 16 (Level i satisfaction set Sat'). Given a CSL state formula ®, we
define the satisfaction set of level i as Sat'(®) and the possibly infinite satisfaction
set Sat(®) can then be expressed as the union over all level satisfaction sets:

Sat'(®) = Sat(®) N S* and Sat(®) = |_J Sat'(®). O
=0

Given @ is level independent as of level k, Sat®(®) acts as a representative for
all levels above k as the validity of ® does not change any more for higher levels.
Thus, for a CSL formula & that is level independent as of k, we do not need to
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consider the possibly infinite satisfaction set Sat(®); it suffices to consider the level
satisfaction sets up to level k: Uf:o Sat'(®). For QBDs, the satisfaction sets, as
used in Chapter 2, Algorithm 1, can therefore be represented by the data structure
Uf:o Sat'(®) that contains all states that fulfill ® up to level k, in combination with
the information that ® is level independent as of k.

3.2.4 Atomic propositions and logical operators

Computing the satisfaction set for an atomic proposition ap proceeds as follows.
Sat®(ap) consists of those states of the boundary level where ap is contained in the
labeling. We model check all states in the border level in order to obtain Sat!(ap),
and, similarly, Sat’(ap) for j > 1.

Let ® be a CSL state formula that is level independent as of level k. Its negation
—® is clearly also level independent as of level k. The level satisfaction sets of ~® are
computed by complementing the corresponding satisfaction set of ®: Sat/(—®) =
SI\Sat? (@), for all j > 0.

Let & and ¥ be two CSL state formulas, level independent as of level kg and ky,
respectively. The conjunction ® A U is level independent as of level max(kg, ky).
The level satisfaction sets are computed by intersecting the corresponding satisfac-
tion sets of ® and W: Sat!(® A ¥) = Sat/(®) N Sat’(V), for all j > 0. The level
satisfaction set Sat™**(*+#¥)(d A U) is the representative for all following levels.

3.2.5 Steady-state operator

A state s satisfies Sy, (P) if the sum of the steady-state probabilities of all -states
reachable from s meets the bound p. Since we assume a strongly connected QBD, the
steady-state probabilities are independent of the starting state. It follows that either
all states satisfy a steady-state formula or none of the states does, which implies that
a steady-state formula is always level independent as of level 1, since the boundary
level may have a different structure. We first determine the satisfaction set Sat(®P)
and then compute the accumulated steady-state probability. If the accumulated
steady-state probability meets the bound p, we have Sat(S.,(®)) = S, otherwise,
Sat(Sep(P)) = @.

Exploiting the special structure of QBDs, the accumulated probability is given

by
w(Sat(®) = Y wls)=), Y m(s),
s€Sat(P) J=0 seSati ()
where the vectors m; = (---,mj(s),-- ) can be computed one after the other, using

the matrix-geometric method, cf. [61], as explained in Appendix A. In order to deal
with the infinite summation we iterate through the repeating levels and accumulate
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the steady-state probabilities in a level-wise fashion. We denote with 7 (Sat(®))
the accumulated steady-state probabilities of all ®-states up to level [, that is,

{(Sat(® Z Z (s

J=0 seSati (P)

Starting with [ = 0, we compute 7 (Sat(®)) and 7' (Sat(~®)), respectively. The
computation of the steady-state probabilities of —=®-states introduces no additional
cost, since we have to compute the whole vector m; anyway. In every step we have
to check whether we can already decide on the validity of the steady-state formula
Spp(P). The following implications hold:

(a) 7 (Sat(®)) >p = w(Sat(P)) > p,
(b) #(Sat(~®)) >1—p = 7(Sat(P)) < p.

As soon as one of the left-hand side inequalities becomes true, we can stop. The
model checking routine for the steady-state operator is stated in pseudocode in
Algorithm 2.

For the interpretation we distinguish the cases S<,(®) and S5, (®). For S.,(®)
the interpretation is as follows. If inequality (a) holds, the condition 7(Sat(®)) < p
is clearly not accomplished and Sat(S.,(®)) = @. If inequality (b) holds, the
condition 7(Sat(®)) < p is accomplished and Sat(S.,(®)) = S. As every steady-
state formula is independent as of level 1, Algorithm 2 just returns Sat’ U Sat'. How
to interpret the termination criterion is presented in pseudocode in Algorithm 3. In
case the steady-state formula is valid the algorithm returns S° U S and otherwise
it returns two empty sets.

Algorithm 2 Sats(=p, ®) : |J,_, Sat’

begin

i=0;

sat = S N Sat(P);

sat_neg = S\ Sat;

T(P) = 0;

7(=®) =0;

while (7(®) < p) and (7(-P) <1-—p) do
i = MGM(level i); (* according to App. A *)
F(®) 4= Xy Tl
F(0) += 5 rengy ey ()
1=1+1;

end while

return interpret(< p, ®, w(P), 7(—P));

end
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Algorithm 3 interpret(s< p, ®, 7(®), 7(—®)) : U,_, Sat’
begin
if xp=(<p)V(<p) then
if 7(®) > p then
return J;
else
return S° U S
end if
else
if 7(®) > p then
return S° U S!;
else
return ;
end if
end if
end

For S.,(®) the same conditions need to be checked in every iteration step I,
but they need to be interpreted differently; if inequality (a) holds, the probability
bound is met and Sat(S-,(®)) = S. If inequality (b) holds, the bound is not met
and Sat(Ss,(®)) = @. For S5,(P) or S<,(P) the equations need to be modified
accordingly.

The satisfaction set of ® might be finite. For a CSL formula ® that is level
independent as of level k, this is the case when no state in level k satisfies ®. The
iteration then ends at level k—1 and 7(Sat(®)) = 7*~1(Sat(®)). In case Sat(P) is of
infinite size, the iteration stops as soon as one of the inequalities is satisfied. Unfor-
tunately, if the bound p is exactly equal to the steady-state probability 7(Sat(®)),
the approximations 7' (Sat(®)) and 7! (Sat(—=®)) will never fulfill one of the inequal-
ities. In an implementation of this algorithm some care must be taken to detect this
case in order to avoid a non-termination iteration, for example a maximum iteration
bound can be introduced.

Instead of the just-sketched iterative process, we can also use a closed-form ma-
trix expression for the probability m(Sat(®)) by exploiting properties of the matrix-
geometric solution, i.e., by using the fact that ) ;- R’ = (I — R)™', according to
[63, Section 4.2]. In doing so, the infinite summation disappears and hence, the
termination problem is avoided. Note that the matrix inversion is computed any-
way when using the matrix-geometric method, hence this approach is therefore not
necessarily less efficient.
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3.2.6 Time-bounded next operator

Recall that a state s satisfies P, (X1#21®) if the one-step probability to reach a
state that fulfills ® within a time t € [t, t5], outgoing from s meets the bound p. As
for one-step probabilities self loops have to be taken into account, we have to use
the transition rate matrix T to model check the time-bounded next operator:

s = Pop(X1121®) = Pr{o € Path(s) | o = X210} ap

LBt —E(s)t T(s,s) (3.1)
o[ (emon —emony. 3 B | P

s'€Sat(®)
where e Bt ¢=E()#2 g the probability of leaving s at a time t € [t;, 5], and
T(s,s')/E(s) specifies the probability to step from state s to state s’. Note that the
above inequality contains a summation over all ®-states. We, however, only need
to sum over the states of Sat(®) that are reachable from s in one step. That is,
for s = (i,7), we only have to consider the ®-states from levels j — 1,4, and 7 + 1;
the one-step probabilities for all other states are zero, thus making this summation
finite.

Now, let the inner formula ® of the next-formula be level independent as of
level k. Hence, the validity of the state formula Pu,, (X *21®) might be different in
corresponding states for all levels up to k& — 1. Therefore, unfortunately, level k can
still have different states satisfying Pu, (X1%21®) since level k — 1 is reachable in one
step. But, as of level k + 1, only levels can be reached where the validity of state
formula @ is equal for corresponding states. Hence, if ® is level independent as of
level k, Puy,(X11210) is level independent as of level k + 1. For the construction of
the satisfaction set of such a formula, we therefore have to compute explicitly the
satisfying states up to level k + 1. Subsequently, Sat**+! (P, (X[1#1d)) can be seen
as a representative for all following repeating levels. That is,

Sat (P (X18)) = Sat*Hi(Pry (X14218), for i > 1,

because the validity of P, (X[1*21®) does not change anymore from level &k + 1
onwards. Model checking the next operator is stated in pseudocode in Algorithms 4
and 5.

3.2.7 Time-bounded until operator

To model check Py, (P UW) for a given state s we adopt the general approach for
finite CTMCs [8]. The idea is to use a transformed QBD where several states are
made absorbing. Recall, that the CSL path formula ¢ = ® U is valid if a U-state
is reached on a path during the time interval [ via only ®-states. We discuss model
checking the until operator for the intervals [0,t], [t1,t2], [¢,t], [0,00) and [t,00)
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Algorithm 4 Saty(>p, I, ®) : [J) Sat’
begin
Sat(®) independent as of k;
for all i €{0,...,k+1} do
for all s € S"do
if satisfy,(s,><1p, I, ®) then
Sat" = Sat' U {s};
end if
end for
end for
return | JI') Sat’;
end

Algorithm 5 satisfy,(s,>< p, I, ®) : boolean

begin

a = sup(I);

b = inf(I);

return [(eiE(S).b - eiE(S).a) ZS’ESat(q)) %7(55/))] oy
end

and present the connection between these five cases and the involved numerical
algorithms to be discussed in Section 3.3. The justification of Proposition 5 for the
until operators is postponed to Section 3.4.6, as we need a better understanding of
how the probabilities are actually computed first.

Case I = [0, 1]

First, we restrict the time interval to a time interval I = [0, ¢]. In this case, the future
behavior of the QBD is irrelevant for the validity of (, as soon as a W-state is reached.
Thus all W-states can be made absorbing without affecting the satisfaction set of
formula . On the other hand, as soon as a (=® A =W)-state is reached, ¢ will be
invalid, regardless of the future evolution. As a result we may switch from checking
the Markov chain Q to checking the Markov chain Q[U]|[-® A =¥] = Q[~d V V],
as defined in Chapter 2, where all states satisfying the formula in [-] are made
absorbing.

Proposition 6 (Connectivity of absorbing Q). Given a strongly connected
QBD Q and a level-independent CSL formula ®, the Markov chain Q[®] is still a
QBD, however, Q[®] is not necessarily strongly connected, anymore. [l

Model checking a formula involving the until operator then reduces to calculating
the transient probabilities 720*V¥(s s’ ¢) for all W-states s'. Exploiting the regular
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structure of QBDs yields
S = Pop (O UONT) = Prob(s, @ UT) a p

i Z Tl (s o 1) | pap.

=0 'cSat’(¥)

(3.2)

The transient probability of being in each state of the infinite-state QBD for any pos-
sible initial state (as needed for the time-bounded until operators) can be calculated
with a new iterative uniformization-based method, which we present in Section 3.3.
To calculate the satisfaction set for Puy,(® U*UW), we need to understand how this
algorithm works, therefore we postpone this discussion to Section 3.4.1.

Case I = [ty, o]

Considering a time interval [t;, 5] with 0 < t; < t we can split the computation
in two parts. The first part then addresses the path from the starting state s to
a d-state s’ at time ¢; via only ® states. The second part of the computation
addresses the path from s’ to a W-state s” via only ® states. This leads us to two
transformed QBDs: Q[—®] that is used in the first part (i.e., for the interval [0, 1))
and Q[—® V V] in the second part (i.e. for the interval [ty,s]). To calculate the
probability for such a path, we accumulate the product of the transient probabilities
for all triples (s,s’,s”), where s’ = ® is reached before time ¢; and s” = W is reached
before time t5 — t;. This can be done, because the QBDs are time homogeneous.
Hence, we have:

S ): Pmp((b u[tl,m}\p) N PT’ObQ(S, P u[tl,tghll) > p

Z Z Z Z Q[—@] S S/, tl) . WQ[_‘CI)V\P]<SI,S”, ty — t1> <1 .

=0 s/cSat’(®) J=0 s”cSat! (¥)

(3.3)

The algorithm for the interval until will be presented in Section 3.4.3.

Case [ = [t,1]

The point interval until is a simplification of the interval until, where only the
first part of the computation needs to be taken into account. Thus, we need the
transformed QBD Q[—®] and need to compute the probability that at time point ¢
a state s’ is reached that fulfills ® A .

S = Poop(® UMT) = Prob(s, @ UMW) q

Z Z 725 s ) | >ap.

i=0 ¢/ Sati (BAD)

(3.4)
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The algorithm for the point interval until operator is the same as for the time
bounded until, with two minor changes. First the transient probabilities have to
be computed on Q[—®] for the point interval until and on Q[—® Vv ¥] for the time
bounded until. Second, the goal states s’ have to fulfill ® A ¥ for the point interval
until and just ¥ for the time bounded until.

Case [ = [0,00)

For the unbounded case (interval [0, c0)) the probability Prob®(s, ® U[%°)T) equals
the probability to eventually reach a W-state via only ®-states. Since the =® Vv W-
states are absorbing, this is exactly the steady-state probability to be in a W-state
in the adapted QBD. However, due to the fact that Q[—® V W] is not necessarily
strongly connected, cf. Proposition 6, we cannot compute the satisfaction set of
Prap (U)W with the algorithm presented in Section 3.2.5.

§ = Pogp(BULXIT) & Prob?(s, ® UL)T) pap
o 7Y (s Sat(W)) pap

Z Z V(s §) | pap.

1=0 s'eSat(¥)

The algorithm for the unbounded until operator with interval I = [0, c0) will be
discussed in Section 3.4.4.

Case [ = [t,0)

For the interval [t, 00) the computation is split in two parts, just as for [tq,¢s]. The
first part addresses the path from the starting state s to a ®-state s’ via only ®-states
at time ¢, whereas the second part addresses the path that eventually leads from s
to a W-state. Note that we combine the transient probabilities in the transformed
QBD Q[—®] for the first part, with the steady-state probabilities in Q[=® V ¥] for
the second part as follows:

S = Poop (D UMW) & Prob<(s, @ UHT) > p

3.6
(Y T T T s gy OO
=0 s/cSat?(®) J=0 s"’cSati (V)
The algorithm for the unbounded until operator with interval I = [t,00) will be

described in Section 3.4.5.
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3.3 Uniformization with Representatives

We first describe the main principles of uniformization for QBDs in Section 3.3.1.
In Section 3.3.2 we then describe how to exploit the QBD structure to obtain a
finite data representation. We address the growth of the involved data structures
in Section 3.3.3. The actual iterative algorithm is then presented in Section 3.3.4
before we discuss complexity issues in Section 3.3.5.

3.3.1 Uniformization

Uniformization is a well-established technique to determine the transient-state prob-
abilities V(#) in a continuous-time Markov chain via an uniformized discrete-time
Markov chain subordinated to a Poisson process [36]. The parameter of this Poisson
process corresponds to the maximum outgoing transition rate of any single state in
the CTMC. This so-called uniformization rate A can easily be determined because Q
has only a finite number of different diagonal entries (originating from the matrices
B070, B171, and Al)

The probability matrix P for the uniformized DTMC then is computed as I+Q/A
and it follows the same trldlagonal structure as Q (where the sub-matrices are
replaced by BO 0, BO 1, B1 0 B1 1 AO, A1 and AQ, respectively). The sub-matrices
are calculated as follows:

. [+B8u =y ~ I+4 =1
Bi,j:{Bj; A Z 27 and Ai:{A—.i_ A 2.7&1,
: =t 1 .

Let U® be the state probability distribution matrix after k& epochs in the DTMC
with transition matrix P. That is, entry (i,j) of U%®) is the probability that j is
reached from 7 in k steps. U®) can be derived recursively as:

UO =1, and U®W=UkVP, feN*. (3.7)

Then, the matrix of transient state probabilities for the original CTMC at time ¢,
can be calculated as:

=D (M RPE =D (M kU, (3.8)
k=0 k=0

where 1 (At; k) is the probability of k events occurring in the interval [0,¢) in a
Poisson process with rate A\. The probability distribution in the DTMC after k
steps is described by V(0) - P* (note that V(0) =I).
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To avoid the infinite summation over the number of steps k, the sum (3.8) needs
to be truncated. We denote the approximation of V(¢) that has been calculated
with up to n terms of the summation with V™ (#):

V(”)(t) — z": (At k)U(k). (3.9)
k=0

We can compute V() as:
VO () = VO (4) 4+ (Mg + 1)U, (3.10)

Note that V™ () follows the structure of the previous U™ (m < n) in terms of
zeroes and non-zeroes because any non-zero entry in V™ corresponds to a non-zero
entry in at least one U™ (m < n). We denote a maximum bound on the error that
possibly occurs in an entry of V (¢) when the series is truncated after n steps as z—:;n)

We have

o n k
> (kUM | <1 - Ze_/\tﬂ = (3.11)
) — k" t,A
k=n+1 k=0 '

Note that for given error 51(577;), A and ¢, n can be computed a priori, cf. [36, 38|. For

a given number of steps n, z—:grf\) increases linearly with A - ¢ and decreases linearly

with n.

Finally, observe that the matrices V(™ (¢) and U™ are of infinite size. However,
exploiting the repetitive structure of QBDs and the truncation given by uniformiza-
tion we can give a finite representation that depends on the number of considered
steps n for a given error bound, as will be presented next.

3.3.2 Finite representation

From every single state, only a finite number of states is reachable in n steps.
The transient probability computed by uniformization to reach one of the non-
reachable states is zero. Hence, for a single starting state it is sufficient to consider
only the finite set of reachable states. This was already observed in [34, 57, 84].
When simultaneously considering every state of the infinite state space as starting
state, one would have to consider an infinite number of finite parts of the QBD,
which is practically not feasible. However, given a finite number n of steps, there
is a repeating level [ from which onwards the boundary level cannot be reached
anymore. Therefore, the finite part of the QBD that needs to be considered for
starting states from repeating levels [ onward does not contain states of the boundary
level. The structure of all these finite parts is identical, only shifted appropriately,
due to the regular structure of the QBD. This implies that we obtain identical



34 3 CSL model checking algorithms for QBDs

0 steps 1 to d steps

® | (b) Ininl
A }D A |
representative level representative level

representative probabilities

representative probabilities

d+ 1 to 2d steps

*[Joomot

representative level

7

representative probabilities

Figure 3.4: Considered part of the state space (left) and finite representation of U™
and V™(#) (right), depending on the number of considered steps

transient probabilities (shifted appropriately) for corresponding states in repeating
levels numbered at least [, within the error bounds of uniformization, given n steps.
Therefore, we can use the states of level [ as representatives for all corresponding
states at higher levels. In fact, we restrict the computation to a finite number of
starting states and still perform a comprehensive transient analysis for every possible
state as starting state.

For a finite representation of the matrices V™ (t) and U™ it is now sufficient
to store all non-zero entries for starting states of levels up to [. The size of the finite
representation depends on the considered number of steps n, hence, on the time, the
uniformization rate, and the required accuracy.

3.3.3 Probability distribution after n epochs

We now address the growth of the matrices U™ in the course of the computation.
Figure 3.4(a) shows that the dimension of the finite representation of U is (Ny +
N) x (Ng+ N). Since n = 0, we cannot leave a level and the first repeating level is
already representative for all (other) repeating levels. In case n = 1, we can reach
the next higher or the next lower level. Since the next lower level is the boundary
level, the first repeating level cannot be used as representative, but we can use the
second repeating level as representative, as shown in Figure 3.4(b). Since n = 1, it
is possible to reach the next higher level as well; thus we have to consider starting in
one of the first three levels (including the boundary level) and ending up in one of the
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Figure 3.5: Computation of U® . P = UM

first four levels. The dimension of the finite representation of U™ therefore needs to
be (Ng+2N) x (Ng+3N). With a symmetric level diameter d, we will need at least
another d — 1 steps before possibly reaching the next higher repeating level. Thus,
the size of all U™, forn = 1,--- ,d, will be the same as for n = 1. Figure 3.4(c)
shows the finite representation of matrices U™, for n = d +1,---,2d. From a
given level, we can reach at most the next two higher or lower levels. Therefore,
we have to pick a new representative: the third repeating level. Starting from this
representative, we can reach the next two higher repeating levels. We have to attach
another row (of blocks of states) for the new representative, and in every other row
we have to attach one block of states to the left (the next lower) and one to the right
(the next higher level), wherever possible. The dimension of the finite representation
is then (No+3N) x (Ng +5N), for all U™, for n =d+1,---,2d. In general, for a
given number of steps n > 1 and level diameter d, the maximum number [ of levels
reachable from a representative level in one direction (up or down) is given by

[=((n—1)divd)+1. (3.12)

The size of the matrix U™ is then determined by [. The dimension of its finite
representation is (No+(I41) V) x (No+(2[4+1)N). As before, the finite representation
of the matrix V(™ has the same dimension.

3.3.4 Uniformization with representatives

We now proceed with the actual computation of U™ and V™ (t) according to
Equation (3.10). Starting with n = 0, and thus with a small finite portion of the
QBD, cf. Figure 3.4(a), we increase n step by step, thus increasing accuracy and
size of the considered finite representation of the QBD. However, in each iteration
we always use the smallest possible representation. The matrices U™ and V™)(t)
have a block structure, according to the levels of a QBD; we denote the blocks that
give the probabilities from states in level ¢ to states in level j as UEZ») and 'V, ;(1).

Starting with U® (with dimension of the finite representation (Ny+ N) x (N +
N)), the computation of UM is visualized in Figure 3.5: we multiply the finite
representation of U where one row of blocks is added for the new representative
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repeating level, with a finite portion of P that consists of three block rows (for the
three considered starting levels) and of four block columns (for the four levels that
can be reached). In general, for n > 1, U™ is computed as U~V . P, cf. (3.7), as
follows:

Uz('jz)):Ugo Y Boo-l-UZl B1o, fori=0,--- 1,

Uz(ﬁ):UEO Y P’Ol‘i‘tjﬁ1 ]§11+U A27 fori=0,---,1+1,

UZ(Z) :Uznj e A0+U(n Y A1+U,(7;+11 1&2, fori=0,---,1+1,
j:2’-..’i+l’

(3.13)

where [ is computed as in (3.12).

Proposition 7 (Corresponding blocks). For a given number of steps n and for
all ©+ > n and for all j > n + 1, the blocks UZ(-Z) contain the same probabilities as
the corresponding representative block Un j—itn- Hence, our finite representation is
correct. U

Proof (by induction on n). (Basis n = 0) We know from Equation (3.7) that
U© is initialized with the identity matrix:

I, i=j
o) ) I ..
U, = { for 7,5 > 0.

0, otherwise,

This equals the above proposition because for i = j, it follows U(0 =I= Uéoj ;

UOO()], and for 7 # j it follows U(0 =0= UOOJ) _;- Hence, for n = 0, the above
proposition is true.

(Induction step) The induction hypothesis (IH) is that, for & > 0,
UE? :U,(fj i, for i >k and for all j >k + .
We know from (3.13) that for j > k and for ¢ > k + j

U§ﬁ+1) _ U( ) AO + U Al + [J'Z]_’_1 ;&2

ij—1
= Ul(ck]) 1irh Ao+ Ugg_] o A+ Ugchrl i A (3.14)
o Ukk;r 1z)+k>
which proves the proposition for n = k + 1. O
Due to the block structure of V™(t), we can rewrite (3.9) as
Vi) = Vi) + o) - U, (3.15)

fori =0,--- 1+ 1, and for j = max{0,i — {},---,7 + . After d steps, the size of
V™(t) will have to be adapted. This comes at no computational costs since the
block matrices that need to be appended are either zero, or just copies of block
matrices that have been computed already.
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3.3.5 Complexity

The level index [ of the representative increases with the number of considered
steps k£ and decreases with the symmetric level diameter d. In the k-th iteration, we
actually consider the states of the boundary level and of [, + 1 repeating levels as
starting states, and the states of the boundary level and of 2[; 4+ 1 repeating levels
as end states. The boundary level has N, states and each repeating level has N
states, resulting in matrices with (Ng + (I + 1)N) x (N + (2lx + 1)N) entries, so
that the storage requirement grows with the level index of the representative. If n
is the maximum number of steps considered, the overall storage complexity for the
three probability matrices U1 U™ and V(™ is O(3(NZ + 1, NoN + I2N?)).

Let v denote the average number of transitions originating from a single state
in the QBD. Assuming a sparse representation, the discrete transition matrix P
has storage complexity O(v(Ny + 2N)). In the k-th iteration, the multiplication
of matrix U™V with P is carried out in O(v(Ny + (I, + 1)N)) time. For n the
maximum number of considered steps, the overall time complexity therefore equals
O(n-v(Ny+ (& +1)N)).

