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Abstract

Biometric security systems that verify a person’s identityby scanning fingers,
hands, eye or face are becoming more and more common. As a result biomet-
rics is one of the fastest growing industries. Applicationsfor biometrics range
from homeland security (for example the European biometricpassport), physical
access to various facilities (banks, amusement parks, office buildings, computer
terminals, etc) and health and social services.

Utilizing biometrics for personal authentication is more convenient and than
current methods such as passwords or PINs (nothing to carry or remember). An-
other important advantage of biometric authentication is that it links events to a
user (passwords or token can be lost or stolen) and is becoming socially accept-
able and inexpensive. Biometric authentication requires comparing a registered
or enrolled biometric sample (biometric template or identifier) against a newly
captured biometric sample (for example, a fingerprint captured during a login).

However, biometric authentication is not perfect and the output of a biometric
authentication system can be subject to errors due to imperfections of the clas-
sification algorithm, poor quality of biometric samples, oran intruder who has
tampered with the biometric authentication systems. Although biometric authen-
tication is intended primarily to enhance security, storing biometric information
in a database introduces new security and privacy risks, which increase if the
database is connected to a network. This is the case in most practical situations.

The most severe threats are:impersonation, where an attacker steals templates
from a database and constructs a synthetic biometric samplethat passes authenti-
cation;irrevocability, where once compromised, biometrics cannot be updated or
reissued;privacy, which is the exposure of sensitive personal information with-
out the consent of the owner. A solution to these threats is toapply template-
protection techniques, which make it hard for an attacker torecover the biometric
data from the templates.

This thesis looks at security aspects of biometric authentication and proposes
solutions to mitigate the risk of an attacker who tries to misuse biometric informa-
tion or who bypasses modules of biometric systems to achievehis malicious goals.
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Our contribution is threefold. Firstly we propose 3W-tree,an analysis tool used
to identify critical attack scenariosfor a biometric system. We apply the 3W-tree
design tool to the SmartGun biometric recognition system with the purpose of
identifying critical security issues. Secondly, we explore the challenges ofsecure
template protection, which are both theoretical and practical and we put forward
solutions to part of the issues. Thirdly, we present a practical solution to thesecure
template transfer, which should allow transfer of the biometric traits between two
biometrically enabled devices when no security infrastructure is available and the
users are no security experts.
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Chapter 1

Introduction

Biometrics are automated methods that allow the recognition of a per-
son based on their physiological or behavioral characteristics. Bio-
metric based technologies offer an elegant solution for human ma-
chine authentication. With biometrics, events can be linked directly
to a person while passwords or tokens maybe used by others than the
authorized user. Biometrics are convenient and user friendly as bio-
metric identifiers do not have to be remembered and cannot be lost.

There are two main concerns regarding biometric authentication. The
first concern is the accuracy of biometric recognition. It isknown that
due to natural variations (and noise) a biometric system mayfalsely
accept or reject users. The second concern is related to the fact that
once a biometric identifier is compromised it cannot be used again for
biometric authentication because a user cannot renew his biometric.

This thesis looks at security aspects of biometric authentication and
proposes solutions to mitigate the risk of an attacker who tries to mis-
use biometric information or bypass modules of biometric systems to
achieve his malicious goals.

User authentication is the process of verifying the claimedidentity of a user
by a computer system, often as a prerequisite to allow accessto resources in the
system. For the purpose of user authentication one can use what a userknows,
for example a password or a PIN, what a userhas, typically a token such as a
smartcard, or something the useris, in other words a biometric identifier.

Biometric authentication refers to any security system that uses measurable
human physiological or behavioral characteristics to determine human identity.
Ideally these characteristics should be measurable, unique, invariable over time,
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Chapter 1.Introduction

and should not be easily duplicated. Biometric authentication systems are used
in two ways: to identify people and to verify the claimed identity of registered
users. Typical application domains include laptop login, access to airports, banks,
military installations, etc.

For biometric recognition one needs several components: firstly, a reader or
scanning device which measures the biometric identifier (a camera for face or a
recorder for voice) secondly, software that converts the scanned information into
digital form and compares the biometric identifiers and thirdly, a database that
stores the biometric data for comparison.

During enrollmentthe biometric system learns the identity of its users and
stores their identities in a database. Enrollment is usually performed once in the
lifetime time of the biometric system. Duringauthenticationthe biometric system
matches the measured biometric identifiers to the ones stored in the database and
decides whether they come from the same person. Authentication is performed
every time the identity of a person is verified.

For most biometric systems that verify the identity of the user before allowing
him access to protected resources the main threat is anunauthorized user gain-
ing access to the system, normally called afalse acceptance. The main goal of
an attacker is to “convince” the biometric authentication system that he is an-
other person with access to the protected resources. An authorized user who is
falsely rejectedby the biometric system on the other hand, represents merelya
convenience problem since the user can employ an alternative identity verifica-
tion method to access the protected resources.

For some applications like controlling access to a militaryinstallation, alow
false accept ratethushigh securityis more important whereas for other applica-
tions like laptop login, alow false reject ratethus auser friendly systemis more
appropriate. It is known that these requirements are conflicting and lowering the
error rates of a biometric recognition system is the main focus of most research
on biometrics [16].

1.1 Research Question

A biometric authentication system is intended to recognizewhether the sub-
mitted biometric data corresponds to the features deposited in the database. Any
malfunction in performing the designated task is anerror.

Examples of events that may cause an error in the functioningof a biometric
recognition system are listed below. The examples given areby no means ex-
haustive, our purpose is to illustrate the diversity of things that can go wrong.
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1.1.Research Question

Example 1. Variations in the biometric data exceed the expected threshold. A
user changes her hair style drastically between enrollmentand authentication, so
the face recognition biometric recognition system is unable to correctly identify
the user. A fingerprint biometric authentication system finds the hands of the user
dirty or sweaty and as a result the images collected by the sensor are degraded to
the extent where authentication is no longer possible.

Example 2.Bogus identities in the database. The service provided by a biomet-
ric recognition system is correct, however, the database has been altered by an
intruder who has introduced new bogus identities. As a result of this attack, an
attacker may assume different identities and roles.

Example 3.Biometric templates stored the in the database. An intruderreads the
biometric identity in the database and reconstructs the original biometric identi-
fier. Matsumoto [51] shows how to build a gummy fingerprint from the minutia
information stored as a biometric template in the case of fingerprint recognition
system. As a result, the attacker can construct a gummy fingerprint which is
falsely accepted by the biometric recognition system.

In the above examples there are two classes of errors. The first class consists of
nonmalicious errorswhen the user is honest and the biometric system has not been
tampered with (e.g. dirty or sweaty hands) as in the scenariopresented in the first
example. The error rates of a biometric system are determined by the accuracy
with which the matching engine can determine the similaritybetween a measured
sample and the expected value which is stored in the database. It is commonly
agreed that there is no error free biometric system. Minimizing the error rates of a
biometric recognition system is the main area ofbiometric researchand involves
aspects of signal processing and pattern recognition.

The second class consists ofmalicious errorswhere an intruder is the cause
of these errors, an example in this sense is presenting a fakegummy fingerprint to
the sensor of a fingerprint recognition system, as in the attack scenarios described
in the second and third examples. Although the system correctly recognizes the
presented fingerprint, the user who presents the fake fingerprint is falsely accepted
by the biometric system.

Malicious errors can have two essentially different causes. The first cause is
abuse of physical modules, where an attacker targets a physical module in the bio-
metric recognition system architecture for example the sensor. The target of the
attack is to force the biometric system to produce a false reject or a false accept at
the will of the attacker. The second cause isabuse of biometric informationwhere
biometric data is used to extract or correlate information about the user to whom

3



Chapter 1.Introduction

it belongs, for example personal preferences for on-line applications, medical in-
formation, etc. Thus we have the following research question:

Main Research Question: How can we mitigate the risk ofmalicious
errors in a biometric recognition system?

There are a few difficulties in answering the main research question. Firstly,
perfect security is too expensive and unattainable. When defending against all
possible attacks the cost is prohibitive. Thus, usually themost likely threats are
identified and defenses are implemented following the best case scenario philoso-
phy: “the best you can buy”.

Secondly, defenses are implemented to counter the capabilities of an intruder.
In the security world it is commonly accepted that there is nosecurity measure
possible when the intruder is highly motivated and has unlimited resources (crim-
inal organizations).

Thirdly, defense methods are typically implemented with the application and
system architecture in mind. For a biometric recognition system the particular
architecture can vary greatly, according to the intended use scenario. Thus each
instance of a biometric recognition system has to be evaluated independently and
different defense strategies should be designed in each case.

To answer the main research question we need to understand the application.
The implementation, usage scenario of the biometric identifier and the corre-
sponding points of vulnerability influence the defense method for each applica-
tion. In the following section we introduce the applicationwhich motivates the
research presented in the rest of the thesis.

1.2 Secure Grip Application

The research of this thesis is done in the context of the Secure Grip project,
which focuses on the design, implementation and evaluationof a prototype grip-
pattern recognition system for the development of a smart gun, intended for use
by the police. Grip-pattern recognition ensures that the weapon can only be fired
by an authorized user. The gun should be useless in the hands of anyone else who
might intend to misuse the weapon.

We propose to use biometric recognition to make a gun smart. The grip of
our SmartGun is covered with a grid of pressure sensors that are protected against
wear and tear. These sensors are capable of measuring both the static pressure
pattern as a function of the place where the gun is being held (representing the po-
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1.3.Thesis Overview

sitions and shapes of the fingers on the grip and the pressure exerted by them) and
the dynamic pressure pattern (i.e. the pressure variation)as a function of place
and time when the grip tightens prior to pulling the trigger.The main research
question is refined now for the architecture of the SmartGun:

Refined Research Question: How can we mitigate the risk ofmalicious
errors in the in the architecture of the
biometric SmartGun?

The SmartGun is a new type of biometric application, for which a false re-
jection is the most serious threat as this would result in a police officer not being
able to use the weapon when necessary. For a police officer to trust his gun the
false reject rate must be below10−4, which is the accepted failure rate for police
weapons in use. For the SmartGun the overall error rate (mechanical and grip)
should remain below104.

To answer the refined research question we propose a three stage process: the
first step is theidentificationof the relevant causes of errors for afalse rejection
orientedbiometric recognition system, the second step is theclassificationof the
identified causes according to their effect on the security of the system, and the
third step is theanalysisof threats.

1.3 Thesis Overview

Mitigating the risks of malicious errors is the main topic ofthis thesis. In
Chapter 2 we give an overview of the threat analysis for a generic biometric
recognition system architecture and we propose a systematic method, the 3W-tree
(Who, hoW and What) to identify and classify relevant threats for a false rejec-
tion oriented biometric recognition system architecture.The result of the 3W-tree
analysis indicates two possible research directions.

The first isSECURE TEMPLATE STORAGE, which states that it should not be
possible to reconstruct the biometric identifier from the data stored in the gun.
In Chapter3 andChapter4 we focus on the theoretical aspects of protection
techniques for noisy data, which has applications in the area of secure storage of
biometric information and cryptographic key extraction from noisy data.

The second research direction isSECURE TEMPLATE TRANSFER, which states
that it should be possible for two police officers to exchangetheir biometric iden-
tifiers between two guns when no security infrastructure is available and when
the users are no security experts. InChapter5 we propose a new protocol which
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Chapter 1.Introduction

allows two users to construct a communication key from noisydata, in an ad-hoc
scenario. Finally, we summarize the contributions in the thesis and suggest future
work in Chapter6. We now elaborate further on the contributions of each chapter
in some detail.

CHAPTER 2. We propose 3W-tree (Who, What, hoW) for identifying false re-
jection threats to biometric security systems. Analysis based on a 3W-tree leads
to concrete questions regarding the security of the system.Questions raised by
other methods (e.g. attack trees) do not lead to the same level of specific ques-
tions. Our method is more concrete than other methods because we make explicit
assumptions about the generic architecture of the system, thus exposing all main
components in the architecture that are vulnerable to attack. Our method is not
less general than other methods because other architectural assumptions can be
plugged in easily. Our method is intended to be used as a design aid.

To demonstrate the potential of 3W-tree in the security analysis of the biomet-
ric system we apply the 3W-tree to the biometric SmartGun. Asa result ofour
analysiswe identify two research directions.

The first research direction is security with noisy data. Weapons may be stolen
or lost. Therefore, it is important to store the biometric template in a protected
form. A solution could be to store the biometric template in tamper resistant hard-
ware. However, due to the weight and space restrictions thisis not desirable.
Another solution would be to use cryptographic techniques to store the biomet-
ric templates in encrypted format, such that an attacker cannot construct a valid
biometric identifier from the information stored in the gun.However this solution
is not applicable due to the natural variation in biometric measurements which
renders comparison in the encrypted domain difficult.

The second identified research direction is spontaneous secure interaction. Po-
lice officers often work in teams so that appropriate templates can be loaded into
the weapons at the police station. However, in an emergency situation this is not
possible; in this case police officers have to team up unprepared and exchange
templates in the field, such that all weapons are available for all police officers
in the team. Biometric data is sensitive information thus during the exchange
the templates must be protected. Officers may work with colleagues from other
departments, even from neighboring countries, so a shared key, or a public key
infrastructure where the certificate associated with thesekeys must be verifiable
on-line is not realistic. Also, one cannot expect a police officer to perform some
complicated interfacing operation with his gun in the field.

The theoretical concept of 3W-tree appears in [2].
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1.3.Thesis Overview

CHAPTER 3. The use of biometric features as key material in security protocols
has often been suggested to avoid long passwords or keys. However, the use of
biometrics in cryptography does not come without problems.It is known that bio-
metric information lacks uniformity and it is not exactly reproducible, which is the
opposite of what is considered suitable for a cryptographickey. Fuzzy extractors
allow cryptographic keys to be generated from noisy, non-uniform biometric data.
They can be used to authenticate a user to a server without storing her biometric
data directly. This is important because the server may not be trusted.

The contribution of this chapter is related to theSECURE TEMPLATE STOR-
AGE research direction. We show that there exists a relation between the strength
of the keys extracted from biometric data and the quality of the biometric data
in terms ofFAR (false acceptance rate) andFRR (false rejection rate). We esti-
mate the min-entropy values for the cryptographic keys derived from continuous
distributions, thus linking real-life continuous biometric distributions to methods
like fuzzy extractors in a new construction we call thecs-fuzzy extractor. We re-
late the min-entropy of the cryptographic keys to theFAR, thus formalizing the
intuition that the min-entropy of an extracted key (in bits)cannot be more than
− log2(FAR). This last point motivates research into improving theFAR (i.e., the
classification results) of biometric systems. Also, from a practical perspective it
is useful to evaluate the potential of the biometric data in the context of a specific
cryptographic application. The concept ofcs-fuzzy extractors appears in [5] while
the extended version, which includes examples appears in [8].

CHAPTER 4. When using a fuzzy extractor for a specific application, extra fea-
tures are needed, such as the renewability of the extracted strings, and the ability
to use the fuzzy extractor directly on continuous input datainstead of discrete
data. The contribution of this chapter is related to the problem of SECURE TEM-
PLATE STORAGE. We propose the fuzzy embedder as a generalization of the fuzzy
extractor construction. A fuzzy embedder naturally supports renewability, as it al-
lows a key to be embedded instead of extracted. Moreover, a fuzzy embedder
supports direct analysis of quantization effects, as it makes no limiting assump-
tions about the nature of the input source. We give a general construction for fuzzy
embedders based on the technique of quantization index modulation (QIM). We
present and analyze, as an exercise, two constructions in the two dimensional
space. Our 6-hexagonal tiling construction offers((log2 6)/2− 1) approximately
0.3 extra bits per dimension of the space compared to the known square quanti-
zation based fuzzy extractor. The other construction, the 7-hexagonal tiling, turns
out to be optimal from resilience to noise perspective. The contribution of this
chapter appears in [6].
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CHAPTER 5.Mobile devices are designed to interact anytime, anywhere.In many
scenarios however it is desirable to associate devices in a secure way. For ex-
ample when sharing contact information via a wireless link in an unsecured en-
vironment. This problem is known in the literature as securedevice association.
Solutions have to be specifically designed such that secure association can be re-
alized between previously unassociated devices. Securitymeans that the solution
must offer guarantees of the association partner identity and the solution must be
resistant to eavesdropping and to a man-in-the-middle attack. The ideal solution
should provide a balance between security and user friendliness.

The contribution of this chapter is related to the problemSECURE TEMPLATE
TRANSFERfor which we propose a practical solution where biometrics are used
to establish a common key between the pairing devices. Our approach has at least
two major advantages over related work. Firstly, it offers the possibility to trans-
fer trust from humans to machines without any available security infrastructure.
Biometric recognition offers physical validation, thus guaranteeing the identity of
a device owner. Secondly, the process is short and user friendly. In the pairing
protocol the keys extracted from biometric data are combined to form a session
key.

The idea is both simple and effective. Suppose that two userswish to set up a
secure communication channel. Both own a biometrically enabled handheld de-
vice (for example with face recognition or grip pattern biometrics). Both devices
are equipped with a biometric sensor and a short range radio.Each device is capa-
ble of recognizing its owner for example by face recognition. Then the users take
each others picture. Each device now contains a genuine template of its owner
and a measurement that approximates the template of the other user. The idea is
that each device calculates a common key from the owner template and the guest
measurement. In our solution, all Alice has to do to set up a secure communica-
tion with Bob is to take a picture of him and let Bob take a picture of her. The
protocol is even more general: it can be applied on any type ofbiometric channel,
including grip pattern biometrics.

We evaluate the performance of the protocol from three different perspectives.
Firstly, we analyze the security of the protocol against twotypes of adversaries
Eve which has computational capabilities and Charlie a Dolev-Yao attacker. Sec-
ondly, we evaluate the performance of the protocol with two types of real life
biometric data: face recognition and hand grip pressure pattern. Thirdly, we look
at our protocol from the perspective of the users. Our usability analysis shows that
our subjects find the SAfE protocol fun to use, and that they would like to have
the SAfE pairing available on their mobile devices.

The secure template transfer protocol which uses hand grip biometric appears
in [4]. A new application for secure ad-hoc pairing using mobile devices together
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with a usability appears in [7]. The extended version which contains experimental
validation of real life biometrics is published in [1].

1.4 Conclusions and Outlook

To give a pertinent answer to the main research question on page 8 we re-
fine its scope to the biometric SmartGun application. This isa particular type of
application for which a false rejection threat is more harmful than a false accep-
tance threat. At the time of exploring this problem there were no threat models
that could accommodate this new class of biometric application. Therefore, we
propose a new design tool, the 3W-tree, which fills this gap. As a result of the
3W-tree analysis of the biometric SmartGun application we identify the two re-
search directions explored in the thesis: the first direction is the secure template
storage and the second is the secure template transfer, bothof which are vital for
the security architecture of the SmartGun application. Thescope and application
of the results is not restricted, however, to the SmartGun.

Secure template storage is an active research area, which promises user friendly
solutions for the problem of interfacing between humans andcomputers. We ex-
plore both theoretical and practical aspects of this problem which is a particular
case of the problem of cryptographic key extraction from noisy data. Our con-
tribution is the extension of the theoretical model, to something that can be used
in practice. It is an important step forward. However, the research leads to the
identification of new, important questions. For example, the security measures
used for evaluating different solutions do not make a clear distinction between se-
curity and privacy. While security measures are useful fromthe risk management
perspective there are no effective measures for the privacyof the individual user.

Secure template transfer is a particular case of the more generic problem of
securely pairing two or more devices when two personshappento meet. Per-
sonal devices, which are carried around at all times and the dynamic interactions
between the owners of such devices demand solutions which are fast, easy and
which do not rely onany pre-existing security infrastructure. Classical security
solutions require either an on-line connection (Certification Authorities which can
assign credentials) or previously shared knowledge (a cryptographic key). These
assumptions are not always valid in the dynamic world of today. The problem
is to find alternative methods to create security credentials, which are both user-
friendly and offer good security. Our solution, the SAfE protocol uses biometrics
to create communication keys. The advantage of our solutionis its inherent user
friendliness and strong security guarantees. However, biometric measurements
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are inherently noisy and there is room for improving the error rates of the biomet-
ric recognition algorithm.

In this thesis we advance the field of cryptography with noisydata in two ways.
The first is from a theoretical perspective by putting forward new definitions, con-
structions and theorems, which give new insights in the field. The second is from
a practical perspective by proposing a new, practical application of cryptography
with noisy data in the area of secure, spontaneous interaction.

10



Chapter 2

Threat Model and 3W-tree

This chapter provides an overview of the architecture of a biometric
system and its building blocks. The reader is offered a global view
on the main challenges of securing a biometric system. The “stan-
dard” architecture of a biometric system is extended by adding com-
ponents like crypto, audit logging, power, and a representation of the
environment to increase the analytic power of the threat model. Our
contribution is the 3W-tree, an analysis tool used to identify critical
attack scenarios for a biometric system. We use the 3W-tree to ana-
lyze the SmartGun biometric recognition system with the purpose of
identifying critical security issues. Two important research directions
are identified as a result of our 3W-tree analysis. The first research
direction is secure storage or biometric templates. Securestorage of
biometric templates prevents the compromise of biometric templates
when a SmartGun is lost or stolen. The second research direction is
secure pairing of mobile devices when no security infrastructure is
available. A user friendly secure pairing protocol allows police offi-
cers to exchange biometric templates securely when teams are formed
spontaneously in the field and as a result of the pairing protocol any
member of the team can use all the weapons of the team. We explore
these research directions in the following chapters of thisthesis.

Currently, new applications of biometrics that have a completely different
threat model from classical biometrics are emerging. For example, Terrorist
Watch Listapplications andSmart Gunapplications are characterized by the fact
that afalse rejection, i.e. an authorized usernot gaining access to the system,
could lead to life threatening situations. Terrorist watchlists use facial or finger-
print recognition [17] to identify terrorists. Watch listsare mainly used at airports.
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For this application, the main threat is afalse rejectionwhich means that a poten-
tial terrorist on the list is not recognized and allowed to board an aircraft. In this
case, afalse acceptanceresults in a convenience problem, since legitimate sub-
jects are denied access and their identity needs to be examined more carefully to
get access. The biometric Smartgun [85] is a weapon that should fire only when
operated by the rightful owner. Such weapons are intended toreduce casualties
among police officers whose guns are taken during a struggle.The most promising
technology for this application is biometric grip pattern recognition [84]. Again,
a false rejectionis the most serious threat as this would result in a police officer
not being able to use the weapon when necessary. Both terrorist watch list and
biometric SmartGun arefalse rejectionoriented biometric recognition systems.
Current threat models for biometric recognition systems are not suitable for false
rejection oriented biometric system.

CONTRIBUTION.Categorizing all possible threats on a system results in a threat
model which can be used to identify critical attack scenarios. However, as the
complexity of the architecture for a biometric recognitionsystem increases so
does the complexity of the threat model and its utility for security engineers de-
crease. We propose a 3W-tree (Who, What, hoW tree) as an analysis tool to
identify critical attack scenarios for a biometric system.The 3W-tree is versatile
as it can be used to identify both false rejection and false acceptance threats to
biometric security systems.

Analysis based on a 3W-tree leads to concrete questions regarding the secu-
rity of the system. Questions raised by other methods (e.g. attack trees) do not
lead to the same level of specific questions. Our method is more concrete than
other methods, because we make explicit assumptions about the generic architec-
ture of the system, thus exposing all main components in the architecture that are
vulnerable to attack. Our method is not less general than other methods because
other architectural assumptions can be plugged in easily. Our method is intended
to be used as a design aid.

We apply the 3W-tree design tool to the SmartGun biometric recognition sys-
tem with the purpose of identifying critical security issues. As a result of our
analysis two important research directions are identified.The first research direc-
tion is secure storage of template protection. Secure storage of biometric tem-
plates prevents a compromise of biometric templates when a SmartGun is lost or
stolen. The second research direction is secure pairing of mobile devices when
no security infrastructure is available. This demand arises because police officers
work in teams that are sometimes formed on an ad-hoc basis. Each officer in the
team must be able to fire the weapon of the other officer. A user friendly secure
pairing protocol allows police officers to securely exchange biometric templates
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when teams are formed spontaneously in the field and as a result any member of
the team can use all weapons. We explore these research directions in the follow-
ing chapters of this thesis.

GENERAL TERMINOLOGY.A systemis an entity that delivers aservice. In the
case of a biometric recognition system the service is to recognize live measure-
ments compared to identities stored in the database. Afailure is an event that
occurs when the delivered service deviates from the correctservice. The devia-
tion from the intended service is callederror. The hypothesized cause of an error
is called afault. Faults can be internal or external to a system. Avulnerability
is an internal fault that enables an external fault to cause an error. A threat can
be a fault, an error, or a failure which has both the potentiality aspect (e.g., faults
being not yet active, service failures), and a realization aspect (e.g., active fault,
error that is present, service failure that occurs). A malicious internal or external
fault is anattack. The players in the system are users and intruders. Auser is
an entity that receives services from the system while anintruder is a malicious
entity (machine or human) that attempts to exceed any authority she might have
and alter services or alter the system functionality or performance, or access con-
fidential information.Securityis a composition of the attributes of confidentiality,
integrity and availability. The terminology used follows Avizienis,et. al [12].

ROAD MAP. Section2.1 gives an overview of the threat models presented in the
area of biometric recognition systems. The extended architecture of a biometric
recognition system is presented inSection2.2 and the state of the art regarding at-
tacks on components of a biometric recognition system.Section2.3 describes the
3W-tree, the method proposed as a design aid to help identifying relevant attacks
for biometric systems. InSection2.4 we apply the 3W-tree analysis to a biomet-
ric SmartGun, which uses hand grip pattern recognition to identify the owner of a
gun before allowing him to fire the weapon. Conclusions are presented in the last
section.

2.1 Related Work

In this chapter we review threat modeling and analysis techniques in the area
of biometric system security and general security threat analysis techniques fo-
cusing on false rejection.
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SECURITY OF BIOMETRIC SYSTEMS.Like all security systems, biometric sys-
tems are vulnerable to attacks [42, 65]. One specific attack consists of presenting
fake inputs such as false fingerprints [83] to a biometric system. To analyze such
threats systematically various threat models have been developed. We discuss
the most important models: the Biometric Device ProtectionProfile (BDPP) [22],
the Department of Defense & Federal Biometric System Protection Profile for
Medium Robustness Environments (DoDPP) [47], the U.S. Government Biomet-
ric Verification Mode Protection Profile for Medium Robustness Environments
(USGovPP) [23] and Information Technology-Security techniques -A Framework
for Evaluation and Testing of Biometric Technology (ITStand) [31]. In the sequel
we refer to these three protection profiles and theITStandsimply as “the stan-
dards”.

Threat Description
Number

8.4 Attacker modifies matching threshold.
10.2 Attacker modifies user identifier.
11.2 Attacker cuts power to the system.
13.1 Attacker tampers, modifies, bypasses, or deactivates one or

more hardware components.
13.3 Attacker floods one or more hardware components with

noise, (e.g. electromagnetic or acoustic energy)
14.1 Attacker tampers, modifies, bypasses, or deactivate one or

more software or firmware executables
14.3 A virus (or other malicious software) is introduced into the

system.
15.1 Attacker tampers, modifies, bypasses or deactivates one or

more connections between components.

Table 2.1:False Rejection related threats fromITStand[31].

In many ways, the standards are similar. In particular, theydo not always
make a clear distinction between a threat leading to afalse rejectionand a threat
leading to afalse acceptance. We call these ambiguous threats “catch all” threats.
We identify in the standards a total of48 distinct threats of which only3 arefalse
rejection threats. These are: (1) cutting the power to the system, (2) flooding
hardware components with noise and (3) exposing the device to environmental
parameters that are outside its operating range. In addition, there are12 “catch
all” threats that cover bothfalse rejectionandfalse acceptancethreats.
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It is difficult to compare threats amongst the four standards. For example,
BDPPcontains oneT.TAMPER threat whileITStandcontains three tamper related
threats: one for hardware tampering another for software orfirmware tampering
and one for channels. InITStand tampering and bypassing is mentioned when
describing the same threat whileBDPPexplicitly mentions theT.BYPASSthreat.
ITStandis the most complete in identifyingfalse rejectionthreats, it identifies the
largest number (8) of such rejections (SeeTable2.1). However, only threat13.3
is a clear false rejection. All the others are “catch all” threats. There are three
tamper related threats: one related to hardware tampering (13.1), one related to
software tampering (14.1) and one for channel tampering (15.1).

The threats to biometric recognition systems in the standards are general, not
specifying the exact point in the system that is vulnerable,or the circumstances
that make the system vulnerable to attack. The method of attack is also not clear,
all that is said is that hardware can be tampered with, bypassed or deactivated.
These threats lack the exact how and where and thus their practical value is not
clear.

SECURITY TAXONOMIES.There are many general security taxonomies in the lit-
erature. They classify attacks based on one or more grounds of distinction. Some
taxonomies group attacks using similar grounds of distinction, but use different
classes. For example, bothNeumann and Parker’s SRI Computer Abuse Meth-
ods and Models[60] andJayaram and Morse’s Network Security Architectures
refers to misuse techniques, [50]. However, the Neumann classification identifies
classes like:external, hardware misuse, masquerading, pest programs, bypasses,
active misuse, passive misuse, inactive misuse, indirect misusewhile Jayaram and
Morse’s taxonomy identifies only 5 different classes i.e.physical, system weak
spots, malignant programs, access rights and communication based. Other tax-
onomies view attacks from totally different angles, for exampleAnderson’s Pen-
etration Matrix [50] has three types of penetrators:external, internal and mis-
feasancewhile Knight’s Vulnerability Taxonomy[50] defines a vulnerability as
having five parts (Fault, Severity, Authentication, Tactic, Consequence). Each
part is defined according to a different taxonomy. None of these classifications
pay special attention to biometrics.

We will develop a specific, informative attack classification method that can
capture both false rejection threats as well as false acceptance threats.
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2.2 Generic Architecture of a Biometric Recogni-
tion System

We begin by describing the architecture and the life cycle ofa typical biometric
recognition system.

