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Abstract

Biometric security systems that verify a person’s idertigyscanning fingers,
hands, eye or face are becoming more and more common. As labEsuet-
rics is one of the fastest growing industries. Applicatibmsbiometrics range
from homeland security (for example the European biome&sport), physical
access to various facilities (banks, amusement parksgedsfiddings, computer
terminals, etc) and health and social services.

Utilizing biometrics for personal authentication is moaneenient and than
current methods such as passwords or PINs (nothing to cargmember). An-
other important advantage of biometric authenticatiomét it links events to a
user (passwords or token can be lost or stolen) and is begasoitially accept-
able and inexpensive. Biometric authentication requiagaring a registered
or enrolled biometric sample (biometric template or idéerj against a newly
captured biometric sample (for example, a fingerprint aagotwluring a login).

However, biometric authentication is not perfect and thigpouof a biometric
authentication system can be subject to errors due to imqgterhs of the clas-
sification algorithm, poor quality of biometric samples,aor intruder who has
tampered with the biometric authentication systems. Altfiobiometric authen-
tication is intended primarily to enhance security, stgrimometric information
in a database introduces new security and privacy risks¢lwimcrease if the
database is connected to a network. This is the case in maxdtqal situations.

The most severe threats ampersonationwhere an attacker steals templates
from a database and constructs a synthetic biometric sahmgipasses authenti-
cation;irrevocability, where once compromised, biometrics cannot be updated or
reissuedprivacy, which is the exposure of sensitive personal informatiotiwi
out the consent of the owner. A solution to these threats apfdy template-
protection techniques, which make it hard for an attackee¢over the biometric
data from the templates.

This thesis looks at security aspects of biometric autbatiin and proposes
solutions to mitigate the risk of an attacker who tries tousesbiometric informa-
tion or who bypasses modules of biometric systems to achievealicious goals.

Vil



Our contribution is threefold. Firstly we propose 3W-traa,analysis tool used
to identify critical attack scenariofr a biometric system. We apply the 3W-tree
design tool to the SmartGun biometric recognition systerti whe purpose of
identifying critical security issues. Secondly, we expltiie challenges a&fecure
template protectionwhich are both theoretical and practical and we put forward
solutions to part of the issues. Thirdly, we present a pratsiolution to thesecure
template transferwhich should allow transfer of the biometric traits betwé&eo
biometrically enabled devices when no security infragtriecis available and the
users are no security experts.
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Chapter 1

Introduction

Biometrics are automated methods that allow the recogniti@a per-
son based on their physiological or behavioral chara¢tesis Bio-
metric based technologies offer an elegant solution for druma-
chine authentication. With biometrics, events can be bin#igectly
to a person while passwords or tokens maybe used by othershtha
authorized user. Biometrics are convenient and user fiyessl bio-
metric identifiers do not have to be remembered and cannaisbe |

There are two main concerns regarding biometric authdrdital he
first concern is the accuracy of biometric recognition. knewn that
due to natural variations (and noise) a biometric system falagly
accept or reject users. The second concern is related tat¢héhft
once a biometric identifier is compromised it cannot be ugadhefor
biometric authentication because a user cannot renewdmsdric.

This thesis looks at security aspects of biometric autbetitin and
proposes solutions to mitigate the risk of an attacker wies to mis-
use biometric information or bypass modules of biometratems to
achieve his malicious goals.

User authentication is the process of verifying the clainteshtity of a user
by a computer system, often as a prerequisite to allow acoggsources in the
system. For the purpose of user authentication one can uaeamiiseknows
for example a password or a PIN, what a ukasg typically a token such as a
smartcard, or something the usgrin other words a biometric identifier.

Biometric authentication refers to any security system tises measurable
human physiological or behavioral characteristics to meitge human identity.
Ideally these characteristics should be measurable, aniguariable over time,

1



Chapter 1Introduction

and should not be easily duplicated. Biometric authentoadystems are used
in two ways: to identify people and to verify the claimed itdgnof registered
users. Typical application domains include laptop logatess to airports, banks,
military installations, etc.

For biometric recognition one needs several componentlyfia reader or
scanning device which measures the biometric identifiea(aera for face or a
recorder for voice) secondly, software that converts tlamsed information into
digital form and compares the biometric identifiers anddligira database that
stores the biometric data for comparison.

During enrollmentthe biometric system learns the identity of its users and
stores their identities in a database. Enroliment is ugymtformed once in the
lifetime time of the biometric system. Duriregithenticatiorthe biometric system
matches the measured biometric identifiers to the onestsitotee database and
decides whether they come from the same person. Authdonticatperformed
every time the identity of a person is verified.

For most biometric systems that verify the identity of therdsefore allowing
him access to protected resources the main threat isnamthorized user gain-
ing access to the system, normally callethise acceptanceThe main goal of
an attacker is to “convince” the biometric authenticatiggtem that he is an-
other person with access to the protected resources. Awradd user who is
falsely rejectedoy the biometric system on the other hand, represents marely
convenience problem since the user can employ an alteena@ntity verifica-
tion method to access the protected resources.

For some applications like controlling access to a militastallation, aow
false accept ratéhushigh securityis more important whereas for other applica-
tions like laptop login, dow false reject ratehus auser friendly systens more
appropriate. It is known that these requirements are confli@nd lowering the
error rates of a biometric recognition system is the maimg$oaf most research
on biometrics [16].

1.1 Research Question

A biometric authentication system is intended to recogmihether the sub-
mitted biometric data corresponds to the features dembgitthe database. Any
malfunction in performing the designated task issaror.

Examples of events that may cause an error in the functiasfiegbiometric
recognition system are listed below. The examples giverbgneo means ex-
haustive, our purpose is to illustrate the diversity of gfsithat can go wrong.



1.1. Research Question

Example 1. Variations in the biometric data exceed the expected totdshA
user changes her hair style drastically between enrollaettauthentication, so
the face recognition biometric recognition system is uedblcorrectly identify
the user. A fingerprint biometric authentication systemditite hands of the user
dirty or sweaty and as a result the images collected by theoseme degraded to
the extent where authentication is no longer possible.

Example 2.Bogus identities in the database. The service provided bgradi-
ric recognition system is correct, however, the databasebkan altered by an
intruder who has introduced new bogus identities. As a teduhis attack, an
attacker may assume different identities and roles.

Example 3 Biometric templates stored the in the database. An intrcebeds the
biometric identity in the database and reconstructs thgrai biometric identi-
fier. Matsumoto [51] shows how to build a gummy fingerprintnfrthe minutia
information stored as a biometric template in the case oEfimgnt recognition
system. As a result, the attacker can construct a gummy firigemwhich is
falsely accepted by the biometric recognition system.

In the above examples there are two classes of errors. Theldiss consists of
nonmalicious errorsvhen the user is honest and the biometric system has not been
tampered with (e.g. dirty or sweaty hands) as in the scepagisented in the first
example. The error rates of a biometric system are detedrbgehe accuracy
with which the matching engine can determine the simildréiween a measured
sample and the expected value which is stored in the datalbiasecommonly
agreed that there is no error free biometric system. Minimgithe error rates of a
biometric recognition system is the main aredmmetric researctand involves
aspects of signal processing and pattern recognition.

The second class consistsroflicious errorswhere an intruder is the cause
of these errors, an example in this sense is presenting gtakeny fingerprint to
the sensor of a fingerprint recognition system, as in thelageenarios described
in the second and third examples. Although the system diyrexcognizes the
presented fingerprint, the user who presents the fake fingeipfalsely accepted
by the biometric system.

Malicious errors can have two essentially different cau3de first cause is
abuse of physical moduleshere an attacker targets a physical module in the bio-
metric recognition system architecture for example thessenThe target of the
attack is to force the biometric system to produce a falsetgjr a false accept at
the will of the attacker. The second causalisise of biometric informatiomhere
biometric data is used to extract or correlate informatiooud the user to whom
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it belongs, for example personal preferences for on-lingdiegtions, medical in-
formation, etc. Thus we have the following research quastio

Main Research Question: How can we mitigate the risk ahalicious
errors in a biometric recognition system?

There are a few difficulties in answering the main researastjon. Firstly,
perfect security is too expensive and unattainable. Whéendeng against all
possible attacks the cost is prohibitive. Thus, usuallyntioest likely threats are
identified and defenses are implemented following the keese scenario philoso-
phy: “the best you can buy”

Secondly, defenses are implemented to counter the capegodf an intruder.
In the security world it is commonly accepted that there issaourity measure
possible when the intruder is highly motivated and has utgidresources (crim-
inal organizations).

Thirdly, defense methods are typically implemented with dipplication and
system architecture in mind. For a biometric recognitiosteyn the particular
architecture can vary greatly, according to the intendedsegnario. Thus each
instance of a biometric recognition system has to be evaduatiependently and
different defense strategies should be designed in eaeh cas

To answer the main research question we need to understaagpiication.
The implementation, usage scenario of the biometric iflentand the corre-
sponding points of vulnerability influence the defense meétfor each applica-
tion. In the following section we introduce the applicatmhich motivates the
research presented in the rest of the thesis.

1.2 Secure Grip Application

The research of this thesis is done in the context of the $eGup project,
which focuses on the design, implementation and evaluati@nprototype grip-
pattern recognition system for the development of a smart guended for use
by the police. Grip-pattern recognition ensures that thapse can only be fired
by an authorized user. The gun should be useless in the hbhadgane else who
might intend to misuse the weapon.

We propose to use biometric recognition to make a gun smdré drip of
our SmartGun is covered with a grid of pressure sensors tegtratected against
wear and tear. These sensors are capable of measuring keoshatit pressure
pattern as a function of the place where the gun is being hefulgsenting the po-

4



1.3. Thesis Overview

sitions and shapes of the fingers on the grip and the pressenteé by them) and
the dynamic pressure pattern (i.e. the pressure variasiom) function of place
and time when the grip tightens prior to pulling the trigg&éhe main research
question is refined now for the architecture of the SmartGun:

Refined Research Question: How can we mitigate the risk ahalicious
errors in the in the architecture of the
biometric SmartGun?

The SmartGun is a new type of biometric application, for whécfalse re-
jection is the most serious threat as this would result inlec@officer not being
able to use the weapon when necessary. For a police officangbhis gun the
false reject rate must be below—*, which is the accepted failure rate for police
weapons in use. For the SmartGun the overall error rate (amécdl and grip)
should remain below(*.

To answer the refined research question we propose a thggestacess: the
first step is thadentificationof the relevant causes of errors fofadse rejection
orientedbiometric recognition system, the second step iscthssificationof the
identified causes according to their effect on the secufityh® system, and the
third step is thenalysisof threats.

1.3 Thesis Overview

Mitigating the risks of malicious errors is the main topictbfs thesis. In
Chapter 2 we give an overview of the threat analysis for a generic leimit
recognition system architecture and we propose a systemathod, the 3W-tree
(Who, hoW and What) to identify and classify relevant thsdfair a false rejec-
tion oriented biometric recognition system architectdree result of the 3W-tree
analysis indicates two possible research directions.

The first iSSECURE TEMPLATE STORAGEWwhich states that it should not be
possible to reconstruct the biometric identifier from théadstored in the gun.
In Chapter3 andChapter4 we focus on the theoretical aspects of protection
techniques for noisy data, which has applications in tha afesecure storage of
biometric information and cryptographic key extractioonr noisy data.

The second research directiorsSiSCURE TEMPLATE TRANSFERwhich states
that it should be possible for two police officers to exchatingé biometric iden-
tifiers between two guns when no security infrastructurevailable and when
the users are no security experts.dhapter5 we propose a new protocol which

5



Chapter 1Introduction

allows two users to construct a communication key from ndesy, in an ad-hoc
scenario. Finally, we summarize the contributions in thesthand suggest future
work in Chapter6. We now elaborate further on the contributions of each terap
in some detalil.

CHAPTER 2. We propose 3W-tree (Who, What, hoW) for identifying false re
jection threats to biometric security systems. Analysiseolbon a 3W-tree leads
to concrete questions regarding the security of the syst@uestions raised by
other methods (e.g. attack trees) do not lead to the samlkedEspecific ques-
tions. Our method is more concrete than other methods beeaisake explicit
assumptions about the generic architecture of the systers exposing all main
components in the architecture that are vulnerable tolatt@ur method is not
less general than other methods because other archieasstamptions can be
plugged in easily. Our method is intended to be used as ardagig

To demonstrate the potential of 3W-tree in the securityyasisibf the biomet-
ric system we apply the 3W-tree to the biometric SmartGun.aAssult ofour
analysiswe identify two research directions.

The first research direction is security with noisy data. pdes may be stolen
or lost. Therefore, it is important to store the biometrimpate in a protected
form. A solution could be to store the biometric templateaimper resistant hard-
ware. However, due to the weight and space restrictionsishiot desirable.
Another solution would be to use cryptographic techniquestore the biomet-
ric templates in encrypted format, such that an attackenataconstruct a valid
biometric identifier from the information stored in the gifowever this solution
is not applicable due to the natural variation in biometrieasurements which
renders comparison in the encrypted domain difficult.

The second identified research direction is spontaneousssederaction. Po-
lice officers often work in teams so that appropriate tengglagan be loaded into
the weapons at the police station. However, in an emergen@tisn this is not
possible; in this case police officers have to team up unpeepand exchange
templates in the field, such that all weapons are availablalfgolice officers
in the team. Biometric data is sensitive information thusirdythe exchange
the templates must be protected. Officers may work with agles from other
departments, even from neighboring countries, so a shagdok a public key
infrastructure where the certificate associated with thkess must be verifiable
on-line is not realistic. Also, one cannot expect a polidecef to perform some
complicated interfacing operation with his gun in the field.

The theoretical concept of 3W-tree appears in [2].
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CHAPTER 3. The use of biometric features as key material in securityomals
has often been suggested to avoid long passwords or keyseugovihe use of
biometrics in cryptography does not come without probleltis.known that bio-
metric information lacks uniformity and it is not exactlyreducible, which is the
opposite of what is considered suitable for a cryptogragbic Fuzzy extractors
allow cryptographic keys to be generated from noisy, noifeam biometric data.
They can be used to authenticate a user to a server withoutgteer biometric
data directly. This is important because the server may aedtusted.

The contribution of this chapter is related to tAECURE TEMPLATE STOR-
AGE research direction. We show that there exists a relationd®zt the strength
of the keys extracted from biometric data and the qualityhef biometric data
in terms of FAR (false acceptance rate) ah®k R (false rejection rate). We esti-
mate the min-entropy values for the cryptographic keysvedrfrom continuous
distributions, thus linking real-life continuous biometdistributions to methods
like fuzzy extractors in a new construction we call tsfuzzy extractor. We re-
late the min-entropy of the cryptographic keys to R, thus formalizing the
intuition that the min-entropy of an extracted key (in bicgnhnot be more than
—log,(FAR). This last point motivates research into improving BaeR (i.e., the
classification results) of biometric systems. Also, fromractical perspective it
is useful to evaluate the potential of the biometric datderdontext of a specific
cryptographic application. The conceptosffuzzy extractors appears in [5] while
the extended version, which includes examples appear$.in [8

CHAPTER 4. When using a fuzzy extractor for a specific application, &f&a-
tures are needed, such as the renewability of the extratiadss and the ability
to use the fuzzy extractor directly on continuous input dattead of discrete
data. The contribution of this chapter is related to the [@mlbof SECURE TEM-
PLATE STORAGE We propose the fuzzy embedder as a generalization of thg fuz
extractor construction. A fuzzy embedder naturally sufgo@newability, as it al-
lows a key to be embedded instead of extracted. Moreoverzay fambedder
supports direct analysis of quantization effects, as itesako limiting assump-
tions about the nature of the input source. We give a genenaitcuction for fuzzy
embedders based on the technique of quantization index latamu(QIM). We
present and analyze, as an exercise, two constructionsitwih dimensional
space. Our 6-hexagonal tiling construction offglsg, 6)/2 — 1) approximately
0.3 extra bits per dimension of the space compared to the kisoware quanti-
zation based fuzzy extractor. The other construction, thexagonal tiling, turns
out to be optimal from resilience to noise perspective. Towtribution of this
chapter appears in [6].
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CHAPTER 5.Mobile devices are designed to interact anytime, anywHanmmany
scenarios however it is desirable to associate devices etares way. For ex-
ample when sharing contact information via a wireless |lmlam unsecured en-
vironment. This problem is known in the literature as seaeece association.
Solutions have to be specifically designed such that secscetion can be re-
alized between previously unassociated devices. Seacudagns that the solution
must offer guarantees of the association partner idenititlhe solution must be
resistant to eavesdropping and to a man-in-the-middlelatfahe ideal solution
should provide a balance between security and user frieesti

The contribution of this chapter is related to the probRBECURE TEMPLATE
TRANSFERfor which we propose a practical solution where biometrieswsed
to establish a common key between the pairing devices. Quoaph has at least
two major advantages over related work. Firstly, it offérs possibility to trans-
fer trust from humans to machines without any available sgcinfrastructure.
Biometric recognition offers physical validation, thusaganteeing the identity of
a device owner. Secondly, the process is short and usedlyiein the pairing
protocol the keys extracted from biometric data are combioeform a session
key.

The idea is both simple and effective. Suppose that two weiststo set up a
secure communication channel. Both own a biometricallbksthhandheld de-
vice (for example with face recognition or grip pattern b&tnts). Both devices
are equipped with a biometric sensor and a short range radith device is capa-
ble of recognizing its owner for example by face recognitibhen the users take
each others picture. Each device now contains a genuindagsgf its owner
and a measurement that approximates the template of theustee The idea is
that each device calculates a common key from the owner tgmahd the guest
measurement. In our solution, all Alice has to do to set upcargecommunica-
tion with Bob is to take a picture of him and let Bob take a pietoaf her. The
protocol is even more general: it can be applied on any tyféoshetric channel,
including grip pattern biometrics.

We evaluate the performance of the protocol from three iiffeperspectives.
Firstly, we analyze the security of the protocol against tymes of adversaries
Eve which has computational capabilities and Charlie a b0 attacker. Sec-
ondly, we evaluate the performance of the protocol with tyoes of real life
biometric data: face recognition and hand grip pressurtematThirdly, we look
at our protocol from the perspective of the users. Our ugahihalysis shows that
our subjects find the SAfE protocol fun to use, and that theylditike to have
the SAfE pairing available on their mobile devices.

The secure template transfer protocol which uses hand gnipdiric appears
in [4]. A new application for secure ad-hoc pairing using ni®bevices together
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with a usability appears in [7]. The extended version whightains experimental
validation of real life biometrics is published in [1].

1.4 Conclusions and Outlook

To give a pertinent answer to the main research question ga pave re-
fine its scope to the biometric SmartGun application. Thi p@rticular type of
application for which a false rejection threat is more haintiian a false accep-
tance threat. At the time of exploring this problem thereeveo threat models
that could accommodate this new class of biometric apjpdicatTherefore, we
propose a new design tool, the 3W-tree, which fills this gap.aAesult of the
3W-tree analysis of the biometric SmartGun application @entify the two re-
search directions explored in the thesis: the first direcisathe secure template
storage and the second is the secure template transfembwtiich are vital for
the security architecture of the SmartGun application. §dupe and application
of the results is not restricted, however, to the SmartGun.

Secure template storage is an active research area, wbictgas user friendly
solutions for the problem of interfacing between humans@mdputers. We ex-
plore both theoretical and practical aspects of this probhich is a particular
case of the problem of cryptographic key extraction fromspalata. Our con-
tribution is the extension of the theoretical model, to stimimg that can be used
in practice. It is an important step forward. However, theegech leads to the
identification of new, important questions. For example, skecurity measures
used for evaluating different solutions do not make a cléstirgttion between se-
curity and privacy. While security measures are useful ftberisk management
perspective there are no effective measures for the priveite individual user.

Secure template transfer is a particular case of the morergeproblem of
securely pairing two or more devices when two persobagpento meet. Per-
sonal devices, which are carried around at all times andyhardic interactions
between the owners of such devices demand solutions whéecfast, easy and
which do not rely orany pre-existing security infrastructure. Classical segurit
solutions require either an on-line connection (Certifaauthorities which can
assign credentials) or previously shared knowledge (ategypphic key). These
assumptions are not always valid in the dynamic world of yodehe problem
is to find alternative methods to create security credentahich are both user-
friendly and offer good security. Our solution, the SAfE f@@| uses biometrics
to create communication keys. The advantage of our soligida inherent user
friendliness and strong security guarantees. Howevem&tioc measurements
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Chapter 1Introduction

are inherently noisy and there is room for improving the rerates of the biomet-
ric recognition algorithm.

In this thesis we advance the field of cryptography with ndesta in two ways.
The first is from a theoretical perspective by putting fordvaew definitions, con-
structions and theorems, which give new insights in the fi€lte second is from
a practical perspective by proposing a new, practical apgin of cryptography
with noisy data in the area of secure, spontaneous interacti

10



Chapter 2

Threat Model and 3W-tree

This chapter provides an overview of the architecture ofcanitric
system and its building blocks. The reader is offered a dloigav
on the main challenges of securing a biometric system. Ttan“s
dard” architecture of a biometric system is extended byragidom-
ponents like crypto, audit logging, power, and a represemaf the
environment to increase the analytic power of the threatehddur
contribution is the 3W-tree, an analysis tool used to idemtiitical
attack scenarios for a biometric system. We use the 3W-tpeend-
lyze the SmartGun biometric recognition system with theppse of
identifying critical security issues. Two important resgedirections
are identified as a result of our 3W-tree analysis. The fistaech
direction is secure storage or biometric templates. Sestorage of
biometric templates prevents the compromise of biometngates
when a SmartGun is lost or stolen. The second researchidinast
secure pairing of mobile devices when no security infrastme is
available. A user friendly secure pairing protocol allovadige offi-
cers to exchange biometric templates securely when teanfisraned
spontaneously in the field and as a result of the pairing pobtany
member of the team can use all the weapons of the team. Werexplo
these research directions in the following chapters ofttiesis.

Currently, new applications of biometrics that have a catgdy different
threat model from classical biometrics are emerging. F@mgle, Terrorist
Watch Listapplications an@&mart Gurapplications are characterized by the fact
that afalse rejectioni.e. an authorized userot gaining access to the system,
could lead to life threatening situations. Terrorist wadists use facial or finger-
print recognition [17] to identify terrorists. Watch lisise mainly used at airports.

11
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For this application, the main threat igase rejectiorwhich means that a poten-
tial terrorist on the list is not recognized and allowed tataban aircraft. In this
case, dalse acceptanceesults in a convenience problem, since legitimate sub-
jects are denied access and their identity needs to be ezdmiore carefully to
get access. The biometric Smartgun [85] is a weapon thatdlfioel only when
operated by the rightful owner. Such weapons are intendeeldiace casualties
among police officers whose guns are taken during a strugigkemost promising
technology for this application is biometric grip patteatognition [84]. Again,
afalse rejectionis the most serious threat as this would result in a policeeffi
not being able to use the weapon when necessary. Both strveatich list and
biometric SmartGun ar@alse rejectionoriented biometric recognition systems.
Current threat models for biometric recognition systenesrant suitable for false
rejection oriented biometric system.

CONTRIBUTION. Categorizing all possible threats on a system results imesath
model which can be used to identify critical attack scersariblowever, as the
complexity of the architecture for a biometric recognitigystem increases so
does the complexity of the threat model and its utility focue@ty engineers de-
crease. We propose a 3W-tree (Who, What, hoW tree) as ansiabpl to
identify critical attack scenarios for a biometric systerhe 3W-tree is versatile
as it can be used to identify both false rejection and falee@tance threats to
biometric security systems.

Analysis based on a 3W-tree leads to concrete questionedirgdhe secu-
rity of the system. Questions raised by other methods (dtgclatrees) do not
lead to the same level of specific questions. Our method i moncrete than
other methods, because we make explicit assumptions aimgeneric architec-
ture of the system, thus exposing all main components inrnttétacture that are
vulnerable to attack. Our method is not less general thagr otlethods because
other architectural assumptions can be plugged in easilyn@thod is intended
to be used as a design aid.

We apply the 3W-tree design tool to the SmartGun biometdogaition sys-
tem with the purpose of identifying critical security issueAs a result of our
analysis two important research directions are identifféd first research direc-
tion is secure storage of template protection. Secure getooé biometric tem-
plates prevents a compromise of biometric templates whenat&un is lost or
stolen. The second research direction is secure pairingobilendevices when
no security infrastructure is available. This demand arizcause police officers
work in teams that are sometimes formed on an ad-hoc basté &#cer in the
team must be able to fire the weapon of the other officer. A ussrdly secure
pairing protocol allows police officers to securely exchahgometric templates

12
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when teams are formed spontaneously in the field and as & asgumember of
the team can use all weapons. We explore these researchatissia the follow-
ing chapters of this thesis.

GENERAL TERMINOLOGY.A systems an entity that delivers service In the
case of a biometric recognition system the service is togeize live measure-
ments compared to identities stored in the databaséailére is an event that
occurs when the delivered service deviates from the cosewice. The devia-
tion from the intended service is calledor. The hypothesized cause of an error
is called afault. Faults can be internal or external to a systemvulnerability

is an internal fault that enables an external fault to causereor. Athreatcan
be a fault, an error, or a failure which has both the poteityiakpect (e.g., faults
being not yet active, service failures), and a realizatispeat (e.g., active fault,
error that is present, service failure that occurs). A nialis internal or external
fault is anattack The players in the system are users and intrudersisé is
an entity that receives services from the system whilenamder is a malicious
entity (machine or human) that attempts to exceed any atyhstre might have
and alter services or alter the system functionality orqremince, or access con-
fidential information.Securityis a composition of the attributes of confidentiality,
integrity and availability. The terminology used followsiaienis,et. al[12].

ROAD MAP. Section2.1 gives an overview of the threat models presented in the
area of biometric recognition systems. The extended a&ctite of a biometric
recognition system is presentedSectior2.2 and the state of the art regarding at-
tacks on components of a biometric recognition syst8attion2.3 describes the
3W-tree, the method proposed as a design aid to help idemgifglevant attacks
for biometric systems. IBection2.4 we apply the 3W-tree analysis to a biomet-
ric SmartGunwhich uses hand grip pattern recognition to identify theemof a

gun before allowing him to fire the weapon. Conclusions aesgnted in the last
section.

2.1 Related Work

In this chapter we review threat modeling and analysis teglas in the area
of biometric system security and general security threatyais techniques fo-
cusing on false rejection.

13
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SECURITY OF BIOMETRIC SYSTEMSLike all security systems, biometric sys-
tems are vulnerable to attacks [42, 65]. One specific attankists of presenting
fake inputs such as false fingerprints [83] to a biometri¢esys To analyze such
threats systematically various threat models have beeelajged. We discuss
the most important models: the Biometric Device ProtecRoofile BDPP) [22],
the Department of Defense & Federal Biometric System Ptiotedrofile for
Medium Robustness EnvironmentopDPP [47], the U.S. Government Biomet-
ric Verification Mode Protection Profile for Medium RobussseEnvironments
(USGovPP [23] and Information Technology-Security techniques +amRework
for Evaluation and Testing of Biometric Technolody$tand [31]. In the sequel
we refer to these three protection profiles and lft&tand simply as “the stan-
dards”.

Threat Description
Number

8.4 Attacker modifies matching threshold.

10.2 Attacker modifies user identifier.

11.2 Attacker cuts power to the system.

13.1 Attacker tampers, modifies, bypasses, or deactivatsio
more hardware components.

13.3 Attacker floods one or more hardware components with
noise, (e.g. electromagnetic or acoustic energy)

14.1 Attacker tampers, modifies, bypasses, or deactivaeon
more software or firmware executables

14.3 A virus (or other malicious software) is introducedittie
system.

15.1 Attacker tampers, modifies, bypasses or deactivaesion
more connections between components.

Table 2.1:False Rejection related threats froffiStand[31].

In many ways, the standards are similar. In particular, the@yhot always
make a clear distinction between a threat leading false rejectiorand a threat
leading to d&alse acceptancelNe call these ambiguous threats “catch all” threats.
We identify in the standards a total 4% distinct threats of which onlg arefalse
rejectionthreats. These are: (1) cutting the power to the system, ¢@ylithg
hardware components with noise and (3) exposing the dewiemtironmental
parameters that are outside its operating range. In addit@re arel2 “catch
all” threats that cover botfalse rejectiorandfalse acceptancthreats.
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It is difficult to compare threats amongst the four standardsr example,
BDPPcontains ond.TAMPER threat whilelTStandcontains three tamper related
threats: one for hardware tampering another for softwaf@raware tampering
and one for channels. ITStandtampering and bypassing is mentioned when
describing the same threat whis®PP explicitly mentions ther.BYPASSthreat.
ITStandis the most complete in identifyinfglse rejectiorthreats, it identifies the
largest number (8) of such rejections (Sedle2.1). However, only threat3.3
is a clear false rejection. All the others are “catch all’eddis. There are three
tamper related threats: one related to hardware tampering)( one related to
software tamperingl{.1) and one for channel tamperinth(1).

The threats to biometric recognition systems in the statglare general, not
specifying the exact point in the system that is vulnerabtehe circumstances
that make the system vulnerable to attack. The method afiagaalso not clear,
all that is said is that hardware can be tampered with, byohes deactivated.
These threats lack the exact how and where and thus thetiqadacalue is not
clear.

SECURITY TAXONOMIES.There are many general security taxonomies in the lit-
erature. They classify attacks based on one or more grodmtistimction. Some
taxonomies group attacks using similar grounds of dison¢tbut use different
classes. For example, bodeumann and Parker's SRI Computer Abuse Meth-
ods and Model$60] and Jayaram and Morse’s Network Security Architectures
refers to misuse techniques, [50]. However, the Neumarssifieation identifies
classes likeexternal, hardware misuse, masquerading, pest progragpasses,
active misuse, passive misuse, inactive misuse, indiisasewhile Jayaram and
Morse’s taxonomy identifies only 5 different classes ipfwysical, system weak
spots, malignant programs, access rights and communicdtased Other tax-
onomies view attacks from totally different angles, for mde Anderson’s Pen-
etration Matrix [50] has three types of penetratorsxternal, internal and mis-
feasancewhile Knight's Vulnerability Taxonomy{50] defines a vulnerability as
having five parts Fault, Severity, Authentication, Tactic, ConsequéncEach
part is defined according to a different taxonomy. None o$¢heassifications
pay special attention to biometrics.