Note that the iteration costs per level increase. However, when probability ma-
trices of the size U™ and V™ would be used throughout the complete computation,
the iteration costs would be much higher.

3.4 Different time intervals for the until operator

In this section we present the algorithms to compute the satisfaction set for CSL
formulas with the until operator for the different time intervals. Note that the
algorithms, as presented in the following, do not stop in case the computed proba-
bility for at least one starting state equals the probability bound p. The presented
iterations will then never stop; however, this is highly unlikely to occur in practice.

An efficient algorithm for the time-bounded until operator with time interval
I = [0,¢] will be discussed in 3.4.1 and the corresponding pseudocode is provided
in Section 3.4.2. Section 3.4.3 presents the algorithm for model checking the time-
bounded until operator with time interval I = [¢1,t5]. The algorithm for the time-
unbounded until operator is discussed in Section 3.4.4 for the time interval I = [0, c0)
and in Section 3.4.5 for the time interval I = [t, 00). Furthermore, we provide a proof
of Proposition 5 for the until operator in Section 3.4.6.

3.4.1 The simplest case [ = |0, ]

As for any uniformization-based technique, we can compute the number of steps
that needs to be taken into account a prior: for a given error bound ¢, 5. However,
this may introduce several problems in a model checking context. First of all, such
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a statically computed number of steps might be larger than is really needed to
determine whether a CSL property is satisfied or not. Furthermore, in other cases the
preset accuracy (hence, number of steps) might not be sufficient to decide whether
the computed probability meets the required bound. To overcome both problems,
we propose a dynamic termination criterion, which we claim to be optimally efficient
in the current setting.

For model checking an until-formula Py, (® U1 W¥) we have to compare for each
starting state the probability to take a (® U4 W)-path with the probability bound
p. In the transformed QBD Q[—=® V W] the set of goal states consists of all U-states.
We denote the probability to end up in a W-state, given starting state s, as ys(t).
For the time interval I = [0, t], we have:

W)=Y > w(s ¢ 1), (3.16)

i=0 ¢ cSati (V)

Note that the vector 7(t) consists of sub-vectors corresponding to the levels of the
QBD that are considered with uniformization. The approximation of (¢) after n
iterations is called 7™ (t) = V(™ (t) - 4(0), and

1, sE=V,
75(0) = = .
0, otherwise.

In principle, 7™ (#) is of infinite size, but we can cut it to a finite representation, as
from a representative level on, all levels contain the same values. It is also possible to
derive Equation (3.13) directly for v(¢) and then use this vector for the computation.
When increasing the number of considered steps n, the entries of ¥(™(t) increase
monotonously. Thus, comparing entries of the probability vector 4™ (t) with the
bound p on a regular basis, we might be able to decide whether the probability
meets the bound p after a smaller number of iterations than after the number of
iterations that is computed a priori.

With uniformization with representatives, the computed approximation after n
steps always underestimates the actual probability. Recall that 51(57;) is the maximum
error of uniformization after n iteration steps (cf. (3.11)), such that y5(¢) < 'ys(n)(t) +

z—:l(fi\) for time interval I = [0,¢]. From (3.11) it follows that the value of z—:l(fi\) decreases
as n increases. Exploiting the above inequality, we obtain the following termination
criteria:

(a) A >p = %) >,
b) W) <p—el) = ) <p.

These criteria can be exploited as follows. Starting with a small number of steps, we
check whether for the current approximation one of the inequalities (a) or (b) holds
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for all starting states. If this is not the case we continue, check again, etc., until
either of the termination criteria holds. However, if for one of the starting states
s € S we have ~4(t) = p, the iteration never stops, as neither of the termination
criteria ever holds. Given ~® V W is independent as of level [ and the iteration stops
after n steps for all considered starting states, then level [ + n is representative for
all levels larger [ + n.

Hence, we used an approximate algorithm to construct an exact decision proce-
dure for model checking the until operator. The approximate algorithm, uniformiza-
tion, computes the transient probabilities for a given error bound. Comparing the
computed probability with the given probability bound and the uniformization error
allows us to decide for a given starting state whether or not a CSL formula that
contains the until operator is valid. Note that this approach could also be used for
model checking finite CTMCs. In [8] the truncation error due to uniformization is
not taken into account.

Recall, that the point interval until can be computed just like the time bounded
until, with the only difference that the transient probabilities have to be computed
on Q[=®] and that the goal states s’ have to fulfill & A .

3.4.2 Pseudocode algorithm for I = [0, ]

We present the algorithms needed for model checking Pu, (P U 94 in pseudocode.

Algorithm 6 uniformize(p, t, k, v(0)) : (), k

start = Uf:o LR (* set of starting states *)
n=0;
U® =1
VO =T,
HO(0) = 7(0) - VO
set 5,5?)2; (* according to Eq. (3.11) *)
while (- check(y™(t) ,EETE\), > p) ) do
n = n+l; 7
start = start U Sk,
update U™, (* according to Eq. (3.13) *)
update V™), (* according to Eq. (3.15) *)
update 5;7;); (* according to Eq. (3.11) *)
30 (8) = 2(0) - VO,
end while
k=k + n;
return (1), k;
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Algorithm 7 check( ™ (t),agj?, > p) : boolean
finished = 1;
for all s € S do
if e {<,>} then
if = (" (t) > p) then
if ﬁ(’ygn) (t) <p-— 5?3)) then
finished = 0; (* not enough iterations yet *)
end if
end if
else if e {>, <} then
if = ( fygn)(t) > p) then
if ~(7{"(t) <p—e!)) then
finished = 0; (* not enough iterations yet *)
end if
end if
end if
end for
return (finished);

Algorithm 8 Satz[j’ﬂ (< p, t, Py, Do) : U?:o Sat’
begin
®; independent as of ki;
®, independent as of ks;
k = max(ky, ko);
make absorbing(—®; V ®);
set v(0); (* according to Eq. (3.16) *)
v(t), k = uniformize(p, t , k, 7(0));
for all ¢ € {0,...,k} do
for all s € S"do
if satisfy,,(s,vs(t),>=p) then
Sat' = Sat' U {s};
end if
end for
end for
return Uf:o Sat';
end
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Algorithm 6 presents uniformization employing the dynamic termination crite-
rion in pseudocode. The input parameters of the algorithm are the probability
bound p, the time ¢, the level independence of the inner formula —® Vv ¥, and the
vector (0) that indicates for all states whether s is a goal state or not. Algorithm 6
returns a vector of probabilities v(t) to end in a goal state, the error after n iterations

eﬁrf\), and the level k that contains the representative probabilities.

The termination criterion is coded in Algorithm 7 that returns FALSE if the
current number of iterations is not yet enough to decide the validity of the until
formula for all starting states. In that case Algorithm 6 enters another iteration.

In Algorithm 8 model checking Pu, (P U %®,) is presented in pseudocode.
To compute the transient probabilities, Algorithm 6 is called and Algorithm 9 then
returns whether or not a given starting state fulfills Py, (®; U1 ®,) for the different
comparison operators 1 € {<, >, < >}.

Algorithm 9 satisfy;, (s, vs(t), > p) : boolean
if (> is <) then
return (—(v,(t) > p));
else if (< is >) then
return (v,(t) > p);
else if (< is <) then
return (—(v,(t) > p));
else if (pais >) then
return (v(t) > p);
end if

3.4.3 The bounded case [ = [t1, t9]

As presented in Section 3.2.7, the computation of the transient probabilities for
the time interval I = [ty,1s], is split into two parts. We need to combine the
transient probabilities in the transformed QBD Q[—®] at time ¢; with the transient
probabilities in Q[—~® V W] at time ty — ¢1, as follows:

Z Z Z Z S s tl) Q[‘@V\If}(s/’s//’tQ . tl)

=0 s/cSat’(®) J=0 s”cSat! (V)

:Z Z 71' _@ S S tl Z Z Q[_@\/\IJ] S S”,t2 _tl)

1=0 s/ cSat(P) J=0 s”eSati (V)
N ~ > ~ v

= Ys(t1) : Vs (t2 — t1)
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The first equation is rewritten by separating the transient probabilities of the two
parts. For a given a priori error &, an initial distribution vs(m)(tl) for the first
part of the transient probabilities is computed with uniformization in n; steps. The
second part of the transient probabilities is computed with uniformization with rep-

resentatives. The approximation of vy (to—t1) with ny steps is denoted as vi,n ) (ta—t1)
and induces the error 55311

actual probability:

»,- Both approximations are an underestimation of the

Ys(ts) < (né"ﬂ<t1>4eﬁi¥l) -(wé?”(tz—-t1>+sxmlhx2)- (3.17)

For a given initial distribution 'ys(m)(tl), we iterate ny until for every considered

starting state one of the following termination criteria holds:

(a) W) AT (s =) >p = Ylts) > p
(b) 7572)(752 —t) < 775(n1)f Ty fﬁgl,xg = 7s(t2) <p.

t1,A1

Given =@ V V¥ is independent as of level [, we have to find ny such that either (a) or
(b) is fulfilled for every considered starting state. Given that the initial distribution
is computed with an a priori known number of steps nq, level [ + n; 4+ ny serves as
representative for all levels i > [ + ny + ns.

3.4.4 The unbounded case [ = [0, )

In Section 3.2.7 we showed how the model checking of an unbounded until operator
relies on the computation of the steady-state probabilities in the absorbing QBD
Q[-® Vv U]. Recall that Q[=® V U] may not be strongly connected. However,
the steady-state probability of the set of absorbing W-states is independent of the
residence time in each state but only depends on the branching probabilities and
the starting state. We can therefore switch to the discrete-time Markov chain that
is derived from the embedded discrete-time Markov that corresponds to Q[—® V V],
by removing self-loops. This probability matrix is denoted H where

/

H(S, s/) — Q<S7s)

— "~ fors#s', and H(s,s) = 0.
_Q<S7 S) 7£ ( )
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Note that H"(s,s’) denotes the probability to reach s’ from s in exactly step n. If
the level of the starting state is [, the desired steady-state probability is

(s, Sat(W Z Z

i=0 s'cSat’ (V)

—Z Z ZH"SS
i=0 gcSati(¥) n=0
I+n
—Z Z Z H"ss

n=0 {=max(0,l—n) s’eSatZ )

The second equality replaces the steady-state probability m(s,s’) by the probability
to reach a W state s’ in zero up to infinitely many steps, i.e., by >~ >° /H"(s,s’). The
third equality follows from the fact that only a finite number of levels is reachable
in n steps. Using this equation, representative probabilities can be computed for
an increasing number of considered steps n, as is the case for uniformization. The
termination criterion is adopted from Section 3.2.5. In every step we have to compare
the approximations computed with N steps:

l4+n

sSat Z Z Z H"(s,s)

n=0 i=max(0,/—n) s'cSat’ (V)

and 7™ (s, Sat(—~W)), with p and 1 — p, respectively, until we can stop the iteration.
As soon as one of the left-hand side inequalities becomes true, we can stop:

(a) 7MN)(Sat(®)) >p = 7w(Sat(®)) > p,
() #M(Sat(=®)) >1—p = a(Sat(P)) < p.

Given V¥ is independent as of level [, we have to find N, such that either (a) or (b)
holds for all considered starting states. Level [ + N is then the representative level
for all levels larger [+ N, as the structure of the QBD remains the same for N steps
to the left and for N steps to the right.

3.4.5 The unbounded case [ = [t, )

As presented in Section 3.2.7, model checking the time bounded until operator for
the time interval I = [t, 00), consists of two parts. We need to combine the transient
probabilities in the transformed QBD Q[—®] at time ¢ with the steady-state proba-
bilities in Q[~® V W]. If the level of the starting state is [, the desired steady-state
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probability is:

(s, Sat(P))

o0

Y T Y e n s

=0 s/cSat?(®) J=0 s’cSati (V)

_Z Z o) Q[-®] sst Z Z Q[ﬂCIW\I/] )

i=0 ¢ cSat!(P) J=0 s"eSat’ (V)
:i Z r2®l(s, s',t)-i Z iH”(s',s")
=0 s'cSat’(®) J=0 gcSati (w) n=0
00 l+n
—Z Z < ﬁq’ (s,s',t) Z Z Z H"(s,s)
=0 s/'cSat’(®) n=0 j=max(0,l—n) s”cSat’ (¥)

The first equation can be rewritten by separating the transient from the steady-
state probabilities. The steady-state probabilities are expressed via the embedded
discrete-time QBD with probability matrix H, as presented in Section 3.4.4.

To actually compute 7(s, Sat(P)), an initial distribution for the steady-state
probabilities, denoted 74(t) is computed for a given error €. The steady-state prob-
abilities are approximated as follows:

l+n

N)(s', Sat(® Z Z Z H"(s,s).

n=0 j=max(0,l—n) s"cSat’ (V)

Combining the initial distribution with the approximated steady-state probabilities
7N(s', Sat(®)) for increasing N, we compare with p and combining the initial distri-
bution with 7V (s’, Sat(—®)) we compare with 1 — p for every N, until we can stop
the iteration. As soon as some of the left-hand side inequalities becomes true, we
can stop:

(@) > (s, s, t)- 7N, Sat(®)) > p = 7(s, Sat(®)) > p
s'eSat(®)

(b) > Fls, & t) - 7NV(S, Sat(=@)) >1—p = 7(s,Sat(®)) <p
s'eSat(®)

Note that the a priori error that is chosen for the initial distribution does not in-
fluence the above inequalities as the computed probability is always an underesti-
mation. Thus, in case the underestimation is already greater than p or 1 — p, we
can be sure that the actual probability is so as well. The a priori error of the initial
distribution should be chosen reasonably small, in order to take enough probability
mass into account, otherwise the iteration might not stop.
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Given =® V ¥ is independent as of level [ and the number of steps considered by
uniformization for an a priori error €y is n. Then, in case the above iteration stops
after NV steps for all starting states s € U"+N St
for all levels ¢ > 1 +n + .

level [ + n 4+ N is representative

3.4.6 Proof of Proposition 5 for the Until operator

After having presented the algorithms for the model checking of until formulas with
different time intervals we now discuss the justification of Proposition 5. We want
to show that any until formula Pu,(® U’ ¥) is independent as of level k for some
finite k, under the assumption that for no state s the probability measure is exactly
equal to p, hence, Prob(s, ® U! W) # p.

We do this for time-bounded until formulas P, (® U1 W) in more detail.
Assume that ® is level independent as of k1 and W is level independent as of ks.
The maximum of k; and ky is then denoted &’. The termination criterion (cf. Section
3.4.1) of uniformization with representatives ensures that for every state s = (i, k')
with i € {0,..., N — 1} there exists an N; > 1 such that either

VI > Ni:yap(t) >por V> Ny (t) <p.

The maximum of all N; is then the index k for level independence of the formula
Poap (@ U ).

However, we still have to discuss that the algorithm always terminates. Assume
that it does not do so, then

Vi lim 7(( l))( )<p and Vi: lim 7((?2)( )+ ei"’ > p.
n—00 n—o0 \,-/0

But since lim,,_, 51(57;) = 0, we obtain

P <60 (t) = lim 37 () <p,
which is not possible. Consequently the algorithm will always stop, thereby having
computed an N; for each repeating state, and so the corresponding until formula
is level independent as of level max;(N;). For the unbounded until formula, level
independence as of level k£ can be proven similarly. O]

3.5 Case study: Connection management

In Section 3.5.1 we describe the On-demand Connection with Delayed Release (OCDR)
mechanism in detail, in Section 3.5.2 we derive a QBD model for this mechanism. We
discuss model checking a steady-state measure in Section 3.5.3 and model checking
a measure based on the time-bounded until in Section 3.5.4.
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Figure 3.6: Abstract model of the OCDR mechanism

3.5.1 System description

The transport protocol TCP offers a connection-oriented service in the Internet,
which implies that a connection should be established prior to any application data is
exchanged [52]. For applications with a connectionless nature, such as e-mail or web
browsing, prior to application data transfer, a connection needs to be established.

Arriving application-layer protocol data units, e.g., HT'TP requests, therefore
potentially suffer a delay from connection establishment, unless an existing connec-
tion can be (re)used. Once a connection has been established, all application-level
packets can be transported and the connection can be released immediately after-
wards, or after some delay (time-out). The latter is exactly the mechanism that is
being used for HT'TP 1.1; its predecessor, HT'TP 1.0, does not allow for connection
reuse.

We analyze the behavior of the connection management mechanism, known as
“on-demand connection with delayed release” (OCDR) [41], as sketched in Figure
3.6. Packets that have to be transported are generated by an abstract packet gen-
erator and submitted to the transfer queue. The connection can be in one of two
modes: (i) it can be active, so that an arriving packet can be served immediately,
at the cost of maintaining a possibly unused connection; (ii) the connection can be
released, so that an arriving packet can only be transmitted after the connection is
re-established, but there are no costs for maintaining an unused connection. Arriv-
ing packets at a released connection suffer an extra connection-establishment delay.
Once active, all queued packets, as well as those newly arriving, will be transported.

In this specific application, the packet generator cycles through periods in which
packets are generated with high intensity (in bursts), followed by periods in which no
packets are generated at all. The connection management switches between modes,
so as to find the right balance between good performance (low delays) and low costs.
Having served the last packet of a burst, the connection will be held active for some
time. If no new burst starts within some time-out period, the OCDR mechanism
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Figure 3.7: QBD model of the OCDR mechanism

releases the connection.

3.5.2 QBD model

To keep the model simple and illustrative, we assume an exponentially distributed
connection-establishment delay with rate ¢, as well as an exponentially distributed
time-out for release with mean 1/r. The model could be extended easily to more
deterministic delays, e.g., by using Erlangian approximations [63]. Packets take
an exponentially distributed amount of time to be transmitted, with rate . In a
burst, packets are generated according to a Poisson process with rate \. The genera-
tor switches between epochs of activity and idleness, both exponentially distributed,
with rates o and (3, respectively. Under these conditions, Figure 3.7 provides the cor-
responding QBD. In this model the state space is S = {(4,7,k) | i € N, j,k = 0,1},
where ¢ denotes the number of packets queued (and being transmitted), j denotes
whether the connection is active (j = 1) or released (j = 0), and k denotes whether
the packet arrival process is in a burst (k = 1) or not (k = 0). Clearly, each level ¢
(= i packets present) consists of four states: S* = {(i,0,0), (¢,0,1), (¢,1,0), (4,1, 1) }.
The symmetric level diameter is d = 1. Table 3.1 shows the numerical values of the
parameters as presented in [41].

parameter ‘ A wo o oa f c r
sec™! | 100 125 1 0.04 10 10

Table 3.1: Numerical values for the parameters of the model

3.5.3 Model checking steady-state properties

We want to know whether the steady-state probability of being in the different
phases with atomic properties &, = active and no burst, Po =released and burst or
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®3 =active and burst, is greater than a given probability bound p. For each ®;, each
level contains exactly one state where this atomic property holds. Hence, the sets
Sat(P;) have infinite size. Figure 3.8 shows the number of iterations (as discussed
in Section 3.2.5) needed to verify the property, depending on the probability bound
p. If the actual steady-state probability of ®;-states comes close to the given bound
p, more iterations are needed. This explains the peak at p = 0.0065 for &, at p =
0.0071 for ®, and at p = 0.0313 for 3. Depending on the chosen probability bound
p, the satisfaction sets Sat(Ss,(®P;)) are either empty or consist of the complete
state space.

70 T T T T T T

T T
active and no burst
released and burst -------

active and burst --------

60 | .

# iterations needed

0.015 0.02 0.025 0.03 . 0.04
probability bound p

Figure 3.8: Number of iterations needed for checking s = S5, (®;),7=1,2,3

3.5.4 Model checking time-bounded until

Figure 3.9 shows the number of uniformization steps n needed for the computation
of Sat(Ps,(tt UPIW)) for U = released and no burst and for t € {0.5,1.0,2.0},
depending on the probability bound p.

To analyze the efficiency gain using the dynamic termination criterion, as pre-
sented in Section 3.4.1, we show the number of iterations with the dynamic termina-
tion criterion, as well as the a priori computed number of steps required for an error
5;") = 107*. Clearly, the a priori number of steps is independent of the probability

bound p and increases with a growing time bound .

After 0 steps the comparison can be evaluated for p = 0 for all time bounds
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... _Gynamict=2.0 oo
b a priofi t=0.5" -
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Q
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Figure 3.9: Number of iterations needed for checking s |= P, (tt U1 W)

when using the dynamic termination criterion: every probability is at least 0. For
an increasing probability bound p the number of iterations first increases steeply.
This is because the Poisson probabilities are de facto equal to zero in the first few
iterations and no decision can be made when comparing with any p > 0.

Then, for a very low probability bound ppesx ~ 0.02, the number of iterations
jumps to a peak value for all three time bounds. A peak occurs whenever the
computed probability for some state gets really close to the probability bound p we
have to compare with. The peak number of iterations with the dynamic termination
criterion approximately equals the a priori computed number of steps for 51(57;) =104
Hence, we conclude that the computed probability for one of the starting states lies
in [ppeak - 10_4appeak]-

For an increasing probability bound p the number of iteration steps using the
dynamic termination criterion decreases. For larger time bounds ¢ the gap between
the curves for the dynamic and the a priori number of iteration steps increases,
showing the efficiency gain using the dynamic termination criterion.

The execution time per iteration is the same for the dynamic as for the a priori
termination criterion. Hence, for the same number of iterations the execution time
is the same for one measure. For an increasing number of iterations, the execution
time per iteration grows as for large n the iterations take longer, due to the larger
matrices involved. For the measure Ps,,(tt U1 W), the execution time per iteration
ranges from 1.26 - 1072 sec for the time bound 0.5 to 4.92 - 1073 sec for the time
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bound 2.0. Even though the curves in Figure 3.9 look smooth, small variations in
the number of iterations occur when using the dynamic termination criterion.

3.6 Summary

In this chapter we have presented new algorithms for model checking CSL properties
against labeled Quasi Birth Death processes. The model checking algorithms make
extensive use of uniformization for transient analysis (for time-bounded until) and
matrix-geometric methods for determining steady-state probabilities (for the steady-
state operator). These model checking algorithms as presented are new.

We are aware of the fact that when checking nested formulas, the number of
levels that have level-dependent properties grows, which makes the algorithms less
efficient. On the other hand, practice reveals that the nesting depth of logical
expressions to be checked is typically small [28], so that this is not so much of a
disadvantage after all. By restricting ourselves to level-independent and periodic
formulas, we restrict the set of CSL formulas that can be checked. For model
checking truly level-dependent CSL formulas new model checking algorithms will be
needed, since in that case we cannot exploit the level-independent QBD structure
to cut the infinite set of states.

Our approach to analyze the transient state probabilities of QBDs with uni-
formization with representatives is also new. We claim the termination criterion as
presented to be optimal, when checking a CSL until-formula. Uniformization with
representatives is both computationally and memory efficient. The only drawback
the approach suffers from is that the number of considered steps can become large,
as n depends on the product At; but this is a general drawback of uniformization.
Large n lead to large matrices U™ and V) however, these matrices are very
sparse, due to the block-structure. We have shown the feasibility of our approach
by a case study.



Chapter 4

CSL model checking algorithms
for JQNs

In this chapter we describe CSL model checking algorithms for another class of
infinite state Markov chains, namely for the Markov chains that underly labeled
Jackson queueing networks (JQNs) [67]. We first describe the class of JQNs and the
underlying Markov chain in Section 4.1. The general CSL model checking algorithms
are then presented in Section 4.2. Section 4.3 then introduces transient analysis on
JQNs and the details of model checking the until operator on JQNs are provided
in Section 4.4. As a case study, we model an e-business site as JQN and analyze
its scalability with the newly developed model checking techniques in Section 4.5.
Then, in Section 4.6, we compare the algorithms we have developed for QBDs and
JQNSs, before we conclude in Section 4.7.

4.1 Model class

Jackson queueing networks are introduced in Section 4.1.1. Section 4.1.2 discusses
their underlying infinite state Markov chain. We introduce a simple way to split
the underlying infinite state space into an infinite number of finite so-called fronts
in Section 4.1.3 and generalize this in Section 4.1.4.