For the purpose of biometric recognition one needs (1) a biometric reader
which measures the biometric identifier (e.g. a normal camera for face recogni-
tion or a recorder for voice recognition), (2) software thatconverts the recorded
information into digital form and compares match points and(3) a database that
stores the biometric data for comparison.

Enrollment

Sensor

Sensor

Authenticate

Feature extractor

Feature extractor

Matcher

Application

Database

yes

Figure 2.1:Generic Architecture of a Biometric Recognition System. The arrows indicate
communication channels that are used to transfer information between components.

There are two phases in the lifetime of a biometric system. The first, is the
enrollmentphase when the biometric system learns the identity of a userand stores
the relevant data in a databases. The second, is theauthenticationphase when a
person is accepted or rejected as being enrolled in the database.Figure2.1 shows
a block diagram of a generic biometric recognition system.

In Figure2.1 thebiometric readeris the interface between the real world and
the biometric system; it has to acquire all the necessary data. In many applications
this is an image acquisition system, but it can be changed according to the desired
biometric modality.
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Another component inFigure 2.1 is thefeature extractorwhich performs all
the necessary pre-processing: remove artifacts from the sensor, enhance the input
(e.g. by removing background noise), image translation androtation, normal-
ization, etc. Its most important task is to extract distinguishing features in the
biometric identifier recorded by the sensor.

During enrollment several biometric impressions are collected from an indi-
vidual. A synthesis of all characteristics of these impressions called thetemplate
is computed and stored in thedatabasefor each individual.

Thematcheris used during authentication to compare a feature vector calcu-
lated from a live measurement with the template stored during enrollment. Due
to noise it is expected that the two will differ. The matcher computes a distance
(e.g. Hamming distance or Malahanobis distance, etc.) between the feature vector
and the template. If the computed distance is below a pre-established threshold
the feature vector and the template are said to come from the same individual, and
according to the application the user is allowed to access the resources protected
by the biometric system.

2.2.1 Vulnerabilities of a Biometric Recognition System

A biometric system has the potential to solve many of the problems associated
with classical authentication systems. However, according to Bolle, et al., [16]
biometric systems are not considered much in the security literature and as a con-
sequence there are many open questions on how to make biometric authentication
work without creating additional security loopholes. In this section we present an
extended architecture of a biometric system, seeFigure 2.2 which helps to iden-
tify potential loopholes. We discuss vulnerabilities related to each component in
the architecture as well as vulnerabilities related to the connecting channels.

Components like power or users are not part of a classical architecture of the
biometric recognition system, ofFigure 2.1. We argue that their role is crucial
when designing the security architecture. Therefore, we extend the generic bio-
metric architecture to include the following components:

• AUDIT LOG, important actions need to be recorded for later analysis.

• CRYPTOGRAPHY, to ensure the authenticity and integrity of data stored and
transmitted on selected channels.

• POWER, is a major concern especially when the biometric device is portable.
For example, replacing the power source might restart the application caus-
ing the biometric system to enter an unknown or unstable state.
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Enrollment
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Sensor
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Feature extractor

Feature extractor

Matcher

Application
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V1

Environment Audit Log Power Crypto
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Figure 2.2: General view of a Biometric Recognition System showing17 vulnerabili-
ties. We identify three classes of channels: the first class represents the internal channels
(continuous lines), which are used to transport the information between the modules of
the biometric recognition system. Secondly, we have external channels (dotted lines),
which are used to input information to the biometric recognition system and thirdly we
have implementation dependent channels (multiple arrows), which are present in between
components according to the implementation of the biometric recognition system.

• ENVIRONMENT, biometrics, like other protection mechanisms, are influ-
enced by environmental conditions which can cause surprises. We also in-
clude in this category: operating parameters such as temperature, humidity,
etc.

• USERS, some biometric systems like speech recognition are vulnerable to
alcohol intake and stress [11]. Injuries may affect the accuracy of finger-
print recognition systems while changes in the appearance (different hair
cut, mascara, etc) influence the performance of face recognition biometric
systems.

The specific vulnerabilities corresponding to the extendedarchitecture, shown
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in Figure2.2 are summarized inTable2.2.

Vulnerability Description
V1 Is a vulnerability of the input device. The most serious threat to

a biometric system is presenting a fake biometric [65]. The fabri-
cation of something analogous to a real user is called aSynthetic
Biometric Feature Attack. This attack can be implemented with
or without tampering with the sensor.

V2 Is the resubmission of a previously stored biometric signalin the
channel between the sensor and the template extractor (replay at-
tack/false data inject), or reuse of residuals.

V3 Is a vulnerability related to the feature extractor. For example at a
given time or under some specific conditions a Trojan Horse may
override the feature extraction.

V4 Is a vulnerability of the communication channel between thefea-
ture extractor and the matcher. For example an attack that exploits
this vulnerability will insert a synthesized feature vector into the
communication channel.

V5 Is a vulnerability that allows aTrojan Horseattack. This time
the target is the matcher, which is forced to produce a match or
non-match result.

V6 Is a vulnerability related to overriding the output of the matcher
and thus bypassing the entire authentication process. The output
of the matcher module could be forced to be either a match or a
non-match.

V7 Is a vulnerability which allows an attack on the communication
between the (central or distributed) database and the authenti-
cation system. A template stored in the database is sent to the
matcher through a channel. The representation of the template is
changed before it reaches the matcher.

V8 Is a vulnerability of the enrollment center. The enrollmentand the
authentication process have similarities in the sense thatthey are
both implementations of an authentication protocol, and therefore
enrollment is vulnerable to attack pointsV1, . . . V6.

V9 Is a vulnerability of the channel that links the enrollment center
to the database. Control of this channel allows an attacker to over-
ride the (biometric) representation that is sent from enrolment to
the biometric database.

V10 Is a vulnerability of the database itself. An attack exploiting this
vulnerability could result in corrupted templates, denialof service
to the person associated with the corrupted template or authoriza-
tion of a fraudulent individual.
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V11 Is a vulnerability of the channel that links the power sourceto the
system. An attack could destroy for example this channel.

V12 Is a vulnerability of the power source of the system, which can
be tampered with.

V13 Exploiting this vulnerability allows an attacker to prevent audit
records from being recorded.

V14 Is a vulnerability, which successfully exploited, allows audit
records to be deleted or modified, thus masking the actions on
an attacker.

V15 Is a vulnerability related to the strength of the cryptographic al-
gorithm employed. Security functions may be defeated through
cryptanalysis on encrypted data, i.e. compromise of the crypto-
graphic mechanisms.

V16 Is a vulnerability related to the users of the system, which re-
gardless of the role that they play, can compromise the security
functions.

V17 Is a vulnerability related to the environmental conditions(tem-
perature, humidity, lighting, etc.). For example the extensive us-
age can degrade the security function of the system.

Table 2.2:Vulnerabilities associated to a biometric recognition
system by Bolleet al.[16] .

ATTACKS ON THE BIOMETRIC READER.The most serious threat on an input
device is presenting a fake biometric [65]. The fabricationof a fake physical
biometric is called aSynthetic Biometric Feature Attack. It is known that some
biometrics are harder to forge: iris [30], retinal scan [43], face thermogram [40]
while others are easier to forge: voice print [35], face [78], hand written signa-
ture [40] or fingerprint [83].

Since biometric information is not secret the original biometric can be ob-
tained with or without the permission or cooperation of the “owner” of that bio-
metric. In some cases, like fingerprint for example, extensive literature on how to
produce fake identifiers is readily available for anyone whocares to try [83, 51].

When cost is not an issue to the attacker, all biometrics can be, and probably
will be, the subject of a synthetic feature attack. The difficulty of such an attack
depends on the implementation of a specific system [16].

The system must somehow be able to verify that the biometricscame from the
person at the time of verification.Livenessdetermination verifies that a biometric
sample is coming from a living person [64]. The synthetic feature biometric attack
can be implemented as acoercive, impersonation, or replay attackwith more or
less tampering with the sensor [16].
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A coercive attackis an attack where the authorized user’s biometric data is
presented in an illegitimate scenario. For example the attacker physically forces
a genuine user to identify herself to an authentication system or after the physical
removal from the rightful owner [16]. Designers have to think how to counter
such attacks, for example by installing security cameras atATMs.

An impersonation attackinvolves changing one’s appearance so that the mea-
sured biometrics match an authorized individual. Examplesof biometrics that can
be the subject of this kind of attack are face, voice or signature. Multi-modal
biometrics reduce the exposure to an impersonation attack (particularly if the sys-
tem is checking for consistency between the modalities). Broad categories of
impersonation threats are identified by Baconet al. [47] as follows: (1) an im-
poster attempts to defeat the biometric authentication or identification either by a
zero-effort forgery attempt, (2) the impostor directs his attacks on some known or
suspected weakness and (3) the impostor attempts to subvertthe identification or
verification process by undermining the integrity of biometric templates.

A replay attackinvolves the re-presentation of previously recorded biometric
data. This is the simplest attack possible against a biometric system. For example,
take a picture of a person and present it to a face recognitionbiometric system.
Current research tries to eliminate this kind of attack. Forexample face recogni-
tion systems try to detect the three - dimensionality of the face presented to the
camera [21].

In case of fingerprint and palm recognition the replay attackcan take the form
of latent print reactivation. The oily residue from touching the surface of the scan-
ner may leave a latent print that can be copied and reactivated into a valid print.

ATTACKS ON THE FEATURE EXTRACTOR.A Trojan Horseattack on the feature
vector, produces at a given time or under some specific conditions a pre-selected
feature. Care must be taken during the employment of the system to avoid this.
Stored templates can be protected by encryption. Data transmitted between the
sensor and the rest of the system could also be protected by cryptography. But
here, unique session keys would be necessary (e.g. through time-stamping) to
prevent data being replayed successfully. If the stolen template is used, then live-
ness testing could be used to ensure that the biometric is actually being submitted
by a person.

Transformations e.g. cryptography can be applied on the feature vector only
if the time element is not critical or the equipment can process data fast enough.
Template transformation techniques have been developed tocircumvent the com-
promise of a template by the legitimate substitution of the transformed version of
the template for matching against a similarly transformed feature vector. This is
called in the literaturecancelable biometrics[64]. This is an intentional, repeat-
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able distortion of a biometric signal based on a chosen transform. The biometric
signal is distorted in the same fashion at each presentation, that is, during enroll-
ment and for every subsequent authentication. This technique has been developed
to protect the privacy of the individual and to permit the reutilization of a biomet-
ric sample even after the biometric feature has been stolen.

ATTACKS ON THE MATCHER.Again aTrojan Horseattack is possible, this time
the target is the matcher, which can be forced to produce a high or low match
score and thereby to manipulate the match decision [16].

ATTACKS ON THE STORAGE.Storing unprotected biometric templates in a database
introduces a number of security and privacy risks. For example an attacker could
steal a template from the database and construct artificial biometrics that pass the
biometric authentication. Once compromised, the biometric can not be re-issued,
updated or destroyed. Another possible attack is the unauthorized modification of
one or more template representations in the database such that a false acceptance
is forced. Tracking whether a user is enrolled or not in a certain database could
result in exposure of sensitive personal information. Another attack that should be
taken into account isthe double enroll attackwhich means, as the name suggests,
re-enrolling a user under a different name in the database with different privileges.
The protection of the database is important because the finalauthentication sys-
tem is only as secure as its enrollment database.

CHANNEL ATTACKS. Channels provide the ability to transfer information be-
tween input device, feature extractor, matcher and database. The system compo-
nents that are communicating may be local or remote. Communication can be
realized using different channels.Figure 2.2 shows that from 17 possible vulner-
abilities related to a generic biometric system 5 threats are related to channels.
This emphasizes the importance of addressing channel attacks. TheConnectivity
assumption[47] states that biometric templates must be protected during transmis-
sion between the biometric subsystems for example by cryptographic means, or
by tamper resistant hardware.

POWER ATTACKS.By cutting the power to the system an attacker can make the
system fail. Depending on the power source connected to the system batteries or
electricity attacks may be different. Restarting the system after a power loss can
result in an unstable system.

CRYPTO ATTACKS.Cryptanalysis on encrypted data or brute force attacks may
help an attacker gain unauthorized access. If code or data associated with crypto-
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graphic functions can be accessed inappropriately by a process or user the crypto-
graphic mechanisms and the data protected by those mechanisms may be viewed,
modified, or deleted.

AUDIT LOG COMPROMISE.An audit log compromise is not a direct attack on the
system. However, an inadequate collection of audit data with the intention to hide
the traces of an attack on the system is dangerous since it prevents attacks on the
biometric system from being discovered.

ENVIRONMENTAL AND USER RELATED ATTACKS.A user may cause harm to
a system intentionally or unintentionally. For example an administrator may in-
correctly install or configure the biometric system, the result being an ineffective
mechanism. Non-hostile administrators (unintentionallyor under coercion) could
incorrectly modify user privileges or the matching threshold or enroll an unautho-
rized user. Another threat is that an impostor may acquire administrator privileges.
An attacker may cause failure of the biometric system by exposing the authentica-
tion device to conditions outside its normal operating range. The conditions refer
to temperature, humidity, light, etc.

OTHER ATTACKS.In the following we describe other known attacks on biometric
systems. These are more complex and involve successful exploitation of one or
more vulnerability points inFigure2.2

Hill-Climbing Attack.This attack is described by Bolle et. al [16]. The biometric
sample is slightly modified and then submitted to the matching algorithm
repeatedly. The output score of the current biometric sample is observed. If
the score is greater than the previous output score the changes applied on the
biometric sample are preserved. The goal is to achieve the match threshold.
This attack can be prevented if repeated trials are not allowed. According
to Ulugadet al. [78] this type of attack can be cast as an attack in point T2
or point T4 inFigure2.2.

Swamping Attack.This attack tries to exploit weakness in the algorithm to obtain
matches of incorrect data. For example for a fingerprint system the attacker
might try to submit a print with a lot of minutiae hoping that sufficiently
many of them will clear the threshold. The weakness in the algorithm is
that it accepts such a representation. [16].

Piggy-back Attack.The attacker tries to gain physical or logical access simulta-
neously with a legitimate user [16].

23



Chapter 2.Threat Model and 3W-tree

CONCLUSIONS.Biometric systems have a lot of weak points. Most likely, at-
tacks occur during the live verification phase. An attack during enrollmentis less
expected, because this operation normally takes place in a secured environment.
Therefore attacks made during theauthenticationare most likely, and therefore
their effect should be limited.

2.3 3W-tree

The task of the biometric system security architect is to evaluate the effects
and likelihood of the attacks described above as well as potential new attacks for
a given biometric system, and ultimately to find and implement adequate counter-
measures. A crucial step in this evaluation is the identification and classification
of vulnerabilities. The result of this step is a classification of all known vulnera-
bilities in the system, the threats that can exploit them, and attacks that may result.
The most adequate taxonomy for evaluating the risks associated with the biomet-
ric system has to be selected. This is in our opinion a difficult task, since security
taxonomies in the literature do not capture the threats related to biometric systems
well. Among the taxonomies studied we could not find one that could give us the
assurance that all the relevant threats are indeed identified and which could help
in developing the threat model for a biometric recognition system.

During our research for suitable taxonomies we observed that computer se-
curity taxonomies themselves can be classified. We propose to use this meta-
classification to assist in identifying a proper threat model. Our meta-classification
will prove to be useful in choosing, the right taxonomy or if there is no appropriate
taxonomy at least provide a guidance to the process of building a new one.

The most general classification that we propose is the division of security tax-
onomies presented in the literature as:specific area taxonomiesandgeneral tax-
onomies. Specific area taxonomiesare developed for restricted domains in com-
puter science. We have found taxonomies for DoS attacks, Unix systems, software
bugs, secure devices,[62] etc.General taxonomiesare applicable in any computer
science area. General taxonomies can be further divided into atomic taxonomies
andprocess oriented taxonomies. Atomic taxonomiesclassify attacks based on
one “fundamentum divisionis” or ground of distinction. Themain grounds of
distinctions used in atomic taxonomies are:

THE WHO. Is used by taxonomies that classify attacks according to various char-
acteristics of the attacker. Anderson’s Penetration Matrix, [50] covers the
types of penetrators, based on whether they are authorized to use a resource.
Abrahamet al.[50] identify three classes of adversaries relative to the po-
sition of the attacker into the system. Rae and Wildman [62] assemble a
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structured taxonomy of attacks as a basis for defining the access required
by an attacker. In other papers [87] the motivation or the skill required to
mount a successful attack, is taken into account.

THE WHAT. A considerable number of taxonomies group attacks on “modus
operandi” or attack methods used during an attack. Neumann and Parker,
[50] identify 9 distinct procedures of conducting an attacklike external,
hardware misuse, masquerading, pest programs, bypasses, active misuse,
passive misuse, inactive misuse, indirect misuse. Lindqvist and Jonsson
[50] extend the work of Neumann and Parker, refining the classification al-
lowing the number of classes to increase from 9 to 26. For example the
hardware misuseclass is decomposed inlogical scavenging, eavesdrop-
ping, interference, physical attack, physical removalandmasqueradingis
broken down inimpersonation, piggybacking attacks, spoofing attacks and
network weaving. Lindqvist and Jonsson also introduce the concept of the
dimension of an attack, which states that for every attack there is a result.
Jayaram and Morse’s develop ataxonomy of security threats to networks
and the classes identified arephysical, system weak spots, malign programs,
access rights, communication based. We notice that some classes asmalign
programsoverlappest programsin Neumann and Parker’s taxonomy, but
the communicationbased class is new. Other taxonomies of this type are
extensively covered in the PhD thesis of Lough [50], who alsolists the sim-
ilarities between taxonomies.

THE HOW.Taxonomies of this type have as ground of division the exploited vul-
nerability. Howard’s CERT Taxonomy distinguishes three types of vulner-
abilities implementation vulnerability, design vulnerability, configuration
vulnerability. Other taxonomies identify a vulnerability as belonging toone
of the following categories of attack:specification weakness, implementa-
tion weakness, brute force attack. One of the most interesting taxonomies
proposed is Knight’s Vulnerability Taxonomy [50]. He defines a vulnera-
bility as being a quintuple of the form (fault, severity, authentication, tactic,
consequence). In 1976 Stanford Research Institute collected 355 security
breaching incidents and divided them into 7 violation categories [50]. We
note that somespecific area taxonomiesare vulnerability taxonomies like
’Beizer’s’ bug taxonomy that is a software bug taxonomy [50]or Richard-
son’s DoS taxonomy that classifiesdenial of serviceattacks according to
three different categorizations.

Each atomic taxonomy represents only one dimension of the attack. An at-
tack, however, is rarely caused by a single vulnerability ina system and is rather a
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Internal
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Figure 2.3:3W-tree of attacks on biometric systems for the external attacker. V1-V17 are
points of attack shown inFigure2.2 and summarized inTable2.2. In a practical analysis
the same structure is repeated for the internal attacker.

function of different characteristics of the system. Threerelevant grounds of dis-
tinctions are identified in the general security taxonomiesin the literature, namely
thewho, thehowand thewhat. Therefore we propose to use one taxonomy from
each of the identified classes (who, how and what). This offers the possibility of
identifying a broad range of attacks. Combining a taxonomy from each of these
classes creates a nested taxonomy, which we call the3W-tree(Who, hoW and
What). Figure 2.3 shows a 3W-tree built for the generic biometric architecture
presented inFigure2.2.

We note that creating a 3W-tree is in conformance with the general method-
ology of Threat Vulnerability and Risk Assessment (TVRA) [67], which has been
designed as a threat, vulnerability and risk assessment method and tool for use
whilst writing standards. The purpose of using the TVRA in standardization is to
be able to identify vulnerabilities and mitigate the risks and then assess the vulner-
abilities that exist in the system with the countermeasuresapplied. This process
has to be applied iteratively, until the risk of unwanted incidents is reduced to an
acceptable level. However, TVRA is a general purpose risk assessment method
that applies to any security architecture.

A 3W-tree (Who, What, hoW tree) is an analysis tool specifically built for bio-
metric systems, which can be used to identify critical attack scenarios. Analysis
based on a 3W-tree leads to concrete questions regarding thesecurity of the sys-
tem. Questions raised by other methods do not lead to the samelevel of specific
questions. For each ground of distinction (Who, hoW, What) there are several
taxonomies one may choose from. In the 3W-tree presented below for each level
we chose one particular security taxonomy that fits the biometric system we an-
alyze in Section2.4. We stress that our 3W-tree is flexible and supports any
other taxonomy a security architect may find more appropriate for the particulari-
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ties of another biometric system. Our goal is to identify as many relevant attacks
as possible, from all relevant points of view while maintaining a comprehensive
structure (the 3W-tree).

Compared to atomic taxonomies,process oriented taxonomiestake one step
further and view an attack as a process. We see the extension of 3W-tree to cover
processes(combination of multiple vulnerabilities) as future work.

2.3.1 The Who taxonomy in 3W-tree

The first level of the 3W-tree is a classicalwho taxonomy from the attacker’s
position relative to the system [60]. In this taxonomy, attackers are divided into
three classes.

Class Iattackers, orexternalattackers, lack knowledge about the system and
have moderately sophisticated equipment.

Class II attackers, orinternal attackers, are knowledgeable insiders, who are
highly educated and have access to most parts of the system.

Class III attackers are funded organizations with ample resources that are able
to assemble teams and design sophisticated attacks. The general opinion is that a
system is considered secure if it can withstand class I and class II attackers. It is
widely acknowledged that there is no protection against class III attackers and we
also do not consider them.

2.3.2 The hoW taxonomy in 3W-tree

The second level is ahow taxonomy described first by Rae,et al., [62] as a
taxonomy for secure devices. The actions allowed for an attacker in this taxonomy
are described below.

When the attackerpossessesthe device she can open it and break tamper ev-
ident seals with impunity. She may try different attacks, learn how the system
works. For example the attacker may buy a biometric system identical to the one
she intends to attack.

An attacker mayhandlethe device physically, but cannot break tamper evident
seals on the device. For example, she has access to the devicefor a limited amount
of time, or under the watchful eye of the owner of the device.

In an active approachthe attacker may interfere with the device (e.g. over
a network) and transmit data to the device from either an insecure or a secure
domain.

In a passive approachthe attacker may be in the proximity of the device, but
she cannot touch it. She may be viewed as eavesdropper.
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The classes presented are related to one another.Possessingthe device means
that the attacker canhandlethe device and mayapproachthe device. This rela-
tionship can be formalized as:

passive approach⊆ active approach⊆ handle⊆ possession

An observation is that portable biometric devices are more likely to be attacked
in possessionandhandlesituations so there must be some methods to ensure the
physical integrity and robustness of such devices. Fixed biometric devices are
more likely to be attacked by means of apassive approachand anactive approach.

2.3.3 The What taxonomy in 3W-tree

The third level of the 3W-tree, thewhat, deals with the threats a system might
be subject to, which in case of a biometric system, is either afalse acceptanceor
a false rejection.

A 3W-tree is useful for identifying attacks on a general biometric recognition
system in the design phase, which allows to classify known attacks and to identify
the possibility of new attacks in a systematic manner. This is the subject of the
Section2.4.

2.3.4 Threat Evaluation

The construction of a 3W-tree for a particular biometric system is the first
step to determine the effects and likelihood of an existing threat. We useattack
scenariosto describe and document each identified threat in the biometric security
architecture. The attributes of an attack scenario as detailed inTable2.3 allow the
construction of arisk assessment matrixwhich assists the security architect in
taking decisions regarding critical attack scenarios. An attack scenario is a path
in the 3W-tree ofFigure2.3, namedxiyz where:

1. x ∈ I, E whereI stands for internal attacker andE stands for external
attacker.

2. y ∈ {PA, AA, HA, PO}, PA stands forpassive approach, AA stands for
active approach, HA stands forhandleandPO for possession.

3. i ∈ {1..17}, indicates vulnerabilityVi, seeTable2.2.

4. z ∈ {A, R}, whereA means an attack leading to afalse acceptanceattack
andR means an attack leading to afalse rejectionattack.
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I.Description
Scenario: Name of the evaluated scenario.
Tactics: Describe a possibility to realize this attack
Name: Name of the attack as it is known in the literature or a

link to a paper that describes this attack (if known)
II. Evaluation
Damage: The estimated consequence of the attack for the de-

vice. The possibilities are:minor, moderate, major.
An attack with minor consequences will temporarily
damage the device. A moderate consequence attack
will temporarily damage the device but it needs spe-
cialized personnel to repair it. An attack with major
consequence will completely ruin the device, and the
whole or parts of it need to be replaced.

Knowledge: Lists the knowledge that an intruder must have to
launch the attack. The categories are: common sense,
high school education, expert.

Occurrence: an educated guess of the probability that such an at-
tack occurs. The estimators are:low (unlikely to hap-
pen),medium(it might happen),high (likely to hap-
pen)

III. Defense
Countermeasures:some notes on how this attack might be prevented, or

how at least to mitigate its consequence.

Table 2.3:Detailed description of an attack scenario.

Each path in the tree corresponds to an attack that has to be evaluated. For
example, scenario IPO1A identifies the following: an internal attacker (denoted
by the letter I) in the possession situation (denoted by the letters PO), vulnerability
pointV1 (presenting a fake biometric/tampering with the sensor) toobtain a false
acceptance (A).

To describe and evaluate scenarios we use three classes of attributes. The first
class of attributes (denoted with I, Description) is a description of what is known
about this attack in the literature. The second class of attributes (denoted with II,
Evaluation) asses the impact, likelihood and skills required to realize an attack.
The third class of attributes (denoted with III, Defense) describes possible coun-
termeasures, which is particularly useful if there is more than one person, with
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different backgrounds and knowledge, which evaluate the security architecture.
When described in detail, it also provides a useful indicator of how much it costs
to implement the countermeasures.

2.3.5 Attacks trees and the 3W-tree

Attack trees offer a method of analyzing attacks [58, 69]. The root of the tree is
identified with the goal of compromising a system and the leafnodes are ways of
achieving that goal. The goals of the children of a node couldbe the compromise
of a sub-system or a contribution thereof. There are two types of nodes: the goal
of an and-node depends on the goals of all its children, and the goal ofthe or-
node depends on at least one of the children [58]. There are commercial tools to
support analysis working with attack trees; for example theSecurITree tool from
http://www.amenaza.com/.

The main advantage of attack trees is that they help the designer to visualize
possible attack scenarios and understand the different ways in which a system can
be attacked. If there are many possible attacks, or if there are many components
that are subject to attack, an attack tree may become large. In this case the visu-
alization is ineffective. However, by attacker profile based pruning [66], support
tools allow the designer to focus on attacks relevant to specific attacker profiles.
Another useful feature of the tools is that while constructing a tree the designer
can document the changes and also the reason for changes madeby annotating
nodes.

The main disadvantage of attack trees is that they provide only the choice
between and-/or-nodes. This only provides a low level way ofbreaking up a goal
up into sub-goals. The general recommendation is to think hard, which does not
provide much guidance.

We propose to combine attack trees with 3W-trees. At the top level, the 3W-
tree gives rise to concrete questions about the what, how andwhom of an attack.
To answer the question, an attack tree can be attached to eachleaf of the 3W-tree.
By constructing the attack tree for each leaf, the analyst isencouraged to answer
specific, focused questions. In the detailed description ofan 3W-tree inTable2.3
an attack tree can be placed in the Tactics attribute.

As a conclusion 3W-tree offers an effective method to identify threats related
to biometric systems. Once a threat is identified, one can make use of the attack
tree method to find tactics of how the goal can be achieved by anattacker.
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Figure 2.4:SmartGun prototype, with a pieso-resistive pressure sensor on the grip.

2.4 3W-tree Analysis of Biometric SmartGun

In this section we create a 3W-tree to identify the relevant security issues for
a biometric SmartGun which is a biometric device intended toreduce casualties
among police officers whose guns are taken during a struggle.In the context of the
SmartGun research, our main concern is afalse rejectionas this would result in a
police officer not being able to use his gun when necessary. Afalse acceptance
attack would permit other persons than the owner of the gun touse it.

2.4.1 The Biometric SmartGun

People depend on police officers to protect their lives and property. Police
pursue and apprehend individuals who break the law. Armed police officers are
a common sight in many countries. They are trained to use their gun only in
critical situations. Unfortunately it happens regularly that during a struggle the
suspect captures the weapon from the police officer and shoots him. Research in
the United States has shown that every year approximately 16% of police officers
killed in the line of duty were shot with their own gun.

A smart gun is a firearm which can only be operated by its authorized owner.
As such, the gun would be useless in the hands of anyone else who might intend
to misuse the weapon. We propose to use biometric recognition to make a gun
smart.

The grip of our SmartGun (seeFigure 2.4) is covered with a grid of pressure
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sensors that are protected against wear and tear. These sensors are capable of mea-
suring the static pressure pattern as a function of place when the gun is being held
(representing the positions and shapes of the fingers on the grip and the pressure
exerted by them) and the dynamic pressure pattern (i.e. the pressure variation) as
a function of place and time when the grip tightens prior to pulling the trigger.

During the enrollment phase, a template is securely stored in the weapon (and
also in a central database operated by the police). The template could be a set
of constraints that the measurements have to satisfy or it can be a prototype grip
pattern to which the measured grip pattern must be sufficiently similar.

The template is compared to the measured grip pattern when the weapon is
handled. If the stored template matches the current sensor measurements suffi-
ciently well, the weapon is enabled, otherwise it remains disabled. Therefore,
only the authorized user may fire the gun, and not someone who has taken the gun
away from the authorized user. The type of biometric recognition for this applica-
tion is verification. In domestic settings, one could also program the gun to reject
certain people, i.e. children.

The biometric verification in the above application is transparent. By holding
the gun, the user implicitly claims that he is authorized to use it. The biomet-
ric data is also presented implicitly, when the grip is settled. In this example the
transparency contributes to safety and user convenience. This transparency con-
tributes to safety, when immediate recognition is requiredin case of an emergency.
Transparency also makes grip pattern biometrics convenient to use.