We will develop a specific, informative attack classificatimethod that can
capture both false rejection threats as well as false aaoeptthreats.
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Chapter 2.Threat Model and 3W-tree

2.2 Generic Architecture of a Biometric Recogni-
tion System

We begin by describing the architecture and the life cycketypical biometric
recognition system.

For the purpose of biometric recognition one needs (1) a éiamreader
which measures the biometric identifier (e.g. a normal canfarface recogni-
tion or a recorder for voice recognition), (2) software tbatverts the recorded
information into digital form and compares match points é&)da database that
stores the biometric data for comparison.

Enrollment

Sensor sFeature extract

Y
Authenticate

Sensor Feature extractor

!

Matcher

yes

Application

Figure 2.1:Generic Architecture of a Biometric Recognition Systeng dfows indicate
communication channels that are used to transfer inforamakietween components.

There are two phases in the lifetime of a biometric systeme flrist, is the
enrollmentphase when the biometric system learns the identity of aarskstores
the relevant data in a databases. The second, iautienticatiorphase when a
person is accepted or rejected as being enrolled in the asgdbgure 2.1 shows
a block diagram of a generic biometric recognition system.

In Figure 2.1 thebiometric readetis the interface between the real world and
the biometric system; it has to acquire all the necessagy tilatmany applications
this is an image acquisition system, but it can be changeatdicg to the desired
biometric modality.
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Another component iffigure 2.1 is thefeature extractomwhich performs all
the necessary pre-processing: remove artifacts from timogeenhance the input
(e.g. by removing background noise), image translation ratation, normal-
ization, etc. Its most important task is to extract distisping features in the
biometric identifier recorded by the sensor.

During enrollment several biometric impressions are ctdlé from an indi-
vidual. A synthesis of all characteristics of these impi@sscalled theaemplate
is computed and stored in tllatabasdor each individual.

The matcheris used during authentication to compare a feature vectouca
lated from a live measurement with the template stored dueimrollment. Due
to noise it is expected that the two will differ. The matchemputes a distance
(e.g. Hamming distance or Malahanobis distance, etc.) desiwhe feature vector
and the template. If the computed distance is below a pabkshed threshold
the feature vector and the template are said to come fromathe sdividual, and
according to the application the user is allowed to accessabources protected
by the biometric system.

2.2.1 \Wulnerabilities of a Biometric Recognition System

A biometric system has the potential to solve many of the lerab associated
with classical authentication systems. However, accgrtinBolle, et al., [16]
biometric systems are not considered much in the secuséivature and as a con-
sequence there are many open questions on how to make himengtrentication
work without creating additional security loopholes. Iisteection we present an
extended architecture of a biometric system, Bigere 2.2 which helps to iden-
tify potential loopholes. We discuss vulnerabilities tethto each component in
the architecture as well as vulnerabilities related to thenecting channels.

Components like power or users are not part of a classichitaoture of the
biometric recognition system, d¢figure 2.1. We argue that their role is crucial
when designing the security architecture. Therefore, ierekthe generic bio-
metric architecture to include the following components:

e AUDIT LOG, important actions need to be recorded for later analysis.

e CRYPTOGRAPHY,to ensure the authenticity and integrity of data stored and
transmitted on selected channels.

e POWER is a major concern especially when the biometric devicelitaple.

For example, replacing the power source might restart thécagpion caus-
ing the biometric system to enter an unknown or unstable stat
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Enroliment Vi

+ Sensor Feature extractor

Authenticate
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> Sensor Feature extractor
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Figure 2.2: General view of a Biometric Recognition System showtingulnerabili-
ties. We identify three classes of channels: the first clegsesents the internal channels
(continuous lines), which are used to transport the infatiorabetween the modules of
the biometric recognition system. Secondly, we have etetrannels (dotted lines),
which are used to input information to the biometric recdigm system and thirdly we
have implementation dependent channels (multiple arrowisich are present in between
components according to the implementation of the biometdognition system.

e ENVIRONMENT, biometrics, like other protection mechanisms, are influ-
enced by environmental conditions which can cause sugpride also in-
clude in this category: operating parameters such as tatypser humidity,
etc.

e USERS some biometric systems like speech recognition are vabterto
alcohol intake and stress [11]. Injuries may affect the esxcy of finger-
print recognition systems while changes in the appearadifferent hair
cut, mascara, etc) influence the performance of face retogriometric
systems.

The specific vulnerabilities corresponding to the exteratetitecture, shown
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in Figure 2.2 are summarized ifable2.2.

Vulnerability Description

%1

Va

Vs

Vi

Vs

Ve

V7

Vs

Vio

Is a vulnerability of the input device. The most serious dhite

a biometric system is presenting a fake biometric [65]. Emif
cation of something analogous to a real user is call8grghetic
Biometric Feature AttackThis attack can be implemented with
or without tampering with the sensor.

Is the resubmission of a previously stored biometric sigméhe
channel between the sensor and the template extractoayrapl
tack/false data inject), or reuse of residuals.

Is a vulnerability related to the feature extractor. Fomepgke at a
given time or under some specific conditions a Trojan Horsg ma
override the feature extraction

Is a vulnerability of the communication channel betweenféze
ture extractor and the matcher. For example an attack tpadiex
this vulnerability will insert a synthesized feature vedtdo the
communication channel.

Is a vulnerability that allows drojan Horseattack. This time
the target is the matcher, which is forced to produce a match o
non-match result.

Is a vulnerability related to overriding the output of thetofeer
and thus bypassing the entire authentication process. Utpeto

of the matcher module could be forced to be either a match or a
non-match.

Is a vulnerability which allows an attack on the communmati
between the (central or distributed) database and the riithe
cation system. A template stored in the database is seneto th
matcher through a channel. The representation of the téenigla
changed before it reaches the matcher.

Is a vulnerability of the enrollment center. The enrolimand the
authentication process have similarities in the sensetliegtare
both implementations of an authentication protocol, aedgfore
enrollment is vulnerable to attack poirits, ... V5.

Is a vulnerability of the channel that links the enrolimeanter

to the database. Control of this channel allows an attackavetr-
ride the (biometric) representation that is sent from eneuit to
the biometric database.

Is a vulnerability of the database itself. An attack exjphgjtthis
vulnerability could result in corrupted templates, depiaervice

to the person associated with the corrupted template ooamth
tion of a fraudulent individual.
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Vi

Via

Vis

Viz

Is a vulnerability of the channel that links the power souccthe
system. An attack could destroy for example this channel.

Is a vulnerability of the power source of the system, which ca
be tampered with.

Exploiting this vulnerability allows an attacker to preveudit
records from being recorded.

Is a vulnerability, which successfully exploited, allowad#
records to be deleted or modified, thus masking the actions on
an attacker.

Is a vulnerability related to the strength of the cryptodpapal-
gorithm employed. Security functions may be defeated tjinou
cryptanalysis on encrypted data, i.e. compromise of thptory
graphic mechanisms.

Is a vulnerability related to the users of the system, whash r
gardless of the role that they play, can compromise the ggcur
functions.

Is a vulnerability related to the environmental conditigtesm-
perature, humidity, lighting, etc.). For example the egies us-
age can degrade the security function of the system.

Table 2.2:Vulnerabilities associated to a biometric recognition
system by Bollet al.[16].

ATTACKS ON THE BIOMETRIC READER.The most serious threat on an input
device is presenting a fake biometric [65]. The fabricatidra fake physical
biometric is called &ynthetic Biometric Feature Attacht is known that some
biometrics are harder to forge: iris [30], retinal scan [4ate thermogram [40]
while others are easier to forge: voice print [35], face [#&nd written signa-
ture [40] or fingerprint [83].

Since biometric information is not secret the original beirc can be ob-
tained with or without the permission or cooperation of tbevfier” of that bio-
metric. In some cases, like fingerprint for example, extenkierature on how to
produce fake identifiers is readily available for anyone wares to try [83, 51].

When cost is not an issue to the attacker, all biometrics eamaitd probably
will be, the subject of a synthetic feature attack. The diffic of such an attack
depends on the implementation of a specific system [16].

The system must somehow be able to verify that the biometaiose from the
person at the time of verificatiohivenessletermination verifies that a biometric
sample is coming from a living person [64]. The syntheti¢deabiometric attack
can be implemented ascaercive impersonationor replay attackwith more or
less tampering with the sensor [16].
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A coercive attacks an attack where the authorized user’s biometric data is
presented in an illegitimate scenario. For example theldtaphysically forces
a genuine user to identify herself to an authenticatioresygir after the physical
removal from the rightful owner [16]. Designers have to khhow to counter
such attacks, for example by installing security camer@g &ts.

An impersonation attackivolves changing one’s appearance so that the mea-
sured biometrics match an authorized individual. Examplésometrics that can
be the subject of this kind of attack are face, voice or sigmeat Multi-modal
biometrics reduce the exposure to an impersonation atpeskidularly if the sys-
tem is checking for consistency between the modalities)oaBrcategories of
impersonation threats are identified by Baairal. [47] as follows: (1) an im-
poster attempts to defeat the biometric authenticatiodemtification either by a
zero-effort forgery attempt, (2) the impostor directs htaeks on some known or
suspected weakness and (3) the impostor attempts to sulheeadentification or
verification process by undermining the integrity of biorreetemplates.

A replay attackinvolves the re-presentation of previously recorded bimime
data. This is the simplest attack possible against a bidcrststem. For example,
take a picture of a person and present it to a face recogrbimmetric system.
Current research tries to eliminate this kind of attack. €&@mple face recogni-
tion systems try to detect the three - dimensionality of #efpresented to the
camera [21].

In case of fingerprint and palm recognition the replay attzuktake the form
of latent print reactivation. The oily residue from touahihe surface of the scan-
ner may leave a latent print that can be copied and readtivate a valid print.

ATTACKS ON THE FEATURE EXTRACTORA Trojan Horseattack on the feature
vector, produces at a given time or under some specific dondit. pre-selected
feature. Care must be taken during the employment of thesyst avoid this.

Stored templates can be protected by encryption. Datanittesl between the
sensor and the rest of the system could also be protectedyptography. But

here, unique session keys would be necessary (e.g. thraughstamping) to

prevent data being replayed successfully. If the stolemplata is used, then live-
ness testing could be used to ensure that the biometricualgcbeing submitted
by a person.

Transformations e.g. cryptography can be applied on therfeaector only
if the time element is not critical or the equipment can pssocgata fast enough.
Template transformation techniques have been developacttonvent the com-
promise of a template by the legitimate substitution of taesformed version of
the template for matching against a similarly transformettdre vector. This is
called in the literatureancelable biometricf4]. This is an intentional, repeat-
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able distortion of a biometric signal based on a chosenfivams The biometric
signal is distorted in the same fashion at each presenjdhianis, during enroll-
ment and for every subsequent authentication. This teaertigs been developed
to protect the privacy of the individual and to permit thetil@ation of a biomet-
ric sample even after the biometric feature has been stolen.

ATTACKS ON THE MATCHER.Again a Trojan Horseattack is possible, this time
the target is the matcher, which can be forced to produce la dvidow match
score and thereby to manipulate the match decision [16].

ATTACKS ON THE STORAGE Storing unprotected biometric templates in a database
introduces a number of security and privacy risks. For exarap attacker could
steal a template from the database and construct artificaldtrics that pass the
biometric authentication. Once compromised, the bioroetin not be re-issued,
updated or destroyed. Another possible attack is the unaamtd modification of
one or more template representations in the database satch fddse acceptance
is forced. Tracking whether a user is enrolled or not in aatertiatabase could
result in exposure of sensitive personal information. Aeotttack that should be
taken into account ithe double enroll attackwvhich means, as the name suggests,
re-enrolling a user under a different name in the databatbediferent privileges.
The protection of the database is important because thediritaéntication sys-
tem is only as secure as its enrollment database.

CHANNEL ATTACKS. Channels provide the ability to transfer information be-
tween input device, feature extractor, matcher and dagabése system compo-
nents that are communicating may be local or remote. Contatian can be
realized using different channelsigure 2.2 shows that from 17 possible vulner-
abilities related to a generic biometric system 5 threagsralated to channels.
This emphasizes the importance of addressing channeksattabeConnectivity
assumptiof#7] states that biometric templates must be protectechddransmis-
sion between the biometric subsystems for example by cgyaphic means, or
by tamper resistant hardware.

POWER ATTACKS.By cutting the power to the system an attacker can make the
system fail. Depending on the power source connected toygtera batteries or
electricity attacks may be different. Restarting the sysédter a power loss can
result in an unstable system.

CRYPTO ATTACKS.Cryptanalysis on encrypted data or brute force attacks may
help an attacker gain unauthorized access. If code or dat&iased with crypto-
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graphic functions can be accessed inappropriately by apsoar user the crypto-
graphic mechanisms and the data protected by those mentsamay be viewed,
modified, or deleted.

AUDIT LOG COMPROMISE An audit log compromise is not a direct attack on the
system. However, an inadequate collection of audit data tli intention to hide
the traces of an attack on the system is dangerous sincevérniseattacks on the
biometric system from being discovered.

ENVIRONMENTAL AND USER RELATED ATTACKS.A user may cause harm to
a system intentionally or unintentionally. For example dmaistrator may in-
correctly install or configure the biometric system, thauleseing an ineffective
mechanism. Non-hostile administrators (unintentionatlynder coercion) could
incorrectly modify user privileges or the matching thrdshar enroll an unautho-
rized user. Another threat is that an impostor may acquingidtrator privileges.
An attacker may cause failure of the biometric system by sixjpthe authentica-
tion device to conditions outside its normal operating enthe conditions refer
to temperature, humidity, light, etc.

OTHER ATTACKS.In the following we describe other known attacks on bioneetri
systems. These are more complex and involve successfui@atfn of one or
more vulnerability points ifrigure 2.2

Hill-Climbing Attack. This attack is described by Bolle et. al [16]. The biometric
sample is slightly modified and then submitted to the matghalgorithm
repeatedly. The output score of the current biometric sanspbserved. If
the score is greater than the previous output score the ebapgplied on the
biometric sample are preserved. The goal is to achieve thehrttareshold.
This attack can be prevented if repeated trials are not atbowAccording
to Ulugadet al. [78] this type of attack can be cast as an attack in point T2
or point T4 inFigure 2.2.

Swamping AttackThis attack tries to exploit weakness in the algorithm t@obt
matches of incorrect data. For example for a fingerprintssyghe attacker
might try to submit a print with a lot of minutiae hoping thatffciently
many of them will clear the threshold. The weakness in therdlym is
that it accepts such a representation. [16].

Piggy-back AttackThe attacker tries to gain physical or logical access sanult
neously with a legitimate user [16].
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CONCLUSIONS.Biometric systems have a lot of weak points. Most likely, at-
tacks occur during the live verification phase. An attackrdyenrolimentis less
expected, because this operation normally takes place écwred environment.
Therefore attacks made during thathenticationare most likely, and therefore
their effect should be limited.

2.3 3W-tree

The task of the biometric system security architect is tduata the effects
and likelihood of the attacks described above as well ampiatenew attacks for
a given biometric system, and ultimately to find and implehaglequate counter-
measures. A crucial step in this evaluation is the identificaand classification
of vulnerabilities. The result of this step is a classificatof all known vulnera-
bilities in the system, the threats that can exploit therd,attacks that may result.
The most adequate taxonomy for evaluating the risks agsdorath the biomet-
ric system has to be selected. This is in our opinion a diffiadk, since security
taxonomies in the literature do not capture the threatsa@t® biometric systems
well. Among the taxonomies studied we could not find one tbatagive us the
assurance that all the relevant threats are indeed idenafid which could help
in developing the threat model for a biometric recognitigstem.

During our research for suitable taxonomies we observedcthraputer se-
curity taxonomies themselves can be classified. We propomsesd this meta-
classification to assist in identifying a proper threat mo@air meta-classification
will prove to be useful in choosing, the right taxonomy ohiéte is no appropriate
taxonomy at least provide a guidance to the process of bgiladinew one.

The most general classification that we propose is the divisf security tax-
onomies presented in the literature apecific area taxonomiemdgeneral tax-
onomies Specific area taxonomiese developed for restricted domains in com-
puter science. We have found taxonomies for DoS attacks, $yistems, software
bugs, secure devices,[62] efBeneral taxonomieare applicable in any computer
science area. General taxonomies can be further dividedtotnic taxonomies
and process oriented taxonomie&tomic taxonomieslassify attacks based on
one “fundamentum divisionis” or ground of distinction. Theain grounds of
distinctions used in atomic taxonomies are:

THE WHO. Is used by taxonomies that classify attacks according iowachar-
acteristics of the attacker. Anderson’s Penetration Maf&0] covers the
types of penetrators, based on whether they are authodzaesta resource.
Abrahamet al[50] identify three classes of adversaries relative to the p
sition of the attacker into the system. Rae and Wildman [&2&able a
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structured taxonomy of attacks as a basis for defining thesscrequired
by an attacker. In other papers [87] the motivation or thé skquired to
mount a successful attack, is taken into account.

THE WHAT. A considerable number of taxonomies group attacks on “modus
operandi” or attack methods used during an attack. NeumadrParker,
[50] identify 9 distinct procedures of conducting an attdi€e external,
hardware misuse, masquerading, pest programs, bypasstge anisuse,
passive misuse, inactive misuse, indirect misusmdqvist and Jonsson
[50] extend the work of Neumann and Parker, refining the dlaaton al-
lowing the number of classes to increase from 9 to 26. For plahe
hardware misuselass is decomposed ingical scavenging, eavesdrop-
ping, interference, physical attack, physical remoaatl masqueradings
broken down inmpersonation, piggybacking attacks, spoofing attacks and
network weavingLindqgvist and Jonsson also introduce the concept of the
dimension of an attack, which states that for every attaeketls a result.
Jayaram and Morse’s developtaxonomy of security threats to networks
and the classes identified grBysical, system weak spots, malign programs,
access rights, communication bas&de notice that some classesmalign
programsoverlappest programsn Neumann and Parker’s taxonomy, but
the communicatiorbased class is new. Other taxonomies of this type are
extensively covered in the PhD thesis of Lough [50], who &ide the sim-
ilarities between taxonomies.

THE HOW. Taxonomies of this type have as ground of division the exgtbvul-
nerability. Howard’s CERT Taxonomy distinguishes thregety of vulner-
abilities implementation vulnerability, design vulnerability, diguration
vulnerability. Other taxonomies identify a vulnerability as belonging e
of the following categories of attaclspecification weakness, implementa-
tion weakness, brute force attackne of the most interesting taxonomies
proposed is Knight's Vulnerability Taxonomy [50]. He defna vulnera-
bility as being a quintuple of the fornfigult, severity, authentication, tactic,
consequen@e In 1976 Stanford Research Institute collected 355 scuri
breaching incidents and divided them into 7 violation catesg [50]. We
note that somepecific area taxonomieme vulnerability taxonomies like
'Beizer's’ bug taxonomy that is a software bug taxonomy [BORichard-
son’s DoS taxonomy that classifidenial of serviceattacks according to
three different categorizations.

Each atomic taxonomy represents only one dimension of thekat An at-
tack, however, is rarely caused by a single vulnerability system and is rather a
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Figure 2.3:3W-tree of attacks on biometric systems for the externatkér. V1-V17 are
points of attack shown iRigure2.2 and summarized ifable2.2. In a practical analysis
the same structure is repeated for the internal attacker.

function of different characteristics of the system. Thr&evant grounds of dis-
tinctions are identified in the general security taxonormeke literature, namely
thewho thehowand thewhat Therefore we propose to use one taxonomy from
each of the identified classes (who, how and what). This ®tfee possibility of
identifying a broad range of attacks. Combining a taxonoroynfeach of these
classes creates a nested taxonomy, which we calBWidree(Who, how and
What). Figure 2.3 shows a 3W-tree built for the generic biometric architex
presented ifrigure 2.2.

We note that creating a 3W-tree is in conformance with theeggnmethod-
ology of Threat Vulnerability and Risk Assessment (TVRAJ[8~hich has been
designed as a threat, vulnerability and risk assessmeiitoehetnd tool for use
whilst writing standards. The purpose of using the TVRA anstardization is to
be able to identify vulnerabilities and mitigate the risksglhen assess the vulner-
abilities that exist in the system with the countermeasamsied. This process
has to be applied iteratively, until the risk of unwanteddients is reduced to an
acceptable level. However, TVRA is a general purpose riskssnent method
that applies to any security architecture.

A 3W-tree (Who, What, hoW tree) is an analysis tool specifydalilt for bio-
metric systems, which can be used to identify critical &tsaenarios. Analysis
based on a 3W-tree leads to concrete questions regardisgcthety of the sys-
tem. Questions raised by other methods do not lead to the keseleof specific
guestions. For each ground of distinction (Who, hoW, Whiagre are several
taxonomies one may choose from. In the 3W-tree presenteavifet each level
we chose one particular security taxonomy that fits the biomsystem we an-
alyze in Section2.4. We stress that our 3W-tree is flexible and supports any
other taxonomy a security architect may find more appropf@tthe particulari-
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ties of another biometric system. Our goal is to identify aynrelevant attacks
as possible, from all relevant points of view while mainiagha comprehensive
structure (the 3W-tree).

Compared to atomic taxonomig®ocess oriented taxonomiéake one step
further and view an attack as a process. We see the exterfs3dvttvee to cover
processes(combination of multiple vulnerabilities) asife work.

2.3.1 The Who taxonomy in 3W-tree

The first level of the 3W-tree is a classic@hotaxonomy from the attacker’s
position relative to the system [60]. In this taxonomy, eltexs are divided into
three classes.

Class lattackers, oexternalattackers, lack knowledge about the system and
have moderately sophisticated equipment.

Class Il attackers, ointernal attackers, are knowledgeable insiders, who are
highly educated and have access to most parts of the system.

Class lll attackers are funded organizations with ample resoure¢sth able
to assemble teams and design sophisticated attacks. Theagepinion is that a
system is considered secure if it can withstand class | aassdl attackers. Itis
widely acknowledged that there is no protection againstscld attackers and we
also do not consider them.

2.3.2 The hoW taxonomy in 3W-tree

The second level is howtaxonomy described first by Raet al, [62] as a
taxonomy for secure devices. The actions allowed for acletan this taxonomy
are described below.

When the attackepossessethe device she can open it and break tamper ev-
ident seals with impunity. She may try different attacksrfehow the system
works. For example the attacker may buy a biometric systemticial to the one
she intends to attack.

An attacker mayandlethe device physically, but cannot break tamper evident
seals on the device. For example, she has access to the figadenited amount
of time, or under the watchful eye of the owner of the device.

In an active approachthe attacker may interfere with the device (e.g. over
a network) and transmit data to the device from either ancunmgeor a secure
domain.

In apassive approacthe attacker may be in the proximity of the device, but
she cannot touch it. She may be viewed as eavesdropper.
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The classes presented are related to one andtbssessinghe device means
that the attacker camandlethe device and magpproachthe device. This rela-
tionship can be formalized as:

passive approach active approachC handleC possession

An observation is that portable biometric devices are mkedyto be attacked
in possessioandhandlesituations so there must be some methods to ensure the
physical integrity and robustness of such devices. Fixednbiric devices are
more likely to be attacked by means géassive approachnd aractive approach

2.3.3 The What taxonomy in 3W-tree

The third level of the 3W-tree, thehat deals with the threats a system might
be subject to, which in case of a biometric system, is eitHats&@ acceptancer
afalse rejection

A 3W-tree is useful for identifying attacks on a general baint recognition
system in the design phase, which allows to classify knovatks and to identify
the possibility of new attacks in a systematic manner. Thiheé subject of the
Section2.4.

2.3.4 Threat Evaluation

The construction of a 3W-tree for a particular biometrictegs is the first
step to determine the effects and likelihood of an existimgdt. We usattack
scenariogo describe and document each identified threat in the bracrsetcurity
architecture. The attributes of an attack scenario aslddt@m Table2.3 allow the
construction of arisk assessment matrixhich assists the security architect in
taking decisions regarding critical attack scenarios. fiack scenario is a path
in the 3W-tree ofigure 2.3, named:iyz where:

1. x € I, E wherel stands for internal attacker arid stands for external
attacker.

2.y e {PA, AA, HA, PO}, PA stands fopassive approaghd A stands for
active approachH A stands fohandleand PO for possession

3. i € {1..17}, indicates vulnerability;, seeTable2.2.

4. z € {A, R}, whereA means an attack leading tdalse acceptancattack
and R means an attack leading tdalse rejectiomttack.
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I.Description

Scenario: Name of the evaluated scenario.

Tactics: Describe a possibility to realize this attack

Name: Name of the attack as it is known in the literature or a
link to a paper that describes this attack (if known)

[I. Evaluation

Damage: The estimated consequence of the attack for the de-

vice. The possibilities areminor, moderate major.

An attack with minor consequences will temporarily
damage the device. A moderate consequence attack
will temporarily damage the device but it needs spe-
cialized personnel to repair it. An attack with major
consequence will completely ruin the device, and the
whole or parts of it need to be replaced.

Knowledge: Lists the knowledge that an intruder must have to
launch the attack. The categories are: common sense,
high school education, expert.

Occurrence: an educated guess of the probability that such an at-
tack occurs. The estimators atew (unlikely to hap-
pen), medium(it might happen)high (likely to hap-
pen)

[ll. Defense
Countermeasur. some notes on how this attack might be prevented, or
how at least to mitigate its consequence.

Table 2.3:Detailed description of an attack scenario.

Each path in the tree corresponds to an attack that has toaheaesd. For
example, scenario IPO1A identifies the following: an intérattacker (denoted
by the letter 1) in the possession situation (denoted bydtiers PO), vulnerability
pointV; (presenting a fake biometric/tampering with the sensoopit@in a false
acceptance (A).

To describe and evaluate scenarios we use three classéstnftas. The first
class of attributes (denoted with I, Description) is a diggicn of what is known
about this attack in the literature. The second class abates (denoted with I,
Evaluation) asses the impact, likelihood and skills regpiito realize an attack.
The third class of attributes (denoted with Ill, Defense3atdbes possible coun-
termeasures, which is particularly useful if there is mdrantone person, with
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different backgrounds and knowledge, which evaluate tlcergg architecture.
When described in detalil, it also provides a useful indicatdiow much it costs
to implement the countermeasures.

2.3.5 Attacks trees and the 3W-tree

Attack trees offer a method of analyzing attacks [58, 69 fidot of the tree is
identified with the goal of compromising a system and the heafes are ways of
achieving that goal. The goals of the children of a node cbelthe compromise
of a sub-system or a contribution thereof. There are twosygenodes: the goal
of anand-node depends on the goals of all its children, and the gotiebr-
node depends on at least one of the children [58]. There anenewcial tools to
support analysis working with attack trees; for exampleSkeulTree tool from
http://ww. anmenaza. com .

The main advantage of attack trees is that they help the miersig visualize
possible attack scenarios and understand the differerd imayhich a system can
be attacked. If there are many possible attacks, or if thererany components
that are subject to attack, an attack tree may become lamghisl case the visu-
alization is ineffective. However, by attacker profile bhpeuning [66], support
tools allow the designer to focus on attacks relevant toiipexttacker profiles.
Another useful feature of the tools is that while constmugta tree the designer
can document the changes and also the reason for changesgnadaotating
nodes.

The main disadvantage of attack trees is that they providy the choice
between and-/or-nodes. This only provides a low level walyreéiking up a goal
up into sub-goals. The general recommendation is to thind, ivehich does not
provide much guidance.

We propose to combine attack trees with 3W-trees. At thedwoel] the 3W-
tree gives rise to concrete questions about the what, howand of an attack.
To answer the question, an attack tree can be attached tdezdicti the 3W-tree.
By constructing the attack tree for each leaf, the analyshuraged to answer
specific, focused questions. In the detailed descripticand@W-tree inTable2.3
an attack tree can be placed in the Tactics attribute.

As a conclusion 3W-tree offers an effective method to idgnkireats related
to biometric systems. Once a threat is identified, one carernak of the attack
tree method to find tactics of how the goal can be achieved lagtaoker.
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Figure 2.4:SmartGun prototype, with a pieso-resistive pressure semsthe grip.

2.4 3W-tree Analysis of Biometric SmartGun

In this section we create a 3W-tree to identify the relevanusty issues for
a biometric SmartGun which is a biometric device intendetethuce casualties
among police officers whose guns are taken during a strulygilee context of the
SmartGun research, our main concern falae rejectiomas this would result in a
police officer not being able to use his gun when necessarfalsk acceptance
attack would permit other persons than the owner of the guiséat.

2.4.1 The Biometric SmartGun

People depend on police officers to protect their lives amggnty. Police
pursue and apprehend individuals who break the law. Armdideofficers are
a common sight in many countries. They are trained to use thai only in
critical situations. Unfortunately it happens regulathat during a struggle the
suspect captures the weapon from the police officer and siiot Research in
the United States has shown that every year approximatétydféolice officers
killed in the line of duty were shot with their own gun.

A smart gun is a firearm which can only be operated by its aizbdrowner.
As such, the gun would be useless in the hands of anyone etsewght intend
to misuse the weapon. We propose to use biometric recogniionake a gun
smart.

The grip of our SmartGun (sdggure 2.4) is covered with a grid of pressure
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sensors that are protected against wear and tear. Thesesarescapable of mea-
suring the static pressure pattern as a function of placewiesgun is being held
(representing the positions and shapes of the fingers orrifhand the pressure
exerted by them) and the dynamic pressure pattern (i.e.rédssgre variation) as
a function of place and time when the grip tightens prior tbipg the trigger.