4.1.1 Labeled Jackson queueing networks

A Jackson queueing network (JQN) consists of a number of interconnected queueing
stations, numbered 1, ..., M. Jobs from an infinite population arrive with a negative
exponential inter-arrival time distribution with rate A at the queueing system. The
job service requirements at queue m are negative exponentially distributed, with
rate p,,. There is a single server at each queueing station. This can be generalized
easily to m-servers. Jobs arriving at a queue are served in first come first served

51
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A H1

O =

70,1 1o

Ao ’

_— =
r

70,2 21

72,0

)\2 125

Figure 4.1: JQN with two queues

(FCFS) order. Jobs arriving when the server is busy are queued in an unbounded
buffer. Each queueing station in a JQN behaves, in essence, as a simple so-called
M|M|1 queue. We assume a never empty source from which customers originate and
arrive at the JQN, and into which they disappear after having received their service.
This environment is indexed 0 and the overall arrival process from the environment
is a Poisson process with rate .

A finite routing matrix R € [0, 1]M+TDx(M+1) contains the routing probabilities
from queue m to queue n with m,n € {0,1,---,M}: r,, € [0,1]. Note that
Eiio Tmn = 1, for all m. In case r,, = 0 there is no routing from queue m
to queue n, and in case r,,, = 1, n is the only output for queue m. The routing
probability r,, o gives the probability that a job actually leaves the queueing network
after completion at queue m and the routing probability 7, gives the probability
that an arriving customer is routed to queue n. Note that roo = 0 by definition
and that we do allow for direct feedback at the queueing stations (e.g., 7, > 0 is
allowed for m > 0).

A state in a JQN can be defined as s = (s1, $2, -+, Spr), where s, > 0 represents
the number of customers in queue m. For model checking purposes, we also need
a state labeling that distinguishes different classes of states. This leads us to the
following definition.

Definition 17 (Labeled Jackson queueing network). A labeled Jackson queue-
ing network JQIN J of order M (with M € N*) is a tuple (A, p, R, L) with arrival
rate \, a vector of size M of service rates p, a routing matrix R € R(M+Dx(M+1)
and a labeling function L that assigns a set of valid atomic propositions from a fixed

and finite set AP of atomic propositions to each state s = (s1, o, ..., Sn). O

Example 2. In Figure 4.1 we present a JQN with two queues that will serve as

running example. The external arrival rate is A\, the vector of service rates is given
0 ro1 To2

as [t = <,u1) and the routing matrixis R = [ 119 0 712 |. The labeling L will
Hz 2,0 T21 0
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be introduced later.

Definition 18 (Traffic equations and Utilization). The overall rate of jobs
arriving at each queue n is given as:

M
An:)\'TO,n+Z)\m'Tm,na form=1,..., M.

m=1

These equations are called (first-order) traffic equations. The utilization per queue

m is defined as p,, = 2—: O

4.1.2 Underlying Markov chain

The underlying state space of a JQN J of order M is a highly-structured labeled
infinite state continuous-time Markov chain, denoted J, with state space S = N,
that is infinite in M dimensions. Every state s € S is represented as an M-tuple
s = (s1, 89, -+, 8x), with 5, > 0. The labeling function L : S — 247 on the state
space then assigns from the set AP of atomic propositions to each state the set of
valid atomic propositions. The state s = (0,...,0) is called origin. As the number of
customers in queue m is non-negative s,, > 0, forallm € {1,..., M}, the underlying
state-space is limited towards the origin in every dimension. The M dimensional
state space S is bounded by M so-called boundary hyperplanes of dimension M — 1.
The underlying state space of a JQN is by definition strongly-connected. Note that
these boundary hyperplanes consist of an infinite number of states for M > 2.

State changes may occur due to an arrival at queue m from the environment or a
departure to the environment from queue m, or by a service completion at queue m,
followed by routing of that customer from queue m to queue n for 1 < m,n < M.

e An arrival is always possible, the new state is then defined as s’ = s+ a with
a = (ai,as,...ap). An arrival at queue m, is denoted a with:

1 =
an:{’ e forne{1,...,M}.
0, n#m,

e A departure or a job routing from queue m is only possible, when there is at
least one customer in queue m; in this case the new state s’ is computed as:
ss=s+dors =s+ f, respectively. A departure from queue m is denoted as
d with:

1 _
dn:{ e forne{l,...,M}.
0, n #m,
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A job routing from queue m to queue n is denoted f with:

_17 k =m,
k=41, k=n, for k € {1,..., M}.
0, otherwise,

By adding a state change vector to the source state, the destination state is defined.

Definition 19 (Transition rate matrix). The rate for a state change from a
state s to another state s’ within the infinite state space S is given by the highly
symmetric transition rate matrix T(s,s’) : S x S — R, as follows:

cause restriction  state change T(s,s)
arrival none s =s+a, A Tom
departure Sm >0 s =s+d, Lo * Tm.0
routing S > 0 S =5+ foun  HmTmn
T(s,s’) = 0 in all other cases. O

Even though we allow for direct feedback in a JQN, we have to get rid of the
self loops in the generator matrix of the underlying CTMC. In [9], Baier et al. show
that this transformation preserves the validity of all CSL operators, except for the
next operator. This is done by multiplying the service rate pu,, with the probability
of leaving queue m, that is (1 —r,,,,), in case there is at least one job in queue m.

Definition 20 (Generator matrix). The rate for a state change from a state s to
another state ', for s # s’ is the same in the generator matrix as in the transition
rate matrix:

G(s,s') = T(s,s), fors#¢.

The diagonal element G(s,s) is defined as the negative sum over all possible
outgoing rates from s, that is

M
G(S, S) = — ()\ + Z Hm (1 - Tm,m) : 1(sm>0)> )
m=1

where the indicator function 1(,,, -0y returns 1 if s,, > 0, and 0 otherwise. [

Example 3. Figure 4.2 shows the underlying state space of the JQN from Example 2
that is infinite in two dimensions. Arrivals occur in both dimensions with rate
A1 = A-1o1 and Ay = X - 1g2, respectively. Departures with rate p; and po happen
from both dimensions with p; - 1 and po - 79, respectively, and jobs are routed
from queue 1 to queue 2 with rate p; - r1 2 and from queue 2 to queue 1 with rate

H2 - T21.
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Figure 4.2: Underlying state space of the JQN with two queues from Fig. 4.1

4.1.3 Partitioning the underlying state space

To deal with the underlying infinite state space of JQNs, we need a way to partition
the infinite state space into an infinite number of finite sets. Recall that the infinite
state space of a QBD is intuitionally partitioned into an infinite number of similar
repeating levels. A QBD is infinite in just one dimension, whereas a JQN is infinite
in several dimensions, making the partitioning a bit more cumbersome.

In line with the levels of a QBDs we need a partitioning of the state space for
JQNs such that with one step only the next higher or the next lower partition of the
state space can be reached. Note that infinitely many of such partitionings do exist
for JQNs. The easiest partitioning would group all states with the same distance
to the origin into the same partition. However, we use a different partitioning that
better suits the model checking algorithms as explained in Section 4.2.

The state space of a JQN of order M can be partitioned into infinitely many
rectangular shaped fronts, that are pairwise disjoint and situated like shells around
each other, as shown in Figure 4.3. The outermost corner 1 = (i,...,4) of a front,
where all queues have the same number of customers ¢, is used to uniquely identify
a front F(1).

In this two dimensional setting, front F'(I) consists of all states that equal i in
one dimension and are smaller or equal in the other dimension. F'(2) consists of the
following 5 states, where we first list the states that equal ¢ in the first dimension

and then the states that equal ¢ in the second dimension:

F(§) = {(27 0); (27 1); (27 2); (17 2); (07 2)}
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Figure 4.3: Infinite state space of a JQN with 2 queues, partition up in fronts F'(I)

In an M dimensional JQN, the front F'(I) contains all states that equal ¢ in at
least one dimension, i.e., Im(s,, = i), and are smaller or equal in all remaining
dimensions.

Definition 21 (Front F'(1)). In an M dimensional JQN the front F'(1) is a finite
set of states defined as

FO) ={seS|3aIm (sm=10) AN(Vn#m (s, <i))}. O
Lemma 1 (Partitioning of the state space). Every s € S belongs to exactly
one front F'(1). The infinite state space can then be arranged as

S=|JF@) with FQ)UF(j) = @ for i # j,i,j € N, O
=0

The number of states per front F'(I) increases with i. It can be computed in
the M dimensional case, considering that front F'(I) consists of those states that are
added when extending the M dimensional hypercube with side length ¢ to the M
dimensional hypercube with side length 7 + 1:

|FO)| = (i + )M — M. (4.1)
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Figure 4.4: General partitioning of the infinite state space of a JQN with two queues,
with offset 7 = (2,0)

As shown in Figure 4.3, front F'(4) consists of (4 +1)? — 4% = 9 states. These are
exactly the states that are added to the square with side length 4 to obtain the
square with side length 5.

4.1.4 General partitioning

The partitioning as presented in Section 4.1.3 always considers a square part of the
infinite state space as the corner points always have the same number of customers
in every queue. Basically the underlying state space of an M dimensional JQN can
be partitioned in many different rectangular shaped fronts, for an arbitrarily chosen
corner point. A given corner point ¥ with possibly v, # v, for m,n € {0,1,..., M}
partitions the infinite state space differently, however, conserving the basic principles
of the partitioning. Figure 4.4 shows how the underlying infinite state space of a
JQN with two queues that is partitioned with corner point (2,0).

Note that, corner points v and v + 1 for ¢« € N obtain the same partitioning.
Hence, we need a way to uniquely specify a partitioning.

Definition 22 (Offset). The minimum corner point of a general partitioning is the
only corner point that has at least one zero entry. This minimum corner point is
denoted offset and uniquely induces a general partitioning. O
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As can be seen in Figure 4.4, a partitioning with corner point (3, 1) or with (5, 3)
results in the same partitioning as with offset 7 = (2,0). With a general partitioning,
the first front F'(7) may contain more than one state. Front F(7) = F((2,0)), in
Figure 4.4, consists of three states and front F'(7+1) consists of 3+ -2 states. The
state space S can then be partitioned into infinitely many finite sets F'(v 4 1), where

1€ N:

SZGF@H).

Note that given v every s € S belongs to exactly one front F'(v +1).

Definition 23 (General front F(v +1)). In an M dimensional JQN the front
F(U+1) is a finite set of states defined as

Fw+1) ={se€S|Im(sm =vn+i) AN(Vn #m(s, <v,+1i))}, with m e {1,..., M}
U

Similar to (4.1), the number of states per front in a general partitioning with
minimum corner point v equals:

1F@)] = [[(wm+1) - [] vm: (4.2)

4.2 Model checking algorithms

We now present the general algorithms for CSL model checking labeled JQNs. In-
dependence of atomic propositions is discussed in Section 4.2.1 and independence
of CSL formulas is discussed in Section 4.2.2. The general model checking proce-
dure is discussed in Section 4.2.3. In Section 4.2.4 we introduce model checking
of logical operators. How to model check the steady-state operator is presented in
Section 4.2.6 and how to model check the next operator is shown in Section 4.2.7.
Model checking the until operator with its different time bounds is presented in
Section 4.2.8.

4.2.1 Independence of atomic propositions

In the following we will restrict ourselves to atomic propositions of the form:

M
ap = /\(sm A gm) for g, € Nand A € {<,>}.

m=1

An atomic proposition ap is thus valid based on the number of jobs per-queue m.
The number of jobs per queue has to be either smaller or greater-or-equal than a
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given per queue threshold g,,. This restricts the formulas we are able to check. Due
to this restriction, the validity of an atomic proposition does not change anymore for
Sm > gm onwards for dimension m. Hence, we denote § = (g1, ..., gn) independence
vector and call the atomic proposition independent as of g. For the set of states
{s €S| Vm(sm > gm)} the validity of the atomic proposition remains the same.

To induce a partitioning from the independence vector g, we have to compute
the corresponding offset. Thus, we define ¢.,;, as the minimum of ¢q,...,gy. By
subtracting g, from every entry of g, the offset is given as: ¥ = § — G- The
offset ¥ can then be used to partition the state space as introduced in Section 4.1.4
into fronts F'(v + 1) for i € N. Note that F'(v+1) = F(g) for i = gmin. The finite
set of fronts where the labeling of states may still change is denoted S,(v) (for the
boundary set) and is defined as:

Imin—1
S = |J F@+1.
i=0
In the following we introduce the concept of representative fronts, states and sets
for JQNs, as visualized in Figure 4.5.

Definition 24 (Representative front, state and set). For a JQN and a CSL
formula that is independent as of g the notion of representatives is defined as follows:

e The front F(g) is called representative front and denoted as R(9q).
e The states in the representative front are called representative states r € R(g).

e Each representative state r represents a distinct infinite set of states, denoted
S;. In general, in an M-dimensional JQN, there are M types of representative
sets that account for one (1) up to M infinite dimensions. A representative set
S, is called infinite in dimension m if and only if r,, = g,,, and restricted in di-
mension m otherwise. In case a representative state r equals g in k£ dimensions,
it represents a k-dimensional set S,, such that

SGSr<:> szrma lﬂrm:grrm 0
Sm = Tm, otherwise.

Hence, a state s belongs to S, when it takes the same value as r in the restricted
dimensions and any value at least r; in the infinite dimensions. The state space can
then also be partitioned into the finite set of boundary states and a finite number
of infinite representative sets of states as follows:

S=S@uU | S.

reR(g)
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Figure 4.5: Representative front, state and set according to Definition 24.

For atomic propositions the representative front can be made smaller, however, for
model checking CSL properties in general we need the full representative front as
defined in Definition 24.

Proposition 8 (Validity of atomic propositions). The validity of an atomic
proposition ap € AP does not change any more in this set, that is,

L(r) = L(s), for all s € S,. O

We will illustrate the use of this concept on atomic propositions, however, it
applies to general CSL formula as we will see later.

Example 4. Suppose we define the atomic proposition ap; = (s1 > 2) A (s2 > 3)
for the JQN from Example 2. The white states in Figure 4.6(a) depict those states
where ap, is valid. The atomic proposition is independent as of g = (2, 3). The rep-
resentative front for ap, is formed by the states in the grey polygon: (0, 3) accounts
for the states (0,n), with n > 3, and (1, 3) represents the states (1,n) with n > 3.
With m > 2, (2,0) represents (m,0), (2,1) represents (m, 1) and (2,2) represents
(m,2), respectively. These five representative states all account for a one dimen-
sional set of states. The representative state (2, 3) accounts for the two-dimensional
set of states Sip3) = {s € S| s1 > 2 A sy, > 3}. The black states belong to the
boundary set Sy(2,3) with representative (0, 0).
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Figure 4.6: Representative front of states for independent atomic propositions

Example 5. Figure 4.6(b) shows the representative front for the atomic proposition
apy, = (51 < 3) A (s2 < 3) A (s3 < 3)in a JQN of dimension three (M = 3). The
atomic proposition is valid in the black states only (of the 27 states only 9 are visible).
All the remaining depicted states are representative states. We have different types
of representative states: the white ones represent a set of states that is infinite in
one dimension, the grey ones represent a set that is infinite in two dimensions and
the light grey one (3, 3, 3) represents a set that is infinite in three dimensions.

4.2.2 Independence of CSL formulas

Again, we use the logic CSL [8] to express properties for JQNs. The syntax and
semantics are the same as for finite CTMCs, with the only difference that we now
interpret the formulas over states and paths in JQNs.

From Section 3.2 we know that CSL formulas are not level independent on QBDs
in general, even if the atomic propositions are level independent. However, their
validity does not change arbitrarily between levels. In the following we will show
that for CSL formulas on JQNs we can also find a front from which the validity of
the CSL formula does not change anymore.

Definition 25 (Independence of CSL formulas). Let J be the underlying
state space of an JQN of order M. A CSL state formula ® is independent as of g
if and only if there exists a finite representative front R(g) = {r € S | Im(r,, =
gm) N (VY # m(r, < g,))} such that for all r € R(g) and for all s € S, it holds that
rE® <skE=o. O
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Under the assumption of a fixed set of atomic propositions that is independent
as of g, the following proposition states that such a finite representative front R(g’)
exists for any CSL formula. We will justify this proposition inductively over the
structure of the logic in Section 4.2.4 for logical operators, in Section 4.2.6 for the
steady-state operator, in Section 4.2.7 for the next operator and in Section 4.4.5 for
the until operator.

Proposition 9 (Independence on JQNs). Let J be the underlying state space
of a JQN of order M with independent atomic propositions as of g and let ® be a
CSL state formula other than P.y,(® U'¥). Then there exists a independence vector
g such that ® is independent as of ¢’ in J.

For the until operator Py, (® U’ ¥) we assume that for no state s the probability
measure is exactly equal to p. Under this assumption, there exists a vector 7', such
that Pu,(® U'W) is independent as of g’ in 7. O

4.2.3 General model checking

For model checking a property ®, we compute the set Sat(®) with the recursive
descent procedure over the parse tree of ®, as presented in Section 2.6.

Definition 26 (Boundary satisfaction set and representative satisfaction
front). For a CSL formula that is independent as of g, the boundary satisfaction
set and the representative satisfaction front are defined as

Sat®@ (D) = S,(g) N Sat(®), and Sat™@(®) = R(7) N Sat(P),
respectively. We define the satisfaction set of front ¢ as:

Sat”(®) = Sat(®) N F(7). O

The possibly infinite satisfaction set Sat(®) can then be expressed as:
Sat(®) = | J Sat" D (@).
i=0

The satisfaction set can also be considered as the union of the boundary satisfaction
set Sat®9(d) and of all representative sets for which the corresponding represen-
tative state belongs to the representative satisfaction front Sat®9(®):

Sat(®) = Sat®@(@)u | S

reSat@) ()

Given ® is independent as of g, Sat’'9(®) acts as a representative for all fronts
F(g+1) as the validity of ® does not change any more.
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Proposition 10 (Finite representation of the possibly infinite satisfaction
set). For a CSL formula ® that is independent as of g, we do not need to consider
the possibly infinite satisfaction set Sat(®). Instead, it suffices to consider only the
level satisfaction sets up to Sat™@. O

As explained for atomic propositions, we have to compute the corresponding
offset ¥ for a given independence vector g. By subtracting gy, = min(gy, ..., gnm)
from every entry of g, the offset is given as: ¥ = §—gmm. The offset ¥ then partitions
the state space as introduced in Section 4.1.4. For JQNs, the satisfaction sets, as
used in Algorithm 1, can therefore be replaced by the data structure (J7=4 Sat!" "+,

4.2.4 Logical operators

The model checking procedure for logical operators is the same as for finite CTMCs.
The only thing we need to take care of is how independence changes. Negating a CSL
formula does not change its independence. For a CSL formula ® that is independent
as of g the negation —® is also independent as of g. However, combining a CSL
formula ® that is independent as of g® with a CSL formula W that is independent as
of g% with conjunction, changes independence depending on the structure of ® and
V. In any case, we can state that ® AW is independent as of g = max{g®,g"}, where
we choose the maximum of g2 and ¢g¥ in every dimension m. Note that this new
independence vector g might be larger than necessary, depending on the structure
of ® and V.

4.2.5 Steady-state distribution for JQNs

Recall that utilization per queue m is defined as p,, = A\, /. We require stability
of JQNs as follows: In case all p,, = A,/ < 1, the QN is said to be stable. Then,
the number of arriving jobs per unit time is smaller than the amount of jobs that
each queue can handle per unit time. This guarantees that the queue will not build
up infinitely large. In the following we restrict ourselves to stable JQNs, to be able
to compute steady-state probabilities. As we require stable queues the underlying
state space of the JQN is strongly connected and, the initial state does not influence
the steady-state probabilities.

The long-run probability that s customers are presently in a single M|M|1 queue,
that is for a single stable M|M|1 queue (with p = ﬁ <1)is: Pr{S=s}=(1-p)p°,
where S is the random variable indicating the number of customers in the queue
[51]. In [46, 47], Jackson proved the following theorem.

Theorem 1 (Jackson [46]). The overall steady-state probability distribution in
the underlying state space of a stable JQN 7 is the product of the per-queue steady-
state probability distributions, where the queues can be regarded as if operating
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independently from each other:

M

Pr{S = s} = [T(1 = pm)(pm)™. s=(s1,...,51) €S. O

m=1

4.2.6 Steady-state operator

A state s satisfies Su,(®) if the sum of the steady-state probabilities of all ®-
states reachable from s meets the bound p. Since a stable JQN is by definition
strongly connected, the steady-state probabilities are independent of the starting
state. It follows that either all states satisfy a steady-state formula or none of the
states does, which implies that a steady-state formula is always independent as of
g=5=1(0,...,0).

We sum the steady-state probabilities of all states that satisfy & by summing
over all states in the representative sets s’ € S, for all representatives r = ® that
satisfy @ and over all states in the boundary set S,(g) that satisfy :

s = Sop(P) & ( doowls)+ DY D als, s')) Mip  (4.3)

s'€Sat®b (@) (d) reSatf(9) () s'€S

We obtain Sat(Sw,(P)) =S, if the accumulated steady-state probability meets the
bound p, otherwise Sat(S.,(P)) = @. In case the representative state r is in Sat(®),
all states s’ € S, are in Sat(®). The accumulated steady-state probability for all
states s € S, is given as a product over the finite and infinite dimensions of S,:

Z 7T<S, S/) = H Q(m), with Q(m) =

s'eSy m=1

{<1—pm><pm>rm, for m £ G (4

(pm)gma for 7, = 9m-

In this expression we distinguish between the finite and the infinite dimensions of
a representative set S;. In a finite dimension m (r,, # ¢n), we multiply with
(1 = pm)(pm)"™™ and in an infinite dimension m (r,, = g,,)we multiply with (p,,)%™.

Proof (Equation 4.4). Recall that

, .
5 T iff 7 = gm
seSeq " o
s, =Ty, otherwise.

Applying Jackson’s theorem, the accumulated steady-state probability is given by

Sorss) =Y (Ha - pm><pm>%) . (45)

s'eSy s'eS, \m=1
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According to Jackson’s theorem we can consider the dimensions independently from
each other. Hence, for every dimension m = 1,..., M, a state s’ € S, may take all
values n > g, in case r,, = g,, and the value r,, in case r,, # g, . Thus,

> a(s.s) =[] Qm), with Q(m) = {ngm(l — pm)(pm)", fOX Ty = G,

s'€S, =1 (]' - pm)(pm)rmv for T'm 7& 9m-
(4.6)
The infinite sum can be rewritten
- n - n (pm)gm
Z (L= pm)(pm)" = (1 = pm) Z (pm)" = (1 = pm) 1 = (pm)*"
n=gm n=gm pm
and replaced to match (4.4):
1— Tm f
Q(m) — ( pm)<pm) 9 or Tm 7£ gm7
(pm)?™, for r,, = h,,.
O

The model checking routine for the steady-state operator is stated in pseudo code
in Algorithm 10. First the steady-state probabilities for the ®-states in the boundary
set are accumulated according to Theorem 1, then the steady-state probability for
the remaining infinite state-space is computed according to Equation (4.4).

Example 6. We want to check the CSL formula S.,((s1 > 2) A (s2 > 3)). Recall
from Example 4 that all states r € R((2,3)) = {(0,3),(1,3),(2,0),(2,1),(2,2),(2,3)}
satisfy ap; = (s1 > 2) A (s3 > 3) and the boundary states do not satisfy ap;. Us-
ing (4.3) and (4.4) and accumulating the probabilities for all representative states
r € R((2,3)) we obtain

S Sup((s1>2)A(s2>3)) &
(L= p0)ps + (1= p1)p1ps + pE(1 = pa2) + pi (1 = pa)pa + p(1 = p2)ps + pip3) >4 p.
(4.7)

Given concrete values for A\; and p;, the utilizations p; = \;/u; can be computed
and we can easily check this inequality.
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Algorithm 10 Sats(> p, ®) : Sat?©®

begin
® independent as of 7;
my, = 0;
for all s € Sat™(®) do
m =TI (1 = o) (o)™ (* according to Theo. 1 *)
end for
7 =0;
for all r € Sat®9 do
T = 1;
for all ie{1,...,M} do
T = 7 - Q(m); (* according to Eq. (4.4) *)
end for
T += U
end for

if m, + 7 > p then
return F(0);
else
return J;
end if

end
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4.2.7 Time-bounded next operator

The time-bounded next operator for JQNs is computed just as for QBDs [68]. Recall
that a state s satisfies Py, (X1%21®) if the one-step probability to reach a state that
fulfills @ within a time ¢ € [t1, 5], outgoing from s meets the bound p. As for
one-step probabilities self loops have to be taken into account, we have to use the
transition rate matrix T to model check the time-bounded next operator. The
possibly infinite summation over all ®-states can be truncated by only considering
those ®-states that can be reached in one step from s. We define the set of states
that is reachable in one step from state s as B = {s' € S| T(s,s’) > 0}. Note that
B is always finite. We then have:

s = Pop(X1H D) o Pr{o € Path(s) | o = X0} sap

o [ (e Bon — o Bon) . Z T(s,s) . (4.8)
s’eSat(P)NBs (S)

where e Bt — ¢=E()#2 g the probability of leaving s at a time t € [t1, 5], and

T(s,s')/E(s) specifies the probability to step from state s to state s, provided a step
takes place.