After discussions with police officers we realized that the biometric SmartGun
must have the size and feel of the guns currently in use. The reason is that a gun
with a different weight or size is hard to adapt to: it requires additional training to
regain the same accuracy as with the old weapon. Also, policeofficers often work
in small teams, and each team member should be able to handle the weapon of the
other team members, for example when one of the weapons is lost, or fails.

An important requirement is a very low false-rejection rate, rendering it highly
unlikely that the authorized user will not be able to fire the weapon. The current
official requirement in the Netherlands is that a police gun must have a probability
of failure less than10−4. The overall failure rate of the take-away protection must,
therefore, remain below this value. The recognition must work correctly for right-
handed and left-handed use, with and without gloves. Even ifthe false-acceptance
rate is as high as 50%, this would make 50% of the take-away situations harmless,
which is a significant improvement over the current situation where each take
away may be fatal.
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Figure 2.5:Security Architecture of the SmartGun prototype. The dotted line shows the
components that are inside the gun and which should be protected by a tamper evident
seal. In the case of the SmartGun the matcher runs inside the processor and in the case of
a favorable decision enables the gun. Due to the tamper evident seal the Environment has
no significant influence on the components in the gun. For the same reason the Crypto
component was removed from the architecture. The existenceof the Audit Log compo-
nent is still to be decided, thus at this point in time we removed this component from the
architecture.

2.4.2 3W-tree Analysis

In relation to the generic biometric architecture inFigure2.2, in this section we
present the SmartGun architecture and describe vulnerabilities. Next, we present
a set of assumptions related to the intended use of the SmartGun, which was de-
veloped in close cooperation with the KLPD (Korps Landelijke Politie Dienst)
and help of the 3W-tree analysis. We conclude this section with a set of research
question and conclusions.
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2.4.2.1 SmartGun Architecture

The SmartGun security architecture as shown inFigure 2.5 is a specialized
version of the generic architecture ofFigure 2.1. From a conceptual perspec-
tive the SmartGun verification system, as any biometric recognition system, can
be subdivided into the following blocks: Sensor, Feature Extraction, Processor
(Matcher), Memory (Template), Gun Control and Power.

The sensor that is used for this project is a custom design piezo-resistive pres-
sure sensor. It is available in a size that fits the prototype gun but, which is that
of a Walther P5, seeFigure 2.4. This sensor consists of two layers of strong and
flexible polyester foil. Each layer has 44 silver electrode strips deposited on one
side. One layer has vertical and the other horizontal strips. A piezo-resistive ink
is printed on top of the silver leads. This construction results in a network of sil-
ver strips with a resistive element at each crossing. The entire sensor array can
be modeled as a44 × 44 network of variable resistors. The resistive elements
are sensitive to pressure. The grip pattern is measured by determining each re-
sistor value. This is done by subsequently connecting the horizontal and vertical
conductors to an analog measuring circuit. The connectionscan be altered by
multiplexers controlled by digital logic.

The functionality and the vulnerabilities associated withthe other components
(Feature Extractor, Matcher, Storage, etc.) inFigure2.5 are described in detail in
Section2.1.

2.4.2.2 Assumptions made for the 3W-tree Analysis

Assumptions create the general environment for describingattack scenarios.
Before analyzing the threats our system is subject to, we make some realistic as-
sumptions about the intended use of the SmartGun. After extensive discussion
with the KLPD, the intended users of the SmartGun, we developed a list of as-
sumptions which describe the environment in which the biometric recognition
system will be used. The assumptions are important for motivating the presented
threat model and they regard the operating environment including physical, per-
sonnel and connectivity issues.

1. Assumptions related to users:

(a) (ADMIN.) Administrators of the system (police officers) are assumed
to be non-hostile and trusted to perform their duty in a competent man-
ner.

(b) (TRAINING.) Getting used to the smart gun should not imply addi-
tional training for the police officers. However, it may takesome time
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Figure 2.6:3W-tree of attack scenarios relevant to the SmartGun biometric system. Com-
ponents in grey represent threats that can not be analyzed atthis stage. For example since
we do not know how the template is transferred into the gun, a necessary step for the gun
to recognize its owner, we leave its analysis for later. Details on the assumptions related
to the SmartGun architecture are presented in subsection 2.4.2.2.

to get used to the routine of using an electronic gun, like keeping bat-
teries charged, auditing, training and template exchange to match team
composition. This period should be as short as possible.

2. Assumptions related to the gun construction:

(a) (SEAL.) Tampering with seal(s) on the gun, which secure the feature
extractor, matcher and all the communication channels should be easy
to detect and re-sealing should be hard to do.

(b) (WEIGHT.) A new gun with a different weight is hard to adapt to: it
requires additional training to regain the same accuracy aswith the
old weapon. It is desirable to approach the weight of the Walther P5
as much as possible so additional training is unnecessary.

(c) (AUTHORIZATION.) The Walther P5 compatibility requirement stat-
ing that the gun must be safe while carrying a bullet in the chamber
implies that the time needed between the choice to use the gunand the
actual firing, must be as short as possible. Thus the time needed for
authorizing someone must be as short as possible.

(d) (TRANSPARENCY.)The mechanism is fully automated, i.e. the user
does not need to perform additional actions to receive authorization.
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I.Description
Scenario: EPO1R.
Tactics: Jam or break the sensor.
Name: Unknown.
II. Evaluation
Damage: Major
Knowledge: High school. Which part of the gun is the sensor how

to damage the sensor is easy to determine.
Occurrence: High. It is easy to damage something that is not pro-

tected by a seal and is not tamper resistant.
III. Defense
Countermeasures:The gun architecture should ensure that tampering

with the sensor is obvious.

Table 2.4:Detailed description of attack scenario EP01R.

(e) (CONNECTIVITY.) The gun should be equipped with I/O interfaces
for data. The sensor for reading the biometric grip pattern is an input
interface. The nature of the output or input/output is to be decided by
experience.

3. Assumptions related to algorithms:

(a) (RELIABILITY.) It is “smart” (or “personalized”) enough to identify
and fire only if desired by the rightful owners and/or other authorized
users.

(b) (FAILURE.) Additional technology may not increase the failure rate of
the current weapon, being once every 10.000 times. This includes the
False Rejection Rate of the authentication procedure and the mechan-
ical failure rate.

(c) (AD-HOC SECURE INTERACTION.)The gun is able to recognize all
members of a police patrol.

(d) (ROBUSTNESS)The gun can identify authorized users when being in
different states, from normal to stressed or even panicked.

4. Assumptions related to the system implementation:

(a) (ENVIRONMENT.) The enrollment procedure takes place in a secure
environment (the police station).
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I.Description:
Scenario: EPO2A.
Tactics: The attacker records a correct biometric signal and then

injects the signal just before using the gun.
Name: Replay attack.
II. Evaluation
Damage: Moderate
Knowledge: Expert. Measure, record and store the biometric of an

authorized user. If the attacker records the raw bio-
metric then he must know the algorithm that produces
the feature vector, the format of the feature vector and
because the number of elements of the feature vector
depends on the number of user registered to the sys-
tem, he also has to know this number. He also needs
to figure out a way of injecting the signal just before
the gun is fired.

Occurrence: Low. The attack requires inside knowledge of the
system, the number of enrollees, and technical skills:
recording the biometric or injecting the electronic sig-
nal

III. Defense
Countermeasures:Encrypted communication, challenge-response proto-

col [64], perfect-matching checking [10], etc.

Table 2.5:Detailed description for attack scenario EPO2A.

Each of these assumption is motivated by the strict procedures to which police
officers work. Other assumptions may be added as a result of the analysis of
attack scenarios.

2.4.2.3 Risk Assessment for the Biometric SmartGun

The assumptions above simplify the 3W-tree analysis and lead to three impor-
tant observations. Firstly, in the Who taxonomy or the first layer of the 3W-tree,
the (ADMIN.) assumption (1(a) in the list above) allows us to restrict thethreat
analysis to the external attacker. We also assume the manufacturer to be trustwor-
thy and that the biometric devices are certified by a certification authority.

Secondly, at this point in time we do not know what information (if any) is

37



Chapter 2.Threat Model and 3W-tree

transmitted on the wireless link, seeFigure 2.5. Since this is the main point of
attack for the external attacker in bothpassive approachandactive approach, in
the second layer of the 3W-tree at this stage we cannot analyze them. We remind
the reader that 3W-tree analysis should be an iterative process and once new
information is available or there are changes in the environmental condition the
3W-tree analysis should be revised, seeChapter5.

Thirdly, a tamper resistant seal mounted on the gun handle (assumption 2(a)
(SEAL.)) makes a false rejection attack inpossessituation hard. We assume it is
difficult for the attacker to disassemble the device, tamperwith mechanical parts,
re-seal the gun and then return the gun to the police officer without the tampering
being noticed.

As a result of the above assumptions, from a total of 96 attackscenarios for the
external attacker (12 vulnerabilities× 4 approach modalities (posses, handle, etc)
× 2 goals (false acceptance, false rejection)) we are left with only 12 most relevant
attack scenarios.Figure 2.6 shows the 3W-tree for the biometric SmartGun.
Threats shown in grey, have to be dealt with once more information becomes
available. The practical realization (sealed or not) of thephysical link between
the sensor and the feature vector (vulnerabilityV2) determines the risks associated
to an external attacker in handle situation. For this reason, in Figure 2.6 threats
which we consider as relevant, but which cannot be evaluatedat this stage are
represented in grey.Table 2.4 andTable 2.5 list, as example attack scenarios
EPO1R and EPO2A. Description for the other 11 threats can be found in the
technical report [9].

Once the consequence of the damage and the frequency of occurrence have
been estimated the final step is the risk assessment. The riskassessment ma-
trix in Table2.6 offers a means to categorize the risk associated with each attack
scenario. We distinguish between three levels of risk. Level one risk is undesir-
able and requires immediate corrective action (any risk with major consequence
and high frequency), level two risk is undesirable and requires corrective action
but some management discretion is allowed (any risk with high/moderate dam-
age and medium/high frequency) and level three risk is acceptable with review
by management (any risk that produces minor damage and has low probability of
occurrence).

The main conclusions of the risk analysis are: there is no level one risk corre-
sponding to an external attacker relative to the SmartGun. There are four attack
scenarios with level two risks which correspond to (1) scenario EPO5A, where an
attacker in possession situation controls the memory of thegun, thus he has read
and write access, (2) scenario EPO11A, where by emptying thebattery, the gun
can be forced to enter an unstable state, maybe allowing the gun to operate with-
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Occurrence Damage
Major Moderate Minor

High EHA1A;EPO1A;

Medium EP05A; EPO11A; EPO16A;

Low EPO7A; EPO2A;EPO3A;EPO4A;EPO6A; EHA1R;EPO1R;

Table 2.6:Risk Analysis Matrix for the SmartGun for the scenarios inFigure2.6.

out biometric recognition, (3) scenarios EPO2A and EPO1A where an attacker in
handle or possess situation can be accepted as an authorizeduser of the SmartGun.

The conclusions above are preliminary. In theSection2.4.2.4 we discuss sev-
eral open questions regarding the architecture of the SmartGun. The choices be-
tween the alternative solutions of the open questions have adefinite influence on
the specialization of the architecture presented inFigure 2.5. We recommend a
new 3W-treeanalysis of the SmartGun architecture once the open questions are
answered, to refine the preliminary conclusions.

2.4.2.4 Open Questions

We discuss several open questions regarding the security architecture of the
SmartGun. For each question several alternative solutionsexist, in which case
only experience can help chose the right one.

ENERGY CAPACITY.How long should the power system be able to energize the
electromechanical components before recharging?

A large energy capacity makes the device more mobile. A recharge station can
be centralized, at a police station for example. The downside of a large energy
capacity is the size of the battery, which requires preciousspace. A choice can be
made on whether to decrease the number of bullets, saving space for components
like the battery. Another option is to implement the possibility to change batteries
while on duty, meaning that the officer carries spare batteries. This would imply
a reliable energy level indication, so that the officer is warned in time that the
battery needs to be recharged or replaced.

Having a smaller energy capacity battery means more frequent recharging and
smaller size. The necessity of frequent recharging could becombined with regular
information exchange between the weapon and the supportingnetwork.
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Figure 2.7:Successful Authorization time line.

CONNECTIVITY. Should the information stored on the pistols be accessible re-
motely or not?

Remote access provides more mobile smart guns. Standard maintenance and
update operations can be done from a distance, making it unrestricted to a central
location, such as a terminal. The disadvantage is that a hacker can use the wireless
link too, if the communication is insufficiently protected.

Remote access also implies putting a radio in the gun, requiring space and
putting an additional load on the limited energy supply.

Remote access requires a more complex communication protocol that guaran-
tees security, reliability and atomicity for template updates. This places an extra
burden on the computational resources of the mobile terminal. Extensive infor-
mation on different forms of mobile communications and ad-hoc networks can be
found in standard textbooks such as Rappaport [63].

AUTHORIZING. After successful authorization, when and how should the session
end?

Before we discuss the dilemma implied by this question, we need to define
the terms locked (the state of the weapon when it cannot be fired) and ready to
fire (the state of the weapon when it can be fired). We also need to define the
terms authorized user (a user who has his biometric identitystored in the gun) and
impostor (a user who does not have his biometric identity stored in the gun and is
fraudulently trying to use the weapon).

The default state of a gun is locked. Before an authorized user can use the gun
an authorization must take place. This is a classifier based comparison between
the stored biometric identity and the freshly measured biometric impression. A
person can fire a gun if the two match. This period is called theauthorization pe-
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Figure 2.8:Event and Timeout driven Session Ending.

riod. A session is the period of time after a successful authorization period during
which the gun is ready to fire.

A long session makes it possible that the gun can be used by another (unautho-
rized) user, for example when an accepted user is deprived ofhis gun. This safety
gap clearly threatens the advantages of ”smart” guns. On theother hand, a short
session length requires the gun to check the biometric pattern on a more frequent
basis, which takes resources and distracts the officer.

Rather than choosing a time constraint for ending the session, it can also be
event driven. Ending the session when the hand is no longer onthe gun implies
that the gun can only be fired when the authorized user has it inhis hands, which
has obvious advantages. Also, by choosing an event driven mechanism, there is
no need for a clock on the gun, thus saving space. Even better is when both a time
and event driven session end can work in conjunction, locking the gun when the
hand is off the gun or when the gun is unlocked for a long periodof time. This is
represented by the following question:

After rejection of the supplied pattern, how long should thegun wait before
another sample is taken and examined?

We define the termcool downas the minimum amount of time required be-
tween two consecutive authorizations. A short cool down period favors the officer
in case he has been rejected. However, an imposter can perform several trials in a
shorter time frame, so a longer cool down period works against an impostor. Ad-
ditionally, a longer cool down saves resources due to less frequent authorizations.
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Figure 2.9:Authorization cool down after rejection.

POWER FAILURE.If the power supply fails, should the gun be unlocked by default
or locked and give a warning? If the electronic part of the gunfails, a choice has
to be made on whether the gun should be locked or not.

A police officer must be able to fire his gun even if the battery is empty. On
the other hand, a fail safe mechanism that allows the gun to befired even when
the battery is empty can be used to bypass the biometric recognition phase. Illegal
gun traders would find benefit in methods that disable the electronics, for exam-
ple emptying the energy supply or frying sensitive circuitswith electro magnetic
pulses. Thus a failsafe mechanism comes at a price.

In the above we presented several open questions regarding the practical real-
ization of the architecture of the biometric SmartGun. Onlyexperience which of
the alternative solution is best.

2.5 Conclusion

In this chapter we introduce the 3W-tree as a tool for threat analysis related to
biometric systems and we use it for the analysis of the SmartGun. A SmartGun is
a typical example of a biometric system, which is intended toreplace the classical
mechanical gun with a weapon that can authenticate the rightful owner.

We discussed the fundamental properties of a mechanical gunwith police of-
ficers from KLPD. As a result of these discussions and the preliminary 3W-tree
analysis associated to an external attacker we propose a setof recommendations
for the security architecture of the SmartGun.

• LOW FALSE REJECTION RATE.One of the research challenges is that the
False Rejection Rate (FRR) must be less than10−4, which is the accepted
rate of misfire for a police weapon.

• LOW FALSE ACCEPTANCE RATE.Although not as critical as theFRR,
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the SmartGun should have a low false accept rate (FAR). It is considered
acceptable that once in ten trials the SmartGun may accept another user as
the owner of the gun. This would reduce police casualties by 90%.

• SECURE SEAL.An attacker handling the gun should not be able to access
components inside the gun. There should be a tamper evident seal on the
gun handle and electronics. We note that the (SEAL) assumption only states
that once the seal on the gun handle is broken, it should be difficult to restore
it.

• ROBUST SENSOR.The sensor should be resistant enough to withstand an
attacker who is trying to break it. If she succeeds it should be obvious for
the police officer that the sensor is compromised.

• SECURE TEMPLATE STORAGE.It should not be possible to reconstruct the
grip pattern from the template stored in the gun.

• SECURE TEMPLATE TRANSFER.Police officers work in teams. Each of-
ficer in the team must be able to fire the other officers weapon. Normally,
teams are scheduled in advance so that appropriate templates can be loaded
into the weapons at the police station. However, in emergencies this is not
possible. In this case police officers have to team up unprepared and swap
templates in the field. Police officers may work with colleagues from other
departments, even from neighboring countries, so we may notassume a
common key, or even a public key infrastructure. We present below a list
of requirements that the secure template transfer protocolmust possess to
solve the above problem:

– The initialization of the protocol should not require any special button
on the gun handle;

– Police officers should be able to perform the protocol without any
available security infrastructure (shared keys, links to trusted third par-
ties, etc.).

– The protocol should be fast and easy;

– Before loading a new template in the gun authorization of thegun
owner is required;

The 3W-tree analysis should be an iterative process and whennew information
is available we recommend a new 3W-tree analysis. In the listabove the first two
itemsLOW FALSE REJECTIONand LOW FALSE ACCEPTANCEdepend on the
performance of the biometric recognition algorithm which are the subject of the
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forthcoming thesis of Xiaoxing Shang [71]. TheSECURE SEALand ROBUST
SENSORcan be considered as engineering challenges which can be addressed in
a follow up project. We considerSECURE TEMPLATE STORAGEin Chapters3, 4
andSECURE TEMPLATE TRANSFERin Chapter5 as new research directions and
we concentrate on addressing these two challenges.
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Chapter 3

Fuzzy Extractors for Continuous
Distributions

The use of biometric features as key material in security protocols has
often been suggested to avoid memorizing long passwords or keys.
However, the use of biometrics in cryptography does not comewith-
out problems. It is known that biometric information lacks unifor-
mity, and that biometric information is not exactly reproducible. This
is the opposite of what is considered suitable for a cryptographic key.
Fuzzy extractors allow cryptographic keys to be generated from noisy,
non-uniform biometric data. They can be used to authenticate a user
to a server without storing her biometric data directly. This is impor-
tant because the server may not be trusted.

We show that a relation exists between the entropy of the keysex-
tracted from biometric data and the quality of the biometricdata. This
information can be used a-priori to evaluate the potential of the bio-
metric data in the context of a specific cryptographic application. We
model the biometric data as a continuous distribution and wegive a
new definition for the fuzzy extractor that is suitable for this type of
data. We propose a new construction calledcs-fuzzy extractor which
represents an extension to the classical fuzzy extractor tocontinuous
source (cs) data. We apply the new definition to three schemes pro-
posed in the literature for the protection of biometric templates.

Unprotected storage of biometric information is an exampleof a serious threat
for the privacy of users because a biometric template may reveal sensitive personal
information [80].
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A fingerprint for example can be reconstructed from a stored biometric tem-
plate as shown by Matsumoto,et al. [51]. Another privacy threat is tracking users
across multiple databases. The usual solution of using different passwords in dif-
ferent systems does not apply for obvious reasons - a person only has a limited
number of biometric identification available: ten fingers, two eyes, etc. Once a
biometric template is compromised it cannot be re-issued.

Biometric template protection aims to protect the stored biometric identity
of a user from abuse in two ways. Firstly, a protected template reveals almost
nothing about the biometrics and if a database with protected biometric templates
is compromised, the attacker cannot learn much about the biometric template.
Secondly, if such an intrusion is detected the biometric template is not lost, since
at any time the protection scheme can be reapplied on the original data.

The main challenge in protecting biometric templates usingcryptographic
techniques is coping with noise, which is always introducedinto biometric sam-
ples during data acquisition and processing. Biometric template protection schemes
can transform a noisy, non-uniform biometric template represented as a sequence
of real numbers into a reproducible, uniformly-distributed binary string. There
are many parameters that control this transformation, for example the length of
the output binary sequence, the probability that two measurements coming from
the same users will be mapped to the same binary sequence, etc.

Two abstractions, secure sketches and fuzzy extractors were proposed by Dodis,
et al [32] to describe the process of transforming a biometric template into a repro-
ducible, uniform binary sequence. A secure sketch can correct the noise between
two biometric measurements coming from the same user by using some public
information called a sketch. The result of a secure sketch isa reproducible se-
quence, which is not, however, uniformly distributed and thus not suitable to be
used as cryptographic keys.

Fuzzy extractors can be used to extract randomness from biometric data to
make the output of a secure sketch suitable for cryptographic keys. A fuzzy ex-
tractor, is a pair of two procedures. The first is thegenerateprocedure, which
is used once when the user generates a key for use on the untrusted server. The
second is thereproduceprocedure, which is used to authenticate the user to the
server.

The generateprocedure takes as input the noisy datax and then it outputs a
public sketchp and a random binary sequencer. The generate procedure com-
putesp in such a way that no significant information is revealed about the biomet-
ric data. The server will store the pair〈p, h(r)〉, whereh(r) can for instance be a
hash of the random binary sequence used for authentication.

The reproduceprocedure takes as input a fresh measurementx′ of the users
biometric and the public sketchp, and outputs the random sequencer if x andx′
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Figure 3.1: User authentication scenario using a fuzzy extractor. During enrollment
the Generate procedure outputs a random sequencer and a public stringp. During
authentication the hash of the output of theReproduce procedureh(r′) is compared to
the hash of the stored binary sequenceh(r). If the two match the user is authenticated.

are similar enough. The similarity measure used is specific to the type of biometric
and the algorithm used. The server can then verify thath(r) matches the stored
information.Figure3.1 shows the architecture of a fuzzy extractor.

In the literature, fuzzy extractors are used for biometric data represented as
an n point discrete vector,x = (x1, x2, . . . , xn). However, when the noisy data
originates from a continuous domain (i.ex is not a collection of discrete points, but
is a probability distribution that describes the behavior of the eachxi) the general
approach is a three step procedure applied on each vector element separately:

1. (Quantization.) A quantizer transforms the points modeled in the continu-
ous domain into a suitable, discrete (binary) form of data, as is assumed in
the fuzzy extractor model. After quantization, themin-entropyof the source
data is fixed.

2. (Secure Sketch.) Apply error correcting techniques. No two biometric mea-
surements are exactly the same, even when collected from thesame person
in two consecutive measurements. This step is used to compensate for the
expected noise. The amount of noise, which can be compensated determines
the reliability of the sketch. To improve the performance ofthe sketch, side-
information also referred to ashelper data[77] or a public sketch[32] is
made public. The helper data, which is used for error correction reveals
some information about the biometric string. The amount of information
lost by publishing the helper data is known as theentropy-loss.

3. (Randomness Extraction.) Biometric data is not uniformly distributed. A
randomness extractor will smoothen the distribution of thebiometric data
such that the output of the randomness extractor consists ofnearly uni-
formly random bits.
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Good fuzzy extractor constructions should produce high min-entropy random
sequences, have high reliability and high security (i.e. low entropy loss). In each
of the steps in the general approach one of these parameters is considered. After
step 1, the available min-entropy can be estimated, during step 2 the sensitivity to
changes in the continuous input values and the entropy-lossare determined and in
step 3 determines how uniform the output binary string will be.

PROBLEM STATEMENT.The problem we see, is the gap which exists between the
performance description of a biometric system, as seen by the biometric commu-
nity and the notations used in the security community. The biometric community
looks at error rates and sees the biometric data as continuously distributed. The
most common performance measures arefalse acceptance rate(FAR) andfalse
rejection rate(FRR). The former represents the probability that an attacker would
be accepted by the biometric system as a legitimate user while the latter represents
the probability that a legitimate user would not be recognized as such by the bio-
metric system. As opposed to the biometric community the security community
looks atreliability, min-entropyandentropy-lossand sees the biometric data as
discretely distributed. Quantization is used as a means to bridge this gap. How-
ever, while steps 2 and 3 in the general approach are well understood, little is
known about the effect of the choice of quantization strategy in step 1 and the
effect of the quality of the biometric data for the overall construction.

CONTRIBUTION. In this chapter we extend the scope of the fuzzy extractors to
continuous source data to bridge the gap between concepts like error rates (FAR
andFRR) from biometrics and concepts like reliability, min-entropy and entropy-
loss from security. We proposecs-fuzzy extractorsas a unifying view on template
protection schemes. This gives us new insights. We show thatthe key length of
the binary sequence obtained by applying a fuzzy extractor to a biometric template
depends on the amount of distinguishing information that exists in the biometric
data or in other words on the error rates. We give an upper bound on the number
of uniformly distributed bits that can be extracted from a given set of data charac-
terized byFAR andFRR. This information can be used a-priori to evaluate the
potential of a biometric data set in the context of a specific cryptographic applica-
tion. To demonstrate the power of cs-fuzzy extractors we model existing template
protection schemes in the new framework of cs-fuzzy extractors.

ASSUMPTIONS.In this chapter we make two important assumptions. The first
assumption is related to the error model of our biometric data. We assume the
additive noise model [28] for our data, where observations of each featurexi can
be perturbed by noise.
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The second assumption is related to the existing knowledge,more precisely
we assume the targetFAR andFRR are chosen before the first step (quantiza-
tion) in the general approach of a fuzzy extractor. Althoughthis assumption is
not very common in the world of security where one assumes limited knowledge
regarding the probability distribution, the assumptionis common in the world of
biometrics. Assuming theFARandFRRis known, is a reasonable assumption
when considering the application scenario of a fuzzy extractor. As a pre-requisite
for the fuzzy extractor design, the following steps are taken:

1. Collect biometric data from individual users. Each user will offer several
measurements of their biometric data (e.g. fingerprint, face, voice, etc).

2. For each individual user a mean (or template) and a variance is estimated.
The biometric data of the user is modeled as a continuous probability dis-
tribution. This continuous distribution is calledgenuine distribution.

3. The mean and the variance of the biometric data ofall users is estimated.
The obtained probability distribution is called theimpostor distribution.It
is expected that the variance of the impostor distribution is much larger
compared to the genuine distribution.

4. A biometric classifier based algorithm is used to produce areceiver operat-
ing curve(ROC ) by varying a discrimination threshold.

5. On theROC curve a targetFAR andFRR are chosen;

After the above steps are performed a generic fuzzy extractor scheme is ap-
plied on the biometric data using the discrimination threshold, which gives a direct
link to targetFAR andFRR.

ROADMAP. We look at related work inSection3.1. Notation and background
information is introduced inSection3.2. The extension of the fuzzy extractor
definition to continuously distributed data and the modeling of intrinsic relations
between the error rates of biometric information and the parameters of a fuzzy
extractor are presented inSection3.3. Examples of practical template protection
schemes modeled in the new framework of cs-fuzzy extractorsare presented in
Section3.4. Section3.5 concludes this chapter.

3.1 Related Work

In the literature the source of biometric data is consideredto be either con-
tinuous or discrete. Therefore template protection schemes can be divided in two
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classes. Representatives of the first class are continuous source shielding func-
tions [49], the reliable component scheme [76] and the multi-bit scheme [25, 28].
The fuzzy vault [79] and the pin sketch [32] belong to the second class.

It is difficult to compare the performance of these schemes because there is no
unified view on the security evaluation strategy. All authors estimate the error rate
of their system in terms ofFAR andFRR, but when it comes to evaluating the
strength of the resulting binary sequence different authors have different opinions.

Monroseet al.[57] and Uludaget al.[81] compute the guessing entropy or the
number of trials an attacker has to make to find the correct binary sequence while
Zhanget al.[90] and Changet al. [25] estimate the number of effective bits in the
resulting key and propose a weighting system for choosing the best combination.

Changet al. [24] analyze the security of a sketch by investigating the remain-
ing entropy of the biometric data, given that the sketch is made public. The same
approach is taken by Boyenet al. [19].

Dodiset al. [32] use both min-entropy and entropy loss.
Chenet al.[28] use as security measure the entropy of the output binarystring

and the mutual information between the output binary stringand the published
helper data. Tuylset al. [76] estimate the information leakage using the condi-
tional min-entropy between the public string and the binarystring.

This brief summary highlights the importance of developinga unified theory
that supports a thorough analysis of all schemes mentioned.

3.2 Preliminaries

Before we delve into the differences between discrete and continuous source
biometrics, we need to establish some background. We start by giving our no-
tation, as well as some basic definitions. Secondly, we summarize the fuzzy ex-
tractor for a discrete source as given by Dodiset al. [32] and Boyenet al. [19].
Thirdly, we briefly discuss the chosen model of the continuous source and its im-
plications. Lastly, we remind the reader of the definitions of biometric error rates
commonly used in the literature.

NOTATION. By capital letters we denote random variables while small letters are
used to denote observations of random variables.

A random variableA is endowed with a probability distributionfA(a). When
distinguishing between discrete and continuous random variable we use super-
scripts. WithAd we denote the random variable endowed with a discrete proba-
bility distributionfAd(a) while Ac is used to denote the random variable endowed
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with the continuous probability distributionfAc(a). With a ← A we denote an
observationa of the random variableA.

It is common in the biometric literature [16] to model both the biometric data
for all users in the target group (i.e. all users that the biometric recognition system
is intended to recognize) and the biometric data for one generic user in the target
group. In the rest of the paper we use the random variableΓ when referring to
the target group, its distributionfΓ(γ) is known in the literature as theimpostor
distributionor thebackground distribution[16]. We use the random variableX
when referring to biometric data which describes one user, wherefX(x) is known
in the literature as thegenuine user distribution[16].

