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Abstract

Wireless communication is becoming more and more important in today’s world. We
rely on radio transmission for audio/video broadcasts, telecommunication, satellite
navigation, security systems and many wireless sensor devices. These communication
systems use reserved parts of the frequency spectrum, to ensure low interference
between transmitters and receivers of different communication systems. Since spec-
trum is scarce, many advanced wireless standards have been proposed to efficiently
use parts of the spectrum, by applying (often complex) digital processing to the
signal to be transmitted. Another approach to efficiently use the spectrum is by
applying spatial filtering, which can be done by using multiple antennas that are
used one at a time (spatial diversity), or by using multiple antennas coherently (in a
phased array).

An important aspect of wireless communication is battery lifetime. However,
the digital processing algorithms, used to increase the spectrum utilization, require
complex operations to be performed at high speeds by the hardware platform. There-
fore, the ever increasing complexity of such algorithms poses tough requirements for
next-generation hardware platforms. Instead of realizing a single complex processor
with high transistor count, current single-chip architectures are based on multiple,
less complex processors that work in parallel. They share a single memory space,
which is accessible via a shared communication infrastructure. For small numbers of
processors, a shared bus can be used efficiently and implementation costs are low.
However, future architectures will consist of tens to hundreds of processors, which
will be limited in performance when they have to share the bandwidth provided by a
bus interconnect structure.

A Multi-processor System-on-Chip (MPSoC) with a Network-on-Chip (NoC)
interconnect solves the problem of bus sharing. Each processor is connected to a
local router, which on its turn is connected to a fixed number of other routers. Since
the number of connections per router is independent of the number of routers and
processors in the network, such a system can be scaled without losing interconnect
efficiency. Processors can communicate via the NoC by using Virtual Channels
(VCs), which are created by configuring the routers on the path from one processor
to another, such that data received on the input port is forwarded to the correct
output port. The arbitration protocol used by the routers is designed such that a
minimum bandwidth guarantee and a maximum latency guarantee can be given for
VCs mapped on the NoC.

This thesis presents the design and analysis of the Hydra Network Interface
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vi Abstract

(NI), an efficient interface between worlds of computation (the processors) and
communication (the NoC). It provides an abstraction mechanism for the application
running on that processor, such that a VC can be used without knowledge of the
routers that are traversed when a path through the NoC is taken. The characteristics
and performance of the NI are evaluated to show that it is an efficient interface, for
example because it introduces a minimal latency to communication streams and it
does not limit the throughput bandwidth. A concrete realization of the Hydra NI
was used in the Annabelle chip, a prototype multi-core chip developed in the EU
Smart Chips for Smart Surroundings (S) project.

Another advantage of using an MPSoC based architecture besides parallel process-
ing, is concurrency in computation and communication. To utilize this concurrency
efficiently, the NI should support this concurrency. The programming model for
such an architecture differs from conventional single processor systems. Partitioning
of the applications into multiple concurrent threads is important to obtain high
utilization of the computational resources. The Synchronous Data Flow (SDF) model
can be used to model and analyze an application as a set of independent kernels
connected by communication channels. The kernels are mapped on the processors
in the architecture, and the communication channels between these processors are
mapped on the NoC that connects the processors. To verify the performance of an
application mapped on a NoC based architecture, a simulation model is created
containing information about both the application and architecture model. The ap-
plication model is based on a functional programming language, which has a strong
resemblance with mathematics such that the application can be gradually translated
from a mathematical specification to a partitioned realization. Modifications can be
performed to the obtained application model by applying transformations in the form
of mathematical rewrite rules. Another advantage of the functional programming
language is that functions are side-effect free, such that shared variables can only be
used when explicitly modeled. In this thesis, the design flow that enables modeling
of streaming applications is discussed. The design flow includes the mathematical
description, partitioning and simulation of the application.

Although wireless communication should be energy-efficient, a certain minimum
performance is required to guarantee correct reception and decoding of the signal.
Two different examples are discussed in detail: a DRM receiver for handheld devices
and a DVB-S satellite receiver for in-car infotainment. The first addresses a battery
operated device, hence the receiver implementation should be energy-efficient. The
latter example uses a phased array antenna, mounted on the roof of a car, to receive an
audio/video broadcast transmitted by a satellite. Here, the large number of antenna
streams determines the vast amount of processing required to coherently combine
the signals received from individual antennas, such that an amplified and focused
signal is obtained. Both applications are mapped on the same MPSoC architecture
template to show the flexibility of the architecture. Special attention is given to the
Montium Tile Processor (TP) and the mapping of the kernels of the DRM and DVB-S
applications onto it. In this thesis, the performance of both applications is evaluated
to show that the Hydra NI supports efficient processing.



Samenvatting

Draadloze communicatie wordt meer en meer gebruikt in de hedendaagse we-
reld. Voor veel toepassingen zijn we afhankelijk van radiotechnologie, zoals bij
audio/video-uitzendingen, telecommunicatie, navigatiesystemen, beveiligingsappa-
ratuur en voor sensorsystemen. Voor ieder van deze toepassingen is een deel van het
frequentiespectrum gereserveerd, zodat er geen onderlinge verstoring plaats vindt.
Aangezien het spectrum beperkt is, is het belangrijk dat het efficiënt wordt gebruikt
door de verschillende toepassingen. Geavanceerde draadloze standaarden gebruiken
delen van het spectrum zeer efficiënt voor radiocommunicatie. Hierbij wordt het te
verzenden signaal eerst digitaal bewerkt, zodat het kan worden verzonden in een
beperkter spectrum. Een andere techniek die populair begint te worden, is uitzen-
den het van signaal in een specifieke richting. Dit kan door gebruik te maken van
richtingsgevoelige antennes, geconstrueerd uit een reeks van antennes.

Bij draadloze communicatie is batterijduur van groot belang. De digitale bewer-
kingen die op het te verzenden signaal moeten worden toegepast om het signaal in
een beperkt spectrum te kunnen verzenden, bestaan uit complexe operaties die door
een geavanceerde rekeneenheid moeten worden uitgevoerd. Nieuwe communica-
tiestandaarden bieden een hogere kwaliteit van beeld en geluid, wat er voor zorgt
dat er meer informatie moet worden verzonden. Omdat het beschikbare spectrum
gelijk blijft, zijn complexe digitale berekeningen nodig om de informatie te kunnen
verzenden in hetzelfde spectrum. De eisen aan beschikbare rekenkracht bepalen
hierdoor de ontwikkeling van nieuwe generaties rekeneenheden. De huidige trend is
het combineren van meerdere (simpele) rekeneenheden op een chip, in plaats van
het toevoegen van extra rekenkracht aan een enkele rekeneenheid. Deze rekeneen-
heden wisselen informatie uit via een gedeeld geheugen, dat ze kunnen benaderen
via een gedeelde verbinding. Zolang het aantal rekeneenheden klein blijft, kunnen
ze om de beurt gebruik maken van deze verbinding. Echter, bij grotere aantallen
rekeneenheden moeten de rekeneenheden lang op elkaar wachten, voordat ze bij het
gedeelde geheugen kunnen.

Een multi-processor systeem-op-een-chip bestaat uit een aantal van zulke reken-
eenheden die onderling verbonden zijn via een netwerk aan verbindingen. Iedere
rekeneenheid kan met andere rekeneenheden communiceren via een lokaal route-
ringselement, dat verbonden is met een beperkt aantal routeringselementen van
andere rekeneenheden. Op deze manier zijn alle rekeneenheden indirect met alle
andere rekeneenheden verbonden. Bij een schaalvergroting van het totale systeem
kunnen rekeneenheden worden toegevoegd zonder de efficiëntie van bestaande ver-
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viii Samenvatting

bindingen te beı̈nvloeden. De fysieke verbindingen tussen routeringselementen zijn
opgedeeld in kleinere virtuele verbindingen, zodat een rekeneenheid tegelijkertijd
één of meerdere verbindingen met andere rekeneenheden kan hebben. De route-
ringselementen zorgen ervoor, dat informatie wordt verzonden naar de gekozen
bestemming, waarbij een minimale doorvoersnelheid van informatie kan worden
gegarandeerd met een maximale gegarandeerde vertraging.

Dit proefschrift beschrijft het ontwerp en de implementatie van de Hydra-netwerk-
interface, een efficiënte verbinding tussen de rekeneenheden en het netwerk. De
interface verbergt details, die het netwerk met zich meebrengt, voor de rekeneenheid.
Om te laten zien dat deze abstractie weinig invloed uitoefent op de doorvoersnelheid
en vertraging van verstuurde informatie, worden de karakteristieken van de netwerk-
interface geëvalueerd. Aan de hand van de Annabelle prototypechip die ontwikkeld
is binnen het Smart Chips for Smart Surroundings (S) project, wordt de realisatie
van de interface getoond.

Naast de parallelle berekeningen die door verschillende rekeneenheden tegelij-
kertijd kunnen worden gedaan, biedt het gepresenteerde multi-processor-systeem-
op-een-chip ook de mogelijkheid om rekeneenheden tegelijkertijd te laten rekenen
en informatie te laten uitwisselen. De netwerkinterface ondersteunt deze moge-
lijkheid. Echter, voor het ontwerp van programmatuur voor een dergelijk systeem,
moet rekening worden gehouden met de verdeling van berekeningen over meerdere
rekeneenheden zodat alle rekeneenheden efficiënt kunnen worden ingezet. Door
gebruik te maken van een model voor synchrone datastromen (SDF) kan een analyse
worden gedaan op de programmatuur. Hierbij wordt de programmatuur opgedeeld
in kleinere processen die onderling communiceren via kanalen, zodanig dat de pro-
cessen worden uitgevoerd door rekeneenheden en de communicatiekanalen tussen
rekeneenheden lopen via het netwerk. Door een simulatie te maken van de processen
en onderlinge communicatie kan een inschatting worden gemaakt van de presta-
tie van de volledige programmatuur. Vanuit de wiskundige specificatie wordt de
programmatuur stapsgewijs uitgewerkt in een functionele programmeertaal. Met
behulp van herschrijfregels, die worden toegepast op de functionele programmeer-
taal, wordt de programmatuur voorbereid zodanig dat het uiteindelijk door één of
meerdere rekeneenheden kan worden uitgevoerd. Omdat de programmeertaal geen
impliciet gedeelde informatie tussen processen toestaat, moet alle communicatie
tussen processen expliciet worden gemaakt. Dit proefschrift presenteert een aanpak
voor het ontwerpen en simuleren van stroom-gebaseerde programmatuur, inclusief
de wiskundige beschrijving, opsplitsing in kleinere processen en simulatie daarvan.

Tot slot worden twee verschillende draadloze communicatie-ontvangers bespro-
ken, namelijk een mobiele ontvanger voor digitale radio (DRM) en een ontvanger voor
satelliet uitzendingen (DVB-S), die op een auto wordt gemonteerd. Beide ontvangers
dienen energie-efficiënt te zijn bij een minimale prestatie om het ontvangen radio-
signaal goed te kunnen verwerken: de mobiele DRM ontvanger heeft een beperkte
accucapaciteit en de DVB-S-ontvanger moet enorme informatiestromen verwerken
die worden ontvangen door een groot aantal antennes. De implementatie van beide
ontvangers op een multi-processor systeem-op-een-chip wordt in detail besproken,
waarbij de prestatie van de ontvangers wordt gebruikt om de efficiëntie van de
Hydra-netwerkinterface aan te tonen.
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In het vroege voorjaar van , halverwege mijn afstudeerproject, liepen we op het
Münsterplatz in Ulm (Duitsland), toen Gerard Smit mij vroeg: “Ken jij misschien nog
mensen die interesse hebben in een AIO positie?”. Ongeveer een jaar daarvoor had ik
bij de vakgroep CAES aangeklopt, op zoek naar een begeleider voor mijn stage bij
Lely Technologies. Gerard reageerde destijds met het antwoord “Dat wil ik zelf wel
doen”, dus toen Gerard in Ulm mij die ene vraag stelde, reageerde ik met datzelfde
antwoord.

Mijn voorkeur voor Embedded Systems binnen de opleiding Technische Informa-
tica werd al duidelijk bij het allereerste contact met de leerstoel CAES, bij het vak
(Basisbegrippen) Digitale Techniek. Na mijn stage kwam ik via Gerard terecht op het
CCU project, waarbij in korte periode een netwerkinterface voor de Montium moest
worden ontwikkeld voor een prototypechip in samenwerking met Atmel Germany
GmbH in Ulm. In die tijd begon Gerard met het huisvesten van afstudeerders tussen
promovendi, zodat ze efficiënter konden meedraaien en er meer kennis overdracht
kon plaatsvinden. Hierdoor kreeg ik de kans om de gang van zaken op een weten-
schappelijke afdeling van binnenuit te bekijken, waarbij ik zelfs een zakentripje
aangeboden kreeg naar Ulm. Ik wil Gerard ontzettend bedanken voor de kans die
hij mij gaf om bij CAES te komen promoveren, voor de jarenlange begeleiding en
alle motiverende discussies en brainstorm acties. Zonder de steun en feedback van
Gerard zou dit proefschrift niet hebben bestaan.

Toen Gerard in  werd aangesteld als leerstoelhouder van CAES, werd de rol
van André Kokkeler als dagelijks begeleider een stuk groter. Het S project was in
datzelfde jaar afgelopen en ik was juist overgestapt naar het CMOS Beamforming
Techniques project. André’s kennis over radiosystemen en signaalbewerking bleken
ontzettend nuttig bij de begeleiding in dat project, want we hebben veel discussies ge-
had over specifieke operaties waarbij André vaak de basis kon uitleggen in een korte
samenvatting. Jan Kuper raakte betrokken bij dit onderzoek toen bleek dat bestaande
ontwerpmethoden te kort schoten in termen van formalisme. De overstap naar een
functionele programmeermethode leidde, dankzij zijn onbeperkt enthousiasme en
optimisme, tot nieuwe inzichten en mogelijkheden.

Al op mijn eerste dag op de afdeling werd me duidelijk dat de sfeer binnen de
CAES groep geweldig is en dat biedt een goede basis voor een promotietraject. Ik wil
alle collega’s van de CAES groep bedanken voor de geweldige samenwerking. Tijdens
mijn studie, bij het vak Ontwerpen van Digitale Systemen, maakte ik voor het eerst
kennis met Bert Molenkamp. De contacten die wij hadden in de jaren daarna leidden
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er mede toe dat ik bij Gerard en Bert een afstudeeropdracht kwam doen. Het was ont-
zettend handig om een VHDL goeroe als begeleider én als buurman te hebben, in het
kantoor om de hoek (zelfs als je vragen plaatst op de nieuwsgroep comp.lang.vhdl,
waar Bert als eerste reageert). Voor de organisatorische zaken binnen de UT kun je
altijd een beroep doen op de dames van het secretariaat: Marlous, Nicole en Thelma.
In de tijd dat ik aan het S project werkte, heb ik veel over Networks-on-Chip ge-
leerd van Pascal Wolkotte. De contacten met Paul Heysters, Gerard Rauwerda en
Lodewijk Smit gaven mij erg veel inzicht in de Montium architectuur, die op dat
moment centraal stond in de onderzoeksprojecten. Bij mijn overstap naar het CMOS
Beamforming Techniques project ben ik gaan samenwerken met Kenneth Rovers.
We hebben samen veel vruchtbare discussies gevoerd, waar ik enorm veel van heb
geleerd. Samen hebben we ook een aantal afstudeerders begeleid, waaronder Koen
Blom, wiens werk nuttig bleek bij de totstandkoming van dit proefschrift.

Naast mijn promotie heb ik de afgelopen jaren een flink deel van de avonden en
weekenden doorgebracht met een groot aantal muzikanten in Enschede en omstreken.
Ik wil in het bijzonder Bart Bijleveld noemen, ook wel de maffiabaas van het oosten
genoemd vanwege zijn grote inzet voor en betrokkenheid bij de amateur-jazzmuziek
in de regio Twente. Mede dankzij hem heb ik in de jazzmuziek de nodige afleiding
gevonden om nieuwe energie en inspiratie op te doen voor mijn promotie.

Tijdens mijn lidmaatschap van D.B.V. Arriba en gedurende de periode daarna,
waarin we huisgenoten waren, leerde ik Eelco Kuipers kennen. Samen met Eelco
en zijn vriendin Jade Reinders hebben we de afgelopen jaren heel wat festivals en
optredens bezocht. Ik wil jullie bedanken voor alle leuke tijden die we samen hebben
gehad en hopelijk nog gaan krijgen.

Het jaar  was een jaar dat voor mij in het teken van mijn familie stond. Door
de ziekte van mijn vader realiseerde ik me hoe belangrijk je ouders zijn. Henrie en
Agnes: tijdens mijn opleiding van ruwweg een decennium aan de UT heb ik nog
steeds niet zoveel geleerd als wat jullie me bijbrachten en ik hoop nog lang en veel van
jullie te kunnen blijven leren. Yolanda: jij bent degene die altijd als eerste klaarstaat,
vooral als het gaat om het beschikbaar stellen van jouw organisatorisch vermogen
voor welke aangelegenheid dan ook. Erik: bedankt dat je, samen met Kenneth, mij
tijdens de aanloop van de promotie en gedurende de dag wilt ondersteunen als
paranimf.

Ik sluit af door mijn allergrootste dank uit te spreken aan de belangrijkste persoon
uit mijn leven: Tineke Klamer. Je staat altijd lijnrecht achter mij en de dingen die ik
doe. Bedankt voor je steun in moeilijke tijden en dat je altijd voor mij klaarstaat.

Marcel van de Burgwal
Enschede, September 
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Chapter 

Introduction

. Streaming DSP applications

Next generation multi-media appliances will communicate via wireless connections
at any time and any place. Digital multimedia broadcast standards, such as Digital
Radio Mondiale (DRM), Digital Audio Broadcast (DAB) and Digital Video Broadcast
for Satellite (DVB-S), use encoded high-bandwidth streams of data to reconstruct
the original high quality signal, at the cost of computation intensive processing.
For battery powered portable devices this is quite challenging, as the energy source
has limited capacity. By optimizing the computationally intensive kernels within
an application, the energy consumption can be reduced significantly. Typically,
the streaming multi-media applications mentioned have a regular communication
scheme using connections that remain unchanged for a long period of time. Since they
show strong temporal and spatial locality, these applications are quite suitable to be
executed by a highly parallel Multi-processor System-on-Chip (MPSoC) platform [].
For efficiency reasons, such Multi-Processor Systems-on-Chip are often designed as
heterogeneous tiled architectures. These architectures consist of several types of tiles
which are connected via a Network-on-Chip (NoC).

. Low power versus high performance

With each new generation of processor architectures, the offered processing capacity
is increased. This enables the design and execution of applications with a higher
computational complexity. By using the hardware efficiently, the time between two
processor generations can be increased. Depending on the type of application, such
efficiency may either involve less energy consumption per execution or more execu-
tions per second. Energy consumption can be decreased by making the architecture
suitable for low power operation, for example by adding accelerator blocks or by
adding hardware building blocks that allow dynamic adaptation of the hardware to
its changing environment. Another approach is to optimize the architecture for high
performance, where the utilization of the processor capacity is increased, for example


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in a multi-processor architecture running multiple applications in parallel such that
each application has one or more processors at its disposal exclusively.

The architectures described in this thesis target both the low power and the high
performance domain. The building blocks are designed for efficient processing,
such that they can be employed for architectures optimized for energy efficiency (by
running the cores at low clock frequencies) or for high-performance architectures (by
using many processors in parallel connected by a high bandwidth network on chip).

This work has been performed in two projects: the EU FP project S [] and
the STW project CMOS Beamforming Techniques []. In the next section, the main
objectives of these projects are presented.

.. Smart Chips for Smart Surroundings

The Smart Chips for Smart Surroundings (S) project [, ] focused on energy efficient
processing using both an efficient hardware platform and an efficient application
design flow. Therefore, two objectives were proposed (cited from []):

. The design of a flexible reconfigurable platform based on heterogeneous building
blocks such as analogue blocks, hardwired functions, fine and coarse grain recon-
figurable tiles, DSPs and microprocessors that can adapt to several algorithms for
ambient systems without the need for specialized ASICs. The concept is verified
on hardware platforms. Furthermore, a digital MPSoC and an analog frontend IC
will be designed. The DRM and MPEG- applications will be implemented on the
platform in order to verify the flexibility of the platform.

. To provide a design flow at compile time, which reduces development time and to
provide functions that automatically allocate resources of the reconfigurable platform
based on QoS, power and user demands. The DRM and MPEG- applications will
verify the design flow.