During the enrollment phase, a template is securely storédtei weapon (and
also in a central database operated by the police). The &enpbuld be a set
of constraints that the measurements have to satisfy onibeaa prototype grip
pattern to which the measured grip pattern must be suffigismhilar.

The template is compared to the measured grip pattern wieewelpon is
handled. If the stored template matches the current sensasumements suffi-
ciently well, the weapon is enabled, otherwise it remairsallied. Therefore,
only the authorized user may fire the gun, and not someone a$taken the gun
away from the authorized user. The type of biometric recogmfor this applica-
tion is verification. In domestic settings, one could alsaogpam the gun to reject
certain people, i.e. children.

The biometric verification in the above application is ty@aent. By holding
the gun, the user implicitly claims that he is authorized $e it. The biomet-
ric data is also presented implicitly, when the grip is sektlin this example the
transparency contributes to safety and user conveniertus.trRnsparency con-
tributes to safety, when immediate recognition is requinezhse of an emergency.
Transparency also makes grip pattern biometrics convetaerse.

After discussions with police officers we realized that theetric SmartGun
must have the size and feel of the guns currently in use. Tdsoreis that a gun
with a different weight or size is hard to adapt to: it reqsiaglditional training to
regain the same accuracy as with the old weapon. Also, potimers often work
in small teams, and each team member should be able to haedietpon of the
other team members, for example when one of the weapong ieidails.

An important requirement is a very low false-rejection ya¢edering it highly
unlikely that the authorized user will not be able to fire theapon. The current
official requirement in the Netherlands is that a police gwstnimave a probability
of failure less than0—*. The overall failure rate of the take-away protection must,
therefore, remain below this value. The recognition muskworrectly for right-
handed and left-handed use, with and without gloves. Eviie ifalse-acceptance
rate is as high as 50%, this would make 50% of the take-awagtgins harmless,
which is a significant improvement over the current situatichere each take
away may be fatal.
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Figure 2.5:Security Architecture of the SmartGun prototype. The dditee shows the

components that are inside the gun and which should be pentday a tamper evident
seal. In the case of the SmartGun the matcher runs insidertioegsor and in the case of
a favorable decision enables the gun. Due to the tamper evsdal the Environment has
no significant influence on the components in the gun. For gheesreason the Crypto
component was removed from the architecture. The existeindee Audit Log compo-

nent is still to be decided, thus at this point in time we reeabthis component from the
architecture.

2.4.2 3W-tree Analysis

In relation to the generic biometric architecturd-igure 2.2, in this section we
present the SmartGun architecture and describe vulngiedilNext, we present
a set of assumptions related to the intended use of the Somart@ich was de-
veloped in close cooperation with the KLPD (Korps Land@ijRolitie Dienst)
and help of the 3W-tree analysis. We conclude this sectidim avset of research
question and conclusions.
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2.4.2.1 SmartGun Architecture

The SmartGun security architecture as showifrigiure 2.5 is a specialized
version of the generic architecture Bigure 2.1. From a conceptual perspec-
tive the SmartGun verification system, as any biometricgaimn system, can
be subdivided into the following blocks: Sensor, Featur&rd&etion, Processor
(Matcher), Memory (Template), Gun Control and Power.

The sensor that is used for this project is a custom desigopiEsistive pres-
sure sensor. It is available in a size that fits the prototypelgut, which is that
of a Walther P5, seEigure 2.4. This sensor consists of two layers of strong and
flexible polyester foil. Each layer has 44 silver electrotigps deposited on one
side. One layer has vertical and the other horizontal st#pgiezo-resistive ink
is printed on top of the silver leads. This construction lssa a network of sil-
ver strips with a resistive element at each crossing. Thieeesg¢nsor array can
be modeled as 44 x 44 network of variable resistors. The resistive elements
are sensitive to pressure. The grip pattern is measured teyntieing each re-
sistor value. This is done by subsequently connecting thedmtal and vertical
conductors to an analog measuring circuit. The connectiansbe altered by
multiplexers controlled by digital logic.

The functionality and the vulnerabilities associated whi other components
(Feature Extractor, Matcher, Storage, etc.Figure 2.5 are described in detail in
Section2.1.

2.4.2.2 Assumptions made for the 3W-tree Analysis

Assumptions create the general environment for describitagk scenarios.
Before analyzing the threats our system is subject to, weersakne realistic as-
sumptions about the intended use of the SmartGun. Aftemsite discussion
with the KLPD, the intended users of the SmartGun, we dewslaplist of as-
sumptions which describe the environment in which the binimeecognition
system will be used. The assumptions are important for rattig the presented
threat model and they regard the operating environmentidial) physical, per-
sonnel and connectivity issues.

1. Assumptions related to users:

(a) (ADMIN.) Administrators of the system (police officers) are assumed
to be non-hostile and trusted to perform their duty in a caeptaman-
ner.

(b) (TRAINING.) Getting used to the smart gun should not imply addi-
tional training for the police officers. However, it may tad@me time
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Figure 2.6:3W-tree of attack scenarios relevant to the SmartGun biooststem. Com-
ponents in grey represent threats that can not be analyz#dsastage. For example since
we do not know how the template is transferred into the gurecassary step for the gun
to recognize its owner, we leave its analysis for later. Detan the assumptions related
to the SmartGun architecture are presented in subsecti2 2.

to get used to the routine of using an electronic gun, likeokegbat-
teries charged, auditing, training and template exchamgeatch team
composition. This period should be as short as possible.

2. Assumptions related to the gun construction:

(a) (SEAL.) Tampering with seal(s) on the gun, which secure the feature
extractor, matcher and all the communication channelsldhmuieasy
to detect and re-sealing should be hard to do.

(b) (WEIGHT.) A new gun with a different weight is hard to adapt to: it
requires additional training to regain the same accuracyitisthe
old weapon. It is desirable to approach the weight of the NealP5
as much as possible so additional training is unnecessary.

(c) (AUTHORIZATION.) The Walther P5 compatibility requirement stat-
ing that the gun must be safe while carrying a bullet in thendber
implies that the time needed between the choice to use tharglithe
actual firing, must be as short as possible. Thus the timeeuefext
authorizing someone must be as short as possible.

(d) (TRANSPARENCY.)The mechanism is fully automated, i.e. the user
does not need to perform additional actions to receive aiztitoon.

35



Chapter 2.Threat Model and 3W-tree

I.Description

Scenario: EPO1R.

Tactics: Jam or break the sensor.

Name: Unknown.

[I. Evaluation

Damage: Major

Knowledge: High school. Which part of the gun is the sensor how

to damage the sensor is easy to determine.
Occurrence: High. It is easy to damage something that is not pro-
tected by a seal and is not tamper resistant.

[ll. Defense
Countermeasur: The gun architecture should ensure that tampering
with the sensor is obvious.

Table 2.4:Detailed description of attack scenario EPO1R.

(e) (CONNECTIVITY.) The gun should be equipped with 1/O interfaces
for data. The sensor for reading the biometric grip pattermi input
interface. The nature of the output or input/output is to eeidied by
experience.

3. Assumptions related to algorithms:

(a) (RELIABILITY.) It is “smart” (or “personalized”) enough to identify
and fire only if desired by the rightful owners and/or othethauized
users.

(b) (FAILURE.) Additional technology may not increase the failure rate of
the current weapon, being once every 10.000 times. Thiadiesl the
False Rejection Rate of the authentication procedure anchéthan-
ical failure rate.

(c) (AD-HOC SECURE INTERACTION.)The gun is able to recognize all
members of a police patrol.

(d) (ROBUSTNESS)rhe gun can identify authorized users when being in
different states, from normal to stressed or even panicked.

4. Assumptions related to the system implementation:

(a) (ENVIRONMENT.) The enroliment procedure takes place in a secure
environment (the police station).
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|.Description:

Scenario: EPO2A.

Tactics: The attacker records a correct biometric signal and then
injects the signal just before using the gun.

Name: Replay attack.

Il. Evaluation

Damage: Moderate

Knowledge: Expert. Measure, record and store the biometric of an
authorized user. If the attacker records the raw bio-
metric then he must know the algorithm that produces
the feature vector, the format of the feature vector and
because the number of elements of the feature vector
depends on the number of user registered to the sys-
tem, he also has to know this number. He also needs
to figure out a way of injecting the signal just before
the gun is fired.

Occurrence: Low. The attack requires inside knowledge of the
system, the number of enrollees, and technical skills:
recording the biometric or injecting the electronic sig-
nal

lll. Defense

Countermeasur: Encrypted communication, challenge-response proto-

col [64], perfect-matching checking [10], etc.

Table 2.5:Detailed description for attack scenario EPO2A.

Each of these assumption is motivated by the strict proesdtar which police
officers work. Other assumptions may be added as a resulteoarhlysis of

attack scenarios.

2.4.2.3 Risk Assessment for the Biometric SmartGun

The assumptions above simplify the 3W-tree analysis artittethree impor-
tant observations. Firstly, in the Who taxonomy or the fiagter of the 3W-tree,
the (ADMIN.) assumption (1(a) in the list above) allows us to restrictttireat
analysis to the external attacker. We also assume the n@argato be trustwor-
thy and that the biometric devices are certified by a certiboaauthority.

Secondly, at this point in time we do not know what informat{@ any) is
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transmitted on the wireless link, ségure 2.5. Since this is the main point of
attack for the external attacker in bgtassive approachndactive approachin
the second layer of the 3W-tree at this stage we cannot amtigm. We remind
the reader that 3W-tree analysis should be an iterativeeggand once new
information is available or there are changes in the enwiremtal condition the
3W-tree analysis should be revised, S¥eapters.

Thirdly, a tamper resistant seal mounted on the gun handiufaption 2(a)
(SEAL.)) makes a false rejection attackpossesituation hard. We assume it is
difficult for the attacker to disassemble the device, tampdr mechanical parts,
re-seal the gun and then return the gun to the police officrowt the tampering
being noticed.

As aresult of the above assumptions, from a total of 96 ataekarios for the
external attacker (12 vulnerabilities4 approach modalities (posses, handle, etc)
x 2 goals (false acceptance, false rejection)) we are leffiaity 12 most relevant
attack scenarios.Figure 2.6 shows the 3W-tree for the biometric SmartGun.
Threats shown in grey, have to be dealt with once more infoomabecomes
available. The practical realization (sealed or not) of phgsical link between
the sensor and the feature vector (vulnerabllifydetermines the risks associated
to an external attacker in handle situation. For this reagoRigure 2.6 threats
which we consider as relevant, but which cannot be evaluatehlis stage are
represented in greyTable 2.4 andTable 2.5 list, as example attack scenarios
EPO1R and EPO2A. Description for the other 11 threats carobedf in the
technical report [9].

Once the consequence of the damage and the frequency ofenceihave
been estimated the final step is the risk assessment. Thassgssment ma-
trix in Table2.6 offers a means to categorize the risk associated with &isack
scenario. We distinguish between three levels of risk. Lewe risk is undesir-
able and requires immediate corrective action (any risk wigjor consequence
and high frequency), level two risk is undesirable and nexgucorrective action
but some management discretion is allowed (any risk witin/ngpderate dam-
age and medium/high frequency) and level three risk is dabégp with review
by management (any risk that produces minor damage and\ugsdbability of
occurrence).

The main conclusions of the risk analysis are: there is nel lewe risk corre-
sponding to an external attacker relative to the SmartGurerd are four attack
scenarios with level two risks which correspond to (1) scertaBPO5A, where an
attacker in possession situation controls the memory ofjtime thus he has read
and write access, (2) scenario EPO11A, where by emptyingattery, the gun
can be forced to enter an unstable state, maybe allowinguhéogoperate with-
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Occurrence Damage
Major | Moderate Minor
High EHA1AEPOI1A,;
Medium EPO5A; | EPOL1A; EPO16A;
Low EPO7A; | EPO2A;EPO3A;EPO4A;EPOBA; EHALR;EPOI1R;

Table 2.6:Risk Analysis Matrix for the SmartGun for the scenario&igure2.6.

out biometric recognition, (3) scenarios EPO2A and EPOl1Anelan attacker in
handle or possess situation can be accepted as an authaserenf the SmartGun.

The conclusions above are preliminary. In 8ection2.4.2.4 we discuss sev-
eral open questions regarding the architecture of the &unart The choices be-
tween the alternative solutions of the open questions halefiaite influence on
the specialization of the architecture presente#figure 2.5. We recommend a
new 3W-treeanalysis of the SmartGun architecture once pe@ guestions are
answered, to refine the preliminary conclusions.

2.4.2.4 Open Questions

We discuss several open questions regarding the secuchytesture of the
SmartGun. For each question several alternative solutaisd, in which case
only experience can help chose the right one.

ENERGY CAPACITY.How long should the power system be able to energize the
electromechanical components before recharging?

A large energy capacity makes the device more mobile. A rgelstation can
be centralized, at a police station for example. The doveneida large energy
capacity is the size of the battery, which requires precgpagce. A choice can be
made on whether to decrease the number of bullets, saving $pacomponents
like the battery. Another option is to implement the pod#ibio change batteries
while on duty, meaning that the officer carries spare batserihis would imply
a reliable energy level indication, so that the officer is veat in time that the
battery needs to be recharged or replaced.

Having a smaller energy capacity battery means more fregaeharging and
smaller size. The necessity of frequent recharging couttbb@bined with regular
information exchange between the weapon and the suppowitngprk.
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Authorization Period Session
A A
[ \Y4 N
Locked Locked Ready to fire Locked
Time
Hand on Accept Session end

Figure 2.7:Successful Authorization time line.

CONNECTIVITY. Should the information stored on the pistols be accessile r
motely or not?

Remote access provides more mobile smart guns. Standandemance and
update operations can be done from a distance, making isuitted to a central
location, such as a terminal. The disadvantage is that eehaek use the wireless
link too, if the communication is insufficiently protected.

Remote access also implies putting a radio in the gun, rneguapace and
putting an additional load on the limited energy supply.

Remote access requires a more complex communication ptdtat guaran-
tees security, reliability and atomicity for template upa This places an extra
burden on the computational resources of the mobile teimiBstensive infor-
mation on different forms of mobile communications and ad-hetworks can be
found in standard textbooks such as Rappaport [63].

AUTHORIZING. After successful authorization, when and how should thé@ess
end?

Before we discuss the dilemma implied by this question, wedrte define
the terms locked (the state of the weapon when it cannot tab) fred ready to
fire (the state of the weapon when it can be fired). We also neel@fine the
terms authorized user (a user who has his biometric idestoted in the gun) and
impostor (a user who does not have his biometric identitsest@n the gun and is
fraudulently trying to use the weapon).

The default state of a gun is locked. Before an authorizedasseuse the gun
an authorization must take place. This is a classifier basegparison between
the stored biometric identity and the freshly measured btoimimpression. A
person can fire a gun if the two match. This period is calledhtitborization pe-
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Authorization period Time based session
A A
4 \Y4
Locked ‘ Locked ‘ ' Locked
‘ ‘ Ready to fire Timeout >
Time
Hand on Accept Hand on
\ /

Event based session

Figure 2.8:Event and Timeout driven Session Ending.

riod. A session is the period of time after a successful authtion period during
which the gun is ready to fire.

A long session makes it possible that the gun can be used llyaar{anautho-
rized) user, for example when an accepted user is deprivieid gun. This safety
gap clearly threatens the advantages of "smart” guns. Oonttiexr hand, a short
session length requires the gun to check the biometricrpattea more frequent
basis, which takes resources and distracts the officer.

Rather than choosing a time constraint for ending the sesgiocan also be
event driven. Ending the session when the hand is no longéreogun implies
that the gun can only be fired when the authorized user hasisihands, which
has obvious advantages. Also, by choosing an event drivehaném, there is
no need for a clock on the gun, thus saving space. Even betidrdan both a time
and event driven session end can work in conjunction, lackie gun when the
hand is off the gun or when the gun is unlocked for a long peoicgme. This is
represented by the following question:

After rejection of the supplied pattern, how long should gioe wait before
another sample is taken and examined?

We define the terncool downas the minimum amount of time required be-
tween two consecutive authorizations. A short cool dowiogdavors the officer
in case he has been rejected. However, an imposter canipeséweral trials in a
shorter time frame, so a longer cool down period works agaimsmpostor. Ad-
ditionally, a longer cool down saves resources due to lesgint authorizations.
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Authorization periodCooldown Authorization period

A A A
[ N A\ \
Locked| Locked Locked | Locked ‘ Locked/Unlocked
‘ ‘ ‘ Time
Handson Reject Resample  Accep/Reject

Figure 2.9:Authorization cool down after rejection.

POWER FAILURE.If the power supply fails, should the gun be unlocked by diefau
or locked and give a warning? If the electronic part of the daits, a choice has
to be made on whether the gun should be locked or not.

A police officer must be able to fire his gun even if the battergmpty. On
the other hand, a fail safe mechanism that allows the gun fodzk even when
the battery is empty can be used to bypass the biometric nécmgphase. lllegal
gun traders would find benefit in methods that disable thereleics, for exam-
ple emptying the energy supply or frying sensitive circwith electro magnetic
pulses. Thus a failsafe mechanism comes at a price.

In the above we presented several open questions regahdingdctical real-
ization of the architecture of the biometric SmartGun. QeMperience which of
the alternative solution is best.

2.5 Conclusion

In this chapter we introduce the 3W-tree as a tool for threatysis related to
biometric systems and we use it for the analysis of the Snuart@ SmartGun is
a typical example of a biometric system, which is intendefdace the classical
mechanical gun with a weapon that can authenticate thefuigiwner.

We discussed the fundamental properties of a mechanicalghrpolice of-
ficers from KLPD. As a result of these discussions and thampneary 3W-tree
analysis associated to an external attacker we proposech iggtommendations
for the security architecture of the SmartGun.

e LOW FALSE REJECTION RATEOne of the research challenges is that the
False Rejection Raté&"RR) must be less thah0—*, which is the accepted
rate of misfire for a police weapon.

e LOW FALSE ACCEPTANCE RATE.Although not as critical as thERR,
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2.5.Conclusion

the SmartGun should have a low false accept rBfeR(). It is considered
acceptable that once in ten trials the SmartGun may acceglt@nuser as
the owner of the gun. This would reduce police casualtiesd8%.9

e SECURE SEALAnN attacker handling the gun should not be able to access
components inside the gun. There should be a tamper evidahos the
gun handle and electronics. We note that the (SEAL) assomptily states
that once the seal on the gun handle is broken, it should feutito restore
it.

e ROBUST SENSORThe sensor should be resistant enough to withstand an
attacker who is trying to break it. If she succeeds it sho@labvious for
the police officer that the sensor is compromised.

e SECURE TEMPLATE STORAGHL! should not be possible to reconstruct the
grip pattern from the template stored in the gun.

e SECURE TEMPLATE TRANSFERPolice officers work in teams. Each of-
ficer in the team must be able to fire the other officers weaparmidlly,
teams are scheduled in advance so that appropriate tes\péatde loaded
into the weapons at the police station. However, in emeigsribis is not
possible. In this case police officers have to team up unpedpand swap
templates in the field. Police officers may work with colleagirom other
departments, even from neighboring countries, so we mayassiime a
common key, or even a public key infrastructure. We preselavba list
of requirements that the secure template transfer protocst possess to
solve the above problem:

— The initialization of the protocol should not require angsial button
on the gun handle;

— Police officers should be able to perform the protocol withaiwy
available security infrastructure (shared keys, linksusted third par-
ties, etc.).

— The protocol should be fast and easy;

— Before loading a new template in the gun authorization ofghe
owner is required;

The 3W-tree analysis should be an iterative process and méwgmformation
is available we recommend a new 3W-tree analysis. In thalisve the first two
items LOW FALSE REJECTIONand LOW FALSE ACCEPTANCEdepend on the
performance of the biometric recognition algorithm which the subject of the
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forthcoming thesis of Xiaoxing Shang [71]. TI8®ECURE SEALand ROBUST
SENSORcan be considered as engineering challenges which can besadd in

a follow up project. We considSECURE TEMPLATE STORAGHN Chapters3, 4
andSECURE TEMPLATE TRANSFER Chapter5 as new research directions and
we concentrate on addressing these two challenges.
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Chapter 3

Fuzzy Extractors for Continuous
Distributions

The use of biometric features as key material in securityomals has
often been suggested to avoid memorizing long passwordsy®. k
However, the use of biometrics in cryptography does not cotitie
out problems. It is known that biometric information lacksifar-
mity, and that biometric information is not exactly repradile. This
is the opposite of what is considered suitable for a crytplic key.
Fuzzy extractors allow cryptographic keys to be generatad foisy,
non-uniform biometric data. They can be used to authemti@atser
to a server without storing her biometric data directly. STisiimpor-
tant because the server may not be trusted.

We show that a relation exists between the entropy of the &gys
tracted from biometric data and the quality of the biomeddata. This
information can be used a-priori to evaluate the potenfighe bio-
metric data in the context of a specific cryptographic appion. We
model the biometric data as a continuous distribution andyiwe a
new definition for the fuzzy extractor that is suitable foisttype of
data. We propose a new construction calteduzzy extractor which
represents an extension to the classical fuzzy extractoorinuous
source €9 data. We apply the new definition to three schemes pro-
posed in the literature for the protection of biometric tésbgs.

Unprotected storage of biometric information is an exanopkeserious threat
for the privacy of users because a biometric template magateensitive personal
information [80].
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A fingerprint for example can be reconstructed from a stofethbtric tem-
plate as shown by Matsumotet, al.[51]. Another privacy threat is tracking users
across multiple databases. The usual solution of usingréift passwords in dif-
ferent systems does not apply for obvious reasons - a perdgrhas a limited
number of biometric identification available: ten fingemspteyes, etc. Once a
biometric template is compromised it cannot be re-issued.

Biometric template protection aims to protect the storemmatric identity
of a user from abuse in two ways. Firstly, a protected tereplateals almost
nothing about the biometrics and if a database with protdai@metric templates
is compromised, the attacker cannot learn much about thedirac template.
Secondly, if such an intrusion is detected the biometrigpiere is not lost, since
at any time the protection scheme can be reapplied on thmakiggata.

The main challenge in protecting biometric templates usingptographic
techniques is coping with noise, which is always introduiced biometric sam-
ples during data acquisition and processing. Biometrigptate protection schemes
can transform a noisy, non-uniform biometric template espnted as a sequence
of real numbers into a reproducible, uniformly-distribdifeinary string. There
are many parameters that control this transformation, xample the length of
the output binary sequence, the probability that two meamsants coming from
the same users will be mapped to the same binary sequence, etc

Two abstractions, secure sketches and fuzzy extractoespreposed by Dodis,
et al[32] to describe the process of transforming a biometrigiiene into a repro-
ducible, uniform binary sequence. A secure sketch can coiiie noise between
two biometric measurements coming from the same user by ssime public
information called a sketch. The result of a secure sketehregproducible se-
guence, which is not, however, uniformly distributed andsthot suitable to be
used as cryptographic keys.

Fuzzy extractors can be used to extract randomness fromehientata to
make the output of a secure sketch suitable for cryptogeapdys. A fuzzy ex-
tractor, is a pair of two procedures. The first is tiEnerateprocedure, which
is used once when the user generates a key for use on thetadtsgsver. The
second is theeproduceprocedure, which is used to authenticate the user to the
server.

The generateprocedure takes as input the noisy datand then it outputs a
public sketchp and a random binary sequence The generate procedure com-
putesp in such a way that no significant information is revealed alloeibiomet-
ric data. The server will store the pdjs, h(r)), whereh(r) can for instance be a
hash of the random binary sequence used for authentication.

The reproduceprocedure takes as input a fresh measuremeat the users
biometric and the public sketgh and outputs the random sequendé x andx’
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Figure 3.1: User authentication scenario using a fuzzy extractor. Bgrenrollment
the Generate procedure outputs a random sequencand a public stringp. During

authentication the hash of the output of tReproduce procedureh(r’) is compared to
the hash of the stored binary sequerde). If the two match the user is authenticated.

are similar enough. The similarity measure used is speoifite type of biometric
and the algorithm used. The server can then verify #ia} matches the stored
information.Figure 3.1 shows the architecture of a fuzzy extractor.

In the literature, fuzzy extractors are used for biometatadrepresented as
ann point discrete vectory = (x1, 2o, ...,x,). However, when the noisy data
originates from a continuous domain (k.€s not a collection of discrete points, but
is a probability distribution that describes the behavidhe eachr;) the general
approach is a three step procedure applied on each vectoereiseparately:

1. (Quantization.) A quantizer transforms the points medeh the continu-
ous domain into a suitable, discrete (binary) form of dasasassumed in
the fuzzy extractor model. After quantization, tinén-entropyof the source
data is fixed.

2. (Secure Sketch.) Apply error correcting techniques.Wnkiometric mea-
surements are exactly the same, even when collected frosathe person
in two consecutive measurements. This step is used to casafeefor the
expected noise. The amount of noise, which can be compeltetiermines
the reliability of the sketch. To improve the performancéhaf sketch, side-
information also referred to dselper data[77] or a public sketch32] is
made public. The helper data, which is used for error caoeatveals
some information about the biometric string. The amounné&rimation
lost by publishing the helper data is known as ¢iméropy-loss

3. (Randomness Extraction.) Biometric data is not unifgrdiktributed. A
randomness extractor will smoothen the distribution oflilemetric data
such that the output of the randomness extractor consistearly uni-
formly random bits.
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Good fuzzy extractor constructions should produce high-emtnopy random
sequences, have high reliability and high security (i.e émtropy loss). In each
of the steps in the general approach one of these parametasidered. After
step 1, the available min-entropy can be estimated, dutethe sensitivity to
changes in the continuous input values and the entropyalesdetermined and in
step 3 determines how uniform the output binary string wall b

PROBLEM STATEMENT.The problem we see, is the gap which exists between the
performance description of a biometric system, as seenépithmetric commu-
nity and the notations used in the security community. Tloelgtric community
looks at error rates and sees the biometric data as conshudistributed. The
most common performance measuresfalee acceptance rat@’AR) andfalse
rejection rate(FRR). The former represents the probability that an attackedevo
be accepted by the biometric system as a legitimate usee tiallatter represents
the probability that a legitimate user would not be recoegdias such by the bio-
metric system. As opposed to the biometric community thersggccommunity
looks atreliability, min-entropyand entropy-lossand sees the biometric data as
discretely distributed. Quantization is used as a meansidgdthis gap. How-
ever, while steps 2 and 3 in the general approach are wellrsioadel, little is
known about the effect of the choice of quantization stratiegstep 1 and the
effect of the quality of the biometric data for the overalhstruction.

CONTRIBUTION. In this chapter we extend the scope of the fuzzy extractors to
continuous source data to bridge the gap between concketsrlior ratesH{AR
andFRR) from biometrics and concepts like reliability, min-ergyoand entropy-
loss from security. We proposs-fuzzy extractoras a unifying view on template
protection schemes. This gives us new insights. We showthieatey length of
the binary sequence obtained by applying a fuzzy extrast@biometric template
depends on the amount of distinguishing information thatexn the biometric
data or in other words on the error rates. We give an upperdoarthe number
of uniformly distributed bits that can be extracted fromaegi set of data charac-
terized byFAR andFRR. This information can be used a-priori to evaluate the
potential of a biometric data set in the context of a specifipimgraphic applica-
tion. To demonstrate the power of cs-fuzzy extractors weghexisting template
protection schemes in the new framework of cs-fuzzy extract

ASSUMPTIONS.In this chapter we make two important assumptions. The first
assumption is related to the error model of our biometri@adat/e assume the
additive noise model [28] for our data, where observatidreash feature:; can

be perturbed by noise.
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The second assumption is related to the existing knowlethgee precisely
we assume the targeAR andFRR are chosen before the first step (quantiza-
tion) in the general approach of a fuzzy extractor. Althotige assumption is
not very common in the world of security where one assumeisdirknowledge
regarding the probability distribution, the assumptiscommon in the world of
biometrics. Assuming th&€ARand FRRis known, is a reasonable assumption
when considering the application scenario of a fuzzy exraé\s a pre-requisite
for the fuzzy extractor design, the following steps are take

1. Collect biometric data from individual users. Each usék offer several
measurements of their biometric data (e.g. fingerpring,faoice, etc).

2. For each individual user a mean (or template) and a vagienestimated.
The biometric data of the user is modeled as a continuousapitity dis-
tribution. This continuous distribution is callggnuine distribution.

3. The mean and the variance of the biometric datallofisers is estimated.
The obtained probability distribution is called thepostor distribution.It
is expected that the variance of the impostor distributemich larger
compared to the genuine distribution.

4. A biometric classifier based algorithm is used to produezeiver operat-
ing curve(ROC ) by varying a discrimination threshold.

5. OntheROC curve atargeFAR andFRR are chosen;

After the above steps are performed a generic fuzzy extracteeme is ap-
plied on the biometric data using the discrimination theddhwhich gives a direct
link to targetFAR andFRR.

ROADMAP. We look at related work irSection3.1. Notation and background
information is introduced irSection3.2. The extension of the fuzzy extractor
definition to continuously distributed data and the modgbhintrinsic relations
between the error rates of biometric information and theupaters of a fuzzy
extractor are presented 8ection3.3. Examples of practical template protection
schemes modeled in the new framework of cs-fuzzy extract@gpresented in
Section3.4. Section3.5 concludes this chapter.

3.1 Related Work

In the literature the source of biometric data is considecebe either con-
tinuous or discrete. Therefore template protection scsaran be divided in two
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classes. Representatives of the first class are continwawmsesshielding func-
tions [49], the reliable component scheme [76] and the rutitscheme [25, 28].
The fuzzy vault [79] and the pin sketch [32] belong to the selcdass.

It is difficult to compare the performance of these schemealtme there is no
unified view on the security evaluation strategy. All authestimate the error rate
of their system in terms dfAR andFRR, but when it comes to evaluating the
strength of the resulting binary sequence different asthave different opinions.

Monroseet al.[57] and Uludaget al.[81] compute the guessing entropy or the
number of trials an attacker has to make to find the correerpisequence while
Zhanget al.[90] and Changet al.[25] estimate the number of effective bits in the
resulting key and propose a weighting system for choosiadp#st combination.