In the literature a biometric measurement is represented asann point feature
vectorx = (x1, x2, · · ·xn) ∈ X. However, without reducing the generality, in
the remainder of this chapter, when referring toX we consider a one dimensional
feature vector representation which captures all aspects of a template protection
scheme.

We use the random variableP when referring to public data (the sketch) and
R for random binary strings, which can be used as cryptographic keys andUl to
denote the set of uniformly distributed binary sequences oflengthl.

MIN-ENTROPY. When referring to cryptographic keys the strength of the keyis
measured as the probability that an adversary predicts the value of the secret key.
The adversary’s best strategy is to guess the most likely value. Themin-entropy
or thepredictabilityof a random variableA denoted byH∞(A) is defined as:

H∞(A) = − log2(max
a←A

Pr(A = a)).

Min-entropy can be viewed as the “worst-case” entropy [32].

FUZZY EXTRACTORS.For modeling the process of randomness extraction from
noisy data Dodis,et al. [32] define the notion of a fuzzy extractor, seeFigure3.2.
A fuzzy extractor extracts a uniformly random stringr from biometric measure-
mentx of userX in a noise tolerant way with the help of some public stringp.

Enrollment is performed by the generate procedure, which oninput of the
biometricx extracts the binary stringr and computes a public stringp. During
authentication, the reproduce procedure takes as input another biometric mea-
surementx′ and the public stringp and it will output the binary stringr if the two
biometric measurementsx andx′ are within a predefined distance.

For a discrete random variableΓd, over the discrete metric spaceM endowed
with a metricd, the formal definition of a fuzzy extractor [19, 32] is:
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Figure 3.2:A fuzzy extractor is a two step construction. The first step isthe Generate

procedure which on input of biometricx outputs a binary stringr and a public stringp.
TheGenerate procedure is executed once. The second step is theReproduce procedure
which takes as input the biometric measurementx′ and with the help of the public string
p outputsr.

Definition 1 An (M, m, l, t, ε) fuzzy extractor is a pair of randomized proce-
dures, generate and reproduce, with the following properties:

1. The generation procedure on input ofx ∈ M outputs an extracted string
r ∈ R and a public stringp ∈ P .

2. The reproduction procedure takes an elementx′ ← Γ and the public string
p ← P as inputs. Thereliability property of the fuzzy extractor guarantees
that if d(x, x′) ≤ t and r andp were generated by(r, p) ← Generate(x),
thenReproduce(x′, p) = r. If d(x, x′) > t, then no guarantee is provided
about the output ofReproduce.

3. Thesecurityproperty guarantees that for any distribution on the random
variableΓd with min-entropym, the stringr is nearly uniform even for those
who observep: if (R, P )← Generate(X), thenSD((R, P ), (Ul, P )) ≤ ε

A fuzzy extractor isefficient if Generate andReproduce run in polynomial time.

In other words, a fuzzy extractor allows to extract some randomnessr from
the biometric measurementx of a random userXd chosen from the population
of all usersΓd. The reproduction procedure which uses the public stringp pro-
duced by the generation procedure will output the stringr as long as the biometric
measurementx′ is within distancet from the valuex used during the generate
procedure. This is thecorrectnessproperty of the fuzzy extractor, the one we re-
ferred to earlier asreliability. Thesecurityproperty guarantees that the variable
R looks uniformly random to an attacker and the probability that she guesses the
value ofr for from the first trial is approximately2−m. Security encompasses both
min-entropyand the lack of uniformity of the random sequence.
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We have two observations related to the above definition. Firstly, in the above
definitionR = {0, 1}l thus a random binary string of lengthl. The public string
P = {0, 1}∗ which can be for example the syndrome of an error correcting code.
However, there are template protection schemes that fit the model of the fuzzy
extractors for whichP is drawn fromR [49] or Z [76]. Secondly, one can say that
fX(x) has min-entropy only if it is a discrete probability distribution. Thus the
above definition of fuzzy extractors works only when the biometric is represented
discretely.

DISTRIBUTION MODELING. In the given examples, we model both the impostor,
fΓc(γ) and the genuine distributionfXc(x) as multivariate Gaussian distribution
since it represents a common model for real world raw data. Wewrite fXc(x) =
N(µx, σx) andfΓc(γ) = N(µγ , σγ). We emphasize that this assumption is not
necessary for the definition of thecs-fuzzy extractors.

To estimatefXc(x) multiple biometric measurements are collected from each
user and the averageµx and the standard deviationσx also known in the literature
asintra-classvariation, are estimated. The small perturbations betweenmeasure-
ments hold important information. They represent an estimate on how far from
the average other genuine samples will be. This is used to establish suitable prob-
abilities of value acceptance and rejection area.

In controlling the error rates of a biometric classifier algorithm of interested
is thebackground distribution, which represents the distribution of all the users
enrolled in the biometric system. The background distribution is computed by
estimating an averageµΓ and a standard deviationσΓ on the data of all users. The
background distribution is also known in the literature asimpostor distribution
since it assumed to be public information and an attacker canuse this information
produce aFAR or aFRR.

ERROR RATES.The error rates of a biometric system are determined by the ac-
curacy with which the matching engine can determine the similarity between a
measured samplex′ and the expected valuex of distributionfXc(x) [16]. We can
construct two hypotheses:
[H0] the measuredx′ is coming from the authentic userX;
[H1] the measuredx′ is not coming from the authentic userX;

The matching engine has to decide whetherH0 or H1 is true. To express
the accuracy of a biometric system the termsfalse acceptance rate, FAR and
false rejection rate, FRR are used. Thefalse acceptance rateis a Type I error
and represents the probability thatH0 will be accepted when in factH1 is true.
The false rejection rateis a Type II error and represents the probability that the
outcome of the matching engine isH1 butH0 is true.
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Figure 3.3:Threshold〈T1, T2〉 determines acceptance and rejection regions.

We have a false acceptance every time another user, from the distribution
fΓc(γ) is generating a measurement which is in the acceptance region described
by the interval[T1, T2], seeFigure3.3. We can then write

FAR =

T2∫

T1

fΓc(γ)dγ

Every time the userX with the distributionfXc(x) produces a sample that is
in the rejection area, seeFigure3.3 he will be rejected, thus

FRR = 1−
T2∫

T1

fXc(x)dx.

Dodiset al.[32] assume the probability distribution associated to therandom vari-
ableΓd to be discrete for the definition of fuzzy extractor. Therefore, the class of
template protection schemes that use continuous sources donot fit this model. The
subject of next section is the extension of fuzzy extractor definition to continuous
source distributions.

FROM CONTINUOUS TO DISCRETE DISTRIBUTIONS.Definition 1 relies on a
source random variableΓd with min-entropym. How can we construct a source
with min-entropym out of a continuous distributionfΓc(γ)?

A continuous probability distribution can be transformed into a discrete prob-
ability distribution by means of quantization. Quantization of a variableΓc means
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Figure 3.4: Quantization of random variableΓc with continuous probability distribution
fΓc(γ) into random variableΓd with discrete probability distributionfΓd(γ). The deci-
sion regions of the quantization functions are the intervals{d1, · · · d8}while the centroids
are situated inside each interval and denoted with{c1, · · · c8} .

sampling its probability distributionfΓc(γ) and rounding the values ofΓc to prede-
fined points. By quantization the random variableΓc with probability distribution
fΓc(γ), is transformed into random variableΓd with discrete probability distribu-
tion fΓd(γ), seeFigure3.4.

Formally, a quantizer is a function that maps eachγ ← Γc into the closest
point ci ← Γd, by

Q(γ) = arg min
ci←Γd

d(γ, ci)

whered is a suitable distance measure for the metric space of randomvariableΓd.
The elements ofΓd are known asreconstruction point{c1, c2, . . .}. The subset of
all elementsγ ← Γc that are closer to one reconstruction point than to any other
reconstruction point is called adecision region.

WhenΓc andΓd are one dimensional,Q is called ascalar quantizer. In the
scalar case, the length of the decision region is called thestep size.If all decision
regions of a quantizer are equal, the quantizer isuniform.

EXAMPLE. In the setting ofFigure 3.4 the result of quantization is the discrete
distributionfΓd in this picture. The probability of selecting one decision regiondi
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is computed as

pi =

∫

di

fΓc(γ)dγ.

As a result of quantization the continuous distributionfΓc(γ) has been trans-
formed into the discrete distributionfΓd(γ) = {p1, · · ·p8}.

After quantization offΓc(γ) a userX with probability distribution function
fXc(x) is represented by one decision region, called theauthentic region. From
the perspective of the user there are two possible types of quantization strate-
gies [41]. The first one isuser specific quantization[25, 28] where the authentic
region is chosen first such that it represents the user probability distribution func-
tion fXc(x) as well as possible and the other decision regions and centroids are
chosen afterwards. In this casefΓc(γ) is quantized differently for each user and
for each a specific set of quantization boundaries are storedas public information.
The second strategy isuser independent quantizationwhere the decision regions
are chosen such that they are optimal for the average user. Inthis case there is
only one set of quantization boundaries for all users [49].

The advantage of using a user specific quantization is a reliable template pro-
tection scheme. The quantization intervals are tuned to thespecific distribution
of each user and as a result the error rates are lower. The disadvantage however
is that for each user, the quantization boundaries have to becomputed indepen-
dently and stored separately. As a result more data is storedin the database and
more information (user-specific boundaries) is leaked about each user. A user in-
dependent quantization scheme stores less information andmore importantly less
user specific information. However, the cost is a lower reliability of the scheme.

Regardless of the quantization, the authentic region is chosen such that the
probability associated to the authentic region, given the user probability distribu-
tion functionfXc(x), i.e.

pauth =

∫

di

f c
X(x)dx

is maximized, for a givendi. Also, the authentic region determines both theFAR
and theFRR.

In the example inFigure 3.4 the authentic region isd7 and theFAR is rep-
resented by the double dashed area. The probability of a false rejection is de-
termined by what is left from the probability distribution functionfXc(x) after
removingpauth, in Figure3.4 the dashed area.

The min-entropy of the random variableΓd obtained after quantization, in the
setting ofFigure3.4 is defined asH∞(Γd) = − log2 pmax where

pmax = max
i

pi.

56



3.3.Fuzzy extractors for continuous distributions

In the rest of this chapter we extend the scope of the fuzzy extractors to contin-
uously distributed data. We quantize the continuously distributed source and feed
the result, the discrete source into the fuzzy extractor. Wetake one step further
and generalize the connections between the parameters usedfor description of the
biometric data (FAR , FRR) and the parameters of a fuzzy extractor.

MIN-ENTROPY FOR A CONTINUOUS SOURCE.For a random variableΓc with
a continuous type of probability distribution function itsmin-entropy depends on
the precision used to represent its elements. This topic is addressed in detail by
Li et al. [48]. The min-entropy can be applied only to discrete type probability
distribution functions, or after quantization as shown in the previous paragraph of
the continuous probability distribution function:

H∞(Q(Γc)) = H∞(Γd) = − log2 max
γ∈Γd

Pr(Γd = γ) (3.1)

In the remainder of this chapter when referring to the min-entropy of a contin-
uous random variableΓc we refer to relation 3.1.

3.3 Fuzzy extractors for continuous distributions

We show in this section that there is a natural link between the parameters
of a fuzzy extractor(Γd, m, l, t, ε) and the error rates used for the description of
biometric data.

3.3.1 Relating min-entropym and FAR

The effective key space size of a biometric is linked to theFAR by O’Gorman
[61], showing that theFAR (i.e. the probability that a person is accepted by
the biometric system although he is not enroled) is the probability of an attacker
performing a brute force password guessing attack. It is assumed the attacker has
initial information about his own biometric and that the attacker has to guess the
biometric of a legitimate member of the target group. However, O’Gorman [61]
does not take into account the case when a template protection scheme is used for
the biometric information. In this section we link theFAR to the min-entropy of
the keyextractedfrom the biometric data.

Quantization of a continuously distributed random variable Γc creates a tight
relation between the min-entropym of the random variableΓd after quantization
and the error rates of the biometric system. For the variableR to have a high
min-entropy and thus low probability that an attacker finds the correct value for
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r one possibility is to lower the values of all the probabilitiespi. Unfortunately,
by loweringpi theFRR increases. The proposition below makes the connection
between the error rates of the biometric data and the conceptof min-entropy.

Proposition 1 For a random variableΓd with probability density functionfΓd(γ)
the min-entropym satisfies the relationm ≤ − log2 FAR with equality when
pauth = pmax.

Proof: We takepmax = maxi pi. Sincepmax ≥ pauth, we know that:

m = −log2pmax ≤ −log2pauth = −log2FAR

Corrolary 1 FAR ≤ 2−m with equality whenpauth = pmax.

Proposition 2 For a discrete random variableX, the min-entropy,H∞(X) is
maximized when the probability distribution of variableX is uniform.

Proof: Assume thatX andY are two discrete random variables defined on the
same support withn elements. VariableX has a uniform probability distribution
and variableY has a non-uniform probability distribution. The min-entropy of X
is H∞(X) = n bits.

We will prove the proposition by deriving a contradiction. Assume:

H∞(Y ) > H∞(X)

this means
− log2 max

y∈Y
Pr(Y = y) > − log2 max

x∈X
Pr(X = x)

which means that

max
y∈Y

Pr(Y = y) <
1

n

which is impossible since the probabilities inY have to sum up to 1 and both
X andY are defined on the same support. This proves the relationH∞(Y ) >
H∞(X) is false and variableX with uniform probability distribution has maxi-
mum min-entropy.

Observation: m, the min-entropy offΓd(γ) is maximized when the probabil-
ities associated with the discrete distributionfΓd(γ) are uniform.

An example of an optimal quantization scheme from this perspective is given
by Chenet al. [28], which is discussed in detail inSection3.4.3.
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3.3.2 Relating thresholdt and FRR

According toDefinition1 theReproduce(x′, p) procedure will output the same
binary sequencer asGenerate(x) wheneverx andx′ are close. This means that
x andx′ probably belong to the same userX. In Definition 1 this is written as
d(x, x′) < t, whered is some metric, for example the Euclidian distance or the set
difference metric. The value oft, does not say anything about the acceptance or
the rejection probability of a user, which we feel, is more relevant. The probability
of correctly identifying that two measurements belong to the same user is the
opposite of a Type II error, thus the detection probabilityPd = 1 − FRR is a
suitable generalization of the thresholdt.

3.3.3 CS-fuzzy extractors

The above relations lead us to the following definition of thefuzzy extractors
for continuous sources.

Definition 2 An(Γc, m, l, FRR, ε) cs-fuzzy extractor (continuous source fuzzy ex-
tractor) is a pair of randomized procedures generate(Generate) and reproduce
(Reproduce), with the following properties:

1. Generate is a (necessarily randomized) generation procedure, whichon in-
put Xc drawn fromΓc, extracts aprivate stringr ∈ {0, 1}l and apublic
string p ← P , such that for any distributionΓc with min-entropym, if
(r, p)← Generate(X) thenSD((R, P ), (Ul, P )) ≤ ε.

2. Reproduce is the reproduction procedure, which given a measurementx′

sampled fromX and a public stringp ← P outputs a stringr ∈ {0, 1}l,
r = Reproduce(x′, p), where(r, p)← Generate(X), with probability equal
to the detection probability,Pd = 1− FRR.

A cs-fuzzy extractor isefficient if Generate andReproduce run in polynomial
time.

A cs-fuzzy extractor preserves the mechanism of the generate and reproduce
procedures as proposed in the original fuzzy extractor definition. The link between
the parameters used in each model is described in the preceding sections, thus any
fuzzy extractor is also a cs-fuzzy extractor.
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Figure 3.5: Reliable component scheme.

3.4 Examples

To demonstrate how one may use the cs-fuzzy extractor in practice, we take
three prominent template protection schemes for continuous distributions from
the literature and fit them in our model. As we discussed earlier, these template
protection schemes cannot be described in terms of classical fuzzy extractors.

3.4.1 Reliable component scheme

One of the most intuitive schemes in the area of template protection is there-
liable component schemeproposed by Tuylset al. [76].

(Generate). During enrollmentm samples{x1, x2, ..xm} are measured. This
is followed by quantization, where a sequence{q1, q2, ..qm} is computed. During
quantization each measured valuexj , j = 1..m is compared to the imposter mean
µΓ as shown inFigure 3.5. If xj ≤ µΓ thenqj = 0 elseqj = 1. A feature is
reliable if all qj are equal. Only in that case the feature will be used.

Whenx has many features, the public stringp records the positions of the re-
liable components.

(Reproduce). During authentication,x′ is measured and its value is compared
to µΓ. The result of the comparison represents the key.

This scheme extracts 1 bit from every reliable component, with probabil-
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ity equal to 1-FRR. We can characterize the reliable component scheme as a
(Γc, 1, 1, FRR, 0) cs-fuzzy extractorwhere

FRR =






∫ µΓ

−∞
e

−(x−µX )2

2σX dx, µX > µΓ

∫∞
µΓ

e
−(x−µX )2

2σX dx, µX < µΓ.

The output bit is uniformly distributed, because the probability of a bit being
equal to 0 is equal to the probability of the same bit being equal to 1. The main
merit of this scheme is its reliability, because only the reliable components in the
feature vector are chosen. The disadvantage is that many features are disregarded
and depending on the quality of the data used the total lengthof the output key
can be short.

3.4.2 Shielding functions

Linnartzet al. [49] were among the first to suggest how to get keys from con-
tinuously distributed sources. Their technique is inspired by watermarking. They
propose a multiple quantization level system with odd-evenbands, seeFigure3.6.

(Generate). As in the case of the previous template protection scheme, for each
userXc multiple measurements are taken and a meanµX and standard deviation
σX are estimated. For one feature, the bitr is bound to the userXc by shifting the
mean of the user distribution,µX to the center of the closest even-odd interval, of
lengthq if the value of the key bitr is a 1, or to the center of the closest odd-even
q interval if the value of the key bitr is a 0, seeFigure3.6.

The public stringp, also called the helper data is computed:

p =

{
(2n + 1

2
)q − µX when r = 1

(2n− 1
2
)q − µX when r = 0

Heren ∈ Z and is chosen such that:− q

2
< p < q

2
.

(Reproduce) is defined as:

Rep(x′, p) =

{
1, when 2nq ≤ x′ + p < (2n + 1)q

0, when (2n− 1)q ≤ x′ + p < 2nq

During authentication a noisy featurex′ is extracted. The key bit is 1 if the sum of
the noisy feature and the helper data is in an odd-even interval and is 0 otherwise.
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Figure 3.6:Shielding function discretization, embedding a 0 value keybit.

Whenever the measured value has an error greater thanq

2
we can get an error in

the key computation. This scheme can be written as a(Γc, 1, 1, FRR, 0) cs-fuzzy
extractorwhere:

FRR = σX 2
√

2
∞∑

i=0

(3+4i)

2
√

2

q
σX∫

(1+4i)

2
√

2

q
σ

e−x2

dx.

TheFRR depends on the quantization stepq. Whenq is large, the noise tol-
erance is high as well. On the other hand, ifq is small, theFAR goes down. The
output sequence is uniform in this scheme as well.

3.4.3 Chang multi-bit scheme

Changet al. [25] select the distinguishing features from the biometrics of a
user to extract multiple bits. For each feature the left and the right boundaries,L
andR of the background distribution domain are selected so that with high prob-
ability a measurement from any user falls in this interval.

(Generate). The selectedFAR determines for each feature an authentic region
delimited byT1, T2, seeFigure3.7. The whole regionL,R is divided in segments
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Figure 3.7:Changet al. [25] template protection scheme for continuously distributed
biometric data.

that have a length equal to the segment determined byT1 andT2. A label is asso-
ciated with each segment. It can happen that some redundant segments are added
to the left and to the right ofL respectivelyR to use all labels of a given length.
In Figure3.7 three more segments with the labels 000, 100 and 011 can beadded,
here the genuine interval has label 101. The public stringp contains the descrip-
tion of the intervals and the associated labels.

(Reproduce). Every time a user submits his biometric data to the system his
feature will fall in one of the published intervals. The label associated with this
interval represents the key of this user. An authentic user will be in the authentic
area with probability 1-FRR.

This process is repeated for every user, for every feature. Thus they have
defined an(Γc, m, l, FRR) where

m = log2

µΓ+
|T2−T1|

2∫

µΓ−
|T2−T1|

2

fΓc(γ)dγ

andl = log2
|L−R|
|T2−T1|

, andFRR = 1−
∫ T2

T1
fΓc(γ)dγ.

The output sequence is not uniform and the consequences of this fact are ana-
lyzed in the next section.
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Figure 3.8:In Changet al.[25], the genuine interval can be guessed from one try.

3.4.3.1 Comments on the distinguishable components

To generate stable cryptographic keys Changet al. [25] propose to use only
the distinguishable features for key generation. We show that in this case choosing
the distinguishable feature makes life easier for an intruder and in a particular case
she can almost certainly guess the authentic feature even from one try.

A feature is called distinguishable if the distance betweenthe imposter mean
µΓ and the authentic meanµX is sufficiently large. In the original paper a feature
is distinguishable if|µΓ − µX | > kX · σX . WherekX is a natural number chosen
which determines the distinguishing degree of a feature. IfkX is large the feature
is distinguishing, in other words characteristic to the user if kX is small it is the
other way around. In this scheme the authentic meanµX , due to the construction
is always at the center of the authentic interval. The goal ofan intruder trying to
attack this scheme is to find the authentic interval with a minimal number of trials.

We model two types of intruders. Both intruders know the algorithm used
for generating the key. However, we assume that the first imposter or thetype I
imposterknows the distribution of the population (fΓc(γ)) while the second type
intruder called,type II is stronger and also knows the parametersL andR.

Type I The intruder knows that the authentic area of a user is far away from the
global mean. In this case she can safely disregard the segment where the
mean is situated. This leaves a new probability distribution p1

1−p0
, .. pn

1−p0
. as

the central segment falls out.

Type II This attacker knows not onlyfΓc(γ) but she also knows the values ofL
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andR. In Changet al. [25] these limits are computed as follows:

L = min(µΓ − kΓσΓ, µX − kXσX)

R = min(µΓ + kΓσΓ, µX + kXσX)

HerekΓ andkX are natural numbers chosen by the designers of the system. For
example Changet al. [25] recommend forkΓ the value 5 so that it covers almost
the entire user distribution. If the marginL (and the reasoning is the same forR)
is somewhere situated in the right half of a segment we can safely eliminate that
segment. According to the definitionL will always be smaller thanµX , which is
in the middle of an interval. Thus the attacker can eliminateall intervals for which
the middle value is smaller thenL.

If µX is in the the same segment asL, according to the definitionLwill always
be at the end of the authentic interval, never inside the interval. This leaves us the
case whereL is in the interval and in this case the attacker can safely eliminate
this interval as well.

EXAMPLE. In Figure 3.8 we show how dangerous choosing the wrong combina-
tion of parameters can be. Assume the imposter distributionis divided in 4 inter-
vals{d1, d2, d3, d4}. These intervals are published as helper data. The imposter
has to guess which interval is the authentic one. It is assumed that the imposter
distribution is known to the attacker.

The attacker can eliminate interval numberd3 because it contains the global
meanµΓ and she knows that a distinguishable feature should be far away from the
global mean. A type I attacker has 3 candidates for the correct authentic interval.
However, the three intervals have different probabilitiesassociated so the order of
guessing will be:d2, d4, d1. In this case she is lucky at the first trial. A type II
attacker also knows the value ofL andR. The authentic mean is situated at the
center of the authentic interval. The intervald4 cannot be the authentic one since
its middle value is smaller thenL. Thus the attacker can eliminated4. The same
reasoning holds forR which eliminatesd1. As a result the intruder now has only
one candidate for the authentic interval, namelyd2.

SOLUTION. A multi-bit biometric string generation algorithm that is not vulner-
able to the above attacks is proposed by Chenet al. [28]. They propose a user-
specific, likelihood ratio based quantizer which allows multiple bit extraction from
each feature. The idea of using a likelihood ratio is driven by its optimalFAR ver-
susFRR performance in many biometric applications. In the algorithm of Chenet
al. [28] the quantization intervals are constructed such that they have equal prob-
abilities. This gives an attacker (both type I and type II) noadditional information
regarding the genuine interval.
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Chenet al.[28] carry out extensive experiments that compare the performance
of their likelihood multi-bits quantization algorithm with the performance of the
multi-bits quantization algorithm proposed by Changet al.[25]. The main conclu-
sion of these experiments is that when the user within-classvariation is small the
likelihood multi-bit quantization and multi-bit quantization have a similar perfor-
mance, however, when the user within-class variation is large, which most often
is the case in practice, likelihood multi-bit quantizationoutperforms the classical
multi-bit quantization.

3.5 Conclusion and Future Work

A fuzzy extractor is a theoretical tool for modeling and comparing template
protection schemes which use a discrete source. We generalize the definition to
the cs-fuzzy extractor, which can also handle the continuous source data. We
apply our model to three prominent template protection schemes in the literature.

Biometric recognition systems are evaluated using the false acceptance rate
and the false rejection rate. The link between the two was hitherto not obvious
even though they refer to the same data. In this chapter we show, that there is
a natural connection between the false acceptance rate, false rejection rate and
the parameters used to evaluate a template protection scheme implemented on the
same data. We also show that the error rates have a direct influence on the length
and robustness of the key extracted from the features of a user.

In this chapter we consider one dimensional or scalar quantization techniques.
However, biometric data contains multiple features for each user. One approach
towards the generalization to multiple independent features is to analyze each
dimension independently. In this case, the relationship between the min-entropy
and theFAR is as expected: the more dimensions we have, the lower theFAR
is and the number of bits, which can be extracted increases. However, theFRR
increases with the number of dimensions that are used.

Therefore, this may not be the best approach for aggregatingmultiple fea-
tures. Zhanget al.[90] propose a better approach which can reduce both theFAR
and theFRR by simultaneously analyzing all dimensions. InChapter4 we in-
vestigate the influence of various feature aggregation methods on the length and
robustness of the key.

The contribution of this chapter is related toSECURE TEMPLATE STORAGE
for continuous source data. We extend the theoretical modelof fuzzy extractors
to continuous source data in a new model we termed thecs-fuzzy extractor. In
the new framework ofcs-fuzzy extractors we relate the qualitative characteristics
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of the input noisy data of acs- fuzzy extractor and the properties of the uniform,
reproducible string.

In the next chapter we extend the scope of thecs-fuzzy extractor to a practical
construction termed the fuzzy embedder, which takes into account the problem of
renewability of the uniform, reproducible sequence when the same noisy data is
used for multiple applications.
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Chapter 4

Embedding Renewable
Cryptographic Keys into Noisy Data

When using a (cs-)fuzzy extractor in practice additional properties
are needed, such as the renewability of the extracted strings, and the
ability to use the fuzzy extractor directly on continuous input data
instead of discrete data. Our contribution is threefold.

Firstly, we propose afuzzy embedderas a generalization of both the
fuzzy extractor and thecs-fuzzy extractor construction. A fuzzy em-
bedder naturally supports renewability, as it allows a string to be em-
bedded instead of extracted. It also supports direct analysis of quan-
tization effects, as it makes no limiting assumptions aboutthe nature
of the input source.

Secondly, we give a general construction for fuzzy embedders based
on the technique of quantization index modulation (QIM). We show
that the performance measures of aQIM, translate directly to the se-
curity properties of the corresponding fuzzy embedder.

Finally, we show that from the perspective of the length of the embed-
ded string, quantization in two dimensions is optimal. We present two
practical constructions for a fuzzy embedder in the two-dimensional
space. The first construction is optimal from a reliability perspective
and the second construction is optimal in the length of the embedded
string.

Cryptographic protocols rely on exactly reproducible key material. In fact,
these protocols are designed to have a wildly different output if the key is only
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perturbed slightly. Unfortunately, exactly reproduciblekeys are hard to come by,
especially when they also need to have sufficient entropy. For example, one can
hardly expect an average user to remember a password that consists of a string
of 128 random bits. Luckily, it is relatively easy to find “fuzzy” sources, such
as physically uncloneable functions (PUFs) [72] and biometrics [32]. However,
such sources are inherently noisy and rarely uniformly distributed. The first, main
difficulty in using the output of a fuzzy source as key material is the noise, which
has to be corrected to produce the same key every time. To solve this problem,
the notion of a secure sketch [48] has been proposed. The second difficulty lies in
the fact that this output may have a non-uniform distribution, while it should be
as close to uniform as possible to serve as a cryptographic key. A strong random-
ness extractor could be used to turn the reproducible outputinto a nearly uniform
string. This naturally leads to the notion of a fuzzy extractor [32], which gives
a reproducible, nearly uniform string as output. A common way of constructing
fuzzy extractors is to combine a secure sketch with a strong randomness extractor.

However, when deploying a fuzzy extractor in practice, moredifficulties arise.
Firstly, even with the same input, it should be possible to generate many different
keys. This is paramount when considering biometrics, wherethe number of pos-
sible inputs is limited (two eyes, 10 fingers etc.). To achieve renewability of the
cryptographic key, the (fixed) output of the fuzzy extractormust be randomized,
for instance by using a common reference string. Unfortunately, this falls outside
the scope of the fuzzy extractor, even though it is recognized as an important and
sensitive issue [19].

Secondly, as explained in the previous chapter the definition of a fuzzy ex-
tractor only accepts discrete sources as input. Existing performance measures for
secure sketches, such as entropy loss or min-entropy, lose their relevance when
applied to continuous sources [48]. This limitation can be overcome by quantiz-
ing the continuous input. Li,et al. [48] propose to define relevant performance
measures with respect to the chosen quantization method. Weargue that, instead
of defining performance only after quantization, it is better to integrate the quan-
tization into the definition, so that the intricacies of a continuous input can be
studied.