.. CMOS Beamforming Techniques

Another application for heterogeneous tiled architectures is the domain of com-
putationally intensive applications. In this application domain, the processing
requirements are very high due to the processing on high data rate signals or complex
operations. A typical example of these applications is phased array processing, which
is required for antenna systems consisting of hundreds to thousands of antenna
elements. By combining the signals received by all individual elements, a beam is
formed. Although the processing itself is relatively simple, data rates may become
high ( to Msamples/s per antenna) and the maximum processing latency is
limited. By dividing the processing needs over the analog front-end and the digital
processing platform, data rates and the digital antenna processing requirement for
forming a beam are lowered. The CMOS Beamforming Techniques project [] aimed
at a mixed-signal phased array receiver, which consists of a modular antenna system.
This enables a multi-standard prepared phased array receiver that can be used for
example for radar systems, radio astronomy, satellite communication systems and
telecom base stations (see Figure .).
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(a) Radio Astronomy:
EMBRACE array []

(b) Naval Radar:
Thales APAR []

(c) Satellite receiver:
TracVision ®A []

Figure . – Phased array antenna usage in several applications

A modular system that can be employed for multiple standards requires a flex-
ible interconnection architecture to provide large communication bandwidths, as
required by the high data rates. Moreover, since digital processing is distributed
over multiple modules, centralized control of the system by a single host may cause
timing problems and, therefore, will decrease the overall system performance. A
thorough analysis of the application and the mapping on the underlying MPSoC
architecture structure is important.

. Problem definition

In multi-core systems the communication between processor cores is crucial. Any
overhead in the communication will reduce the performance and efficiency of a
multi-core system. In this thesis we focus on the interaction of multi-core systems:
in particular we address () the Network Interface hardware between the core and
the Network-on-Chip, and () the interaction between hardware and software.

State of the art hardware/software design methodologies usually are based on
a top-down derivation of an efficient hardware architecture based on a certain
application domain. For such approaches, the starting point is typically a reference
program that has been implemented for a single processor with a single memory
space in which its state is stored. The reference program is analyzed and profiled, and
code fragments with high computational complexity are offloaded to other processors.
Synchronization between processors is required for efficient communication and
execution, hence memory consistency models are added to control the usage of the
single memory space. To improve the overall performance, the code fragments with
high computational complexity are implemented for specialized processor types.
Finally, a composition of processors and interconnects is compiled and realized in a
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CMOS circuit. The result of such a design flow is a specialized hardware architecture
that performs well for the given applications. It is flexible within the application
domain.

However, the disadvantage of such design methodologies appears immediately at
its start, because the sequential code forming the reference program hides informa-
tion that was available before writing the reference code. Instead of starting with
sequential reference code, we advocate designing applications based on the mathe-
matic definition, for example as specified by block schematics used in communication
standards. Instead of deriving a processing architecture based on a typical applica-
tion set, we assume a general purpose stream processing platform based on a MPSoC
using a NoC infrastructure and map our applications to that architecture. To program
such an architecture, a design flow is proposed that allows parallel code as input. By
transforming and partitioning this code, the parallelism in the implementation is
preserved. Using a simulation framework, the parallel code can be executed in order
to test its behavior and to extract performance figures that are required to determine
the expected behavior when executed at an embedded platform. After successful
testing using the obtained performance figures, the application can be mapped on
the general purpose stream processing platform. For two different applications, we
will show the stepwise derivation of a block schematic to an implementation mapped
onto the Montium TP architecture. A DRM receiver is implemented for a battery
powered handheld device, hence a high utilization of the processor architecture is
required to have an energy efficient solution. The other application includes a DVB-S
receiver using a phased array antenna that allows for satellite signal reception in
dynamic environments, like for example in-car infotainment. The energy budget
for this mobile adaptive receiver is higher, but the phased array antenna requires
considerably more processing and therefore, an efficient solution is desired also for
this application.

. Contributions

This thesis combines previous research and focuses on interfaces between existing
building blocks and tools. We start at the hardware architecture level, where a
general purpose stream processing architecture is composed from existing processors
(for example, the Montium TP) and a NoC by adding an efficient Network Interface
(NI). We proceed with the presentation of a design flow for such architectures, where
a mathematical programming language is proposed that can be used to model,
transform and simulate applications. Finally, we show how the design flow can be
used to model the implementation of applications to the hardware architecture.

i The Hydra, a NI, is presented that can provide an abstraction layer for the
processing tile by managing concurrent communication and synchronization
(chapter ). Using this interface, the programming model for communication
between stream processors is demonstrated and we show how communication
overhead (defined by the Communication to Computation (C/C) ratio) is reduced
by supporting concurrent communication and computation.
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ii We present a modeling technique strongly related to mathematics for modeling
streaming applications. The applications are described in a functional program-
ming language, for which transformations are defined that can be used to prepare
the application for partitioning over multiple processors. Then, by specifying
explicit communication and computation in the application, separate parts of
the application can be simulated and executed in parallel. We introduce a Syn-
chronous Data Flow (SDF) simulator that is used to execute the application and
to analyze its real-time behavior with real data (chapter ).

iii Using examples based on existing wireless communication applications, we show
how a stream-based implementation of DSP kernels can benefit from our network
interface and modeling techniques (chapter ). Two mobile communication
receivers are discussed to show that our generic stream processing platform
is useful for both energy-efficient applications and computationally intensive
applications.

. Thesis Outline

The thesis is organized as follows. The MPSoC architecture, and in detail the Hy-
dra NI, are presented in chapter . A new modeling technique is introduced in
chapter , that enables modeling streaming applications and their execution on a
multi-processor architecture. For two wireless communication applications, namely
a DRM receiver and a mobile DVB-S receiver, the proposed modeling techniques are
discussed in chapter  by mapping the applications to a reconfigurable processor
architecture. The performance figures for these algorithms are used to show how the
Hydra NI presented in chapter  contributes to shorter execution times. Finally, in
chapter  the work is concluded.

Chapters  and  are divided into two parts. The first part gives an overview of
the state of the art, and the second part presents the contributions in each of these
topics. Chapter  consists of three parts: the first part discusses common Digital
Signal Processing (DSP) kernels that are used in many DSP algorithms, the second
part evaluates the performance of a DRM receiver and in the third part a DVB-S
receiver is evaluated. Finally, chapter  presents the joint conclusion of the three
topics in this thesis.





Chapter 

Network Interfaces for a
Reconfigurable Tiled Architecture

Abstract

Reconfigurable tiled architectures are used as a flexible platform for streaming
DSP applications. Such architectures consist of different processor types, suit-
able for different applications, which are interconnected by a Network-on-Chip.
Reconfigurable processors can be dynamically customized to perform parts of
these applications very efficiently. This chapter presents an efficient network
interface that connects such a reconfigurable processor, the Montium TP, to an
on-chip network. The network interface enables concurrency in computation and
communication between processors, such that processors can operate together
efficiently. The performance of the network interface is evaluated and its area
footprint is related to the Montium TP.

Continuous improvements in Complementary Metal Oxide Semiconductor (CMOS)
process technology enable Very-Large-Scale Integration (VLSI), such that Integrated
Circuits (ICs) can contain more and more transistors. With a larger number of tran-
sistors such circuits can integrate more functionality, resulting in better performance.
However, although the number of transistors is increasing, efficient usage of the avail-
able transistors is important, as inefficiencies lead to higher energy consumption and
to lower performance. Additionally, the design complexity grows with the number of
transistors, which may lead to more design errors as it is hard to generate all possible
test patterns and check the response of the circuit to these patterns. Therefore, in
order to keep the circuits testable as well as efficient, circuits are often designed as
multi-processor circuits consisting of multiple processor cores. Such an architecture
is also called a Multi-processor System-on-Chip (MPSoC) [, ]. If all processors
in the circuit are identical, the MPSoC is called homogeneous. Otherwise, such an
architecture is called heterogeneous.

Parts of this chapter have been presented at the International Conference on Engineering of Recon-
figurable Systems & Algorithms (ERSA’) [], at the Dynamically Reconfigurable Architectures
workshop [], at the Tenth International Workshop on System-Level Interconnect Prediction (SLIP
) [] and was published in the EURASIP Journal on Embedded Systems []


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The functionality of an application is divided over the cores such that each core
is responsible for a part of the overall functionality. Intermediate results calculated
by one of the cores have to be synchronized with and communicated to another core
for further processing. Hence, the cores have to be connected to a communication
medium.

. State of the Art

Conventional MPSoC architectures have been built using a shared bus to connect
multiple devices in the system, which can be either Input/Output (IO) devices or
processor cores. Via the shared bus, any device can transmit data to any other device.
A device that is allowed to initiate data transfers is called a master, and a device that
is capable of responding to such a data transfer is called a slave. Such communication
schemes work efficiently as long as only a few devices are connected to the bus,
because a bus has a fixed bandwidth that is shared for all connections made.

The shared bus enables communication between any two connected cores. During
a certain time slot, its wires are reserved for a transaction between two cores. For that
time slot, because multiple cores may want to write to the bus simultaneously, the
bus arbiter determines which cores can write to the bus such that no collision occurs.
A time slot can be requested by any core that is implemented as a bus master. Hence,
when two masters request for a time slot at the same time, at least one of both is halted
temporarily since they cannot use the bus during the same time interval. Halting
can be avoided by adding a shared bus for each master and connecting all slaves to
multiple shared buses. For example, the Advanced Microcontroller Bus Architecture
(AMBA) interconnect [] includes a multi-layer Advanced High-performance Bus
(AHB) [].

Ultimately, there is a direct connection between each of the processors in the
system. However, such topology would implicate very large costs since it requires
many (possibly long) wires. By having a connection between one processor and its
direct neighbors, only a small number of connections need to be made. Moreover,
in such an approach multiple communications can run in parallel leading to a
high aggregated bandwidth. Such an interconnection medium, providing a balance
between flexibility in connections, total aggregated bandwidth and chip area, is
called a Network-on-Chip (NoC). An example MPSoC consisting of different types of
cores and IO devices interconnected via a NoC is shown in Figure .. The IO devices
are used for off-chip communication.

In such a structured topology, a single processing unit is called a processing tile
(see Figure .). It consists of one processor, which is called a Tile Processor (TP),
and one interface to the NoC, which is called a Network Interface (NI). The TP has a
small Local Memory (LM) at its disposal for storing intermediate results.

Two tiles are called neighbors if their routers are connected via a direct link. For
communication between two tiles that are not neighbors, a route needs to be created
along which the data is communicated. Therefore, the data is sent by the initiating
TP via its NI to its local NoC router, which routes the data to one of its neighbors.
The neighboring router can either route the data to its TP or forward it to another
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Figure . – MPSoC example with several different types of tiles
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Figure . – Processing Tile structure showing network interface, tile processor and local memory and its
connection to the NoC

neighboring router. The NI enables communication with other cores in the MPSoC.
It translates the TP interface protocol to the NoC protocol and vice versa.
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.. Tile Processors

In the example MPSoC shown in Figure ., several types of tile processors can be
identified, for example Application Specific Integrated Circuits (ASICs), General
Purpose Processors (GPPs), Digital Signal Processors (DSPs), fine-grained reconfig-
urable architectures like Field Programmable Gate Arrays (FPGAs), coarse-grained
Domain Specific Reconfigurable Architectures (DSRAs) and memory tiles (indicated
by MEM). Each tile processor type has a specific instruction set. Furthermore, a tile
processor has a certain small local memory that is available for temporary storage.

In our application domain, typical algorithms that are executed by tiled archi-
tectures are Digital Signal Processing (DSP) algorithms like Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT) and Finite Impulse Response (FIR) filters.
Such applications have to be partitioned in processes that can be executed by tile
processors. The input, output and intermediate results for such a process are stored
within the local memory of the tile. On an MPSoC level, this can be seen as a dis-
tributed memory (with a typical storage size in the range of  kB to  kB per
tile).

... Memory tile

A memory tile is used by other tile processors for temporal storage of their data.
Therefore, it contains a relatively large local memory and a memory controller that
connects the memory to the NoC as if it were a processor. With this controller, the
underlying memory architecture is hidden.

... General Purpose Processor

Some applications require a very generic processor architecture, since they contain
many different kernels which differ so much that no optimized architecture can be
designed for it. For such applications, a GPP is used. It supports a wide range of
instructions that can be executed in an arbitrary order. Such flexibility comes at the
price of reduced performance or increased silicon size. Typically, a GPP is based on a
combined instruction and data memory and a data path that loads instructions and
data from the memory, which is also known as a Von Neumann machine [].

In Multi-Processor Systems-on-Chip, often used GPP architectures are based
on a Reduced Instruction Set Computer (RISC) architecture (for example, the Ad-
vanced RISC Machine (ARM) family, IBM’s PowerPC and Sun’s SPARC). An extensive
overview of microprocessors is presented in[].

... Digital Signal Processor

The DSP is a GPP that has been optimized for DSP applications. It is based on
complex instructions that may specify multiple operations in parallel. For example,
vector operations may be used to execute the same operation on multiple operands

Although other processor types could be added to this list, we consider these types as the relevant
processors types for embedded multi-processor architectures.
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simultaneously. Composite operations, like the Multiply Accumulate (MAC), de-
crease the number of memory operations as intermediate values can be directly
stored in local register files. The Harvard architecture [] was designed to improve
the processor performance for DSP applications. In contrast to the Von Neumann
architecture, where instructions and data are stored in the same memory, the Harvard
architecture uses separate memories for the storage of instructions and data. The
advantage of this separation is an increased memory bandwidth, as the instruction
fetch can be done simultaneously with the memory read/write operations. Further-
more, since instructions are read from a separate memory, they can be stored in a
Read-only Memory (ROM), which can be implemented at relatively low costs and a
high performance in terms of access latency and bandwidth.

By adopting the Harvard architecture and increasing the number of data memo-
ries, the bandwidth offered by the memory or the IO controller is increased such that
the instructions and data can be fetched from the instruction memory simultaneously.
DSP applications typically have strict real-time constraints. For example, if the de-
coding of an audio stream is not executed fast enough, the played audio may contain
clicks and noise. Typically, for GPPs and DSPs it is difficult or impossible to give
real-time guarantees, as they are usually not able of satisfying (guaranteed) real-time
constraints. An overview of typically used DSP architectures is given in [].

... Application Specific Integrated Circuit

The most efficient execution of an algorithm can be obtained by performing the
entire algorithm with one large hardware accelerator block [, ]. In this case,
the algorithm is directly synthesized to transistors and etched on silicon. The main
advantage of this approach is its efficiency, as it requires a minimum of silicon area
and has a very low energy budget. However, this comes at the costs of inflexibility,
since later modifications cannot be made anymore.

The manufacturing costs of a single ASIC core are mainly determined by the
preparation before manufacturing. Once the design of the hardware accelerator is
finished, masks are created for the lithography process which is used for etching
silicon. The design of such a mask is very expensive, but once the mask has been
made, it can be used for the production of many devices.

The only solution for making a flexible architecture based on ASIC cores, is by
combining multiple chips on a Printed Circuit Board (PCB) and having a controller
that activates or deactivates individual chips. However, since this requires a complex
design consisting of multiple chips, such a design is expensive and inefficient.

... Fine-grained reconfigurable: FPGA

The FPGA is a bit-level reconfigurable architecture, consisting of a large number
of small logic blocks connected via a large number of wires []. The logic blocks
contain a Lookup Table (LUT) and some memory elements, which can be connected to
other logic blocks via the on-chip interconnect. This interconnect consists of wires of
different lengths and small router elements that are used to connect these wires. The
functionality can be altered such that an FPGA is capable of running many different
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applications []. However, this comes at the cost of configuration, as each logic block
and interconnect router needs to be updated. Typically, this requires configuration
files of several (up to tens) of megabytes. Such large configuration streams cannot be
put in the FPGA instantly; a full reconfiguration may take up to several seconds. For
time-critical applications, this may be too slow. Another disadvantage of the large
configuration space is the relatively large physical overhead required to configure
each logic block. Therefore, an FPGA device is large and consequently its energy
consumption is considerable.

The default programming model for an FPGA is a very low level, as the developer
has to describe all individual combinatorial circuits and memory elements. Example
programming models include VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language (VHDL) [], Verilog [] and SystemC []. This makes the
design very complex and fault sensitive []. Furthermore, fully testing an FPGA
application can be very difficult [, ].

... Coarse-grained reconfigurable: DSRA

As a trade-off between energy-efficiency and flexibility, coarse-grained reconfigurable
architectures turn out to be good alternatives []. Coarse-grained reconfigurable
architectures provide the flexibility needed for a lot of DSP algorithms, while the en-
ergy consumption is relatively small compared to the other architectures mentioned
(except for the ASIC which has a low energy budget, but is limited to a fixed function-
ality). Examples of DSRA are the Montium TP [], the PACT Extreme Processing
Platform (XPP) [], the Silicon Hive AVISPA reconfigurable accelerator [] and
the Pleiades architecture proposed by the University of Berkeley []. For a detailed
overview of coarse grained reconfigurable architectures, we refer to [].

In this section a short introduction is given to the Montium TP, as this processor
is used throughout this thesis in examples and case studies.

Example DSRA: Montium TP The Montium TP is a coarse-grained reconfigurable
tile processor that was developed in the Chameleon project [, , ]. The hardware
architecture and support tooling are now further developed by Recore Systems [].
Within the core, three main regions can be identified: the Processing Part Array (PPA),
a control part consisting of a sequencer and a configurable sub-system consisting of
several configurable decoders and instruction registers. Figure . shows a Montium
tile, consisting of the Montium TP (shown in the upper part) and a NI that connects
it to the NoC (shown in the lower part).

To enable energy-efficient processing, the Montium TP was designed such that the
program execution overhead is as small as possible. Such efficiency can be obtained
by reducing the signal activity. Therefore, the datapath is configured such that during
several clock cycles only a limited number of control signals changes polarity, by
switching from a logical value 0 to a logical value 1 or vice versa. Hence, the energy
consumption is mainly caused by data transport and Arithmetic Logic Unit (ALU)
activity.
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Figure . – Montium TP (modified from [])

Processing Part Array The processing core of the Montium TP consists of an
array of Processing Parts (PPs), each containing an ALU, a local interconnect and
two memory units. A memory unit contains a  × -bit Static Random Access
Memory (SRAM) and an Address Generation Unit (AGU) that can be configured to
generate address patterns for its SRAM. This reduces the load on the ALUs, since they
are not bothered with the load caused by address calculation. However, for irregular
memory access patterns, the ALUs can be employed to calculate addresses. These
calculated addresses can then be loaded into the AGU, which will execute the memory
access operation. Only  bits out of a -bit word are used to address one of the 
memory positions. The calculated address can be used in two ways: the integer lookup
uses the lowest  bits, while the fixed-point lookup uses the highest  bits of the
-bit word. The SRAM memories are single ported, so either one write operation or
one read operation can be done at a time. The ALUs are connected to these memories
via ten Global Buses (GBs) which can also be accessed by the NI. In total, each ALU
contains  register banks (labeled A to D) which can be read simultaneously, and
each ALU can receive an intermediate value from its right neighbor ALU via the
east-west connections. Using these  inputs, multiple operations can be executed
simultaneously and from each ALU at most  results can be sent to the west output
and both outputs connected to the interconnect respectively. Figure . shows the
internal structure of one ALU.

The upper part, level , is used for applying bitwise and logic operations like
and, or and shift. Additionally, in this level simple arithmetic operations can be done
like add, sub and neg and saturated equivalents of these operations, which are useful
for DSP applications. Four function units are used for executing the operations
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Figure . – Structure of one Montium ALU

mentioned. Each function unit generates status flags to indicate the occurrence of
overflow, a negative result or whether its result equals zero. The function units can be
used to execute up to four operations in parallel in level  of the ALU. Obviously, for
this large number of operations a lot of operands need to be available. Four register
banks (A to D) can be used as inputs for the ALU.

In the second level a MAC operation can be executed. For the multiplication, the
input operands are selected using multiplexers mX and mY. These multiplexers can
access either the outputs of the first level, named Z1A and Z1B, or the register files A
to D. Next, the addition is performed on either the result of the multiplication, mX
or mY, and the register files B and D, level  outputs and the east input. The east
input is connected to the right neighboring ALU to allow a chain of operations over
multiple ALUs. For the selection of the right operand, the status flags generated by
the four function units can be used. A small encoder takes the four status flags and
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creates a status bit (SB), which can be used to dynamically select the right operand
for the adder. This operand is selected from inputs B and D or from Z1A and Z1B.
Since the operand selection is done within the same clock cycle as the rest of the ALU
operations, it enables an efficient single cycle conditional operation. The result of the
addition is made available for the left neighboring ALU via the west signal and can
be used in the third level in the ALU via the ZA signal.