Now, let ® be independent as of g. Hence, the validity of ® might be different
for all states s € S,(g). Therefore, the representative states r € R(g) may sat-
isfy Ppy, (X T1121®), whereas the remaining states s € S, do not necessarily satisfy
Prap(X1121D) since S,(7) is reachable in one step. However, from g + 1 onwards,
only states with equivalent ® validity can be reached by a single step. Thus, in
case ¢ is independent as of g, PNP(X[“’”]@) is independent as of g + 1. For the
construction of the satisfaction set of such a formula, we have to compute explicitly
the satisfying states in S,(g). Sat™1 (P, (X1 *219)) then provides the validity of
Prap(X[1121®) for the remaining infinite state space S\ Sy(7).

1
A ‘ ‘ ‘ ‘ ‘ 0.5 0.5 0.5 0.5
0.5 A é)\ gé)\ gﬁ A
@ (1) (2) (3)
0.5 0.5u 0.5 0.5u

(a) JQN with self loop (b) transitions as from transition rate matrix

Figure 4.7: Example JQN to illustrate why self loops have to be taken into account
when checking the next operator

Example 7. Figure 4.7(a) shows a simple JQN with one queue and direct feedback.
Figure 4.7(b) illustrates the underlying state space with transitions according to the
transition rate matrix T. We want to check whether the formula P, (X 4 > 2)
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is valid in state 2. Only states 2 and 3 fulfill > 2 and have a non-zero transition

probability starting from state 2. Note that E(2) = p + A, T(2,2) = 0.5u and

T(2,3) = A. According to Equation 4.8 we have to check whether:

0.50 + A
p+ A

Using G instead of T in (4.8) would lead to checking whether:

A >
05t A D

(1 — e_()"L“)'t) > p.

(1 _ 67()\+0.5u)-t)

as self loops are not considered. Depending on the value of p, this may lead to a
different validity of 2 = Pu, (X108 > 2).

4.2.8 Time-bounded until operator

For model checking Po,(® U V) we adopt the general approach for finite CTMCs
[8] and QBDs, as presented in Section 3.2.7 and [72]. We have chosen to recapitulate
the approaches for model checking the until operator for the different time bounds,
to keep this chapter self-contained. Recall that the CSL path formula ¢ = ® UV is
valid if a W-state is reached on a path during the time interval I via only ®-states.
We discuss model checking the until operator for the time intervals [0, ¢], [t1, t2], [¢, ],
[0,00) and [t,00). These four cases are basically the same as presented for QBDs
in Section 3.2.7. However, the infinite state space of JQNs is partition differently,
which is reflected in the following.

The justification for Proposition 9 for the until operators is postponed to Sec-
tion 4.4.5, as we need a better understanding of how the probabilities are calculated
first.

Case [ = [0, 1]

For time intervals of the form I = [0, ¢], the future behavior of the JQN is irrelevant
for the validity of ¢, as soon as a W-state is reached. Thus all U-states can be made
absorbing without affecting the satisfaction set of formula . On the other hand,
as soon as a (—® A —W)-state is reached, ¢ will be invalid, regardless of the future

evolution.

As a result of the above consideration, we may switch from checking the underly-
ing CTMC J to checking a new, derived, Markov chain denoted as J[¥|[-®PA—-¥] =
J[-® VU], where all states in the underlying Markov chain that satisfy the formula
in square brackets are made absorbing. The generator matrix G (s,s') for J[~® \ W]
is then defined as

/
. {G@;% SE-DVU, (9)

0, otherwise,
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fors #¢. (s s) is adapted such that it contains the negative sum over all outgoing
rates from s.

Proposition 11 (Connectivity of absorbing 7 ). Given a JQN J and a CSL
formula ® that is independent as of g, the Markov chain J[®] is not necessarily a
JQN, as it might not be strongly connected, anymore. [l

Model checking a formula involving the until operator then reduces to calcu-
lating the transient probabilities 771"®V¥](s s’ t) for all W-states s’. Exploiting the
partitioning of the underlying state space as presented in Section 4.1.3 then yields:

s = P (O UON) = Prob? (s, ® UIW) > p

PN (i Z 71.‘7[—\':I>\/\I/](S’ S,, t)) B . (410)

=0 s/cSat?"®(0)

The transient probabilities are accumulated for the W states in fronts F'(1) for i € N.
The transient probability of being in each state of the infinite-state JQN for any
possible initial state can be calculated with a new iterative uniformization-based
method, which we will present in the Section 4.3. To calculate the satisfaction set
for Puy,(® ULIT), we need to understand how this algorithm works, therefore we
postpone this discussion to Section 4.4.1 .

Case I = [ty, o]

Considering a time interval [t;, 5] with 0 < t; < f we can split the computation
in two parts. The first part then addresses the path from the starting state s via
d-states to a d-state s’ at time ¢;. The second part of the computation addresses
the path from s’ to a W-state s” via only ® states. This leads us to two transformed
Markov chains: J[—®] that is used in the first part and J[-~® V U] in the second
part. To calculate the probability for such a path, we accumulate the transition
probabilities for all triples (s,s’,s”), where s’ |= ® is reached before time ¢; and
s” = W is reached before time t5 — ¢;. This can be done, because the underlying
Markov chains are time homogeneous.

S [ Po (@ U PIT) & Prob? (s, @ UM210) > p

(Z Z Z Z 7T\7[—‘<I>}(S’ S,, tl) . 7TJ[—\~:I>\/\I/](S/’ S”, ty — t1)> > .

=0 o/cSatt’ M (@) J=0 s7eSat? O (v)
(4.11)

The algorithm for the bounded until operator with interval I = [t1, t5] will be pre-
sented in Section 4.4.2.



70 4 CSL model checking algorithms for JQNs

Case I = [t,1]

The point interval until is a simplification of the interval until, where only the
first part of the computation needs to be taken into account. Thus, we need the
transformed QBD J[—-®] and need to compute the probability that at time point ¢
a state s’ is reached that fulfills ® A .

s |= Pop(® UMDY & Prob? (s, @ UMDY b1 p

& i Z 770 (s, s 1) | ap.

=0 s'cSatf O (HAW)

(4.12)

The algorithm for the point interval until operator is the same as for the time
bounded until, with two minor changes. First the transient probabilities have to
be computed on J[—-®] for the point interval until and on J[—~® Vv ¥] for the time
bounded until. Second, the goal states s have to fulfill ® A ¥ for the point interval
until and just ¥ for the time bounded until.

Case [ = [0,00)

For the unbounded case, the probability Pmb‘](s, U [0700)\1') equals the probability
to eventually reach a W-state. Since the —=® V W-states are absorbing, this is exactly
the steady-state probability to be in a W-state in the adapted underlying Markov
chain, so we have

S = Pop(® UPIW) & Prob” (s, ® UOT) ba p < 7/ 0PV (5, Sat (V) ap

& (i Z rIT eV (g S,)> > . (4.13)

=0 s'eSatFO(v)

The algorithm for the unbounded until operator with time interval I = [0, c0) will
be discussed in Section 4.4.3.

Case [ = [t,0)

For the interval [t, 00) the computation is split in two parts, just as for [ty,?s]. The
first part addresses the path from the starting state s to a ®-state s’ via only ®-states
at time ¢, whereas the second part addresses the path that eventually leads from s
to a W-state. Note that we combine the transient probabilities in the transformed
JQN J[—=®] for the first part with the steady-state probabilities in J[-® V ¥] for
the second part as follows:
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S = Pogp(® UL®IT) = Prob? (s, ® UMW) > p

(Z Z Z Z 7712 (s,8,1) - WJHDV\I/}(S ,s")) o . (4.14)

=0 sreSatt’ M (@) J=0 g7 eSat? (7 ()

The algorithm for the unbounded until operator with time interval I = [¢, 00) will
be introduced in Section 4.4.4.

4.3 Uniformization with Representatives

As we have seen uniformization with representatives is an efficient method to com-
pute the transient probabilities on QBDs. In this section we will adapt this method
to be able to compute the transient probabilities on JQNs.

In Section 4.3.1 we describe how to apply the principle of uniformization to
JQNs. Section 4.3.2 then describes how to obtain a finite data representation for
JQNs and addresses the growth of the involved data structures. The actual iterative
algorithm is then presented in Section 4.3.3 before we discuss complexity issues in
Section 4.3.4.

4.3.1 Uniformization on JQNs

Recall that the main principles of uniformization for finite and infinite CTMCs
have been described already in Section 3.3.1. We have shown there how transient
probabilities can be computed for QBDs using uniformization by considering only
a finite fraction of the infinite state space. As standard property of uniformization,
the finite time bound ¢ is transformed to a finite number of steps n [36].

To do the same for JQNs, first the probability matrix P(s,s’) for the uniformized
DTMC is defined as

G(s,s)

14

G(s,s)

P(s,s) = for s #¢s', and P(s,s) = +1, foralls,s.

The uniformization constant v must be at least equal to the maximum of absolute

values of G(s,s); for JQNs, the value v = X + Zﬁf:l [ suffices. For an allowed
(n)

maximum numerical error g, ,/,

uniformization requires a finite number n of steps
(state changes) to be taken into account in order to compute the transient proba-

bilities; n can be computed a priori, given e v and t, as for finite CTMCs and

t,v o
QBDs.
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Figure 4.8: Finite state space that needs to be considered for a given [ = (4, 4)

4.3.2 Finite representation

In the following we will use uniformization to compute the transient probabilities to
reach all possible goal states from all (starting) states in a JQN. The homogeneous
probability matrix P contains the probability to reach a state s’ from a state s within
one step for all s,s" € S. From every possible starting state, only n fronts can be
reached with n steps. Hence, for a given number of steps n, all states that are n + 1
steps away from the origin S are identical in the JQN. We only need to consider a
finite part of the JQN, depending on the number of steps n: For a given number of
steps n it is sufficient to consider all states in the first n+ 1 fronts as starting states
and the first 2n + 1 fronts as goal states. R(n + 1) is then the representative front.

As we will see, the homogenous structure of the JQN and of the probability
matrix implies that we obtain identical transient probabilities for states s,s’ € S,
with r € R(I), within the error bounds of uniformization given n steps. In fact, we
restrict the computation to a finite number of starting states and still perform a

comprehensive transient analysis for every possible state as starting state.

Example 8. As shown in Figure 4.8, starting from every representative state r €
R(m), still [ steps can be undertaken in every direction without reaching beyond the
origin 5. The total amount of starting states we have to consider equals (n + 1)?
and the total amount of goal states equals (2n + 1)%. According to Equation (4.1),
the representative front R(T) contains (n + 1)? — n? = 2n + 1 states. Thus, 2n + 1
states of the starting states represent the remaining infinite state space.

Proposition 12 (Starting states and goal states). In an M dimensional setting,
for a given number of n steps, (n + 1)M starting states and (2n + 1) goal states
have to be considered out of which (n + 1) —IM states are representative. O
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As for the transient analysis of QBDs (Section 3.3.1), the matrix U™ is the state
probability matrix after n discrete epochs and V(™ (#) holds the approximated tran-
sient probabilities after n steps. Note that these matrices remain two-dimensional
for JQNs, as they represent all possible combinations of starting states and goal
states.

Similar to Section 3.3.2, it is now sufficient to consider only starting states that
belong to fronts F (1) for i < n for a finite representation of U™ and V™ (¢). The
size of the finite representation depends on the considered number of steps n, hence,
on the time, the uniformization rate, and the required accuracy.

We now address the growth of the matrices U™ in the course of the computation.
Figure 4.9(a) shows that the dimension of the finite representation of U® is:

dim(U®) = (|FO)])* = (1M - 0M)? = 1.

Since n = 0, we cannot leave a state and the first front R(0) is already a represen-
tative front.

Figure 4.9(b) shows the dimension of the finite representation of UW. Since
n = 1, we can reach the next higher or the next lower fronts. Thus, front F(0)
cannot be used as representative front, but we can use the next higher front R(1)
as representative front, as shown in Figure 4.9(b). Since n = 1, it is possible to

reach the front F'(2) as well; thus we have to consider starting in one of the first
two fronts F'(i) for ¢ = 0,1 and ending up in one of the first three fronts F(j) for
j=0,1,2. The dimension of the finite representation of UM depends on the fronts
that contain the starting states and on the fronts containing the goal states. The
number of states of a given front can be calculated according to Equation (4.2). The

dimension of UW is given by:

dim(UY) = ([FO)|+ [RD]) x (|FO)] + RO+ |F(2)])
= (1M —0M 4 2M — 1M (1M — oM 4 2M — 1M 4 3M M)

— oM « 3M,

Figure 4.9(c) shows the finite representation of the matrix U®. From a given front,
we can reach at most two more fronts in both directions. Picking the second front
as new representative, ensures that we cannot reach beyond the origin 5. We have
to attach another row of states to represent starting from the new representative

front. Furthermore, we attach two more columns to account for the fronts F'(3) and

F'(4) that can now be reached from the new representative front. The dimension of
the finite representation then equals

dim(U®) = (|[FO)] + [FD| +R@)) x (IFO) + [F@)] + [R@)| + |[FG)| +|F (D)

= 3M x 5M,
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Figure 4.9: Considered part of the state space (left) and finite representation of U™
and V(1) (right), depending on the number of considered steps
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In a general JQN, for a given number of steps n, the size of the matrix U™ is then

dim(U™) <Z|F ) <Z|F ) (n+ DM x (2-n4+ 1M (4.15)

Note that, even though the left side of Figure 4.9 only shows the two dimensional
case, (M = 2) the right side is also correctly depicted for an M dimensional setting.
As before, the finite representation of the matrix V(™ (#) has the same dimension as
U,

4.3.3 Uniformization with Representatives

We now proceed with the actual computation of the state probability matrix U™
and the approximated transient probability matrix V) (¢) according to (3.10).
Starting with n = 0, and thus with the smallest finite portion of the JQN, cf.
Figure 4.9(a), we increase n step by step, thus increasing accuracy and size of the
considered finite representation of the JQN. However, in each iteration we always
use the smallest possible representation.

Considering n steps, the probability of starting in a state in the representative
front r € R(m) and ending in a state s’ in one of the fronts (i), for i € {0,...,2-n},
represents the probability of starting in a state s € S, and ending in the correspond-
ing state s”.

In order to increase the number of steps from n— 1 to n we first adapt the size of
the data structure before computing the values for n steps. Moving from step n — 1
to n we have to add the front F(7) that is going to be representative for n steps,
to the set of starting states and the fronts F'(2n — 1) and F(2n) to the set of goal
states.

First, the two new sets of columns of goal states are initialized with zero, as it is
impossible to reach these states with n — 1 steps. Second, the new row of starting
states F'(m) is initialized with the probabilities of the corresponding entries from
front R(m — 1) that is representative for n — 1 steps. Note that this holds for U™
and V™ (¢).

An entry (s,s') in the new row of starting states F'(7) constitutes moving from
a starting state s to a goal state s’ with s € F'(m) and s € F'(1) for i = 0,...2n. We
first need to find the corresponding starting state r € R(m—1) such that s € S The
corresponding goal state then is the state s” that is, in every dimension, exactly as
far away from r than s is from s, that is, r —s" =s —¢.

Proposition 13 (Corresponding tuples). Given a tuple of starting and goal
state (s,s’) with s € F'(n), the corresponding tuple (r,s”) with r € R(n — 1) is given
by:

r=s—h(s)ands”" =s —s+r,
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with

E(s):{hz_l, S =n, ]
h; =0, s; #n.

The matrices U™ and V™ (¢) have a block structure, according to the fronts of
a JQN; we denote the blocks that give the probabilities from states in front F'(i) to
states in front F'(J) as U-(’f and Vi;(t). Note that P can also be organized according
to this block structure. In iteration step n, we then need to multiply the enlarged
representation of U™ with the square part of P that accounts for the one-step
probabilities for all states in the first 2 - n fronts. In general, for n > 1, U™ is
computed as UMY . P, cf. (3. 7) as fOHOWS'

U™ = Z U(" VP (4.16)

fori=0,...,nandj=0,...,2 7.

Proposition 14 (Corresponding blocks). For a given number of steps n and
for all ¢ > n and for all j > n + i, the entries of blocks U%) equal the represen-

tative probabilities from block U(,")i, for each corresponding tuple, according to
n,)—1+n
Proposition 13. Hence, our finite representation is correct. 0

Proof. The proof of the above proposition follows the same inductive lines as the
proof of Proposition 7. U

Due to the block structure of V™ (t), we can rewrite (3.9) as
(t

VO (1) = V() 4 ap(At;n) - UM, (4.17)

)
again for1=0,...,mand7=0,...,2 -1+ 1.

4.3.4 Complexity issues

In the k-th iteration, we actually consider the states of the first k£ fronts as starting
states and the states of the first 2 -k fronts as goal states, resulting in matrices with
(k+ 1M x (2 k+ 1)M entries, as given by (4.15).

If n is the maximum number of steps considered, the overall storage complexity
for the three probability matrices U™=D, U™ V) and the discrete transition
matrix P is O(4n?M).

The k-th multiplication of matrix U™~ with P is carried out in O(k%*). For
n the maximum number of considered steps, the overall time complexity therefore
equals O(n®M+1),

Note that the iteration costs per step increase. However, when full probability
matrices of the size U™ and V™ are used throughout the complete computation,
the iteration costs are much higher.
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Both the storage complexity and the computational complexity for doing uni-
formization with representatives on JQNs is much higher than for uniformization
with representatives on QBDs. This is due to the fact that the state space of a QBD
grows without bound in just one direction, whereas the state space of a JQNs grows
without bound in as many directions as the JQN has queues. In a QBD we add for
every step the same amount of states, whereas we add in a JQN with every step a
growing amount of states, that depends on M. Therefore, it is not possible to give a
block-tri diagonal representation for the matrix P and in step n we have to consider
three matrices of dimension (n + 2)™ x (2-n + 2)” and one matrix of dimension
(2-n+2)*M,

4.4 Different time intervals for the until operator

The algorithms for model checking the until operator for the different time intervals
are almost the same on JQNs than on QBDs. The only difference is that the infinite
state space is partitioned in fronts instead of levels. Hence, the only difference with
the algorithms presented for QBDs is that Sat’ changes to Sat”™ and Q changes to
J. Note that, as for QBDs, the algorithms, presented in the following, do not stop
in case the computed probability for at least one starting state equals the probability
bound p.

The algorithm to compute the satisfaction set of a CSL formula with the bounded
until operator for the time interval I = [0,¢] will be introduced in Section 4.4.1. In
Section 4.4.2 we present the algorithm for the interval until I = [t1,%5]. The al-
gorithms for the unbounded until operator with time interval I = [0, 00) and time
interval [ = [t,00) are discussed in Section 4.4.3 and in Section 4.4.4, respectively.
Furthermore, we provide a proof of Proposition 9 for the until operator in Sec-
tion 4.4.5.

4.4.1 The simplest case [ = [0, t]

As the complexity for uniformization with representatives on JQNs is worse than
for QBDs it is even more important to use the dynamic termination criterion, as
presented in Section 3.4.1 for QBDs.

For model checking an until-formula P, (® U *21) we have to compare for
each starting state the probability to follow a (® U *2)W)-path with the probability
bound p. In the transformed JQN J[-® V V] the set of goal states consists of all
W-states. We denote the probability to end up in a U-state, given starting state s,
as Ys(t). For the time interval I = [0, ], we have:
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=3 Y gy,

=0 s/cSat?T+) (W)

Note that the vector v(t) consists of sub-vectors corresponding to the fronts of the
JQN. The approximation of 74(t) after n iterations is denoted v () = V™ (¢)-~(0),
with

1, sEVY,
75(0) = .
0, otherwise.

In principle, 7™ (¢) is of infinite size, but we can cut it to a finite representation,
as from a representative front on, corresponding states have the same probability
values. For all states s € S, we add the computed transient probabilities to reach
any W-state and check whether the accumulated probability meets the bound p on
a regular basis.

The accumulated Probability is always an underestimation of the actual prob-
ability. Recall that etff,) is the maximum error of uniformization after n iteration

steps (cf. (3.11)), such that ~(t) < %-(n)(t) + eﬁ"

Y for time interval I = [0,]. From
(3.11) it follows that the value of z—:;ny) decreases as n increases. Exploiting the above

inequality, we obtain the following termination criteria:

(a) A >p = ) > p,
b) W) <p—e = %) <p.

These criteria can be exploited as follows. Starting with a small number of steps, we
check whether for the current approximation one of the inequalities (a) or (b) holds
for all starting states. If this is not the case we continue, check again, etc., until
either of the termination criteria holds. However, if for one of the starting states
s € S we have ~(t) = p, the iteration never stops, as neither of the termination
criteria ever holds. However, this is highly unlikely to occur in practice.

In case (=® V ¥) is independent as of g and either (a) or (b) holds for all consid-
ered starting states with n steps, front R(g + ) is representative and the transient
probabilities for all s € S, computed with n steps will be the same. Py, (P U 0.1y
then is independent as of g+7n. In that case, we check for all states s < g+n whether
the accumulated transient probability of reaching a W-state meets the bound p. The
representative states that satisfy Po,(® U 91¥) form the representative satisfaction

set Sat™ @ (P, (0 ULLW)).
Recall, that the point interval until can be computed just like the time bounded

until, with the only difference that the transient probabilities have to be computed
on J[—®] and that the goal states s’ have to fulfill ® A .
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4.4.2 The bounded case [ = [ty, 1]

As presented in Section 3.2.7, the computation of the transient probabilities for the
time interval I = [t1, 5], is split into two parts. We need to combine the transient
probabilities in the transformed J[—®] at time ¢; with the transient probabilities in
J[-® Vv V] at time ty — ¢, as follows:

75<t2) - i Z i Z 7TJ[_‘<I>] (S, 5,, tl) . 7TJ[_‘<I>V\II] (S,, S”, ty — tl)

=0 seSatF (@) J=0 s7eSatF0)(v)

= i Z I (s ' ) - i Z rI V(S S by — 1)

=0 s’eSatF(i)(q)) j=0 s”eSatF(j)(‘I’)
= Ys(t1) : Yo (ta — t1)

The first equation is rewritten by separating the transient probabilities of the two
parts. For a given a priori error &4, ,, an initial distribution 42 (¢,) for the first part of
the transient probabilities is computed with uniformization in ny steps. The second
part of the transient probabilities is computed with dynamic uniformization with
representatives. The approximation of vy (t; —t1) with ng steps is denoted as v* (to—
t1) and induces the error E,E;Li)thw. Both approximations are an underestimation of
the actual probability:

() < (75"%1) ; ei’:;i) ~ (wi/"?)(m )+ sﬁfi)m)- (4.18)

For a given initial distribution 7' (¢;), we iterate ny until for every considered start-
ing state one of the following termination criteria holds:

(a) V() -yt (te —t) >p = %(t2) >p
(b) 12t —t1) < W - 8,523),517”2 = (t2) <p.

t1,v1

Given —® V ¥ is independent as of [, we have to find ny such that either (a) or
(b) is fulfilled for every considered starting state. Given that the initial distribution
is computed with an a priori known number of steps ni, R(l + 7, + 7y) serves as
representative for all fronts larger than [ 4+ 71y + o.

4.4.3 The unbounded case [ = [0, c0)

In Section 4.2.8 we showed how the model checking of an unbounded until operator
relies on the computation of the steady-state probabilities in the absorbing JQN
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J[=® V ¥]. Note that J[-® V U] is not necessarily a JQN anymore. So we can-
not compute the steady-state probabilities using Jackson’s theorem. However, the
steady-state probability of the set of absorbing W-states is independent of the resi-
dence time in each state-visit but only depends on the branching probabilities and
the starting state.

We can therefore switch to the discrete-time Markov chain that is derived from

the embedded discrete-time Markov that corresponds to J[—® V ¥], by removing
self-loops. This probability matrix is denoted H where

H(s,s') = G(s,s')/ — G(s,s) for s # s' and H(s',s") = 0.

Note that H"(s,s’) denotes the probability to reach s' from s in exactly step n. If
the starting state is from front F'(l), the desired steady-state probability is:

(s, Sat(¥ Z Z 7(s,s)

=0 s/cSati" ™ (1)

o o
= Z Z Z H"(s,s)
i=0 ¢ cSatf ™ (w) n=0
I+n

Y Y Y wel).

n=0 i=max(0,l-n) s'cSat’ ™ (W)

The second equality replaces the steady-state probability 7(s,s’) by the probability
to reach a W state s’ in zero up to infinitely many steps >~ jH"(s,s').