Changet al.[24] analyze the security of a sketch by investigating theam-
ing entropy of the biometric data, given that the sketch igenaublic. The same
approach is taken by Boyest al.[19].

Dodiset al.[32] use both min-entropy and entropy loss.

Chenet al.[28] use as security measure the entropy of the output bstang
and the mutual information between the output binary stengd the published
helper data. Tuylgt al. [76] estimate the information leakage using the condi-
tional min-entropy between the public string and the birsring.

This brief summary highlights the importance of developangnified theory
that supports a thorough analysis of all schemes mentioned.

3.2 Preliminaries

Before we delve into the differences between discrete antiramus source
biometrics, we need to establish some background. We stagiving our no-
tation, as well as some basic definitions. Secondly, we sumenthe fuzzy ex-
tractor for a discrete source as given by Doelisl. [32] and Boyenet al. [19].
Thirdly, we briefly discuss the chosen model of the contirusaurce and its im-
plications. Lastly, we remind the reader of the definitiohbiometric error rates
commonly used in the literature.

NOTATION. By capital letters we denote random variables while smékie are
used to denote observations of random variables.

A random variabled is endowed with a probability distributiofy (a). When
distinguishing between discrete and continuous randonallarwe use super-
scripts. WithA¢ we denote the random variable endowed with a discrete proba-
bility distribution f,.(a) while A¢ is used to denote the random variable endowed
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with the continuous probability distributiofyc(a). With « «— A we denote an
observatior: of the random variablé.

It is common in the biometric literature [16] to model botle thiometric data
for all users in the target group (i.e. all users that the lgisimrecognition system
is intended to recognize) and the biometric data for onergenser in the target
group. In the rest of the paper we use the random variehdnen referring to
the target group, its distributiofi-(+) is known in the literature as thenpostor
distributionor thebackground distributionl16]. We use the random variable
when referring to biometric data which describes one useerasf x (x) is known
in the literature as thgenuine user distributiof16].

In the literature a biometric measurement is representash agoint feature
vectorr = (zy,x9, - x,) € X. However, without reducing the generality, in
the remainder of this chapter, when referringsiave consider a one dimensional
feature vector representation which captures all aspéasemplate protection
scheme.

We use the random variable when referring to public data (the sketch) and
R for random binary strings, which can be used as cryptogcapdys and/, to
denote the set of uniformly distributed binary sequencdsrajth/.

MIN-ENTROPY. When referring to cryptographic keys the strength of the ikey
measured as the probability that an adversary predictsaioe wf the secret key.
The adversary’s best strategy is to guess the most likelyeval hemin-entropy
or thepredictabilityof a random variablel denoted by .. (A) is defined as:

Hy(A) = —logy(max Pr(A = a)).

a—A

Min-entropy can be viewed as the “worst-case” entropy [32].

FUZZY EXTRACTORS.For modeling the process of randomness extraction from
noisy data Dodiset al.[32] define the notion of a fuzzy extractor, degure 3.2.

A fuzzy extractor extracts a uniformly random strindfrom biometric measure-
mentx of userX in a noise tolerant way with the help of some public string

Enroliment is performed by the generate procedure, whiclnpat of the
biometricz extracts the binary string and computes a public string During
authentication, the reproduce procedure takes as inpuh@nbiometric mea-
surement:’ and the public string and it will output the binary string if the two
biometric measuremenisandx’ are within a predefined distance.

For a discrete random variahll€, over the discrete metric spagd endowed
with a metricd, the formal definition of a fuzzy extractor [19, 32] is:
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p

Generate Reproduce

Figure 3.2:A fuzzy extractor is a two step construction. The first stehe<Generate
procedure which on input of biometricoutputs a binary string: and a public stringp.
The Generate procedure is executed once. The second step iR¢heoduce procedure
which takes as input the biometric measuremérand with the help of the public string
p outputsr.

Definition 1 An (M, m, [, t,€) fuzzy extractor is a pair of randomized proce-
dures, generate and reproduce, with the following propetti

1. The generation procedure on input:ofe M outputs an extracted string
r € R and a public stringp € P.

2. The reproduction procedure takes an element- I" and the public string
p « P as inputs. Theeliability property of the fuzzy extractor guarantees
that if d(x,2’) < t andr andp were generated byr, p) < Generate(z),
thenReproduce(2’, p) = r. If d(z,2") > t, then no guarantee is provided
about the output oReproduce.

3. Thesecurityproperty guarantees that for any distribution on the random
variableI? with min-entropyn, the stringr is nearly uniform even for those
who observe: if (R, P) < Generate(X), thenSD((R, P), (U, P)) < ¢

A fuzzy extractor igfficientif Generate andReproduce run in polynomial time.

In other words, a fuzzy extractor allows to extract some camaess- from
the biometric measurementof a random useX ? chosen from the population
of all usersI'®. The reproduction procedure which uses the public stpipgo-
duced by the generation procedure will output the striag long as the biometric
measurement’ is within distancet from the valuexr used during the generate
procedure. This is theorrectnesgroperty of the fuzzy extractor, the one we re-
ferred to earlier aseliability. The securityproperty guarantees that the variable
R looks uniformly random to an attacker and the probabiligttthe guesses the
value ofr for from the first trial is approximately—"™. Security encompasses both
min-entropyand the lack of uniformity of the random sequence.
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We have two observations related to the above definitiostliziin the above
definition R = {0, 1}! thus a random binary string of lengthThe public string
P = {0, 1}* which can be for example the syndrome of an error correctintgc
However, there are template protection schemes that fit thaehof the fuzzy
extractors for whichP is drawn fromR [49] or Z [76]. Secondly, one can say that
fx(x) has min-entropy only if it is a discrete probability distitton. Thus the
above definition of fuzzy extractors works only when the bébne is represented
discretely.

DISTRIBUTION MODELING. In the given examples, we model both the impostor,
fre() and the genuine distributiofic.(x) as multivariate Gaussian distribution
since it represents a common model for real world raw datawmite fx.(z) =

N (g, 0,) and fre(y) = N(p,0,). We emphasize that this assumption is not
necessary for the definition of tles-fuzzy extractors.

To estimatefy.(z) multiple biometric measurements are collected from each
user and the average and the standard deviatien also known in the literature
asintra-classvariation, are estimated. The small perturbations betweessure-
ments hold important information. They represent an es@ma how far from
the average other genuine samples will be. This is usedablest suitable prob-
abilities of value acceptance and rejection area.

In controlling the error rates of a biometric classifier altfon of interested
is the background distributionwhich represents the distribution of all the users
enrolled in the biometric system. The background distrdsuts computed by
estimating an averagg- and a standard deviatien on the data of all users. The
background distribution is also known in the literatureimpostor distribution
since it assumed to be public information and an attackeusarthis information
produce &'AR or aFRR.

ERROR RATES.The error rates of a biometric system are determined by the ac
curacy with which the matching engine can determine thelaiity between a
measured samplé and the expected valueof distribution fy.(z) [16]. We can
construct two hypotheses:

[Ho] the measured’ is coming from the authentic user;

[H,] the measured’ is not coming from the authentic usa&t,

The matching engine has to decide whetligror H, is true. To express
the accuracy of a biometric system the terfalse acceptance ratd’AR and
false rejection rateFRR are used. Théalse acceptance ratis a Type | error
and represents the probability thdt will be accepted when in fadtl; is true.
Thefalse rejection ratds a Type Il error and represents the probability that the
outcome of the matching engineff but H, is true.
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Figure 3.3:Threshold(T}, T») determines acceptance and rejection regions.

We have a false acceptance every time another user, fromisgtréudtion
fre(v) is generating a measurement which is in the acceptancenrdggcribed
by the interval T}, T»], seeFigure 3.3. We can then write

Ty
FAR = / fre()dy
T

Every time the useX with the distributionfx.(x) produces a sample that is
in the rejection area, sdagure 3.3 he will be rejected, thus

Ts
FRR = 1 — / Fxe(2)d.
T

Dodiset al.[32] assume the probability distribution associated ta#melom vari-
ableI' to be discrete for the definition of fuzzy extractor. Therefdhe class of
template protection schemes that use continuous souraest éibthis model. The
subject of next section is the extension of fuzzy extracédinition to continuous
source distributions.

FROM CONTINUOUS TO DISCRETE DISTRIBUTIONDefinition 1 relies on a
source random variable? with min-entropym. How can we construct a source
with min-entropym out of a continuous distributiofi-(+)?

A continuous probability distribution can be transformetbia discrete prob-
ability distribution by means of quantization. Quantipatdf a variabld© means
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Figure 3.4: Quantization of random variablE® with continuous probability distribution
fre(7) into random variablel® with discrete probability distributiorfr(7y). The deci-
sion regions of the quantization functions are the intesal, - - - ds } while the centroids
are situated inside each interval and denoted With, - - - cs} .

sampling its probability distributiolfi--(~) and rounding the values of to prede-
fined points. By quantization the random variabfewith probability distribution
fre(7), is transformed into random variallé with discrete probability distribu-
tion fra(7), seeFigure 3.4.
Formally, a quantizer is a function that maps each- I'“ into the closest
pointc; < I'?, by
Q(y) = arg min d(v, ¢;)

C,L%—Fd

whered is a suitable distance measure for the metric space of randdablel .
The elements of¢ are known aseconstruction poin{cy, c, .. .}. The subset of
all elementsy « I'“ that are closer to one reconstruction point than to any other
reconstruction point is calleddecision region

WhenT* andT'¥ are one dimensionaf) is called ascalar quantizer. In the
scalar case, the length of the decision region is calledtiye sizelf all decision
regions of a quantizer are equal, the quantizemisorm

EXAMPLE. In the setting ofFigure 3.4 the result of quantization is the discrete
distribution fr. in this picture. The probability of selecting one decisiegiond;
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is computed as

pi= [ fre(7)dy.
/

As a result of quantization the continuous distributifin(y) has been trans-
formed into the discrete distributiofy«(v) = {p1,- - - ps}.

After quantization offr-(v) a userX with probability distribution function
fx-(z) is represented by one decision region, calledath#hentic region From
the perspective of the user there are two possible types afitquation strate-
gies [41]. The first one igser specific quantizatioi25, 28] where the authentic
region is chosen first such that it represents the user pildpalistribution func-
tion fx.(z) as well as possible and the other decision regions and igsimoe
chosen afterwards. In this cage () is quantized differently for each user and
for each a specific set of quantization boundaries are stw@dblic information.
The second strategy isser independent quantizatievhere the decision regions
are chosen such that they are optimal for the average usdhislcase there is
only one set of quantization boundaries for all users [49].

The advantage of using a user specific quantization is @feltamplate pro-
tection scheme. The quantization intervals are tuned tepleeific distribution
of each user and as a result the error rates are lower. Thevdisiage however
is that for each user, the quantization boundaries have tmbwwuted indepen-
dently and stored separately. As a result more data is sitorind database and
more information (user-specific boundaries) is leaked abaach user. A user in-
dependent quantization scheme stores less informatiomanelimportantly less
user specific information. However, the cost is a lower blity of the scheme.

Regardless of the quantization, the authentic region is@mcuch that the
probability associated to the authentic region, given ser probability distribu-
tion function fx.(z), i.e.

pauth:/f_g{('r)dx
d;

is maximized, for a gived,. Also, the authentic region determines both EaeR
and theFRR.

In the example irFigure 3.4 the authentic region i6; and theFAR is rep-
resented by the double dashed area. The probability of a fajection is de-
termined by what is left from the probability distributionrfction fx.(x) after
removingp..:», in Figure 3.4 the dashed area.

The min-entropy of the random variatldlé obtained after quantization, in the
setting ofFigure 3.4 is defined a#l. (') = — logy Pumax Where

Pmax = Maxp;.
i
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In the rest of this chapter we extend the scope of the fuzapetxtrs to contin-
uously distributed data. We quantize the continuouslyithsted source and feed
the result, the discrete source into the fuzzy extractor.tde one step further
and generalize the connections between the parameterfonskxgcription of the
biometric datalfAR , FRR) and the parameters of a fuzzy extractor.

MIN-ENTROPY FOR A CONTINUOUS SOURCH-or a random variabl&© with

a continuous type of probability distribution function itsn-entropy depends on
the precision used to represent its elements. This topiddseased in detail by
Li et al.[48]. The min-entropy can be applied only to discrete typebpbility
distribution functions, or after quantization as showrhe previous paragraph of
the continuous probability distribution function:

Hoo(Q(T°)) = Hoo(I) = —logy max P = ) (3.1)
yel’
In the remainder of this chapter when referring to the mitrapy of a contin-
uous random variablE® we refer to relation 3.1.

3.3 Fuzzy extractors for continuous distributions

We show in this section that there is a natural link betweenprameters
of a fuzzy extractoT'¢, m, [, t, ) and the error rates used for the description of
biometric data.

3.3.1 Relating min-entropym and FAR

The effective key space size of a biometric is linked toRA& by O’Gorman
[61], showing that theFAR (i.e. the probability that a person is accepted by
the biometric system although he is not enroled) is the goitibaof an attacker
performing a brute force password guessing attack. It igraed the attacker has
initial information about his own biometric and that theaalter has to guess the
biometric of a legitimate member of the target group. Howe@Gorman [61]
does not take into account the case when a template proteci@me is used for
the biometric information. In this section we link thA R to the min-entropy of
the keyextractedfrom the biometric data.

Quantization of a continuously distributed random vaedbsl creates a tight
relation between the min-entropy of the random variabl&? after quantization
and the error rates of the biometric system. For the varidbte have a high
min-entropy and thus low probability that an attacker firuks ¢orrect value for
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r one possibility is to lower the values of all the probab#i#p;. Unfortunately,
by loweringp; theFRR increases. The proposition below makes the connection
between the error rates of the biometric data and the con¢epin-entropy.

Proposition 1 For a random variabld™@ with probability density functiorfr« ()
the min-entropym satisfies the relatiomn < —log, FAR with equality when

Pauth = Pmax-

Proof: We takep,,., = max; p;. SINCEPmax = Pauth, WE know that:

m = —l0goPmax < —10gaPauin = —logaFAR

Corrolary 1 FAR < 27™ with equality whemw, i, = Pmax-

Proposition 2 For a discrete random variabléX, the min-entropy,H..(X) is
maximized when the probability distribution of variableis uniform.

Proof: Assume thatX andY are two discrete random variables defined on the
same support with elements. Variabl& has a uniform probability distribution
and variableér” has a non-uniform probability distribution. The min-emuyaf X
is Ho,(X) = n bits.

We will prove the proposition by deriving a contradictionsdime:

Hyo(Y) > Hoo(X)

this means
—log, max Pr(Y = y) > —log, max Pr(X = )

yey zeX
which means that

1
max Pr(Y =y) < -

which is impossible since the probabilities Yh have to sum up to 1 and both
X andY are defined on the same support. This proves the rel&figfy’) >
H.(X) is false and variablé with uniform probability distribution has maxi-
mum min-entropy.

Observation: m, the min-entropy offr«(y) is maximized when the probabil-
ities associated with the discrete distributiga(v) are uniform.

An example of an optimal quantization scheme from this peEgtye is given
by Chenet al.[28], which is discussed in detail fBection3.4.3.
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3.3.2 Relating thresholdt and FRR

According toDefinition1 theReproduce(z’, p) procedure will output the same
binary sequence asGenerate(z) wheneverr andz’ are close. This means that
x andz’ probably belong to the same usEr In Definition 1 this is written as
d(z, ") < t, whered is some metric, for example the Euclidian distance or the set
difference metric. The value @f does not say anything about the acceptance or
the rejection probability of a user, which we feel, is molevant. The probability
of correctly identifying that two measurements belong te #ame user is the
opposite of a Type Il error, thus the detection probability= 1 — FRR is a
suitable generalization of the threshold

3.3.3 CS-fuzzy extractors

The above relations lead us to the following definition of filnezy extractors
for continuous sources.

Definition 2 An(I'¢, m, [, FRR, €) csfuzzy extractor (continuous source fuzzy ex-
tractor) is a pair of randomized procedures gener&fenerate) and reproduce
(Reproduce), with the following properties:

1. Generate is a (necessarily randomized) generation procedure, whitin-
put X¢ drawn fromT, extracts aprivate stringr € {0,1}! and apublic
stringp < P, such that for any distributiod’. with min-entropym, if
(r,p) < Generate(X) thenSD((R, P), (U, P)) < e.

2. Reproduce is the reproduction procedure, which given a measuremént
sampled fromX and a public stringp < P outputs a string: € {0, 1},
r = Reproduce(z’, p), where(r, p) < Generate( X)), with probability equal
to the detection probability?; = 1 — FRR.

A cs-fuzzy extractor isfficientif Generate and Reproduce run in polynomial
time.

A cs-fuzzy extractor preserves the mechanism of the gemnarat reproduce
procedures as proposed in the original fuzzy extractor idiefin The link between
the parameters used in each model is described in the pngcsetitions, thus any
fuzzy extractor is also a cs-fuzzy extractor.
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Figure 3.5: Reliable component scheme.

3.4 Examples

To demonstrate how one may use the cs-fuzzy extractor inipeaeve take
three prominent template protection schemes for contisubstributions from
the literature and fit them in our model. As we discussedaatlhese template
protection schemes cannot be described in terms of clafsazy extractors.

3.4.1 Reliable component scheme

One of the most intuitive schemes in the area of templatesption is there-
liable component schenpeoposed by Tuylset al.[76].

(Generate). During enrollmentn samples{z!, z?, ..2™} are measured. This
is followed by quantization, where a sequergé ¢, ..q™} is computed. During
guantization each measured valtie; = 1..m is compared to the imposter mean
ur as shown inFigure 3.5. If 27 < ur theng’ = 0 elseq’ = 1. A feature is
reliableif all ¢/ are equal. Only in that case the feature will be used.

Whenz has many features, the public stringecords the positions of the re-
liable components.

(Reproduce). During authentication;’ is measured and its value is compared
to ur. The result of the comparison represents the key.
This scheme extracts 1 bit from every reliable componenth wrobabil-
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ity equal to 1FRR. We can characterize the reliable component scheme as a
(T, 1,1, FRR, 0) cs-fuzzy extractowhere

—(z—nx)?

FRR < 3 Jose€ X dw, px > pr

—(e—px)?

Joe X dw, px < pr

The output bit is uniformly distributed, because the prolugionf a bit being
equal to 0 is equal to the probability of the same bit beingaétpl. The main
merit of this scheme is its reliability, because only théatde components in the
feature vector are chosen. The disadvantage is that matwydeaare disregarded
and depending on the quality of the data used the total lemigthe output key
can be short.

3.4.2 Shielding functions

Linnartzet al.[49] were among the first to suggest how to get keys from con-
tinuously distributed sources. Their technique is ingplig watermarking. They
propose a multiple quantization level system with odd-eheamds, se€igure 3.6.

(Generate). As in the case of the previous template protection schemeafth
userX“ multiple measurements are taken and a mearmand standard deviation
ox are estimated. For one feature, therdg bound to the useX* by shifting the
mean of the user distributiop,y to the center of the closest even-odd interval, of
lengthg if the value of the key bit is a 1, or to the center of the closest odd-even
g interval if the value of the key bit is a 0, sed-igure 3.6.

The public string, also called the helper data is computed:

_J@n+3)g—px when r=1
b= (2n—3)g—px when r=0

Heren € Z and is chosen such that:d < p < 4.

(Reproduce) is defined as:

1, when 2ng<a2z'+p<(2n+1)q
0, when (2n—1)¢g<2'+p<2ng

Repz', p) = {

During authentication a noisy featuréis extracted. The key bit is 1 if the sum of
the noisy feature and the helper data is in an odd-even adtand is O otherwise.
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Figure 3.6:Shielding function discretization, embedding a 0 valuebiey

Whenever the measured value has an error greaterithamcan get an error in
the key computation. This scheme can be written &5°al, 1, FRR, 0) cs-fuzzy
extractorwhere:

(34+4i) ¢

22 ox

FRR = oy 2\/52 / e dz.

1=0

(1+44) ¢
2v2 o

TheFRR depends on the quantization step/Vheng is large, the noise tol-
erance is high as well. On the other hand; i$ small, theFAR goes down. The

output sequence is uniform in this scheme as well.

3.4.3 Chang multi-bit scheme

Changet al. [25] select the distinguishing features from the biomsto€ a
user to extract multiple bits. For each feature the left dnedright boundaries;
andR of the background distribution domain are selected so tlitathigh prob-
ability a measurement from any user falls in this interval.

(Generate). The selectedAR determines for each feature an authentic region
delimited by77, T», seeFigure 3.7. The whole regiod, R is divided in segments
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Figure 3.7:Changet al.[25] template protection scheme for continuously disttéul
biometric data.

that have a length equal to the segment determin€efi land7T;. A label is asso-
ciated with each segment. It can happen that some redune@mesits are added
to the left and to the right of respectivelyR to use all labels of a given length.
In Figure 3.7 three more segments with the labels 000, 100 and 011 casideel,
here the genuine interval has label 101. The public stingntains the descrip-
tion of the intervals and the associated labels.

(Reproduce). Every time a user submits his biometric data to the system his
feature will fall in one of the published intervals. The labssociated with this
interval represents the key of this user. An authentic uskkbe/in the authentic
area with probability I¥FRR.

This process is repeated for every user, for every featuteus They have
defined anT, m, [, FRR) where

[Ty —T1 |
pr+—"5

m = log, / fre(y)dy

[To—T|
“F_T

and! = log, 'Tﬁ+§'| andFRR = 1 — [;* fre(7)dy.
The output sequence is not uniform and the consequencess ¢diithare ana-

lyzed in the next section.
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Figure 3.8:In Changet al.[25], the genuine interval can be guessed from one try.

3.4.3.1 Comments on the distinguishable components

To generate stable cryptographic keys Chanhgl. [25] propose to use only
the distinguishable features for key generation. We shawitithis case choosing
the distinguishable feature makes life easier for an irgraad in a particular case
she can almost certainly guess the authentic feature esandne try.

A feature is called distinguishable if the distance betwenimposter mean
pur and the authentic meary is sufficiently large. In the original paper a feature
is distinguishable ifur — ux| > kx - ox. Whereky is a natural number chosen
which determines the distinguishing degree of a featurky lis large the feature
is distinguishing, in other words characteristic to theruké y is small it is the
other way around. In this scheme the authentic meandue to the construction
is always at the center of the authentic interval. The goalointruder trying to
attack this scheme is to find the authentic interval with aimah number of trials.

We model two types of intruders. Both intruders know the atbm used
for generating the key. However, we assume that the first stgpar thetype |
imposterknows the distribution of the populatioti¢ (+)) while the second type
intruder calledtype Il is stronger and also knows the paramei2endR.

Type | The intruder knows that the authentic area of a user is fay dwan the
global mean. In this case she can safely disregard the seégvhene the
mean is situated. This leaves a new probability distrihrugi@%, . 1’_”;@. as

the central segment falls out.

Type Il This attacker knows not onlyi-- () but she also knows the values 6f
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andR. In Changet al.[25] these limits are computed as follows:

£ == IIliIl(,up - kpap,,ux — ]fox)

R = min(ur + kror, ux + kxox)

Herekr andkx are natural numbers chosen by the designers of the system. Fo
example Changt al. [25] recommend fokr the value 5 so that it covers almost
the entire user distribution. If the margih(and the reasoning is the same 1oy
is somewhere situated in the right half of a segment we calysaliminate that
segment. According to the definitiahwill always be smaller thap x, which is
in the middle of an interval. Thus the attacker can elimimditetervals for which
the middle value is smaller thet

If x isinthe the same segment@saccording to the definitiog will always
be at the end of the authentic interval, never inside thevateThis leaves us the
case whereC is in the interval and in this case the attacker can safeiyieéte
this interval as well.

EXAMPLE. In Figure 3.8 we show how dangerous choosing the wrong combina-
tion of parameters can be. Assume the imposter distribugidivided in 4 inter-
vals{d;, ds, ds,d,}. These intervals are published as helper data. The imposter
has to guess which interval is the authentic one. It is asduive the imposter
distribution is known to the attacker.

The attacker can eliminate interval numlagrbecause it contains the global
meanur and she knows that a distinguishable feature should be @y &em the
global mean. A type | attacker has 3 candidates for the coagbentic interval.
However, the three intervals have different probabilitissociated so the order of
guessing will be:d,, d4, d;. In this case she is lucky at the first trial. A type Il
attacker also knows the value 6fandR. The authentic mean is situated at the
center of the authentic interval. The intervglcannot be the authentic one since
its middle value is smaller thefi. Thus the attacker can eliminafg. The same
reasoning holds foR which eliminates/;. As a result the intruder now has only
one candidate for the authentic interval, namgly

SOLUTION. A multi-bit biometric string generation algorithm that istrvulner-
able to the above attacks is proposed by Céeal. [28]. They propose a user-
specific, likelihood ratio based quantizer which allows tiple bit extraction from
each feature. The idea of using a likelihood ratio is driveiidoptimalFAR ver-
susFRR performance in many biometric applications. In the aldponiof Cheret
al. [28] the quantization intervals are constructed such thet have equal prob-
abilities. This gives an attacker (both type | and type IDadalitional information
regarding the genuine interval.
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Chenet al.[28] carry out extensive experiments that compare the padace
of their likelihood multi-bits quantization algorithm \khitthe performance of the
multi-bits quantization algorithm proposed by Chat@l.[25]. The main conclu-
sion of these experiments is that when the user within-slagation is small the
likelihood multi-bit quantization and multi-bit quantizan have a similar perfor-
mance, however, when the user within-class variation gelawhich most often
is the case in practice, likelihood multi-bit quantizatmutperforms the classical
multi-bit quantization.

3.5 Conclusion and Future Work

A fuzzy extractor is a theoretical tool for modeling and campg template
protection schemes which use a discrete source. We gereethé definition to
the cs-fuzzy extractor, which can also handle the contiawgmurce data. We
apply our model to three prominent template protection swein the literature.

Biometric recognition systems are evaluated using the fatseptance rate
and the false rejection rate. The link between the two wdwehib not obvious
even though they refer to the same data. In this chapter we, ghat there is
a natural connection between the false acceptance rase, figjection rate and
the parameters used to evaluate a template protection sahgriemented on the
same data. We also show that the error rates have a direano#wn the length
and robustness of the key extracted from the features ofra use

In this chapter we consider one dimensional or scalar qeeitin techniques.
However, biometric data contains multiple features forheaser. One approach
towards the generalization to multiple independent festus to analyze each
dimension independently. In this case, the relationshipvéen the min-entropy
and theFAR is as expected: the more dimensions we have, the loweFAfie
is and the number of bits, which can be extracted increaseseter, theFRR
increases with the number of dimensions that are used.

Therefore, this may not be the best approach for aggregatingple fea-
tures. Zhangt al.[90] propose a better approach which can reduce bothAtie
and theFRR by simultaneously analyzing all dimensions. Chapter4 we in-
vestigate the influence of various feature aggregation ogstion the length and
robustness of the key.

The contribution of this chapter is related3€ CURE TEMPLATE STORAGE
for continuous source data. We extend the theoretical mufdelzzy extractors
to continuous source data in a new model we termedcc#fazzy extractor. In
the new framework ofs-fuzzy extractors we relate the qualitative charactessti
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of the input noisy data of as fuzzy extractor and the properties of the uniform,
reproducible string.

In the next chapter we extend the scope ofd&éuzzy extractor to a practical
construction termed the fuzzy embedder, which takes intowaa the problem of
renewability of the uniform, reproducible sequence whengame noisy data is
used for multiple applications.
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Chapter 4

Embedding Renewable
Cryptographic Keys into Noisy Data

When using a (cs-)fuzzy extractor in practice additionalpgrties
are needed, such as the renewability of the extracted sirargl the
ability to use the fuzzy extractor directly on continuoupuh data
instead of discrete data. Our contribution is threefold.

Firstly, we propose &uzzy embeddeas a generalization of both the
fuzzy extractor and thes-fuzzy extractor construction. A fuzzy em-
bedder naturally supports renewability, as it allows angttd be em-
bedded instead of extracted. It also supports direct aisatyguan-
tization effects, as it makes no limiting assumptions abloetature
of the input source.

Secondly, we give a general construction for fuzzy embesidased
on the technique of quantization index modulati@h ). We show
that the performance measures dflaM translate directly to the se-
curity properties of the corresponding fuzzy embedder.

Finally, we show that from the perspective of the length eféimbed-
ded string, quantization in two dimensions is optimal. Wesent two
practical constructions for a fuzzy embedder in the twosatisional
space. The first construction is optimal from a reliabiligrgpective
and the second construction is optimal in the length of thbesided
string.

Cryptographic protocols rely on exactly reproducible kegtenial. In fact,
these protocols are designed to have a wildly different wtutpthe key is only
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perturbed slightly. Unfortunately, exactly reproducikéys are hard to come by,
especially when they also need to have sufficient entropy.ekample, one can
hardly expect an average user to remember a password thasisoof a string
of 128 random bits. Luckily, it is relatively easy to find “feyy” sources, such
as physically uncloneable functions (PUFs) [72] and bioioe{32]. However,
such sources are inherently noisy and rarely uniformlyrithsted. The first, main
difficulty in using the output of a fuzzy source as key matasighe noise, which
has to be corrected to produce the same key every time. Te Hukv problem,
the notion of a secure sketch [48] has been proposed. Thadéddticulty lies in
the fact that this output may have a non-uniform distributihile it should be
as close to uniform as possible to serve as a cryptograpiicdkstrong random-
ness extractor could be used to turn the reproducible outpua nearly uniform
string. This naturally leads to the notion of a fuzzy extoadB82], which gives
a reproducible, nearly uniform string as output. A commolry whconstructing
fuzzy extractors is to combine a secure sketch with a strandamness extractor.