In the third level of the Montium TP’s ALU, a butterfly operation can be done.
This operation is typically used in FFTs to enable an efficient implementation by
using symmetry in the operations. More detail on this is given in section ... Finally,
up to two results of the ALU operation can be selected via the output multiplexers
mO1 and mO2. Since the ALU is not pipelined, the entire operation from inputs A,
B, C and D to outputs o1 and o2 is done within one clock cycle. Moreover, because
it supports only single-cycle instructions, the program flow is fully deterministic.
Almost all arithmetic operations in the ALU can be executed in either integer modus
(operating on the  rightmost bits) or in . fixed point modus (the leftmost bit is
used as sign bit whereas the other bits contain the fixed point fraction). In order to
avoid overflow, the intermediate values can be saturated.

Control The control part consists of a sequencer, which contains an instruction
memory in which the program is configured. Therefore, the instructions do not need
to be fetched from the main memory as they are already present within the sequencer.
The sequencer could be considered a state machine that defines the current and
next system state by generating output signals, which are used for controlling the
configuration part.

Configuration The configuration part consists of a set of decoders, in which
parts of the instructions are stored. Figure . shows the  decoders: a memory
decoder, which contains the instructions required to control the memory units, an
interconnect decoder that is used for controlling the Global Buses between memories
and ALUs, a register decoder that is used for controlling the local registers and finally,
an ALU decoder which contains the control signals for the ALUs.

By using  stages of instruction decoding, the instruction size and therefore its
memory footprint, is minimized. Figure . shows an overview of the compression
mechanism. First, the sequencer selects the current instruction using the Program
Counter (PC). The instruction consists of several fields, each of which is used for
addressing one of the four decoders: ALU decoder, memory decoder, register decoder
and interconnect decoder. From the selected instruction, the ALU decoder instruction
is selected (dec [4] in the picture) and used for indexing the ALU decoder (at position
, in the figure). Similarly, the decoder contains several instruction fields, one for
each ALU, that are used to address the configuration registers for each of the ALUs. In
the example, the decoder addresses the instruction for ALU that is stored in cr [1],
which is the configuration register instruction . This instruction contains the control
signals that are used for controlling the data path elements. For example, it selects
which register file inputs are used for the ALU (regA [1] and regC [2]), it selects the
ALU operation (add) and it selects to which ALU output the result is written (out2).
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Figure . – -stage encoded Montium instruction showing the instruction decoding for ALU 

Table . – Characteristics of the Montium TP

Word size  bits
Area .mm2

Memory size  ×  kB
Clock frequency MHz
CMOS Technology . µm TSMC
Voltage . V
Power . – .mW/MHz

By modifying either the contents of the sequencer instruction memory, the de-
coder memory or the configuration registers, the Montium TP can be reconfigured.
Moreover, since the -stage encoded instructions can be stored in small memories,
reconfiguration can be done quickly. The Montium TP’s total configuration address
space consists of about . kB [].

Table . summarizes the characteristics of the Montium TP. It has a small area
footprint (.mm2) and a relatively low clock frequency (MHz), such that it has
low power demands for executing the program.

.. Network-on-Chip

As discussed before, the cores in an MPSoC are interconnected by a NoC. Many
different on-chip networks have been proposed [–]. Usually they are based
on the same principles but different design choices lead to small differences. The
next sections describe typical basic properties of Networks-on-Chip: the topology,
communication protocol, routing method and types of communication. These are
needed to understand the techniques presented in section .. They stem from the
NoC used in the Annabelle chip (see section ..). An extensive overview of NoC
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related techniques is presented in [].

... Topology

The NoC consists of a set of routers and a set of links connecting the routers. The
way in which routers are connected is determined by the NoC’s topology. Examples
of topologies are presented in section . of []: for example, the mesh structure
(the routers are positioned in a rectangular grid, with a connection between each two
neighboring routers on a row or a column) or a torus (comparable to the mesh, but
with the leftmost router of each row connected to the rightmost router of that row
and the upper router in each column connected to the lower router in that column).
For this thesis a regular mesh structure is assumed.

... Network protocol

The routers in the NoC are connected via links, organized in a regular structure as
explained in the previous section. A link between two routers consists of one or
multiple unidirectional physical channels (called lanes), for example as shown in
Figure ..

Definition . A link is a physical connection between two NoC routers. It consists
of one or multiple lanes via which data can be transmitted.

Multiple lanes can be used simultaneously. The bandwidth provided by a single
lane is determined by the clock frequency of the routers, the number of parallel
wires and the length of the wires. For a more fine-grained bandwidth control, the
lane can be shared in time by using one or few Virtual Channels (VCs), such that
a single physical channel can be used for multiple logical channels simultaneously.
Using an arbitration scheme (for example, Time Divison Multiple Access (TDMA) or
Round Robin), the lane is reserved for one VC at a time such that there will be no
contentions. Thus, the VC has a guaranteed minimum bandwidth and a guaranteed
maximum latency, which is independent of traffic via other VCs.

Definition . A lane is a part of a link, which can be used independently from other
lanes. It provides flow control, by acknowledging data transmissions. Its bandwidth
is shared in time over one or multiple VCs, which form logical channels.

A connection between any source and any destination in the MPSoC can be made
by mapping a logical channel on a sequence of VCs via one or multiple routers. The
source can write into the channel without any knowledge about the mapping on
VCs and routers, but with the guarantee for a certain throughput and latency. Data
written into the channel is transported in-order, such that it can be read in the same
order by the destination.

The minimum size of a data sample written into a channel is called a flit [].
Figure . depicts the structure of one flit, as used in our Networks-on-Chip []. It
consists of a -bit type field (FT), which is used to provide control information, along
with a -bit data field. The four flit types and their encoding are shown in Table ..
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Figure . – NoC link structure (modified from [])
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Figure . – Generic flit structure

Table . – Flit type encoding

Encoding Flit type Symbol

 Data D
 Header H
 Tail T
 Command C

A sequence of flits forms a packet. Typically, a packet is started with a H flit and is
terminated by a T flit.

As depicted in Figure ., a lane consists of the signals for transmitting the
flit data (using the FT and Data signals) via a specified VC, and uses  signals for
flow control. Flow control between routers is used to prevent buffer overflow. The
transmitting router asserts a data valid signal (DV) to indicate that the FT, Data and VC
signals are valid. The receiving router replies with an acknowledgement signal (ACK)
to indicate that it is ready to accept data (see Figure .).

... Switching techniques

There are two main approaches for routing data through a NoC []: by distributing
the routing information to each of the routers via a separate circuit (referred as
circuit-switched) or by embedding the routing information within the data streams
(referred as packet-switched). The two approaches lead to circuits with different
characteristics.
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Circuit-switching Generally speaking, circuit-switched networks consume a rela-
tively small amount of energy since the routers mainly consist of switches and do not
have to inspect the received packets [, , ]. Therefore, data arriving at a certain
input channel can always directly be sent to a pre-determined output channel. When
the routing has to be changed, the NoC has to be (partially) reconfigured. For this
reason, a circuit-switched NoC is more efficient for high-throughput streams that are
fixed for a relatively long time.

Setting up a connection between a source and a destination in a circuit-switched
network is done as follows. First a route from the source to the destination via one or
multiple routers is calculated. For each router in this route, the appropriate VC of
the corresponding input port and VC of the corresponding output port are connected
by writing a simple routing table inside the router. This routing table can only be
accessed via a dedicated configuration interface, to keep the routing control and
data channels independent. If all routers have been configured, the source can safely
write data into the channel and the connection will remain open until the routing
tables are reconfigured again.

Packet-switching In packet-switched networks, the routers extract the routing
information from the packets at runtime. This header extraction process introduces
a higher energy consumption for the routers. However, they do not need to be
reconfigured when the communication pattern changes. Therefore, they are more
flexible compared to a circuit-switched NoC. In the packet-switched NoC presented
in [], the H flits are used to create a connection for all following C and D flits,
while a T flit tears down the connection (see Table .).

Since the header of a packet defines how a router should forward the remainder
of the packet from a VC of an input port to a VC of the output port, the connection
can only be made as soon as the header has been received. A tail flit, indicating the
end of a packet, also indicates that the routing information inside the router can be
erased and the connection is destroyed. This flit is then forwarded to the next router
such that the rest of the channel can be closed.

... Traffic classes

The application domain to be supported by the NoC is a key issue when designing the
NoC. There can be large differences between requirements of the various applications
within the application domain. The large differences are supported by introducing
different traffic classes. For example, an application with strict execution deadlines
requires deterministic behavior of the NoC, such that guarantees can be given for the
latency and throughput of the communication streams. This behavior is provided
by the Guaranteed Throughput (GT) traffic class. Using GT traffic, each of the
communication streams is given a fixed bandwidth. The given bandwidth guarantees
the throughput of the stream, while the schedule provides a guarantee on the latency
of the stream. Since both are deterministic, their combined behavior can be analyzed
deterministically.

Another type of traffic is the Best Effort (BE) traffic class. This traffic class
typically services applications with less strictly defined behavior (for example, where
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bandwidth and latency vary) or have less predictable behavior (for example, control
messages sent at irregular time intervals to reconfigure parts of the MPSoC).

The circuit-switched NoC presented in [] supports GT traffic only, while the
packet-switched network presented in [] supports GT as well as BE traffic. However,
the packet-switched network is more suitable for applications with dynamically
changing communication patterns [].

.. Network Interface

The NI is the medium between the NoC and the tile processor. The most important
design decisions depend on the requirements enforced by both the NoC and the
tile processor. Typical tasks that are performed by the NI are clock synchronization,
communication protocol conversion, buffering and tile processor control.

A vast amount of research has been done on NIs for off-chip communications [,
] (for example in Local Area Network (LAN) connections). For on-chip communi-
cation, much effort has been spent on bus interfaces and bridges. However, for NoC
interfaces, there has been done limited research. The Æthereal NoC is based on time
slot allocation at design-time, such that the network routers can be reduced to small
switches with minimal buffering and guarantees can be given for data transmitted by
a processor via the NoC to another processor. Allocated time slots are assigned to the
NI, which consists of a buffer for each possible connection to another processor [].
Hence, the NI is responsible for transmitting data during the assigned time slots. As
a result, communication between two processors is done via two deterministic NIs
and a deterministic NoC. Dally and Towles [] describe a NI that is integrated in the
processor. Only the physical interface protocol is implemented in hardware; higher
level protocols have to be implemented in software. Liang [] presented a combined
NI and router. A combined synchronous/asynchronous NI for both on-chip and
off-chip communication is presented in [].

A common property of most network interfaces is their NoC abstraction layer that
enables global addressing from the perspective of the local tile. Having a notion of a
global address space means that each tile processor has to know the entire system
state to ensure that a certain address can be read or written without destroying
another tile processor’s state. Advanced memory arbitration and cache coherency
techniques may have to be used to avoid such problems. Hence, the concept of a
global address space does not scale well with large numbers of processing tiles. We
propose to use a stream based programming model (presented in chapter ) where
addressing is implicit within the data streams. Therefore, our NI does not provide
an address conversion but is only accessed via streams. At first sight this sounds
like message passing [, ], but our model is not based on explicit read and write
operations that are typically used in message passing. However, on top of our stream
model a global shared address space could be used, but we assume that memory
coherency is done in software.
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. Hydra Network Interface

In the previous section we introduced a minimal set of basic building blocks required
to create an MPSoC. As mentioned, not much effort is spent on research on NIs as
a separate basic building block, due to the common integration of the NI in either
the tile processor or the network router. In this section we present the Hydra NI
in three steps. First, an overview is given of the requirements of the NI based on
its environment (tile processor and router). Second, the requirements are used to
describe the design structure. Finally, the realization and performance results of the
design is presented.

.. Requirements

Due to the design choices made in the tile processor and the NoC, the requirements
for the NI are well defined. In this section, the design considerations are introduced to
support the realization presented in section .., where each of these requirements
will be evaluated in section ...

... Operation mode

A typical application execution by the tile processor may consist of the following
subsequent steps. First, the instruction code is configured into the processor’s
configuration memory. Next, input data for the operation is transferred to the
processor. Then, the processor executes the configured program and the result is
transferred, after which the processor can be reconfigured or new input data can be
transferred. We have two mechanisms for transferring data between the NoC and the
tile processor: block-mode operation and streaming-mode operation, illustrated in
figures .(a) and .(b). Two main differences can be identified between both modes:
the initiator of a data transfer differs per mode and the processing efficiency due to
concurrency in computation and communication varies.

Some processes require all the input data to be present in the local memories be-
fore the execution can be started. This operation mode is called block-mode. Typically,
a block-mode operation is done in three stages, as shown in Figure .(a): (a) the
input data is loaded into the local memories via a Direct Memory Access (DMA)
transaction, (b) the process is executed and (c) the output data is fetched from the
local memories with another DMA transaction. In this operation mode the network
interface acts as a master for its tile processor. A second, external tile processor
operates as initiator of the input and output DMA transactions. For each of the
stages, the initiator configures the NI such that the NI can access the local memory
within its processing tile. To ensure that the transactions are completed successfully,
the initiator and the NI need to synchronize such that a transition between NI states
can be made without loss of data. To make sure the processing does not start before
the input data has been fully loaded, the NI halts the tile processor during the data
transfers.

In block-mode operation tiles are event driven, which means that the process
execution is started when an external source has prepared the input samples and
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(b) Streaming-mode operation. EOS denotes End
of Stream.

Figure . – State transition diagrams for block-mode and streaming-mode operation

gives a start command. As long as no command is received, the process is halted.
Using this operation mode, communication and computation are fully separated. This
may be useful in case the input data is provided on an irregular basis, for example if
the data was transmitted in a different order than expected by the processing tile or
if the input data size varies per packet.

In contrast with the block-mode operated tile processor, some tile processors
support reading input data and writing output data during program execution.
This operation mode is called streaming-mode and its state transition diagram is
shown in Figure .(b). Since the tile processor is in control of input and output
communication, the NI acts as a slave of the tile processor. Typically, during the
execution of a streaming-mode process, connections for the input data and output
data remain open. Only at the time a tile processor is reconfigured, its outstanding
connections are closed. Hence, after opening the connection (see section ...)
the raw data stream can be written to the output channels without the need for
packetization. Similarly, the receiving tile processor reading that channel does not
need to de-packetize the stream and can use it immediately. This is an advantage for
both the sender as well as for the receiver, because it saves the packetization costs for
both. Since packetization is not done in streaming-mode, the NI can immediately
forward the data stream without introducing a packetization latency while in block-
mode the stream is slightly delayed due to the packetization.

In streaming-mode operation the system is data driven, which means that a
process on a tile is started as soon as enough samples are available. This may be before
the last sample has been received, providing a parallel execution of communication
and computation. This means that in general for streaming-mode communication
less buffer space is required. However, for streaming-mode processes the usage and
order of input data has to be known in advance. This implies that such a process
needs to know what to do with the next input data: a possible reordering may have
to be done before the data can be used. Clearly, this also holds for the output data.

Whether block-mode or streaming-mode is used, is determined by the application
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programmer and strongly depends on the characteristics of the application process.
When the application operates in block-mode, no computation and communication
occurs at the same time. This eases the implementation of individual processes, but
gives some overhead when composing an application out of individual processes. For
streaming-mode applications the programmer has to carefully plan how and when
the communication takes place. This can be hard, especially when the ordering of
samples within a data stream differs from the expected order such that reordering is
required, or when the ordering depends on one or more parameters.

... Throughput and latency

Streaming applications with explicit throughput and latency requirements form the
application domain for our intended MPSoC platform. All involved components
within the MPSoC are responsible for the overall performance of the application
at run-time. Since the NI is used as a clock synchronization and communication
protocol conversion, its throughput and latency may be critical for the performance
of a communication stream. Therefore, the throughput of the NI should be optimized
such that either the throughput of the tile processor or the throughput of the NoC is
the limiting factor. In other words, the NI is not the critical factor.

When assuming the NoC supports guaranteed throughput traffic, the NoC is
typically not a limitation for the real-time guarantees that are required for the
application. The latency caused by communication via the NI needs to have a strict
upper bound and should be relatively small compared to the communication time in
order to satisfy the real-time guarantees of the overall system. Data received from
a tile processor should be packaged and transmitted as fast as possible by the NI.
Therefore, only limited buffering can be allowed inside the NI.

... Clocking regime

A tiled architecture provides the possibility to operate individual processors at
different clock speeds. Such architecture is said to have a Globally Asynchronous
Locally Synchronous (GALS) clocking strategy, because the processors are locally
synchronous but may operate in an asynchronous fashion at global level [].

A signal that crosses the boundary of two clock domains should be synchronized
before it is read. Otherwise, reading the signal may result in corrupted data. In [],
the following definitions are given:

Definition  (Asynchronous). A signal is said to be asynchronous when it is not
related to any local clock.

Definition  (Synchronous). A signal is called synchronous if it is updated with the
same frequency as the local clock and it is in phase with the clock.

The MPSoC presented in [] uses a dedicated clock domain for each tile proces-
sor, derived from one master clock. Each of the derived clocks is exactly in phase with
the master clock, but has a lower clock frequency. The master clock’s frequency fNoC
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is MHz and the frequency of a derived clock fTP is derived from this frequency
using a clock divider that uses a parameter n:

fTP (n) =
fNoC

2n
, where n ∈ {0,1,2,3,4} (.)

... Energy-efficiency

Low-power design is required for efficient architectures [–]. A processor’s total
power consumption can be decomposed in static power and dynamic power, shown
in Equation ..

P = Ps + Pd (.)

The static part Ps of the power consumption is mainly caused by leakage of
transistors. With each decrease in technology feature size, the thickness of the
insulation layer between source and drain of a transistor is decreased. Hence, more
electrons are able to leak through this layer, causing loss of energy. The dynamic
power component Pd is caused by charging and decharging the capacitances in
a circuit and by short circuit currents, which happens if the logic values change
polarity.

Equation . gives an approximation of the dynamic power consumption,

Pd = α ·C ·V 2
dd · f (.)

where α is the switching activity, C is the capacitance, Vdd is the supply voltage and
f is the frequency.

In order to lower the power consumption, some of the parameters mentioned can
be fine-tuned. The capacitance C in Equation . is technology dependent and thus
cannot be modified dynamically. The clock net has the highest α of all parts of a
synchronous digital design and the C is large since all synchronous components in a
VLSI design are driven by the clock. Hence, the clock distribution net consumes a
considerable part of the power. When running a processor at a lower clock frequency,
it can also be run at a lower core voltage. Combined, this can give a significant
reduction in the power consumption. Therefore, it is useful to slow down or shut
down the tile clock whenever possible. This can be done by either using Dynamic
Frequency Scaling (DFS), Dynamic Voltage Scaling (DVS) or by applying clock-gating
or power-gating. These techniques are explained in the next paragraphs.

DFS can be used to change the clock generator’s frequency dynamically. Depend-
ing on the required performance, the circuit can be operated at different speeds. The
upper frequency is limited by the circuit’s maximum delay. Therefore, the clock
generator should generate a clock signal with a minimum period length equal to the
maximum delay in order to guarantee correct signal behavior.

Usually, clock generators are based on Phase Locked Loops (PLLs) []. Such a
clock generator consists of a phase detector that drives a Voltage-controlled oscillator
(VCO). The output of the VCO is fed back to the phase detector, which compares the
phase of a reference clock with the phase of the VCO output. In this way, the output
frequency of the PLL locks to the reference frequency. Because of the limited loop
bandwidth, a stepwise change of the reference frequency will not immediately yield
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Figure . – Signal rise time t versus source voltage Vdd

the desired new clock signal. Therefore, frequent switches in the clock frequency
should be avoided.

By increasing the source voltage, the rise and fall times of signals within a circuit
become shorter, resulting in a faster circuit response. The delay of an inverter using
a varying operating voltage can be described by an α power model, as given in
Equation . [, ].

t =
KVdd(
Vg −Vt

)h (.)

where t is the signal propagation delay, K is a proportionality constant, Vdd is the
source voltage, Vg is the gate voltage, Vt is the threshold voltage and h a technology
dependent parameter, which is typically in between h= 1 and h= 2 [].

A reduction of the operating voltage Vdd gives a considerable improvement on
the dynamic power consumption (see Equation .), but increases the circuit delays
at the same time. The relation between Vdd and t, as presented in Equation ., is
shown in Figure .. To guarantee stable behavior of all individual signal updates in
the IC, the total delay of all subsequent transistors between two registers should be
smaller than one clock period. In case only parts of the IC are actually used, DVS
could be used to lower the voltage such that those parts of the IC are still stable.
Similarly, when the clock frequency goes down, the voltage may also be scaled down.