The third equality follows from the fact that only a finite number of fronts is
reachable in n steps. Using this equation, representative probabilities can be com-
puted for an increasing number of considered steps n as is the case for uniformization.
The termination criterion is adopted from Section 3.2.5. In every step we have to
compare the approximations computed with N steps:

l+n

(s, Sat(¥ Z Z Z H"(s,s)

n=0 j=max(0,l-n) s'cSat’"® (W)

and 7V (s, Sat(—=WV)), with p and 1 — p, respectively, until we can stop the iteration.
As soon as one of the left-hand side inequalities becomes true, we can stop:

(a) M (Sat(®)) >p = w(Sat(®)) > p,
() #M(Sat(=®)) >1—p = a(Sat(P)) < p.

Given W is independent as of [, we have to find N, such that either (a) or (b) holds
for all considered starting states. Front R(l+ N) is then representative for all fronts
larger [ + N.
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4.4.4 The unbounded case [ = [t,00)

Model checking the time-bounded until operator for the time interval I = [t, 00),
consists of two parts. We need to combine the transient probabilities in the trans-
formed JQN J[—-®] at time ¢ with the steady-state probabilities in J[=® V U]. If
the starting state is from front F'(I, the desired steady-state probability is:

(s, Sat(P))

Z i Z 71.‘7[—“1’] (S, 5/7 f}) . 7TJ[—«I)\/\I/} (S/, S//)

s'€Satt 0 (@) 1=0 s/ cSatF D (W)

Z vty (s, s, t) - i Z 7T [V s,s")

L LD

v eSat” O (@) =0 sresatt O (v)
(e 9] oo o0
_ z : § : ﬂ_j[—mb} (S, Sl,t) . § : § : § Hn(S/, SI/)
=0 s'cSat? D (@) 7=0 s7eSatF O (w) n=0
00 00 I+n
= E g I ®l(s ' ¢) - E E g H"(s,s).
i=0 ¢ cSatF D (P) n=0 j=max(0,l-n) s”eSat" D (V)

The first equation can be rewritten by separating the transient from the steady-
state probabilities. The steady-state probabilities are expressed via the embedded
discrete-time Markov chain with probability matrix H.

To actually compute 7(s, Sat(P)), an initial distribution for the steady-state
probabilities, denoted 74(¢) is computed for a given error z—:gby). The steady-state
probabilities are approximated as follows:

l+n

7MN(s' | Sat(®)) = Z Z Z H"(s,s).

n=0 j=max(0,l—n) s/cSat’ D (W)

Combining the initial distribution with the approximated steady-state probabilities
7N(s', Sat(®)) for increasing N, we compare with p and combining the initial distri-
bution with 7V (s’, Sat(=®)) we compare with 1 — p for every N, until we can stop
the iteration. As soon as one of the left-hand side inequalities becomes true, we can
stop:

(@) Y (s, t)- 7N, Sat(®)) > p = 7(s, Sat(®)) > p
s'eSat(®)
(b) > Fls, & 0) - 7NV(S, Sat(=@)) >1—p = 7(s,Sat(®)) <p

s'eSat(P)
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Note that the a priori error that is chosen for the initial distribution does not in-
fluence the above inequalities as the computed probability is always an underesti-
mation. Thus, in case the underestimation is already larger than p or 1 — p, we
can be sure that the actual probability is as well. The a priori error of the initial
distribution should be chosen reasonably small, in order to take enough probability
mass into account, otherwise the iteration might not stop.

Given —® Vv ¥ is independent as of [ and the number of steps considered by
uniformization for an a priori error €, is n. Then, in case the above iteration stops
after N steps for all starting states, front R(I+n+ N) is representative for all fronts
larger [ +n + N.

4.4.5 Proof of Proposition 9 for the Until operator

The proof of Proposition 9 for the Until operator when model checking JQNs follows
the same lines as the proof of Proposition 5 for model checking QBDs (Section 3.4.6).

We want to show that for any until formula Py, (®U’ V) there exists a indepen-
dence vector g, under the assumption that for no state s the probability measure is
exactly equal to p, hence, Prob(s, DU W) # p.

We do this for time-bounded until formulas P, (® U W) in more detail.
Assume that ® is independent as of g; and V¥ is independent as of g,. The entry-
wise maximum of g, and g, is then denoted §’. The termination criterion (cf. Section
3.4.1) of uniformization with representatives ensures that for every state r € R(q)
there exists an NN, > 1 such that either

Vs € S, :vs(t) >porVsesS, : v(t) <p.

The maximum of all N, is then the new independence vector g for independence of
the formula P.,,(® U ¥). However, we still have to discuss that the algorithm
always terminates. Assume that it does not do so, then

VseS: lim 7" (t) <p and Vses: lim [yP(t)+ ") | >p.
~—

n—oo n—oo

—0

(n)

t» = 0, we obtain

But since lim,, . €
p < 7s(t) = lim A{™(t) <p,

which is not possible. Consequently the algorithm will always stop, thereby having
computed an N; for each representative state, and so the corresponding until for-
mula is independent as of independence vector max;(V;). For the unbounded until
formula, independence as of g can be proven similarly. O]
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4.5 Case study: An e-business site

Modeling an e-business site as Jackson queueing network facilitates analyzing its
scalability. This is extremely important as customers become dissatisfied easily in
case such a site is overloaded. We are able to model an e-business site in as much
detail as shown in [59], however, we use a model with one queue per server instead
of two, to keep the model concise. On the other hand, where [59] only analyzes
average response times, we are able to analyze a wide range of more advanced
measures, given by the logic CSL and the new analysis algorithm.

The case study is further organized as follows: Section 4.5.1 describes the system
and introduces the model, in Section 4.5.2 the steady-state behavior of the system is
analyzed, whereas in Section 4.5.3 we show how the dynamic termination criterion
improves the performance of the transient analysis. The tool usage of this case study
is discussed in Section 4.5.4.

4.5.1 System description and model

Consider an online retail shop, where requests arrive from a potentially infinite cus-
tomer base. The site itself consists of three servers: a web server, an application
server and a database server. The requests are first dealt with by the web server
that manages all the web pages and handles the direct interactions with the cus-
tomer. The application server implements the core logic of the site and the database
server stores persistent information about registered customers, prices and article
descriptions.

Arriving requests first visit the web server, after which they are either forwarded
to the application server, routed back to the web server itself or leave the system,
when they have been completed. Jobs that visit the application server are either
forwarded to the database server or routed back to either the web server or the ap-
plication server. From the database server, jobs are routed to either the application
server or back to the database server itself. Note that requests can only leave the
system via the web server. As illustrated in Figure 4.10, the associated JQN then
consists of three unbounded queues modeling the buffer of the web server, the buffer
of the application server and the buffer of the database server, respectively.

Requests from the infinite population arrive according to a Poisson process with
rate A\ and are then routed according to the routing matrix

0o 1 0 0
04 03 03 0
R= 0 03 04 03] (4.19)

0 0 07 03

To compute the steady-state probabilities we need the arrival rates per queue. They
are computed by solving the traffic equations (4.20) which follow directly from Fig-
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web server application server database server
| o 03] ! | |
arriving A 10_3 0.3 0.7
requests | - M1 T M2 T U3
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Figure 4.10: Queueing network model for an online auction site

ure 4.10:

AM=A+03-A+03-)\
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The arrival rates and the service rates per queue are given in Table 4.1. To conduct

parameter ‘ A Ao A3 1 o i3

sec™ ! ‘ %)\ g~)\ %-)\ 5 5 3

Table 4.1: Numerical values for the parameters of the model

steady-state analysis we also require the system to be stable. From

A A A
=2 <1 Ap="2<lAp=22<1, (4.21)
H1 K2 H3

it follows directly that \ < 2.

To analyze the scalability of the e-business site, we define the CSL formula
overflow to indicate that all queues are filled above a certain threshold as

overflow = (s1 > full) V (so > full) v (s3 > full),
for different possible values of full. The atomic proposition
no_overflow = (s < full) A (s < full) A (s3 < full) = —overflow

indicates that all queues contain less than full requests.
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4.5.2 Model checking steady-state properties

We want to analyze for which combinations of the parameters full and A the steady-
state probability to be in overflow state is reasonably small. Stated in CSL, we
want to analyze S.,(overflow) for different probability bounds p.

Figure 4.11 shows the steady-state probability to be in an overflow state for
A € [0,2] for full € {5,10,15,20,25,30}. As can be observed for increasing values of
parameter full the steady-state probability stays below a given threshold for larger
values of A\, however, the slope becomes more steep.

For the administrator of an e-business site it is of interest to know the maximum
possible combination of A and full for which the steady-state probability is still
below a given threshold. Figure 4.12 shows the maximum value of A that can be
accommodated such that Sat(S.,(overflow)) = S holds for different probability
bounds p € {0.05,0.1,0.2,0.3}. For small values of full the slope is quite steep and
for higher values of full it flattens. This phenomenon is well-known as the law of
diminishing return, meaning that if the allowed buffer occupancy is increased above
a certain point, the throughput increases at a decreasing rate.

Figure 4.12 shows that, for probability bound p = 0.1, if the buffer capacity
is increased by 100 percent (from 20 to 40) the allowed A is only increased by 12
percent from 1.6 to 1.8. At approximately full = 6, the slope decreases. This point
is called point of diminishing return, at which the derivative is at its maximum.

4.5.3 Model checking time-bounded until

Figure 4.13 shows the number of uniformization steps needed for model checking
Sat(Ps,(overflow U no overflow)) for t = {5;10;5},

depending on the probability bound p. We show the number of iterations with
the dynamic termination criterion, as well as the a priori computed number of steps
required for an error g;") = 1077, Clearly, the a priori number of steps is independent
of the probability bound p and increases with time bound ¢.

After 0 steps the comparison can be evaluated for p = 0 for all time bounds
when using the dynamic termination criterion. Then the number of iterations first
increases steeply and the maximum number of iterations is reached for a probability
bound at most 0.2 for all four time bounds. In general, the number of iteration steps
using the dynamic termination criterion decreases for larger p. Note that the step
size of p, as shown in Figure 4.13 was taken to be 0.01.

The number of iterations in Figure 4.13 clearly varies over time. A peak occurs
whenever the computed probability for some state is really close to the probability
bound p we have to compare with. The maximum number of iterations with the
dynamic termination criterion approximately equals the a priori computed number
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of steps for 5,@ = 1-1077. For larger time bounds ¢, the difference between the
number of iterations for the dynamic and the a priori termination criterion increases,

showing the efficiency gain using the dynamic termination criterion.

100
ofF . dynamict

80 |

70 p

60 p

50

# of iterations needed

40 f

0 0.2 0.4 0.6 0.8 1
probability bound p

Figure 4.13: Number of iterations needed for model checking s |
P~ (overflow U no overflow) with the dynamic termination criterion and
with a priori error

In Table 4.2 the first group of rows shows the minimum and maximum number
of iterations per time bound with the dynamic termination criterion and the a priori
computed number of iterations per time bound. The second group of rows then show
the finite number of states that is considered of the underlying infinite Markov chain
J, depending on the number of iterations and again depending on the time bound
t. The corresponding number of states in the absorbing Markov chain J[-® V ¥] is
shown in the third row. In the last group of rows, the numerical error 5,53?,) for the

corresponding number of iterations is given.

Using the dynamic termination criterion, the number of iterations that is nec-
essary to decide whether s = Ps,(overflow U no overflow) for all s € S
grows with increasing time bound ¢. This is due to the fact, that with a larger
time bound more steps can be taken. With an increasing number of iterations also
the considered finite part of the underlying infinite Markov chain grows. In con-
trast, with more iterations, the introduced numerical error egf,) decreases. There-
fore, the error bound in column dynamic min is larger than the error bound in
column dynamic mazx. For time bound ¢ = 5, 5;"”) = 1.1-1077 is enough to decide
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t dynamic a priori
min max egly) =1-10"°
number of 0.5 7 19 20
iterations ! 1o 29 30
30 47 48
5 73 89 92
nmber of states 0.5 7770 260130 273819
- 1 23426 877975 1004731
2 91881 2081156 2362041
5 782246 1333300 1456935
nmber of states 0.5 121768 252132 265821
in [~V U] 1 532276 869977 996733
2 1406912 2073158 2354043
5 782246 1325302 1448937
. .. 05 1.3-107' 4.0-107" 1-107°
uniformization
(n) 1 24-1072 3.1-1077 1-1077
CITOT &4 2 15-102 1.0-1077 1-10°7

5 1.1-107% 3.45-1077 1-1077

Table 4.2: Numerical values for the parameters of the model

that s |= P>,(overflow U%! no overflow) for probability bound p = 0.98.
Whereas 5;"”) = 3.45- 107" is enough to decide this for all probability bounds
p € {0.0,0.01,0.02,...,0.99,1.0}. However, this small error is only necessary to
decide the validity of the CSL formula for probability bound p = 0.15. Note that
the given number of iterations and the given error might not be enough to decide
for every other probability bound.

The last column of Table 4.2 shows the number of iterations that has to be taken
to keep 5&,) < 1-1077. Figure 4.13 shows that an error of 1-10~7 is always enough to
decide whether s = Ps,(overflow U no overflow) for all s € S. The number
of states of the infinite Markov chain that has to be considered is always slightly
larger than for the maximum in case the dynamic termination criterion is used.

4.5.4 Tool usage

To compute the steady-state probabilities for this case study, the algorithm pre-
sented in Section 4.2.6 has been coded in C+4. The computation of the steady-
state probabilities for 200 different values of A is done within 0.2 seconds on an Intel
Pentium 4 with 3 GHz and 1 GB main memory.

To model check the time bounded until operator the JQN has been transformed
manually into a stochastic Petri net [19]. To model the possible infinite population
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of the JQN, an additional place finite has been added to the SPN from which all
arrivals take place and to which all departures are routed. In case the inner formula
—=® V¥ is independent of g and given the number of iterations is n, the place finite is
initialized with g4 2-n tokens to account for the g+n possible starting fronts and the
g + 2n possible goal fronts. Then the CSPL implementation by Bell [12] is used to
generate the underlying Markov chain and an implementation of the uniformization
method for finite state Markov chains by Cloth [22] is used to compute the transient
probabilities. A script emulated the dynamic behavior of the algorithm. The time
to compute the transient probabilities ranges from 0.4 seconds to 22 seconds for the
different time bounds, when using the dynamic termination criterion, and between
1.3 seconds and 26 seconds, when using the a priori termination criterion.

4.6 QBDs versus JQNs

When comparing the algorithms for CSL model checking of QBDs and the algorithms
for CSL model checking of LQNs, we see that the steady-state operator is checked
with a specific algorithm for each model class. The steady-state operator on QBDs
is checked with an iterative method based on the matrix geometric method and
a termination criterion that is especially tailored for this algorithm. For JQNs,
the steady-state operator can be checked directly via a closed-form solution that is
derived from Jackson’s theorem.

For model checking the next operator and the until operator with its different
time bounds intervals, however, we have proposed approaches similar to those for
finite CTMCs. The algorithms are then tailored specifically to QBDs and JQNs.
The only difference in the algorithms corresponds to the different partitioning of the
infinite-state space for QBDs and JQNs:

e For model checking the until operator for QBDs, the state space is split in
levels. This is reflected in Equations (3.2 — 3.6) in the second summation, that
ranges over all Sat'(®).

e For model checking the until operator for JQNs the state space is split in
fronts. This is reflected in Equations (4.10 — 4.14) in the second summation,
that ranges over all Sat”"®.

Basically, the algorithms as presented in Section 3.2 and in Section 4.2 can be used
on every class of infinite-state Markov chain that has a structured, repetitive state
space, which can be infinite in several dimension, that has constant transition rates,
and atomic propositions that do not change any more from some point on in the
infinite dimensions. For such state space, a partitioning

S = G F(1) with FF(I) N F(j) = @ for i # j,

1=0
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comparable to the general partitioning for JQNs, as presented in Section 4.1.4,
can be defined. The definition of the partitioning highly depends on the state space
structure. The requirement that the state space is structured and repetitive, ensures
that we can use the concept of independence and representatives as for QBDS and
JQNS. However, note that the complexity of model checking such a class of infinite
CTMCs also highly depends on the structure of the state space.

4.7 Summary

In this chapter we presented model checking algorithms for checking CSL properties
for a very general class of queueing networks, namely for labeled Jackson queueing
networks. The underlying state space of an JQNs is a highly structured CTMC,
that is, of infinite size in as many dimensions as there are queues. We introduce a
new notion of property independence on JQNs that is needed for model checking.
Steady-state probabilities are computed in (stable) JQNs with well-known product-
form results and transient probabilities are computed with a a new uniformization-
based approach. We provided a running example throughout the paper to illustrate
our approach.



Chapter 5

Beyond CSL model checking
QBDs and JQNs

In the previous two chapters we have developed CSL model checking algorithms for
QBDs and JQNs. In this chapter, we describe extensions of QBDs in Section 5.1
and discuss whether model checking these extensions with the framework proposed
carlier is feasible [66]. In Section 5.2 we present several extensions for JQNs and
explain whether model checking these extensions fit into our frame work. Section 5.3
introduces a reward structure and presents CSRL model checking algorithms for
QBDs and JQNs. Then related work on transient analysis of infinite CTMCs and
on model checking infinite Markov chains is presented in Section 5.4. We conclude
this chapter with a summary in Section 5.5.

5.1 Model extensions for QBDs

We discuss model checking QBDs with resets in Section 5.1.1 and model checking
QBDs with batch arrivals and/or service in Section 5.1.2. In Section 5.1.3 we intro-
duce QBDs with periodic atomic propositions and explain that they can be model
checked with our approach as well. Section 5.1.4 presents tree-like QBDs and ex-
plains why model checking this class of infinite CTMCs with our approach does not
scale well.

5.1.1 Resets

In standard QBDs, transitions can only occur between states of the same level or
between states of neighboring levels. In QBDs with resets we additionally allow for
transitions that lead from any state in any repeating level to the boundary level, as
shown in Figure 5.1(a). This is useful to model situations where all jobs in a system
are lost due to some special event (like a server breakdown). The generator matrix

91
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(a) transitionsin a QBD with resets (b) generator matrix

Figure 5.1: QBD with resets

as in Figure 5.1(b) is then composed out of nine matrices, where Cy denotes the
transitions (resets) from the repeating levels to the boundary level. Note that the
reset transition matrix Cg is the same for all repeating levels.

Again, considering level-independent atomic propositions, CSL formulas on QBDs
with buffer resets are not level-independent in general. Even though it is now pos-
sible to reach the boundary level from every repeating level in one step, there still
is the possibility to reach the boundary level via repeating levels. Due to this, the
transient probabilities to reach the boundary level differ from level to level and,
hence, we again have to apply the concept of level independence as of level k.

The steady-state probabilities can be computed with known techniques [74, 56,
61]; the only difference to applying matrix-geometric methods on standard QBDs
is that the boundary equations (cf. Appendix A) must now account for the new
matrix Cy, yielding vy = voBoo + E;’;l v;Co, with ™ = (vg, vy, vg,---) being the
steady-state vector. As Cy is a constant matrix, this equation can easily be solved
due to the geometric structure of the solution vectors v;.

Computing the transient probabilities can again be done with uniformization. As
we require the transition matrix Cj to be constant, we still have a finite number of
different diagonal entries so that the uniformization rate can be determined. Model
checking the until operator on QBDs with resets thus has the same complexity as
on standard QBDs. Note that the level diameter can still be computed as addressed
in Chapter 3. In conclusion, model checking of QBDs with buffer resets can be done
exactly as for standard QBDs, as presented in Chapter 3.
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Figure 5.2: QBD with batch arrivals

5.1.2 Batches

For modeling the case that jobs enter or leave a system not only in single instances
but also in finite batches, we need transitions between non-neighboring levels. We
distinguish between (a) batch arrivals, (b) batch departures, and (c) the general case,
which contains (a) and (b). The batches can have different size distributions. To

describe a QBD with batch arrivals we need additional transition matrices Ag), for

) just equals Ag. The new transition matrices for

batch departures are denoted as Ag). Since we allow only for finite batches, the

number of extra matrices is finite as well.

every possible batch size . A((]1

The generator matrix of a QBD with batch arrivals, see Figure 5.2, has an upper
block-tridiagonal form and can be seen as a special M|G|1 process; the generator
matrix of a QBD with batch departures has lower block-tridiagonal form and can
be seen as a special G|M|1 process. In case of both batch arrivals and departures,
the generator matrix takes a block-banded form. By regrouping as many states into
one level as necessary to guarantee that transitions entering or leaving a (new) level
are restricted to neighboring levels only, we can transform the QBD with batches
to a standard QBD. This procedure always works, as long as the maximum batch
size is finite [40]. With such a regrouping, the level size is multiplied with the maxi-
mum batch size. If the QBD with batch arrivals or departures has level-independent
atomic propositions then the regrouped QBD has level-independent atomic propo-
sitions as well, because only complete levels are regrouped.

The regrouped QBD can then be model-checked with the standard procedure.
We just have to make sure that the left and right level-diameter (cf. Chapter 3),
are adapted accordingly to keep uniformization efficient. As reducing QBDs with
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batch arrivals/departures to standard QBDs might lead to a considerable increase of
the QBD order, it might be advantageous to model check these QBDs, without re-
grouping. This can be done with specialized matrix-geometric algorithms for M|G|1
and G|M]|1 processes with batch arrivals and services [56], [74], or with the spectral
expansion method [60]. Uniformization can be done as for standard QBDs, we just
have to consider that one uniformization step possibly crosses more than one level.
That is, the amount of reachable levels to the right and to the left grows according
to the maximum batch size for arrivals and departures. Thus, for model checking
the until operator and to maintain the notion of level independence, the batch sizes
have to be taken into account accordingly.

5.1.3 Periodic atomic propositions

Until now we always required QBDs with level-independent atomic propositions for
model checking CSL. However, we are able to check QBDs with so-called periodic
atomic propositions as well. An atomic proposition is called periodic with period
p, iff its validity repeats every p levels. Atomic propositions with period p = 1
are called level-independent, with period 1 < p < oo are called periodic, and with
period p = oo are called level-dependent. For example, an atomic proposition odd
which is valid in states with odd level index, is periodic with period 2. QBDs with
periodic atomic propositions with period p can be regrouped to QBDs with level-
independent atomic propositions by combining p levels to one. In the case of several
periodic atomic propositions with different periods the number of levels that need
to be combined is given by the least common multiple of all periods. As far as we
know, regrouping is the only possibility to model check QBDs with periodic atomic
propositions.

5.1.4 Tree-like and tree-structured QBDs

We address the state space underlying tree-like and tree-structured QBDs, before
we discuss the possibilities and problems when model checking such infinite-state
CTMCs.

State space structure

Tree-structured QBDs arise from PH|PH |1 queues with preemptive last in first out
(LIFO) service discipline. They were first introduced in 1994 by Yeung and Sengupta
[87] with transitions between siblings, to parents, children and to all ancestors. The
underlying stochastic process corresponds to an M|G|1 process. Later on different
types of transitions have been proposed; in [78] transitions between siblings, to
parents, children and to all descendants are considered, which corresponds to an
G| M|1 process. Yeung and Alfa [88] allow for transitions between siblings, to parents
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Figure 5.3: M|PH|1 queue with LIFO with a tree-structured state space

and children, only. They all solve the arising steady-state equation system in a
matrix geometric way.

In Figure 5.3 a tree-structured QBD is shown, where each node in the tree has
two different children (branching factor 2). State & represents the empty queue. The
branching factor equals the number of phases in the phase-type service distribution.
In the empty tree-structured QBD from Figure 5.3 arriving jobs can be either in
service phase 1 or in service phase 2, represented by the nodes (1) and (2). Due to
the preemptive LIFO service discipline, a new job arrival causes the preemption of
the job currently in service and the service phase of the preempted job needs to be
stored. This results in a tree-structured state space structure, where a node of the
form (z1,x,...,x,) represents n jobs, each in service phase z; € {1,...,d}, where
the jobs 1,2...,n — 1 have been preempted and job n is currently in service.

Note that with first in first out (FIFO) service discipline the state space is just
a usual QBDs, as jobs cannot be preempted and only the service phase of the job
currently in service needs to be stored.