CONTRIBUTIONS.Our contribution is threefold. Firstly, we propose a new prim-
itive called afuzzy embedder, which is a natural extension of a fuzzy extractor.
A fuzzy embedder provides a randomized output, and handles arbitrary input
sources.

The survey of template protection schemes presented by Uludag, et al. [80]
divides known template protection schemes into two categories. The first category
consists of constructions that extract a cryptographic keyfrom a noisy input. Such
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constructions are elegantly formalized by the notion of a fuzzy extractor. The
second category consists of constructions that “bind” a cryptographic key to a
noisy input. For this category only practical constructions are known, whereas
formal models do not exist. The notion of a fuzzy embedder fills this important
gap. A fuzzy embedder can be regarded as an extension of a fuzzy extractor,
since it can embed a fixed string (for instance one obtained byapplying a strong
extractor to the input source) into a discrete source and thus achieve the same
functionality, namely a randomized cryptographic key.

Interestingly, the fuzzy commitment [44] has a direct relation to a fuzzy em-
bedder as well: removing the binding property from a fuzzy commitment scheme
yields a fuzzy embedder, which suggests that a fuzzy commitment is more general
than a fuzzy embedder.

Secondly, we propose a general construction for a fuzzy embedder, using data
hiding techniques from the watermarking community. Our construction is based
on Quantization Index Modulation (QIM), which is a watermarking method that
can achieve efficient trade-offs between the information embedding rate, the sen-
sibility to noise and the distortion [27]. The constructionof a fuzzy embedder is
intuitive as most of the properties of a fuzzy embedder can bereduced directly
to the properties of the underlyingQIM. The trade-offs of the usedQIM give rise
to similar trade-offs in fuzzy embedder performance measures. In this setting,
shielding functions [49] can be regarded as a particular construction of a fuzzy
embedder, as they focus on one particular type of quantizer.However, they only
consider one-dimensional inputs.

Thirdly, we investigate different quantization strategies for high dimensional
data, and we show that quantization in two dimensions gives an optimal length
of the embedded uniform string. Finally, we focus on the two-dimensional case,
and give two practical constructions, one being optimal from the perspective of
sensitivity to noise, and the other being optimal from the key length perspective.

4.1 Related Work

Reproducible randomness is the main ingredient of a good cryptographic sys-
tem. Good quality uniform random sources are rare compared to the more com-
mon non-uniform sources. For example, biometric data is easily obtainable, high
entropy data. However biometric data is not uniformly distributed and its random-
ness cannot be exactly reproduced. Depending on the source properties several
constructions have been proposed for obtaining cryptographic keys from noisy
sources.

Dodis, et al. [32] consider discrete distributed noise and propose fuzzyex-
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tractors and secure sketches for different error models. These models are not
directly applicable to continuously distributed sources.Linnartz,et al. [49] con-
struct shielding functions for continuously distributed data and propose a practical
construction which can be considered a one-dimensionalQIM scheme. The same
approach is taken by Li,et al.[48] who propose quantization functions for extend-
ing the scope of secure sketches to continuously distributed data. In chapter 3 we
analyze the achievable performance of such constructions given the quality of the
source in terms of the false acceptance rate and false rejection rate of a biometric
system.

The process of transforming a continuous distribution to a discrete distribution
influences the performance of the overall system, which usesfuzzy extractors and
secure sketches. Quantization is the process of replacing analogue samples with
approximate values taken from a finite set of allowed values.The basic theory
of one-dimensional quantization is reviewed by Gersho [36]. The same author
investigates the influence of high dimensional quantization on the performance
of digital coding for analogue sources [37].QIM constructions are used by Chen
and Wornell [27] in the context of watermarking. The same authors introduce
dithered quantizers [26]. Moulin and Koetter [59] give an excellent overview of
QIM in the general context of data hiding. Barron,et al. [15] develop a geomet-
ric interpretation of conflicting requirements between information embedding and
source coding with side information.

The concept of a fuzzy embedder might seem related to concepts developed in
the context of information theoretic key agreement [52] more precisely to secure
message transmission schemes based on correlated randomness [53]. However,
the settings of the problem are different compared to ours. While in secure mes-
sage transmission based on correlated randomness the attacker and the legitimate
participants have a noisy share of the same source data, in the fuzzy embedder
setting the attacker does not have access to the data source.

ROADMAP. The rest of this chapter is organized as follows. InSection 4.3 we
present the definition of a fuzzy embedder and highlight the differences with
fuzzy extractors and fuzzy commitment. InSection4.4 we propose a general
construction of a fuzzy embedder from anyQIM and express the performance in
terms of the geometric properties of the underlying quantizers. InSection4.5 we
present two practical constructions for the quantization of two-dimensional space,
and compare the properties of these constructions with the existing square lattice
packing. The last section concludes this paper.
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4.2 Preliminaries

Before we delve into the differences between discrete and continuous source
noisy data, we need to establish some background. We start bygiving our no-
tation, as well as some basic definitions. Secondly, we summarize the fuzzy ex-
tractor for a discrete source as given by Dodiset al. [32] and Boyenet al. [19].
Thirdly, we briefly discuss the chosen model of the continuous source and its im-
plications. Lastly, we remind the reader of the definitions of error rates commonly
used in the literature.

NOTATION. LetM be ann-dimensional discrete, finite set, which together with a
distance functiondM :M×M→ R

+ is a metric space. Similarly, letU be ann-
dimensional continuous domain, which together with the distancedU : U × U →
R

+ forms a metric space. When the domain is clear from the context we used and
drop the subscript.

By capital letters we denote random variables while small letters are used to
denote observations of a random variables. Continuous random variables are de-
fined over the metric spaceU while a discrete random variable is defined over
the metric spaceM. A random variableA is endowed with a probability density
function fA(a). We use the random variableP when referring to public sketch
data andR for random binary strings, which can be used as cryptographic keys.

ENTROPY.When referring to cryptographic keys the strength of the keyis mea-
sured as the min-entropy, i.e. the probability that an adversary predicts the value
of the secret key from one attempt. The adversary’s best strategy is to guess the
most likely value. Themin-entropyor thepredictabilityof a random variableA
denoted byH∞(A) is defined as:

H∞(A) = − log2(max
a←A

Pr(A = a)).

Min-entropy can be viewed as the “worst-case” entropy [32].For two (possibly
correlated) random variablesA andB, theaverage min-entropyis defined as

H̃∞(A|B) = − log
(

Eb←B

[
max
a←A

Pr(A = a|B = b)
])

= − log
(
Eb←B

(
2−H∞(A|B=b)

))
,

which represents the remaining uncertainty aboutA givenB or the amount of
uncertainty left about variableA when variableB is made public [32] (bothA and
B are discrete random variables).
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Figure 4.1:A fuzzy extractor is a pair of two proceduresGenerate andReproduce. The
Generate procedure, which takes as input a noisy inputx is executed first. The result
is a random sequencer and a public sketchp, which is made public. TheReproduce

procedure, which takes as inputx′ that is corrupted by noise and the public sketchp, will
outputr if x andx′ are close.

MUTUAL INFORMATION. By I(A; B) we note the Shannon mutual information
between the two random variables A and B, which is a measure ofthe mutual
dependence between two random variable, in the following sense:I(A; B) = 0 if
and only ifA andB are independent random continuously distributed variables.

STATISTICAL DISTANCE. The Kolmogorov distance orstatistical distancebe-
tween two probability distributionsA andB with the same domain is defined as:

SD(A, B) = sup
v

|Pr(A = v)− Pr(B = v)|.

Informally, this is the largest possible difference between the probabilities that the
two probability distributions can assign to the same event.

FUZZY EXTRACTORS.For modeling the process of randomness extraction from
noisy data Dodiset al. [32] define the notion of a fuzzy extractor, seeFigure4.1.
A fuzzy extractor extracts a uniformly random stringr from a valuex of random
variableX in a noise tolerant way with the help of some public sketchp.

The Generate procedure takes a non uniformly random, noisy inputx and
produces two outputs: a public stringp, and a keyr. The keyr is uniformly
random givenp, and according to the definition ofp, reveals no information about
the inputx. However, one can reproducer exactly when bothp andx′ (close to
x) are presented to theReproduce procedure.

For a discrete metric spaceM with a distance measured, the formal definition
of a fuzzy extractor [19, 32] is:

Definition 3 (Fuzzy Extractor) An(M, m, l, t, ε) fuzzy extractor is a pair of ran-
domized procedures,Generate andReproduce, with the following properties:
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1. The generation procedure on input ofx ∈ M outputs an extracted string
r ∈ R = {0, 1}l and a public helper stringp ∈ P = {0, 1}∗.

2. The reproduction procedure takes an elementx′ ∈M and the public string
p ∈ {0, 1}∗ as inputs. Thereliability property of the fuzzy extractor guar-
antees that ifd(x, x′) ≤ t andr, p were generated by(r, p)← Generate(x),
thenReproduce(x′, p) = r. If d(x, x′) > t, then no guarantee is provided
about the output of the reproduction procedure.

3. Thesecurityproperty guarantees that for any random variableX with dis-
tribution fX(x) of min-entropym, the stringr is nearly uniform even for
those who observep: if (r, p)← Generate(X), thenSD((R, P ), (N, P )) ≤
ε where N is a random variable with uniform probability.

A fuzzy extractor isefficient if Generate andReproduce run in polynomial time.

In other words, a fuzzy extractor allows to generate the random stringr from
a valuex. The reproduction procedure which uses the public stringp produced by
the generation procedure will output the stringr as long as the measurementx′ is
close enough. Thesecurityproperty guarantees thatr looks uniformly random to
an attacker and her chance to guess its value from the first trial is approximately
2−m. Security encompasses bothmin-entropyanduniformityof the random string
r whenp are known to an attacker.

There are two shortcomings related to the above definition. Firstly, in the
above definitionR = {0, 1}l thus a random binary string of lengthl. The public
stringP = {0, 1}∗ which can be for example the syndrome of an error correcting
code. However, there are template protection schemes that fit the model of the
fuzzy extractors for whichP is drawn fromR [49] or Z [76]. Secondly, one can
say thatX has min-entropy only if it is a discrete probability densityfunction oth-
erwise its min-entropy depends on the precision or quantization used to represent
the variable [48].

QUANTIZATION. A continuous random variableA can be transformed into a dis-
crete random variable by means of quantization, which we writeQ(A). Formally,
a quantizer is a functionQ : U → M that maps eacha ∈ U into the closest
reconstruction pointin the setM = {c1, c2, · · · } by

Q(a) = arg min
ci∈M

d(a, ci).

whered is the distance measure defined onU .
The Voronoi regionor thedecision regionof a reconstruction pointci is the

subset of all points inU , which are closer, with respect to a specific distance mea-
sure, to that particular reconstruction point than to any other reconstruction point.
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Figure 4.2: By quantization,fA(a) (con-
tinuous line) is transformed intofQ(A)(a)
(dotted line). We can writeQ(fA(a)) =
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Figure 4.3: Quantization ofX with two
scalar quantizersQ0 andQ1 both with step
size q.

We denote withVci
the Voronoi region of reconstruction pointci. WhenA is one

dimensional,Q is called ascalarquantizer. If all Voronoi regions of a quantizer
are equal in both size and shape the quantizer isuniform. In the scalar case, the
length of the Voronoi region is then called thestep size.If the reconstruction points
form a lattice the Voronoi regions of all reconstruction points are congruent.

By quantization the probability density function of the continuous random
variableA, fA(a), which is continuous, is transformed into the probability den-
sity functionfQ(A)(a), which is discrete (SeeFigure4.2).

QUANTIZATION-BASED DATA HIDING CODES. Quantization based data hiding
codes as introduced by Chenet al. [27] (also known as quantization index modu-
lation) can embed secret information into a real-valued quantity. We start with an
example of the simplest case.

Example 1.We want to embed one bit of information, thusr ∈ {0, 1} into a
real valuex. For this purpose we use a scalar uniform quantizer with stepsizeq,
given by roundingx

q
:

Q(x) = q

[
x

q

]
.

The quantizerQ is used to generate a set of two new quantizers{Q0, Q1} defined
as:

Q0(x) = Q(x + v0)− v0 and Q1(x) = Q(x + v1)− v1
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where
v0 =

q

4
andv1 = −q

4
.

In Figure 4.3 the reconstruction points for the quantizerQ1 are shown as cir-
cles and the reconstruction points for the quantizerQ0 are shown as crosses. The
embedding is done by mapping the pointx to one of the elements of these two
quantizers.

For example, ifr = 1, x is mapped to the closest◦ point. The result of the
embedding is the distance vector to the nearest× or ◦ as chosen byr. When
during reproduction procedurex is perturbed by noise, the quantizer will assign
the received data to the closest× or ◦ point, and output 0 or 1 respectively. The
set of the two quantizers{Q0, Q1} is called aQIM.

The amount of tolerated noise or the reliability is determined by the minimum
distance between two neighboring reconstruction points. The size and shape (for
high dimensional quantization) of the Voronoi region determines the tolerance for
error. The number of quantizers in theQIM set determines the amount of informa-
tion that can be embedded. By setting the number of quantizers and by choosing
the shape and size of the decision region the performance properties can be finely
tuned.

Formally, aQuantization Index Modulationdata hiding scheme, can be seen
asQIM : U × R → M a set of individual quantizers{Q1, Q2, . . . Q2l}, where
l = |R| and each quantizer mapsx ∈ U into a reconstruction point. The quan-
tizer is chosen by the input valuer ∈ R such thatQIM(x, r) = Qr(x). The set
of all reconstruction points isM =

⋃
r∈RMr whereMr ⊂ M is the set of

reconstruction points of the quantizerQr.
We define theminimum distanceσmin of a QIM, as the minimum distance

between reconstructions points of all quantizers in theQIM:

σmin = min
r1,r2∈R

min
ci
r1
∈Mr1 ,c

j
r2
∈Mr2

d(ci
r1

, cj
r2

)

whereMr1 = {c1
r1

, c2
r1

, · · · } andMr2 = {c1
r2

, c2
r2

, · · · }. Hence, balls with radius
σmin

2
and centers inM are disjoint.

Let ζr be the smallest radius ball such that balls centered in the reconstruction
point of quantizerQr with radiusζr cover the universeU . We define thecovering
distanceλmax as:

λmax = max
r∈R

ζr.

Any ball B(c, ζr) contains at least one ballB(cr, σmin/2) for cr ∈ Mr, ∀r ∈ R.
Hence, balls with radiusλmax and centers inMr cover the universeU .
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Figure 4.4:A fuzzy embedder is a pair of two proceduresEmbed andReproduce. The
Emded procedure, which takes as input a noisy inputx and a binary sequencer generated
independently, is executed first. The resulting sketchp is made public. TheReproduce

procedure, which takes as input a (possibly) an inputx′ which is corrupted by noise and
the public sketchp, will outputr if x andx′ are close.

A ditheredQIM [26] is a special type ofQIM for which all Voronoi regions
of all individual quantizers are congruent polytopes (generalization of a polygon
to higher dimensions). Each quantizer in the ensemble{Q1, Q2, . . .Q2l} can be
obtained by shifting the reconstruction points of any otherquantizer in the ensem-
ble. The shifts correspond to dither vectors{v1, v2, . . . v2l}. The number of dither
vectors is equal to the number of quantizers in the ensemble.

Now that we have presented the necessary preliminaries, we are ready to
present the notion of a fuzzy embedder in the next section.

4.3 Fuzzy Embedder

In this section we propose a general approach to embed cryptographic keys
into noisy, continuous data. In addition, we show the relation between our new
fuzzy embedder primitive and two related concepts, the fuzzy extractor and fuzzy
commitment. It is worth stressing that the random keyr is not extracted from the
randomx, but is generated independently, seeFigure4.4.

Definition 4 (Fuzzy Embedder) A (U , `, ρ, ε, δ)-fuzzy embedder scheme consists
of two polynomial-time algorithms〈Embed, Reproduce〉, which are defined as fol-
lows:

• Embed: U × R → P , whereR = {0, 1}l. This algorithm takesx ∈ U and
r ∈ R as input, and returns a public stringp ∈ P .

• Reproduce: U × P → R. This algorithm takesx′ ∈ U andp ∈ P as input,
and returns a string fromR or an error⊥.

Given any random variableX overU and a random variableR of size` the
parametersρ, ε, δ are defined as follows:
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• The parameterρ represents the probability that the fuzzy embedder can suc-
cessfully reproduce the embedded key, and it is defined as

ρ = min
r∈R

max
x∈U

Pr(Reproduce(x′, Embed(x, r)) = r|x′ ∈ X).

In the above definition, the maximum overx ∈ U ensures that we choose
the best possible representativex for the random variableX. In most cases,
this will be the mean ofX.

• The security parameterε is equal to the mutual information between the
embedded key and the public sketchP , and it is defined as

ε = I(R; Embed(X, R)).

• The security parameterδ is equal to the mutual information of the noisy
data and the public sketch and is defined as

δ = I(X; Embed(X, R)).

A few notes are needed to motivate our choice of the security measures of a fuzzy
embedder construction. Since the public sketch is computedboth onX andR, ε
measures the amount of information revealed aboutX (biometric or PUF) andδ
measures the amount of informationP reveals about the cryptographic keyR.

When evaluating security of algorithms, which derive secret information from
noisy data, entropy measures like min-entropy and average min-entropy or en-
tropy loss are appealing since these measures have clear security applicability.
However, these measures can only be applied to a variable that has a discrete
probability density function. In the case of a continuous random variable these
entropy measures depend on the precision used to represent the values of a ran-
dom variable, as shown in the next example for min-entropy.

Example.Assume that all pointsX are real numbers between[0, 1] and are
uniformly distributed. Assume further that points inX are represented with 2-
digit precision, which leads to a min-entropyH∞(X) = log2 100. If we choose to
represent points with 4-digit precision the min-entropy ofX becomesH∞(X) =
log2 10000, which is higher thanH∞(X) = log2 100 although in both casesX is
uniformly distributed on the interval[0, 1].

More examples related to average min-entropy and entropy loss can be found
in Li et al. [48]. We chose mutual information measure, i.eI(X; P ) andI(R; P )
because it captures the measure of dependence between two random variables re-
gardless of their type of distribution discrete or continuous. A similar measure for
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the dependence of two variables is the statistical distancebetween their distribu-
tion. In this case our choice is motivated by the generality given by the information
theoretical measure.

FUZZY EXTRACTOR AND FUZZY EMBEDDER.From Definitions3 and 4, we
argue that a fuzzy embedder is more general than a fuzzy extractor, due to the
following reasons:

1. The fuzzy embedder scheme accepts continuous data as input and can em-
bed different keys, while in a practical deployment, a fuzzyextractor scheme
must be combined with quantization and re-randomization toachieve the
same goals as a fuzzy embedder.

2. Given a(U , `, ρ, ε, δ)-fuzzy embedder, we can construct a fuzzy extractor as
follows:

• Generate′: U → P ×R. This algorithm takesx ∈ U as input, chooses
r ∈ R, and returnsp = Embed(x, r) andr.

• Reproduce′: U × P → R. This algorithm takesx′ ∈ U andp ∈ P as
input, and returns the valueReproduce(x′, p).

4.4 Practical Construction of a Fuzzy Embedder

In this section, the following three practical issues are presented. Firstly, we
construct a fuzzy embedder using aQIM. Secondly, we analyze the performance
of this construction in terms of reliability and security. Thirdly, we investigate
optimization issues whenU is n-dimensional.

QIM-FUZZY EMBEDDER.A fuzzy embedder can be constructed fromanyQIM by
defining the embed procedure as:

Embed(x, r) = QIM(x, r)− x,

and the reproduction procedure as the minimum distance Euclidean decoder:

Reproduce(x′, p) = Q̃(x′ + p),

whereQ̃ : U → R is defined as

Q̃(y) = argminr∈Rd(y,Mr).
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Example.Our construction is a generalization of the scheme of Linnartz, et
al. [49]. Figures4.5 and 4.6 illustrate theEmbed respectively theReproduce pro-
cedures for aQIM ensemble of three quantizers{Qo, Q+, Q?}. During embed-
ding, the secretr ∈ {o, ?, +} selects a quantizer, sayQo. The selected quantizer
finds the reconstruction pointQo(x) closest tox and the embedder returns the
difference between the two asp, with p ≤ λmax. Reproduction ofp andx′ should
returno if x′ is close tox, however, this happens only ifx′ + p is close toQo(x)
or in other words, ifx′ + p is in one of the Voronoi regions ofQo (hatched area
in Figure4.6). Errors occur if(x′ + p) is not in any of the Voronoi regions ofQo,
thus the size and shape (forn ≥ 2) of the Voronoi region parameterized by the
radius of the inscribed ballσmin/2 determines the probability of errors.

4.4.1 Reliability

In the following lemma, we link the reliability of aQIM-fuzzy embedder to
the size and shape of the Voronoi regions of the employedQIM.

Lemma 1 (Reliability) Let〈Embed, Reproduce〉 be a(U , `, ρ, ε, δ) QIM-fuzzy em-
bedder, and letX be a random variable overU with joint density functionfX(x).
For anyr ∈ R, we define

ρ(r) =

∫

Vr

fX(y − Embed(X, r))dy,

whereVr =
⋃

c∈Mr
Vc is the union of the Voronoi regions of all reconstruction

points inMr. Then the reliability is equal to

ρ = min
r∈R

ρ(r).
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Proof: Sinceρ(r) is exactly the probability that an embedded keyr will be recon-
structed correctly, the statement follows from the definition.

In most practical applications, noise has two main properties: larger distances
betweenx and the measurementx′ are increasingly unlikely, and the noise is
not directional. Thus the primary consideration for reliability is the size of the
inscribed ball of the Voronoi regions, which has radiusσmin/2.

Corrolary 2 (Bounding ρ.) In the settings of Lemma 1, the reliabilityρ can be
bounded by

min
r∈R

∑

c∈Mr

∫

B(c,
σmin

2
)

fX(y)dy ≤ ρ

whereB(c, r) is the ball centered inc with radiusr.

Proof.The above relation follows from the definition of reliability, sinceB(c, σ
2
) ⊂

Vc andy = x + Embed(X, r) is always a reconstruction point.

Corollary 2 shows that reliability is at least the sum of all probabilities com-
puted over balls of radiusσmin

2
inscribed in the Voronoi regions. Thus the size of

the inscribed ball is an important parameter, which determines the reliability to
noise.

Example.In two dimensional space there are three regular polytopes,which
tile the space: triangle, square and hexagon. If the size of the inscribed circle is
equal for all three, in case of a spherically symmetric distribution like the nor-
mal distribution the hexagon has superior reliability performance compared to the
other two polytopes because its shape is more close to a ball.The shape of the de-
cision region that inscribes the ball is important as well aswe show inSection4.5.

4.4.2 Security

In this section we link the security of a fuzzy embedder to thecovering radius,
λmax of the employedQIM.

We start this paragraph with one observation. If an attackerlearns the valuex
she can reproduce the valuer with the help of the public valuep. However, if an
attacker learns the secret keyr, she could potentially circumvent the security alto-
gether but cannot reproducex. We illustrate this observation in the next example.
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4.4.Practical Construction of a Fuzzy Embedder

Example.In the fuzzy embedder example given inFigure4.6, the attacker can
choose between three different key values{◦, +, ?}. Assume she learns the cor-
rect key, in our example◦. To find the correct value forx she still has to decide
which of the reconstruction points of the quantizerQ◦ is closest tox. Without any
other information this is an impossible task since the quantizerQ◦ has an infinite
number of reconstruction points.

The public sketchp leaks information about both the random stringr (the
amount of information revealed isδ) and the valuex (the amount of information
revealed is denoted withε). We note that full disclosure of the stringr is not
enough to recoverx.

We now consider how largeδ, the leakage on the key can be in terms ofP ,
which due to our construction is a continuous variable. We know that anyp ∈ P
has the property thatp ≤ λmax. A technical difficulty in characterizing the size
of P arises asP is not necessarily discrete. Tuylset al. [77] show the following
result, establishing a link between the continuous and the quantized version ofP
denoted here withPd.

Lemma 2 (Tuyls et al. [77]) For continuous random variablesX, Y and ξ >
0, there exists a sequence of quantized random variablesXd, Yd that converge
pointwise toX, Y (whend → ∞) such that for sufficiently larged, I(X; Y ) ≥
I(Xd; Yd) ≥ I(X; Y )− ξ.

From the lemma above we have:I(R; Pd) ≤ H(Pd) ≤ |Pd|, Pd is a quantized
representation, of the public sketchP , using a uniform scalar quantizer with step
d. The reason for quantizingP is to make it suitable for a digital representation.
|Pd| represents the size, in bits, of the sketch.

To limit the information loss of the construction, which is the result of pub-
lishing the sketchPd, it is best to have|Pd| as small as possible. However a small
representation ofPd implies that the cardinality of the set of values ofPd is small
as well. There are two ways in which we can achieve a small representation for
Pd. The first is to limit the support on whichP is defined, while the second is
to choose a higher value for the quantization stepd. The second approach is not
convenient since the quantization that is used forP has to be used for the noisy
dataX thus we concentrate on the first option: limit the support on which P is
defined.

In our construction, we have|Pd| ≤ λmax. Thus by bounding the size ofp we
bound the value ofδ. In the rest of this chapter, for simplicity reasons we useP
when referring thePd.
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4.4.3 Optimization

In this paragraph, we analyze the key length allowed by the restrictions placed
by our performance criteria on the embed and reproduce procedures. Firstly, we
take a look at the reproduce procedure which ties in directlywith the reliability.
The minimum size of an error to produce a wrong decoding isσmin/2. Thus, the
collection of balls centered in the reconstruction point ofall quantizers with radius
σmin/2 should be disjoint.

λmax

σmin/2

Figure 4.7:Optimization of reliability versus security. Reliabilityis determined by the
size of the ball with radiusσmin/2. Each small ball has associated to its center a different
keyr ∈ R. The number of small balls inside the large ball with radiusλmax is equal tol,
the number of elements inR. To have as many keys as possible we want to increase the
number of small balls, thus we wantdense (sphere) packing. The size of the public sketch
p ∈ P is at mostλmax. Since for anyx ∈ U we want to be withinλmax distance to a
specificr ∈ R, large balls shouldcover optimallythe spaceU . When the pointx falls
in a region, which does not belong to any ball theReproduce procedure gives the closest
center of a small ball, thuswe want polytopes which tile the space.

Secondly, the result of the embed procedure for any arbitrary pointx and any
key r ∈ R has to be smaller than the covering distanceλmax. Hence, for each
key r the collection of balls centered in the reconstruction points of Qk and with
radiusλmax should cover the entire spaceU .

These two radii can be linked as follows:

Lemma 3 The covering distance of aQIM , λmax is bounded from below by:

λmax ≥ n
√

N
σmin

2

wheren represents the dimension of the universeU andN is the number of dif-
ferent quantizers.
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4.4.Practical Construction of a Fuzzy Embedder

Proof: As noted above, all balls with radiusσmin/2 centered in the centroids of the
whole ensemble are disjoint. Each collection of balls with radiusλmax centered
in the centroids of an individual quantizer gives a coveringof the spaceU , see
Figure4.7.

Therefore, a ball with radiusλmax, regardless of its center, contains at least
the volume ofN disjoint balls of radiusσmin/2, one for each quantizer in the
ensemble. Comparing the volumes, we have

snλn
max ≥ snN(

σmin

2
)n

wheresn is a constant only depending on the dimension.

The main conclusion ofLemma3 is that for aQIM-fuzzy embedder to produce
a long random stringr, thus the length ofr depends on the number of small balls
which can be placed into a large ball.

Consider the case when an intruder has partial knowledge about the random
variableX. For example, she could know the average distribution of all(finger-
print) biometrics, or the average distribution of the PUFs.This average distri-
bution is known in the literature as thebackground distribution. While anyQIM-
fuzzy embedder achieves equiprobable keys if the background distribution onU is
uniform, the equiprobability can break down when this background distribution is
non-uniform and known to the intruder. A legitimate question is: how can aQIM-
fuzzy embedder achieve equiprobable keys when the background distribution is
not uniform?

In the literature [25, 28, 49] it is often assumed that the background distri-
bution is a multivariate Gaussian distribution. We make a weaker assumption,
namely that the background distribution is not uniform but spherically symmet-
rical and decreasing. In other words, we assume that measurement errors only
depend on the distance, and not on the direction, and that larger errors are less
likely.

Thus, to achieve equiprobable keys given this background distribution, the
reconstruction points must be equidistant as for example the construction inFig-
ure 4.8 (a). Note that putting more “small” balls inside the “large”ball is not
possible since they are not equiprobable. The problem with the construction in
Figure4.8 (a) is the size of the sketch which becomes large.

The natural question, which arises is:what is the minimum sketch size attain-
able such that all keys are equiprobable for a given desired reliability?

This question leads us to consider the kissing numberτ(n), which is defined to
be the maximum number of whiten-dimensional spheres touching a black sphere
of equal radius, seeFigure 4.8 (b). The radius of the “small” balls determines
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λmax λmax

σmin/2 σmin/2

(a) (b)

Figure 4.8:(a) Construction which yields equiprobable keys in case thebackground dis-
tribution is spherical symmetrical in the two dimensional space. (b) Optimal construction
which results in minimal public sketch size and has equiprobable keys in the two dimen-
sional space.

reliability and the minimumλmax, such that aQIM-fuzzy embedder can be built is
equal to the radius of the circumscribed ball as shown inFigure4.8(b).

The next question we ask is:for a minimum sketch size and a given reliability,
are there dimensions which are better than others?For example why not pack
spheres in the three dimensional space where the kissing number is 12. For the
same reliability: is it possible to obtain more keys? For most dimensions, only
bounds on the kissing number are known [45, 89]. Assuming a spherically sym-
metrical and decreasing background distribution, there are only so many different
equiprobable keys one can achieve:

Theorem 1 (Optimal high dimensional packing.) Assume the background dis-
tribution to be spherically symmetrical and decreasing. For a (U , `, ρ, ε, δ) QIM-
fuzzy embedder withdim(U) = n with equiprobable keys andminimal sketch
size, we have that̀ ≤ τ(n).