It is possible that, at a certain moment in time, the tile processor has finished its
computation before new data samples have arrived. To save energy, the tile processor
should be halted until these new samples arrive.

Clock-gating is a technique used to disable parts of the clock tree []. When all
synchronous components driven by this clock tree are not going to be updated for
a certain period, their clock can be disabled during that period. Since clock-gating
can reduce the switching activity of parts of the clock tree, this may contribute
significantly in reducing the dynamic energy consumption. However, the gating
elements used for disabling the clock tree have to be added to the design before the
IC is built. Hence, clock-gating can not be altered dynamically for any arbitrary
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synchronous component. Though, the gating elements in the clock tree can be
controlled at run-time.

A similar technique that is even more drastic is power-gating [, ]. With this
technique, entire chip regions connected to a common power source (called a power
domain) are powered down. Therefore, both static and dynamic power consumption
can be reduced considerably. Within a power domain, all stateless components can
be powered down without problems. Stateful components (for example, memory
cells), however, will be reset upon power down, possibly resulting in a corrupted
state. Internal circuits may be able to restore the state as soon as the power is back
up, but during that period circuits externally to the powered down components may
receive wrong input values. To avoid this, isolation cells are added that store the
last output value of the circuit before power down, such that the external circuits
remain operational. Furthermore, the state has to be retained by either copying it to
a memory cell in a power domain that is not powered down, or by adding special
retention memory elements that are capable of saving the internal state when they
are powered down.

... Communication to Computation ratio

As mentioned in section ..., depending on the operation mode, computation
might overlap with communication. We introduce the following two definitions:

Definition  (Computation time). The computation time Tcomp is the time required
to execute the process P .

Definition  (Communication time). The communication time Tcomm is the time
needed for both the input data transfer Cin and the output data transfer Cout, while
the processor is not processing.

Note that the computation time Tcomp is related to the operating frequency of the
tile processor: computation time Tcomp = cccomp/fTP, where cccomp denotes the num-
ber of clock cycles required for computation. The same holds for the communication
time: Tcomm = cccomm/fTP where cccomm denotes the number of clock cycles spent
during communication.

The communication time can also be considered as the overhead due to com-
munication. The ratio of the communication and computation times is called the
Communication to Computation ratio (C/C):

C/C =
Tcomm

Tcomp
(.)

Block-mode processes can only be started when all input data is received. This
means there is no overlap in time between the communication and computation and,
therefore, a change in the communication performance does not influence Tcomp.
However, delays caused during the communication (for example due to blocking in
the network) do influence Tcomm.

Streaming-mode processes behave slightly different. Since communication and
computation are done in parallel as much as possible, Tcomm is reduced significantly.
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Figure . – Execution of a process, indicating computation, communication and slack time

Note that this also makes the total computation time Tcomp dependent on delays
caused by the communication. While Tcomp is comparable for both modes, Tcomm
for block-mode processes is a lot bigger than for the streaming-mode processes.
Therefore, the C/C ratio for a block-mode process is considerably higher than the
C/C ratio for a streaming-mode version of this process. For example, consider a
filter that operates on a sequence of samples. A block-mode implementation of that
filter would require all input data to be available before the execution can be started.
Obviously, such an implementation would have a C/C ratio that is much higher
than a streaming-mode implementation of the same filter, which can start with the
processing immediately upon reception of the first sample.

Assuming that, for the streaming application domain, Tcomm and Tcomp remain
constant for a reasonable time and that no blocking occurs during the input and
output data transfers, some estimates can be given about the required clock frequency
fTP of the tile processor. Assume a process has a periodic execution, where each
execution has to be done within one time slot Tframe and the tile processor only runs
process P . During the period within one time slot when the execution has already
finished, the tile processor is idle. This time period is called slack-time and is defined
as follows:

Tslack = Tframe −
(
Tcomp + Tcomm

)
(.)

An example of two process executions is shown in Figure .. More detail on
the influence of both operating modes on the execution of a process is given in
section ...

Furthermore, we assume the clock is generated with a clock divider as specified
in Equation .. If Tslack >

Tframe
2 , the clock divider setting n can be increased by 

without consequences. In fact, the clock divider parameter n used for the derivation
of the tile processor clock fTP can be safely chosen as follows:

n= min
(⌊

log2
Tframe

Tcomm + Tcomp

⌋
,4

)
(.)

where the range 0 ≤ n ≤ 4 is determined by the clock divider settings supported by
the architecture as specified in Equation ..

From this estimation we can conclude that a decrease of the C/C ratio enables a
lower tile processor clock frequency, which contributes to a decrease of the energy
consumption. However, this choice for n also influences Tcomm. Obviously, the delay
(in NoC clock cycles) increases when the tile processor clock is slowed down. This
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Figure . – Hydra network interface

may give communication problems for the tile processor that has to receive the
output data. Therefore, n has to be chosen carefully and requires an application-level
analysis. In chapter , the C/C ratio will be evaluated for different kernels.

.. Design

The NI used for connecting the Montium TP to the Networks-on-Chip is implemented
by the Hydra []. Figure . shows the structural organization.

At the left side, the outgoing data path from the Montium TP to the NoC is found.
The right hand side shows the incoming data path, from the NoC to the Montium TP.
In between, the control unit is depicted. It controls both the incoming and outgoing
data paths as well as the control signals to the Montium TP. Furthermore, Figure .
shows the two clock domains in which the NI operates. The lower parts (channel
multiplexing and a part of the buffering) are operated using the NoC clock frequency.
The components located in the rest of the NI (flit (de-)construction, crossbars and
control unit) operate at the Montium TP’s clock frequency.

The Hydra was primarily designed for the circuit-switched NoC presented in [].
This is a NoC operating at  MHz, consisting of  lanes with  VCs per lane.
Such a NoC provides a huge bandwidth, which is not required for typical energy
efficient applications. A scaled down version of the NoC router was also used in the
Annabelle architecture [], where it is operated at  MHz. As this equals the
upper operation frequency of the Montium TP, a maximum of  channels is expected
to be large enough to provide the bandwidth required by a typical Montium TP
application. The  channels are implemented by  lanes, each providing one VC. The
choice for a single VC was made because this decreases the NoC router complexity

In Greek mythology, the Hydra was a mythological water creature with many heads. It guarded
the lake of Lerna, which covered an entrance to the underworld. The heads symbolize the data
parallelism of our network interface and the covered entrance can be seen as the entrance to the NoC,
which is abstracted by the network interface
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while the additional costs (larger area due to increased buffering and wires) are still
acceptable.

The NI could also be used in combination with the packet-switched NoC pre-
sented in []. That NoC architecture uses a single lane per link, with  VCs per lane.
In the next sections we will elaborate on the generic design of the Hydra NI, where
the NoC instance of the Annabelle architecture presented in [] is considered as
reference architecture.

... Data path

To ensure a high throughput, the Hydra consists of multiple parallel data paths. For
each VC in the NoC, it has a separate FIFO buffer and crossbar connection such that
it offers the full bandwidth as provided by the NoC. Furthermore, since input and
output communication can be done in parallel by the Montium TP, the Hydra’s data
path consists of separate input and output parts that run in parallel.

Channel (de-)multiplexing Packets arriving from a NoC lane are split into sepa-
rate VCs by the demultiplexer. The VC packets are forwarded to the FIFO buffers for
storage and synchronization. This approach enables a scalable design, as all physical
channels in the NoC connection are mapped on VCs such that the NI only has to scale
with the number of VCs. Therefore, the internal behavior of the NI is independent of
the NoC architecture chosen.

Buffering Per VC a dedicated buffer is used to store received packets. Such a buffer
is implemented by First In, First Out (FIFO) [, ]. The buffers are located in two
clock domains: the NoC side operates at the NoC frequency where the Montium TP
side operates at the tile frequency.

Figure . shows the internal structure of a FIFO. It consists of a memory which
can be simultaneously written by a source and read by a sink. The source uses a write
clock clkw and accompanying write enable signal we to store its value din. Similarly,
the sink uses a read clock clkr and a read enable signal re to fetch a value dout from the
memory. Internally, addresses are generated for the memory using read and write
pointers. Furthermore, Figure . shows the full and empty signals, which are status
signals that give feedback to the source and sink.

A write action to the FIFO can be done as long as it is not full and a read action
from the FIFO can be done as long as the FIFO is not empty. The FIFO buffer is
implemented by a dual-port memory with separate read and write pointers, behaving
as a cyclic buffer. Equation . defines the functionality of the pointer logic blocks.

rp [t+ 1] =
{

rp [t] + 1 mod FIFO DEPTH if (re [t] & ¬empty [t])
rp [t] otherwise

wp [t+ 1] =
{

wp [t] + 1 mod FIFO DEPTH if (we [t] & ¬full [t])
wp [t] otherwise (.)



 Chapter . Network Interfaces for a Reconfigurable Tiled Architecture

memory

full flag
logic

write
pointer

logic

full

we

din

clkw

read
pointer

logic

empty
flag logic

empty

re

dout

clkr

Figure . – Internal FIFO structure

As shown in Figure ., the full and empty flags are derived from the pointers. A
straight-forward implementation is:

empty [t] =
{

false if (rp [t] < wp [t])
true otherwise

full [t] =
{

false if (wp [t] < rp [t])
true otherwise (.)

However, the definitions in Equation . are ambiguous for the case where the
pointers are equal. In that case, the flags would indicate both that the buffers are full
and empty at the same time, which is impossible. Hence, the pointer definitions are
extended with a phase φ. The internal pointers are incremented in size such that
they count twice the buffer length:

rp′ [t+ 1] =
{

rp′ [t] + 1 mod 2 ∗ FIFO DEPTH if (re [t] & ¬empty [t])
rp′ [t] otherwise

wp′ [t+ 1] =
{

wp′ [t] + 1 mod 2 ∗ FIFO DEPTH if (we [t] & ¬full [t])
wp′ [t] otherwise (.)

The pointers that are actually used to address the memory element are derived
from these internal pointers:

rp [t] = rp′ [t] mod FIFO DEPTH

wp [t] = wp′ [t] mod FIFO DEPTH (.)

Note that only half of the internal pointer range is used for the memory pointers.
The other half is used for the generation of the full and empty flags. This half defines
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the phase in which the read and write pointers are:

φrp′ [t] =

{
false if (rp′ [t] < FIFO DEPTH)
true otherwise

φwp′ [t] =

{
false if (wp′ [t] < FIFO DEPTH)
true otherwise (.)

Now, the full and empty flags can be generated from the memory pointers and the
phase information:

empty [t] =



true if
(
wp [t] = rp [t] & φrp′ [t] = φwp′ [t]

)

false if
(
wp [t] > rp [t] & φrp′ [t] = φwp′ [t]

)

undefined otherwise

full [t] =



true if
(
wp [t] = rp [t] & φrp′ [t] = ¬φwp′ [t]

)

false if
(
wp [t] < rp [t] & φrp′ [t] = ¬φwp′ [t]

)

undefined otherwise

(.)

Note that the case where the phases are equal and the write pointer is behind the
read pointer and the case where the phases differ and the write pointer is ahead of
the read pointer are not valid cases. In order to get in such a situation, the reader
must have read from the buffer while is was empty. Such a situation can never occur.

Since the FIFO is used as a synchronization device between two clock domains, it
has separate clock inputs for the read side and the write side (shown in Figure .).
The pointer update takes place immediately after the transfer. However, due to
setup and hold times the updated pointer value is only valid after a certain period τ .
During that period, glitches may occur in the individual bits of the counter. Hence,
if the full and empty signals are implemented with asynchronous logic, they are
sensitive to these glitches. If the rising edges of the read clock clkr and the write clock
clkw of the FIFO are close together (|clkr,↑ − clkw,↑| � τ), the full and empty signals
may be read incorrectly due to these glitches []. This can be avoided by adding
synchronizers before the full and empty flag logic blocks. For example, the read
pointer (updated at the rising edge of the read clock) is fed into a flip-flop that is
clocked at the rising edge of the write clock and its output is fed into the full flag
logic block.

In our case, the clocks are generated with different frequencies but the rising
edges are tightly aligned. This is because the generated clocks satisfy the relation
defined in Equation .. As a result, glitches on the full and empty signals only occur
immediately after the rising edges of both clocks, hence the read or write transaction
is done correctly. Therefore, additional synchronization means are not required.

Crossbar The NI contains two fully connected  ×  crossbars. These crossbars
consist of large multiplexers to allow any connection between input and output.
Figure .(a) shows the internal structure of the input crossbar, which is the crossbar
on the right side in Figure .. The outgoing crossbar is depicted in Figure .(b).
It is possible to connect multiple VCs to one Global Bus (GB) at the same time, as
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Figure . – Internal structure of the crossbars

can be seen in Figure .(a). Since each GB is connected to the input VCs via a
wired-or, there will not be a risk for short circuit current but in the case multiple VCs
are connected to the same GB, data corruption will occur. However, since the control
signals for each of the VC multiplexers are generated synchronously, this situation
can easily be avoided.

Flit construction & deconstruction The network protocol conversion is done by
the flit construction and deconstruction blocks. For outgoing NoC communication,
packets are created and transmitted to the NoC. The data received from the Montium
TP via the crossbar is annotated with a flit type and stored in the FIFO buffers. The
flit construction is done asynchronously, so the latency from the crossbar output
to the buffer inputs is less than one clock cycle. Alternatively, it is also possible to
transmit a few flits out of a small configurable storage ROM. For each VC, one ROM

Technically, a storage ROM is implemented as a register bank that can only written at run-time via
the configuration interface. Functionally, however, a storage ROM can only be used as a ROM by the
Montium TP.
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is available in which up to  flits can be configured. During execution, the Montium
TP can access these Read-only Memories, select a flit and send it to the NoC (see also
section ...).

The flit deconstruction block separates the flit into type and data. The data is
transmitted to the crossbar and the flit type is passed to the control part. Again,
this operation can be done asynchronously, hence the latency of the data stream is
not increased. How an incoming flit is deconstructed and which part of the data is
passed to the crossbar, is determined by the control part of the Hydra.

... Control part

The middle part of Figure . shows the control part, where incoming packets are
analyzed and the internal data path control signals and Montium TP interface signals
are generated. These signals are all generated at the TP clock frequency by Message
Execution Modules, where each module has a dedicated interface to the Montium
TP. Figure . shows the Streaming interface, which is used by the Program control
module, the Program Control interface which is used by the Program control module
and Flow control module, the Configuration interface that is used by the Configuration
module and the DMA interface that is used by the DMA module.

Flow control The packets received from the NoC are inspected by the flow control
block. It detects the start of the package, indicated by a command flit. After decoding
the command, it enables the related message execution module for further packet
handling. The rest of the packet is not modified by the flow control block, except
for the tail flit. After receiving a tail flit, the flow control block disables the message
execution module that was handling the packet. Furthermore, it handles IO requests
by the message execution modules for controlling the flit formatting and FIFO
buffers.

Message Execution Modules The message execution modules are used for han-
dling commands received from the NoC. The packets containing these commands
are typically formatted using the following flit sequence:

Definition  (Hydra packet structure). C
[
H [D]+

]+
T

Here the notation [x]+ defines one or multiple occurrences of x. By analyzing
the first flit of a packet (the C flit), the encoded command is obtained. It defines
the structure of the rest of the packet. The command is stored in the  Most Sig-
nificant Bits (MSBs) of the flit (bits .. in the data part of the flit, as depicted in
Figure .). Depending on the command encoded in the MSBs, the other  Least
Significant Bits (LSBs) of the flit (bits ..) may contain additional information used
by the message execution module that handles the command. An overview of the
encoding of all possible commands and the usage of additional information is given
in Table ..

An overview of the different packets that can be transmitted using these com-
mands is given in Table .. The message handling is performed by several message
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Figure . – Structure of a command flit

Table . – Encoding of the command flit in a packet

Symbol
Flit encoding (bit range)

15..13 12..0

Ccfg  -
Cload  input FIFO mask (3..0)
Cretr  input FIFO mask (3..0)
Cstatus  gpo mask (5..0)
Crun  gpi mask (5..0)
Cwait  -
Crst  input/output FIFO mask (7..0)
reserved  -

Table . – Overview of the structure of messages in the Hydra message protocol

Message Handler Message type Packet format

Configuration module Configuration Ccfg

[
H [D]+

]+
T

DMA control
DMA load Cload

[
H [D]+

]+
T

DMA retrieve Cretr [HD]+ T

Program control
Get status Cstatus
Run Crun
Wait Cwait

Flow Control Reset Crst

execution modules, where each module is responsible for one or a few packet types
as displayed in Table ..

There is a slight difference in the usage of control messages in both operating
modes (streaming-mode and block-mode) as shown in Figure .. Figure . shows
the state transition diagrams of Figure ., where the state transitions are now an-
notated with the accompanying control messages that cause a state change. This
example shows the difference between the usage of control messages in both oper-
ation modes. As can be seen, the main difference is in the DMA load and retrieve
transactions, which are not required for the streaming-mode. In the next sections the
operation of the various message handlers is explained.
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Figure . – Control messages used to make state transitions in block-mode and streaming-mode oper-
ation. The control overhead for streaming-mode is considerably smaller than the control
overhead for block-mode.

Configuration module The configuration module is used to reconfigure the func-
tionality in the Montium TP using the NI’s configuration interface (shown in Fig-
ure .). This interface consists of a dedicated address/data based configuration
bus, that is connected to all configurable entities within the Montium TP. The config-
uration bus protocol is very basic, as it is a write-only protocol using a -bit data
signal (c data), a -bit address line (c addr) and a -bit c dv signal that indicates
the transaction is valid. There is no acknowledgement signal to confirm a config-
uration, hence these  signals together form the entire configuration interface. A
reconfiguration of (a part of) the Montium TP is started by enabling the c dv signal
and simultaneously writing address and data information to the c addr and c data
buses. By disabling the c dv signal the configuration transaction is ended.

This configuration bus protocol is implemented in the configuration module and
can be enabled by sending a configuration packet to the NI. For example, Figure .
shows such a packet. A timing diagram of the transmission of this packet and the
start of the execution by the NI is shown in Figure A., where the signals in the upper
part show the behavior at the NoC side according to section .... The input flits
are stored in the FIFO buffers which are operated at the NoC clock clk. The lower
part shows the Montium TP configuration interface, operated at the tile clock clk t.

For a typical configuration, several ranges within the configuration address space
are addressed. Hence, the addresses written to the address bus are often incremented
by . The configuration interface automatically increments the previous address
unless a new address is received, as shown in Figure . and Figure A.. Hiding
incrementing addresses in the input stream is called address compression. This ad-
dressing approach enables arbitrary-length transactions with minimum addressing
overhead. Hence, packets will consist of less flits (decreasing bandwidth require-
ments) and data flits can be transmitted without any redundant information in
between (decreasing packet latency).
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VC0
C 0000 Configuration command
H 0000 Set offset address 0x0000
D 0000 Write 0x0000 to address 0x0000
D 0000 Write 0x0000 to address 0x0001
D 0011 Write 0x0011 to address 0x0002
D 0000 Write 0x0000 to address 0x0003
D 8000 Write 0x8000 to address 0x0004
D 8000 Write 0x8000 to address 0x0005
H 0100 Set offset address 0x0100
D 0006 Write 0x0006 to address 0x0100
D 8424 Write 0x8424 to address 0x0101
D 0447 Write 0x0447 to address 0x0102
D 0070 Write 0x0070 to address 0x0103

...
T 0000 End of configuration

Figure . – Example configuration packet to be transmitted in Figure A.

DMA controller Data can be written to and read from the Montium TP’s mem-
ories and register files using DMA controller inside the Hydra NI. A block of data can
be written directly into a memory of the Montium TP using a burst write, which is
called a DMA load operation. Because, in normal operation, the Montium TP’s inter-
nal memories and register files are not available to external processors, an external
processor has to write a block of data to the Hydra NI which has access to the internal
memories. Similarly, reading a block of data directly from a memory of the Montium
TP can also be done by sending a request to the Hydra NI, which then returns the
requested data. These operations can be done by using the DMA load and DMA re-
trieve commands, which are handled by the DMA controller inside the Hydra NI. The
DMA controller uses the Montium TP’s DMA interface to access the memories and
register files. This interface consists of a dma sel signal that indicates the selection of
the DMA interface. It freezes the Montium TP such that the program is halted. The
dma rw signal indicates whether the DMA operation is a read (dma rw= 0) or a write
(dma rw= 1) transaction. For making the selection between reading the memories
or the registers, the dma mr is made low to select the memories or high to select the
register files. In case of a register file transaction, the dma rs signal is used to choose
between accessing the register files A and C (dma rs= 0) or B and D (dma rs= 1). The
offset address within the selected memory or register file is indicated by the -bit
dma addr signal. By writing the -bit bus en signal, the Montium Global Buses are
directly connected to the data buses of the Static Random Access Memories and to
the selected register files (selected via dma rs) such that SRAMx can be accessed via
GBx. This enables the selection of individual Global Buses for the DMA transaction.