Tree-like stochastic processes and the numerical methods to solve the steady-
state equation system have been introduced by Bini et al. [15]. In contrast to
tree-structured QBDs, they do not allow for transitions between siblings. A tree-
like stochastic process with branching factor 2 is shown in Figure 5.4. Each node
contains two states, representing the service phase of the job currently in service.
The boundary node represents one job in the system and a job from layer n represents
n jobs in the system. A job that is preempted moves to the queue; according to its
service phase a transition is taken: if it was preempted in service phase 1, transitions
L | is taken and if it was preempted in service phase 2, transition R | is taken to
the next lower layer. When a job is resumed, transition L T or transition R T is
taken to the next higher layer, depending on the service phase of the resumed job.

Van Houdt and Blondia show in [81] that an arbitrary tree-structured QBD can
be embedded in a tree-like QBD. Therefore, in the following, we concentrate on
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Figure 5.4: Tree-like QBD

tree-like QBDs. Literature on tree-like QBDs mostly discusses efficient algorithms
to solve steady-state probabilities. However, Van Houdt and Blondia introduce an
approximate approach, to perform transient analysis of tree-like processes by using
marked time-epochs [85].

Model checking

For model checking purposes we require the same atomic propositions for corre-
sponding states of all nodes, however, different atomic propositions may be valid in
corresponding states of left and right children.

To check the steady-state operator on tree-like QBDs, the steady-state probabil-
ities need to be computed in a recursive and layer-wise manner. Then the iterative
comparison as introduced in Section 3.2.5 can be used to decide the validity of
the steady-state operator. Efficient algorithms for steady-state analysis of tree-like
QBDs in discrete-time exist, that can be adapted for the continuous-time case.

Model checking the next operator can easily be done, using the approach from
model checking finite state Markov chains, that is also employed on QBDs and JQNss.
On a tree-like QBD with branching factor d, we need d representative nodes, that
is, d? representative states.

Checking the validity of an CSL until formula on a single starting state, we need
to consider all states that can be reached for a given number of steps:

e When purely descending (moving downwards in the tree), we need to consider
the d — 1 other states in the same node and with the first step we can reach
another d nodes in the next layer, where each node has in turn d states (d?
states in total). With two steps, it is possible to reach again the next layer,
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with its d? nodes (d® states in total). Thus, with n steps it is possible to reach

i drtt —1
Z ditt — fl

states when descending.

e Ascending (moving upwards in the tree) and then possibly descending again,
one can reach the next upper node with every next step, as well as the d — 1
siblings of the current node and possibly their descendents, in a recursive
manner. Figure 5.5 shows that starting from the left-most node, denoted start,
d states can be reached in the first step, another d? states can be reached with
the second step and again d® states can be reached with the third step. Note
that once the boundary node is reached, less states can be reached. In total
this leads to a maximum of

Z dl dn+1 d

states that need to be considered with n steps. For nodes situated differently
in the tree, the number of states reachable per step remains the same.

To check the validity of a CSL until formula for a given starting state with n
steps, we have to consider a maximum of

dn+1_1 dn+1—d_dn+1(d+ 1)—2d

i e d—1
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This is an exponential increase, however, it can be feasible for a small branching
factor d and not too large time bounds (which determine n).

For computing the possibly infinite satisfaction set for an until expression, we
need the transient probabilities for all starting states and for all goal states. We can
possibly use the concept of uniformization with representatives to tackle the infinite-
state space. Considering the structure of tree-like QBDs, all nodes, except the
boundary node have the same structure. The transition probabilities for descending
are the same for all nodes, however, the transition probabilities for ascending differ
for nodes of one layer, depending on whether the node is a left or right child.

Considering one step with uniformization and the fact that we do not want to
reach the boundary node, we need a maximum of d representative nodes, as the
transition probabilities for ascending differ. They then give the transient probabili-
ties for all other nodes. Considering n steps, we need d" representative nodes. This
is theoretically possible, however, practically not. To overcome this, abstraction
techniques, as briefly touched upon in Section 5.4.2, might help.

5.2 Model extensions for JQNs

In Section 5.2.1 we introduce Jackson queueing networks with interrelated atomic
propositions and discuss the corresponding model checking procedure. The conse-
quences of more general queueing stations for CSL model checking are discussed in
Section 5.2.2.

5.2.1 Interrelated atomic propositions

Recall, that we required atomic propositions of the following form in Section 4.2.1:

M
ap = /\ (Sm & gm), for g, € Nand A € {<,>}.

m=1

The customers per queue are independently compared with a given per-queue thresh-
old g,,. Several other possibilities for atomic propositions can be considered. In the
following we discuss two possibilities to define interrelated atomic propositions:

1. To compare the total amount of customers in several queues with an overall
threshold, atomic propositions of the form

M
ap = (Z Sm * 1ap(m)> A g for g€ N7 and A S {<’ Z}’

m=1

can be defined. The indicator function 1,,(m) returns 1 if the customers
of queue m are to be taken into account for the atomic proposition ap, and
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Figure 5.6: General atomic propositions for a two-queue JQN

0 otherwise. As an example for a two-queue JQN, Figure 5.6(a) the states
where s; + so < 3 is valid, are colored black. The underlying state space is
independent as of § = (g,...,9) (cf. Section 4.1.3). Clearly this is not the
most tight way to split the state space, however, atomic propositions of this
form can still be model checked with the algorithms presented in Section 4.2.

2. The balance between the number of customers in two queues can be expressed
with atomic propositions of the form

ap = |8m — S| AN gfor ge Nym,n e {1,..., M}, and A € {<,>}.

As an example, in Figure 5.6(b) the states where |s; — so| < 3 is valid, are col-
ored black. If the underlying state space is split according to Section 4.2.1, no
representative front can be found such that the validity of atomic propositions
does not change in the corresponding representative sets. It is left for future
work to (i) find a partitioning of the state space into pairwise disjoint fronts
such that with one step only the next higher and the next lower partition can
be reached; and (ii), to come up with a suitable definition of representative
front and representative set that facilitates model checking.

5.2.2 More general queueing stations

A queueing station is unambiguously described by the following seven properties:
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the customer arrival process,

the customer service requirements,

the number of service providing entities,

the maximum number of customers in the queueing station,
the size of the customer population,

the employed scheduling strategy

NSOk W

the number of customer classes

Considering open queueing networks with infinite buffer capacity and Poisson ar-
rivals sets the above property (1) to Poisson, and both property (4) and (5) to
infinity. This leaves four parameters that can be generalized. In the following we
discuss the consequences of doing so for model checking CSL formulas. A final para-
graph refers to product-form solutions for computing the steady-state probabilities.

Service time distribution (with FIFO scheduling)

For arbitrarily distributed customer service requirements, the underlying state space
is not Markovian anymore and therefore cannot be model checked with the approach
presented in this thesis. The underlying state space of a queueing station with phase-
type distributed service requirements is a QBD. Changing the service requirements
of a single queueing station in an open queueing network from exponential to phase-
type, leads to a multiplication of each state in the order of the phase-type distribution
d. The number of representative states, necessary when model checking such an open
queueing network where one queue has PH-type service requirements then is d times
more than in case all queues have negative exponential service requirements.

Multi-server queues

In case there are m servers working independently in queueing station i, the service
rates in the underlying state space differ for states s € {s' | s; < m}. However,
for s € {s' | s; > m}, the service rate will remain the same. This enables us to
use a splitting as of the maximum of m = (m, ..., m), and the independence vector
given by the atomic propositions. Note that queueing networks where stations have
infinite server capacity cannot be model checked with our framework as the service
rates never stop to differ.

Scheduling

As for the employed scheduling strategy, the underlying state space of Jackson
queueing networks does not change when FIFO or non-preemptive LIFO is con-
sidered. Preemptive Repeat Identical (PRI) scheduling forces us to store how much
work is left to do on a preempted job, resulting in a non-Markovian process. Thus
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model checking queueing networks, employing PRI - LIFO with our approach is
not feasible. For the same reason, model checking queueing networks, employing
Round-Robin (RR) scheduling is not feasible. However, for the limiting case of RR,
that is Processor Sharing (PS), the underlying state space is the same as for FIFO
scheduling. Also Preemptive Resume Different (PRD) LIFO does not lead to a
change in the underlying state space.

In case a queueing network contains an M|PH|1 queue, the scheduling strategy
for this queue cannot be LIFO as this would lead to a tree-based state space, as
elaborated in Section 5.1.4.

Multi-class

A queueing network can contain different classes of customers. Following the def-
inition in [59], a state in the underlying state space of such a multi-class network
describes the distribution of customers over the different classes and the different
stations in the network.

Even if FIFO scheduling is assumed for a single multi-class queueing station, the
underlying state space takes a tree-based form as the order of jobs per queue matters.
Again model checking such a state space with our approach is not practically feasible.
When random scheduling is considered on a queueing station with two classes, the
state space is the same as for a JQN with two queues, since only the number of jobs
per class needs to be stored.

Product-form solutions

For some combinations of service time distribution and scheduling, product-form
solutions for the steady-state probabilities exist, as for JQNs. In order to have a
product-form solution, Trivedi [79] summarizes that queueing stations with FIFO
scheduling have a negative exponential service time distribution, and queueing sta-
tions with a Cozian phase type distribution [26] may have PS, LIFO-PR or infinite
server IS scheduling.

Baskett, Chandy, Muntz and Palacios [11] introduce four classes of multi-class
queueing stations for which product-form steady-state solutions exist. The authors
show that for a queueing network with queueing stations of these four classes, inter-
connected by a Markovian routing, product-form solutions for steady-state exist.

Even though there are no product-form solutions for queueing networks with
general phase-type distributions, we can still compute the steady-state probabili-
ties via the embedded DTMC that corresponds to the CTMC, as shown for the
unbounded until in Section 3.4.4 for QBDs and in Section 4.4.3 for JQNs.
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5.3 Model checking CSRL

We address syntax and semantics of CSRL in Section 5.3.1. Section 5.3.2 introduces
two types of rewards for QBDs and discusses the possibilities of CSRL model check-
ing QBDs with such rewards. In Section 5.3.3 similar reward structure are defined
for JQNss.

5.3.1 Continuous stochastic reward logic

The continuous stochastic reward logic (CSRL) is a specification formalism for per-
formability measures over CTMCs extended with a reward structure (Markov reward
models (MRMs) [39]. We can also extend infinite CTMCs with a reward structure
p: S — Ry that assigns a reward p(s) to each state s. We consider the following
subset of CSRL:

Let p € [0,1] be areal number, 1 € {<, <, >, >} a comparison operator, I C R
a nonempty interval and AP a set of atomic propositions with ap € AP, a CSRL
state formula is defined as:

O i=ap| P | PADP [ Eqp(P) | Pogp(9),
where ¢ is a path formula constructed by
¢ =X | DU D

The key difference to CSL is that the path-operators are equipped with two param-
eters. The additional parameter r represents a bound on the accumulated reward.

1. The until operator without time- nor reward constraint ® UV corresponds to
the unbounded until operator from CSL and can be checked as described in
Section 3.4.4 for QBDs and in Section 4.4.3 for JQNs.

2. The until operator with only a time constraint ® /='W is just the usual CSL
until and can be checked as described in Section 3.4.1 for QBDs and in Sec-
tion 4.4.1 for JQNs.

3. For checking the until operator with only a reward constraint, i.e., ® U<, U, for
finite CTMCs the Duality Theorem [7] can be used. This theorem states that
the progress of time can be regarded as the earning of reward and vice versa.
Formulas with only a reward constraint can then be checked as formulas with
just a time constraint on a transformed CTMCS.

4. For the case with both time and reward constraint, ® Z/{<§7’,e W, we consider how

to check the formula for only one starting state. In doing so, we can use
well-known algorithms as only a finite number of steps is considered on the
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uniformized or discretized variant of the MRM. In order to compute the satis-
faction set we have to distinguish between different reward types, as presented
below.

How to solve CSRL until formulas with general intervals for time and rewards on
finite Markov chains is discussed in [21].

5.3.2 Model checking CSRL on QBDs

For QBDs, we will consider three different types of rewards: level-independent, level-
dependent and periodic rewards (see below). To model check the until operator with
time and reward constraint, the following holds:

e In the case of level-dependent rewards we require the rewards to be an in-
creasing function of the level-index. The satisfaction set will then always be
finite, as from a certain level onwards the reward constraint cannot be fulfilled
anymore. This is the case for level j, when the states of the leftmost reachable
level (reachable in the sense of the maximum number of steps taken in uni-
formization) have a reward r,,, such that 7, -t > r. The number of states
with level index smaller than j is finite, which allows for a direct verification.

e In the case of level-independent rewards we require the same reward for corre-
sponding states in different levels. In that case, the satisfaction set is poten-
tially of infinite size. Fortunately, we will eventually find a level from which
onwards the validity of the formula will be the same in all corresponding states
of the repeating levels. This is just a straightforward extension of the ideas
presented in Chapter 3, that can be used because of the special reward struc-
ture.

e In the case of periodic rewards with reward period p, the QBD with periodic
reward structure can be transformed to a QBD with level-independent re-
wards by regrouping of levels, as discussed previously in the context of periodic
atomic propositions.

To model check the until operator with just a reward bound, the Duality Theorem
[7] is applicable only in case of level-independent rewards. As the transition rates are
rescaled by the reward rates, the QBD structure would be destroyed otherwise. For
level-independent rewards the QBD structure does not change by this transformation
and the QBD can be checked as stated in Chapter 3.

There are several extensions of CSRL [7]; here we will discuss how to apply the
expected reward (E<,(®)) and the instantaneous reward (EL,(P)) operator on QBDs.
The semantics of the expected reward operator is:

s Ec () iff Z (s, s )p(s") <,
)

s'eSat(P
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where 7(s, s’) is the steady-state probability to be in state s’ when having started in
state s. In case of a finite satisfaction set Sat(®), we have a possibly large but finite
summation, that can be dealt with. For level-independent rewards and an infinite
satisfaction set Sat(®), we do not know how to check the expected reward operator.
The iterative approach that has been used in Chapter 3 to check the steady-state
operator cannot be used as the probability mass is multiplied with the reward. In
case the reward equals the level-index we can derive a closed-form solution for the
expected reward (by applying a geometric argument to the infinite sum), hence,
model checking seems feasible. Since the steady-state probabilities in a QBD are
independent of the starting state, we immediately know the satisfaction set after
checking the reward operator for one starting state.

The semantics of the instantaneous reward operator is:

s = EL( iff Z (s, s, t)p(s’) <,

s'eSat(D)

where 7(s, s',t) is the transient probability to reach state s’ from state s in time ¢.
To calculate the transient probabilities in a QBD we always consider only a finite
number of steps. That is, the instantaneous reward operator can always be checked
for a single starting state s, regardless of the reward structure. To calculate the sat-
isfaction set we distinguish between level-independent and level-dependent rewards.
We will eventually find a level from which onwards the transient probabilities do not
change anymore. With level-independent rewards the validity of the instantaneous
reward operator does not change anymore from this level onwards. We do not know
how to check the instantaneous reward operator with level-dependent rewards and
an infinite satisfaction set in all cases because the reward is multiplied with the
transient probabilities.

5.3.3 JQNs with a reward structure

We consider the following two types of rewards on JQNs:

e In the case of rewards that depend on the number of jobs per queue, we require
the reward to be a function, that increases with the number of jobs in every
queue. This corresponds to QBDs with level-dependent rewards, where we
required the reward to be an increasing function of the level-index. As we
require the reward function to increase in every queue, the same arguments as
for CSRL model checking QBDs with level-dependent rewards apply and the
satisfaction set will always be finite.

e In the case of independent rewards we require similar independency as for
atomic propositions. In that case, we can find a representative front, such
that all states in one representative set have the same reward. The satisfaction
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set is then potentially of infinite size. This corresponds to QBDs with level-
independent rewards, where a representative level can be found from which
onwards the validity of the formula remains the same. Similarly on JQNs, we
can find a representative front, from which onwards the validity of the formula
remains the same. The same arguments as for CSRL model checking QBDs
with level-independent rewards applies.

5.4 Related work

We present related work on the transient analysis of infinite- state Markov chains
in Section 5.4.1 and related work on model checking infinite-state Markov chains in
Section 5.4.2.

5.4.1 Transient analysis of infinite-state Markov chains

As for the steady-state and transient analysis of infinite-state Markov chains, some
work has been done in the past, however, not in the context as we need it for CSL
model checking. We refer to the seminal work by Neuts [61] on matrix-geometric
solutions for computing the steady-state probabilities in infinite-state quasi-birth-
death processes. In particular, we employ the logarithmic reduction algorithm as
proposed in [55].

For transient-state probabilities, there is much less work available. Zhang et al.
[89] describe a Laplace-transform based technique to obtain these probabilities for
QBDs, however, they do not provide the required back transformation. In his Ph.D.
thesis, Van Moorsel hints at an approach called dynamic uniformization [84], and
so does Grassmann [34, 33], as a technique to evaluate systems with infinite state
spaces. In their well-known 1984 paper [36], Gross and Miller already refer to a
possible use of uniformization for infinite-state systems. These three papers have in
common that hints towards evaluating transient-state probabilities in infinite-state
systems are given, but that no true algorithms or data structures are presented.
Furthermore, the issue of having an infinite number of possible starting states is not
addressed.

With step-wise uniformization [19], it is possible to calculate transient-state prob-
abilities in large or even infinite-size CTMCs and DTMCs. This is done by step-
wisely extending the considered state space, i.e., on-the-fly while generating the
state space. Interestingly, this approach bears resemblance with the probabilistic
reachability algorithm presented in [45], however, it requires (as does [45]) an unique
starting state. Recently, Van Houdt and Blondia [82, 83] addressed the transient
analysis of QBDs, however, in a discrete-time setting, and using an approximation
technique with unknown a priori error bounds. In [86], they use their framework for
a simultaneous transient analysis for all initial states.
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Transient analysis on queueing networks is mostly restricted to finite state spaces.
Harrison [37] presents an iterative method to solve the time-dependent Kolmogorov
equations of finite queueing networks. In [17] Buchholz applies uniformization to
hierarchical queueing networks that have a finite structured state space.

The way we compute the transient probabilities comes closest to the work by Le
Ny and Sericola [57], in which they compute the transient queue length distribution
in the very specific context of an BMAP/PH/1 queue (the equations (3-5), (10) and
(11) in [57] closely resemble our recursion (3.13)). Their approach is tailored toward
two very specific queuing-related measures of interest, which are less general than
the transient-state probabilities we need.

In conclusion, none of the approaches available in the literature can be used for
the computation of transient-state probabilities in infinite-state Markov chains for
all possible starting state (or a single unique starting distribution) and provides error
bounds. Instead, we compute all such transient-state probabilities for all possible
starting states in a single computation and provide error bounds, as required for the
CSL model checking procedure. Hence, none of the previously published results is
directly applicable in our context.

5.4.2 Model checking infinite-state Markov chains

We are not aware of any other work that addresses the continuous-time model check-
ing problems addressed in this thesis. There is, however, some related work on model-
checking infinite-state systems, although none of it addresses the specific problems
we address.

Work on LTL model checking for so-called probabilistic lossy channel systems
(PLCSs) has been proposed for the evaluation of asynchronous buffer systems [13].
The main idea as presented in [6] is to reduce the LTL model checking problem to a
reachability problem in a (non-probabilistic) labeled transition system. Every PLCS
with just one message type and one channel with global fault semantics can be seen
as a discrete time QBD, but not reversely, as not necessarily from every state in a
level a transition to the next lower level can be taken in QBDs. Furthermore, every
PLCS with just one message type, just one control state and global fault semantics
can be seen as a degenerated discrete time JQN, but not reversely, as PLCSs do not
allow for feedback between channels. The results in this area do, however, not refer
to continuous time, nor do they provide model checking algorithms for full CSL. Of
particular interest in this context is [45] in which the same PLCS as in [6] is ad-
dressed. This paper proposes path-enumeration algorithms to compute, with a given
small error tolerance, whether another state can be reached with probability at least
p. Similarly, using an iterative step-count-based state space exploration scheme, the
probability for more general PCTL formulae is computed, again for individual start-
ing states and a given error tolerance. These algorithms bear resemblance with our
algorithm for the unbounded until operator. In [2] the algorithms of [45] are refined
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and made simpler; furthermore, some new decidability results are given. Similarly,
[64] addresses also PLCS, and two very specific reachability properties for individual
starting states, in an un-timed setting.

None of the above papers addressing PLCS does address continuous-time, a full-
logic like CSL, or does provide a model checking algorithm for all possible starting
states, as we do. By restricting to the special classes of QBDs and JQNs, we have
been able to provide a richer set of model checking algorithms.

Regular model checking comprises a set of techniques for symbolic reachability
analysis for parameterized and non-probabilistic infinite-state systems, based on au-
tomata theory [50, 3]. Words are used to represent states and finite-state transducers
describe transitions between states. Every discrete-time QBD and JQN can be eas-
ily expressed within the regular model checking framework. As above, the results

in this area do not refer to continuous time, nor do they provide model checking
algorithms for full CSL.

Recursive Markov chains (RMCs) have been proposed to model probabilistic pro-
cedural programs. The main goal of model checking RMCs is to find the probability
of eventually reaching a given terminating state of the RMC, starting from a given
initial state. In [31] this probability is defined as the least fixed-point solution of a
system of polynomial equations. Discrete-time QBDs are a subclass of RMCs, that
are as expressive as tree-like QBDs. JQNs and RMCs do not overlap. Again, the
RMC work does not address continuous time, nor are complete CSL model checking
algorithms provided.

Finally, there is also related work on probabilistic pushdown automata (pPDA);
as stated in [16], these models coincide with RMCs. [16] does focus on decidability
results for such automata, whereas [30] presents an algorithm for evaluating the
time-unbounded until operator for a single starting state only. These models do not
address continuous time, nor are complete CSL model checking algorithms provided.
The decidability results presented are not necessarily valid for QBDs, as QBDs
comprise only a (structured) subset of pPDA.

Three-valued abstraction for continuous-time Markov chains has been introduced
in [49], based on earlier work. In [32, 10] the possibly infinite CTMC is uniformized
and than reduced to a so-called abstract Markov chain with upper and lower tran-
sition probability bounds. The authors show that for determining the minimum
transition probability it suffices to consider only extreme schedulers. However, the
number of extreme schedulers grows exponentially with the size of the state space.
The method is applied to a quasi-birth-death process in [49], by abstracting corre-
sponding states of all levels greater or equal to a given number n. In contrast to our
approach this technique can be used on general infinite CTMCs; no special structure
is required. However, model checking infinite CTMCs with three-valued abstraction
can only be used on several starting states. It is not possible to compute the com-
plete, possibly infinite satisfaction set. Furthermore the authors do not address the
steady state operator.
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Time-bounded model checking on infinite-state CTMCs is considered in [90].
The approach is based on Grassmann’s dynamic uniformization [34] and is suited
to model checking arbitrarily structured finite and infinite CTMCs against CSL,
thereby excluding the steady-state operator. As the CTMCs may be infinite and
arbitrarily structured, it is, however, impossible to compute the complete, possibly
infinite satisfaction set of a given CSL formula.

5.5 Summary

In this chapter we discussed a number of extensions to QBDs and JQNs in the con-
text of CSL model checking, as well as the extension toward CSRL model checking
of QBDs with rewards. We have shown that for QBDs with resets, batches, and
periodic atomic propositions, the algorithms for model checking CSL as presented in
Chapter 3 still apply, after an appropriate modification of the QBD. Model checking
tree-based QBDs with the same approach is not practically feasible as the num-
ber of representatives is exponential in the number of considered steps. Several
extensions of JQNs have been presented as well. For multi-server and several al-
ternative scheduling strategies, model checking with our framework is still feasible.
However, for multi-class queueing networks, our approach is not practically feasi-
ble. Furthermore, we discussed how we can extend the model checking approach
for QBDs toward CSRL, so that we can model check for combined performance and
dependability, that is, performability measures. We discussed a number of cases for
which this is possible, and we conjecture two cases for which we think CSRL model
checking will not be possible for QBDs. We presented two different kinds of rewards
for JQNs, such that for CSRL model checking the arguments derived for QBDs do
apply. The model checking algorithms for the next operator and the until operator
with its different intervals are based on the same approach for QBDs and JQNs
and can be applied to every infinite Markov chain for which representatives can be
found. Finally, we provided a detailed survey of related work on transient analysis
of infinite CTMCs and on model checking infinite Markov chains.



Chapter 6

Bottleneck analysis for two-hop
IEEE 802.11e ad hoc networks

In this chapter we perform a detailed case study on bottlenecks in two-hop ad hoc
networks [69, 73], thereby using the algorithms developed in Chapter 3 and 5.