However, when deploying a fuzzy extractor in practice, nbffeculties arise.
Firstly, even with the same input, it should be possible toegate many different
keys. This is paramount when considering biometrics, wheaumber of pos-
sible inputs is limited (two eyes, 10 fingers etc.). To achiesnewability of the
cryptographic key, the (fixed) output of the fuzzy extractarst be randomized,
for instance by using a common reference string. Unforelgathis falls outside
the scope of the fuzzy extractor, even though it is recoghéean important and
sensitive issue [19].

Secondly, as explained in the previous chapter the defindfoa fuzzy ex-
tractor only accepts discrete sources as input. Existinippeance measures for
secure sketches, such as entropy loss or min-entropy, heserélevance when
applied to continuous sources [48]. This limitation can lseroome by quantiz-
ing the continuous input. Liet al. [48] propose to define relevant performance
measures with respect to the chosen quantization methodriue that, instead
of defining performance only after quantization, it is betteintegrate the quan-
tization into the definition, so that the intricacies of a tilenous input can be
studied.

CONTRIBUTIONS.Our contribution is threefold. Firstly, we propose a newrpri
itive called afuzzy embeddervhich is a natural extension of a fuzzy extractor.
A fuzzy embedder provides a randomized output, and handalegaay input
sources.

The survey of template protection schemes presented byag)ed al. [80]
divides known template protection schemes into two categor he first category
consists of constructions that extract a cryptographidiay a noisy input. Such
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constructions are elegantly formalized by the notion of zzyuextractor. The
second category consists of constructions that “bind” g@tographic key to a
noisy input. For this category only practical constructi@re known, whereas
formal models do not exist. The notion of a fuzzy embeddes filis important
gap. A fuzzy embedder can be regarded as an extension of y éxzactor,
since it can embed a fixed string (for instance one obtainegpipyying a strong
extractor to the input source) into a discrete source and #uhieve the same
functionality, namely a randomized cryptographic key.

Interestingly, the fuzzy commitment [44] has a direct rielato a fuzzy em-
bedder as well: removing the binding property from a fuzzsnoatment scheme
yields a fuzzy embedder, which suggests that a fuzzy comamitie more general
than a fuzzy embedder.

Secondly, we propose a general construction for a fuzzy dddreusing data
hiding techniques from the watermarking community. Ourstarction is based
on Quantization Index Modulatiort) M, which is a watermarking method that
can achieve efficient trade-offs between the informatiobeuding rate, the sen-
sibility to noise and the distortion [27]. The constructwina fuzzy embedder is
intuitive as most of the properties of a fuzzy embedder caredaced directly
to the properties of the underlyir@ M The trade-offs of the use@ Mgive rise
to similar trade-offs in fuzzy embedder performance messuin this setting,
shielding functions [49] can be regarded as a particulasttoation of a fuzzy
embedder, as they focus on one particular type of quantit@wnever, they only
consider one-dimensional inputs.

Thirdly, we investigate different quantization strategfer high dimensional
data, and we show that quantization in two dimensions gimespdimal length
of the embedded uniform string. Finally, we focus on the tlimensional case,
and give two practical constructions, one being optimainfithe perspective of
sensitivity to noise, and the other being optimal from the lke&gth perspective.

4.1 Related Work

Reproducible randomness is the main ingredient of a goqutagyaphic sys-
tem. Good quality uniform random sources are rare comparéaet more com-
mon non-uniform sources. For example, biometric data igyealstainable, high
entropy data. However biometric data is not uniformly dlgtred and its random-
ness cannot be exactly reproduced. Depending on the sotoperpes several
constructions have been proposed for obtaining cryptducageys from noisy
sources.

Dodis, et al. [32] consider discrete distributed noise and propose fuzzy
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tractors and secure sketches for different error modelses&@hmodels are not
directly applicable to continuously distributed sourcemnartz, et al. [49] con-
struct shielding functions for continuously distributeat@land propose a practical
construction which can be considered a one-dimensi@niklscheme. The same
approach is taken by Lét al.[48] who propose quantization functions for extend-
ing the scope of secure sketches to continuously distaldéga. In chapter 3 we
analyze the achievable performance of such constructioes the quality of the
source in terms of the false acceptance rate and falseiogjeate of a biometric
system.

The process of transforming a continuous distribution tsardte distribution
influences the performance of the overall system, which fuszy extractors and
secure sketches. Quantization is the process of replaoc@iggue samples with
approximate values taken from a finite set of allowed valuBse basic theory
of one-dimensional quantization is reviewed by Gersho.[3Bje same author
investigates the influence of high dimensional quantinatio the performance
of digital coding for analogue sources [3Tl Mconstructions are used by Chen
and Wornell [27] in the context of watermarking. The sameharg introduce
dithered quantizers [26]. Moulin and Koetter [59] give arelent overview of
Q Min the general context of data hiding. Barra,al. [15] develop a geomet-
ric interpretation of conflicting requirements betweermfation embedding and
source coding with side information.

The concept of a fuzzy embedder might seem related to comdepeloped in
the context of information theoretic key agreement [52] enpirecisely to secure
message transmission schemes based on correlated rarsdofaBp However,
the settings of the problem are different compared to oursilé¥h secure mes-
sage transmission based on correlated randomness thieeatiacd the legitimate
participants have a noisy share of the same source datag ifuzay embedder
setting the attacker does not have access to the data source.

ROADMAP. The rest of this chapter is organized as follows.Skction 4.3 we
present the definition of a fuzzy embedder and highlight tifferénces with
fuzzy extractors and fuzzy commitment. 8ection4.4 we propose a general
construction of a fuzzy embedder from aQyMand express the performance in
terms of the geometric properties of the underlying quansizinSectior4.5 we
present two practical constructions for the quantizatidmo-dimensional space,
and compare the properties of these constructions withxiséreg square lattice
packing. The last section concludes this paper.
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4.2 Preliminaries

Before we delve into the differences between discrete antragmus source
noisy data, we need to establish some background. We stayivimg our no-
tation, as well as some basic definitions. Secondly, we suimmenthe fuzzy ex-
tractor for a discrete source as given by Doelisl. [32] and Boyenet al. [19].
Thirdly, we briefly discuss the chosen model of the contireusaurce and its im-
plications. Lastly, we remind the reader of the definitioheroor rates commonly
used in the literature.

NOTATION. Let M be ann-dimensional discrete, finite set, which together with a
distance functiom,, : M x M — R™ is a metric space. Similarly, |&t be ann-
dimensional continuous domain, which together with théathised;, : U x U —

R* forms a metric space. When the domain is clear from the contexised and
drop the subscript.

By capital letters we denote random variables while sméite are used to
denote observations of a random variables. Continuouranariables are de-
fined over the metric spadé¢ while a discrete random variable is defined over
the metric spacé1. A random variabled is endowed with a probability density
function f4(a). We use the random variable when referring to public sketch
data andr for random binary strings, which can be used as cryptogcag#ys.

ENTROPY.When referring to cryptographic keys the strength of theikayea-
sured as the min-entropy, i.e. the probability that an ashrgrpredicts the value
of the secret key from one attempt. The adversary’s bedegiras to guess the
most likely value. Themin-entropyor the predictability of a random variabled
denoted byH . (A) is defined as:

Hy(A) = — log2(rar}_a%< Pr(A =a)).

Min-entropy can be viewed as the “worst-case” entropy [32)r two (possibly
correlated) random variablesand B, theaverage min-entropis defined as

H.o(A[B) = —log By p [max Pr(A = a|B =1)|)

— log (Eb<—B (2—HDO(A|B:b))) :

which represents the remaining uncertainty abdgiven B or the amount of
uncertainty left about variablé when variableB is made public [32] (bothl and
B are discrete random variables).
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Figure 4.1:A fuzzy extractor is a pair of two procedur&snerate and Reproduce. The
Generate procedure, which takes as input a noisy inpuis executed first. The result
is a random sequence and a public sketchy, which is made public. ThBeproduce
procedure, which takes as inputthat is corrupted by noise and the public sketchvill
outputr if z andx’ are close.

MUTUAL INFORMATION. By I(A; B) we note the Shannon mutual information
between the two random variables A and B, which is a measutkeomutual
dependence between two random variable, in the followingesd (A; B) = 0 if
and only if A and B are independent random continuously distributed vargable

STATISTICAL DISTANCE. The Kolmogorov distance astatistical distancebe-
tween two probability distributiond and B with the same domain is defined as:

SD(A, B) =sup |PH(A =v) — Pr(B =v)|.

Informally, this is the largest possible difference betwte probabilities that the
two probability distributions can assign to the same event.

FUZZY EXTRACTORS.For modeling the process of randomness extraction from
noisy data Dodi®t al. [32] define the notion of a fuzzy extractor, deégure 4.1.
A fuzzy extractor extracts a uniformly random strinfrom a valuer of random
variableX in a noise tolerant way with the help of some public sketch

The Generate procedure takes a non uniformly random, noisy inpuand
produces two outputs: a public stripg and a keyr. The keyr is uniformly
random giverp, and according to the definition pf reveals no information about
the inputz. However, one can reproduceexactly when bothy andz’ (close to
x) are presented to tHeeproduce procedure.

For a discrete metric spagéel with a distance measutk the formal definition
of a fuzzy extractor [19, 32] is:

Definition 3 (Fuzzy Extractor) An(M,m,,t,¢)fuzzy extractor is a pair of ran-
domized procedure§enerate andReproduce, with the following properties:

74



4.2. Preliminaries

1. The generation procedure on inputsofe M outputs an extracted string
r € R ={0,1} and a public helper string € P = {0,1}*.

2. The reproduction procedure takes an elemérd M and the public string
p € {0,1}* as inputs. Theeliability property of the fuzzy extractor guar-
antees thatifi(x, 2') < t andr, p were generated bft, p) < Generate(x),
thenReproduce(z’,p) = r. If d(x,2") > t, then no guarantee is provided
about the output of the reproduction procedure.

3. Thesecurityproperty guarantees that for any random variablewith dis-
tribution fx (x) of min-entropym, the stringr is nearly uniform even for
those who observe if (r, p) < Generate(X), thenSD((R, P), (N, P)) <
e where N is a random variable with uniform probability.

A fuzzy extractor igfficientif Generate andReproduce run in polynomial time.

In other words, a fuzzy extractor allows to generate thewamdtringr from
a valuer. The reproduction procedure which uses the public swipgpduced by
the generation procedure will output the strings long as the measuremehis
close enough. Theecurityproperty guarantees thatooks uniformly random to
an attacker and her chance to guess its value from the febidrapproximately
2-™, Security encompasses battin-entropyanduniformityof the random string
r whenp are known to an attacker.

There are two shortcomings related to the above definitioinstly; in the
above definition? = {0, 1} thus a random binary string of lengthThe public
string P = {0, 1}* which can be for example the syndrome of an error correcting
code. However, there are template protection schemes ttiaefmodel of the
fuzzy extractors for whickP is drawn fromR [49] or Z [76]. Secondly, one can
say thatX has min-entropy only if it is a discrete probability dengiipction oth-
erwise its min-entropy depends on the precision or quantizased to represent
the variable [48].

QUANTIZATION. A continuous random variablé can be transformed into a dis-
crete random variable by means of quantization, which weau@iA). Formally,

a quantizer is a functio® : &/ — M that maps each € U into the closest
reconstruction poinin the setM = {¢y, 3, -+ - } by

Q(a) = arg min d(a, ;).

whered is the distance measure definedion

The Voronoi regionor the decision regiorof a reconstruction point; is the
subset of all points it/, which are closer, with respect to a specific distance mea-
sure, to that particular reconstruction point than to aimgpteconstruction point.
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Figure 4.2: By quantization,f4(a) (con-

tinuous line) is transformed intgp(4)(a) Figure 4.3: Quantization of X with two
(dotted line). We can writ€)(fa(a)) = scalar quantizers), and Q; both with step
foy(a). size q.

We denote with/., the Voronoi region of reconstruction poiit WhenA is one
dimensional(y is called ascalar quantizer. If all Voronoi regions of a quantizer
are equal in both size and shape the quantizani®orm In the scalar case, the
length of the Voronoi region is then called thiep sizelf the reconstruction points
form a lattice the Voronoi regions of all reconstructionmgsiare congruent.

By quantization the probability density function of the danous random
variable A, f4(a), which is continuous, is transformed into the probabiligne
sity function fg4)(a), which is discrete (Sekigure 4.2).

QUANTIZATION-BASED DATA HIDING CODES. Quantization based data hiding
codes as introduced by Chenal.[27] (also known as quantization index modu-
lation) can embed secret information into a real-valuedtjtya We start with an
example of the simplest case.

Example 1.We want to embed one bit of information, thus {0, 1} into a
real valuer. For this purpose we use a scalar uniform quantizer with Sitegy,
given by roundingf]—:

Q) = ¢ H |

The quantizer) is used to generate a set of two new quantiZérs (), } defined
as:

Qo(z) = Q(z + vy) — vg and Q1(z) =Q(x +v1) — 1y
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where
q

q
= - andv; = —-.
Vo 4 U1 4
In Figure 4.3 the reconstruction points for the quantizgrare shown as cir-
cles and the reconstruction points for the quant{zgare shown as crosses. The
embedding is done by mapping the painto one of the elements of these two

quantizers.

For example, ifr = 1, x is mapped to the closestpoint. The result of the
embedding is the distance vector to the nearsestr o as chosen by. When
during reproduction procedureis perturbed by noise, the quantizer will assign
the received data to the closestor o point, and output O or 1 respectively. The
set of the two quantizer),, )1 } is called aQ M

The amount of tolerated noise or the reliability is detemliby the minimum
distance between two neighboring reconstruction pointe dize and shape (for
high dimensional quantization) of the Voronoi region detieres the tolerance for
error. The number of quantizers in tQeMset determines the amount of informa-
tion that can be embedded. By setting the number of quastaret by choosing
the shape and size of the decision region the performangegies can be finely
tuned.

Formally, aQuantization Index Modulatiodata hiding scheme, can be seen
asQ M: U x R — M a set of individual quantizer§Q;, Qs, ... Qx }, where
[ = |R| and each quantizer mapse U into a reconstruction point. The quan-
tizer is chosen by the input valuec R such thatQ Mz, r) = Q,(x). The set
of all reconstruction points it = J,., M, where M, C M is the set of
reconstruction points of the quantizgy.

We define theminimum distancer,,;, of a Q@ M as the minimum distance
between reconstructions points of all quantizers inGhit

Omin = min_ min d(c.,,cl.)
r1,r2€R ci EMy, ,02.2 EMyy

whereM,, = {c! 2 ,---}andM,, = {c! .2 ,---}. Hence, balls with radius

717 7”1 727 Tr9)

Zzin and centers ioM are disjoint.

Let ¢, be the smallest radius ball such that balls centered in ttensgruction
point of quantizer, with radius(, cover the univers&. We define theovering
distance\,.x as:

)\max = max Cr-
reR

Any ball B(c, () contains at least one bali(c,, o, /2) for ¢, € M,.,Vr € R.
Hence, balls with radiug,,.. and centers ioM,. cover the univers#.
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Figure 4.4:A fuzzy embedder is a pair of two procedukgsbed and Reproduce. The
Emded procedure, which takes as input a noisy inpwnd a binary sequencegenerated
independently, is executed first. The resulting skethmade public. Th&eproduce
procedure, which takes as input a (possibly) an ingutvhich is corrupted by noise and
the public sketch, will outputr if z andz’ are close.

A ditheredQ M[26] is a special type o€ Mfor which all Voronoi regions
of all individual quantizers are congruent polytopes (galeation of a polygon
to higher dimensions). Each quantizer in the enseniflg Q-, ... Qx} can be
obtained by shifting the reconstruction points of any otheantizer in the ensem-
ble. The shifts correspond to dither vectérs, vs, . . . v }. The number of dither
vectors is equal to the number of quantizers in the ensemble.

Now that we have presented the necessary preliminaries,reveeady to
present the notion of a fuzzy embedder in the next section.

4.3 Fuzzy Embedder

In this section we propose a general approach to embed gngutic keys
into noisy, continuous data. In addition, we show the retatbetween our new
fuzzy embedder primitive and two related concepts, theyfeztractor and fuzzy
commitment. It is worth stressing that the random key not extracted from the
randomz, but is generated independently, $égure 4.4.

Definition 4 (Fuzzy Embedder) A (U, ¢, p, €, §)-fuzzy embedder scheme consists
of two polynomial-time algorithm&Embed, Reproduce), which are defined as fol-
lows:

e Embed: U x R — P, whereR = {0, 1}'. This algorithm takes € ¢/ and
r € R as input, and returns a public stringe P.

e Reproduce: Y x P — R. This algorithm takes’ € i/ andp € P as input,
and returns a string fronRk or an error L.

Given any random variabl& overl/ and a random variable? of sizel the
parameter, ¢, ) are defined as follows:
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e The parametep represents the probability that the fuzzy embedder can suc-
cessfully reproduce the embedded key, and it is defined as
p = minmax Pr(Reproduce(z’, Embed(z, r)) = r|2’ € X).
re TE
In the above definition, the maximum owekE U/ ensures that we choose

the best possible representativéor the random variableX'. In most cases,
this will be the mean ak.

e The security parameter is equal to the mutual information between the
embedded key and the public skef¢hand it is defined as

¢ = I(R; Embed(X, R)).

e The security parameter is equal to the mutual information of the noisy
data and the public sketch and is defined as

d = I(X; Embed(X, R)).

A few notes are needed to motivate our choice of the secuegsures of a fuzzy
embedder construction. Since the public sketch is computéddon X andR, e
measures the amount of information revealed abobiometric or PUF) and
measures the amount of informatiéhreveals about the cryptographic k&y

When evaluating security of algorithms, which derive secr®rmation from
noisy data, entropy measures like min-entropy and averagesniropy or en-
tropy loss are appealing since these measures have cleaitwsepplicability.
However, these measures can only be applied to a variakiehéisaa discrete
probability density function. In the case of a continuousd@m variable these
entropy measures depend on the precision used to représevalties of a ran-
dom variable, as shown in the next example for min-entropy.

Example. Assume that all point are real numbers betweén 1] and are
uniformly distributed. Assume further that points : are represented with 2-
digit precision, which leads to a min-entropl, (X ) = log, 100. If we choose to
represent points with 4-digit precision the min-entropyXobecomes7..(X) =
log, 10000, which is higher tharf{,(X) = log, 100 although in both case¥ is
uniformly distributed on the intervad, 1.

More examples related to average min-entropy and entrggsydan be found
in Li et al.[48]. We chose mutual information measure,fi(& ; P) andI(R; P)
because it captures the measure of dependence betweemtiemraariables re-
gardless of their type of distribution discrete or continsioA similar measure for
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the dependence of two variables is the statistical distart@een their distribu-
tion. In this case our choice is motivated by the generalitgmgby the information
theoretical measure.

FUZZY EXTRACTOR AND FUZZY EMBEDDER.From Definitions3 and 4, we
argue that a fuzzy embedder is more general than a fuzzyceottyaue to the
following reasons:

1. The fuzzy embedder scheme accepts continuous data dsimgpgan em-
bed different keys, while in a practical deployment, a fuexiractor scheme
must be combined with quantization and re-randomizatioadiuieve the
same goals as a fuzzy embedder.

2. Givenal, ¢, p, e, 6)-fuzzy embedder, we can construct a fuzzy extractor as
follows:

e Generate’: U — P x R. This algorithm takes € U/ as input, chooses
r € R, and returng = Embed(z, ) andr.

e Reproduce’: U x P — R. This algorithm takes’ € U/ andp € P as
input, and returns the valtReproduce(2’, p).

4.4 Practical Construction of a Fuzzy Embedder

In this section, the following three practical issues amspnted. Firstly, we
construct a fuzzy embedder usinglaM Secondly, we analyze the performance
of this construction in terms of reliability and securityhifidly, we investigate
optimization issues whei is n-dimensional.

Q MFUZzY EMBEDDER.A fuzzy embedder can be constructed franyQ Mby
defining the embed procedure as:

Embed(z,r) = Q Mz, r) — x,

and the reproduction procedure as the minimum distancedeacl decoder:

Reproduce(z’,p) = Q(z' + p),
whereQ : U — R is defined as

Q(y) = argmianRd(y> MT)
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Figure 4.5:Embed procedure ofQ M fuzzy Figure 4.6:Reproduce procedure of & M
embedder fuzzy embedder

Example.Our construction is a generalization of the scheme of Litmat
al. [49]. Figures4.5 and 4.6 illustrate thEmbed respectively thé&eproduce pro-
cedures for &) Mensemble of three quantizef§),, @+, Q. }. During embed-
ding, the secret € {0, x, +} selects a quantizer, s&y,. The selected quantizer
finds the reconstruction poird,(x) closest tox and the embedder returns the
difference between the two aswith p < \,.... Reproduction op andz’ should
returno if 2’ is close toxr, however, this happens only:if + p is close toQ, ()
or in other words, ift’ + p is in one of the Voronoi regions @), (hatched area
in Figure 4.6). Errors occur ifz’ + p) is not in any of the Voronoi regions @j,,
thus the size and shape (fer> 2) of the Voronoi region parameterized by the
radius of the inscribed bad,;, /2 determines the probability of errors.

4.4.1 Reliability

In the following lemma, we link the reliability of & Mfuzzy embedder to
the size and shape of the Voronoi regions of the empl&yed

Lemma 1 (Reliability) Let(Embed, Reproduce) be a(i/, ¢, p, €, ) Q Mfuzzy em-
bedder, and lefX be a random variable ove¥ with joint density functiorfx ().
For anyr € R, we define

p(r) = [ fx(y — Embed(X,r))dy,
/

whereV, = J.. ., V- is the union of the Voronoi regions of all reconstruction
points inM,.. Then the reliability is equal to

p = minp(r).
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Proof: Sincep(r) is exactly the probability that an embedded keyill be recon-
structed correctly, the statement follows from the defomiti

In most practical applications, noise has two main propsrtiarger distances
betweenz and the measurement are increasingly unlikely, and the noise is
not directional. Thus the primary consideration for religpis the size of the
inscribed ball of the Voronoi regions, which has radiys, /2.

Corrolary 2 (Bounding p.) In the settings of Lemma 1, the reliabilipycan be
bounded by

whereB(c, r) is the ball centered i with radiusr.

Proof. The above relation follows from the definition of reliabylisince(c, ) C
V. andy = x + Embed(X, r) is always a reconstruction point.

Corollary 2 shows that reliability is at least the sum of ablmabilities com-
puted over balls of radiugs= inscribed in the Voronoi regions. Thus the size of
the inscribed ball is an important parameter, which deteesiithe reliability to
noise.

Example.In two dimensional space there are three regular polytopkigh
tile the space: triangle, square and hexagon. If the sizkeoirtscribed circle is
equal for all three, in case of a spherically symmetric thation like the nor-
mal distribution the hexagon has superior reliability pemiance compared to the
other two polytopes because its shape is more close to alleishape of the de-
cision region that inscribes the ball is important as weilvashow inSectiord.5.

4.4.2 Security

In this section we link the security of a fuzzy embedder todibnering radius,
Amax Of the employed) M

We start this paragraph with one observation. If an attaldeens the value
she can reproduce the valuevith the help of the public valug. However, if an
attacker learns the secret keyshe could potentially circumvent the security alto-
gether but cannot reprodugce We illustrate this observation in the next example.
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Example.In the fuzzy embedder example giverFigure 4.6, the attacker can
choose between three different key valjiest-, «}. Assume she learns the cor-
rect key, in our example. To find the correct value far she still has to decide
which of the reconstruction points of the quantiggris closest ta:. Without any
other information this is an impossible task since the gaant), has an infinite
number of reconstruction points.

The public sketchp leaks information about both the random stringthe
amount of information revealed & and the valuer (the amount of information
revealed is denoted witf). We note that full disclosure of the stringis not
enough to recover.

We now consider how larg& the leakage on the key can be in termsihf
which due to our construction is a continuous variable. Wavkthat anyp € P
has the property that < A.... A technical difficulty in characterizing the size
of P arises as” is not necessarily discrete. Tuyds al. [77] show the following
result, establishing a link between the continuous and tiaatigzed version of?
denoted here witl®;.

Lemma 2 (Tuylset al. [77]) For continuous random variableX, Y and ¢ >
0, there exists a sequence of quantized random variallgsY; that converge
pointwise toX, Y (whend — oo) such that for sufficiently largé, I(X;Y) >
I(Xa;Ya) > I(X3Y) = &

From the lemma above we havER; P;) < H(FP,) < |P,|, P, is a quantized
representation, of the public sketéh using a uniform scalar quantizer with step
d. The reason for quantizing is to make it suitable for a digital representation.
| P;| represents the size, in bits, of the sketch.

To limit the information loss of the construction, which feetresult of pub-
lishing the sketchP,, it is best to haveéFr,| as small as possible. However a small
representation of; implies that the cardinality of the set of valuesifis small
as well. There are two ways in which we can achieve a smalesgmtation for
P;. The first is to limit the support on whicR is defined, while the second is
to choose a higher value for the quantization sieffhe second approach is not
convenient since the quantization that is usedfdnas to be used for the noisy
data X thus we concentrate on the first option: limit the support drictv P is
defined.

In our construction, we havé’;| < A\..x. Thus by bounding the size pfwe
bound the value of. In the rest of this chapter, for simplicity reasons we ise
when referring theP,.

83



Chapter 4 Embedding Renewable Cryptographic Keys into Noisy Data

4.4.3 Optimization

In this paragraph, we analyze the key length allowed by thictions placed
by our performance criteria on the embed and reproduce guoes. Firstly, we
take a look at the reproduce procedure which ties in direeitly the reliability.
The minimum size of an error to produce a wrong decoding,ig/2. Thus, the
collection of balls centered in the reconstruction poirdlbfuantizers with radius
omin/2 should be disjoint.

Figure 4.7:O0ptimization of reliability versus security. Reliability determined by the
size of the ball with radius,,;, /2. Each small ball has associated to its center a different
keyr € R. The number of small balls inside the large ball with radiys.x is equal tol,

the number of elements iR. To have as many keys as possible we want to increase the
number of small balls, thus we waténse (sphere) packinghe size of the public sketch

p € P is at mosth\,.x. Since for anyr € U we want to be within,,,, distance to a
specificr € R, large balls shouldcover optimallythe spacé/. When the point: falls

in a region, which does not belong to any ball tReproduce procedure gives the closest
center of a small ball, thugze want polytopes which tile the space

Secondly, the result of the embed procedure for any arpipraint x and any
key r € R has to be smaller than the covering distangg,. Hence, for each
key r the collection of balls centered in the reconstruction fsoaf (), and with
radius,.., should cover the entire spate

These two radii can be linked as follows:

Lemma 3 The covering distance of@ M, ... is bounded from below by:

)\max 2 Wgrgln

wheren represents the dimension of the univeisand N is the number of dif-
ferent quantizers.
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Proof: As noted above, all balls with radius,;, /2 centered in the centroids of the
whole ensemble are disjoint. Each collection of balls watius\,,.. centered
in the centroids of an individual quantizer gives a covemighe spacé/, see
Figure4.7.

Therefore, a ball with radiug,,..., regardless of its center, contains at least
the volume of N disjoint balls of radiusr,.,;, /2, one for each quantizer in the
ensemble. Comparing the volumes, we have

Sn)\n > SnN(O—HQﬁH)n

max —

wheres,, is a constant only depending on the dimension.

The main conclusion dfemma3 is that for a8 Mfuzzy embedder to produce
a long random string, thus the length of depends on the number of small balls
which can be placed into a large ball.

Consider the case when an intruder has partial knowledget abe random
variableX. For example, she could know the average distribution offialer-
print) biometrics, or the average distribution of the PUHR%is average distri-
bution is known in the literature as tl@ckground distributionWhile anyQ M
fuzzy embedder achieves equiprobable keys if the backgrdistribution ori/ is
uniform, the equiprobability can break down when this baokgd distribution is
non-uniform and known to the intruder. A legitimate questi& how can aQ M
fuzzy embedder achieve equiprobable keys when the backbbstribution is
not uniform?

In the literature [25, 28, 49] it is often assumed that thekiamund distri-
bution is a multivariate Gaussian distribution. We make akee assumption,
namely that the background distribution is not uniform kpleyically symmet-
rical and decreasing. In other words, we assume that measuateerrors only
depend on the distance, and not on the direction, and thggrl@rrors are less
likely.

Thus, to achieve equiprobable keys given this backgroustfilolition, the
reconstruction points must be equidistant as for examgedmstruction irFig-
ure 4.8 (a). Note that putting more “small” balls inside the fatball is not
possible since they are not equiprobable. The problem \wghcbnstruction in
Figure4.8 (a) is the size of the sketch which becomes large.

The natural question, which arises vghat is the minimum sketch size attain-
able such that all keys are equiprobable for a given desiedi@bility?

This question leads us to consider the kissing numbey, which is defined to
be the maximum number of whitedimensional spheres touching a black sphere
of equal radius, sekigure 4.8 (b). The radius of the “small” balls determines
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(@) (b)

Figure 4.8:(a) Construction which yields equiprobable keys in casebtiekground dis-
tribution is spherical symmetrical in the two dimensionadse. (b) Optimal construction
which results in minimal public sketch size and has equigiodd keys in the two dimen-
sional space.

reliability and the minimum\ ..., such that & Mfuzzy embedder can be built is
equal to the radius of the circumscribed ball as showkigpire 4.8(b).

The next question we ask ifor a minimum sketch size and a given reliability,
are there dimensions which are better than othefS® example why not pack
spheres in the three dimensional space where the kissingemus12. For the
same reliability: is it possible to obtain more keys? For tisiensions, only
bounds on the kissing number are known [45, 89]. Assumincharsgally sym-
metrical and decreasing background distribution, thezeaty so many different
equiprobable keys one can achieve:

Theorem 1 (Optimal high dimensional packing.) Assume the background dis-
tribution to be spherically symmetrical and decreasingr &4, ¢, p, €, ) Q M
fuzzy embedder withim(i{) = n with equiprobable keys andhinimal sketch
size we have that < 7(n).

Proof: The target reliabilityp will translate to a certain radius. In other words,
we need to stack balls of radiagsoptimally.