The command flit indicating the start of a DMA load packet enables the DMA
interface. A header flit in the DMA load or retrieve packet is used to select an offset
address within the Montium memory range. For more detailed information on the
memory mapping, refer to []. The next data flit is then written to the decoded
memory location. Similar to the configuration packet, for subsequently received
data flits the memory address is incremented automatically. An example packet
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VC0
C 2001 DMA load command
H F300 Set offset address 0xF300 (PP1 Register file C)
D FEF3 Write 0xFEF3 to address 0xF300
H F500 Set offset address 0xF500 (PP2 Register file C)
D 16F2 Write 0x16F2 to address 0xF500
H F700 Set offset address 0xF700 (PP3 Register file C)
D 5436 Write 0x5436 to address 0xF700
H F900 Set offset address 0xF900 (PP4 Register file C)
D 16F2 Write 0x16F2 to address 0xF900
H FB00 Set offset address 0xFB00 (PP5 Register file C)
D FEF3 Write FEF3 to address 0xFB00

...
T 0000 End of DMA load

Figure . – Example DMA load packet for writing data in the register files, as transmitted in Figure A.

that illustrates a DMA load operation into the Montium TP register files is shown in
Figure .. It shows how a set of coefficients for a FIR filter is stored in the register
files, where one coefficient is stored per PP at a time. The timing diagram of this
transaction can be found in Figure A..

Multiple Global Buses can be accessed in parallel, so it is also possible to perform
multiple DMA transactions in parallel. The DMA interface is shared, so these DMA
transactions can only be performed simultaneously if they are similar (for example,
two write transactions to two memories using the same offset address). This is useful
in situations where multiple DMA transactions are related, for example when one
transaction stores the real part of a stream containing complex numbers to memory
 and a second DMA transaction stores the imaginary part of that stream to memory
. Such a transaction can be initiated by sending a packet via multiple channels, as
shown in Figure .. This example shows how a set of complex numbers are stored
in memories  and  via GB9 and GB10. The command flit C  is decoded to a
DMA load command with argument x. This argument masks the input VCs that
are used for the current DMA transaction. The next expected flit in the DMA load
packet is a header flit. For each masked VCs such a flit is expected. In this case, at
VC0 a header flit H  is received, which indicates that the destination for the data
received from that channel is memory , using offset address . The header flit H
A received from VC1 indicates that the destination for that channel is memory
. After decoding the header flits, the DMA transaction is started by writing the
data from all masked channels to the selected memories. This transaction is also
shown in Figure A..

To read the contents of a memory or register file, the DMA retrieve command
can be used, which is also handled by the DMA controller. A valid DMA retrieve
packet consists of a command flit containing a -bit mask indicating via which output
VCs the retrieved data should be written (similar to the DMA load VC masking as
described above), for each masked VC a header flit is expected that contains an offset

Since the DMA interface uses a single address bus, the offset address for DMA transactions via any
VC other than VC0 uses the address encoded in the header flit received via VC0.
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VC0 VC1
C 2003 DMA load command (via VC0 and VC1)
H 9000 H A000 Set offset address 0x0000, SRAM9⇐VC0 and SRAM10⇐VC1
D 7FFF D 0000 Write 0x7FFF to mem9 / 0x0000 to mem10 (address 0x0000)
D 7642 D CF04 Write 0x7642 to mem9 / 0xCF04 to mem10 (address 0x0001)
D 5A82 D A57E Write 0x5A82 to mem9 / 0xA57E to mem10 (address 0x0002)
D 30FC D 89BE Write 0x30FC to mem9 / 0x89BE to mem10 (address 0x0003)
D 0000 D 8000 Write 0x0000 to mem9 / 0x8000 to mem10 (address 0x0004)
D CF04 D 89BE Write 0xCF04 to mem9 / 0x89BE to mem10 (address 0x0005)
D A57E D A57E Write 0xA57E to mem9 / 0xA57E to mem10 (address 0x0006)
D 89BE D CF04 Write 0x89BE to mem9 / 0xCF04 to mem10 (address 0x0007)
T 0000 T 0000 End of DMA load

Figure . – Example acrshortDMA load packet for writing data in the memories via multiple channels
in parallel, as transmitted in Figure A.

VC0
C 4001 DMA retrieve command
H 2000 Set offset address 0x2000 (Memory 2)
D 03FF Set block length to 512 samples

... Wait until all 512 samples have been received
T 0000 End of DMA retrieve

Figure . – Example DMA retrieve packet for reading data from memory , as transmitted in Figure A.

  Run - GP flags

       

   

Figure . – Flit encoding for the run command

address indicating which memory or register file to be read, then a data flit that
indicates the block size starting at the offset address and the packet is closed with a
tail flit. The block size transmitted in the data flit should contain the memory block
size to be returned, decremented by one (for example, to return a full Montium TP
memory which consists of  addresses, the value  should be transmitted in
the data flit). As soon as the tail flit is received, the retrieve action is stopped. Hence,
for a valid completion of a DMA retrieve operation, the tail flit should only be sent
as soon as the entire requested block has been transmitted to the NoC. Figure .
shows an example packet that is used to retrieve a block of  samples from offset
address  in memory  of the Montium TP.

Program control Once the configuration and (optional) memory initialization
have taken place, the Montium TP is enabled and will start its execution. The start
of execution is triggered by the Crun command. Along with sending this command,
it is possible to include several general purpose flags that are stored into the General
Purpose (GP) register. Figure . shows the structure of a Crun command including
these  GP flags (shown in Table .).
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Table . – Crun command argument GP flags

Flag # Function Description

0 Handshake 0 Initiate handshake procedure with TP
1 Handshake 1 Initiate handshake procedure with TP
2 Pulse 0 Send pulse to TP
3 Pulse 1 Send pulse to TP

Table 2.6 – GP flag register usage

Bit # NI→ TP TP→ NI

0 Initiate handshake 0 Acknowledge handshake 0
1 Initiate handshake 1 Acknowledge handshake 1
2 Initiate pulse 0 -
3 Initiate pulse 1 -
4 Header 1 -
5 Tail 1 Interrupt
 Automatically generated by NI to indicate flit type of next

flit to be read from the input FIFO

Upon reception of a Crun command, the GP flags are stored in the GP register.
Additionally, the GP register contains  flags which are automatically asserted when
the flit type of flits received from any input channel equals a header flit (GP4) or
a tail flit (GP5). This is useful since the flit deconstruction block removes the flit
types. The outputs of this GP register are connected to the Montium TP. Similarly,
the Montium TP has  output GP pins, which are connected to a second GP register
inside the program control block in the NI. An overview of the contents of these GP
registers is given in Table ..

The handshake and pulse flags can be used to synchronize between the Montium
TP program currently executed and some external input. For example, the Montium
TP can assert a pulse flag when it reaches a certain point in the current program,
which may be useful for debugging. The handshake and pulse flags can only be set
to 1 using the Crun command. They will be automatically cleared upon completion
of the transaction. For the handshake flag, the transaction can only be completed
when the TP acknowledges the handshake by asserting a handshake signal. Then,
the handshake flag will be reset and can be used again in the next Crun command. If
the pulse flag is enabled, a single clock cycle lasting pulse is generated. At the next
rising edge of the clock, the pulse flag is automatically reset.

Stream controller After receiving a Crun command, the Montium TP is enabled
and starts the execution of the program currently configured. During execution,
the Montium TP can use its streaming interface of the Hydra NI to read data from
a network stream and write to a network stream. Next to control signals for all
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Table . – Streaming IO configuration register instruction format

Bit # Signal Size Description

.. ft  Flit type for gbvcx data
.. vcgb0  GB destination for VC0
.. vcgb1  GB destination for VC1
.. vcgb2  GB destination for VC2
.. vcgb3  GB destination for VC3
.. gbvc0  GB/storage ROM0 source for VC0
.. gbvc1  GB/storage ROM1 source for VC1
.. gbvc2  GB/storage ROM2 source for VC2
.. gbvc3  GB/storage ROM3 source for VC3

decoders, a Montium sequencer instruction also contains a Streaming IO (SIO)
control signal, which is made available to the Hydra NI via the streaming interface.
The -bit control signal is used to select an instruction in the SIO configuration
register (which contains up to  different SIO instructions). The SIO configuration
register is located inside the Hydra NI’s stream controller, such that a Montium
sequencer instruction directly controls the Hydra NI’s behavior while operating in
streaming-mode.

The SIO configuration register in the NI is formatted as shown in Table .. Up to
 SIO instructions can be programmed within this register. Each instruction defines
the streaming from input VCs and output VCs simultaneously. The vcgbx field
encodes to which GB the data from VCx is written and for making the connection
from a GB to VCx the gbvcx field is used. Together, the output of these fields is
directly used as control signals for both crossbars. The flit type field is used to
instruct the Flit Construction block which flit type should be added to outgoing data
to the NoC.

As mentioned before, the Flit Construction block contains a storage ROM for each
VC. Per VC a maximum of  flits can be configured within the ROM. These Read-only
Memories can be accessed by the SIO instruction. The full encoding of the vcgbx
and gbvcx fields is shown in Table ..

.. Realization

In the Smart Chips for Smart Surroundings (S) project [], the Annabelle MPSoC was
designed as a proof of concept of a reconfigurable tiled architecture. It consists of 
circuit-switched NoC routers as described in section .., Montium TPs connected
to the routers via  Hydra NIs, and an ARM- subsystem based on a AHB bus
connecting the ARM- processor to a local memory and several IO interfaces.
The goal of defining such an MPSoC was to show the feasibility of a reconfigurable
subsystem as an accelerator for multi-media applications. The feasibility study
targeted the gate-level design, synthesis, functional testing, and performance analysis
of the run-time system using measurements on system-wide energy consumption
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Table . – vcgbx and gbvcx encoding

vcgbx Connection

 Disconnected
 GB1 ⇐VCx
 GB2 ⇐VCx
 GB3 ⇐VCx
 GB4 ⇐VCx
 GB5 ⇐VCx
 GB6 ⇐VCx
 GB7 ⇐VCx
 GB8 ⇐VCx
 GB9 ⇐VCx
 GB10⇐VCx
 Reserved
 Reserved
 Reserved
 Reserved
 Reserved

gbvcx Connection

 Disconnected
 VCx⇐GB1
 VCx⇐GB2
 VCx⇐GB3
 VCx⇐GB4
 VCx⇐GB5
 VCx⇐GB6
 VCx⇐GB7
 VCx⇐GB8
 VCx⇐GB9
 VCx⇐GB10
 Reserved
 Reserved
 Reserved
 Reserved
 Reserved
--AA VCx⇐ROMx (AA)
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Figure . – Annabelle MPSoC schematic

and overall processing performance. For the performance analysis, the application
presented in section . was used.

... Annabelle MPSoC

The VHDL model of the Hydra NI was synthesized in . µm Atmel technology,
while the clock frequency was constrained to MHz. With this constraint the area
was k gates (.mm2), which is about % of the area of the Montium TP. The
area distribution of the several components is given in Table ..

A large part of the total area (.%) is needed for the input and output buffering.
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Figure . – Annabelle MPSoC die photo. The reconfigurable part containing four Montium TPs con-
nected to two NoC routers via four Hydra NIs is shown in the upper right part and the ARM
GPP can be found in the middle at the left side.

Table . – Hydra NI area distribution

Component #gates Area (mm2) Area (%)

Crossbar 1810 0.010 9.47
Flit formatting 3695 0.021 19.34
Flow control 3893 0.022 20.38
Buffering 7920 0.044 41.45
Message execution 1788 0.010 9.36

Total 19106 0.106

The flow control and flit formatting each contribute % of the total area, which is
caused by the storage Read-only Memories and the instruction decoder. For the other
components (the crossbar and the message execution modules) the area is related to
the multiplexers in the data path and the control logic around it.

... Block-mode vs. streaming-mode

As was shown in Figure ., the block-mode and streaming-mode implementations
of an algorithm require different control messages. The larger the number of control
messages for the execution of an algorithm becomes, the more synchronization
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is required between the controlling tile and the Montium TP tile. While a DMA
operation is handled by the NI, the Montium TP is temporarily halted such that its
memories can be read. This reduces the total time available for processing, which
means the utilization of the Montium TP is decreased.

Using block-mode operation does have some advantages. For example, it is
possible to read different parts of the Montium TP memory after each execution of
the algorithm. This can be useful for debugging or for algorithms where the address
patterns are data dependent such that only the controlling tile can decide which part
of the memory contains the useful information.

The streaming interface used by the Montium TP in a streaming-mode situation
can be used very effectively. It enables communication between tile processors
without control messages, such that the controlling tile processor does not need
to continuously monitor the Montium TP state and transmit time-critical control
messages. As a result, the total MPSoC performance increases when using streaming-
mode communication.

All functionality for the block-mode and streaming-mode operation is imple-
mented in the DMA controller and the SIO configuration register. Together, these are
the largest components within the Message Execution Modules (in terms of silicon
area). As can be seen in Table ., the message execution is less than % of the
Hydra NI’s total area while the main costs are in the buffering. Hence the overhead
in hardware costs for both modes are minimal.

... Throughput and latency

The crossbars were designed such that they scale with the number of input VCs and
the number of Global Buses. A dedicated FIFO buffer for each input VC and each
output VC enables high parallelism in communication.

The message protocol introduces a small input latency at the beginning of each
packet, but provides a throughput that is near optimal. This is possible due to the
use of address compression, which reduces the interconnect bandwidth required for
sending a certain data transfer. Using a typical bus interface with dedicated address
and data lines, sending a configuration for the FFT- to the Montium TP would
require  -bit addresses and  -bit words (see Table .). Address com-
pression reduces the amount of -bit addresses to only , which is a compression
of .% of the bandwidth required for transmitting addresses, or .% of a full
configuration packet. For DMA transfers, this compression can become even larger
as the data is typically written in large blocks to the memory, hence only few offset
addresses are needed in the input data. The overhead of the C, H and T flits com-
pared to the D flits is relatively high for small packets (for example, DMA transfers
for loading a few coefficients) and for configuration packets, because those packets
contain a large amount of addressing information. There is no significant difference
in the protocol overhead and address compression between the both operating modes.
Configuration sizes are about equal in size and address compression can be done
equally efficient for the both modes.

Since the packet (de-) construction and crossbars are combinatorial circuits, they
do not add any latency to the communication. Hence the only latency is in the
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Table . – Flit type distribution for different packet types

Algorithm Packet type C H D T Overhead

Block Configuration     .%
mode DMA load (twiddle factors)     .%
FFT- DMA load (input data)     .%

DMA retrieve (output data)     .%

Block Configuration     .%
mode DMA load (coefficients)     .%
FIR- DMA load (input data)     .%

DMA retrieve (output data)     .%

Streaming Configuration     .%
mode DMA load (twiddle factors)     .%
FFT- Run + stream input / output     .%

Streaming Configuration     .%
mode DMA load (coefficients)     .%
FIR- Run + stream input / output     .%

FIFO buffers and in the message handling modules. The message protocol has been
designed such that the message handling modules can be operated at the full tile
clock frequency, processing one flit in the packet per clock cycle. Therefore, they do
not decrease the throughput bandwidth and the latency is only one clock cycle per
flit.

... Clocking regime

The Hydra NI operates almost fully in the tile clock domain, except for the buffering
parts. Due to the parallelism in the NI’s datapath, the data bandwidth to the Montium
TP is not restricted by the NI. The FIFO buffers were designed for synchronization
between clock domains with in-phase rising clock edges. Using a clock divider
that divides a global system clock by a factor of 2n (with 0 ≤ n ≤ 4) the clock edge
synchronization can be done more efficiently. Therefore, the read and write pointers
within the FIFO buffers can be implemented without complex address generators
and multiple synchronization registers that suppress the risk for metastability.

... Energy-efficiency

The energy-efficiency of the Hydra NI was estimated based on the post-layout netlist
of the Annabelle MPSoC. Since the operation of the Hydra NI is tightly connected to
the operation of the Montium TP, the estimation was done for an entire processing tile
and, where possible, specified per component. The estimations include a subdivision
of static power and dynamic power. Algorithms used to perform the estimations
are a radix- FFT (for more detail, see section ..), a non-power-of-two FFT (see
section ..) and a FIR filter (see section ..).
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Table . – Static and dynamic power distribution over a Montium processing tile for different streaming
algorithms. Dynamic power is normalized per MHz.

Montium TP Static power Dynamic power (µW/MHz)
component (µW) FIR- FFT- FFT-

Datapath processing 94.8 187.63 237.81 151.27
Memories 68.0 3.60 276.99 212.57
Sequencer processing 0.6 2.81 4.02 3.45
Sequencer memory 13.2 20.27 63.42 50.11
Decoders 26.5 0.01 1.08 3.06

Hydra 7.1 20.40 19.27 15.26

Total 210.2 234.72 602.59 435.72

These numbers show that the static power consumption of the Hydra NI is
about % of the Montium TP’s static power consumption and the dynamic power
consumption is in the range of % to % depending on the type of algorithm. On
average, this means that the Hydra NI contributes to less than % of the total power
consumption. The ratio in area of the Hydra NI with respect to the Montium TP is
comparable: .mm2 compared to .mm2 for the Montium TP is about %.

. Conclusion

In this chapter we presented the design and implementation of the Hydra NI, an
energy-efficient and reconfigurable network interface for the Montium TP and an
NoC. It supports both block-mode and streaming-mode data transfers and is con-
trolled by a lightweight message protocol. The bandwidth provided by the Hydra
is only limited by the chosen NoC and the Montium TP, as its data path provides a
maximum connectivity between all input channels from the NoC to the Montium TP
and vice versa. If constrained to operate at a maximum clock frequency of MHz,
the Hydra NI has a total area of k gates or about . mm2 in . µm ASIC
technology. Looking at the power distribution of one Montium TP processing tile for
typical streaming DSP applications, the Hydra NI contributes for about % to %
of the total power budget of one processing tile.

In conventional bus-based architectures, the processors connect to the intercon-
nect directly. A bridge is then responsible for the physical level protocol of the
interconnect, dealing with arbitration, timing and acknowledgements. Since rout-
ing and arbitration are determined on beforehand in our NoC architecture, such
bridging functionality is not required and the network interface can be optimized
for throughput and latency.

Moreover, when the communication time is decreased, the tile clock can be slowed
down while the tile processor is still capable of performing enough computations
to finish the process within its required period. This can contribute to a significant
reduction in energy consumption.
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The design of a lightweight message protocol developed to support the functions
that are required by the processor contributes to a straight-forward implementation
of the network interface. The packet overhead introduced for adding header, control
and tail information to packets is low for large packets. To avoid transmitting
redundant information within one packet, large memory blocks can be transported
efficiently by applying address compression.

Although the Hydra NI is presented as a Montium TP specific network interface,
the basic mechanisms are reusable for the design of a network interface for any
stream processor architecture where parallel IO transactions are useful to increase
the processing performance.



Chapter 

Design flow for Streaming DSP
Applications

Abstract

Application design for multi-processor architectures has been a topic of research
for many years. Much effort has been spent on porting existing applications
developed for single-processor architectures to multi-processor systems, for ex-
ample by using parallelizing compilers and by using a shared memory model
and cache coherency protocols. The reconfigurable tiled architectures presented
in the previous chapter are optimized for streaming applications and have a
different memory abstraction that does not require shared memory and cache
coherency protocols. Moreover, the on-chip network allows for multiple data
streams to exist simultaneously, while for each stream guarantees can be given
on latency and throughput. This chapter presents new ideas for a design flow,
where applications are written using a mathematical programming language. The
mathematical programming language gives the flexibility to manipulate (parts of)
applications, by applying transformations to the expressions forming such an ap-
plication. Using a dataflow simulation framework, the execution of applications
described in this programming language on multi-processor systems is simulated.
The simulation framework includes a graphical user interface that visualizes the
effects of application transformations.

Applications that are operating on long sequences of data are called streaming applica-
tions. Such applications are mainly data-driven, meaning that without input data no
processing has to be performed. Therefore, the required throughput determines the
time frame available for processing. A typical characteristic of streaming applications
is the relative simplicity of calculations on long streams of data. Due to regularity
in the calculations, data parallelism can be exploited by applying one instruction to
multiple data words simultaneously using Single Instruction Multiple Data (SIMD)
instructions. Next to data parallelism, other forms of parallelism can be found within

Parts of this chapter have been presented at the th, th and th Annual Workshop on Circuits,
Systems and Signal Processing [–], and at the Scientific ICT Research Event Netherlands
(SIREN ) [].