Proof: The target reliabilityρ will translate to a certain radiusσ. In other words,
we need to stack balls of radiusσ optimally.

In Figure4.9 we have three possible constructions for theQIM -fuzzy embed-
der, with different choices of number of quantizers in the set versus the size of the
public sketch.

The construction inFigure 4.9 (a) cannot be used for data hiding since there
is only one quantizer in the set. To achieve the maximum number of equiprobable
keys without the sketch size getting too big, the best construction is to center the
background distribution in one such ball, and to assign a different key to each
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λmax

λmax
λmax

σmin/2

σmin/2 σmin/2

(a) l < σ(n) (b) σ(n) ≤ l ≤ σ(n) + 1

(c) l > σ(n) + 1

Figure 4.9:Different choices for the number of quantizers in relation to λmax in a QIM-
fuzzy embedder construction. (a) There is only one quantizer in the QIM set. This con-
struction cannot be used for data hiding. (b) Number of quantizers in theQIM set is
equal toσn +1, when the middle ball has a different codeword then the neighboring balls
(e.g. the 7-hexagonal construction) or precisely equal to theσn, when the middle ball has
no codeword associated (e.g. the 6-hexagonal construction). (c) TheQIM set has more
quantizers then the kissing number.

touching ball as inFigure 4.9 (b). Construction inFigure 4.9 (c) yields a higher
value forλmax and is not optimal from the perspective of the size of the sketch.

The trade-off between the number of quantizers (and thus thelength of the
output sequence) and the size of the sketch can be seen by comparing construc-
tions inFigure 4.9 (b) andFigure 4.9 (c). As the number of quantizers increases
so does the size of the sketch.

Thus the number of possible equiprobable keys, when the background distri-
bution is spherically symmetric and decreasing, is upper bounded by the kissing
numberτ(n).

Combined with known bounds on the kissing number [45, 89], wearrive at the
following, somewhat surprising conclusion:

Corrolary 3 Assuming a spherically symmetrical and decreasing background dis-
tribution onU and equiprobable keys, for a(U , `, ρ, ε, δ) QIM-fuzzy embedder, the
most equiprobable keys are attained by quantizing two dimensions at a time, lead-
ing to

N(n) = 6b
n
2
c2(n−2bn

2
c)

different keys.
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Figure 4.10:Reproduce procedure of the 7-
hexagonal tiling
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Figure 4.11:Reproduce procedure of the 6-
hexagonal tiling

Proof: Known upper bounds [45] on the kissing number inn dimensions state
thatτ(n) ≤ 20.401n(1+o(1)). This means thatN(n) ≥ τ(n) in all dimensions, since
N(n) ≈ 21.3n and small dimensions can easily be verified by hand. Also note
thatN(n1 + n2) ≤ N(n1)N(n2). Thus quantizing dimensions pairwise gives the
largest number of equiprobable keys for any spherically symmetric distribution.

Example.Given a vectorX = (X1, X2, · · ·X10) there are several choices when
considering quantization. One possibility is to quantize each of the elements
Xi, i ∈ {1, 10} independently. A second choice is to quantize pairs of elements
(Xi, Xj) wherei 6= j and i, j ∈ {1, 10}. Another option is to quantize three
elements at a time(Xi, Xj, Xs) wherei 6= j 6= s andi, j, s ∈ {1, 10}. We illus-
trate in this example that the two-dimensional quantization is optimal in the sense
of Corollary 3. Table4.1 shows the effect of quantization on the key space for
different dimension choices.

• For two-dimensionalquantization (Table4.1), the kissing number is equal
to 6, the 10 elements of vectorX are grouped in 5 subsets of 2 elements
each. For each subset, we can embed at most 6 keys and for the 5 pairs we
have in total a key space of65 possible keys.

• For three-dimensionalquantization (Table4.1), kissing number is 12, the
10 elements ofX can be grouped as 3 pairs of 3 elements and there is one
vector element left which can only be quantized in one dimension. The
number of possible keys is123 × 2.
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Dimension σn Subsets Key Space
1 2 1× 10 210 = 1024
2 6 2× 5 65 = 7776
3 12 3× 3 + 1 123 × 2 = 3456
4 24 4× 2 + 2 242 × 6 = 3456
5 40 5× 2 402 = 1600
6 72 6+ 4 72× 24 = 1728
7 126 7+ 3 126× 12 = 1512
8 240 8+ 2 240× 6 = 1440
9 272 9+ 1
10 > 336 10

Table 4.1: Different choices for quantization and its effect of the keyspace (maximum
number of bits that can be embedded) for a 10-dimensional vector X. In the first column
we have the number of dimensions that are quantized at a time,the second column gives
the value of the kissing number for the chosen dimension. Thethird column gives the
particular choice for grouping the subsets and the forth column shows the size of the key
space.

The result ofCorollary 3, confirmed by our example shows that the best strat-
egy for quantization is the two-dimensional quantization.As this result points us
to two dimensions, we will give two practical constructionsfor the two-dimensional
case in the next section.

4.5 Practical constructions in two dimensions

In this section we present two optimal constructions for theQIM-fuzzy embed-
der in the two dimensional space. The first, 7-hexagonal tiling, is optimal from
reliability point of view while the second is optimal from the number of equiprob-
able keys it can embed and the sketch size. We choose a hexagonal lattice to
represent reconstruction points for theQIM, since this gives both the smallest cir-
cle covering (for theEmbed procedure) and the densest circle packing (for the
Reproduce procedure).

The first construction, the7-hexagonal tiling, can embedn× log2 7
2

bits, where
n is the dimensionality of random variableX. This construction is optimal from
the reliability point of view. However, in this construction keys are not equiproba-
ble, when the background distribution is not flat enough. Thesecond construction,
the6-hexagonal tiling, fixes this problem, but achieves a slightly lower key length
of n× log2 6

2
bits.

In our constructions the reconstruction points of all quantizers are shifted ver-

89



Chapter 4.Embedding Renewable Cryptographic Keys into Noisy Data

ρ
-r

el
ia

bi
lit

y

q/σ2

7-hexagonal tiling

6-hexagonal tiling
4-square tiling

0

0.2

0.4

0.5

0.6

0.8

1

1 1.5 2 2.5 3

Figure 4.12:Reliability of the threeQIM-fuzzy embedder constructions.

sions of some base quantizerQ0. A dither vector−→vk is defined for each possible
r ∈ R. We define thetiling polytopeas the repeated structure in the space that
is obtained by decoding to the closest reconstruction point. It follows from this
definition that the tiling polytope contains exactly one Voronoi region for each
quantizer in the ensemble. InFigures4.10 and 4.11 the tiling polytopes are de-
limited by the dotted line.

The n-dimensional variableX = (X1, X2, · · ·Xn) is partitioned inton
2
-two

dimensional subspaces(X1, X2). Each subspace is considered separately. On
the x-axis in Figure 4.10 we have the values forX1 and on they-axis we have
the values ofX2. Along thez-axis (not shown in the figure) we have the joint
probability densityfX1X2(x).

We start our construction by choosing the densest circle packing existing in
the two dimensional space which is the hexagonal packing. All circles have equal
radius and the center of the circle is the reconstruction point. With each recon-
struction point a key value is associated. However, the circles do not tile the space.
As a result whenx, the realization ofX, falls into the non-covered region, it can-
not be associated with any reconstruction point. We need to approximate the circle
with some polygons that tile the two-dimensional space. In the two dimensional
space the Voronoi region for the hexagonal lattice is a hexagon.

In the two dimensional space, there are only three such regular polygons: tri-
angles, squares and hexagons. Since we assume a spherical symmetrical distribu-
tion for fX1X2 the hexagon is the best approximation to the circle from reliability
point of view. The next step is to associate a key value to eachhexagon such that
for any value of(X1, X2), any key label is at most at the given distance (sphere
covering problem).
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4.5.1 7-Hexagon Tiling

Thus our first construction is a ditheredQIM defined as an ensemble of 7
quantizers. The reconstruction points of the base quantizer Q0 are defined by
the lattice spanned by the vectors

−→
B1 = (5,

√
3)q,
−→
B2 = (4,−2

√
3)q, whereq

is the scaling factor of the lattice. InFigure 4.10 these points are labeledk0.
The other reconstruction points of quantizersQi, i = 1, . . . , 6 are obtained by
shifting the base quantizer by the dither vectors{−→v1 , · · · ,−→v6} such thatQi(x) =
Q0(
−→x +−→vi ). The values for these dither vectors are:−→v0 = (0, 0),−→v1 = (2, 0),−→v2 =

(−3,
√

3), −→v3 = (−1,−
√

3), −→v4 = (−2, 0), −→v5 = (3,−
√

3), and−→v6 = (1,
√

3).
The embed and reproduce procedures work as in our construction in section 4.4.
The reproduce procedure is shown inFigure4.10.

4.5.2 6-Hexagon Tiling

Assume that the background distribution is a spherical symmetrical distribu-
tion with mean centered in the origin of the coordinates. In the construction above
the hexagon centered in the origin will typically have a higher associated proba-
bility than the off-center hexagons. This effect grows as weincrease the scaling
factorq of the lattice. This construction eliminates the middle hexagon, to make
all keys equiprobable (seeTheorem1). The key length islog2 6

2
bits. The tiling

polytope is formed by 6 decision regions and thus there are only 6 dither vectors,
seeFigure 4.11. The same dither vectors,{−→v1 , · · · ,−→v6} are used to construct the
quantizers, but the basic quantizerQ0 itself is not used. The embed and reproduce
procedure are defined as inSection4.4.

4.5.3 Performance Comparison

We compare the two constructions proposed above, i.e. the 7-hexagonal tiling
(Figure4.10), and the 6-hexagonal tiling (Figure4.11), in terms of reliability, min-
entropy of the key and entropy loss to the scalar quantization scheme introduced
by Linnartzet al. [49] on each dimension separately (we refer to this as 4-square
tiling).

To perform the comparison we consider identically and independently dis-
tributed (i.i.d.) Gaussian sources. We assume the background distribution has
mean(0, 0) and standard deviationσX1X2. Without loss of generality we assume
that for any random(X1, X2) ∈ U2, the probability distribution offX1X2(x) has
meanµ = (µ1, µ2) and standard deviationσ2

x. This model comes from biometrics,
where the background distribution (also called imposter distribution) describes all
users, and the user distribution is the distribution of random variableX.
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Figure 4.13: Key length comparison for
the threeQIM-fuzzy embedder constructions-
scaled to one dimension
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Figure 4.14: Mutual information be-
tween the key and the public sketch for
the threeQIM-fuzzy embedders

To evaluate the reliability relative to the quality of the source data (amount
of noise, measured in the terms of standard deviation from mean) we compute
probabilities associated with equal area decision regions, and the reconstruction
point centered in the meanµ of the distributionfX(x). The curves inFigure4.12
are obtained by progressively increasing the area of the Voronoi regions. The size
of the Voronoi region is controlled by the scaling factor of the lattice,q. The best
performance is obtained by the hexagonal decision regions.This is because the
regular hexagon best approximates a circle, the optimal geometrical form for a
spherical symmetrical distribution. However, the differences between reliability
of the threeQIM-fuzzy embedders are small.

The min-entropy inr ∈ R is compared inFigure 4.13 among 7-hexagonal
tiling, 6-hexagonal tiling, and 4-square tiling. Maximizing the min-entropy means
minimizing the probability for an attacker to guess the key correctly on her first
try. The key length for the 7-hexagonal tiling decreases rapidly with the increase
of the lattice scaling factorq relative toσX1X2

2 . While for a small lattice the
scaling factorq one can approximate the background distribution as uniform, with
the increase in scaling the center hexagon has a substantially higher probability
associated with it, and thus one key value is more likely thanall the others.

The 6-hexagonal tiling construction eliminates the middlehexagon and as a re-
sult all keys become equiprobable, at the cost of a somewhat lower reliability 4.12.

Finally, we evaluate the mutual information for the key whenpublishing the
sketch for the three constructions compared. The results are shown inFigure4.14.
The values are scaled to the number of bits lost from each bit that is made public.

92



4.6.Discussion: Putting it all together

The results are somewhat surprising in the sense that the 4-square tiling looses
more bits compared to our two new constructions. The reason is that while the
size of the public sketchp is equal for all three constructions, thus they all lose the
same amount of information but the key length differs.

4.6 Discussion: Putting it all together

A fuzzy extractor can transform a noisy, non-uniform discrete source of data,
which is easily accessible into a reproducible, uniformly random string, which is
suitable to be used as a cryptographic key. Basically, the fuzzy extractor performs
two functions: the first is error correction, which compensates for the noise in
the source data and the second is smoothing the non-uniform distribution of the
source into a uniformly random distribution of the output.

When considering a fuzzy extractor construction in a practical scenario the
two functions provided are not enough. Firstly, a fuzzy extractor is too limited
because it accepts only discrete input data. Thus a procedure which transforms
continuous data into discrete data is necessary. Our construction in Chapter3,
cs-fuzzy extractor is an extension of the fuzzy extractor construction in this sense.
Secondly, a fuzzy extractor as pointed out by Boyen [19] needs to re-randomize
its output such that one noisy source can be used in more than one application.

A typical fuzzy extractor implementation can be modeled as in Figure 4.15.
In our view, there are four main building blocks:quantization, error correction,
randomness extractionandrandomization, which can be used in a typical fuzzy
extractor implementation.

Each block inFigure 4.15 solves a specific problem and in the following we
take a closer look at the purpose and requirements for each ofthe four blocks.

QUANTIZATION. The quantization block is used to transform continuously dis-
tributed dataX with probability density functionfX(x) into discretely distributed
dataY with discrete probability densityfY (y). Examples of quantization schemes
can be found in Chenet al. [28] and Zhanget al. [90] and inFigure 4.2. During
quantization the public sketch denoted withP1 in Figure 4.15 is computed and
made public. The information leaked by the public sketch about the noisy source
data is measured in terms of mutual informationI(X; P1) between the source data
X and the public sketchP1.

ERROR CORRECTION.The error correction block adds redundant information to
the input variableY to increase the probability that its values are correctly repro-
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Figure 4.15: Typical implementation of a fuzzy extractor. The shape of a block is a
code for its purpose. Square blocks perform error correction, pentagonal blocks shape
the distribution of the data, while the circle blocks are used to randomize the data. A
fuzzy extractor can be constructed from an error correctingblock and a randomness ex-
tractor. On the left-hand side of the figure the input variable (with capital letters, above
the arrow). On the right-hand side of each block the securitymeasure used to evaluate
the performance of the block is presented.

duced. The input variableY = (Y1, Y2, · · ·Yn) is represented as an-dimensional
vector and its elementsYi are called feature vectors.

There are two types of noise that can occur inY . The first iswhite noise
where elements ofYi are perturbed by noise and the second isreplacement noise
where some features ofY can disappear and new features can appear between two
consecutive measurements. Error correction schemes whichcorrect white noise
where proposed by several authors [28, 49, 90] while error correction schemes for
replacement noise can be found in [79, 24].

To perform error correction apublic sketch(also calledhelper data) is com-
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puted forY . If the helper data is made public, which is the case in most scenarios,
it reveals information about the variableY . The performance of an error cor-
rection scheme is measured in terms of how manyerrors it can correct and the
amount ofleaked information.

When the source data is continuous the leakage is measured interms of mutual
information, inFigure 4.15I(X; P ), whereP can be eitherP1 or P2. When the
source data is discrete as in the error correction block inFigure4.15 the amount of
leaked information is measured in terms of min-average entropy H∞(Y ; P2) and
min-entropyH∞(Y ). The difference between the two is called theentropy loss.

RANDOMNESS EXTRACTOR.This block is used to transformany probability
density functionfY (y) into a uniform probability functionfZ(z), which is de-
sirable for a cryptographic algorithm. A randomness extractor is used to “purify”
the randomness coming from an imperfect source of randomness, it can efficiently
convert a distribution that contains some entropy (but is also biased and far from
uniform)Y into an almost uniform random variableZ.

The performance of a randomness extractor is measured in terms of the statis-
tical distance between the distribution of the output variableZ and the distribution
of a uniform random variableN , denoted inFigure4.15 by SD(Z, N).

In the process of randomness extraction an external source of randomness
must be present. Reducing the amount of required randomnessin the external
source and producing outputs, which are as close as possibleto a uniform distri-
bution is the main research topic in this area [14, 74, 75].

There are constructions known asstrong randomness extractors[32] for which
the output of the randomness extractor looks uniform even when the external
source of randomness is made public, which are more convenient for the pur-
pose for the scenario depicted inFigure4.15.

RANDOMIZATION. This block is used to randomize the string which can be ex-
tracted from the noisy source. When biometrics is used as a noisy source, the
purpose of randomization is protection of privacy for the biometric data. For
example, from one fingerprint only one reproducible, uniform string can be ex-
tracted. The randomization ensures that from one fingerprint multiple random
sequences, which can be used as cryptographic keys for more applications, can be
produced.

We argue that the model described inFigure 4.15 covers most of the work
done in the area of construction of cryptographic keys from noisy data. Theoret-
ical work in the area usually covers the error correction block and randomness
extraction [32, 33] whereas others, look at more practical aspects like quantiza-
tion [5, 25, 28, 48, 90] or randomization [19, 20, 24].
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The fuzzy embedder construction is intended as an all-encompassing theoret-
ical model given the functionality of a fuzzy extractor. Thus, a fuzzy embedder is
able to hide a key in any type of source data. This holistic view gives new insights
in at least two ways:

• Not all four blocks inFigure4.15 are necessary. For example theQIM-fuzzy
embedder construction has only two blocksquantizationand randomiza-
tion [3].

• The order of the blocks inFigure 4.15 can be changed. Thus, the overall
performance of the construction can be enhanced, e.g. usingone error cor-
rection block instead of two error correction blocks, mightlimit the amount
leakage.

Most of the work in the area of cryptographic use of noisy datafocuses on op-
timizing one aspect, e.g quantization, randomness extraction, etc. Security mea-
sures used to quantify the performance in each block are different as they are
studied in different research areas. In a practical scenario, when all these blocks
are needed it is important to have an overall view of all the information that is
leaked or the amount of errors that are corrected. The main purpose of the fuzzy
embedder is to put things in perspective and define the overall security measures.

4.7 Conclusions

We propose the notion of afuzzy embedderas a generalization of a fuzzy ex-
tractor. Fuzzy embedders solve two problems encountered when fuzzy extractors
are used in practice: (1) a fuzzy embedder naturally supports renewability, and (2)
it supports direct analysis of quantization effects. This is made possible by em-
bedding a key instead of extracting one, and by making no limiting assumptions
about the nature of the input source.

We give a general construction of a fuzzy embedder, using aQIM to construct
the Embed andReproduce procedures. TheQIM performance measures (from
watermarking) can be directly linked to the reliability andsecurity properties of
the constructed fuzzy embedder.

This construction gives a deep insight in the trade-offs between the parame-
ters of a fuzzy embedder. We describe the key length-entropyloss tradeoff as a
simultaneous sphere-packing / sphere-covering problem and we show that when
considering equiprobable keys, quantizing dimensions pairwise gives the largest
key length.
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We also give two explicit, two-dimensional constructions,which can embed
a longer key per dimension than existing (one-dimensional)schemes. The 7-
hexagonal tiling scheme achieves the optimal probability of detection, but only
performs well if the underlying background distribution isflat enough. We show
that our 6-hexagonal tiling scheme is optimal from a key length perspective, given
that each key is equiprobable. Using the 6-hexagonal construction we obtainlog26

2

bits per dimension of the input data, which is superior compared to the single bit
obtained by the shielding scheme.

The contribution of this chapter is related to the problem ofSECURE TEM-
PLATE PROTECTION. We propose a new, holistic model, the fuzzy embedder,
which encompasses both the theoretical clarity and the practical needs of a tem-
plate protection scheme. In the next chapter we use the fuzzyembedder, as a basic
building block for secure pairing protocol, which is our solution for theSECURE
TEMPLATE TRANSFERproblem.
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Chapter 5

Secure Pairing with Biometrics:
SAfE

Thepairing problem, described inChapter2 asSECURE TEMPLATE
TRANSFER, is to enable two devices, which share no prior context
with each other, to agree upon a security association that they can use
to protect their subsequent communication. Secure pairingshould of-
fer guarantees of the association partner’s identity and itshould be
resistant to eavesdropping or to a man-in the middle attack.We pro-
pose a user friendly solution to this problem. Keys extracted from
images of the participants using the fuzzy embedder are usedfor au-
thentication. Details of the SAfE pairing system are presented along
with a discussion of the security features and a usability analysis.

Mobile devices are designed to interact anytime, anywhere.In many scenarios,
however, is it desirable to associate devices in a secure way. For example when
using a mobile phone to pay for tickets or when sharing private contact informa-
tion via the wireless link in an unsecured environment. Thisproblem is known in
the literature as secure device association [46]. Solutions have to be specifically
designed such that secure association can be realized between previously unas-
sociated devices. Security means that the solution must offer guarantees of the
association partner identity and must be resistant to eavesdropping and to a man-
in the middle attack. The ideal solution must provide a balance between security
and ease of use.

SCENARIO.When two users, Alice and Bob, meet at a conference and decideto
exchange business cards or other documents, they talk for a while until they trust
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each another sufficiently to exchange information. However, they do not wish
other participants to eavesdrop on their communication or to tamper with their
documents. At this stage the only secure association that they have is their trust
in each other. To set up a secure association between their devices a protocol is
needed that can transfer this trust to their devices. It is not enough for Alice’s de-
vice to guarantee a secure pairing with device: 128.196.1.3. Alice needs to know
that there is a secure association with Bob. Kindberg,et al. [46] use the term
physical validation for physically verifying the identityof the other party in an as-
sociation. For example when two devices are connected via a cable or an infrared
channel. Kindberg [46] sees the physical validation as the physical counterpart of
cryptographic authentication of identity. The strength ofthe physical validation
depends on the length of the key established after pairing. Our solution is a pro-
tocol that can transfer the trust relation between people toa trust relation between
devices using biometrics as the main tool, offering strong physical validation.

USER FRIENDLINESS.The most important reason why security often fails is the
lack of user friendliness. To establish a secure communication, Alice and Bob
have to agree on a key. From a usability point of view we want Alice and Bob
to have minimal interaction with their devices, and the technical difficulty of the
required task should be no worse than to dial a number on a mobile phone. Also
we do not like the idea of Alice and Bob having to remember a password or a pin
code for establishing the communication key. A user friendly solution is readily
provided by appropriate use of biometrics, since a fingerprint or the image of a
face is readily available, and has the advantage that it cannot be lost or forgotten
and is thus always available.

CONTRIBUTIONS.We present a practical solution to the secure device associa-
tion problem where biometrics are used to establish a commonkey between the
pairing devices. Our approach has at least two major advantages. Firstly, it of-
fers the possibility to transfer trust from humans to machines without any avail-
able security infrastructure. Biometric recognition offers physical validation, thus
guaranteeing the identity of a device owner. Secondly, the process is short and
should be user friendly. We propose a protocol in which the keys extracted from
biometric data are combined to form a session key. The idea isboth simple and
effective. Suppose that two users wish to set up a secure communication channel.
Both own a biometrically enabled handheld device. Both devices are equipped
with a biometric sensor (a camera for face recognition) and ashort range radio.
Each device is capable of recognizing its owner. Then the users take each others
picture. Each device now contains a genuine template of its owner and a measure-
ment that approximates the template of the other user. The idea is that each device
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calculates a common key from the owner template and the guestmeasurement.
In our solution for Alice to set up a secure communication with Bob, she has to
take a picture of him and let Bob take a picture of her. The protocol is even more
general: it can be applied on any type of biometric channel. Our protocol is inno-
vative compared to a key exchange protocol in the sense that legitimate users have
to “find” the communication key by performing a related key search attack. The
advantages are twofold. Firstly, fuzzy extractors can create a repeatable sequence
out of biometric and our key search mechanism helps lower theerror rates of the
fuzzy extractor in a practical situation. Secondly, the keysearch mechanism uses
the unpredictable randomness between two measurements as arandom salt for the
session key thus strengthening the key. The disadvantage isthat key search takes
time which leads to a trade-off between performance and security.

ROAD MAP. We start with a description of related work in section 5.1 to put the
contribution of this chapter into perspective. Section 5.2gives general background
information regarding the particularities of the two biometric systems used later
and describes the notation used in the rest of the chapter. Extracting keys from
biometric data is an entire research field on its own; we dedicate section 5.3 to
summarize the main results from this topic. In this section we describe how a re-
liable, uniformly random sequence can be extracted from noisy data such as bio-
metrics highlighting the tradeoffs that have to be made and we give two examples
that can be used in a practical setting. Section 5.4 is dedicated to the pairing proto-
col. In section 5.5 we look at security properties achievable against two powerful
adversaries Eve and Charlie. Eve is an eavesdropper. She canrecord messages
sent between Alice and Bob and try to find the key used to securetheir messages.
The other adversary, Charlie cannot search for the key but hehas complete control
over the communication environment so that he can listen, ormodify any message.
These two adversaries correspond to two different but complementary views on
security: computational security and formal security. In section 5.6 we validate
our protocol by experiments on real life biometric data. We look at two different
flavors of biometric recognition: hand grip pressure pattern recognition and face
recognition. Results obtained from these experiments are promising. Results of a
usability study regarding the secure device association using face recognition are
presented in section 5.7. Finally conclusions are presented in section 5.8.

5.1 Related work

Saxena,et al. [68] define thepairing problemas enabling two devices that
share no prior context, to agree upon a security associationthat they can use to
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protect their subsequent communication. Pairing is intensively studied in the area
of pervasive and mobile computing. Most protocols for secure spontaneous in-
teraction rely on two channels to perform the pairing process. The first, in-band
channel, has high bandwidth but no security properties while the second, out-of-
band, channel has limited bandwidth while offering additional security proper-
ties. There are two approaches in performing secure device association. The first
approach uses the out-of-band channel to verify keys exchanged on the in-band
channel with human assistance. We call this approach out-of-band verification.
The second approach uses the out-of-band channel to send a secret but small mes-
sage from which the common communication key is then derivedand then the
key is verified on the in-band channel. We call this approach in-band verification.
Different flavors of out-of-band channels have been proposed that depend on the
available hardware equipment, achievable bandwidth, offered security properties
and requirements for user interaction with the devices. We summarize the history
and evolution of the most well known out-of-band channels.

Stajano,et al. [73] brought the secure device pairing problem to the attention
of the research community. They propose to use physical interface and cable as
the out-of-band channel. The physical channel has a high bandwidth and offers
confidentiality, authenticity and integrity. It is, however, impractical since all pos-
sible physical interfaces have to be carried around at all times.

Balfanz,et al. [13] propose to use a physically constrained channel (e.g.in-
frared) to establish a secure association between devices in close proximity. They
advanced the state of the art by eliminating the need to carryaround all the bulky
interfaces. However, the disadvantage of this approach is the infrared channel
which is slow, and which requires line-of-sight.

Bluetooth users can pair devices by introducing the same PIN, usually a 4 digit
number in the paired devices. Shaked,et al. [70] show how a passive attacker can
find the PIN used during pairing. The randomness and length ofthe PIN number
influences the speed with which an attacker can perform this attack (a 4 digit PIN
is cracked in less than 0.3 seconds). To make things worse Uzun, et al. [82] note
in a usability study performed on different strategies for pairing that the choices of
PIN numbers are not really random. We make the same observation in section 5.7.

McCune,et al. [55] propose to use the visual channel as an out of band chan-
nel. In their protocol, calledSeeing is Believing(SiB), devices send their public
key on the in-band channel while displaying the hash of the public key as a bar
code. If the devices have no display, a sticker is suggested for displaying the hash
of the public key. If mutual authentication is required bothdevices should have
a camera to photograph the bar codes. SiB does not rely on the human ability to
recognize the bar keys. Saxena,et al. [68] propose a variation of the SiB proto-
col which achieves secure pairing if one device is equipped with a light detector.
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Goodrich,et al. [39] propose a human assisted authentication audio channelas the
out-of-band channel. They use a text-to-speech engine for vocalizing a sentence
derived from the hash of a device’s public key.

Mayrhofer,et al. [54] propose accelerometer based authentication. Devices
that need to be securely associated are shaken together and cryptographic keys are
generated from data recorded by the two accelerometers. This approach is differ-
ent from previous solutions in two ways. The first differenceis that accelerometer
data is used to produce cryptographic keys and the second difference is that the
out-of-band channel is used to share the data from which keysare generated and
not to authenticate keys. They report a key length obtained from accelerometer
data between 7-14 bits for every second of shaking. By shaking longer the entropy
may be increased.

We take a similar approach in the sense that cryptographic keys are transferred
on the out-of-band channel. We propose to use biometrics as an out-of-band chan-
nel. The main advantage of biometrics over accelerometer data is the higher band-
width that can be achieved, this can establish a key of lengthup to 60 bits (when
we use face recognition biometrics) or 80 bits (when using hand grip pressure
pattern biometrics).

5.2 Preliminaries

In this chapter we refer to two different biometric systems the first one uses
face recognition. Face recognition analyzes the characteristics of a person’s face
image taken with a digital video camera. It measures the overall facial structure,
including distances between eyes, nose, mouth, and jaw edges. The second bio-
metric system is a hand grip pressure pattern where the imageof the pressure
pattern exerted while holding an object can be used to authenticate or identify a
person.

We assume biometric measurements of a user to have a multivariate Gaussian
statistical model. For face biometrics the number of elements of a feature vector,
(N in our notation) can range between 30 features to about 280 features [38] while
for hand grip pressure patternN is equal to 40 features [85].

According to the statistical model a user is specified by a mean vectort =
(t1, t2, · · · , tN), termed in the rest of the chapter as the template and a standard
deviation vectorσ = (σ1, σ2, · · · , σN ). By x = (x1, x2, · · · , xN ) we denote
a noisy measurement. Due to differences in environmental conditions and user
behavior (e.g. changes in the pose for face recognition or the presence of a ring
for the hand grip pressure pattern) we expect that eachxi can be perturbed by a
small amount of noise respective toti. The amount of noise depends on the value

103



Chapter 5.Secure Pairing with Biometrics: SAfE

of the standard deviationσi. If σi is small then we expect the difference between
xi andti to be small on the other hand if the value ofσi is large then we expect
the difference betweenxi andti to be large as well.