In Figure 4.9 we have three possible constructions for¢gh&étfuzzy embed-
der, with different choices of number of quantizers in theveesus the size of the
public sketch.

The construction ifFigure 4.9 (a) cannot be used for data hiding since there
is only one quantizer in the set. To achieve the maximum nuwfeguiprobable
keys without the sketch size getting too big, the best canstm is to center the
background distribution in one such ball, and to assign it key to each

86



4.4. Practical Construction of a Fuzzy Embedder

©l>0o(n)+1

Figure 4.9:Different choices for the number of quantizers in relation\f,., in a Q M
fuzzy embedder construction. (a) There is only one quaritizhe Q Mset. This con-
struction cannot be used for data hiding. (b) Number of quzan$ in theQ Mset is
equal too,, + 1, when the middle ball has a different codeword then the righg balls
(e.g. the 7-hexagonal construction) or precisely equahtt,, when the middle ball has
no codeword associated (e.g. the 6-hexagonal constrycti@m TheQ Mset has more
quantizers then the kissing number.

touching ball as irFigure 4.9 (b). Construction ifrigure 4.9 (c) yields a higher
value for ..., and is not optimal from the perspective of the size of thectket

The trade-off between the number of quantizers (and thusetigth of the
output sequence) and the size of the sketch can be seen byagogponstruc-
tions inFigure 4.9 (b) andrigure 4.9 (c). As the number of quantizers increases
so does the size of the sketch.

Thus the number of possible equiprobable keys, when thegibagkd distri-

bution is spherically symmetric and decreasing, is uppended by the kissing
numberr(n).

Combined with known bounds on the kissing number [45, 89]amiwe at the
following, somewhat surprising conclusion:

Corrolary 3 Assuming a spherically symmetrical and decreasing backgtalis-
tribution on/ and equiprobable keys, for(@&/, /, p, €, 0) Q Mfuzzy embedder, the
most equiprobable keys are attained by quantizing two dames at a time, lead-
ing to

N(n) = 6520215

different keys.
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Figure 4.10Reproduce procedure of the 7-Figure 4.11:Reproduce procedure of the 6-
hexagonal tiling hexagonal tiling

Proof: Known upper bounds [45] on the kissing humbemimlimensions state
thatr(n) < 20401n(1+e(1)  This means thaW¥(n) > 7(n) in all dimensions, since
N(n) ~ 23" and small dimensions can easily be verified by hand. Also note
that N (n, + ne) < N(ny)N(n2). Thus quantizing dimensions pairwise gives the
largest number of equiprobable keys for any sphericallyraginic distribution.

Example.Given a vectortX = (X1, X, - -- Xj0) there are several choices when
considering quantization. One possibility is to quantiaere of the elements
X;,i € {1,10} independently. A second choice is to quantize pairs of etesne
(X;, X;) wherei # j andi,j € {1,10}. Another option is to quantize three
elements at a timéX;, X;, X;) wherei # j # s andi, j,s € {1,10}. We illus-
trate in this example that the two-dimensional quantizaisooptimal in the sense

of Corollary 3. Table4.1 shows the effect of quantization on the key space for
different dimension choices.

e Fortwo-dimensionafuantization Table4.1), the kissing number is equal
to 6, the 10 elements of vectof are grouped in 5 subsets of 2 elements
each. For each subset, we can embed at most 6 keys and for #rs Svp
have in total a key space 6f possible keys.

e For three-dimensionafjuantization Table4.1), kissing number is 12, the
10 elements o can be grouped as 3 pairs of 3 elements and there is one
vector element left which can only be quantized in one direns The
number of possible keys i9? x 2.
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Dimension| o, Subsets | Key Space

1 2 1 x10 210 =1024

2 6 2x5 65 = 7776

3 12 3x34+1 123 x2=23456
4 24 4x24+2|24% x 6 = 3456
5 40 5 X 2 40% = 1600

6 72 6+4 72 x 24 = 1728
7 126 7+ 3 126 x 12 = 1512
8 240 8+2 240 x 6 = 1440
9 272 9+1

10 > 336 | 10

Table 4.1: Different choices for quantization and its effect of the &egice (maximum
number of bits that can be embedded) for a 10-dimensionabrec. In the first column
we have the number of dimensions that are quantized at a tiraesecond column gives
the value of the kissing number for the chosen dimension. tAife column gives the
particular choice for grouping the subsets and the forthuooh shows the size of the key
space.

The result ofCorollary 3, confirmed by our example shows that the best strat-
egy for quantization is the two-dimensional quantizatids.this result points us
to two dimensions, we will give two practical constructidosthe two-dimensional
case in the next section.

4.5 Practical constructions in two dimensions

In this section we present two optimal constructions for@hdtfuzzy embed-
der in the two dimensional space. The first, 7-hexagonaigtilis optimal from
reliability point of view while the second is optimal fromegimumber of equiprob-
able keys it can embed and the sketch size. We choose a hextdgttite to
represent reconstruction points for {eM since this gives both the smallest cir-
cle covering (for theEmbed procedure) and the densest circle packing (for the
Reproduce procedure).

The first construction, thé-hexagonal tilingcan embead x l"gT” bits, where
n is the dimensionality of random variablé. This construction is optimal from
the reliability point of view. However, in this constructi&eys are not equiproba-
ble, when the background distribution is not flat enough. §é¢wond construction,
the6-hexagonal tilingfixes this problem, but achieves a slightly lower key length
of n x 12228 pits,

In our constructions the reconstruction points of all qimans are shifted ver-
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Figure 4.12Reliability of the threeQ Mfuzzy embedder constructions.

sions of some base quantizgs. A dither vectory;, is defined for each possible

r € R. We define thdiling polytopeas the repeated structure in the space that
is obtained by decoding to the closest reconstruction pairfollows from this
definition that the tiling polytope contains exactly one &ooi region for each
guantizer in the ensemble. Fgures4.10 and 4.11 the tiling polytopes are de-
limited by the dotted line.

The n-dimensional variableX = (X, X,,---X,,) is partitioned into3-two
dimensional subspacé€s(;, X,). Each subspace is considered separately. On
the z-axis in Figure 4.10 we have the values fof; and on they-axis we have
the values ofX,. Along thez-axis (not shown in the figure) we have the joint
probability densityfx, x, ().

We start our construction by choosing the densest circl&ipgexisting in
the two dimensional space which is the hexagonal packinigcirsles have equal
radius and the center of the circle is the reconstructiontpdivith each recon-
struction point a key value is associated. However, théasmdo not tile the space.
As a result whern, the realization ofX, falls into the non-covered region, it can-
not be associated with any reconstruction point. We neeggdoaimate the circle
with some polygons that tile the two-dimensional space hinttivo dimensional
space the Voronoi region for the hexagonal lattice is a hexag

In the two dimensional space, there are only three suchaeguolygons: tri-
angles, squares and hexagons. Since we assume a sphearioatsical distribu-
tion for fx, x, the hexagon is the best approximation to the circle fronabdity
point of view. The next step is to associate a key value to baghgon such that
for any value of( Xy, X3), any key label is at most at the given distance (sphere
covering problem).
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45.1 7-Hexagon Tiling

Thus our first construction is a ditheréd M defined as an ensemble of 7
quantizers. The reconstruction Bgints of the bzﬁe quantizeare defined by
the lattice spanned by the vectaBs = (5,v/3)q, By = (4, —2v/3)q, whereq
is the scaling factor of the lattice. IRigure 4.10 these points are labelég.
The other reconstruction points of quantizéls: = 1,...,6 are obtained by
shifting the base quantizer by the dither vectprs, - - - , v } such thatQ;(z) =
Qo(™ +7;). The values for these dither vectors arg:= (0, 0),v; = (2,0), v =
(=3,V3), 53 = (-1,—V3), 1 = (=2,0), 53 = (3,—V/3), andw; = (1,V/3).
The embed and reproduce procedures work as in our consimuntsection 4.4.
The reproduce procedure is showrHgure 4.10.

4.5.2 6-Hexagon Tiling

Assume that the background distribution is a spherical sgtrioal distribu-
tion with mean centered in the origin of the coordinateshindonstruction above
the hexagon centered in the origin will typically have a ighssociated proba-
bility than the off-center hexagons. This effect grows asineeease the scaling
factor ¢ of the lattice. This construction eliminates the middledwgon, to make
all keys equiprobable (s€Eheoreml). The key length is®2° bits. The tiling
polytope is formed by 6 decision regions and thus there adgedither vectors,
seeFigure 4.11. The same dither vectods,;, - - - , v } are used to construct the
guantizers, but the basic quantizgyitself is not used. The embed and reproduce
procedure are defined as$ectiord.4.

4.5.3 Performance Comparison

We compare the two constructions proposed above, i.e. tex@gonal tiling
(Figure4.10), and the 6-hexagonal tilingigure4.11), in terms of reliability, min-
entropy of the key and entropy loss to the scalar quantizatiheme introduced
by Linnartzet al.[49] on each dimension separately (we refer to this as 4rsqua
tiling).

To perform the comparison we consider identically and irdelently dis-
tributed (i.i.d.) Gaussian sources. We assume the backdrdistribution has
mean(0, 0) and standard deviationy, x,. Without loss of generality we assume
that for any randont Xy, X,) € U?, the probability distribution offx, x, (z) has
meanu = (uy, i12) and standard deviatiarf. This model comes from biometrics,
where the background distribution (also called impostsirifiution) describes all
users, and the user distribution is the distribution of candrariableX .

91



Chapter 4 Embedding Renewable Cryptographic Keys into Noisy Data
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Figure 4.13: Key length comparison fofigure 4.14: Mutual information be-

the threeQ Mfuzzy embedder construction@veen the key and the public sketch for
scaled to one dimension the threeQ Mfuzzy embedders

To evaluate the reliability relative to the quality of theusce data (amount
of noise, measured in the terms of standard deviation fromnineve compute
probabilities associated with equal area decision regiand the reconstruction
point centered in the meanof the distributionfy (x). The curves irFigure 4.12
are obtained by progressively increasing the area of thendregions. The size
of the Voronoi region is controlled by the scaling factor loé fattice,g. The best
performance is obtained by the hexagonal decision regidhs is because the
regular hexagon best approximates a circle, the optimaigéical form for a
spherical symmetrical distribution. However, the diffezes between reliability
of the threeQ Mfuzzy embedders are small.

The min-entropy inr € R is compared irFigure 4.13 among 7-hexagonal
tiling, 6-hexagonal tiling, and 4-square tiling. Maxinmgjthe min-entropy means
minimizing the probability for an attacker to guess the keyrectly on her first
try. The key length for the 7-hexagonal tiling decreasegligpvith the increase
of the lattice scaling factog relative tooy, ,2. While for a small lattice the
scaling factog one can approximate the background distribution as unifasith
the increase in scaling the center hexagon has a substahigther probability
associated with it, and thus one key value is more likely tdathe others.

The 6-hexagonal tiling construction eliminates the midwgagon and as a re-
sult all keys become equiprobable, at the cost of a somewWwat Ireliability 4.12.

Finally, we evaluate the mutual information for the key wiperblishing the
sketch for the three constructions compared. The res@tshaown inFigure4.14.
The values are scaled to the number of bits lost from eachdii$ made public.
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The results are somewhat surprising in the sense that ti@akes tiling looses
more bits compared to our two new constructions. The reastimat while the
size of the public sketchis equal for all three constructions, thus they all lose the
same amount of information but the key length differs.

4.6 Discussion: Putting it all together

A fuzzy extractor can transform a noisy, non-uniform disesource of data,
which is easily accessible into a reproducible, unifornagdom string, which is
suitable to be used as a cryptographic key. Basically, theyfextractor performs
two functions: the first is error correction, which compdasaor the noise in
the source data and the second is smoothing the non-unifstnibdtion of the
source into a uniformly random distribution of the output.

When considering a fuzzy extractor construction in a pcattscenario the
two functions provided are not enough. Firstly, a fuzzy aetior is too limited
because it accepts only discrete input data. Thus a proeedhich transforms
continuous data into discrete data is necessary. Our camtisin in Chapter3,
csfuzzy extractor is an extension of the fuzzy extractor ¢atsion in this sense.
Secondly, a fuzzy extractor as pointed out by Boyen [19] sdede-randomize
its output such that one noisy source can be used in more tieapaplication.

A typical fuzzy extractor implementation can be modeledreBigure 4.15.
In our view, there are four main building blockguantization, error correction,
randomness extractioandrandomizationwhich can be used in a typical fuzzy
extractor implementation.

Each block inFigure 4.15 solves a specific problem and in the following we
take a closer look at the purpose and requirements for eatie dbur blocks.

QUANTIZATION. The quantization block is used to transform continuoussy di
tributed dataX with probability density functioryy (x) into discretely distributed
dataY with discrete probability densitf (). Examples of quantization schemes
can be found in Cheat al.[28] and Zhanget al.[90] and inFigure 4.2. During
quantization the public sketch denoted with in Figure 4.15 is computed and
made public. The information leaked by the public sketchualtive noisy source
data is measured in terms of mutual informati¢X’; P, ) between the source data
X and the public sketcl;.

ERROR CORRECTIONThe error correction block adds redundant information to
the input variablé” to increase the probability that its values are correcilyase
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Figure 4.15: Typical implementation of a fuzzy extractor. The shape obakbis a
code for its purpose. Square blocks perform error corrattipentagonal blocks shape
the distribution of the data, while the circle blocks are dige randomize the data. A
fuzzy extractor can be constructed from an error correctihack and a randomness ex-
tractor. On the left-hand side of the figure the input var@llith capital letters, above
the arrow). On the right-hand side of each block the securiBasure used to evaluate
the performance of the block is presented.

duced. The input variabl€ = (Y3,Ys, - -Y},) is represented asradimensional
vector and its elements are called feature vectors.

There are two types of noise that can occuryin The first iswhite noise
where elements df; are perturbed by noise and the seconggacement noise
where some features &f can disappear and new features can appear between two
consecutive measurements. Error correction schemes whiclct white noise
where proposed by several authors [28, 49, 90] while erngection schemes for
replacement noise can be found in [79, 24].

To perform error correction public sketch(also called helper datg is com-
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puted forY'. If the helper data is made public, which is the case in mastagos,

it reveals information about the variable. The performance of an error cor-
rection scheme is measured in terms of how mamgrs it can correct and the
amount ofleaked information

When the source data is continuous the leakage is measussdis of mutual
information, inFigure 4.151(X; P), whereP can be eithe; or P,. When the
source data is discrete as in the error correction blo€kguare 4.15 the amount of
leaked information is measured in terms of min-averageoewtf/ . (Y; P,) and
min-entropyH..(Y"). The difference between the two is called #reropy loss

RANDOMNESS EXTRACTOR.This block is used to transforrany probability
density functionfy (y) into a uniform probability functionf(z), which is de-
sirable for a cryptographic algorithm. A randomness extiais used to “purify”
the randomness coming from an imperfect source of randanitesan efficiently
convert a distribution that contains some entropy (butss &diased and far from
uniform) Y into an almost uniform random variahle

The performance of a randomness extractor is measuredns terthe statis-
tical distance between the distribution of the output J@da and the distribution
of a uniform random variabl&/, denoted irFigure 4.15 by SO Z, N).

In the process of randomness extraction an external sodrcandomness
must be present. Reducing the amount of required randonimé¢bks external
source and producing outputs, which are as close as possialaniform distri-
bution is the main research topic in this area [14, 74, 75].

There are constructions knownstsong randomness extractdf2] for which
the output of the randomness extractor looks uniform eveanwthe external
source of randomness is made public, which are more convefade the pur-
pose for the scenario depictedrigure 4.15.

RANDOMIZATION. This block is used to randomize the string which can be ex-
tracted from the noisy source. When biometrics is used assy source, the
purpose of randomization is protection of privacy for therbetric data. For
example, from one fingerprint only one reproducible, umfastring can be ex-
tracted. The randomization ensures that from one fingdrprudtiple random
sequences, which can be used as cryptographic keys for ipplieaions, can be
produced.

We argue that the model describedRigure 4.15 covers most of the work
done in the area of construction of cryptographic keys fransydata. Theoret-
ical work in the area usually covers the error correctiorckland randomness
extraction [32, 33] whereas others, look at more practispkats like quantiza-
tion [5, 25, 28, 48, 90] or randomization [19, 20, 24].
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The fuzzy embedder construction is intended as an all-epassing theoret-
ical model given the functionality of a fuzzy extractor. Bha fuzzy embedder is
able to hide a key in any type of source data. This holistienga/es new insights
in at least two ways:

e Notall four blocks inFigure4.15 are necessary. For example@hétfuzzy
embedder construction has only two bloaksantizationand randomiza-
tion [3].

e The order of the blocks ifigure 4.15 can be changed. Thus, the overall
performance of the construction can be enhanced, e.g. aemerror cor-
rection block instead of two error correction blocks, milymit the amount
leakage.

Most of the work in the area of cryptographic use of noisy dataises on op-
timizing one aspect, e.g quantization, randomness eiirgatc. Security mea-
sures used to quantify the performance in each block arerdift as they are
studied in different research areas. In a practical scenatien all these blocks
are needed it is important to have an overall view of all tiferimation that is
leaked or the amount of errors that are corrected. The majpope of the fuzzy
embedder is to put things in perspective and define the dwe@irity measures.

4.7 Conclusions

We propose the notion offazzy embeddeas a generalization of a fuzzy ex-
tractor. Fuzzy embedders solve two problems encounteret Wzzy extractors
are used in practice: (1) a fuzzy embedder naturally suppentewability, and (2)
it supports direct analysis of quantization effects. Thisniade possible by em-
bedding a key instead of extracting one, and by making ndihghassumptions
about the nature of the input source.

We give a general construction of a fuzzy embedder, usi@gMto construct
the Embed and Reproduce procedures. Th& M performance measures (from
watermarking) can be directly linked to the reliability apelcurity properties of
the constructed fuzzy embedder.

This construction gives a deep insight in the trade-offsvben the parame-
ters of a fuzzy embedder. We describe the key length-entiagsytradeoff as a
simultaneous sphere-packing / sphere-covering probleimeanshow that when
considering equiprobable keys, quantizing dimensionsypgee gives the largest
key length.
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We also give two explicit, two-dimensional constructiom$iich can embed
a longer key per dimension than existing (one-dimensiosethemes. The 7-
hexagonal tiling scheme achieves the optimal probabilitgedection, but only
performs well if the underlying background distributiorflet enough. We show
that our 6-hexagonal tiling scheme is optimal from a key temgrspective, given
that each key is equiprobable. Using the 6-hexagonal aorigin we obtairf%26
bits per dimension of the input data, which is superior corpao the single bit
obtained by the shielding scheme.

The contribution of this chapter is related to the problensBEURE TEM-
PLATE PROTECTION We propose a new, holistic model, the fuzzy embedder,
which encompasses both the theoretical clarity and theipahceeds of a tem-
plate protection scheme. In the next chapter we use the gmbgdder, as a basic

building block for secure pairing protocol, which is ourwsdn for theSECURE
TEMPLATE TRANSFERproblem.
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Chapter 5

Secure Pairing with Biometrics:
SAfE

Thepairing problem described irChapter2 asSECURE TEMPLATE
TRANSFER is to enable two devices, which share no prior context
with each other, to agree upon a security association tegitdan use

to protect their subsequent communication. Secure pashogld of-

fer guarantees of the association partner’s identity arsthauld be
resistant to eavesdropping or to a man-in the middle attéékpro-
pose a user friendly solution to this problem. Keys extrédtem
images of the participants using the fuzzy embedder are foseal-
thentication. Details of the SAfE pairing system are présgmlong
with a discussion of the security features and a usabili}yasis.

Mobile devices are designed to interact anytime, anywHhem@any scenarios,
however, is it desirable to associate devices in a secure k@yexample when
using a mobile phone to pay for tickets or when sharing peicaintact informa-
tion via the wireless link in an unsecured environment. nablem is known in
the literature as secure device association [46]. Solsti@ve to be specifically
designed such that secure association can be realizeddrepweviously unas-
sociated devices. Security means that the solution must gtfarantees of the
association partner identity and must be resistant to dawpping and to a man-
in the middle attack. The ideal solution must provide a beddmetween security
and ease of use.

SCENARIO.When two users, Alice and Bob, meet at a conference and dexide
exchange business cards or other documents, they talk fora wntil they trust
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each another sufficiently to exchange information. Howetlegy do not wish

other participants to eavesdrop on their communicatiorodamper with their

documents. At this stage the only secure association tegtitave is their trust
in each other. To set up a secure association between thetedea protocol is

needed that can transfer this trust to their devices. Iti€nough for Alice’s de-

vice to guarantee a secure pairing with device: 128.196Ali8e needs to know
that there is a secure association with Bob. Kindbetgal [46] use the term

physical validation for physically verifying the identiof the other party in an as-
sociation. For example when two devices are connected \abla or an infrared

channel. Kindberg [46] sees the physical validation as thesigal counterpart of
cryptographic authentication of identity. The strengtitha# physical validation
depends on the length of the key established after pairing.sGlution is a pro-

tocol that can transfer the trust relation between peopdettost relation between
devices using biometrics as the main tool, offering stromgsgral validation.

USER FRIENDLINESSThe most important reason why security often fails is the
lack of user friendliness. To establish a secure communitaglice and Bob
have to agree on a key. From a usability point of view we wamtedand Bob

to have minimal interaction with their devices, and the tecal difficulty of the
required task should be no worse than to dial a number on alenglone. Also
we do not like the idea of Alice and Bob having to remember &wasd or a pin
code for establishing the communication key. A user frigrailution is readily
provided by appropriate use of biometrics, since a fingetf the image of a
face is readily available, and has the advantage that itatdranlost or forgotten
and is thus always available.

CONTRIBUTIONS.We present a practical solution to the secure device associa
tion problem where biometrics are used to establish a comkagrbetween the
pairing devices. Our approach has at least two major adgastaFirstly, it of-
fers the possibility to transfer trust from humans to maekiwithout any avail-
able security infrastructure. Biometric recognition o$fehysical validation, thus
guaranteeing the identity of a device owner. Secondly, tieegss is short and
should be user friendly. We propose a protocol in which theslextracted from
biometric data are combined to form a session key. The idbatls simple and
effective. Suppose that two users wish to set up a secure camation channel.
Both own a biometrically enabled handheld device. Both deviare equipped
with a biometric sensor (a camera for face recognition) astiat range radio.
Each device is capable of recognizing its owner. Then thesuake each others
picture. Each device now contains a genuine template ohiteeoand a measure-
ment that approximates the template of the other user. Haeigthat each device
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calculates a common key from the owner template and the goeasurement.
In our solution for Alice to set up a secure communicatiorhvidob, she has to
take a picture of him and let Bob take a picture of her. Thequaltis even more
general: it can be applied on any type of biometric channat.gotocol is inno-
vative compared to a key exchange protocol in the senseetjisibhate users have
to “find” the communication key by performing a related kegreh attack. The
advantages are twofold. Firstly, fuzzy extractors canteraaepeatable sequence
out of biometric and our key search mechanism helps loweetiw rates of the
fuzzy extractor in a practical situation. Secondly, the &egrch mechanism uses
the unpredictable randomness between two measurementaratoan salt for the
session key thus strengthening the key. The disadvantdlyatikey search takes
time which leads to a trade-off between performance andi$gcu

ROAD MAP. We start with a description of related work in section 5.1 tb ghe
contribution of this chapter into perspective. Sectiongives general background
information regarding the particularities of the two bidnesystems used later
and describes the notation used in the rest of the chapteradiixg keys from
biometric data is an entire research field on its own; we dedisection 5.3 to
summarize the main results from this topic. In this secti@describe how a re-
liable, uniformly random sequence can be extracted fromyndata such as bio-
metrics highlighting the tradeoffs that have to be made aadme two examples
that can be used in a practical setting. Section 5.4 is dieti¢a the pairing proto-
col. In section 5.5 we look at security properties achiezagainst two powerful
adversaries Eve and Charlie. Eve is an eavesdropper. Sheaand messages
sent between Alice and Bob and try to find the key used to sehanremessages.
The other adversary, Charlie cannot search for the key bodteomplete control
over the communication environment so that he can listemgaatify any message.
These two adversaries correspond to two different but cemehtary views on
security: computational security and formal security. éctgon 5.6 we validate
our protocol by experiments on real life biometric data. &kl at two different
flavors of biometric recognition: hand grip pressure pattecognition and face
recognition. Results obtained from these experimentsamiging. Results of a
usability study regarding the secure device associatiorgudace recognition are
presented in section 5.7. Finally conclusions are predentsection 5.8.

5.1 Related work

Saxenagt al. [68] define thepairing problemas enabling two devices that
share no prior context, to agree upon a security associttatrthey can use to
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protect their subsequent communication. Pairing is intehsstudied in the area
of pervasive and mobile computing. Most protocols for se@pontaneous in-
teraction rely on two channels to perform the pairing precéghe first, in-band
channel, has high bandwidth but no security propertieseathié second, out-of-
band, channel has limited bandwidth while offering additibsecurity proper-
ties. There are two approaches in performing secure desgmcation. The first
approach uses the out-of-band channel to verify keys exgthon the in-band
channel with human assistance. We call this approach eb&odl verification.

The second approach uses the out-of-band channel to seockalag small mes-
sage from which the common communication key is then deraratl then the

key is verified on the in-band channel. We call this approaedband verification.

Different flavors of out-of-band channels have been progdisat depend on the
available hardware equipment, achievable bandwidthrexfeecurity properties
and requirements for user interaction with the devices. Wensarize the history
and evolution of the most well known out-of-band channels.

Stajanoget al. [73] brought the secure device pairing problem to the &tian
of the research community. They propose to use physicafawte and cable as
the out-of-band channel. The physical channel has a higbviadih and offers
confidentiality, authenticity and integrity. It is, howeyenpractical since all pos-
sible physical interfaces have to be carried around atra#gi

Balfanz,et al. [13] propose to use a physically constrained channel (a-g.
frared) to establish a secure association between deviadase proximity. They
advanced the state of the art by eliminating the need to eaoynd all the bulky
interfaces. However, the disadvantage of this approachesnfrared channel
which is slow, and which requires line-of-sight.

Bluetooth users can pair devices by introducing the samed&imlly a 4 digit
number in the paired devices. Shaketal.[70] show how a passive attacker can
find the PIN used during pairing. The randomness and lengttheolPIN number
influences the speed with which an attacker can perform ttaska(a 4 digit PIN
is cracked in less than 0.3 seconds). To make things worse,dtal.[82] note
in a usability study performed on different strategies fairipg that the choices of
PIN numbers are not really random. We make the same obsammtsection 5.7.

McCune,et al.[55] propose to use the visual channel as an out of band chan-
nel. In their protocol, calle&eeing is Believin¢SiB), devices send their public
key on the in-band channel while displaying the hash of tHdiplkey as a bar
code. If the devices have no display, a sticker is suggestatigplaying the hash
of the public key. If mutual authentication is required bd#vices should have
a camera to photograph the bar codes. SiB does not rely orutharhability to
recognize the bar keys. Saxemd,al.[68] propose a variation of the SiB proto-
col which achieves secure pairing if one device is equippid avlight detector.
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Goodrichet al.[39] propose a human assisted authentication audio chasrké
out-of-band channel. They use a text-to-speech engineoitalizing a sentence
derived from the hash of a device’s public key.

Mayrhofer, et al. [54] propose accelerometer based authentication. Device
that need to be securely associated are shaken togethawaitohtaphic keys are
generated from data recorded by the two accelerometers.approach is differ-
ent from previous solutions in two ways. The first differemcthat accelerometer
data is used to produce cryptographic keys and the secoiededi€e is that the
out-of-band channel is used to share the data from which &eygenerated and
not to authenticate keys. They report a key length obtainat faccelerometer
data between 7-14 bits for every second of shaking. By shd&imer the entropy
may be increased.

We take a similar approach in the sense that cryptograpkhsde transferred
on the out-of-band channel. We propose to use biometrias astaof-band chan-
nel. The main advantage of biometrics over accelerometarisithe higher band-
width that can be achieved, this can establish a key of leagtio 60 bits (when
we use face recognition biometrics) or 80 bits (when usingdhgrip pressure
pattern biometrics).

5.2 Preliminaries

In this chapter we refer to two different biometric systeims first one uses
face recognition. Face recognition analyzes the charatitsrof a person’s face
image taken with a digital video camera. It measures theatiacial structure,
including distances between eyes, nose, mouth, and janseddee second bio-
metric system is a hand grip pressure pattern where the imoftee pressure
pattern exerted while holding an object can be used to atitlaé® or identify a
person.

We assume biometric measurements of a user to have a mialtev&@aussian
statistical model. For face biometrics the number of elasieha feature vector,
(V in our notation) can range between 30 features to about 280rks [38] while
for hand grip pressure pattem is equal to 40 features [85].

According to the statistical model a user is specified by amestort =
(t1,t2,--+ ,tn), termed in the rest of the chapter as the template and a sthnda
deviation vectotc = (0q,09,--+,0n). By x = (21,22, - ,2xy) We denote
a noisy measurement. Due to differences in environmentadiions and user
behavior (e.g. changes in the pose for face recognitionepthsence of a ring
for the hand grip pressure pattern) we expect that eacan be perturbed by a
small amount of noise respectivetto The amount of noise depends on the value
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of the standard deviatiot,. If o; is small then we expect the difference between
x; andt; to be small on the other hand if the valuemgfis large then we expect
the difference between andt; to be large as well.

The error rates of a biometric system are determined by theracy with
which the matching engine can determine the similarity leetwa measured sam-
plez and the expected value of the templat@/e construct two hypothesgdi,]

x andt are sampled from the same probability distributiamd[ /] = andt are
not sampled from the same probability distributidrhe matching engine has to
decide which of the two hypotheség, or H; is true. To express the accuracy
of a biometric system the ternfalse acceptance rat¢’AR andfalse rejection
rate, FRR are used. Théalse acceptance ratepresents the probability thak,
will be accepted when in fadtf; is true. Thefalse rejection rateepresents the
probability that the outcome of the matching enginélisbut H, is true.