We start with a general motivation for this case study in Section 6.1, before we
describe the IEEE 802.11 access mechanism and discuss the four Quality of Service
(QoS) extensions in Section 6.2. The generic model for the bottleneck analysis is
introduced in Section 6.3. We then describe precisely how the four IEEE 802.11e
QoS-extensions are cast into this model in Section 6.4. The detailed OPNET simu-
lation setup is discussed in Section 6.5, before we come to a careful comparison of
our model’s results with the simulation results in Section 6.6. Finally, the maximum
throughput that can be achieved with the different QoS-extensions is presented in
Section 6.7. Related work on the performance of IEEE 802.11 ad hoc networks is
presented in Section 6.8 and Section 6.9 concludes this chapter.

6.1 Motivation

The availability of cheap yet powerful wireless access technology, most notably IEEE
802.11 (“wireless LAN”), has given an impulse to the development of wireless ad
hoc networks. In such networks, the stations (nodes) that are in reach of each other,
help each other in obtaining and maintaining connectivity. At the same time they
are also competitors, as they all contend for the same resource, i.e., the shared
ether as transmission medium. The medium access control of IEEE 802.11 (based
on CSMA/CA) is commonly referred to as the distributed coordination function
(DCF) [52, 76]. Research has shown that, effectively, the DCF tends to equally
share the capacity among contending stations [14, 58]. Although this appears to be
a nice fairness property, this fairness does lead to undesirable situations in case one
of the nodes happens to function as a bridge toward either another group of nodes,
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or to the fixed internet, as illustrated in Figure 6.1.

Recently, a quality-of-service (QoS)-extension of the IEEE 802.11 standard, the
so-called EDCA (“e”) version has been released [1]. Roughly speaking, this extension
provides mechanisms to provide preferential treatment of certain traffic classes (or
nodes) over others.

We provide a modeling framework for evaluating capacity sharing strategies [71],
using infinite-state Markov reward models and CSRL model checking techniques.
Then, this framework is specialized towards the IEEE 802.11e protocol, including the
differentiation parameters. We embed Bianchi’s model and Engelstad’s extensions
[14, 29] into our model, to accurately describe the effective capacity, depending on
the differentiation parameters in use. Furthermore, we conduct detailed simulations
that show strong evidence of the correctness of the full IEEE 802.11e model and the
employed techniques.

Important to stress is that our model is a flow-level model, with makes it funda-
mentally different from packet-level models such as [14, 29], which have been pro-
posed to compute the share of bandwidth (radio capacity) allocated to a fixed num-
ber of sources and a bottleneck node (for various, but not all QoS enhancements).
Instead, we use an extended the packet-level results [14, 29] in a (higher-level) flow-
level model in which the number of active sources varies in time, depending on how
quickly they are being served.

=, ')\
\—? > internet />

//3 bottleneck B

sources

Figure 6.1: Bottleneck in a two-hop ad hoc network

6.2 IEEE 802.11 ad hoc networks

We discuss the basic IEEE 802.11 access mechanism in Section 6.2.1 before we
explain how bottlenecks arise in two-hop ad hoc networks in Section 6.2.2. We
present the IEEE 802.11e QoS-enhancements in Section 6.2.3.
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Figure 6.2: IEEE 802.11 medium access timing diagram

6.2.1 Basic operation

We address a wireless ad hoc network in which the individual nodes communicate
with each other through the IEEE 802.11 protocol. In such a network the DCF or-
ganizes medium access through a carrier sense multiple access scheme with collision
avoidance (CSMA/CA). All stations in such a network contend for the same radio
capacity C' (measured in packets per second). Whenever a station wants to send a
packet, it first senses the medium until the medium is empty for at least a DIFS
period (DIFS: DCF inter frame spacing). If the medium is initially found empty, a
station that wants medium access immediately starts transmitting after sensing the
medium idle for a DIFS period. If the medium is found busy, all stations that want
medium access participate in the contention mechanism. After the medium has been
idle for at least a DIFS period, each station draws a random backoff time b. Each
station then waits for its chosen backoff time and keeps sensing the medium. If the
medium is still idle after DIFS+b time slots, the station may access the medium.
This basic operation is illustrated in Figure 6.2. As a result, the station with the
smallest backoff acquires medium access, if the minimum backoff is unique.

We assume that whenever two stations draw the same minimum backoff, a colli-
sion occurs. Note that in reality this depends on the relative signal strengths at the
intended receiver. When the medium is sensed busy during the backoff period, the
backoff is suspended and the station continues counting down the backoff after wait-
ing the DIFS period from the moment the medium is sensed idle again. The random
backoff is drawn uniformly from the so-called contention window (CW), initially set
to [0, CWpi, — 1]. For up to 7.y — 1 collisions, the size of the contention window
doubles with every unsuccessful transmission and is reset to CW ,,;, after a successful
transmission. Once the contention window has reached size CW 0 = 2™ - CW i
it stays unchanged until a successful transmission occurs. Note that in the standard
IEEE 802.11 protocol, the values CW ,;, and CW ., are fixed.

6.2.2 Bottlenecks in 2-hop ad hoc networks

The scenario under study, as illustrated in Figure 6.1, has a varying number N of
active nodes, the so-called sources, which are all within reach of each other. Addi-
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tionally, there is one special node B, referred to as bridge or bottleneck, reachable
by all sources. B is the only node that can reach the fixed internet. Thus, all traffic
originating from the sources and the traffic passing through the bridge has to share
the same radio transmission capacity. It has been shown that the DCF access mech-
anism effectively shares the radio capacity equally over all active nodes (a result of
the fairness of the access mechanism itself [14, 58]). Clearly, this situation benefits
the sources as a group, as they can use a relatively large share of radio capacity to
send their packets, whereas the bridge becomes a bottleneck: B gets a share as any
other individual node, however, it has to support the traffic of all other nodes. This
leads to a very high buffer occupancy in B, eventually also buffer overflow, and in
any case, long delays.

6.2.3 Quality of service enhancements

The Enhanced Distributed Channel Access Function (EDCAF) of IEEE 802.11e al-
lows multiple contention instances to be simultaneously active in a single station,
each supporting a certain access category (AC). Furthermore, the standard intro-
duces four differentiation parameters (EDCA parameters), as discussed below, which
can be set individually for each access category of each individual station to enable
QoS provisioning [75].

We facilitate adaptive capacity sharing between stations by letting each station
have a single access category, and using the EDCA parameters for differentiating
between the source stations and the bottleneck station. In principle the EDCA
parameters are meant for service differentiation, while we apply it here for node dif-
ferentiation. Another relevant scenario for such node level differentiation is the case
of UL/DL transfer in an infrastructure-based WLAN, where the access point should
get a bigger share of the resources. The considered values for the differentiation
parameters per access category are introduced later on in Table 6.4.

In the remainder of this paper we will analyze the following four scenarios:

0. With standard IEEE 802.11, the medium needs to be idle for at least a DIFS
period before stations can start to content for medium access. After winning
contention a station is allowed to send exactly one packet.

In the IEEE 802.11e QoS extension, two contention-based methods are proposed to
change the above procedure:

1. The initial value of the contention window (CWy;, — 1 ) and/or the maximum
value of the contention window (CW,,., — 1) are set smaller for a given station,
thus, this station draws its backoff from a smaller contention window, hence,
has a higher probability to win contention.

2. With so-called arbitration inter-frame spacing (AIFS) it is possible to assign
different inter-frame spacings for different service classes (or nodes) instead of
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the fixed DIFS. Thus, high-priority nodes can be assigned shorter AIFS, so
that they can start counting off their backoff earlier, hence, have an advantage
when contending for medium access.

A way to adapt the capacity sharing that does not alter the actual contention
mechanism is the following;:

3. The transmission opportunity limit (TXOPy;,;;) provides a time period during
which a station may send packets after having won a contention. Thus, a
station with a sufficiently high TXOP;,;t is able to send several packets and
will thus be able to grab a larger share of the channel capacity than a station
with a smaller TXOP;.

The above four parameters (CW i, and CW .y, AIFS and TXOP);;) in the IEEE
802.11e standard can be used to reallocate the amount of radio capacity given to
the sources and to the bottleneck. These possibilities will be addressed in detail in
the models we discuss next.

6.3 Overall capacity sharing model

We model the bottleneck B, cf. Figure 6.1, using an infinite-state stochastic Petri
net (iISPN), as given in Figure 6.3. The left part of this figure contains an unbounded
place (double circle) buffer that models the (buffer of the) bottleneck of the system.
Transition input models the total arrival stream of packets from all active sources,
whereas transition output models the transmission of packets leaving the bottleneck
B. Note that the rates of both these transitions depend on the number of active
sources and the amount of radio capacity that is allocated to each source and the
bottleneck node; we come back on the form this dependency takes below. We limit
the maximum number of active sources to some finite number K (taken to be 10 in
most evaluations). This is a reasonable restriction, as the number of active sources
in an ad hoc network cannot be arbitrarily high. We do not distinguish between
individual active sources, so we can model the number of active sources as shown in
the right part of the iSPN in Figure 6.3. To obtain a memoryless behavior needed
for Markovian modeling, an inactive source becomes active after a negative expo-
nentially distributed amount of time (with mean 1/A) and immediately instantiates
a flow, which has a geometrically distributed length, measured in packets. The av-
erage size of a data packet is assumed to be E[P] = 1500 bytes, with exponentially
distributed packet length. The duration of a flow does not only depend on its size
but also on the radio capacity a source can use to transmit the flow. Note that the
duration of a flow implicitly gives the source departure rate, as well. Following the
parametric assumptions made in [80], the expected amount of work put forward per
flow (the amount of packets comprising the flow) equals E[F] = 500 packets; the
other values for the key system parameters are summarized in Table 6.1.
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Figure 6.3: High-level model as iSPN

Table 6.1: Values for the system parameters

parameter value
arrival rate A € [0.1,0.4]sec™?
average flow size E[F] = 500 packets
overall radio capacity C' = 917 packets/sec
maximum of active sources K =10

In Table 6.2 we list the four state-dependent transition rates of the iSPN, where
N refers to the current number of active sources (i.e., the number of tokens in place
active sources), and B to the current number of packets queued in the bottleneck
(i.e., the number of tokens in place buffer). Note that the transitions input and

input: output:
if N=0 then if B=0 then
return 0; return 0;
else else
return C - Ss(-); return C - Sy(-);
end if end if
source departure: source arrival:

return C-S,(-)/E[F] | return (K — N)A

Table 6.2: State-dependent transition rates for the iSPN

output in fact make use of the same medium, hence, they have to share the available
capacity; this is exactly what the IEEE 802.11[¢] access mechanism is for! The
functions S,(-) and Ss(+) (for bottleneck and source) now give the share of capacity
that is allocated to the bottleneck and to all sources, respectively. Note that Sp(-)
and Ss(-) depend on the number of currently active sources (IV), as well as on
whether or not the bottleneck has packets queued, or not (B).

In Section 6.4, we will present concrete expressions for the functions Sp(-) and
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Ss(+); in doing so, we have achieved one generic model at the iSPN level, that can
be specialized toward different QoS enhancements, by “plugging in” the appropriate
bandwidth sharing functions Sp(-) and Ss(-).

Note that, in practice, the capacity C' is not fixed, but depends on adaptive mod-
ulation, which tunes sending rates to experience link qualities, whereas we assume
fixed capacity.

6.4 Modeling the QoS enhancements

In this section we present explicit expressions for the functions S,(-) and Sy(+) that
express the share of the wireless capacity that sources and the bottleneck receive,
resp., for each of the QoS enhancements. We introduce the model of Bianchi [14]
in Section 6.4.1 and the extensions by Engelstad et al. [29] in Section 6.4.2. The
explicit computation of the relative throughput is discussed in Section 6.4.3 and the
considered measures of interest are introduced in Section 6.4.4.

6.4.1 Bianchi’s model

Bianchi [14] proposes an analytical evaluation of the saturation throughput, assum-
ing ideal channel conditions for basic IEEE 802.11. This model allows us to accu-
rately compute the throughput for a fixed number of independent stations under
the assumption that they always have a packet to send.

It is assumed that each packet collides with constant and independent probability
p at each transmission attempt. Under these assumptions it is possible to model
the backoff stage, that is the size of the contention window, and the backoff time
counter for a single station the discrete-time Markov chain as shown in Figure 6.4.

We use a discrete and integer time scale in this model, where a generic time slot
is either an empty slot or a packet transmission. Thus, the time scale in the model
is not directly related to the system time.

A new packet following a successful transmission starts in the first backoff stage
with a randomly chosen backoff, that is somewhere in the first row of Figure 6.4. At
the beginning of each slot time the backoff counter is decremented and a state change
from the right to the left occurs. After an unsuccessful transmission, the packet
enters the next backoff stage with a new uniformly chosen backoff, this corresponds
to a transition to the next lower row of states in the model. Once the maximum
backoff stage r,.. = m is reached, the size is of the contention window is not
increased with the a subsequent packet transmission (last row of the model).

In [14] the computation of a closed-form solution for the stationary distribution

of the Markov chain is presented. For the state by with zero backoff in the first
backoff stage, the following steady-state probability is derived in [14, Eqn. (6)]:
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Figure 6.4: Bianchi’s model: a Markov chain to model the backoff window

I 2(1—2p)(1 —p)

0 (1= 2p)(CWain + 1) + pCWanin(1 = (20)™)
The probability 7 that the station transmits a packet in a generic slot time is then
derived as the sum 7 = )" b;o, as any tranmission occurs when the backoff is
zero. From b; o = p'by then follows, as derived in [14, Eqn. (7)]:

(6.1)

a bo,o 2(1 - 217)
f— bl p— 2 pu— . 6-2
' ; - p (1= 2p)(CWhin + 1) + pCWiin(1 — (2p)™) 6.2)

Due to the assumption of n identical, independent stations, the conditional collision
probability p can be rewritten as the probability that at least one of the remaining
n — 1 stations transmits, as shown in [14, Eqn. (9)]:

p=1—(1-7)""1 (6.3)

These two mutually dependent stationary probabilities 7 and p are then expressed
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in the form of a system of two non-linear equations. Bianchi proves that this system
has a unique solution [14].

Recall, that in a generic slot time three different events can occur: the success-
ful transmission of a packet, a collision, or just an empty slot used for counting
down backoff. Note that the length of the generic slot time depends on the event
that occurs. Considering the different durations and probabilities of these events,
it is possible to compute the throughput of the system, as will be explained in
Section 6.4.3.

6.4.2 The extended model by Engelstad et al.

In a recent paper [29], Engelstad et al. extend the model of Bianchi by including
the impact of the QoS enhancements on the effectively available capacity in IEEE
802.11e. Furthermore, this extended model allows to compute the throughput for
stations from N different access categories, with n; stations per category. The
equations presented in [29] also hold in the non-saturated case, i.e., when the stations
not necessarily always have a next packet to send.

In our decomposition analysis approach, however, we still use the saturated case.
Due to our parameter choices, an active source sends, on average, 500 packets in
a row before becoming inactive; this means that, on average, with probability ;%
there is a next packet to be sent. Due to the decomposition, inactive sources are
not considered in the packet-level model, but they are accounted for at flow level.
This might be seen as an approximation, but its impact will be small, as we will see

later.

For our purposes, we use two different access categories, AC; with « = b for
the bottleneck, and ¢ = s for the active sources, where AC, contains zero or one
station, and AC; contains zero to ten stations. Note that access categories are not
assigned on a per flow basis, but on a per node basis. So, each node has only one
access category, however, packets change their access category when they arrive at
the bottleneck.

Engelstad et al. now proceed to compute similar probabilities as Bianchi does,
however, now for each possible access category. Simplified for the saturated case,
the steady-state probability for category ¢ with zero backoff in the first backoff stage
bio,o is derived as follows in [29, Eqn. (10)]:

CW; ;-1

CWij— kY
> St (6.4

k=0

1 :zm:(1+ 1

b; 1—pr
0.0 555 p;

where p; is just p;. However, if AIFS differentiation is used, p} is defined differently,
as explained below in Equation 6.12.

Then 7;, the probability that a station of category ¢ transmits, and p;, the proba-
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bility that a transmission of category i is successful, are computed. As in the Bianchi
model, these probabilities are defined through a system of 2N mutually dependent
non-linear Equations [29, Eqn. (5) and Eqn. (12)], which can easily be solved using
a tool like Maple. In the following, we repeat these equations, however, simplified
for the saturated case and with zero dropping probability:

%,0,0

1
and p; =1 — Py

o 6.5
1 —p; 1—7’ (65)

T =
where p, = 1 — Hi]i_ol(l — 7;)™ denotes the probability that the channel is busy.
Note that we have to solve these equations once for every combination of number of
active nodes in each access category, that is, AC, and ACy, to obtain throughputs
for every possible combination of active nodes in the high-level model.

From the above probabilities 7;, p, and p;, Engelstad et al. then derive yet
another two probabilities. The probability p;, for a successful transmission for
category i is computed as follows in [29, Eqn. (27)]:

T YT
Dis — Hl—Tc ; (6.6)

(1—m)
Z c=0

and the probability p, for successful transmission® for any category is derived in [29,
Eqn. (28)] as

N—-1 n; N
ps=Z iy Ul—Th . (6.7)

6.4.3 Relative throughputs

Using the probabilities p; s, ps, and p;, obtained from the model of [29], we can derive
the actual throughput for each access category, i.e, the throughput of the bottleneck,
and the throughput of all active stations, as follows:

pi,s : tXOpz‘ : tdata

Si —
(1 _pb> : tslot +ps : Ts + (pb _ps) : Tc

i {bs), (6.8)

where the denominator states the average duration of a generic time slot, being the
sum of the times for an empty slot (fg), the time for a successful transmission
(T%), and the time for a collision (7.), weighted by their respective probability. The
nominator denotes the part of a time slot that is, on average, used for transmission
of data for category ¢. Here, txop; denotes the number of packets of length #qata

Note that the probability ps as presented by Engelstad et al. in [29, Eqn. (28)], does not
directly correspond to the probability Ps as presented by Bianchi in [14, Eqn. (11)], as the latter
is conditioned on the fact that at least one station transmits.
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sent after winning contention. Instead of modeling TXOPy;,;; as a time period, we
assume that for a given packet size, a station of category ¢ can send txop, packets
during one TXOP period. That is, we model a time-based mechanism by means of a
count-based mechanism; a similar modeling approach has been applied successfully,
for instance, by Groenendijk [35], to model time-token access mechanisms. Note
that (6.8) above provides the input for the state-dependent transition rates in the
iSPN model, cf. Table 6.2.

To actually compute the values, Table 6.3 specifies the individual durations and
the default values for the system parameters that are used to compute the time for
a successful transmission and the time for a collision, respectively. Considering the
use of Request To Send/Clear To Send (RTS/CTS), the time for a collision is given
by

T. = tpuy + trrs + tAIFSMin- (6.9)
The time for the successful transmission of a packet with RTS/CTS depends on the
TXOP values:
Ts = tpuy + trrs + tsirs + teuy + torst+

- (6.10)
(tstrs + tpry +tMAC + tdata + tsirs + tpay + tack) - tXOD + tAIFSmin,

where txop is the average number of packets sent after a successful contention com-
puted as weighted sum:

— Dis
txop = txop,; - —. (6.11)
PR
parameter value comments
ts1Fs 10us
Lsiot 20”‘9
tpuy 192us  assuming long preamble
trTs 160us 20 bytes @ 1 Mbps
tors 112us 14 bytes @ 1 Mbps
tyMaC 251 34 bytes @ 11 Mbps
tdata 1091pus 1500 bytes @ 11 Mbps
tACK 112pus 14 bytes @ 1 Mbps
L ATFSmin 50us 2 - tgor + tstrFS

Table 6.3: Time durations & default values

The relative share of capacity for the bottleneck (S,) and for the sources (Ss),
as used in Table 6.3 is given by the throughput per access category as stated in
Equation (6.8) for the different number of stations.

The different values of CW i, CW .« are immediately taken into account, when
computing 7; and p;, as described in [29].
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Modeling differentiation by means of TXOPy;,;; is also incorporated in Equation
(6.8), which is an extension of the throughput as presented in [29].
Table 6.4 specifies the values for the differentiation parameters for the bottleneck

and the sources that are considered in the following. The default values are marked
with an asterisk.

parameter  value for AC, wvalue for AC,

AIFS, (slots) 2% 2% Tor 12
CWin (slots) 32% 32*% 64 or 128
T'max 4% 4*

txop (packets) 1*,2o0r3 1*

Table 6.4: Considered values for the differentiation parameters per access category

AITFS approximation

When modeling access categories with different AIFS, we use the approximation as
proposed in [29, Section 3.3] to compute the throughput.

The differentiation of the AIF'S is taken into account when computing p, and p;,
as follows. Engelstad et. al. distinguish between the following two probabilities: A
generic slot is sensed busy with probability p; upon transmission and with probability
pf during backoff. AIFS differentiation is then modeled by adjusting the countdown
blocking probability p;.

Without AIFS differentiation p; simply equals p;. When AIFS differentiation is
used, p; is set to p; for the category with the smallest arbitration interframe spacing,
denoted AIFS,,;,. For all other categories the AIFS value is reduced by AIFS,;,:

The remaining slots A; that stations of category ¢ have to wait longer before backoff
countdown, are modeled as distributed randomly and distributed uniformly over
all slots. Thus, the probability that a channel is busy, py, is replaced by the new
scaled expression (A; + 1)p,. Together with a minimum bound on the probability,
the following expression for pf is obtained in [29, Eqn. (15)]:

A;
p; = min (Lpi 4 S ) : (6.12)
1-— Ti
which has to be used in (6.4). This implies that the AIFS,,;, is used for computing
the time for a successful transmission (cf. (6.10)) and the time for a collision (cf.

(6.9)).
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6.4.4 Measures of interest

Instead of specifying the performance models of interest manually at the state level,
we use a high-level specification mechanism. We specify the iSPN and the relative
throughputs in CSPL that is a C-based specification mechanism for stochastic Petri
nets. Using the CSPL implementation [12], we obtain the underlying infinite CTMC.
The resulting QBD is given in Figure 6.5. Every level consists of K + 1 states,
modeling the number of active sources. Whenever at least one source is present,
packets can arrive and whenever at least one packet is present, this packet can be
served.

= > =@=
00000

) <> ONNONRY

(OO0 -

Q0 Qg
OO OO

sources buffer filling

QCQ/“

Figure 6.5: Underlying QBD of the bottleneck model

The bridge B is the bottleneck of the two-hop ad hoc network. We therefore
study the expected number of packets in the buffer of the bottleneck (M1), as well
as the throughput of the bottleneck (M2), and the expected number of active sources
(M3), for all possible QoS mechanisms and for different source arrival rates.

All three measures can be expressed using the CSRL expected reward operator
(c.f. Section 5.3), £<.(P), where ® is just true. Recall, that the expected reward
operator combines the steady-state probability to be in a state s with the reward

p(s).

(M1) We choose the reward to be the number of packets currently in the buffer,
which is just the level-index in the QBD, so that, we have a level dependent
reward.

(M2) The value of the transition output is chosen as reward. This value depends
on the number of active sources and on whether or not at least one packet is
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currently in the buffer. In the model, the number of active sources is the same
in corresponding states of different levels, so that we have level-independent
rewards in this case.

(M3) We assign to each state the number of sources that is currently active as
reward. This, again results in a level independent reward.

Note, that we are not able to compute flow-related measures, as the flow time or
flow throughput, as our model does not distinguish between packets of the different
sources. However, we think that the throughput at the bottleneck and, possibly, the
throughput at the sources is enough to capture the effects of differentiation in this
scenario.

6.5 Simulation model

The bottleneck scenario has also been modeled and simulated in OPNET, version
11.5.  [62]. In this section we explain the simulation setup and the parameter
settings for the different QoS parameters.

OPNET is organized hierarchically in levels, where every level adds more detail.
At the highest level, we place ten advanced WLAN stations, as provided by OPNET,
to model the ten sources, and two more to model the bottleneck and the sink,
where all the data is sent to. We then adapt the WLAN stations in the node editor
once for the sources and once for the bottleneck. For the sources, a new traffic
generation process is created that is put inside each source. The traffic generation
process can be either active or inactive. As soon as it becomes active it places a
geometrically distributed amount of packets into its MAC layer queue. When the
transmitter has been able to send all these packets to the bottleneck it gets inactive
again. The packet size is set to 1500 bytes. As in the analytical model all sources
are independent and become active with the global arrival rate A\, when currently
inactive.