The error rates of a biometric system are determined by the accuracy with
which the matching engine can determine the similarity between a measured sam-
plex and the expected value of the templatet. We construct two hypotheses:[H0]
x andt are sampled from the same probability distribution; and[H1] x andt are
not sampled from the same probability distribution; The matching engine has to
decide which of the two hypothesesH0 or H1 is true. To express the accuracy
of a biometric system the termsfalse acceptance rate, FAR and false rejection
rate, FRR are used. Thefalse acceptance raterepresents the probability thatH0

will be accepted when in factH1 is true. Thefalse rejection raterepresents the
probability that the outcome of the matching engine isH1 butH0 is true.

5.3 Cryptographic keys from biometrics

Our protocol requires the construction of keys from biometric data. In raw
form, biometric data is unsuitable to be used as cryptographic key material for two
reasons. The first is its representation, usually the continuous real domain while
cryptographic keys are represented in the discrete domain.The second reason is
noise. Two consecutive biometric samples of the same individual will differ by
a small, but unpredictable amount of noise while a cryptographic key should be
exactly reproducible.

Chapters3 and 4 of this thesis consider in detail the problem of extracting uni-
form and reproducible strings from noisy, non-uniformly distributed data. Dodis,
et al. [32] propose a general construction termed fuzzy extractor, which in princi-
ple does two things: provides error correction to compensate for the unpredictable
noise in the biometric and smoothing the non-uniform representation of biometric
data.

There are two main components in a fuzzy extractor scheme: the generate
and the reproduce. The generate procedure is used during enrolment (Figure 5.1
left) of a userX. As input it takes a low noise templatet (for instance obtained
by taking multiple low-noise measurements and averaging) of the biometric fea-
ture vector and a binary stringm = (m1, m2, · · · , mN) (which will be used as a
cryptographic key later on), to compute the public sketchw = (w1, w2, · · · , wN).

The binary stringm can be extracted from the biometric data itself [76] as
modelled by the fuzzy extractor or it can be generated independently [49] as mod-
elled by the fuzzy embedder ofChapter4. During authentication (Figure 5.1
right), the reproduce procedure takes as input a noisy measurementx of the user’s
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Figure 5.1:A fuzzy embedder is a two step construction. The first step is the Embed

procedure which is executed once when the device learns the identity of its owner. The
second step is theReproduce procedure which is executed each time a secure pairing is
performed.

biometric identifier(e.g. a photograph of the user for face biometrics) together
with the public sketchw, and outputs the binary stringm if the measurement is
close enough to the original biometric. The exact reproduction of the binary string
m is required to authenticate userX.

There is an important difference between creating the binary keym from bio-
metric data (using a fuzzy extractor) versus creating the binary key independently
of the biometric data (using a fuzzy embedder). In the first case the same sequence
is extracted from the same biometric while in the second casedifferent sequences
can be embedded into the same biometric data for different protocol rounds. In our
construction we prefer the second option, which is the fuzzyembedder because if
the binary key is somehow compromised it is difficult to change the key, because
this would mean changing the biometrics, i.e. changing one’s face of fingerprint.

Both these algorithms operate componentwise on the featurevector. In other
words, the noisy measurement will be processed to a feature vector(x1, . . . , xN).
From eachxi andwi the reproduce procedure outputs a binary stringmi (generally
consisting of 0-3 bits). In particular, this means that evenif some failures occur
when processing the complete feature vector, the resultingbit string will still be
close to the correct one. Later we show how this property can be used to improve
the overall performance of a fuzzy embedder construction.

Two parameters are important for a fuzzy embedder construction. The first is
the reliability, which represents the amount of noise tolerated between twomea-
surementsx andx′ such thatm is correctly computed by the reproduce. The sec-
ond is security, which is determined by thekey length(the length ofm in bits) and
theentropy loss[32], which measures the advantage thatw gives to an adversary
in guessingm. We require a fuzzy embedder to have long keys, high reliability
and high security (i.e. low entropy loss). However, these are conflicting require-
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ments. Usually the more secure (long key or small entropy loss) the less reliable
(high values for the error ratesFAR andFRR) the fuzzy embedder becomes.

The key length depends on the number of features available. The number
of features is a function of the users enrolled in the system and the quality of
the measurements. If there areN users in the system the maximum number of
features that can be extracted isN − 1. However, if the collected data has poor
quality the number of used features can be much less then the theoretical limit.

In the following we give two examples of fuzzy embedder schemes to illustrate
how one can balance the reliability and key length in a practical setting.

As the first example let us consider the reliable components scheme of Tuyls,
et al. [76] with security parameters. This scheme assumes that a global estimate
of the meant is known. Enrollment is performed by takings measurements of the
user’s biometric identifier. If the componenti of each of those measurements is
always bigger than a chosen thresholdµi, we setmi = 1. Otherwise, if all mea-
surements are smaller thenµi, we setmi = 0. In all other cases, the component is
not used. The public sketchwi is set to0 or 1 according to whether the component
is used or not.

While the reliable component scheme described above achieves a high reli-
ability, it may result in keys that are too short. Whether or not this method is
satisfactory will have to be decided according to the intended use scenario. If
a longer key is required, one should look at other fuzzy embedder constructions
that embed one (or even more) bit(s) per component of the feature vector, like the
schemes proposed by Chang,et al. [25]. However, a higher embedding rate does
not come for free - it raises the FRR, or the longer key may not even have more
entropy than the short one, meaning that it actually does notoffer more security
despite its greater length [5].

As second example we give the fuzzy embedder interpretationof the scheme
proposed by Linnartz,et al. [49] known in the literature as the shielding scheme.
The Linnartz construction is one of the first fuzzy embedder constructions that
works on continuously distributed data as required for biometric data and is a par-
ticular case of the generalQIM-fuzzy embedder construction proposed inChap-
ter 4. They propose to divide the probability density function of each feature
component in odd-even bands of equal lengthq and label the odd-even bands
with 1 and the even-odd bands with 0. The embedding of binary data is done by
shifting the template distribution meanti to the center of the closest even-oddq
interval if mi = 0, or to the center of an odd-evenq interval if mi = 1. The public
sketchwi is the difference between the location of the meanti and the center of
the chosenq interval, seeFigure 5.2. During authentication the measurementxi

is shifted by the value of the public sketchwi and the label of the corresponding
interval is output. We describe this construction further in section 5.4.3. In the
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Figure 5.2: The Linnartzet al. [49] fuzzy embedder for continuously distributed data.
For embedding a bitmi = 1 the Embed procedure outputs the public sketchwi which
is the difference between the templateti and the closest middle of a 1 interval; The
Reproduce procedure adds the measuredxi to the public sketchwi and outputs the la-
bel of the result, in this case 1.

shielding scheme construction the key length is fixed beforehand. More precisely
it is equal to the number of features of the biometric template. A trade-off can
be made between reliability and entropy-loss by varying thequantization stepq
[49].

The main difference between the reliable component scheme of Tuyls, et
al. [76] and the shielding scheme of Linnartz,et al. [49] is the way the crypto-
graphic key is generated. In the first case the biometric key is extracted from the
biometric data whereas in the second case the cryptographickey is generated in-
dependently. The biometric data is used to unlock the value of the pre-generated
cryptographic key. Thus, if the scheme is compromised a new key can be gener-
ated for the same biometric. That is our reason for choosing the shielding scheme
in this work. As a conclusion, the properties of the biometric data and the selec-
tion of the embed and reproduce procedures determine the quality (in terms of
randomness) of the cryptographic material that can be extracted from it. In the
following we explain the authentication protocol and we analyze the impact of the
key quality on the security of the protocol.

5.4 SAfE protocol

The SAfE protocol establishes a shared secret key between devices whose
owners happen to meet and who have no prior security association. There are
three phases in the lifetime of our protocol. The first (past), is the enrolment
which can be regarded as a necessary precondition. The second (present), is the
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SAfE protocol which is the action taken by Alice and Bob to achieve their goal
which is secure communication (future) the third and final phase. We detail these
phases below.

1. Enrolment,is performed once in the lifetime of the protocol. This step is
performed by both participants Alice and Bob, independently, for example
at home, and it is performed once. Each participant takes multiple (low-
noise) measurements of his own biometric, and uses these to calculate the
biometric template vectort. Next, each participant picks a random string
m, and uses the embed procedure of the fuzzy embedder to calculate the
matching public sketchw. To differentiate between the participants we use
tA, mA, wA for the template, key and public sketch of Alice andtB, mB, wB

respectively for Bob. After enrolment we have achieved that: (1) the identity
of a user can be verified by her own device, and (2) a device is prepared
to be paired up with another device on which the SAfE protocolhas been
implemented.

2. Pairing, is performed each time the users meet. The SAfE protocol is used
to create a secure channel, a secret key is computed by the reproduce pro-
cedure of the fuzzy embedder. The protocol description below provides all
the details of this step.

3. Secure communication,when the paired users send messages, documents etc.
encrypted with the key derived by the SAfE protocol.

5.4.1 SAfE protocol details

The SAfE protocol uses two communication channels for key establishment as
in the pairing model proposed by Balfanz,et al. [13]. One, the in-band channel, is
used for authentication. This channel has a high bandwidth but offers no security
guarantees. The second is the out-of-band channel used for pre-authentication.
This channel has a low bandwidth but offers security guarantees like authentica-
tion, integrity and/or confidentiality. In the SAfE protocol we use the out-of-band
channel to exchange a limited amount of information. Later,we use this informa-
tion to establish a common key by exchanging messages on the in-band channel.

OUT-OF-BAND CHANNEL. In the SAfE protocol we use biometrics as the out-
of-band channel. The first reason for our choice is that biometrics is a source of
high entropy data which means high bandwidth compared to other out-of-band
channels (e.g. infrared). The type and quality of the biometric modality used
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Figure 5.3:Message flow for the SAfE protocol showing the steps taken by Alice to the
left (5,6) and Bobs actions to the right (3,8) to pair their mobile devices. The steps in the
middle represent the message exchange on the out-of-band channel (0,1) and the in-band-
channel (2,4,7).

(fingerprint, face, iris, palm print) determines the value of the bandwidth capacity
for the out-of-band channel. We analyze, in section 5.6, theperformance of two
different biometric modalities: face and grip pressure pattern.

The second reason for biometrics as an out-of band channel isthat it is easy
to send messages on this channel since the main characteristic of biometrics is
user friendliness (see section 5.7 for the results of usability analysis when face
recognition biometrics is used as the out-of-band channel).

The security properties of the out-of-band channel depend on the properties
of the biometric used. By default, biometric authentication offers authenticity and
integrity. It offers authenticity because we know the source of the message and
integrity since the message collected by Alice on the out-of-band channel cannot
be changed by a third party. For some biometrics, like hand grip pressure pattern,
retina or ear recognition we may even assume channel confidentiality because it
is difficult for an adversary to collect a sample of the biometric without the user
noticing. We discuss the implications of the properties of the out-of-band channel
on the security guarantees of the SAfE protocol in section 5.5.

IN-BAND CHANNEL. The in-band channel is a broadcast channel (e.g. WLAN)
thus all messages sent on this channel are public and can be manipulated.

MESSAGE FLOW.The message flow of the SAfE protocol is presented in Fig-
ure 5.3. Without loss of generality we may assume that Alice starts the protocol.
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Figure 5.4: Data transferred on the out-
of-band channel for face recognition biomet-
rics.

Figure 5.5:Data transferred on the out-of-
band channel for hand grip pressure pattern
recognition biometric.

We explain each of the steps:

0: Bob measures Alice’s biometric. This is shown as a transfer of the measure-
mentxA from Alice to Bob on the biometric channel.
1: Similarly Alice takes a measurement of Bob’s biometrics,yieldingxB.
2: Alice broadcasts her public sketchwA on the wireless channel.
3: Bob feeds the public sketchwA and the measurementxA of Alice to the repro-
duce procedure of the fuzzy embedder to compute a keym′A.
4: Bob broadcastswB, {xA}m′

A
, i.e. the tuple consisting ofwB and the encryption

of xA using keym′A.
5: Alice useswB received in plain in Step 4 andxB received in Step 1 to compute
m′B with the reproduce procedure of the fuzzy embedder.
6: The second part{xA}m′

A
of the message is used to compensate for possible

errors in reproducingmA. We expect that due to noise or poor quality of the bio-
metric sensormA 6= m′A: However, due to their constructionmA andm′A are
close in terms of the Hamming distance so that Alice can perform an efficient key
search algorithm to obtainm′A from mA. The key search algorithm systematically
flips bits inmA until {xA}m′

A
can be decrypted successfully (see the key search

algorithm below for details). Since Alice can recognize a measurement of her own
biometric, she can check the decryption results.
7: Alice broadcasts{xB}m′

A||m
′
B

.
8: Bob also performs a key search, flipping bits in the concatenation ofm′A and
mB until xB can be decrypted successfully.

The action on the out-of-band channel “Bob takes a measurement from Alice”
can be translated to: “Bob takes a picture of Alice” when facerecognition bio-
metric is used. In this casexA represents the picture of Alice whilexB represents
the picture of Bob (seeFigure 5.4). The same action translates to “Bob hands
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his mobile device to Alice who holds it firmly” in the case of hand grip pressure
pattern generatingxA a grip pressure pattern (seeFigure5.5).

5.4.2 Key search algorithm.

In classical symmetric cryptography to decrypt a message encrypted with a
key m one must knowm exactly. In particular, with a keym′ that differs only
in one bit fromm, decryption will fail. The SAfE protocol uses this apparent
disadvantage of symmetric key cryptography as an advantage: m′ is used to form
the session key. The noise of the measurements is used as random salt [88] for
the session key. The key search algorithm makes it possible to recoverm′. Before
the algorithm starts we decide on how many trials we make to discover the key.
If we set the error threshold toτ bits the algorithm will try out at most

∑τ

i=0

(
N

i

)

combinations before key search failure is declared. Then the protocol has to be
restarted or the user gives up.

Alice starts the key search by assuming there are no errors inm′A, and uses
mA to try and decrypt the encrypted message received in step 4. If decryption
fails Alice assumes that there is a one bit difference between mA andm′A and so
on until she has tried all combinations, i.e two bits, three bits etc. Finally, when
Alice reaches the limit on the number of trials she assumes that the key is coming
from an intruder and aborts the protocol. The recovery ofm′A is a related-key
attack [56]. When the value ofm′A is discovered, Alice can decrypt the message
encrypted withm′A and recognizexA by comparing it totA. The comparison can
be performed by a classifier based matching algorithm designed for this particular
biometrics.

A slightly less secure way is to use the reproduce functionality of the fuzzy
embedder to recognize whether the decrypted resultx is a measurement of Al-
ice’s biometric, by checking if Dec(x, wA) is equal tom′A. The advantage of this
method is that the device does not need to store the sensitivetemplatetA, but only
the (fixed)mA andwA. Since a fuzzy embedder is designed to correct errors in the
(noisy) measurement, not for recognition, we expect this solution to be less secure
sincemA is fixed for multiple protocol rounds. Bob performs the same search as
Alice, but usingmB andm′B.

We note that during the protocol both the devices of Alice andBob have to
perform the same amount of computation, which makes the protocol fair.

5.4.3 Smart Key Search.

When the key space is large the approach described above can become pro-
hibitively expensive and unusable in practical situations. To increase the search
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speed with which Alice findsm′A from mA we propose a method that computes
weight coefficients on each of the key bits. The weight associated with a particu-
lar bit represents the probability of error for that bit. Thevector ofN weighting
coefficients for a particular user is theerror profile. The error profile gives, in
fact the order in which bits are flipped. For example assume that 1 bit is changed
in m′A. Without error profile allN bits are equally likely to flip thus on average
Alice will have to performN

2
flips. On the other hand the error profile gives her

the position of the most likely bit, giving an advantage.
There is another important reason for using error profile enhanced key search.

Due to the nature of the protocol, Alice only has to find variations of her own key
mA and not keys coming from other parties. In particular, this means that we can
reduce the false rejection rate without significantly increasing the false acceptance
rate. We will see in section 5.6 how effective this approach can be.

The error profile computation is related to the specifics of the embed and re-
produce procedure implementation. In the evaluation of ourprotocol we use the
fuzzy embedder proposed by Linnartz,et al. [49] as described in section 5.3. To
calculate the error profile we give the mathematical description of the embed and
reproduce procedures below.

The public sketch is computed by the embed procedure as:

wi = Embed(xi, mi) =

{
(2n + 1

2
)q − ti when mi = 1

(2n− 1
2
)q − ti when mi = 0

Heren ∈ Z and is chosen such that:−q < wi < q.

The reproduce procedure is defined as:

mi = Reproduce(xi, wi) =

{
1 when 2nq ≤ xi + wi < (2n + 1)q

0 when (2n− 1)q ≤ xi + wi < 2nq

ERROR PROFILE.Having described the fuzzy embedder above we remind the
reader that embedders are not perfect, particularly because during key generation
whenever the distance between the measuredxi and the expectedti is larger than
q

2
an error appears. The probability of an error is the probability of a measurement

falling outside the chosen odd-even (labeled 1) or even-odd(labeled 0) interval of
lengthq.

Figure5.6 shows a feature with a normal distributionN(ti, σi) when the cho-
sen interval is a 1. During encoding the public sketchwi shifts the mean of the
distribution to the closest 1 interval. The probability of error is then close to
the probability of a measurementxi shifted with the samewi (the reproduce op-
eration) falling in the neighboring 0 intervals, represented in Figure 5.6 by the
hatched area. The error probability for this feature is computed as follows:
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0 0

X X XX * ti + wi
tiq

Figure 5.6:Error computation for a feature element with normal distribution N(ti, σi),
with quantization stepq.

Ei(σi, q) = σi 2
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q

σi 2
√

2

e−x2

dx.

Here the integral represents the probability associated toone of the 0 labelled
intervals of lengthq (one of the crosshatched intervals) and the summation is done
over all the 0 intervals. Ifq is large enough we can approximate the error as being
mostly determined by the two neighboring0 intervals. Regardless of the chosen 0
or 1 labelled interval the error probability is computed exactly the same.

The error profile is the error probability of allN features of the templatet.
In Figure 5.7 we show the error profile for the first 20 features computedon

hand grip pressure pattern biometric data for two users named Alice and Bob. We
can see that different users have different error profiles.

KEY SEARCH WITH ERROR PROFILE.When the templatet and measurement
x belong to the same user we expect a small number of errors to appear during
the reproduction procedure. This means that even ifmA andm′A are different, the
difference should not be more then a few bits which can be further corrected using
the error profileeA = (E1(σ1, q), · · · , EN(σN , q)).

Now, the Flip function fromFigure5.3:

m′A = Flip(mA, {xA}m′
A
)

can be refined as:
m′A = SmartFlip(mA, {xA}m′

A
, eA).
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Figure 5.7:Error profiles computed for Alice and Bob.

We start the key search by assuming that there are no errors inm′A, and we use
mA to decrypt the message{xA}m′

A
. If decryption fails we assume there is a one

bit error. We start flipping one bit of the key according to theposition indicated
by the largest component ofeA. If the operation is not successful we assume that
two bits are wrong and we try combinations of the highest two components from
the error profile. Finally if we reach the limit on the number of trials we assume
that the key is coming from an intruder and the protocol is aborted.

5.5 Security Analysis

There are two distinct, rigorous views of cryptography thathave been devel-
oped over the years. One is a formal approach where cryptographic operations
are seen as black box functions represented by symbolic expressions and their
security properties are modeled formally. The other is based on a detailed compu-
tational model where cryptographic operations are seen as strings of bits and their
security properties are defined in terms of probability and computational complex-
ity of successful attacks. In the following we look at both aspects of security to
analyze the vulnerability of the protocol to two very different adversaries.
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The first adversary, named Charlie is a Dolev-Yao [34] intruder who has com-
plete control over the in-band communication channel. He can listen to, or modify
messages on this channel. However, Charlie does not have computational capabil-
ities. The actions of Charlie on the out-of-band channel depend on the properties
of this channel. The second adversary, named Eve, is a passive adversary, i.e.
eavesdropper. She can listen to the communication on the in-band channel and
can perform a key search operation similar to Alice and Bob tofind the communi-
cation key. If the out-of-band channel is not confidential she has access to a noisy
version of the information sent on this channel. By modelingthis adversary we
try to answer the following question: “If both Alice and Bob have to guess the
session key, how much more difficult is it for Eve to do the same?”. We use the
computational model to verify the vulnerability to an eavesdropper such as Eve.

From security point of view we realize that an adversary withthe abilities of
both Charlie and Eve is a potential threat and we should test the resilience of our
protocol to such an adversary. Unfortunately as far as we know there is no formal
approach that can handle such an attacker.

In section 5.5.1 we use the formal approach to verify the vulnerability of the
protocol in the to a man-in-the-middle attack. This is an attack where Charlie is
able to read, insert and modify at will, messages between Alice and Bob without
either party knowing that the link between them has been compromised.

In section 5.5.2 we estimate how much effort is required for an adversary with
the capabilities of Eve to find the common key established between Alice and Bob
during a normal round of the SAfE protocol.

5.5.1 Formal verification (Charlie).

We have formally verified that SAfE satisfies mutual authentication and se-
crecy of messages exchanged after key establishment. The tool used for this
purpose is the constraint based security protocol verifier CoProVe by Corinet
al. [29]. An earlier version of the protocol was verified and found buggy, the ver-
sion of the protocol inFigure 5.3 fixes the flaw found. A (security) protocol is
normally verified using a model of the protocol, to avoid getting bogged down in
irrelevant detail. The quality of the model then determinesthe accuracy of the
verification results. The basic difference between a protocol and a model lies in
the assumptions made when modeling the protocol. We believethat the following
assumptions are realistic:

1. No biometric errors. We assume that the correction mechanism always
works perfectly and thus the initiator knows the key used by the sender.
Thus, we look only at complete protocol rounds. When the initiator cannot
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work out the key the protocol is aborted. In this case we assume that Charlie
does not get useful information from the aborted protocol messages.

2. Modeling the out-of-band channel.We have two types of out-of-band chan-
nels: (a) when hand grip pressure pattern biometric is used Charlie cannot
listen, modify or send messages thus the out-of-band channel is authentic
and confidential; (b) when face recognition is used Charlie cannot influence
the picture Alice takes of Bob which makes the channel authentic. How-
ever, Charlie could himself take a picture of Bob. The picture Charlie takes
of Bob will be slightly different from the picture Alice takes of Bob. Be-
cause systems without an equational theory such as CoProVe,do not have
the notion of similarity we verify the protocol with the out-of-band channel
in case (a) we leave this as future work. We assume that when the protocol
starts Alice knowsxB the biometric of Bob and Bob hasxA the measure-
ment of Alice biometric while Charlie knows neither.

We have verified the model in figure 5.3 with the assumptions above. We argue
that the above abstractions do not affect the secrecy and theauthentication prop-
erty. Verification with CoProVe explores a scenario in whichone of the parties
involved in the protocol plays the role of the initiator (i.e. the party starting the
protocol) and the other plays the role of the responder. A third party, the intruder
learns all message exchanged by the initiator and the responder. The intruder can
devise new messages and send them to honest participants as well as replay or
delete messages. Should the intruder learn a secret key and amessage encrypted
with that key, then the intruder also knows the message.

Resilience to a man-in-the-middle attack depends on the assumptions made.
Verification with CoProVe shows that the efforts of Charlie remain unrewarded
when he does not have information about the biometric measurementsxA andxB.

On the other hand if we assume that Charlie knows the biometric measure-
ments of Alice and Bob,xA andxB respectively the protocol is broken. However,
in real life this assumption is too strong since it is not possible to predict the noise
in a biometric measurement and Charlie has no direct access to the measurements
that Alice and Bob make. It is possible for Charlie to get an approximation ofxA

andxB. In the next paragraph we look at the security guarantees onecan hope to
achieve when the adversary knows some information aboutxA andxB but not all
info.

5.5.2 Computational Analysis (Eve).

When the adversary has some useful initial knowledge as in the out-of-band
channel case (b) we look at a different adversary, Eve. To derive keys from fuzzy
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data we use a related-key attack in steps 6 and 8 of the protocol, to recover the
session key. This approach raises two questions: “If both Alice and Bob have to
guess the session key, how much more difficult is it for Eve (the intruder) to do
the same?”, and “What kind of guarantees is this protocol offering?” To answer
these questions we study the following scenarios:

AE(0) No previous contact between Alice and Eve.

AE(1) Eve has a measurement of Alice’s biometric. From the public string Eve
constructsm′′A.

We denote byW (x→ y) the average number of trials that Eve has to do to guess
y when she knowsx.

AE(0) AE(1)
BE(0) W (0→m′

A)·W (0→m′
B) W (m′′

A→m′
A)+W (0→m′

B)

BE(1) W (0→m′
A)·W (m′′

B→

m′
B)

W (m′′
A→m′

A)+W (m′′
B→

m′
B)

Table 5.1:Guesswork required for Eve to compute the session key.

We analyze Eve’s workload to guessm′A in the two scenarios above. Alice
(and the same holds for Bob) who knowsmA and who has to guessm′A = mA +
e where the Hamming weight of the noisee is wt(e) ≤ τ , and whereτ is an
appropriate threshold. As the secret key length isN , there are

(
N

i

)
different error

patterns if the actual number of errors isi, thus on average Alice will have to guess
(without knowing her error profile):

W (mA → m′A) ≈
1

2

τ∑

i=0

(
N

i

)
.

In scenarioAE(1), Eve knowsm′′A and has to guessm′A wherem′′A = mA+e′,
thusm′′A = m′A − e′ + e. Sincewt(e′ − e) ≤ 2τ , Eve has workload:

W (m′′A → m′A) ≈
1

2

2τ∑

i=0

(
N

i

)
.

In scenarioAE(0) Eve has no information on Alice thus she has to brute force
all possibilities. Thus the number of trials is approximately:

W (0→ m′A) ≈ 2N−1.

The scenarios for Bob are analogous:
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BE(0) No previous contact between Bob and Eve.

BE(1) Eve records a measurement of Bob.

Eve’s workload for guessingm′B is equal to guessingm′A in the analogous sce-
nario.

To be able to listen on the communication channel Eve has to guessm′a||m′b
in all scenarios. Table 5.1 summarizes her workload. In eachrow we have the in-
formation that Eve knows about Bob and in the column the information that Eve
knows about Alice. Due to the message flow in the protocol (seefigure 5.3), Eve
might have an advantage if she has information about Alice. Eve can intercept
message 4:wB, {xA}m′

A
and recoverm′A if the biometric allows for taking a deci-

sion on whether two measurements come from the same individual. This explains
the plus sign between the work of guessingm′A and the work of guessingm′B in
the columns where Eve has some knowledge about Alice. In the worst-case sce-
nario, if Eve has had interactions with both Alice and Bob before, this means that
Eve has to do a quadratic amount of work compared to either of the participants.
In all other cases, there is at least one key that has to be recovered from scratch,
making the attack infeasible.

We summarize why it is more difficult for Eve to guess the communication
key compared to Alice and Bob:

• It is easier to start to guessm′ = m + e whenm is available, as is the case
for the legitimate participants Alice and Bob compared to guessingm′ when
m′′ = m′ + e is available as is the case for Eve.

• A good quality camera for Eve will not improve her workload compared to
a legitimate participant. Always Alice has as saltm′A = mA + eA while Eve
will have m′′A = mA + eE = m′A − eA + eE. With a good camera the best
Eve can do is controleE.

• Alice and Bob work in parallel to find the session key each computing their
share while the best Eve can do is find the key sequentially, first find m′A
then findm′B.

• Alice and Bob have an error profile that Eve does not have.

As a conclusion, the SAfE protocol can be assumed to be securewith respect
to an eavesdropper for a short lived association as in the case with secure device
association.
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Figure 5.8:Sample face images from FRGC database.

5.6 Validation with real life data

We present experiments with two different sets of biometricdata: hand grip
pressure pattern data and face recognition data for validating the performance of
the protocol. The goal of these experiments is to determine whether it is possi-
ble for Alice and Bob to determine their own key using the SmartFlip function
knowing that biometric recognition is not perfect. We note that simulation results
presented in this section were obtained in Matlab on real life data.

5.6.1 Face Recognition Biometrics.

For face recognition we report on three rounds of experiments on two different
databases.

To verify the potential of constructing cryptographic keysfrom face data in
the ad-hoc settings of our protocol we need a database with faces recorded with a
mobile device. Since, as far as we know, such database is not publicly available
we recorded our own “mobile” database. This database contains low-resolution
images of 31 individuals, recorded in uncontrolled conditions. The first round of
experiments was performed on this “mobile” database.

As a control for the first round of experimental results, we repeated the ex-
periments on the Face Recognition Grand Challenge (FRGC) version 1 database
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Figure 5.9:Sample images from the mobile database.

which contains 275 individuals. Images in the FRGC databaseare high resolution
images, which can be divided into images obtained in controlled and uncontrolled
situations. The difference between controlled and uncontrolled conditions can be
seen inFigure 5.8 where the same person is captured in controlled conditions
(right) and uncontrolled conditions (left). The second round of experiments was
performed on the images taken in controlled situations and the third round of ex-
periments was performed on the images taken in uncontrolledconditions.

One can see the three experiments as follows: the experiments with the mobile
database show the success of Alice and Bob in performing the pairing protocol us-
ing face data recorded with existing mobile device technology. Experiments on
the FRGC data set obtained in uncontrolled condition demonstrate the perspec-
tives of the pairing algorithm in the near future when mobiledevices are capa-
ble of capturing and processing high quality images. Experiments on the FRGC
data set obtained in controlled condition represent the ideal case in terms of face
recognition. One may hope to achieve them when changes in pose or in lighting
conditions are no longer a problem.