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applications. For example, a streaming application can be modeled as a set of small
independent processing blocks called kernels. Data dependencies between these
kernels are made explicit in the form of communication channels. This separation of
kernels allows for concurrency at kernel level (called task-level parallelism). Separate
kernels can be mapped on separate processing elements, such that the result from
one kernel is sent to the next kernel via their common communication channel. The
next kernel can then be executed using the data received via the communication
channel, while the first kernel can be executed on the next part of the input data,
such that a pipeline of kernels is formed.

A kernel is said to be stateless if its output only depends on the current input. If its
output also depends on previous inputs, its state can be made explicit by providing
the previous state as an input to the function (in addition to the current input) and
the new state is provided as an additional output (next to the output data streams).

. State of the Art

DSP application design for single-processor architectures has been studied for many
years. When the processing capacity of individual processors became a limitation,
architectures were composed from multiple single-core chips to increase the total
computational performance. The requirements, however, for partitioning and al-
locating an application over multiple single-core chips differs considerably from
partitioning and allocating over a single-chip multi-core architecture.

One of the reasons is that the energy consumption per communicated bit is much
higher when communicating via an off-chip link. In general, we can observe that
energy-wise processing is becoming cheaper and communication is becoming rel-
atively expensive. The Multi-Processor Systems-on-Chip considered in this thesis
provide a large aggregated computational capacity with a considerable communica-
tion bandwidth between the cores.

.. Design flow

Many approaches for DSP application design for multi-core architectures have been
presented before. Several approaches try to realize a fully automatic tool chain, such
that any DSP application can be ported to the targeted architecture. Others advocate
a fully manual approach, where the entire application and hardware architecture
are fine tuned manually. Our proposed method is a hybrid approach that is partly
manual and partly automatic.

... Automatic approach

Several research projects focus on automatic parallelization of sequential code, typ-
ically based on a legacy C or Matlab program. They have in common, that they
all use a Kahn Process Network (KPN) (see section ..) to model the commu-
nication and synchronization of the partitioned application. Within the Artemis
project [, ], several tools were developed. The Simulation of Embedded Systems
Architectures for Multi-level Exploration (SESAME) framework targets modeling and
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simulation methods and tools for efficient design space exploration of heterogeneous
embedded multimedia systems []. Recently, it has been merged with the Daedalus
framework [], which aims at bridging the gap between system-level models and
implementation. Another tool developed in the Artemis project is Compaan, which
is a tool for automatic parallelization of sequential code to KPNs []. It can be used
to transform affine nested loop programs to parallel programs, either for simulation
on a desktop processor or for compilation to an embedded architecture.

The approach presented by Bijlsma et al. [] derives Cyclo-static Data Flow
(CSDF) graphs (see section ..) from sequential code. Code blocks use explicit
read and write operations to synchronize with each other. Each code block is based
on nested loops, typically used for indexing arrays and matrices. Synchronization
between these code blocks is done via circular buffers where a read window denotes
that part of the buffer that can be safely read by the reading code block and the
write window denotes that part of the buffer where the writing code block can safely
write its outputs. The windows are updated by both code blocks by using an acquire
(for increasing the window size such that buffer space can be accessed) and a release
instruction (for releasing that part of the window that is not required anymore,
such that the buffer space can be reused by the other code block). By analyzing the
buffer access patterns, a minimum buffer size can be calculated such that a required
throughput or latency can be guaranteed [].

Hansson proposed an integrated approach for the definition of an architecture
and an application []. This approach is based on use-cases, which identify a
combination of applications that can be executed simultaneously. From the total set
of defined use-cases, an architecture is composed that consists of enough resources
(both in terms of processor capacity, memory and interconnect bandwidth) such that
a guarantee can be given on the real-time performance of any application contained
in the use-cases.

... Manual approach

Another design approach is the manual approach, where no automatic tools are
used for the optimization of the design. In such approaches, typically simulations
are based on a combination of Matlab and Simulink [] for the functional testing.
Although the composition of blocks in a Simulink environment can be done quickly, it
is quite hard to apply transformations to the application or the targeted architecture.
Therefore, even a small modification in the structure of a Simulink application
requires a lot of manual work. The automatic identification of parallelism in the code
is hard and thus, parallelization still needs to be done by hand []. This increases
the risk of human errors and moreover, it is very time consuming to create and
maintain. Graphical programming enables a very structural approach. However, it
also limits the design flexibility, because the interface of a block (which consists of
all input and output ports) needs to be defined before the block is implemented. A
small modification of the interface of a block may require all ports of that block to be
reconnected to other blocks.

The Ptolemy project studies design, modeling and simulation of concurrent real-
time embedded systems []. It provides a framework for system simulation and
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focuses on experimenting with various Models of Computation (MoCs) and architec-
tural designs. The modeling is based on graphical programming, with Java as the
underlying language for implementation of blocks. Ptolemy focuses on diagrams
showing composition and interaction between blocks, similar to Matlab/Simulink.
The provided Models of Computation make Ptolemy more useful as a tool for archi-
tectural design than Matlab/Simulink.

The Y-chart approach, presented by Kienhuis [], is a methodology to provide
designers with quantitative data obtained by analyzing the performance of archi-
tectures for a given set of applications. The approach includes tools that indicate
which parameters (for example, the number of function units in a processor or the
instruction set) should be fine-tuned to improve the application performance. Ap-
plying these improvements, however, has to be done manually. In multiple steps,
the hardware design is then optimized such that a better utilization can be obtained
when executing applications from the given set. The approach is used for designing
a streaming DSP architecture using data flow principles. A programming framework
implementation of this approach is the Y-chart Application Programmer’s Interface
(YAPI) []. YAPI can be used to implement data flow models, describing structural
properties of the application. Such models can be generated with SDF for Free
(SDF), a tool for generating random Synchronous Data Flow (SDF) graphs that
have a structure similar to typical DSP applications []. The tool does not include
functional simulation; however, its SDF graphs can be exported to a YAPI compatible
format such that YAPI can be used for further simulation.

Another design flow was proposed within the S project []. It is based on a
separate design-time part and a run-time part. A graphical representation of the
flow is given in Figure .. The targeted hardware architecture was an MPSoC
consisting of existing cores (for example, GPPs, DSPs, coarse-grain and fine-grain
reconfigurable processors and hardwired accelerators), for which existing tooling is
available (shown at the third layer of blocks in the figure). An existing application,
written in C, is manually partitioned in smaller processes and compiled to the
different processor types (visualized in the second layer). For each of these processor
types, the compiled code is simulated and analyzed using performance estimation
tools and power estimation tools (see the fourth layer of blocks). Based on the results
of these tools, for example execution times and energy consumption of the compiled
code when executed on a specific processor type, the application designer may want
to start a new iteration of partitioning, compilation and analysis. Once the results of
the application partitioning are accepted by the designer, the processes are prepared
for integration in a Real-Time Operating System (RTOS) called Operating System
for Real-Time Embedded Systems (OSYRES) []. In the run-time part of the design
flow (the lower part of Figure .), the RTOS allocates processes to processors by
supporting run-time mapping (see section ..), based on user demands, power
constraints and Quality of Service (QoS) requirements posed by the application.

.. Data flow modeling techniques

Due to their regular behavior, streaming applications can be modeled well using data
flow models. The input, output and intermediate streams consist of a long sequence
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of data on which operations are performed. By modeling the application as a graph
consisting of nodes (the kernels) and edges (data dependencies between the kernels),
the operations performed on the streams and the communication between kernels
are made explicit. By looking at the data dependencies between the nodes, functional
parallelism in the application can be identified []. From these data dependencies,
a schedule can be calculated for the execution of each of the kernels, such that
required input data is available when a kernel is executed. It is also possible to make
a schedule for executing nodes on multiple processors, exploiting the processing
capacity provided by these processors. A formal definition used to calculate such
multi-processor schedules was proposed by Kahn [].

... Kahn Process Network

In a so-called Kahn Process Network (KPN), kernels are translated to processes and
data dependencies between kernels are made explicit as communication channels
between these processes. A process is executed by a computing station and commu-
nication between processes is done via communication lines between the computing
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Figure . – SDF model of an application.

station on which they are mapped. For the execution of the process, the computing
station is not limited to a finite amount of memory. At any given time, a computing
station is either executing its process or halted due to a blocking read operation on
one of its input channels. Data produced on a channel can have an arbitrary, but
finite, delay before it can be read by the next process. Within the channel, data are
transported in FIFO order. KPN channels can contain an arbitrarily large (possibly
infinite) number of data samples.

If multiple processes depend on each other’s output and are currently blocked
due to a blocking read operation, the application is deadlocked. To overcome the risk
for deadlock, a more restrictive data flow model was introduced for which deadlock
analysis can be done. This model is presented in the next sections.

... Synchronous Data Flow

SDF is a more restrictive model than KPN, as it introduces firing rules that define the
conditions for the execution of a process []. A firing rule for a process defines per
input channel how many tokens the process consumes from that channel, where a
token can either store data or events produced by another process to that channel.
While KPN allows read operations on input channels and write operations to all
output channels at any time during the execution of a process, an SDF process
instantaneously consumes its tokens from all input channels before its execution
starts and instantaneously produces its tokens to all output channels upon finishing
the execution. The interval between the start of an execution and the end of the
execution is called the execution time ρ. Furthermore, in the SDF model, channels
introduce zero latency on tokens such that a token produced on a channel can be
consumed by the next process immediately. An example SDF application is given in
Figure ..

A finite FIFO buffer between a producing process p1 and a consuming process p2
can be modeled by a channel from p1 to p2 (denoting the flow of data from p1 to p2)
and a channel in the opposite direction (modeling the free buffer positions). When
analyzing the number of tokens in these channels, together with the consumption
and production rates of both processes, an execution schedule of these two processes
can be created [, ]. Using the analysis techniques presented in [–], the
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Figure . – CSDF model of an application. Different stages in the execution of a process are indicated
in angle brackets, where the first number indicates the first stage (for token consumption,
production and execution time).

minimum buffer capacity required to store the tokens communicated between these
processes can be found. If the buffer size is chosen too small, deadlock can occur in
the application.

... Cyclo-static Data Flow

Since the SDF model requires all input tokens to be available before the execution
can be started, it requires considerable buffer space for storage of the tokens as
long as they are not consumed. Upon firing, all tokens are consumed at once and
produced at the very end of the execution. Hence, the number of tokens in the
input buffer grows until the process is fired. CSDF is a variant of SDF that enables
more intuitive modeling of applications by allowing a process execution to consist
of multiple sequential stages [, ]. A CSDF model can be translated into a SDF
model []. For example, the CSDF application given in Figure . is equivalent to
the SDF application given in Figure .. Each stage behaves as an SDF process, as it
has a fixed token consumption, a fixed token production and an execution time. The
stages are executed in a round robin schedule, such that each stage is executed once
per execution cycle. Using a CSDF model, token consumption and production can
be divided over multiple stages, such that the maximum number of tokens stored in
a buffer at any time during the execution is smaller than in the SDF version of the
same application. Then, the minimum buffer sizes can be reduced while maintaining
a performance compared to the SDF model. Next to estimation of buffer sizes, for
both models it is possible to identify critical parts in the application that limit the
performance in terms of latency or throughput [].

... Other data flow models

The data flow models presented here have a fixed schedule as they allow only a single
firing rule per process. Therefore, the number of tokens consumed and produced per
process per execution does not depend on the values stored inside the received tokens.
As a result, a large class of algorithms can not be modeled using these techniques. For
example, a Variable Bit Rate (VBR) decoder may have to read an arbitrary number
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of bits before these bits can be successfully decoded. Wiggers [] proposes a more
flexible model that is capable of including data dependent token consumption and
production rates. The Variable Phase Data Flow (VPDF) model is comparable with
CSDF, as it supports multiple stages which are executed after each other. However,
for each stage the token consumption and production rates may be determined by
another process. Although this model is more expressive, we consider CSDF to be
expressive enough in the context of this thesis.

.. Design-time vs. run-time mapping

The assignment of processes to processors and communication channels to the in-
terconnect of the MPSoC can be done in many ways. As a matter of fact, obtaining
the optimal mapping is an NP-complete problem []. Assuming all resources (pro-
cessors, memory, and interconnect) of the MPSoC are available at run-time, the best
possible mapping of an application to the MPSoC can be calculated at design-time.
However, if a part of the MPSoC’s processing or communication capacity is not
known at design-time (for example, due to other resource sharing with running
applications or due to malfunctioning hardware), a pre-calculated mapping may
not be feasible, or it may result in a decreased application performance. Run-time
mapping uses information about the MPSoC resource allocation as soon as the ap-
plication needs to be mapped. If multiple applications are executed on one MPSoC
simultaneously, different orders of startup of both applications may result in different
mappings. In a design-time mapping based architecture, individual applications
or fixed combinations of applications (called use cases []) are assigned to specific
processor elements such that the real-time execution is always guaranteed. This,
however, may result in a very specific MPSoC architecture for the selected set of
applications, since the hardware usage is known on beforehand. For next generation
Multi-Processor Systems-on-Chip with hundreds of processing elements in advanced
CMOS technology, we expect that the probability of manufacturing faults will in-
crease considerably. Therefore, the mapping calculated at design-time may become
useless since the allocation may require specific processors which turn out to be
faulty [].

By using heuristics to calculate a sufficient feasible mapping at run-time, the
restriction of fixed applications or fixed combinations of applications can be relaxed.
Heuristics cannot give an optimal solution for an NP-complete problem, but lead to
a solution that is close to the optimal solution. An efficient mapping can be made by
choosing a processor type for each process to be executed (called binding), where that
processor type can execute the process most efficiently []. Then, for each process, a
processor of the chosen processor type is selected. For this selection, communication
between the process and its source and destination processes is considered, such that
the selected processor is close the processors that execute those processes. As a result,
communication channels between processes are short, which results in low latency
between processes and low energy costs for communication.
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. Mathematical programming based tool-flow

The design methodologies discussed in section . all assume imperative sequential
code (for example an application written in C) or a fixed manual partitioning and
synchronization of the application (for example into a set of parallel threads). For
each of the proposed flows, this is mainly caused by the requirement that legacy
code should be reusable. The imperative sequential code is analyzed to identify
possibilities for parallel execution such that the application can be mapped on a multi-
processor architecture. In general, this is a very hard problem that has been studied
extensively for many years [, ]. A typical DSP application, however, consists of
mathematically defined kernels that are composed using block diagrams which are
inherently parallel when pipelining is applied (called task level parallelism). Therefore,
traditionally, first the mathematical definition is translated to a sequential language
manually. Second, that implementation is analyzed by parallelizing compilers to find
data dependencies such that independent instructions can be executed in parallel.

Figure . gives an overview of the design flow presented in this section, show-
ing the relation between the different models, the simulation environment and the
MPSoC platform. A mathematical specification of a streaming application is im-
plemented in a custom language. Using transformation rules, the implemented
application is partitioned into a set of parallel kernel operations. After analyzing
the execution times of all kernels, communication between kernels is made explicit
by modeling the application as an SDF application. This application can then be
simulated by the simulation framework presented in this chapter or it can be mapped
to an MPSoC.

.. Language construction

In particular streaming applications are often specified by mathematical equations.
Mathematical equations define relations between operands. Since all relations ex-
ist simultaneously, a mathematical definition is parallel by nature []. Hence, it
seems to be counter-intuitive to remove this parallelism by rewriting the mathe-
matical equations to a set of sequential assignments and then trying to reconstruct
the original relations such that parts of the algorithm can be executed in parallel.
Therefore, we propose a mathematical programming based approach implemented
in a functional language. In this thesis we use the functional language Haskell as
a host language, which is used to construct a so-called Embedded Domain Specific
Language (EDSL) []. A short overview of Haskell examples, useful for understand-
ing the code listings in this section, can be found in section B.. The grammar rules
of the language are implemented using an Algebraic Data Type (ADT). A fragment of
the language is shown in Listing .. Here, an expression of type Expr a can consist
of an Add of two expressions of type Expr a, or a Sub of two expressions of type Expr
a, or can be a terminator of type Const a. Other expressions can be added to the
grammar by adding additional lines. With these operators a very simple language
can be defined as shown in Listing ..

There are two ways to look at the EDSL. An application programmer uses the
EDSL as a programming language, where the typing system prevents making errors.
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Figure . – Mathematic programming based tool flow

 data Expr a
 = Add ( Expr a ) ( Expr a )
 | Mul ( Expr a ) ( Expr a )
 | Sub ( Expr a ) ( Expr a )
 | Div ( Expr a ) ( Expr a )
 . . .
 | Const a
 | Var String

Listing . – Simple EDSL for DSP operations

Transformation tools and compilers use the EDSL as a data type (Expr a), which can
be used to generate a modified version of the application or to translate the EDSL to
instruction code. Any expression defined in this language is also an equation and can
therefore be used for calculations. For example, a function of type f :: Expr a ->
Expr a can be defined to transform the equation in the input expression to another
equation. By using the constructors like Add, Sub, Const, such a transformation
function can be applied to specific parts of the language using pattern matching.

To show the relation between the mathematical definition and our language
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implementation, consider the following equation:

y = 2 ∗ x+ 15 (.)

A straightforward implementation of a kernel with one output (indicated by y)
and one input (indicated by Var "x") is:

y = Add ( (Mul ( Const  ) ( Var ”x” ) ) ( Const ) )

.. Partitioning

Before this expression is evaluated, transformations can be applied to it. Since the
expression is of type Expr a, any function of type Expr a -> Expr a can be applied
to this input expression. Consider the Add operation, which is associative. It can
be rewritten from (a+ b) + c to a+ (b+ c) which is equivalent. This rewrite rule is
implemented in our EDSL as follows:

 assoc : : Expr a −> Expr a
 assoc (Add (Add a b ) c ) = Add a (Add b c )
 assoc (Mul (Mul a b ) c ) = Mul a (Mul b c )
 assoc x = x

 commut : : Expr a −> Expr a
 commut (Add a b ) = Add b a
 commut (Mul a b ) = Mul b a
 commut x = x

Listing . – Rewrite rules for associativity and commutativity

The assoc rewrite rule shown in Listing . is based on pattern matching, a com-
monly used technique in functional programming languages. Different cases of the
function can be implemented via separate patterns, for example as shown in List-
ing . where one pattern is used to define the assoc transformation function when
applied to additions (line ), another pattern is used to match the transformation
for multiplications (line ) and all other language constructs are matched by the last
pattern (line ). Note that all three cases of the function assoc are of the same type
(Expr a -> Expr a). Additional operators can be added to the basic language de-
fined in Listing ., without breaking the existing rewrite rules. Patterns are matched
in the order as they occur; the first matching pattern is chosen. Therefore, if a new
operator is added to the language, the rewrite rules can be implemented by adding
a pattern for the new operator right before the general x pattern that matches all
other operators. If the correctness of each of the cases of a rewrite rule is proven, its
application to any expression in our language is guaranteed to be correct. The same
rule can be applied recursively to the operands of an expression to transform the
entire expression as shown in Listing .. In this case, all non-associative operations
in the language are skipped and the transformation is applied to their operands (for
example in the case of a Sub a b operation).
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 assocRec : : Expr a −> Expr a
 assocRec (Add (Add a b ) c ) = Add ( assocRec a ) ( assocRec (Add b c ) )
 assocRec (Mul (Mul a b ) c ) = Mul ( assocRec a ) ( assocRec (Mul b c ) )
 assocRec (Add a b ) = Add ( assocRec a ) ( assocRec b )
 assocRec (Mul a b ) = Mul ( assocRec a ) ( assocRec b )
 assocRec ( Sub a b ) = Sub ( assocRec a ) ( assocRec b )
 assocRec ( Div a b ) = Div ( assocRec a ) ( assocRec b )
 . . .
 assocRec ( Const a ) = Const a
 assocRec ( Var s ) = Var s

 commutRec : : Expr a −> Expr a
 commutRec (Add a b ) = Add ( commutRec b ) ( commutRec a )
 commutRec (Mul a b ) = Mul ( commutRec b ) ( commutRec a )
 commutRec ( Sub a b ) = Sub ( commutRec a ) ( commutRec b )
 commutRec ( Div a b ) = Div ( commutRec a ) ( commutRec b )
 . . .
 commutRec x = x

Listing . – Recursive rewrite rules for associativity and commutativity

By combining transformations, new composite transformations can be defined.
An example of such a combined transformation is the distributivity rewrite rule,
shown in Listing ..