5.3 Cryptographic keys from biometrics

Our protocol requires the construction of keys from biomeediata. In raw
form, biometric data is unsuitable to be used as cryptogcdqgly material for two
reasons. The first is its representation, usually the coatia real domain while
cryptographic keys are represented in the discrete doni&ia.second reason is
noise. Two consecutive biometric samples of the same iddaliwill differ by
a small, but unpredictable amount of noise while a cryptpli@key should be
exactly reproducible.

Chapters3 and 4 of this thesis consider in detail the problem of exingaini-
form and reproducible strings from noisy, non-uniformlgtdbuted data. Dodis,
et al. [32] propose a general construction termed fuzzy extraataich in princi-
ple does two things: provides error correction to compenfeatthe unpredictable
noise in the biometric and smoothing the non-uniform regméagion of biometric
data.

There are two main components in a fuzzy extractor schemegémerate
and the reproduce. The generate procedure is used duriolgnemt Figure 5.1
left) of a userX. As input it takes a low noise templatéfor instance obtained
by taking multiple low-noise measurements and averagihg)ebiometric fea-
ture vector and a binary string = (mq, ms, -+, my) (Which will be used as a
cryptographic key later on), to compute the public sketch (wq, ws, - -+, wy).

The binary stringn can be extracted from the biometric data itself [76] as
modelled by the fuzzy extractor or it can be generated inclegetly [49] as mod-
elled by the fuzzy embedder @hapter4. During authenticationFigure 5.1
right), the reproduce procedure takes as input a noisy me@sntz of the user’s
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X

N\

Embed Reproduce

Figure 5.1: A fuzzy embedder is a two step construction. The first stegeiErbed
procedure which is executed once when the device learnsiémtity of its owner. The
second step is thReproduce procedure which is executed each time a secure pairing is
performed.

biometric identifier(e.g. a photograph of the user for fagametrics) together
with the public sketchv, and outputs the binary string if the measurement is
close enough to the original biometric. The exact repradngcif the binary string
m is required to authenticate usgtr.

There is an important difference between creating the pikey m from bio-
metric data (using a fuzzy extractor) versus creating tharyikey independently
of the biometric data (using a fuzzy embedder). In the firse¢he same sequence
is extracted from the same biometric while in the second ddfent sequences
can be embedded into the same biometric data for differetdpol rounds. In our
construction we prefer the second option, which is the flezmpedder because if
the binary key is somehow compromised it is difficult to chatige key, because
this would mean changing the biometrics, i.e. changingofae’e of fingerprint.

Both these algorithms operate componentwise on the fea@ater. In other
words, the noisy measurement will be processed to a feataten(z, ..., zy).
From each; andw; the reproduce procedure outputs a binary stringgenerally
consisting of 0-3 bits). In particular, this means that eifesome failures occur
when processing the complete feature vector, the resusiingiring will still be
close to the correct one. Later we show how this property eamsed to improve
the overall performance of a fuzzy embedder construction.

Two parameters are important for a fuzzy embedder congtructhe first is
thereliability, which represents the amount of noise tolerated betweemiga
surements: andz’ such thatn is correctly computed by the reproduce. The sec-
ond is security, which is determined by tkey length{the length ofn in bits) and
theentropy los§32], which measures the advantage thagives to an adversary
in guessingn. We require a fuzzy embedder to have long keys, high reiigbil
and high security (i.e. low entropy loss). However, thesecanflicting require-
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ments. Usually the more secure (long key or small entropg) lttee less reliable
(high values for the error ratd8\R andFRR) the fuzzy embedder becomes.

The key length depends on the number of features availablee nimber
of features is a function of the users enrolled in the systaththe quality of
the measurements. If there akeusers in the system the maximum number of
features that can be extractedNs— 1. However, if the collected data has poor
quality the number of used features can be much less thehdbestical limit.

In the following we give two examples of fuzzy embedder scegto illustrate
how one can balance the reliability and key length in a pcatsetting.

As the first example let us consider the reliable componetitsrae of Tuyls,
et al. [76] with security parametet. This scheme assumes that a global estimate
of the meart is known. Enrollment is performed by takirgneasurements of the
user’s biometric identifier. If the componenbf each of those measurements is
always bigger than a chosen threshpjdwe setmn; = 1. Otherwise, if all mea-
surements are smaller then we setn; = 0. In all other cases, the component is
not used. The public sketah is set to0 or 1 according to whether the component
is used or not.

While the reliable component scheme described above ahighigh reli-
ability, it may result in keys that are too short. Whether ot this method is
satisfactory will have to be decided according to the ingshdse scenario. If
a longer key is required, one should look at other fuzzy emdbedonstructions
that embed one (or even more) bit(s) per component of tharieaector, like the
schemes proposed by Chamgal. [25]. However, a higher embedding rate does
not come for free - it raises the FRR, or the longer key may wethdave more
entropy than the short one, meaning that it actually doe®ffiet more security
despite its greater length [5].

As second example we give the fuzzy embedder interpretafitimee scheme
proposed by Linnartzt al. [49] known in the literature as the shielding scheme.
The Linnartz construction is one of the first fuzzy embedderstructions that
works on continuously distributed data as required for l@tyio data and is a par-
ticular case of the gener@l Mfuzzy embedder construction proposeddhap-
ter 4. They propose to divide the probability density functidneach feature
component in odd-even bands of equal lengtand label the odd-even bands
with 1 and the even-odd bands with 0. The embedding of binatg i done by
shifting the template distribution meanto the center of the closest even-ogld
interval if m; = 0, or to the center of an odd-evennterval if m; = 1. The public
sketchw; is the difference between the location of the méaand the center of
the choseny interval, sedrigure 5.2. During authentication the measurement
is shifted by the value of the public sketah and the label of the corresponding
interval is output. We describe this construction furthesection 5.4.3. In the
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Figure 5.2: The Linnartzet al.[49] fuzzy embedder for continuously distributed data.
For embedding a bitn; = 1 the Embed procedure outputs the public sketeh which

is the difference between the templateand the closest middle of a 1 interval; The
Reproduce procedure adds the measureg to the public sketchv; and outputs the la-
bel of the result, in this case 1.

shielding scheme construction the key length is fixed bé&fmd. More precisely
it is equal to the number of features of the biometric tengpla trade-off can
be made between reliability and entropy-loss by varyingghantization steg
[49].

The main difference between the reliable component schenleugs, et
al. [76] and the shielding scheme of Linnar&t, al. [49] is the way the crypto-
graphic key is generated. In the first case the biometric &&xiracted from the
biometric data whereas in the second case the cryptogr&phiis generated in-
dependently. The biometric data is used to unlock the valdlesopre-generated
cryptographic key. Thus, if the scheme is compromised a reginckn be gener-
ated for the same biometric. That is our reason for choosieaghielding scheme
in this work. As a conclusion, the properties of the bionetiata and the selec-
tion of the embed and reproduce procedures determine tHaygia terms of
randomness) of the cryptographic material that can be @etldrom it. In the
following we explain the authentication protocol and welgpathe impact of the
key quality on the security of the protocol.

5.4 SAfE protocol

The SAfE protocol establishes a shared secret key betwegoedewhose
owners happen to meet and who have no prior security asswciathere are
three phases in the lifetime of our protocol. The first (paistithe enrolment
which can be regarded as a necessary precondition. Theds§u@sent), is the
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SAfE protocol which is the action taken by Alice and Bob toiagh their goal
which is secure communication (future) the third and finaggh We detail these
phases below.

1. Enrolment,is performed once in the lifetime of the protocol. This step i
performed by both participants Alice and Bob, indepengefdlr example
at home, and it is performed once. Each participant takesipteu(low-
noise) measurements of his own biometric, and uses thesddalate the
biometric template vectar. Next, each participant picks a random string
m, and uses the embed procedure of the fuzzy embedder to atal¢hke
matching public sketch. To differentiate between the participants we use
ta, ma,wy for the template, key and public sketch of Alice apdm g, wg
respectively for Bob. After enrolment we have achieved tfigtthe identity
of a user can be verified by her own device, and (2) a deviceeiggped
to be paired up with another device on which the SAfE protéad been
implemented.

2. Pairing, is performed each time the users meet. The SAfE protocolad us
to create a secure channel, a secret key is computed by tlozluee pro-
cedure of the fuzzy embedder. The protocol descriptionvbelmvides all
the details of this step.

3. Secure communicatiowhen the paired users send messages, documents etc.
encrypted with the key derived by the SAfE protocol.

5.4.1 SAfE protocol details

The SAfE protocol uses two communication channels for kéegldishment as
in the pairing model proposed by Balfar al. [13]. One, the in-band channel, is
used for authentication. This channel has a high bandwidltloffers no security
guarantees. The second is the out-of-band channel usedda@uphentication.
This channel has a low bandwidth but offers security guaesitike authentica-
tion, integrity and/or confidentiality. In the SAfE protdage use the out-of-band
channel to exchange a limited amount of information. Lateruse this informa-
tion to establish a common key by exchanging messages on-theenid channel.

OUT-OF-BAND CHANNEL. In the SAfE protocol we use biometrics as the out-
of-band channel. The first reason for our choice is that btaoseis a source of
high entropy data which means high bandwidth compared teraiht-of-band
channels (e.g. infrared). The type and quality of the bisimehodality used
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A: knowst 4 ) B: knowstp

m.a, andw 4 L Ot mp, andwp
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Out-of-band channel | _ _ _ _ _ _ _ _ _ _
In-band channel 2:wy

. !
4 wp, {z A}, 3: m/y = Reproduce(z4,w4)

5: m/; = Reproduce(zp, wp)
6: my = Flip(ma, {zaltny,) y 7 {28, |m),

8: my = Flip(mp, {zB}m, |jm?,)

Figure 5.3:Message flow for the SAfE protocol showing the steps takeridsy ta the
left (5,6) and Bobs actions to the right (3,8) to pair theirlnile devices. The steps in the
middle represent the message exchange on the out-of-bamdeh(0,1) and the in-band-
channel (2,4,7).

(fingerprint, face, iris, palm print) determines the valti¢he bandwidth capacity
for the out-of-band channel. We analyze, in section 5.6 piréormance of two
different biometric modalities: face and grip pressurdgrat

The second reason for biometrics as an out-of band chantteltist is easy
to send messages on this channel since the main charactefifiometrics is
user friendliness (see section 5.7 for the results of usalaihalysis when face
recognition biometrics is used as the out-of-band channel)

The security properties of the out-of-band channel depenthe properties
of the biometric used. By default, biometric authenticatdfers authenticity and
integrity. It offers authenticity because we know the seuntthe message and
integrity since the message collected by Alice on the otltaofd channel cannot
be changed by a third party. For some biometrics, like haimayessure pattern,
retina or ear recognition we may even assume channel cotifiignbecause it
is difficult for an adversary to collect a sample of the biomneetvithout the user
noticing. We discuss the implications of the propertieefaut-of-band channel
on the security guarantees of the SAfE protocol in sectién 5.

IN-BAND CHANNEL. The in-band channel is a broadcast channel (e.g. WLAN)
thus all messages sent on this channel are public and canrbputaded.

MESSAGE FLOW.The message flow of the SAfE protocol is presented in Fig-
ure 5.3. Without loss of generality we may assume that Aliagsthe protocol.
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Figure 5.4: Data transferred on the out_Figure 5.5:Data transferred on the out-of-

of-band channel for face recognition biomeand channel for hand grip pressure pattern
rics. recognition biometric.

We explain each of the steps:

0: Bob measures Alice’s biometric. This is shown as a transff¢he measure-
mentz 4 from Alice to Bob on the biometric channel.
1: Similarly Alice takes a measurement of Bob’s biometngslding x 5.
2: Alice broadcasts her public sketeh, on the wireless channel.
3: Bob feeds the public sketah, and the measurement, of Alice to the repro-
duce procedure of the fuzzy embedder to compute aKgy
4: Bob broadcastg g, {74}, i.€. the tuple consisting af z and the encryption
of x4 using keym/,.
5: Alice useswp received in plain in Step 4 ang; received in Step 1 to compute
m/z with the reproduce procedure of the fuzzy embedder.
6: The second parz},,, of the message is used to compensate for possible
errors in reproducingr 4. We expect that due to noise or poor quality of the bio-
metric sensorm, # m/,: However, due to their construction, andm/, are
close in terms of the Hamming distance so that Alice can pergm efficient key
search algorithm to obtain’, from m 4. The key search algorithm systematically
flips bits inm4 until {z4},,, can be decrypted successfully (see the key search
algorithm below for details). Since Alice can recognize asmgement of her own
biometric, she can check the decryption results.
7: Alice broadcast$z s}, |my, -
8: Bob also performs a key search, flipping bits in the comaten of/, and
mp until x5 can be decrypted successfully.

The action on the out-of-band channel “Bob takes a measurenoen Alice”
can be translated to: “Bob takes a picture of Alice” when fea@gnition bio-
metric is used. In this case, represents the picture of Alice whilg; represents
the picture of Bob (se€&igure 5.4). The same action translates to “Bob hands

110



5.4. SAfE protocol

his mobile device to Alice who holds it firmly” in the case ofrttbgrip pressure
pattern generating, a grip pressure pattern (segure5.5).

5.4.2 Key search algorithm.

In classical symmetric cryptography to decrypt a messageypted with a
key m one must known exactly. In particular, with a keyn' that differs only
in one bit fromm, decryption will fail. The SAfE protocol uses this apparent
disadvantage of symmetric key cryptography as an advantage used to form
the session key. The noise of the measurements is used asraadt [88] for
the session key. The key search algorithm makes it possiléebvenn’. Before
the algorithm starts we decide on how many trials we makegoadier the key.
If we set the error threshold tobits the algorithm will try out at most__, (V)
combinations before key search failure is declared. Therptbtocol has to be
restarted or the user gives up.

Alice starts the key search by assuming there are no errorg,inand uses
m4 to try and decrypt the encrypted message received in step dectyption
fails Alice assumes that there is a one bit difference betweg andm’, and so
on until she has tried all combinations, i.e two bits, thrée étc. Finally, when
Alice reaches the limit on the number of trials she assumnedgtiie key is coming
from an intruder and aborts the protocol. The recoverynifis a related-key
attack [56]. When the value of/, is discovered, Alice can decrypt the message
encrypted withn/, and recognize 4 by comparing it tat 4. The comparison can
be performed by a classifier based matching algorithm dedifpr this particular
biometrics.

A slightly less secure way is to use the reproduce functibnaf the fuzzy
embedder to recognize whether the decrypted residta measurement of Al-
ice’s biometric, by checking if Dde, w,) is equal tom’,. The advantage of this
method is that the device does not need to store the sensith@atel 4, but only
the (fixed)m 4 andw 4. Since a fuzzy embedder is designed to correct errors in the
(noisy) measurement, not for recognition, we expect tHistsm to be less secure
sincem 4 is fixed for multiple protocol rounds. Bob performs the samarsh as
Alice, but usingm andm/’;.

We note that during the protocol both the devices of Alice Both have to
perform the same amount of computation, which makes thegpobfair.

5.4.3 Smart Key Search.

When the key space is large the approach described aboveecamb pro-
hibitively expensive and unusable in practical situatiols increase the search

111



Chapter 5Secure Pairing with Biometrics: SAfE

speed with which Alice finds»/, from m 4 we propose a method that computes
weight coefficients on each of the key bits. The weight asgediwith a particu-
lar bit represents the probability of error for that bit. TWextor of N weighting
coefficients for a particular user is tiegror profile. The error profile gives, in
fact the order in which bits are flipped. For example assuraellbit is changed
in m’,. Without error profile allV bits are equally likely to flip thus on average
Alice will have to perform% flips. On the other hand the error profile gives her
the position of the most likely bit, giving an advantage.

There is another important reason for using error profileaaold key search.
Due to the nature of the protocol, Alice only has to find vaoia$ of her own key
m 4 and not keys coming from other parties. In particular, théesams that we can
reduce the false rejection rate without significantly imsiag the false acceptance
rate. We will see in section 5.6 how effective this approaa loe.

The error profile computation is related to the specifics efémbed and re-
produce procedure implementation. In the evaluation ofppatocol we use the
fuzzy embedder proposed by Linnarét,al. [49] as described in section 5.3. To
calculate the error profile we give the mathematical detsonpf the embed and
reproduce procedures below.

The public sketch is computed by the embed procedure as:

(2n+3)g—t; when m; =1

w; = Embed T,y ) =
( ) {(Qn—%)q—ti when m; =0

Heren € Z and is chosen such thatg < w; < g.

The reproduce procedure is defined as:

1 when 2ng <z, +w; < (2n+ 1)q

m; = Reproduce(z;, w;) =
0 when (2n—1)¢<uz;+w; < 2nq

ERROR PROFILE Having described the fuzzy embedder above we remind the
reader that embedders are not perfect, particularly becusng key generation
whenever the distance between the measuyeohd the expected is larger than
2 an error appears. The probability of an error is the proliglaf a measurement
falling outside the chosen odd-even (labeled 1) or evenfladbeéled 0) interval of
lengthg.

Figure 5.6 shows a feature with a normal distributidit¢;, o;) when the cho-
sen interval is a 1. During encoding the public sketglshifts the mean of the
distribution to the closest 1 interval. The probability ofae is then close to
the probability of a measurement shifted with the same); (the reproduce op-
eration) falling in the neighboring O intervals, represehin Figure 5.6 by the
hatched area. The error probability for this feature is corag as follows:
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Figure 5.6:Error computation for a feature element with normal distiion N (¢;, o),
with quantization step.
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Here the integral represents the probability associated¢oof the 0 labelled
intervals of lengthy (one of the crosshatched intervals) and the summation is don
over all the O intervals. If is large enough we can approximate the error as being
mostly determined by the two neighborifigntervals. Regardless of the chosen 0
or 1 labelled interval the error probability is computedekathe same.

The error profile is the error probability of al features of the template

In Figure 5.7 we show the error profile for the first 20 features compoted
hand grip pressure pattern biometric data for two users dahee and Bob. We
can see that different users have different error profiles.

KEY SEARCH WITH ERROR PROFILEWhen the templaté and measurement
x belong to the same user we expect a small number of errorsp@aapluring
the reproduction procedure. This means that evenjifandm/, are different, the
difference should not be more then a few bits which can béaéuitorrected using
the error profilee, = (F1(01,q), -+, Ex(on,q)).

Now, the Flip function fronfigure5.3:

m;& = Fllp(mA> {'TA}m%)

can be refined as:
m/y = SmartFligma, {za}m, ,ea).
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0.05 — Bob -

Error probability value

0 5 10 15 20
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Figure 5.7:Error profiles computed for Alice and Bob.

We start the key search by assuming that there are no error’s,iand we use
ma to decrypt the messade 4}, - If decryption fails we assume there is a one
bit error. We start flipping one bit of the key according to pesition indicated
by the largest component ef;. If the operation is not successful we assume that
two bits are wrong and we try combinations of the highest tarmgonents from
the error profile. Finally if we reach the limit on the numbétreals we assume
that the key is coming from an intruder and the protocol isrdab

5.5 Security Analysis

There are two distinct, rigorous views of cryptography thate been devel-
oped over the years. One is a formal approach where crygbgraperations
are seen as black box functions represented by symboliessipns and their
security properties are modeled formally. The other is hasea detailed compu-
tational model where cryptographic operations are seetringsof bits and their
security properties are defined in terms of probability amdgutational complex-
ity of successful attacks. In the following we look at botlpests of security to
analyze the vulnerability of the protocol to two very diffet adversaries.
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The first adversary, named Charlie is a Dolev-Yao [34] indrusho has com-
plete control over the in-band communication channel. Hidisgéen to, or modify
messages on this channel. However, Charlie does not hayautational capabil-
ities. The actions of Charlie on the out-of-band channekdédpon the properties
of this channel. The second adversary, named Eve, is a pasduersary, i.e.
eavesdropper. She can listen to the communication on tband-channel and
can perform a key search operation similar to Alice and Bdimtbthe communi-
cation key. If the out-of-band channel is not confidentia Bas access to a noisy
version of the information sent on this channel. By modetimg adversary we
try to answer the following question: “If both Alice and Bolave to guess the
session key, how much more difficult is it for Eve to do the sam#&\Ve use the
computational model to verify the vulnerability to an ealrepper such as Eve.

From security point of view we realize that an adversary i abilities of
both Charlie and Eve is a potential threat and we shouldhestesilience of our
protocol to such an adversary. Unfortunately as far as wa/khere is no formal
approach that can handle such an attacker.

In section 5.5.1 we use the formal approach to verify the enalhility of the
protocol in the to a man-in-the-middle attack. This is aa@ktwhere Charlie is
able to read, insert and modify at will, messages betweereAlnd Bob without
either party knowing that the link between them has been comised.

In section 5.5.2 we estimate how much effort is required foadversary with
the capabilities of Eve to find the common key establishedéen Alice and Bob
during a normal round of the SAfE protocol.

5.5.1 Formal verification (Charlie).

We have formally verified that SAfE satisfies mutual authetton and se-
crecy of messages exchanged after key establishment. ®Bheided for this
purpose is the constraint based security protocol verif@PrGVe by Corinet
al. [29]. An earlier version of the protocol was verified and fduuggy, the ver-
sion of the protocol irFigure 5.3 fixes the flaw found. A (security) protocol is
normally verified using a model of the protocol, to avoid geftbogged down in
irrelevant detail. The quality of the model then determittess accuracy of the
verification results. The basic difference between a paltand a model lies in
the assumptions made when modeling the protocol. We bdlete¢he following
assumptions are realistic:

1. No biometric errors. We assume that the correction mechanism always
works perfectly and thus the initiator knows the key used lmy sender.
Thus, we look only at complete protocol rounds. When theaitdt cannot
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work out the key the protocol is aborted. In this case we asgthat Charlie
does not get useful information from the aborted protocasages.

2. Modeling the out-of-band channéle have two types of out-of-band chan-
nels: (a) when hand grip pressure pattern biometric is usedli€ cannot
listen, modify or send messages thus the out-of-band ch@haathentic
and confidential; (b) when face recognition is used Chadmnot influence
the picture Alice takes of Bob which makes the channel auitiefow-
ever, Charlie could himself take a picture of Bob. The pietGharlie takes
of Bob will be slightly different from the picture Alice takeof Bob. Be-
cause systems without an equational theory such as CoPdoViegt have
the notion of similarity we verify the protocol with the oaf-band channel
in case (@) we leave this as future work. We assume that wiegprtttocol
starts Alice knows:z the biometric of Bob and Bob has, the measure-
ment of Alice biometric while Charlie knows neither.

We have verified the model in figure 5.3 with the assumptions@bWe argue
that the above abstractions do not affect the secrecy arauthentication prop-
erty. Verification with CoProVe explores a scenario in whaste of the parties
involved in the protocol plays the role of the initiator (i.the party starting the
protocol) and the other plays the role of the responder. Al tbarty, the intruder
learns all message exchanged by the initiator and the rdspofhe intruder can
devise new messages and send them to honest participantdlasweplay or
delete messages. Should the intruder learn a secret keyraedsage encrypted
with that key, then the intruder also knows the message.

Resilience to a man-in-the-middle attack depends on thengssons made.
Verification with CoProVe shows that the efforts of Charlamain unrewarded
when he does not have information about the biometric measemtsr 4 andz .

On the other hand if we assume that Charlie knows the biometeasure-
ments of Alice and Boby 4 andxz i respectively the protocol is broken. However,
in real life this assumption is too strong since it is not plaiseso predict the noise
in a biometric measurement and Charlie has no direct acod¢lse theasurements
that Alice and Bob make. It is possible for Charlie to get apragimation ofx 4
andzg. In the next paragraph we look at the security guaranteesaméope to
achieve when the adversary knows some information abgaindx 5z but not all
info.

5.5.2 Computational Analysis (Eve).

When the adversary has some useful initial knowledge aseimtit-of-band
channel case (b) we look at a different adversary, Eve. Twalkeys from fuzzy
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data we use a related-key attack in steps 6 and 8 of the piptoacover the
session key. This approach raises two questions: “If boibednd Bob have to
guess the session key, how much more difficult is it for Eve (tiruder) to do
the same?”, and “What kind of guarantees is this protoc@roff?” To answer
these questions we study the following scenarios:

AE(0) No previous contact between Alice and Eve.

AE(1) Eve has a measurement of Alice’s biometric. From the pulblingg Eve
constructsn’).

We denote byV (x — y) the average number of trials that Eve has to do to guess
y when she knows.

| AE(0) AE(1)
BE(0) w(0—m!y)-W(0—mlpy)  W(m/—m/)+W(0—m’p)
BE(1) w(0—m/)-W(m}— W (/4 —m/y)+W (m/y—
m') mly)

Table 5.1:Guesswork required for Eve to compute the session key.

We analyze Eve’s workload to guess, in the two scenarios above. Alice
(and the same holds for Bob) who knows, and who has to guess’, = my4 +
e where the Hamming weight of the noisds wt (e) < 7, and wherer is an
appropriate threshold. As the secret key lengtlV jghere are(]j) different error
patterns if the actual number of errorg,ishus on average Alice will have to guess
(without knowing her error profile):

1<~ (N
WWWWV%Z(J
=0

In scenaricA£/(1), Eve knowsn’j and has to guess’, wherem”y = m,+¢/,
thusm’y = m/, — ¢’ + e. Sincewt (¢ — e) < 27, Eve has workload:

2T
1 N
W(mﬁ%mg)zig (z)

=0
In scenarioA £(0) Eve has no information on Alice thus she has to brute force
all possibilities. Thus the number of trials is approxinhgate

W(0 — m/,) =2Vt
The scenarios for Bob are analogous:
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BE(0) No previous contact between Bob and Eve.
BE(1) Eve records a measurement of Bob.

Eve’s workload for guessing/; is equal to guessing/, in the analogous sce-
nario.

To be able to listen on the communication channel Eve has¢ssgu, ||,
in all scenarios. Table 5.1 summarizes her workload. In eastwe have the in-
formation that Eve knows about Bob and in the column the mfidron that Eve
knows about Alice. Due to the message flow in the protocol figeee 5.3), Eve
might have an advantage if she has information about Alicee &n intercept
message 4wp, {74}y, and recover/, if the biometric allows for taking a deci-
sion on whether two measurements come from the same individhis explains
the plus sign between the work of guessing and the work of guessing’; in
the columns where Eve has some knowledge about Alice. In tistwase sce-
nario, if Eve has had interactions with both Alice and Bolobef this means that
Eve has to do a quadratic amount of work compared to eithdreoparticipants.
In all other cases, there is at least one key that has to bgersmbfrom scratch,
making the attack infeasible.

We summarize why it is more difficult for Eve to guess the comioation
key compared to Alice and Bob:

e Itis easier to start to guess = m + e whenm is available, as is the case
for the legitimate participants Alice and Bob compared teggingn’ when
m” = m/ + e is available as is the case for Eve.

e A good quality camera for Eve will not improve her workloadhwoared to
a legitimate participant. Always Alice has as salt = m 4 + e4 while Eve
will have m’) = ma + ep = m/y — es + ep. With a good camera the best
Eve can do is contraly.

¢ Alice and Bob work in parallel to find the session key each cating their
share while the best Eve can do is find the key sequentialty, fiird 1/,
then findm/y.

e Alice and Bob have an error profile that Eve does not have.

As a conclusion, the SAfE protocol can be assumed to be sadtireespect
to an eavesdropper for a short lived association as in thewdbk secure device
association.

118



5.6. Validation with real life data

Figure 5.8:Sample face images from FRGC database.

5.6 Validation with real life data

We present experiments with two different sets of biometdta: hand grip
pressure pattern data and face recognition data for valgitie performance of
the protocol. The goal of these experiments is to determinether it is possi-
ble for Alice and Bob to determine their own key using the Sfgr function
knowing that biometric recognition is not perfect. We ndtattsimulation results
presented in this section were obtained in Matlab on readifta.

5.6.1 Face Recognition Biometrics.

For face recognition we report on three rounds of experisentwo different
databases.

To verify the potential of constructing cryptographic kdysm face data in
the ad-hoc settings of our protocol we need a database vedis f&corded with a
mobile device. Since, as far as we know, such database isubtitly available
we recorded our own “mobile” database. This database cmntaiv-resolution
images of 31 individuals, recorded in uncontrolled cowdis. The first round of
experiments was performed on this “mobile” database.

As a control for the first round of experimental results, weeated the ex-
periments on the Face Recognition Grand Challenge (FRGGjovel database
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Figure 5.9:Sample images from the mobile database.

which contains 275 individuals. Images in the FRGC databeséigh resolution
images, which can be divided into images obtained in cdetti@nd uncontrolled
situations. The difference between controlled and unodiett conditions can be
seen inFigure 5.8 where the same person is captured in controlled conditio
(right) and uncontrolled conditions (left). The secondrmdwf experiments was
performed on the images taken in controlled situations hadtird round of ex-
periments was performed on the images taken in uncontrotiaditions.

One can see the three experiments as follows: the expesmhtthe mobile
database show the success of Alice and Bob in performingdin@g@ protocol us-
ing face data recorded with existing mobile device techgypldExperiments on
the FRGC data set obtained in uncontrolled condition demnatesthe perspec-
tives of the pairing algorithm in the near future when moliévices are capa-
ble of capturing and processing high quality images. Expenits on the FRGC
data set obtained in controlled condition represent thal icese in terms of face
recognition. One may hope to achieve them when changes enqras lighting
conditions are no longer a problem.

MOBILE DATABASE. For each of the 31 individuals we recorded 4 video files us-
ing the same mobile device (ETEN M600+, which has a 2 megelpoamera).
The four files were recorded in two sessions on two differaysdeach day we
recorded two movies. On the first day each movie was apprdglyna0 seconds.
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Figure 5.10:Experiment 1LROC curves for mobile data set, uncontrolled set.

On the second day we recorded shorter movies of approxietgfseconds. Lo-
cation of subjects (background), pose and light were diffemn the two sessions.