MOBILE DATABASE. For each of the 31 individuals we recorded 4 video files us-
ing the same mobile device (ETEN M600+, which has a 2 mega-pixels camera).
The four files were recorded in two sessions on two different days, each day we
recorded two movies. On the first day each movie was approximately 10 seconds.
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Figure 5.10:Experiment 1.ROC curves for mobile data set, uncontrolled set.

On the second day we recorded shorter movies of approximatively 5 seconds. Lo-
cation of subjects (background), pose and light were different in the two sessions.

Also in this experiment we use the algorithm implementationproposed by
Veldhuiset al. [84] for hand geometry and adapted for face recognition in [18].
The algorithm works as described below. We first trained a generic face model
using the (FRGC) version 1 database. In the recorded movies,we extract frames
which contain the face of the individuals. Movies recorded in the first session re-
sulted into 5994 images that were used during enrollment. Movies recorded in the
second session resulted into 2959 images that were used during testing. Images
from our mobile database are shown inFigure 5.9 where the images on the top
were recorded in the second session and thus were used for testing and the bottom
images were recorded in the first session and were used for testing. In each of
these images, we automatically located the faces using the face detection method
of Viola-Jones [86] which finds facial landmarks like eyes, nose and mouth. These
landmarks are used to align the faces (see the bottom images of Figure 5.9) We
only used the first hundred correctly found faces for the recognition in both ses-
sions. For each image the region of interest is selected, thebackground is removed
(seeFigure5.9 bottom left) and the region of interest is normalized to zero mean
and unit variance. The difference between the face in the image and the generic
face model generated from the FRGC database is computed. As aresult each
biometric sample can be represented as N (in our case equal to30) independent
feature vectors. On this database, the face recognition is more difficult due to
larger deviations in the pose of individuals, illuminationand the low quality of
the movies. TheEER , using the face recognition algorithm without correction,
is 15.7%.
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Figure 5.11:Experiment 2.ROC curves on FRGC v1. database, uncontrolled set.

At this stage we apply the shielding scheme fuzzy embedder proposed by [49]
to extract cryptographic keys from face data. We use the datacollected in the first
session to estimate an average face template for each of the 31 users. We generate
a random key of 30 bits length for each user. We use the embed procedure to
generate the helper data and the error profile as described insection 5.4.3.

To estimate theFRR we do the following: for each user we use the biometric
measurements from the second session and the helper data of each user as input
to the reproduce procedure. The result of this operation is abinary key. We
compare this result to the original key generated during enrollment. If they do not
match exactly it means that we a have a false rejection. TheFRR represents the
percentage of the false rejections from the total number of trials.

To estimate theFAR we first choose a target of attack (one particular user).
We apply the reproduce procedure to all the biometric measurements of the other
users and the helper data of the target. The resulted key is compared with the
target key. If they match we have a false acceptance. TheFAR represents the
percentage of false acceptance from the total number of trials where all users in
the database were target.

By varying the quantization stepq in the embed procedure we can tune the
FAR and theFRR. Figure 5.10 shows theROC curves obtained with and with-
out correction. Of interest is theEER , which allows to evaluate the performance
of the fuzzy embedder on the target data and the effect of the SmartFlip function.
We notice that without any corrections theEER is around29% with 1 bit correc-
tion theEER drops to approximately19% and after further correcting 2 bits the
EER is approximately equal to the one obtained by the biometric based classifier
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Figure 5.12:Experiment 3.ROC curves on FRGC v1. database, controlled set.

15%. By doing 3 bits correction we obtain anEER of approximately12%.

FRGC DATABASE.In the FRGC database the position of eyes, nose and mouth are
labelled, thus images can be easily aligned. For each image the region of interest
which contains most of the face is selected and the background is removed.

A generic face model using all images in the FRGC database is trained. The
difference between each face in the database and the genericface model is com-
puted and stored as the feature vector. A combination of PCA and LDA algorithms
is used on all feature vectors in the database. As a result each biometric sample
can be represented as N (in our case equal to 50) independent feature vectors. In
the FRGC database the data set obtained in controlled conditions contains 3772
images while the data set obtained in uncontrolled conditions contains 1886 im-
ages. In each experiment, the data set is randomly divided into two subsets, each
consisting of approximately half of the images of each person. One subset is used
for training and enrollment while the other subset is used for testing. The same al-
gorithm for extracting cryptographic keys from face data and the same evaluation
methodology is used as in the mobile database experiment.

The results of the experiment on the uncontrolled data set can be seen inFig-
ure 5.11. Without any correction theEER is approximately equal to 9.2%. With
1 bit correction theEER is lowered to 8.7%. By doing 2 bit correction theEER
can be lowered to 8.6%. Three bit correction, unfortunatelycannot further im-
prove theEER .

The results of the experiments on the controlled data set areshown inFig-
ure5.12. On this data set without any correction theEER is approximately 2.2%.
With 1 bit correction theEER is lowered to approximately 1.8%. Also, in this
case correcting more bits do significantly improve theEER .
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Figure 5.13:ROC curves for on hand grip pressure data, controlled set.

Summarizing, we did perform simulations for face recognition biometrics on
three different data sets. The first is the mobile data set, which contains face data
collected with a mobile device of 31 persons. TheEER for this data set is around
12%. The second is the uncontrolled set of the FRGC v.1 data set which contains
face data of 275 persons collected in uncontrolled situations. The bestEER we
obtained on this data set is 8.6 %. The third is the controlledset of the FRGC v.1
data set which contains face data of 275 persons collected incontrolled situations.
The lowestEER we obtained through simulations is 1.8 %. In the next section
we look at a different biometric systems that uses hand grip pressure pattern to
distinguish between individuals.

5.6.2 Hand grip pressure pattern biometric.

The evaluation is performed on real life grip pattern biometric data collected
from 41 participants, in one session. A detailed description of this biometric can
be found in Veldhuiset al. [85].

Each of the 41 participants contributed 25 different measurements. Approxi-
mately 75% of these samples(18), are used for training the algorithm and 25% (7)
are used for testing. Firstly, we reduce the dimensionalityof the data to maximum
of 40 independent features. For training and testing we use the same data that is
used for verification by the classifier based recognition algorithm. Secondly, we
construct cryptographic keys using the fuzzy embedder as described above only
this time the length of the key is 40 bits.Figure5.13 presents theROC obtained
from the collected data. Without corrections theEER on the target data set is
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Figure 5.14: Expected noise for Alice (dark-blue) and Eve (light-orange) for different
quantization steps (different points on theROC curve). Eve and Alice use the same type
of camera.

around5%. After 1 bit correction, theEER drops significantly to3.5% further
after correcting 2 bits theEER goes down to2.7% while correcting 3 bits further
lowers theEER to approximately2%. TheEER values are better in the case of
hand grip pressure biometric compared to the face data. One of the reasons is that
hand data was collected in one session thus the variations between the training
data used for enrollment and the testing data is not too largeallowing for much
better authentication performance.

Summarizing, after doing three bits of correction theEER we obtained through
simulations is around 2%.

5.6.3 Practical Security Evaluation

We analyze in this paragraph how difficult it is for Eve to guess the communi-
cation key when the mobile data set is used to embed the communication key in
the four scenarios described in section 5.5. We choose the mobile data set for the
practical evaluation since this is the best case for Eve. Thecommunication key
has 60 bits when the mobile data set is used compared to 80 bitswhen the FRGC
v.1 data set is used.

In this evaluation the most difficult problem is to give a realistic estimation of
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the noise. By noise we understand a binary pattern which represents bits that are
different between two binary strings or keys. Bye we denote the noise expected
for Alice and bye′ we denote the noise expected for Eve when she takes a picture
of Alice. However, when Eve is guessing the communication key the noise is
e − e′, see section 5.5 for details. Our task is to evaluate from theexperimental
data the Hamming weights fore ande − e′. We make a few observations. As
has been showed in section 5.5, Eve cannot lower her workloadbelow that of
Alice by using a good quality camera. Since Eve does not have the noise free
key (mA is never revealed during the protocol) her expected workload is larger
then the workload of Alice. The noise between any two independent biometric
measurements is also independent. The noise expected for Eve or Alice depends
on the errors the biometric recognition algorithm can tolerate. Thus, for each point
on theROC curve inFigure5.10 the amount of noise will vary.

For a realistic estimation of the noise we adopt the following solution. On
the available data sets we compute the average number of bitsthat are different
between the keys of all users for each point on theROC curve. The average values
are seen as the noise of the legitimate participants thus represent the Hamming
weight ofe.

The question now is: if we knowe what is a realistic approximation fore−e′?
We look at two cases: (a)-worse case scenario (for us) where Eve obtains exactly
the same biometric measurements as the Alice and Bob, written formally ase =
e − e′ and (b)-an average case scenario where thee ande′ are not identical but
they overlap. The overlap is estimated analytically as the percentage of the total
length of the key that the Hamming weight ofe represents.Figure 5.14 shows
the Hamming weight ofe versus the Hamming weight ofe − e′ for different
quantization steps. When the quantization step is relatively small (few errors are
tolerated) the expected noise (the number of bits that are different) is relatively
high for both Alice and Eve. The more the quantization step increases the more
errors can be tolerated, the noise decreases and there is less work for Alice but
also for Eve.

Figure 5.15 shows the number of trials that Eve has to perform versusthe
workload of Alice in the 4 scenarios described in section 5.5. When Eve has no
information about Alice and Bob her workload is constant regardless the size of
the quantization interval. In this scenario she will have toperform on average1036

trials before she finds the correct key,Figure5.15 (a).
We look at the quantization step where theEER is reported, in our case the

EER is obtained when the quantization step is 10. At this point the workload
of Eve in the scenario where she has no information about Alice but she has the
picture of Bob is approximately1018 trials in the worst case scenario and1020 in
the average case, seeFigure 5.15 (b). When Eve has the picture of Alice but no
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Figure 5.15:Workload of Eve in worst case scenario (dotted) for Alice andBob (and
best case for her) and average case scenario (dashed) vs. theworkload of Alice without
using and error profile enhanced search (solid) when (a) Eve has no information about
Alice or Bob, (b) Eve has no information over Alice and has thepicture of Bob, (c) Eve
has the picture of Alice and no information over Bob (d) Eve has the pictures of both Alice
and Bob.
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Gender Age Education

Male: 60%

Female:
40%

18−24: 10%

25−29: 56%

30−34: 20%

35−39: 7%

40+: 7%

High school:7%
Bachelor:17%
Masters:46%
Doctorate:30%

Table 5.2:Participant profile.

information over Bob, due to the asymmetry of the protocol she has to perform
approximately1017 trials,Figure5.15 (c). When Eve has both the picture of Alice
and Bob she has to make in the worst case for us (and best case for her) the same
number (in order of 10th) of trials as Alice and104 in the average case,Figure5.15
(d). In this case the workload of Eve is unacceptably low. A solution is to use
another quantization step. For example when using quantization step number 3
Alice has to perform on average107 trials while Eve has to make between1010

(worst case) and1014 (average case) trials.
Assume that Alice and Eve can perform one trial operation at the same speed.

Assume further that it takes Alice 10 seconds to perform107 trials (each trial im-
plies setting a new key, a decryption operation and a comparison to decide whether
the result is correct). In these settings it takes Eve in the worst case around2.7
hours to find the communication key and 3 years in the average case.

VALIDATION EXPERIMENTS CONCLUSION.We offer four conclusions from the
evaluation on the two sets of biometric data. The first conclusion is that error
rates and thus performance of our protocol depends mostly onthe quality of the
collected biometric data, regardless of the biometric typeof data. The second
conclusion is that the influence of the correction algorithmis significant, however,
theEER of the fuzzy embedder will be around theEER of the biometric based
matcher. Increasing the number of bits that are corrected does not increase lin-
early the performance of the fuzzy embedder, the most significant improvement
is obtained after the first bit of correction after which the improvement decreases.
The third conclusion is that the correction mechanism is stable, meaning that the
effect of correction is independent of the type of biometricThe fourth conclusion
is that it is possible to tune the workload of Eve compared to that of Alice such
that security level is acceptable, even when Eve has the picture of both Alice and
Bob.
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5.7 Usability Analysis

Security only works if people use it therefore we conducted acomparative
usability analysis between a PIN based pairing method and SAfE pairing. As a
guideline we used the usability study by Uzun,et al. [82] for secure pairing meth-
ods. Our results are presented for a comparable target population.

TEST DESIGN AND PROCEDURE.Each subject was given a brief introduction
to the secure device association scenario where people needto exchange sensi-
tive information without having any prior security association. The researcher
explained that the subject has to try two different pairing methods; one is the stan-
dard Bluetooth pin based pairing method and the other is our SAfE protocol. The
subjects were asked to complete a background questionnairefirst, so that we could
learn about the subject demographics and mobile device usage history. Next, the
subject was asked to try both pairing methods in a random order. For the SAfE
protocol we wrote a program that implements only the user interaction part of the
SAfE protocol. For the PIN based pairing we used the standardBluetooth pairing
method as provided in our device. Each subject was asked to choose a 4 digit PIN
number and to enter it. For the SAfE protocol the subject was asked to take a
picture of the researcher. All other actions with the PDAs were performed by the
researcher. It was explained that only the steps required toperform the pairing are
the subject of our experiment. After completing both pairing protocols subjects
were asked to fill in the post-test questionnaire. The testing was done in a room
with no disturbance and the testing time was around 20 minutes per subject with at
least 15 minutes of free discussions. During both pairing protocols subjects were
using the same ETEN M600+ PDA.

PARTICIPANT PROFILE.Our usability experiment had 30 participants from a uni-
versity environment representing 13 different countries.The demographics such
as gender, age and education for our subjects are presented in table 5.2. Most of
our subjects have a computer science background.

The average computer usage history was around 15 years with an average of 9
computer hours per day. All participants have a mobile phone, a PDA or a laptop.

ANALYSIS AND DISCUSSIONS.The conclusions drawn from the experiment can
be considered only as indicative due to the small number of participants and the
(university) biased profile of our subjects.

The main purpose of our experiment was to discover whether users would find
it easier to use SAfE protocol compared to a standard 4 digit PIN based pairing.
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SAfE

Figure 5.16:Summary of participants opinion (in percent).

As shown in figure 5.16 the score was tight with slightly more people preferring
PIN pairing.

The explanation for the overall preference for the PIN basedmethod is that
subjects are familiar with PIN based security (ATMs, Bluetooth) and typing num-
bers is natural to subjects with a computing background. Some subjects used the
adjective “easy” to describe the SAfE method. Others found it easy to understand
how PIN based pairing method works but they used the word ’magic’ to describe
the SAfE protocol. We did not try the experiment with a longerPIN and it is
worth noting that approximately 80% of our participants choose the same PIN
number(1234).

Most of our subjects, 90%, found it fun to perform the pairingusing a cam-
era and 73% would like to have both pairing methods on their mobile device (in
figure 5.16 the percentage of only PIN or only SAfE choices areshown). Due to
the “fun” effect of taking pictures the adjective “professional” was used more to
describe PIN than SAfE.

A separate topic in the questionnaire concerned the privacyeffect of giving
away a photo to the researcher. To our surprise 56% of the subjects were not
bothered to have their picture taken by a relative stranger.For those 44% who
are bothered nothing changes if they have the photograph of the researcher. It was
suggested that a privacy guarantee such as “picture deletedafter pairing complete”
would improve things significantly. To our satisfaction 87%of the users want to
have security while communicating wirelessly. Summarizing, the usability exper-
iment provides an indication that taking pictures providesa possible route towards
creating security associations because it is fun. Whether people believe that taking
pictures is professional enough to provide good security isan open question.
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5.8 Conclusion

Secure device association is a challenging problem from both the technical
and the user interface point of view. Firstly, users need to exploit a common
secret source of randomness from which to extract a shared secret key. Secondly,
it should be possible to link the device we connect to with theperson who owns it.
Thirdly, the process should be simple such that for any person with non technical
background the protocol is easy to use.

In this chapter we propose the SAfE protocol which uses biometrics as the
out-of-band channel. We analyze our protocol from three different perspectives.
Firstly, we analyze the security of the protocol against twotypes of adversaries
Eve which has computational capabilities and Charlie a Dolev-Yao attacker. We
show that our protocol is not vulnerable to a man-in-the-middle attack and we
analyze eavesdropping in four different scenarios both from theoretical and prac-
tical point of view. We show that in the average case when Eve has the biometric
measurements of both Alice and Bob her workload is significant. Assume both
Alice and Eve execute at the same speed 1 trial operation. Assume further it takes
Alice 10 second to perform107 trials. In these settings it would take Eve3 years
to perform1014 trials, expected in an average case scenario. Of course Eve can
use more powerful computers or execute operations in parallel. Since our proto-
col is intended for ad-hoc situations were confidential but not critical information
is exchanged, as long as it would take Eve more than 7 days to find the com-
munication key we consider our protocol secure. The workload of Eve, thus the
security of the protocol can be increased but it would also increase the error rates.
A convenient balance can be found on a case by case basis. It would have been
extremely interesting to test the resilience of the protocol against an attacker who
has both the abilities of both Eve and Charlie. Unfortunately we are not aware of
any formal approach that can handle such an attacker.

Secondly, we evaluate the performance of the protocol with two types of real
life biometric data: face recognition and hand grip pressure pattern. Binary keys
are generated independently of the biometric data for each protocol round and
combined with biometric information. This is a necessary approach since one has
only one face, 10 fingerprints, etc. For face recognition we collected face data with
a camera of a mobile device, in two different days in uncontrolled environment
(light, face expression) as it would be the case in the real world. We obtain on
this data set anEER of approximately12% after applying a correction function
that we designed. To consolidate our experiments we repeat the experiments on
the FRGC v.1 database, which contains 275 individuals. Images in this database
can be divided into two data sets: images obtained in uncontrolled conditions
and images obtained in controlled conditions. These experiments are interesting
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as they show the perspective of the pairing algorithm in the future. Results on
the uncontrolled data set are relevant in the near future when mobile devices may
capture and process high quality images. Simulations on this data set show that the
EER without correction is approximately 9.2% and can be loweredby correction
to 8.6%. Results on the controlled data set are relevant whenchanges in pose and
lighting are no longer a problem for face recognition. Simulations on this data set
show that theEER is 2.2 % without corrections and one can lower this value to
1.8 % by doing corrections.

On the hand grip pressure pattern biometric we obtained anEER that is ap-
proximately2%. The main reason is the high quality of the data, all hand grip
data were recorded in one session from trained individuals.As we noted before
the quality of biometric data is the main factor that can lower the error rates. A
carefully designed data acquiring interface is needed for good performance.

Thirdly, we look at our protocol from the perspective of the user. Our usability
analysis shows that our subjects find the SAfE protocol fun touse, and that they
would like to have the SAfE pairing available on their mobiledevices. However,
there are some situations where SAfE is not appropriate: (a)when the participants
wish to communicate without drawing attention (such as in a restaurant or at a
business meeting) (b) when the protocol fails (for example under bad lighting
conditions). Therefore a back-up solution for SAfE is needed that is smoothly
integrated with the system. The user would then have the choice of a more user
friendly biometric based pairing method and a more robust alternative method.

The contribution of this chapter is related to theSECURE TEMPLATE TRANS-
FER recommendation, which is the result of the 3W-tree analysisin Chapter2.
Our solution to this problem is new, in the sense that biometrics is used for the
first time as an out-of-band channel. Using biometrics makesthe SAfE protocol,
user-friendly and fun as pointed out by our usability analysis in Section5.7. More
importantly, it offers strong security guarantees, compared to other solutions in
the literature. Since false acceptance and false rejectionthreat cannot be elimi-
nated completely from any system that uses biometrics we hope that advances in
the technology (more accurate cameras) and in the field of biometrics (algorithms
resilient to environmental variations) can be reduced to anacceptable level.
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Conclusions

We now summarize the contributions of this thesis, in relation to the
main Research Question described inChapter1. We also highlight
future research directions in the area of cryptography withnoisy data.

In the introductory chapter we formulate the following research question:

How can wemitigatethe risk of malicious errors in a biometric authentication
system?

Defense methods to mitigate risk are designed with a particular application in
mind. Thus, we answer the above question in the context of designing the Smart-
Gun architecture, a biometrical enabled weapon which can befired only by an
authorized user. InChapter2 using the 3W-tree, a novel threat analysis method
specifically designed for the biometric system architecture, we propose a three
step procedure, which consists of (1) identification, (2) classification and (3) anal-
ysis of biometric faults.

The result of the initial 3W-tree analysis for the biometricSmartGun gives six
research directions. In this thesis we focus on the two security related recom-
mendations. The first security direction isSECURE TEMPLATE STORAGE, which
states that it should not be possible to reconstruct the biometric identifier from
the data stored in the gun. We explore the challenges relatedto this topic, which
are both theoretical and practical and we put forward solutions to many of the
issues inChapters3 and 4. The second security direction isSECURE TEMPLATE
TRANSFER, which states that it should be possible to transfer the biometric iden-
tifiers between two guns when no security infrastructure is available and when the
users are no security experts. The solution we propose to this problem is explored
in Chapter5.
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Contribution Theoretical Practical
Chapter 2 (Threat Analysis)
Section 2.4 3W-tree
Section 2.5 SmartGun Analysis
Chapter 3(cs-Fuzzy Extractors)
Section 3.4 Link FAR- min-entropy

cs-Fuzzy Extractors
Section 3.5 Reliable Component

Shielding Function
Chang multi-bit scheme

Chapter 4 (Fuzzy Embedders)
Section 4.4 Fuzzy Embedders
Section 4.5 QIM-Fuzzy Embedder
Section 4.6 6-Hexagonal Tiling

7-Hexagonal Tiling
Chapter 5 (SAfE Protocol)
Section 5.5 SAfE Protocol

Smart Key Search
Section 5.6 Formal and Computa-

tional Analysis
Section 5.7 Face Recognition and

Hand Grip Experiments
Section 5.8 Usability Analysis

Table 6.1:Theoretical and Practical contributions of this thesis.

In this thesis we make progress in both research directions.We support this
conclusion by describing our main contributions, which span a wide range of
activities:

• We develop two novel template protection schemes, the 6 hexagonal tiling,
which is optimal from security point of view and the 7 hexagonal tiling
which is optimal from reliability point of view compared to their counter-
parts in the literature.

• We create novel definitions (ofcs-fuzzy extractor, fuzzy embedder), which
expand current models in the literature (fuzzy extractor).

• We show that the number of uniformly random bits that can be extracted
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from a noisy source depends on the quality of the noisy data (i.e. biometric
data) expressed in terms ofFAR andFRR.

• We model mathematically the relationship between the security and relia-
bility of template protection schemes as a dual sphere covering vs. sphere
packing problem.

• We develop a new protocol for spontaneous device interaction using bio-
metrics when no security infrastructure is available, which we demonstrate
to be fast, user friendly and reliable.

An overview of the theoretical and practical results for each chapter is given
in Table6.1.

FUTURE WORK.The results in the thesis open several possible future research
directions, both theoretical and practical.

• The theoretical results inChapter4 show that our new template protection
schemes, the 6 hexagonal tiling and the 7 hexagonal tiling, are superior
compared to other theoretical constructions in the literature. We would like
to have these results confirmed in practice by results on reallife data.

• In Chapter4, we identify a few basic building blocks that can be used to
construct a practical system, which extracts cryptographic keys from noisy
data. Which blocks to use and in which order, is mostly determined by the
“know-how” of the system engineer and the application context. So far no
theoretical study was performed to determine any optimality criteria.

• We are working on a complete prototype that runs the SAfE protocol on two
mobile devices. We are particularly interested in testing the influence of
different environments on the key search failure since environmental effects
such as changing the light conditions can seriously affect the face recogni-
tion performance.

• We verify the security of the SAfE protocol both formally, toprove that a
man-in-the-middle attack is not possible and computationally, to estimate
how much effort is required from an attacker who is actively involved in
guessing the communication key.

We leave the security verification against an adversary who can play the
man-in-the-middle and who tries to guess the communicationkey at the
same time as future work.
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• False acceptance and false rejection threats are inherent to biometrics. Ex-
periments show that the strength of a cryptographic key extracted from bio-
metric data and the reliability with which the two legitimate users compute
the key depends on the error rates of the biometric classification algorithm.
At this point in time we find that face recognition algorithmsfor mobile
device are not mature enough. We leave the exploration of other biometric
modalities, such as fingerprints, iris or fusion of different biometric modal-
ities, which might have superior performance as future work.

• Although biometric authentication is used to enhance security, storing bio-
metric data, in a database introduces new security and privacy risks. In the
literature there are several measures such as min-entropy,entropy-loss, rel-
ative entropy-loss, etc which are used to determine the security or privacy
offered by a template protection scheme. In the future the right measures
for evaluating both security and privacy scheme have to be agreed upon.

SMARTGUN.Finally, we present a perspective on the development of a SmartGun
for the Dutch police. InChapter2 as a result of the 3W-tree analysis for the
biometric SmartGun, we identify 6 general recommendationsfor the architecture
of the biometric SmartGun.

The first two areLOW FALSE REJECTION RATEand LOW FALSE ACCEP-
TANCE RATE. These recommendations are the subject of intense researcheffort
in hand grip pressure patternbiometrics, a new type of biometrics with interest-
ing applications. Results are encouraging and more information can be found in
the PhD thesis of Xiaoxing Shang. Currently for aFRR of 10−4, which is the
officially accepted failure rate in the Netherlands for a police weapon theFAR is
approximately30%, for public acceptance, however, the target is to have aFAR
that is at the most5%.

Development of aROBUST SENSORwhich is resilient to wear and tear is the
research area of TSST (Twente Solid State Technology). Froma technological
point of view it is feasible to build a robust sensor, but tests in practical environ-
ment have not taken place. Solutions for theSECURE SEALrecommendation are
considered as engineering challenges that will have to be dealt with by the gun
manufacturers.

The security related recommendation, theSECURE TEMPLATE STORAGEand
theSECURE TEMPLATE TRANSFERcan be met by solutions put forward by this
thesis. Finally, there are many, practical and still open problems to be solved
such as interface the electronics to mechanical parts, making the battery last long
enough, find space for the electronics in the gun butt and evaluate the reliability
of the system.

When progress is made regarding the open problems, we recommend a new
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3W-tree analysis of the SmartGun. The 3W-tree analysis should be an iterative
process since new solutions may introduce new vulnerabilities that were not fore-
seen in the earlier 3W-tree analysis.
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Samenvatting

Biometrische beveiligingssystemen die de identiteit van een persoon verifiren
door het scannen van vingers, handen, oog of gezicht worden steeds meer toegepast.
Daardoor is de biometrie een van de snelst groeiende industrien. Toepassingen
van biometrie omvatten nationale veiligheid (bijvoorbeeld het Europese paspoort),
fysieke toegang tot diverse faciliteiten (banken, pretparken, kantoorgebouwen,
computersystemen, etc.), gezondheidszorg en overheidsdiensten.

Het gebruik van biometrie voor authenticatie van personen is gemakkelijker
dan bestaande methoden zoals passwords en PINcodes (er hoeft niets meegenomen
of onthouden te worden). Nog een belangrijk voordeel van biometrische authen-
ticatie is dat het gebeurtenissen aan een gebruiker verbindt (passwords of pasjes
kunnen verloren of gestolen worden). Ook wordt het steeds meer maatschappelijk
geaccepteerd en dalen de kosten. Biometrische authenticatie vereist het vergeli-
jken van een geregistreerde biometrische opname (biometrische template) met een
momentopname (bijvoorbeeld een vingerafdruk die bij het inloggen opgenomen
wordt).

Biometrische authenticatie is echter niet perfect, en de uitvoer van een biome-
trisch authenticatiesysteem kan fouten vertonen door beperkingen van het classifi-
catie algoritme, slechte kwaliteit van de opnamen, of manipulatie van het systeem
door een indringer. Alhoewel biometrische authenticatie primair bedoeld is voor
het versterken van de beveiliging, leidt het opslaan van biometrische gegevens
in een database tot nieuwe beveiligings- en privacyrisico’s, die toenemen als de
database met een netwerk verbonden is. Dit is in de meeste praktijksituaties het
geval.

De meest ernstige bedreigingen zijn:identiteitsdiefstal, waarbij een aanvaller
templates uit een database steelt en een synthetisch biometrisch kenmerk maakt
dat bij authenticatie geaccepteerd wordt;onherroepelijkheid, hetgeen betekent dat
biometrische gegevens niet kunnen worden bijgewerkt of heruitgegeven wanneer
zij gecompromitteerd zijn;privacy, hetgeen duidt op het vrijgeven van gevoelige
persoonlijke informatie zonder toestemming van de eigenaar. Een oplossing voor
deze bedreigingen is het toepassen van technieken voor templatebescherming, die
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het moeilijk maken voor een aanvaller om de biometrische gegevens uit de tem-
plates te achterhalen.

Dit proefschrift beschouwt beveiligingsaspecten van biometrische authenti-
catie en draagt oplossingen aan om het risico te beperken dateen aanvaller mis-
bruik maakt van biometrische gegevens of delen van biometrische systemen omzeilt
om zijn kwaadaardige doelen te verwezenlijken.

Onze bijdrage bestaat uit drie delen. Ten eerste introduceren we de 3W-tree,
een analyse-instrument om voor een biometrisch systeemkritieke aanvalssce-
nario’s te identificeren. We passen het 3W-tree ontwerpinstrument toe op het
SmartGun biometrisch herkenningssysteem met als doel het identificeren van kri-
tieke beveiligingsproblemen. Ten tweede verkennen we de uitdagingen vanveilige
templatebescherming, die zowel theoretisch als praktisch zijn, en we dragen voor
een gedeelte van de problemen oplossingen aan. Ten derde presenteren we een
praktische oplossing voorhet veilig verzenden van templates, wat het mogelijk
moet maken de biometrische kenmerken tussen twee biometrische apparaten te
versturen wanneer er geen beveiligingsinfrastructuur aanwezig is en de gebruik-
ers geen beveiligingsexperts zijn.
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