 d i s t r i b : : Expr a −> Expr a
 d i s t r i b (Mul (Add a b ) c ) = Add (Mul a c ) (Mul b c )
 d i s t r i b (Add (Mul a c ) (Mul b c ) ) = Mul (Add a b ) c
 . . .
 d i s t r i b x = x

Listing . – Rewrite rule for distributivity

The examples presented here are based on unary and binary operations on scalar
values. Similarly, transformations can be defined for lists of values. A list is defined
as a recursive structure, consisting of a list constructor Cons that contains two values:
a value of type a indicating the head of the list and another list of type List a
defining the rest of the list. The end of the list is represented by a Nil constructor.
The definition of a list containing the integer values [, , ] is given at line  of
Listing ..

 data L i s t a = Nil
 | Cons a ( L i s t a )

 numbers = Cons  ( Cons  ( Cons  Nil ) )

Listing . – ADT definition of a list containing elements of type a

Usually, the shorthand notation a:bs is used instead of the constructor Cons a
bs. A compact form of the Nil constructor is the notation []. Using higher order
functions, an operation can be executed on a list with a very compact notation [].
The basic operation that can be used to construct any other function is the fold, which
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exists in two variants: a left-associative variant (foldl) and a right-associative variant
(foldr). Their definitions are given in Listing .. Note the use of the shorthand
notation (x:xs) at lines  and , defining a pattern for matching non-empty lists.
Other higher order functions include map (which applies a given function to each
element in a list, resulting in a new list of results) and the filter function (which
uses a given boolean function to remove elements from the given list).

 f o l d l : : ( a −> b −> a ) −> a −> [ b ] −> a
 f o l d l f z [ ] = z
 f o l d l f z ( x : xs ) = f o l d l f ( f z x ) xs

 foldr : : ( a −> b −> b ) −> b −> [ a ] −> b
 foldr f z [ ] = z
 foldr f z ( x : xs ) = f x ( foldr f z xs )

 map : : ( a −> b ) −> [ a ] −> [ b ]
 map f xs = [ f x | x <− xs ]

 f i l t e r : : ( a −> Bool ) −> [ a ] −> [ a ]
 f i l t e r c xs = [ x | x <− xs , c x ]

Listing . – Higher order list functions

.. Language usage and evaluation of expressions

An example of how the fold operator is used, is shown in Listing .. It shows
the evaluation of a summation of the elements of the list [..]. First, the fold
is expanded recursively until the last element in the list has been accessed (line ,
where the remaining list equals []), which is then followed by the evaluation of the
expression.

 sum xs = f o l d l (+ )  xs

 sum [  . .  ]
 = f o l d l (+ )  [  . .  ]
 = f o l d l (+ ) ( ( + )   ) [  . .  ]
 = f o l d l (+ ) ( ( + ) ( ( + )   )  ) [  . .  ]
 = f o l d l (+ ) ( ( + ) ( ( + ) ( ( + )   )  )  ) [  . .  ]
 = f o l d l (+ ) ( ( + ) ( ( + ) ( ( + ) ( ( + )   )  )  )  ) [ ]
 = f o l d l (+ ) ( ( + ) ( ( + ) ( ( + ) ( ( + ) ( ( + )   )  )  )  )  ) [ ]
 = ( ( + ) ( ( + ) ( ( + ) ( ( + ) ( ( + )   )  )  )  )  )
 = ( ( + ) ( ( + ) ( ( + ) ( ( + )   )  )  )  )
 = ( ( + ) ( ( + ) ( ( + )   )  )  )
 = ( ( + ) ( ( + )   )  )
 = ( ( + )   )
 = 

Listing . – Evaluation of a sum function, implemented by a higher order fold function

Lists can grow very long and therefore it may be needed to split them in multiple
sub-lists for mapping them on a multi-processor architecture. If the sum operation
in Listing . operated on a list containing values [..], this could be
beneficial. Instead of calculating the sum via a single recursive expansion, the list
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can be split in multiple parts that are summed individually, and the result of all
sub-lists can be summed afterward (see Listing .). This partitioning is correct
because the sum operation only consists of additions, which are both commutative
and associative.

 sum [ . . ]
 = sum [ sum [ . . ]
 , sum [ . . ]
 , . . .
 , sum [ . . ]
 ]
 = f o l d l (+ )  [ f o l d l (+ )  [ . . ]
 , f o l d l (+ )  [ . . ]
 , . . .
 , f o l d l (+ )  [ . . ]
 ]
 = . . .

Listing . – Partitioned sum calculation

The same partitioning can be adopted within the EDSL. First, the higher order
functions for lists are rewritten. For example, the implementation for foldr and
foldl in our language (implemented as foldrE and foldlE) is given in Listing ..
These folding functions operate on a list of values and return a expression tree
where the values are added as Const leafs in the tree. Any expression built with the
language constructs listed in Listing . can be represented as an abstract syntax tree,
where the nodes in a tree define the operations and the leafs of the tree contain the
constants or variables. After applying transformations to the syntax tree, a new valid
syntax tree is returned. The tree can be evaluated by feeding it to the evalE function
in Listing ..

 foldrE : : ( Expr a −> Expr b −> Expr b ) −> Expr b −> [ a ] −> Expr b
 foldrE f z [ ] = z
 foldrE f z ( x : xs ) = f ( Const x ) ( foldrE f z xs )

 fo ld lE : : ( Expr a −> Expr b −> Expr a ) −> Expr a −> [ b ] −> Expr a
 fo ld lE f z [ ] = z
 fo ld lE f z ( x : xs ) = fo ld lE f ( f z ( Const x ) ) xs

 evalE : : Expr a −> a
 evalE (Add a b ) = evalE a + evalE b
 evalE ( Sub a b ) = evalE a − evalE b
 evalE (Mul a b ) = evalE a * evalE b
 evalE ( Div a b ) = evalE a / evalE b
 . . .
 evalE ( Const a ) = a

Listing . – Higher order functions implemented for our EDSL

... Example evaluation

Using the higher order functions, the example summation presented in Listing .
can also be defined (see Listing .). First, the definition of sumE is expanded to
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a syntax tree. This tree can be evaluated by applying the evalE function, which
recursively expands the syntax tree until it can evaluate the Const a values.

 sumE xs = fo ld lE (Add) ( Const  ) xs

 sumE [  . .  ]
 = fo ld lE (Add) ( Const  ) [  . .  ]
 = fo ld lE (Add) (Add ( Const  ) ( Const  ) ) [  . .  ]
 . . .
 = Add (Add (Add (Add (Add
 ( Const  ) ( Const  ) ) ( Const  ) ) ( Const  ) ) ( Const  ) ) ( Const  )

 evalE (sumE [  . .  ] )
 = evalE (Add (Add (Add (Add (Add
 ( Const  ) ( Const  ) ) ( Const  ) ) ( Const  ) ) ( Const  ) ) ( Const  ) )
 = ( evalE (Add (Add (Add (Add ( Const  )
 ( Const  ) ) ( Const  ) ) ( Const  ) ) ( Const  ) ) ) + evalE ( Const  )
 . . .
 = ( ( ( ( ( evalE ( Const  ) + evalE ( Const  ) ) ) + evalE ( Const  ) ) +
 evalE ( Const  ) ) + evalE ( Const  ) ) + evalE ( Const  )
 = ( ( ( ( (  + evalE ( Const  ) ) ) + evalE ( Const  ) ) + evalE ( Const  ) ) +
 evalE ( Const  ) ) + evalE ( Const  )
 . . .
 = ( +  ) + evalE ( Const  )
 =  + evalE ( Const  )
 =  + 
 = 

Listing . – Evaluation of a sum function within our EDSL

This example shows how the evaluation of a short list expands to a large expres-
sion tree. To avoid an explosion in the expansion of the expression tree resulting from
the evaluation of a larger list, the list can be partitioned into smaller sublists that are
expanded by different processors []. Each processor is then responsible for the
evaluation of a part of the list. The partial results are sent to the processor executing
the parent node, which performs the addition of the sublists. The partitioning of a
list in a number of smaller lists can be done by applying the part function defined
in Listing ..

Which value of n is chosen for the part() function depends on the architecture.
For example, if a processor can only store k of data and the list has length k, the
input list has to be partitioned over at least  processors.

.. Example application specification

Typically, for streaming DSP applications, a specification is available that very accu-
rately describes the desired operation. The specification usually consists of a block
diagram with mathematical definitions for the requirements of the individual blocks.
An example block is a FIR filter, which consists of a convolution operation with a set
of filter coefficients that define the filter’s behavior, for example a  dB attenuation
low pass filter. The discrete-time FIR filter is mathematically defined as:

y [k] = (h ∗ x) [k] =
N∑

i=1

h [i] · x [k − i] (.)
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 part : : Int −> L i s t a −> L i s t ( L i s t a )
 part Nil = Nil
 part n xs = Cons a bs
 where
 a = takeE n xs
 bs = part n ( dropE n xs )

 takeE : : Int −> L i s t a −> L i s t a
 takeE Nil = Nil
 takeE  = Nil
 takeE n ( Cons a bs ) = Cons a ( takeE ( n−) bs )

 dropE : : Int −> L i s t a −> L i s t a
 dropE Nil = Nil
 dropE  bs = bs
 dropE n ( Cons bs ) = dropE ( n−) bs


 sumE xs = fo ld lE (Add) ( Const  ) xs

 part  (sumE [ . . ] )
 = . . .

Listing . – Partitioning of a list within our EDSL

where N defines the filter order, h is the set of coefficients, x [k] denotes the kth input
sample and y [k] denotes the kth filter output.

First, the functional correctness of individual kernels is tested by generating syn-
thetic test patterns for which the result is known on beforehand. If all kernel tests
have been performed successfully, the individual kernels can be combined and the
resulting application should be tested again to check for correct interaction between
kernels [].

Implementation costs of a mathematical relation are not explicit and not always
obvious. For example, a direct implementation of the filter of Equation . operating
on the input data x [k − 1,k − 2, . . . ,k −N ] to calculate the output value y [k] would
require one read operation for each input sample, hence N read operations in total.
For the next output value y [k+ 1], the values x [k,k − 1, . . . ,k −N + 1] are read. When
analyzing the indices of the values read, it can be seen that there is an overlap in
read operations on values x [k − 1,k − 2, . . . ,k −N + 1]. Instead of reading the entire
sequence of N elements for each calculation, N − 1 elements can be stored in local
memory and only the new value x [k] needs to be read. Hence, the number of read
operations is reduced by a factor N . However, by storing the elements in local
memory, the stateless implementation of the FIR algorithm has been converted to
an implementation with state. The introduction of state significantly reduces the
necessary communication bandwidth due to locality of reference [].

Consider the FIR filter from Equation .. When introducing state, this equation
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Figure . – SDF model of a FIR filter

can be rewritten as follows:

s1 [k] = x [k]

si [k] = si−1 [k − 1] 1 < i ≤N

y [k] =
N∑

i=1

hi · si [k] (.)

where the vector s indicates the state, which consists of N intermediate results (si)
that are used for the calculation of the output y. The recurrent relation between
si and si−1 (shown at the second line in Equation .) can be implemented very
efficiently by a shift register. Although the manual state derivation seems trivial
in this example, in general an automated approach is much harder. This requires
an advanced dependency analysis in order to obtain an efficient solution. If the
state is made explicit, the FIR filter can be described with an SDF model as given in
Figure ..

When state has been introduced, the communication bandwidth is reduced.
However, the computational costs are not reduced, so executing the algorithm in
real-time on a single tile processor may still be infeasible. Therefore, the execution
of the mathematical operations must be separated in smaller kernels which can be
mapped on multiple tile processors, such that the throughput of the architecture
becomes high enough to guarantee real-time execution of the application. If the
application is mapped on multiple processors, the communication between these
processors becomes visible. To illustrate the increase of communication costs when
partitioning, Equation . can be rewritten as follows:

y [k] =
N∑

i=1

hi · si [k]

=

N
2∑

i=1

hi · si [k] +
N∑

i=N
2 +1

hi · si [k] (.)

Note that the rightmost sum shown in Equation . requires the state value sN/2+1 [k].
Using Equation ., we find sN/2+1 [k] = sN/2 [k − 1], which is only present in the
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Figure . – SDF model of a partitioned FIR filter, where the execution times of the partial summations is
reduced.

leftmost sum shown in Equation .. Hence, if both sums are mapped on different
tile processors, this intermediate state value has to be communicated between the
tile processors. Also note that the rightmost sum in the equation is the same as the
original FIR filter equation. The result of this partitioning is shown in Figure ..

The FIR example shows a stepwise approach for partitioning one process into
multiple processes. This approach is done semi-automatically, as manual input is
still required to decide which rewrite rule should be applied next. For example, one
still has to specify the number of tile processors to be employed or the amount of
operations that can be mapped onto one processor simultaneously. With a predictable
processor and a predictable NoC, partitioning can be done automatically.

Figure .(a) shows the calculation of y =
∑12
i=1 fi (xi). In this example,  inputs

are read and a certain function f is applied to each of them. If the computational
complexity of these functions is sufficiently high, they have to be calculated by
different processors. In this case, the summation has to be done by another processor.
However, adding all results simultaneously may be impossible, for example because
of the communication bandwidth required. Then, the summation can be partitioned
in multiple smaller summations, as shown in Figure .(b).

Such partitioning requires knowledge about the targeted hardware architecture.
However, if the required throughput is known, and the amount of clock cycles
required for the execution of the function f on the targeted core is known, and if
the communication bandwidth to the NoC is known, this type of partitioning can
be done automatically. For example, the Montium TP presented in section ...
has a predictable performance for most algorithms and the Networks-on-Chip used
in the Annabelle MPSoC has predictable throughput and latency. Therefore, the
partitioning can be done automatically for a number of applications.
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Figure . – An example operation tree with a large adder, that is partitioned into smaller adders.

.. Composition of the dataflow model

After the decomposition of an application into processes, the processes are mapped
onto tile processors. Typically, each tile processor is capable of executing only a
few processes. In order to have the entire application meet its real-time constraints,
all processes and processor schedules need to meet real-time constraints [, ].
Therefore, guarantees need to be given to be sure none of the processes can endanger
the real-time execution behavior of the application.

The correctness of transformation functions (expressed in terms of functions on
our EDSL) can be proven; all correct transformations preserve the functional behavior
of an application. However, errors that exist in the original application remain in the
partitioned application. Additionally, the temporal behavior of an application will
change after partitioning. To determine the correctness of the temporal behavior, an
SDF model is compiled from the partitioned application.

As explained before, the amount of communication within an application can be
reduced by introducing local state. In the dataflow model, this local state is added by
adding a self edge to the process such that the process reads its state token from this
self edge, performs the operation and then writes the new state token back to the
self edge. Interaction between processes is made explicit by adding communication
channels.

We define the following terms:
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Definition  (Token). A token is a typeless container for any kind of data.

Definition  (Stream). A stream is a sequence of tokens.

Definition  (Channel). A channel, defined by a record (chid,from,to,cont),
connects to a port of a source process (indicated with from) and to a port of a
destination process (indicated by to). The channel has an identifier chid and contains
a stream of tokens cont.

Definition  (Port). A port of a process models a unidirectional interface from that
process to other processes.

Definition  (Process). A process v is defined as a record (pid, f, s, is, os,
wcet), with identifier pid, function f(), state s, token consumption rule is, token
production rule os and the worst-case execution time wcet.

Definition  (Token consumption rule). The token consumption rule is for a
process v with m input ports is described as a list of tuples (i,cv,i), where cv,i denotes
the integer number of tokens consumed from the ith input port of v (cv,i ≥ 0 for all
0 ≤ i < m) per execution of v.

Definition  (Token production rule). The token production rule os for a process
v with n output ports is described as a list of tuples

(
j,pv,j

)
, where pv,j denotes

the integer number of tokens produced on the jth output port of v (pv,j ≥ 0 for all
0 ≤ j < n) per execution of v.

Listing . shows the definition of a process, as used in the simulator framework.

 data Process
 = PS { pid : : ProcessID
 , f : : Fun
 , s t a t e : : S t a t e
 , i s : : [ ( Port , Int ) ]
 , os : : [ ( Port , Int ) ]
 , wcet : : Int
 }

Listing . – Process type definition

Since our goal is to simulate any application graph G = (V ,E), consisting of a set
of processes V and a set of channels E, the simulation framework needs to be flexible
and generic to operate on arbitrary large sets. A graph could be constructed using
advanced network combinators that connect processes and channels, for example
as used in S-Net []. However, we prefer using a list representation for these sets,
because it allows for simple construction of graphs and enables applying higher
order functions like map to the set of processes and to the set of channels. In order to
be able to execute the processes in V and to transport tokens via the channels in E,
the simulator framework requires knowledge about the type of the function f in a
process and its state. Thus, it needs to know what type of input and output tokens
are consumed and produced by the process.
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 f : : ( a , b ) −> c
 f : : ( Int , Char ) −> String
 f : : ( Double , Int ) −> ( Char , Int )

 f ’ : : [ Stream ] −> [ Stream ]

Listing . – Generalization of function types

In Haskell it is not possible to create a list containing values of different data
types, for example a list of functions with different input types. However, if all
processes use a common type for their functions and states, they could be joined in
one list. As an illustration, assume a function f of type (a,b) -> c (see Listing .),
where a, b and c can be chosen arbitrarily. Such a function is called a polymorphic
function as its types a, b and c are not bounded. The two functions f and f
comply with the type definition of f (for f, choose a=Int, b=Char and c=String
and for f choose a=Double, b=Int and c=(Char,Int)). As mentioned above, in
Haskell, it is impossible to create a list containing f and f because their types
cannot be unified to one combined type. However, Haskell has the possibility of
using dynamic types to pack an item of any data type in the so-called Dynamic
type, which internally preserves the value and type of the item stored. Then, it is
possible to create a list of dynamics ([Dynamic]) because all values in the list are
of the same type. In the simulator, this Haskell property is used for storing data in
Tokens and process State, such that process functions can be defined as a function
with type [Stream] -> [Stream], where a Stream denotes a list of tokens received
on an input of the function. The explicit conversion functions for packing and
unpacking function arguments to and from tokens are depicted in Listing .. The
fromToken() function is used to open an abstract Token and returns the contents
of the token, and the toToken() function is used to convert any data of type v to a
token.

 fromToken : : ( Typeable v ) => Token −> v
 fromToken t = fromJust ( fromDynamic t )

 toToken : : ( Typeable v ) => v −> Token
 toToken t = toDyn t

 type Token = Dynamic
 type Stream = [ Token ]

Listing . – Token conversion functions

A channel is connected to one output port of a process and one input port of a
process (see Listing .). These connections are defined by a tuple containing the
connected process and its port number, where the channel uses such a tuple for both
the source connection (from) and the destination connection (to). A channel can be
identified using a ChannelID, and tokens currently buffered in the channel are stored
in a Stream field. Different types of tokens can be stored in the channel, similar to
the generalization of process functions. This makes it possible to maintain a list of
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all channels in the application.

 data Channel
 = C { chid : : ChannelID
 , from : : ( ProcessID , Port )
 , to : : ( ProcessID , Port )
 , cont : : Stream
 }

Listing . – Channel type

The resulting data structure, containing the application graph G = (V ,E), can
now be used as input for the dataflow simulator. In section ..., the application
graph definition will be discussed in more detail.

.. Simulation

To verify that, after the partitioning, the entire application meets its real-time con-
straints, we have developed a simulator that performs functional simulation of an
SDF application. Communication between two processes is done via explicit token
production and explicit token consumption operations. A global simulation clock
triggers the execution of all processes. First, the firing rule for a process is checked
to see whether there are enough tokens available on the input edges, and in case of
success the function associated to that process is executed. After an integer number
of simulator clock periods (the execution time of the process), the process is finished.
At any time during the simulation, the simulator has a state in which the list of pro-
cesses, the list of channels, and the execution state of all processes is stored (shown
in Listing .).

 data SimState
 = SS { ps : : [ Process ]
 , cs : : [ Channel ]
 , exec : : [ ProcessExec ]
 }

Listing . – Simulator state type definition containing all application information

The process execution state indicates whether a process is currently Waiting to be
fired, Running or has Finished its computation (see Listing .). When the process
is fired, its execution state is set to Running n, where n indicates the execution
time of that process. Also, the input tokens are read from the channels and the
function associated to the process is evaluated, using the read tokens as arguments.
The evaluation of this function is done immediately and the new state and output
tokens are stored in a temporal buffer that is part of the ProcessExec state used
by the simulator (see Listing . and Listing .). After each simulation cycle,
the Running counter is decreased, until it reaches the state Running 0. Then, the
ProcessExec buffer is flushed to the channels connected to the output ports and the
process state is set to Finished and a new firing can be started.
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 type ProcessExec = ( Exec , Buffer )
 type Buffer = [ Stream ]

 data Exec
 = Waiting
 | Running Int
 | Finished

Listing . – Process execution state type definition

The simulation of one process iteration is shown in Listing .. The updatePro-
cess function operates on the tuple (v,pe), where v indicates the process that is
updated and pe refers the current ProcessExec state information of v. One update
results in a -tuple (v,pe′ ,rds,wrs) containing the original process information v, the
updated ProcessExec state pe′ , the consumed tokens rds and the produced tokens
wrs.