Also in this experiment we use the algorithm implementapooposed by
Veldhuiset al. [84] for hand geometry and adapted for face recognition 8].[1
The algorithm works as described below. We first trained aegeriace model
using the (FRGC) version 1 database. In the recorded mov&sxtract frames
which contain the face of the individuals. Movies recordethie first session re-
sulted into 5994 images that were used during enrolimenti®éaecorded in the
second session resulted into 2959 images that were usetydasting. Images
from our mobile database are shownHigure 5.9 where the images on the top
were recorded in the second session and thus were usedtiogt@sd the bottom
images were recorded in the first session and were used torges$n each of
these images, we automatically located the faces usin@teedetection method
of Viola-Jones [86] which finds facial landmarks like eyess@and mouth. These
landmarks are used to align the faces (see the bottom imddegue 5.9) We
only used the first hundred correctly found faces for the gadmn in both ses-
sions. For each image the region of interest is selectethatieground is removed
(seeFigure 5.9 bottom left) and the region of interest is normalizeddmzmean
and unit variance. The difference between the face in thgénzend the generic
face model generated from the FRGC database is computed. résuli each
biometric sample can be represented as N (in our case eq8) independent
feature vectors. On this database, the face recognitiorore mhifficult due to
larger deviations in the pose of individuals, illuminatiand the low quality of
the movies. Th&ER , using the face recognition algorithm without correction,
is 15.7%.
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Figure 5.11:Experiment 2ROC curves on FRGC v1. database, uncontrolled set.

At this stage we apply the shielding scheme fuzzy embedagagsed by [49]
to extract cryptographic keys from face data. We use theadkacted in the first
session to estimate an average face template for each of ileBs. We generate
a random key of 30 bits length for each user. We use the emlmexbgure to
generate the helper data and the error profile as descrilsetiion 5.4.3.

To estimate th&'RR we do the following: for each user we use the biometric
measurements from the second session and the helper datehofiger as input
to the reproduce procedure. The result of this operationbgary key. We
compare this result to the original key generated duringlenent. If they do not
match exactly it means that we a have a false rejection. Fltie represents the
percentage of the false rejections from the total numbeniait

To estimate thé’AR we first choose a target of attack (one particular user).
We apply the reproduce procedure to all the biometric measents of the other
users and the helper data of the target. The resulted keympa®d with the
target key. If they match we have a false acceptance. Fitie represents the
percentage of false acceptance from the total number d¢ tribere all users in
the database were target.

By varying the quantization stepin the embed procedure we can tune the
FAR and theFRR. Figure 5.10 shows th&OC curves obtained with and with-
out correction. Of interest is tHéER , which allows to evaluate the performance
of the fuzzy embedder on the target data and the effect of e tElip function.
We notice that without any corrections tR&R is around29% with 1 bit correc-
tion theEER drops to approximately9% and after further correcting 2 bits the
EER is approximately equal to the one obtained by the biome#&ged classifier
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Figure 5.12:Experiment 3ROC curves on FRGC v1. database, controlled set.

15%. By doing 3 bits correction we obtain &R of approximatelyl2%.

FRGC DATABASE.In the FRGC database the position of eyes, nose and mouth are
labelled, thus images can be easily aligned. For each intege=gion of interest
which contains most of the face is selected and the backgrisuemoved.

A generic face model using all images in the FRGC databagairsetl. The
difference between each face in the database and the gémionodel is com-
puted and stored as the feature vector. A combination of RGABA algorithms
is used on all feature vectors in the database. As a resuitl@ametric sample
can be represented as N (in our case equal to 50) indepemrdentd vectors. In
the FRGC database the data set obtained in controlled camslitontains 3772
images while the data set obtained in uncontrolled conitimontains 1886 im-
ages. In each experiment, the data set is randomly dividedwo subsets, each
consisting of approximately half of the images of each per§ine subset is used
for training and enrollment while the other subset is useddsting. The same al-
gorithm for extracting cryptographic keys from face datd #re same evaluation
methodology is used as in the mobile database experiment.

The results of the experiment on the uncontrolled data sebeaseen irfFig-
ure5.11. Without any correction theER. is approximately equal to 9.2%. With
1 bit correction theEER is lowered to 8.7%. By doing 2 bit correction tR&R
can be lowered to 8.6%. Three bit correction, unfortunatelynot further im-
prove theEER .

The results of the experiments on the controlled data sestawen inFig-
ure5.12. On this data set without any correction Bi&R is approximately 2.2%.
With 1 bit correction th&£ER is lowered to approximately 1.8%. Also, in this
case correcting more bits do significantly improve Bi&R .
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Figure 5.13ROC curves for on hand grip pressure data, controlled set.

Summarizing, we did perform simulations for face recogmtbiometrics on
three different data sets. The first is the mobile data satiwtontains face data
collected with a mobile device of 31 persons. HiéR for this data set is around
12%. The second is the uncontrolled set of the FRGC v.1 datarseh contains
face data of 275 persons collected in uncontrolled sitnati@he besEER we
obtained on this data set is 8.6 %. The third is the contraktdf the FRGC v.1
data set which contains face data of 275 persons collectamhimolled situations.
The lowestEER we obtained through simulations is 1.8 %. In the next section
we look at a different biometric systems that uses hand geggure pattern to
distinguish between individuals.

5.6.2 Hand grip pressure pattern biometric.

The evaluation is performed on real life grip pattern biamsedata collected
from 41 participants, in one session. A detailed descniptibthis biometric can
be found in Veldhui%t al.[85].

Each of the 41 participants contributed 25 different mezrm@nts. Approxi-
mately 75% of these samples(18), are used for training tiaigthm and 25% (7)
are used for testing. Firstly, we reduce the dimensionafithe data to maximum
of 40 independent features. For training and testing we hiseame data that is
used for verification by the classifier based recognitiom@dgm. Secondly, we
construct cryptographic keys using the fuzzy embedder ssritbed above only
this time the length of the key is 40 bitBigure 5.13 presents theOC obtained
from the collected data. Without corrections thER on the target data set is
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Figure 5.14: Expected noise for Alice (dark-blue) and Eve (light-orgnfge different
guantization steps (different points on tR®C curve). Eve and Alice use the same type
of camera.

around5%. After 1 bit correction, théEER drops significantly t@3.5% further
after correcting 2 bits thEER goes down t@.7% while correcting 3 bits further
lowers theEER to approximately2%. TheEER values are better in the case of
hand grip pressure biometric compared to the face data. Cthe ceasons is that
hand data was collected in one session thus the variatidngée the training
data used for enroliment and the testing data is not too lallgesing for much
better authentication performance.

Summarizing, after doing three bits of correction Hi&R we obtained through
simulations is around 2%.

5.6.3 Practical Security Evaluation

We analyze in this paragraph how difficult it is for Eve to guee communi-
cation key when the mobile data set is used to embed the cormatiom key in
the four scenarios described in section 5.5. We choose thderdata set for the
practical evaluation since this is the best case for Eve. chimemunication key
has 60 bits when the mobile data set is used compared to 8@lwts the FRGC
v.1 data set is used.

In this evaluation the most difficult problem is to give a st estimation of
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the noise. By noise we understand a binary pattern whicleseptts bits that are
different between two binary strings or keys. Bye denote the noise expected
for Alice and bye’ we denote the noise expected for Eve when she takes a picture
of Alice. However, when Eve is guessing the communication tkke noise is

e — €/, see section 5.5 for details. Our task is to evaluate fronexperimental
data the Hamming weights ferande — ¢/. We make a few observations. As
has been showed in section 5.5, Eve cannot lower her worlbdesmlv that of
Alice by using a good quality camera. Since Eve does not Hawenbise free
key (m, is never revealed during the protocol) her expected wotdkiedarger
then the workload of Alice. The noise between any two inddpeh biometric
measurements is also independent. The noise expecteddarrEAice depends
on the errors the biometric recognition algorithm can tater Thus, for each point
on theROC curve inFigure 5.10 the amount of noise will vary.

For a realistic estimation of the noise we adopt the follgyvaolution. On
the available data sets we compute the average number dhhbttare different
between the keys of all users for each point onRKE_ curve. The average values
are seen as the noise of the legitimate participants thusgept the Hamming
weight ofe.

The question now is: if we knowwhat is a realistic approximation fer—¢’?
We look at two cases: (a)-worse case scenario (for us) whezehtains exactly
the same biometric measurements as the Alice and Bob, wfdtenally ase =
e — ¢ and (b)-an average case scenario whereethrde’ are not identical but
they overlap. The overlap is estimated analytically as #regntage of the total
length of the key that the Hamming weight efepresents.Figure 5.14 shows
the Hamming weight ot versus the Hamming weight ef — ¢’ for different
guantization steps. When the quantization step is relstamall (few errors are
tolerated) the expected noise (the number of bits that dfereint) is relatively
high for both Alice and Eve. The more the quantization stepaases the more
errors can be tolerated, the noise decreases and theres iwdels for Alice but
also for Eve.

Figure 5.15 shows the number of trials that Eve has to perform vetseis
workload of Alice in the 4 scenarios described in section $\fen Eve has no
information about Alice and Bob her workload is constantareigess the size of
the quantization interval. In this scenario she will havpediorm on average)*°
trials before she finds the correct k&jgure 5.15 (a).

We look at the quantization step where tER. is reported, in our case the
EER is obtained when the quantization step is 10. At this poistwlorkload
of Eve in the scenario where she has no information aboueAlitt she has the
picture of Bob is approximately0'® trials in the worst case scenario ah@® in
the average case, segure 5.15 (b). When Eve has the picture of Alice but no
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Figure 5.15:Workload of Eve in worst case scenario (dotted) for Alice &uth (and

best case for her) and average case scenario (dashed) vsvdikoad of Alice without
using and error profile enhanced search (solid) when (a) Ea® o information about
Alice or Bob, (b) Eve has no information over Alice and haspiwture of Bob, (c) Eve
has the picture of Alice and no information over Bob (d) Eve the pictures of both Alice
and Bob.
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Gender Age Education
18—24: 10%

High school:7%

Male: 60%  25—29: 56%
Bachelor:17%
Female: 30—34: 20% )
Masters:46%
40% 35—39: 7%
Doctorate:30%
404+: ™%

Table 5.2:Participant profile.

information over Bob, due to the asymmetry of the protoca khs to perform
approximatelyl 07 trials, Figure 5.15 (c). When Eve has both the picture of Alice
and Bob she has to make in the worst case for us (and best cdsa&rYthe same
number (in order of 10th) of trials as Alice am in the average casEigure5.15
(d). In this case the workload of Eve is unacceptably low. Aigon is to use
another quantization step. For example when using qudiatizatep number 3
Alice has to perform on averadg®’ trials while Eve has to make betwe&n'’
(worst case) and0'* (average case) trials.

Assume that Alice and Eve can perform one trial operatiohestime speed.
Assume further that it takes Alice 10 seconds to perfoomtrials (each trial im-
plies setting a new key, a decryption operation and a cormpatd decide whether
the result is correct). In these settings it takes Eve in tbhestxcase aroun.7
hours to find the communication key and 3 years in the average c

VALIDATION EXPERIMENTS CONCLUSION.We offer four conclusions from the
evaluation on the two sets of biometric data. The first casioluis that error
rates and thus performance of our protocol depends mostigeoquality of the
collected biometric data, regardless of the biometric tgpelata. The second
conclusion is that the influence of the correction algorithisignificant, however,
theEER of the fuzzy embedder will be around th&R. of the biometric based
matcher. Increasing the number of bits that are corrected dot increase lin-
early the performance of the fuzzy embedder, the most sigmifiimprovement
is obtained after the first bit of correction after which thgorovement decreases.
The third conclusion is that the correction mechanism islstaneaning that the
effect of correction is independent of the type of biomefie fourth conclusion
is that it is possible to tune the workload of Eve compared#t bf Alice such
that security level is acceptable, even when Eve has therpiof both Alice and
Bob.
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5.7 Usability Analysis

Security only works if people use it therefore we conductezbmparative
usability analysis between a PIN based pairing method arfi&E Airing. As a
guideline we used the usability study by Uzehal. [82] for secure pairing meth-
ods. Our results are presented for a comparable targetatopul

TEST DESIGN AND PROCEDUREEach subject was given a brief introduction
to the secure device association scenario where peopletoeedhange sensi-
tive information without having any prior security assaia. The researcher
explained that the subject has to try two different pairirgfmods; one is the stan-
dard Bluetooth pin based pairing method and the other is At $rotocol. The
subjects were asked to complete a background questioriimsiyso that we could
learn about the subject demographics and mobile devicesUusiatpry. Next, the
subject was asked to try both pairing methods in a randonr.ofe® the SAfE
protocol we wrote a program that implements only the useraution part of the
SATfE protocol. For the PIN based pairing we used the stanBlaretooth pairing
method as provided in our device. Each subject was askedtisela 4 digit PIN
number and to enter it. For the SAfE protocol the subject veked to take a
picture of the researcher. All other actions with the PDAsenserformed by the
researcher. It was explained that only the steps requirpdrform the pairing are
the subject of our experiment. After completing both parprotocols subjects
were asked to fill in the post-test questionnaire. The tgstias done in a room
with no disturbance and the testing time was around 20 mémeesubject with at
least 15 minutes of free discussions. During both pairirgqmols subjects were
using the same ETEN M600+ PDA.

PARTICIPANT PROFILE.Our usability experiment had 30 participants from a uni-
versity environment representing 13 different countrielse demographics such
as gender, age and education for our subjects are preserttgale 5.2. Most of
our subjects have a computer science background.

The average computer usage history was around 15 yearsmatbeaage of 9
computer hours per day. All participants have a mobile phar®DA or a laptop.

ANALYSIS AND DISCUSSIONS.The conclusions drawn from the experiment can
be considered only as indicative due to the small number dicgzants and the
(university) biased profile of our subjects.

The main purpose of our experiment was to discover whettegswgould find
it easier to use SAfE protocol compared to a standard 4 dibitdased pairing.
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OEasy
100 - M Professional
80 OFun
60 | OPersonal Choice
40
20+
0 ‘
PN SAfE

Figure 5.16:Summary of participants opinion (in percent).

As shown in figure 5.16 the score was tight with slightly moeeple preferring
PIN pairing.

The explanation for the overall preference for the PIN basethod is that
subjects are familiar with PIN based security (ATMs, Blw#t) and typing num-
bers is natural to subjects with a computing background. esembjects used the
adjective “easy” to describe the SAfE method. Others fotledsy to understand
how PIN based pairing method works but they used the word ichegdescribe
the SAfE protocol. We did not try the experiment with a long@N and it is
worth noting that approximately 80% of our participants ad® the same PIN
number(1234).

Most of our subjects, 90%, found it fun to perform the pairirging a cam-
era and 73% would like to have both pairing methods on thebileaevice (in
figure 5.16 the percentage of only PIN or only SAfE choicessti@vn). Due to
the “fun” effect of taking pictures the adjective “profemsal” was used more to
describe PIN than SAfE.

A separate topic in the questionnaire concerned the prieffegt of giving
away a photo to the researcher. To our surprise 56% of thesisbjvere not
bothered to have their picture taken by a relative stranger.those 44% who
are bothered nothing changes if they have the photograptesésearcher. It was
suggested that a privacy guarantee such as “picture delftezgbairing complete”
would improve things significantly. To our satisfaction 86¥the users want to
have security while communicating wirelessly. Summagzthe usability exper-
iment provides an indication that taking pictures provid@®ssible route towards
creating security associations because itis fun. Whetnaplp believe that taking
pictures is professional enough to provide good securimispen question.
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5.8 Conclusion

Secure device association is a challenging problem frorh tieg technical
and the user interface point of view. Firstly, users needxigoit a common
secret source of randomness from which to extract a shaceet$@y. Secondly,
it should be possible to link the device we connect to withgiesson who owns it.
Thirdly, the process should be simple such that for any pensth non technical
background the protocol is easy to use.

In this chapter we propose the SAfE protocol which uses bidoseas the
out-of-band channel. We analyze our protocol from threfeifit perspectives.
Firstly, we analyze the security of the protocol against tymes of adversaries
Eve which has computational capabilities and Charlie a D&k attacker. We
show that our protocol is not vulnerable to a man-in-thedtadattack and we
analyze eavesdropping in four different scenarios bothnftiweoretical and prac-
tical point of view. We show that in the average case when Egethe biometric
measurements of both Alice and Bob her workload is significassume both
Alice and Eve execute at the same speed 1 trial operatioumes$urther it takes
Alice 10 second to perform0? trials. In these settings it would take Eyeears
to perform10* trials, expected in an average case scenario. Of coursedive ¢
use more powerful computers or execute operations in par&ince our proto-
col is intended for ad-hoc situations were confidential lmitanitical information
iIs exchanged, as long as it would take Eve more than 7 daysddHa com-
munication key we consider our protocol secure. The workloigEve, thus the
security of the protocol can be increased but it would alsoeiase the error rates.
A convenient balance can be found on a case by case basisuld wave been
extremely interesting to test the resilience of the protagainst an attacker who
has both the abilities of both Eve and Charlie. Unforturyate are not aware of
any formal approach that can handle such an attacker.

Secondly, we evaluate the performance of the protocol withtypes of real
life biometric data: face recognition and hand grip pressqattern. Binary keys
are generated independently of the biometric data for eagtognl round and
combined with biometric information. This is a necessarmyrapch since one has
only one face, 10 fingerprints, etc. For face recognition @lected face data with
a camera of a mobile device, in two different days in uncdlgdoenvironment
(light, face expression) as it would be the case in the realdvdNe obtain on
this data set aliER. of approximatelyl2% after applying a correction function
that we designed. To consolidate our experiments we repeatXperiments on
the FRGC v.1 database, which contains 275 individuals. ésag this database
can be divided into two data sets: images obtained in unclbedr conditions
and images obtained in controlled conditions. These exymaris are interesting
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as they show the perspective of the pairing algorithm in tharé. Results on
the uncontrolled data set are relevant in the near futurenwrin@bile devices may
capture and process high quality images. Simulations gritita set show that the
EER without correction is approximately 9.2% and can be lowdrngdorrection

to 8.6%. Results on the controlled data set are relevant whanges in pose and
lighting are no longer a problem for face recognition. Siatiains on this data set
show that th&2ER is 2.2 % without corrections and one can lower this value to
1.8 % by doing corrections.

On the hand grip pressure pattern biometric we obtainediR that is ap-
proximately2%. The main reason is the high quality of the data, all hand grip
data were recorded in one session from trained individuatswe noted before
the quality of biometric data is the main factor that can low error rates. A
carefully designed data acquiring interface is neededdodgerformance.

Thirdly, we look at our protocol from the perspective of tlseu Our usability
analysis shows that our subjects find the SAfE protocol fuasi®, and that they
would like to have the SAfE pairing available on their moldkevices. However,
there are some situations where SAfE is not appropriatevifeh the participants
wish to communicate without drawing attention (such as iestaurant or at a
business meeting) (b) when the protocol fails (for examplden bad lighting
conditions). Therefore a back-up solution for SAfE is nektieat is smoothly
integrated with the system. The user would then have thecehafia more user
friendly biometric based pairing method and a more robustmétive method.

The contribution of this chapter is related to $SIECURE TEMPLATE TRANS-
FER recommendation, which is the result of the 3W-tree analysiShapter2.
Our solution to this problem is new, in the sense that bioicgets used for the
first time as an out-of-band channel. Using biometrics mékeSAfE protocol,
user-friendly and fun as pointed out by our usability analysSectiorb.7. More
importantly, it offers strong security guarantees, coragao other solutions in
the literature. Since false acceptance and false rejetti@at cannot be elimi-
nated completely from any system that uses biometrics we togt advances in
the technology (more accurate cameras) and in the field aidtidcs (algorithms
resilient to environmental variations) can be reduced taceptable level.
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Conclusions

We now summarize the contributions of this thesis, in refatb the
main Research Question describeddnapter1l. We also highlight
future research directions in the area of cryptography naiisy data.

In the introductory chapter we formulate the following rass question:

How can wemitigatethe risk of malicious errors in a biometric authentication
system?

Defense methods to mitigate risk are designed with a pdati@pplication in
mind. Thus, we answer the above question in the context afjcieg the Smart-
Gun architecture, a biometrical enabled weapon which cafirée only by an
authorized user. I€hapter2 using the 3W-tree, a novel threat analysis method
specifically designed for the biometric system architegtuve propose a three
step procedure, which consists of (1) identification, (apslfication and (3) anal-
ysis of biometric faults.

The result of the initial 3W-tree analysis for the biome8martGun gives six
research directions. In this thesis we focus on the two #gawlated recom-
mendations. The first security directiorSECURE TEMPLATE STORAGEwWhich
states that it should not be possible to reconstruct the dtigenidentifier from
the data stored in the gun. We explore the challenges refatiils topic, which
are both theoretical and practical and we put forward smhstito many of the
issues inChapters3 and 4. The second security directiorSECURE TEMPLATE
TRANSFER which states that it should be possible to transfer the btamiden-
tifiers between two guns when no security infrastructureaslable and when the
users are no security experts. The solution we proposed@tbblem is explored
in Chapterb.

133



Chapter 6. Conclusions

Contribution Theoretical Practical
Chapter 2 (Threat Analysis)
Section 2.4 3W-tree
Section 2.5 SmartGun Analysis
Chapter 3(csFuzzy Extractors
Section 3.4 Link FAR- min-entropy
csFuzzy Extractors
Section 3.5 Reliable Component

Shielding Function
Chang multi-bit scheme

Chapter 4 (Fuzzy Embedders)

Section 4.4 Fuzzy Embedders
Section 4.5 Q MFuzzy Embedder
Section 4.6 6-Hexagonal Tiling

7-Hexagonal Tiling

Chapter 5 (SAfE Protocol)

Section 5.5 SAfE Protocol
Smart Key Search
Section 5.6 Formal and Computat
tional Analysis
Section 5.7 Face Recognition and
Hand Grip Experiments
Section 5.8 Usability Analysis

Table 6.1:Theoretical and Practical contributions of this thesis.

In this thesis we make progress in both research directidfessupport this
conclusion by describing our main contributions, whichrspawide range of
activities:

e We develop two novel template protection schemes, the 6goe tiling,
which is optimal from security point of view and the 7 hexagbtiling
which is optimal from reliability point of view compared tbeir counter-
parts in the literature.

e We create novel definitions (e@&fuzzy extractor, fuzzy embedder), which
expand current models in the literature (fuzzy extractor).

e We show that the number of uniformly random bits that can keaeted
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from a noisy source depends on the quality of the noisy dagal{iometric
data) expressed in terms BAR andFRR.

¢ We model mathematically the relationship between the #ggcamd relia-
bility of template protection schemes as a dual sphere oay®s. sphere
packing problem.

e We develop a new protocol for spontaneous device interactgng bio-
metrics when no security infrastructure is available, Wwhiee demonstrate
to be fast, user friendly and reliable.

An overview of the theoretical and practical results forreabapter is given
in Table6.1.

FUTURE WORK.The results in the thesis open several possible future nesea
directions, both theoretical and practical.

e The theoretical results i@hapter4 show that our new template protection
schemes, the 6 hexagonal tiling and the 7 hexagonal tilirgy saperior
compared to other theoretical constructions in the litegatWe would like
to have these results confirmed in practice by results orlifealata.

¢ In Chapter4, we identify a few basic building blocks that can be used to
construct a practical system, which extracts cryptog@géys from noisy
data. Which blocks to use and in which order, is mostly deit@ethby the
“know-how” of the system engineer and the application cxnt8o far no
theoretical study was performed to determine any optimaltiteria.

e We are working on a complete prototype that runs the SAfEqmaiton two
mobile devices. We are particularly interested in testimg influence of
different environments on the key search failure sincerenvnental effects
such as changing the light conditions can seriously affexféce recogni-
tion performance.

e We verify the security of the SAfE protocol both formally, poove that a
man-in-the-middle attack is not possible and computatipn@ estimate
how much effort is required from an attacker who is activelyolved in
guessing the communication key.

We leave the security verification against an adversary varoptay the
man-in-the-middle and who tries to guess the communicdteynat the
same time as future work.
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e False acceptance and false rejection threats are inherbrarhetrics. Ex-
periments show that the strength of a cryptographic keyaeted from bio-
metric data and the reliability with which the two legitireatsers compute
the key depends on the error rates of the biometric classificalgorithm.
At this point in time we find that face recognition algorithiims mobile
device are not mature enough. We leave the exploration ef diometric
modalities, such as fingerprints, iris or fusion of differbrometric modal-
ities, which might have superior performance as future work

e Although biometric authentication is used to enhance sgcstoring bio-
metric data, in a database introduces new security andgyriveks. In the
literature there are several measures such as min-enagopgpy-loss, rel-
ative entropy-loss, etc which are used to determine therisgau privacy
offered by a template protection scheme. In the future thlet ineasures
for evaluating both security and privacy scheme have to becaigupon.

SMARTGUN.Finally, we present a perspective on the development of at&ua
for the Dutch police. InChapter2 as a result of the 3W-tree analysis for the
biometric SmartGun, we identify 6 general recommendationthe architecture
of the biometric SmartGun.

The first two areLOW FALSE REJECTION RATEand LOW FALSE ACCEP-
TANCE RATE. These recommendations are the subject of intense reseffoch
in hand grip pressure patterbiometrics, a new type of biometrics with interest-
ing applications. Results are encouraging and more infoom&an be found in
the PhD thesis of Xiaoxing Shang. Currently foF&R of 10~*, which is the
officially accepted failure rate in the Netherlands for aigmiveapon th&'AR is
approximately30%, for public acceptance, however, the target is to haVd R
that is at the mosi%.

Development of ®OBUST SENSORwhich is resilient to wear and tear is the
research area of TSST (Twente Solid State Technology). FErdethnological
point of view it is feasible to build a robust sensor, butdestpractical environ-
ment have not taken place. Solutions for 88CURE SEALrecommendation are
considered as engineering challenges that will have to b# dé&h by the gun
manufacturers.

The security related recommendation, 88#CURE TEMPLATE STORAGENd
the SECURE TEMPLATE TRANSFERan be met by solutions put forward by this
thesis. Finally, there are many, practical and still opesbfams to be solved
such as interface the electronics to mechanical parts,ngadke battery last long
enough, find space for the electronics in the gun butt andiat@khe reliability
of the system.

When progress is made regarding the open problems, we reenchennew
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3W-tree analysis of the SmartGun. The 3W-tree analysisldhmeian iterative
process since new solutions may introduce new vulneragsilihat were not fore-
seen in the earlier 3W-tree analysis.
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Samenvatting

Biometrische beveiligingssystemen die de identiteit vam gersoon verifiren
door het scannen van vingers, handen, oog of gezicht wotdedsmeer toegepast.
Daardoor is de biometrie een van de snelst groeiende inelustfoepassingen
van biometrie omvatten nationale veiligheid (bijvoorluett Europese paspoort),
fysieke toegang tot diverse faciliteiten (banken, prétpar kantoorgebouwen,
computersystemen, etc.), gezondheidszorg en overherdgdn.

Het gebruik van biometrie voor authenticatie van persosegemakkelijker
dan bestaande methoden zoals passwords en PINcodes (erietsaheegenomen
of onthouden te worden). Nog een belangrijk voordeel vamietoische authen-
ticatie is dat het gebeurtenissen aan een gebruiker verfmadswords of pasjes
kunnen verloren of gestolen worden). Ook wordt het steeds maatschappelijk
geaccepteerd en dalen de kosten. Biometrische authémteaieist het vergeli-
jken van een geregistreerde biometrische opname (bicuolk&template) met een
momentopname (bijvoorbeeld een vingerafdruk die bij hietggen opgenomen
wordt).

Biometrische authenticatie is echter niet perfect, en t@er van een biome-
trisch authenticatiesysteem kan fouten vertonen doorkeyggen van het classifi-
catie algoritme, slechte kwaliteit van de opnamen, of malatpe van het systeem
door een indringer. Alhoewel biometrische authenticatiepir bedoeld is voor
het versterken van de beveiliging, leidt het opslaan vambtosche gegevens
in een database tot nieuwe beveiligings- en privacyrisiadie toenemen als de
database met een netwerk verbonden is. Dit is in de meedtgjksduaties het
geval.

De meest ernstige bedreigingen zijdentiteitsdiefstglwaarbij een aanvaller
templates uit een database steelt en een synthetisch biechdtenmerk maakt
dat bij authenticatie geaccepteerd womndtherroepelijkheidhetgeen betekent dat
biometrische gegevens niet kunnen worden bijgewerkt afitggggeven wanneer
zij gecompromitteerd zijnprivacy, hetgeen duidt op het vrijgeven van gevoelige
persoonlijke informatie zonder toestemming van de eigertsan oplossing voor
deze bedreigingen is het toepassen van technieken voolatieigscherming, die
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het moeilijk maken voor een aanvaller om de biometrischeegegs uit de tem-
plates te achterhalen.

Dit proefschrift beschouwt beveiligingsaspecten van l@tieche authenti-
catie en draagt oplossingen aan om het risico te beperkezedadanvaller mis-
bruik maakt van biometrische gegevens of delen van biosoétei systemen omzeilt
om zijn kwaadaardige doelen te verwezenlijken.

Onze bijdrage bestaat uit drie delen. Ten eerste introdncse de 3W-tree,
een analyse-instrument om voor een biometrisch syste#teke aanvalssce-
nario’s te identificeren We passen het 3W-tree ontwerpinstrument toe op het
SmartGun biometrisch herkenningssysteem met als doali&etificeren van kri-
tieke beveiligingsproblemen. Ten tweede verkennen wetdagingen varneilige
templatebeschermingdie zowel theoretisch als praktisch zijn, en we dragen voor
een gedeelte van de problemen oplossingen aan. Ten desbnf@en we een
praktische oplossing vodret veilig verzenden van templategat het mogelijk
moet maken de biometrische kenmerken tussen twee bioofetregpparaten te
versturen wanneer er geen beveiligingsinfrastructuuwaeaiy is en de gebruik-
ers geen beveiligingsexperts zijn.
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