The WLAN station that models the bottleneck does not need a traffic generation
process. Arriving packets from the MAC layer are immediately routed back to the
MAC layer and are forwarded to the sink. The size of the data buffer in the MAC
layer is set to the highest possible value, 108, to match the assumption of the infinite
buffer in the analytical model as accurately as possible. Once the buffer limit is
reached, data packets will be discarded until the buffer has free space to store new
packets. Note that the complete access mechanism, in all its details, is included in
the OPNET simulation. No approximations or further assumptions are being done.
The wireless LAN parameters in OPNET are set as follows:

e the data rate is set to 11 Mbps,
e regular RTS/CTS is enabled, the RTS threshold is set to 256 bytes,
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e EDCA parameters are not supported for basic IEEE 802.11 and supported for
[EEE 802.11e and set according to the simulation scenario under study.

The content of the MAC layer queue is sampled over time and its time average corre-
sponds to the measure ezpected buffer occupancy (M1) in the analytical model. The
number of currently active sources is also sampled and its time average corresponds
to expected number of active sources (M3) in the analytical model. Furthermore, the
throughput of the bottleneck is sampled over time and its time average is compared
to the throughput (M3) of the bottleneck in the analytical model. For every QoS
parameter we consider seven different loads:

A € {0.01;0.015; 0.02; 0.025; 0.03; 0.035; 0.04 }.

Every value of A is simulated in every scenario with ten randomly chosen seeds
for two hours, leading to 70 simulation runs per curve. One simulation run takes
between 20 and 50 minutes, resulting in an estimated run time per point, including
confidence intervals, of 200 to 500 minutes. In the following we show the mean of
the simulation results for ten seeds together with the corresponding 95% confidence
interval.

6.6 Comparing analytical and simulation results

We compare the analytical results with the simulation results for the basic scenario in
Section 6.6.1, when differentiating with CW,;, in Section 6.6.2, when differentiating
with AIFS in Section 6.6.3 and finally for differentiating with TXOP in Section 6.6.4.
We compare the analytical results with the simulation results for the throughput of
the bottleneck that is obtained with four different parameter settings in Section 6.6.5.

6.6.1 Basic scenario

In the basic 802.11 scenario the EDCA parameters are set to the default values, as
given in Table 6.4. Figure 6.6 shows the expected buffer occupancy in IEEE 802.11
without differentiation and Figure 6.7 shows the expected number of active sources.
In the basic scenario the results from simulation and analysis are very close to
each other, the estimated expected buffer occupancy is always inside the confidence
intervals. With increasing A the variance of the simulated buffer occupancy grows
as seen from the larger confidence intervals.

As could be expected, the buffer occupancy increases exponentially with A. For A
larger than 0.04 the system soon becomes overloaded. The steady-state distribution
then does not exist any more and the buffer of the bottleneck in the simulation
overflows. The number of active sources grows almost linearly with increasing .
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6.6.2 Differentiating with CW i

We compare the results from simulation and analysis for two different settings for the
expected buffer occupancy in Figure 6.8 and in Figure 6.9 for the expected number
of active sources. In this scenario, the contention window of the sources CW iy s
is set to 64 and to 128, whereas the other EDCA parameters are set to the default
values as specified in Table 6.4. Compared to basic IEEE 802.11 the mean buffer
occupancy is lower when the sources operate with a larger window size. This is due
to the fact that the bottleneck gets a higher capacity share. On the other hand the
sources remain active longer (expected number of sources is higher than in the basic
scenario).

We observe that in the parameter setting CW,;, s = 64, simulation and analysis
results are close for buffer occupancy and number of active sources, respectively. For
the parameter setting CW,in s = 128, the analysis overestimates the capacity that
is allocated to the bottleneck. Hence, the mean buffer occupancy is underestimated
and the mean number of active sources is overestimated by the analysis.

6.6.3 Differentiating with AIFS

In this scenario the value of AIFS is changed first to 7 and then to 12 in the sources,
while the other EDCA parameters remain set as in the basic scenario. The analytical
results and the simulation results for the two different AIFS settings are compared
in Figure 6.11 for the expected number of active sources. Simulation shows that our
results are highly accurate.

Figure 6.10 shows the expected buffer occupancy at the bottleneck on a loga-
rithmic scale. The mean buffer occupancy is much lower than in the basic scenario.
It is also lower than in the CW scenario, while the mean number of active source is
comparable. This indicates that in the CW scenario more capacity is wasted due to
longer backoff times.

6.6.4 Differentiating with TXOP

To study the influence of TXOP, this value is set to 4000 us, and to 6000 us in the
bottleneck only, while the other EDCA parameters remain unchanged. A TXOP,
of 4000 microseconds allows two data packets to be sent, whereas a TXOP, of
6000 microseconds allows three data packets to be sent. The resulting curves from
analysis and simulation are compared in Figure 6.12 for the buffer occupancy and
in Figure 6.13 for the number of active sources, respectively. The mean buffer
occupancy is much lower than in all other scenarios. The number of active sources
is lower than in the other differentiated scenarios and only slightly higher than in the
basic scenario. This is due to the fact that less packets have to undergo contention
and thus less collisions occur with leads to a higher effective capacity.
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6.6.5 Throughput of the bottleneck

To further analyze the impact of the differentiation parameters, we compute the
throughput of the bottleneck, as a function of the parameter A\. The throughput
for basic IEEE 802.11 is compared with the throughput that is achieved in three
differentiated settings.

In Figure 6.14 we show our highly accurate analytical results for the throughput
in these different settings together with the confidence intervals of the corresponding
simulation runs for three different settings: where TXOP,, is set to 3, when CW;,, ¢
is set to 128, when AIFS; is set to 12 and for basic IEEE 802.11.
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Figure 6.14: Throughput of the bottleneck

For all A € {0.01,...,0.04}, the largest throughput is achieved in basic IEEE
802.11. The throughput for TXOP, = 3 is just a little lower for increasing values
of A\. The throughputs for differentiated CW s and AIFS, fall together and are
considerably lower than in the two other cases, for A > 0.025.

This non-intuitive result is due to the fact that, for given A, the offered load
depends on the average number of active sources. Recall that the number of active
sources is higher in the differentiated settings than in basic IEEE 802.11, as part
of the capacity has been moved from the sources to the bottleneck. When the
sources remain active for a longer time, they become active less frequently, so in
total fewer packets are sent to the bottleneck. Clearly, the bottleneck can only
forward packets that have been sent to it from the sources. Since we assume infinite
buffering capacity, the throughput equals the offered load as long as the bottleneck
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queue is stable. Note that with differentiation the queue remains stable for much
higher A\, compared to the standard 802.11. As a result, the mazimum throughput,
for a given constraint on the buffer occupancy, using differentiation is expected to
be higher than for the standard 802.11.

Finally, when CW,,;, and AIFS are increased to differentiate, this comes at the
cost of a decreased effective capacity, as more time slots will pass unused. In contrast,
increasing TXOP effectively increases capacity, as multiple packets are sent within
TXOP after just one contention period. However, as can be seen in Figure 6.14 the
increase in effective capacity is not enough to compensate for the slightly higher
mean number of active sources for different TXOPy,, as shown in Figure 6.13.

In the following, we analyze the maximum throughput that can be achieved per
differentiation parameter for a given threshold on the average buffer occupancy of
the bottleneck, for arbitrary values of .

6.7 Setting the parameters right

In this section we compute the maximum throughput that can be achieved for a
given constraint on the buffer occupancy, per differentiation parameter. Note that
we only differentiate one parameter at a time. For different AIFS, this is discussed
in Section 6.7.1, in Section 6.7.2 for different CW ,;,, and in Section 6.7.3 for different
TXOP. Finally we compare the maximum throughput that can be obtained with the
different QoS parameters with the maximum throughput obtainable with basic IEEE
802.11 in Section 6.7.4. The numerical values and the graphical representations in
this section have been produced by Jesper Bax as part of his ongoing bachelor thesis.

6.7.1 Throughput for different AIFS

The constrained maximum throughput of a given combination of AIFS, and AIFS; is
obtained as illustrated in Figure 6.15. First the value of ) is identified for which the
buffer occupancy equals the given threshold. In Figure 6.15 the buffer occupancy for
A = 0.024 equals the threshold of 50 packets. Then the corresponding throughput
of 108 packets per second for this value of A is computed.

Figure 6.16 shows the maximum throughput that can be achieved per parameter
setting when the buffer occupancy is bound to be at most 50. AIFS, is differentiated
between 2 and 9 and AIFS; is differentiated between 5 and 12.

For combinations of large AIF'S, and small AIFS, the bound on the average buffer
occupancy can only be met for A = 0. Clearly, the resulting throughput is zero as
well. For increasing values of AIFS, the achievable throughput grows. The maximum
throughput of 195.21 packets per second is achieved for AIFS, = 2 and AIFS, = 10,
as marked with x in Figure 6.15. If AIFS; is increased above 10 and AIFS, above 2,
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Figure 6.15: Average buffer occupancy versus throughput for a given parameter setting

the achieved throughput declines. This is due to the waste of capacity, as stations
have to wait longer before they can start decrementing their backoff.

Figure 6.17 shows the maximum throughput that can be achieved for AIFS, = 2,
when AIFS, ranges between 2 and 12 slots and the threshold on the average buffer
occupancy ranges between 10 and 100.

Again, the maximum throughput is 195 packets per second. This throughput is
obtained for AIFS,; = 10 and AIFS, = 2, independent of the bound on the through-
put. When AIFS; is increased beyond the value ten, the throughput decreases due
to the waste of capacity, evenly for all considered thresholds. When AIFS; is set
smaller than ten, the throughput decreases overall and even faster for smaller thresh-
olds. Only small values of A meet the low threshold on the average buffer occupancy.
However, this keeps the throughput low, as well. For several combinations of small
ATFS, and low thresholds the value of A even has to be zero to match the constraint
on the buffer occupancy, resulting in zero throughput.

Concluding, we can state that a maximum throughput of 195 packets per second
can be achieved, when differentiating AIFS. Moreover, this maximum is independent
of the threshold on the average buffer occupancy. Regarding the throughput and
the buffer occupancy, AIFS, should be chosen rather too big than too small, while
ATFS, should be set to 2.
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6.7.2 Throughput for different CW,;,

Figure 6.18 shows the maximum throughput that can be achieved for different com-
binations of CWpin, and CW iy, 5, when the average buffer occupancy is bound to
50. CWiynin,s ranges between 31 and 287 and CW i, s ranges between 31 and 447.
The maximum throughput of 193 packets per second is obtained for CW,;,, = 31
and CWp, s = 255 (point x in Figure 6.18). For higher values of CW,y,, the
throughput decreases due to several reasons: first, capacity is wasted as randomly
chosen backoffs become unnecessarily large, second the difference between CW i,
and CW,,;, s is too small, resulting in already high buffer occupancy for still small
values of A. Consequently the throughput remains small. For the same reason,
several combinations of high CW,,;,; and low CW,,;, s result in zero throughput.
When CW,;, s is increased above 255, the throughput decreases slowly, as capacity
as wasted due to large backoffs in the sources.

Figure 6.19 shows the maximum throughput that can be achieved when CW iy s
ranges from 31 to 447 and the bound on the average buffer occupancy ranges from 10
to 100. The throughput increases evenly for larger values of CW i, ;. The maximum
throughput is obtained for CW i, = 31 and CW,,i, s = 255 and a threshold on
the buffer occupancy of at least 40 packets. For values of CW,,;, s above 255 the
throughput decreases slowly, due to the waste of capacity. We can conclude that
maximum throughput is obtained for CWy,n, = 31 and CWyins = 255 and a
threshold of at least 40 packets. As for AIFS;, the parameter CW;, s should be
chosen rather too big than too small.

6.7.3 Throughput for different TXOP

Figure 6.20 shows the maximum throughput that can be obtained for different
combinations of TXOP, and TXOP;, when the average buffer occupancy has to
be at most 50 packets. When TXOP, ranges between 1 and 30 and TXOP, be-
tween 1 and 15 the maximum of 281.103 packets is reached for TXOP, = 30 and
TXOP; = 4. The maximum throughput, obtained when differentiating TXOP is
almost 50% higher than when differentiating AIFS or CW,,;,. On the one hand
every increase in TXOP,, leads to an increase in the effective capacity. On the other
hand the choice of TXOP; highly depends on the value of TXOP,, as can be seen
in Figure 6.20. Again, combinations of small TXOP, and large TXOP; lead to zero
throughput, because the constraint on the buffer occupancy cannot be met. Fig-
ure 6.21 shows the maximum throughput that is obtained for TXOP, ranging from
1 to 30 and the threshold on the average buffer occupancy ranging from 10 to 100.
The throughput increases evenly for larger values of TXOP, and for larger thresh-
olds, and the maximum throughput of 283 packets per second is achieved for the
largest considered TXOP, = 30 and the largest considered threshold of 100 packets.
This is due to the fact that every increase in TXOP, leads to an increased capacity.
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6.7.4 Overall comparison

To conclude this case study, we compare the maximum throughput that can be
obtained for a given threshold on the buffer occupancy per differentiation parame-
ter. Figure 6.22 shows this throughput as a function of A under the constraint that
the average buffer occupancy is smaller than 100 packets. All three differentiation
parameters are able to keep the buffer occupancy below the given threshold of 100
packets for all considered values of A. However, the throughput that can be obtained
with differentiating TXOP, and TXOP; is about 50% higher for large values of A
than with differentiating AIFS or CW,;,. Differentiating AIFS and CS,,;, results in
approximately the same maximum throughput. Note that the throughput obtain-
able with standard EDCA parameters is not included in this figure, as the buffer
occupancy meets the constraint only for A < 0.015.

Figure 6.23 shows the maximum throughput that can be obtained for the three
differentiated settings and for basic IEEE 802.11 as a function of the threshold on
the buffer occupancy. As one would expect, the smallest throughput is obtained in
the non-differentiated setting. The throughput that can be obtained when differen-
tiating AIFS and CW;, is about the same. The highest throughput is obtained for
differentiating TXOP, and TXOP. Note that we consider only thresholds between
45 and 100 packets, as smaller thresholds cannot be met with non-differentiated
EDCA parameters. The throughput in the differentiated cases is almost indepen-
dent of the allowed threshold, whereas the throughput in the basic setting grows
slightly with growing thresholds on the buffer occupancy.

We state that in such a two-hop bottleneck scenario it is advisable to differentiate,
using TXOP, and TXOP;, as increasing these differentiation parameter results in
an increase of the effective capacity. Differentiating TXOP, and TXOP; results
in a maximum throughput that is 300% larger than the throughput in the non-
differentiated setting and about 50% larger than when differentiating AIFS and
CWin. However, note that differentiating TXOP may affect performance metrics
not considered by our models, expecially delay jitter, since the traffic becomes more
and more bursty.

6.8 Related work

Earlier work on the performance of IEEE 802.11 ad hoc networks considers a variety
of scenarios, cf. [80] and the references therein. Also, [58] provides an extensive
simulation study of the EDCA, investigating the impact of the various differentiation
mechanisms on the performance for a single-hop network. However, these studies
do not explicitly address the delays or throughputs in a multithop ad hoc network.
The only paper we are aware of explicitly addressing an analytical evaluation of
the multihop case, that is, the two-hop case we also address here, is [80]. In this
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work the second hop has to forward the traffic of many sources (the first hops), thus
forming a bottleneck, since all active stations have to share the transmission capacity.
Explicit (closed-form) equations for the expected overall delay and the expected
delay at the bottleneck, are obtained in [80] by translating the model at hand into a
generalized processor sharing model, as studied by Cohen [24]. Although the analysis
is approximate, good results are obtained, as confirmed by simulations. However,
this evaluation approach is limited in that it only allows for an equal sharing of
transmission capacity between all active stations (including the bottleneck). They do
not address the differentiation parameters introduced in the protocol IEEE 802.11e.

6.9 Summary

We have presented a new model for analyzing the recently standardized quality-of-
service enhancements of the IEEE 802.11e access mechanism in a two-hop ad hoc
network. Our high-level model is flow-based, and uses results from packet-based
models (such as those proposed by Bianchi and Engelstad et al. [14, 29]), and allows
for the numerical evaluation of the buffer occupancy at the bottleneck node, the
system throughput, as well as provides information on the mean number of active
sources. The latter is important, as our model allows for a time-varying number of
sources, as opposed to earlier models that only allow for a fixed number of sources.
The model is very easy to use (and extensible) as the basic model structure remains
the same for all enhancements; just two allocation functions (denoted as S,(-) and
Ss(+) ) need to be defined. An efficient numerical solution based on the underlying
quasi-birth-death structure of the model is automatically provided.

We compare our results with extensive simulations (using OPNET) and show that
our models provide very accurate results at almost negligible cost in comparison to
the simulations. No other analytical models that allow for similar evaluations have
been proposed so far.

Finally, our models show that all differentiation parameters can be used to allo-
cate capacity in a better way between the bottleneck and the sources. However, the
throughput of the bottleneck differs, depending on the differentiation method used.
We have shown that the maximum throughput can be obtained with differentiat-
ing TXOP, and TXOP,. The resulting throughput is about 50% larger than when
differentiating AIFS and CW ;..



Chapter 7

Conclusions

In this thesis, we have addressed stochastic model checking techniques for structured
infinite Markov chains. Such Markov chains are very widely applicable, yet are
structurally restricted enough to allow for efficient model checking. Our specific
contributions to this research field are the following:

Model checking algorithms for two classes of infinite-state CTMCs

We presented model checking algorithms for the full range of CSL properties for the
following two classes of infinite-state CTMCs:

e labeled quasi birth death processes and

e labeled Jackson queueing networks.

The model checking algorithms for the next operator and the until operator with its
different intervals are based on the same approach for QBDs and JQNs. The only
difference arises from the splitting of the infinite state space of QBDs into levels
and the splitting of the infinite state space of JQNs into fronts. These model check-
ing algorithms make extensive use of uniformization with representatives which is
both computationally and memory efficient. Furthermore, we presented an optimal
termination criterion for model checking the time bounded until operator.

Model checking the steady-state operator is done differently for QBDs and JQNs:
on QBDs we use an iterative method based on the matrix geometric method and
a termination criterion that is especially tailored for this algorithm. On JQNs the
steady-state operator can be checked directly via a closed-form solution according
to Jackson’s theorem.

Except for the next operator in general and the steady-state operator on JQNs,
the presented iterative algorithms compute approximations of the steady-state and
the transient probabilities. Note that these algorithms do not stop in the very
special case that the probability bound of the CSL formula is equal to one of the
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approximated probabilities. However, if the decision algorithm stops we can be sure
that the validity of the CSL formula is stated correctly.

For both classes of infinite-state CTMCs we required independent atomic prop-
erties. Together with the splitting of the state-space, based on its special structure,
this facilitated the use of representatives to cut the infinite state space to a finite
representation. Note that the model checking algorithms presented in this thesis
can be applied to every infinite state Markov chain for which such representatives
can be found. We showed the feasibility of the presented model checking algorithms
for QBDs and JQNs with a case study.

Extensions to QBDs and JQNs in the context of CSL model checking

We described several extensions of QBDs and JQNs for which model checking with
the framework presented in this thesis is feasible as well as the extension toward
CSRL model checking. However, for other extensions, e.g., tree-like QBDs and
multi-class queueing networks, model checking with representatives is theoretically
feasible, but not practically, as the underlying state space and the number of repre-
sentatives becomes very large. To overcome this, further work will analyze the use
of abstraction techniques.

IEEE 802.11e case study on bottlenecks in two-hop ad hoc networks

We presented a detailed case study on the analysis of bottlenecks in two-hop wireless
ad hoc networks, validated by extensive simulation was provided.

The algorithms derived for model checking QBDs were applied to analyze bottle-
necks in an [EEE 802.11e two-hop ad hoc network. The bottleneck was modeled as
infinite stochastic Petri net into which the packet-level model by Engelstad et al. is
incorporated. We provided a comprehensive comparison with detailed (packet-level)
simulations using OPNET, showing very favorable results. Moreover, the analytical
techniques are much faster than simulation, which allows us to compute the maxi-
mum obtainable throughput per parameter setting. Note that the two-hop scenario
results in a QBD as there arises only one bottleneck. In a multi-hop network mul-
tiple bottlenecks may form and the underlying state space of such a network is not
a QBD anymore. Further work will approach bottlenecks that occur in multi-hop
networks, as well as multiple traffic classes.



Appendix A

Matrix-geometric method

The steady-state vector 7 is to be partitioned into sub vectors according to the
different levels of QBD. The vector b € R contains the steady-state probabili-
ties of the boundary level and the vectors v; € RY for i = 0,1,... contain the
steady-state probabilities of the i-th repeating level. Thus 7™ can be rewritten as

M = (b, vp,v1,...).

Now, the equation for the steady-state probabilities, can be rewritten, exploiting
the partitioning of 7™ and the special structure of the generator matrix Q. To
avoid confusion the vector with all zeros is denoted 0.

Boo Boa 0
By Bii Ay
A, A A
7TMQ =0 & (b,’Uo,Ul,UQ,...) : A, A, =0 (Al)
0 A,
bBoo +vyBioy =0 boundary level (A.2)
& A bBo1+vBi +v1Ay =0 border level (A.3)
N AV 1AL+ Uj0A =0 repeating levels j =0,1,... (A.4)
under the normalization condition
b-T+S vI=1, withT=(1,1,1,...). (A.5)
i=0

With QBDs, the probability of residing in level ¢ only depends on the probability
of residence in level i — 1 and level i + 1 [38]. Since the transition rates between
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neighboring levels are constant, it is assumed that the steady-state vector follows
the so called matriz-geometric form:

v; = v;_1R = R, with constant R € RV*: (A.6)

where for the time being the matrix R is unknown. With equation (A.6), (A.4) can
be rewritten as follows:

’UjAO + ’UjJrlAl + ijrQA.Q = 6 (A?)
= ’UoRjAO -+ UQRjJrlAl + ’UoRjJrQAQ = 6 (A8)
<~ UoRj(AQ + RA1 + RQAQ) =0 Ag)

In order to fulfill equation (A.9) either voR7 or the term in parentheses needs to be
zero. Note that voR7 = 0 does not yield any useful solutions, because vy = 0 = v; =
0Viand R =0 = v; = 0 Vi. It has been shown that R is the entry-wise smallest
non-negative solution of:

R?A, + R'A; +R°A( = 0. (A.10)

Thus if we pick a matrix R such that (A.10) is fulfilled, assumption (A.4) is correct.
The explicit computation of R from the matrix-quadratic equation (A.10) can be
done with different well-known algorithms, for example:

e the successive substitution algorithm [61, 54],
e the logarithmic reduction [55].

Once the matrix R has been computed, the boundary probability vectors can be
calculated using, for example, Gauss-elimination. Equations (A.2) and (A.3) can be
written as matrix-vector products as follows:

B _ BO,I _
(b, vo) <BO’O) =0 and (b,vg,v1)| Ay | =0. (A.11)
1,0 AQ

Because of v1 A5 = (vpR)A,, the second equation can be rewritten as

By, =
) (4, Pa,) =0 (A12)

which leads to the following equation

By By =
o (B 5, Bha,) = 0.0 (A13)
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that can be uniquely solved together with the normalization equation

b-T+(i

"U]‘T) = T
7=0

By using the geometric series the normalization equation can be rewritten under the
condition that the largest eigenvalue of R is smaller than 1:

b-T+v0-(ZRZ‘)-T:b-T+v0(I—R)—1-T=1. (A.14)

1=0

As soon as the boundary vectors have been computed, the remaining steady-state
vectors can be calculated by using recursion (A.6).

As stated above the geometric series can only be used, if the largest eigenvalue of
R is smaller than 1. Otherwise the QBD is unstable and no steady-state probability
can be derived. But there is still a more intuitive explanation for stability in QBDs
that can be derived from true birth-death processes like M|M|1 queues. In M|M]|1
queues, the steady-state probability only exists if the queue is stable, that is, if the
drift to the next higher level (usually denoted A) is smaller than the drift to the
next smaller level (usually denoted p), which leads to A < p and ﬁ = p < 1. This
result can be transfered to QBDs as follows.

A new matrix A = Ay + A; + A, is interpreted as a generator matrix of a new
CTMC. This CTMC resembles the QBD but transitions between levels are just led
back to the same level. As A is finite, the steady-state probability v of the new
CTMC can be easily computed. Then the drift to the next higher level can be
described as:

DY Aglil) = v-Ag-1 (A.15)
l

1

and the drift to the next lower level as:
D) Aslil) = v-Ay-T (A.16)
i 1

The requirement for stability and thus for the existence of the steady-state proba-
bility can be expressed as [38]: vAgl < vA,l.
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