 −− P r o c e s s i s wa i t ing
 updateProcess s ( pr , ( Waiting , ) )
 | enabled = ( pr ’ , ( Running ( wcet pr ) , buf ) , rds , [ ] )
 | otherwise = ( pr , ( Waiting , [ ] ) , [ ] , [ ] )
 where

 −− Check f i r i n g r u l e
 enabled = tokensAvai lable s ( i s pr )

 −− Read t o k e n s and e x e c u t e f u n c t i o n
 rds = readTokens s ( i s pr )
 ( fs ’ , buf ) = ( f pr ) ( s t a t e pr ) rds

 pr ’ = pr { s t a t e = fs ’ }

 −− P r o c e s s j u s t e x e c u t e d i t s l a s t c y c l e
 updateProcess s ( pr , ( Running  , buf ) ) = updateProcess s ( pr , ( Finished , buf ) )

 −− P r o c e s s i s c u r r e n t l y e x e c u t i n g
 updateProcess ( pr , ( Running n , buf ) ) = ( pr , ( Running ( n− ) , buf ) , [ ] , [ ] )


 −− P r o c e s s j u s t f i n i s h e d
 updateProcess s ( pr , ( Finished , buf ) )
 = ( pr ’ , pe ’ , rds ’ , wrs ++ wrs ’ )
 where
 wrs = fromBuffer buf
 ( pr ’ , pe ’ , rds ’ , wrs ’ ) = updateProcess s ( pr , ( Waiting , [ ] ) ) }

Listing . – updateProcess function (in pseudo-Haskell code)

The simulation model for the entire application works as follows. On each global
simulation clock, one time step is simulated (see Listing .). For all processes,
this involves an update of one time step (line ). The process update results in a
new process state, a list containing the token consumption per input port, and a list
containing the token production per output port during that update step (pi , used
at lines , ,  and ). After updating a process, the consumption of tokens from
the input channels associated to the input ports of the process is performed (line ).
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Next, the produced tokens are put in the corresponding channels connected to the
process output ports (line ). The simulator state is updated and returned for the
next step (line ). This sequence of steps is repeated n times (see line ).

 step n ss
 = step ( n −  ) ss ’
 where
 −− Execute a l l p r o c e s s e s
 p i = map ( procExecute ss ) ( zip ( ps ss ) ( exec ss ) )

 −− E x t r a c t next s t a t e
 ps ’ = [ p | ( p , , , ) <− p i ]
 exec ’ = [ e | ( , e , , ) <− p i ]

 −− Crea t e l i s t s o f read and w r i t e o p e r a t i o n s t o be per formed
 consumed tokens = concat [ i | ( , , i , ) <− p i ]
 produced tokens = concat [ o | ( , , , o ) <− p i ]

 −− Apply read and w r i t e o p e r a t i o n s t o c h a n n e l s
 c s r d = f o l d l readFromChannel ( cs ss ) consumed tokens
 cs wr = f o l d l writeToChannel c s r d produced tokens

 −− Update s i m u l a t i o n s t a t e
 ss ’ = ss { ps = ps ’ , exec = exec ’ , cs = cs wr }

Listing . – Evaluation of one simulation clock (in pseudo-Haskell code)

The data structure containing the initial simulator state, is called the application
structure and is discussed in more detail in the next section. The implementation of
functionality that is executed within one process is discussed in section ....

... Application structure

A fragment of an example application graph G = {V ,E} as used in the simulator is
displayed in Listing .. The listing shows the data structure of graph g (line )
which consists of the list of processes vs and the list of channels es. Each process v
in vs (line ) is defined by a PS record, as introduced in Listing .. The PS record
contains a function field f (implemented by the sum  partial summation function
shown at line  in the example of Listing .), the initial state of that function (line ,
here set to 0), and the token consumption rule is and production rule os (lines 
and  of Listing ., respectively). For this example, per execution of the function
sum  from input port 0 a total of  tokens is consumed, and on both output ports 0
and 1 a single token is produced after  time steps. A list of the channels between
processes in the application graph is denoted by E (displayed as es in Listing . at
line ). A channel e is defined as a C record (see Listing .) containing the channel’s
identifier, the output port of the source process that produces tokens into the channel,
the input port of the destination process that consumes tokens from the channel and
a list of tokens cont currently present in channel e (line  of Listing .).

A graphical representation of the application structure within the simulator
framework is shown in Figure .. Here, the squares indicate processes, the pointy
blocks on the boundary of the squares indicate the input and output ports, and the
function associated to the process is displayed below the process rectangles. Per



.. Mathematical programming based tool-flow 

 g = SS { ps = vs , cs = es , exec = [ ( Waiting , [ ] ) , . . . ] }
 vs = [ PS { pid = 
 , f = sum 
 , s t a t e = 
 , i s = [ ( ,  ) ]
 , os = [ ( ,  ) , ( ,  ) ]
 , wcet =  }
 , PS { . . . } ]
 es = [ C { chid = ”c”
 , from = ( ,  )
 , to = ( ,  )
 , cont = Stream [ ]
 }
 , C { . . . } ]

Listing . – Application data structure example as used in the simulator

f1 f2 f3

f1 = . . . f2 (a,b) = a× b f3 (x) = . . .

0

1

0

1

0 0

pid=1 pid=2 pid=3

p1,0

p1,1

c2,0

c2,1

p2,0 c3,0

Figure . – Internal representation of an application within the simulator

port, the token consumption and production rates are displayed (for example, c2,0
denoting the token consumption of process 2 from its 0th input port). The self-edge
from a function to itself denotes the explicit state.

... Process implementation

Since the simulator framework takes care of the process firing and the communication
between processes via a channel connected to their ports, the process’ function
implementation only has a local memory map (or stack) in which the input tokens
are stored. As soon as there are enough tokens available on the input channels, they
are moved to the local memory map for the process and the function can be executed
using that local memory map.

An example process implementation in the simulator framework is given in
Listing .. The example shows a FIR filter, as presented before in section ... At
lines  and  of Listing ., the input values x, and current state (n,h,s) that contains
the number of taps, the coefficients and the intermediate summation results, are
obtained from the fromToken function. These support functions are used to unpack
the tokens and copy the contents to the local memory. The FIR filter operation
itself is defined by lines  and . A part of the state contains the delay register
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 f i r : : ( State , [ Stream ] ) −> ( State , [ Stream ] )
 f i r ( st , [ Stream [ t ] ] ) = ( st ’ , [ Stream [ t ’ ] ] )
 where
 x = ( fromToken t ) : : Int
 ( n , h , s ) = ( fromToken s t ) : : ( Int , [ Int ] , [ Int ] )

 s ’ = [ x ] ++ take ( n−) s
 y = sum ( zipWith ( * ) h s )

 t ’ = toToken ( y : : Int )
 st ’ = toToken ( n , h , s ’ )

Listing . – SDF function type definition and example n-taps FIR filter implementation

contents. As explained in Equation ., these delays are implemented using a shift
register. The shift functionality is obtained by adding the new input x at the front
and dropping the last element of the list of delayed elements s (line ). The filter
output y is obtained by applying an element-wise multiplication (using the zipWith
(*) function) of the delayed elements s and the list of coefficients h, followed by
an accumulated summation of the resulting list using the predefined function sum
(line ). The output y of the filter as well as the new state (n,h,s′) are stored in a
token using the toToken function and returned as new state output. Lines  and 
show the type casting and storage of the filter output and the new local state in tokens
t’ and st’. Note that for this implementation, the FIR filter was not partitioned to
smaller processes. The implementation shown is identical to Equation ..

.. Testing

Due to the strong typing system used in Haskell, type errors appear very early when
designing an application [, ]. Therefore, possible bugs manifest themselves
during the design of individual processes. When combining these processes to
an application, a different type of errors is likely to occur. For example, if tokens
transmitted via a stream contain different typed data, the receiver may have problems
with the interpretation of the tokens. Moreover, if two communicating processes
use different ordering of a data stream, no typing errors are made but the received
data is interpreted differently than how it was sent. Another problem may be in
the synchronization of multiple processes: cyclic connections between two or more
processes may lead to deadlock if the buffer capacities are insufficient. This problem
can be avoided by applying buffer capacity analysis techniques, for example as
presented by Wiggers [].

The simulation framework includes a Graphical User Interface (GUI) that is
generated from the SimState application specification. It shows the structure of the
application by drawing the SDF model. The contents of tokens stored in channels can
be displayed, such that the functionality of the processes can be verified. Applications
may be either defined using parameters (for example, when several copies of one
process have to run in parallel) or their structure can be modified afterwards by
applying transformations to the application. In both cases, the GUI shows the
application structure and token flow.
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p
ρ =〈4,24,4〉

〈4,0,0〉 〈0,0,4〉

(a) CSDF variant for block-mode

p
ρ =〈4,16,4〉

〈4,0,0〉 〈0,0,4〉

(b) CSDF variant for streaming-mode

Figure . – CSDF equivalents for both operations modes (assuming maximum consumption/production
of  token per cycle)

.. Performance of communication modes

Once the application is partitioned and tested, it is mapped to an MPSoC architec-
ture. Hence, the processes in the application are mapped on processors and the
communication channels between processes are mapped on the interconnect between
these processors []. The SDF and CSDF models used in this chapter assume
zero latency in the channels. However, when these channels are mapped on the
physical interconnect, a certain latency is introduced due to routing and arbitration.
Therefore, the mapping of the application to the hardware platform may cause a
different application behavior in terms of time, while it still shows identical behavior
in terms of functionality. However, it is possible to model the latency and throughput
limitations introduced by the interconnect in the application [].

The influence of the operation mode (block-mode or streaming-mode) of a process
and the mapping of its input and output streams on the NoC via the NI on the data
flow can be made explicit by using a CSDF model. For example, consider the SDF
process that is shown in Figure .. For the block-mode operation, all input tokens
must be loaded via a DMA load transaction before the execution can be started.
Hence, an additional stage before the execution stage is added to model the token
consumption. Similarly, the output tokens are produced in an additional stage after
the execution stage, which models a DMA retrieve transaction to read the result. The
resulting CSDF model of a block-mode is shown in Figure .(a). It consists of three
stages, where the first stage has an execution time of  cycles, during which  input
tokens are read. In the second stage, the function associated to the process is executed
(in  cycles) and its results are stored. The third stage, where  result tokens are
produced, also has an execution time of  cycles. In total, this implementation lasts
for  cycles.

In case of streaming-mode operation, a part of the execution stage is combined
with the token consumption stage. The consumption is done exactly as fast as in the
block-mode example of Figure .(a) ( cycles). After the token consumption stage,
the execution is continued in  cycles during the second stage. Then, the result
tokens are produced in the last stage simultaneously with a part of the execution
(again in  cycles), such that the total token consumption and production are equal
to the block-mode version but the total execution time of all  stages is reduced from
 to  cycles. Effectively, this reduces overhead in cycles due to execution being
halted during communication, as the streaming-mode exploits concurrency between
communication and computation during the communication stages.

In this example, the token consumption and production rates are assumed to be 
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Cin (input communication) P (processing) Cout (output communication) TSlack (Slack Time)

time

0 Tframe 2 ∗ Tframe

(a) CSDF schedule when communication is limited to  word per clock cycle (single channel
DMA transactions)

time

0 Tframe 2 ∗ Tframe

(b) CSDF schedule when communication is limited to  words per clock cycle (dual channel
DMA transactions)

time

0 Tframe 2 ∗ Tframe

(c) CSDF schedule when communication is limited to  words per clock cycle (-channel DMA
transactions)

Figure . – Three possible CSDF schedules for block-mode operation of a process with ρ = 24, Cin = 4
and Cout = 4. The effect of increasing the number of channels for DMA transactions is clear:
lower bandwidths result in longer execution times of the communication stages.

token per cycle, where each token contains one word. However, if multiple words
can be stored in a token with an identical token rate (or if multiple tokens can be
consumed per cycle), the execution time of the token consumption and production
stages may be decreased. An illustration is given in Figure ., which shows how
the stages of a CSDF process (operating in block-mode) could be scheduled for
different consumption and production rates. The lightest blocks in the upper part of
each picture represent input data transfers (indicated by Cin), the middle gray blocks
represent the processing (indicated by P ) and the darker blocks in the lower part show
output data transfers (indicated by Cout). The striped area indicates the remaining
time in a frame, called slack time (Tslack). As can be seen, the communication times
are reduced with a larger bandwidth for the DMA transactions, resulting in a larger
slack time.

The same figures can be drawn for a streaming-mode implementation of the
process. Figure . shows the CSDF schedule of the same process, operated in
streaming-mode operation. Here, the number of channels used to stream input
tokens into the process is also increased. The streaming-mode implementations
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Cin (input communication) P (processing) Cout (output communication) TSlack (Slack Time)

time

0 Tframe 2 ∗ Tframe

(a) CSDF schedule when communication is limited to  word per clock cycle (single channel
streaming communication)

time

0 Tframe 2 ∗ Tframe

(b) CSDF schedule when communication is limited to  word per clock cycle (dual channel
streaming communication)

time

0 Tframe 2 ∗ Tframe

(c) CSDF schedule when communication is limited to  word per clock cycle (-channel stream-
ing communication)

Figure . – Three possible CSDF schedules for streaming-mode operation of an SDF task with ρ =
24, Cin = 4 and Cout = 4. The schedules shown represent best-case situations where
communication and processing can be done fully in parallel.

enable longer slack times than their block-mode counterparts with comparable
communication bandwidth.

... Run-time Execution

The previous sections dealt with the tool flow’s design-time part. For the run-time
part, we rely on the work by Hölzenspies et al. [] and ter Braak et al. []. The
application definition SimState can be converted to an Extensible Markup Language
(XML) format that is used by the run-time mapping tool to choose at run-time the
most suitable processors for executing the application. The XML format required
by the run-time mapping tool resembles the SimState format, although much more
architectural knowledge is included (for example, the amount of processors on the
MPSoC, and the NoC infrastructure).
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. Conclusion

Mapping streaming DSP applications to a multi processor architecture is a complex
task that has proven to be very hard. Typically, such applications are specified by
block schematics that can also be described by mathematical relations. Existing
design flows often translate the mathematical relations to a sequence of instructions,
using an imperative programming model. The sequential implementation is then
analyzed to find suitable locations for partitioning the code into small code segments
that can be compiled for individual processors.

In this chapter we introduced an alternative design method that directly trans-
lates the mathematical relations in parallel processes, such that transformation to
sequential code can be avoided. The design method uses an EDSL implemented in
the functional programming language Haskell. Basic transformations like rewrit-
ing associative operators and partitioning of long lists of operations into multiple
shorter lists of operations can be applied to any application implemented in the
EDSL. Therefore, the EDSL is both a data type and a language. After partitioning,
the EDSL implementation is converted to an SDF model. This model can be used for
functional simulation and for the run-time execution on a MPSoC architecture.

Using the simulation framework, correctness of the application can be tested by
executing processes and transporting their results via channels to other processes.
Such testing can identify possible typing errors in communication (for example, one
process produces a list of integers while the next process expects a list of characters)
and allows for evaluation of the EDSL definitions. A GUI is used to present the
feedback from simulation by drawing the process graph, token contents on the
channels and gives an indication of the throughput of the application.

Finally, we showed how the communication modes supported by the NI as pre-
sented in chapter  translate into the SDF and CSDF data flow models. These models
will be used in the next chapter.



Chapter 

Case Studies from Mobile
Communication Receivers

Abstract

Streaming DSP applications can be found in many embedded systems. Software
defined radio receivers are a suitable case for streaming DSP applications, because
they require a considerable amount of signal processing with relatively high
bandwidth requirements and low latency requirements. Reconfigurable tiled
architectures have proven to be useful for applications with such requirements. In
this chapter, two different mobile communication receivers are discussed. The first
example is a DRM radio receiver for mobile handheld devices with limited battery
capacity. Thus, energy efficiency is a primary target for the implementation of
the digital receiver. The second example is a DVB-S satellite receiver for in-car
infotainment. A receiver uses an electronically steered array antenna that tracks
satellites transmitting the signal of interest. Due to the large number of antenna
elements used in an array, this communication receiver is a good example of a
high performance application with strict constraints.

Analog radio and tv broadcasts have been transmitted for decades using Amplitude
Modulation (AM) and Frequency Modulation (FM) broadcasting. For such modula-
tion, receivers could be implemented very efficiently using a few analog components.
However, these modulation techniques have a poor spectrum utilization, as the num-
ber of bits transmitted per Hz of bandwidth is typically small. Digital modulation
schemes have been proposed to improve the spectrum utilization by increasing the
number of bits transmitted per Hz of bandwidth. As a result, the channel capacity is
increased at the cost of additional digital processing.

Nowadays, broadcast streams are transmitted via different media, each having
specific advantages and disadvantages []. A popular transmission technique that

Parts of this chapter have been presented at the International Symposium on System-on-Chip [],
at the Scientific ICT Research Event of the Netherlands [] and at the Euromicro Conference on
Digital System Design [], parts were published in the International Journal of Reconfigurable
Computing [] and parts have been accepted for publication at the IEEE Vehicular Technology
Conference [].


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is suitable for short distance communication is wireless transmission via radio base
stations, called terrestrial communication. Typically, the signals transmitted by a
radio base station can be received within an area with a radius of a few kilometers
around the base station. However, wireless transmission of signals is quite expensive
as the signal quality depends on many factors like interferers and weather circum-
stances. The total capacity of terrestrial communication is restricted due to power-
and spectrum limitations. Furthermore, to cover a large area, multiple transmitters
are required and therefore, there may be some overlap in coverage. In the overlapping
area, interference will occur if both transmitters use the same spectrum. Therefore,
to avoid interference, the spectrum cannot be used completely. Digital terrestrial
broadcasts typically use Orthogonal Frequency Division Multiplexing (OFDM), as
it provides high spectral efficiency and allows simple filters in the transmitter and
receiver []. A disadvantage of OFDM is its sensitivity to interference due to
multipath effects (caused by reflections via buildings and large objects) and Doppler
shift (caused by movement of the receiver), hence OFDM based communication re-
ceivers should include mechanisms for time/frequency synchronization and channel
estimation.

Another application area of wireless communication is satellite communication.
Many satellites are orbiting around the earth at different altitudes and with different
speeds with respect to the earth. Due to their high altitude, each satellite can
broadcast a signal to a very large area. However, this altitude also decreases the
signal quality, as climatological circumstances have a varying impact on the signal of
the earth-based receiver. Keeping the satellite at any arbitrary altitude moving at any
arbitrary speed would require continuous corrections, for example by using a large
booster engine that can be turned on to reposition the satellite. By using the earth’s
gravity field, for each altitude, one trajectory can be chosen in which the satellite
can stay without requiring an engine. When a satellite traverses a trajectory around
the earth in exactly  hours, the trajectory is called a geosynchronous trajectory as
it enables traveling around the earth in exactly one earth rotation []. There is
one special geosynchronous trajectory, which enables satellites to move with the
exact same speed as the earth’s surface. This geostationary trajectory is a trajectory at
 kilometers around the equator and is also known as the Clarke belt [] (see
Figure .). From the earth’s point of view, a satellite in that trajectory is fixed at its
position. A fixed directional antenna can then be used to receive signals transmitted
by such a ‘fixed’ satellite. Typically, dish antennas are used to focus and to amplify
the signals received from a particular satellite. The pointing of the dish antenna
should be done very carefully to enable optimal signal reception. Hence, this type of
antenna is only useful in static scenarios. Moreover, for satellite broadcasting, the
transmission channel is continuously changing, for example due to changing weather
circumstances. The varying channel quality typically distorts the signal amplitude,
hence the signal modulation is based on Quadrature Phase Shift Keying (QPSK) as
this enables modulation in phase only.

In this chapter we present two mobile communication receivers that utilize
different transmission media. First we introduce Digital Radio Mondiale (DRM) as an
example digital radio application which is broadcasted using terrestrial base stations,
in section .. The reception of DRM signals using a mobile handheld device requires
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r1 = 6400 km

r2 = 36000 km

Figure . – Clarke belt at  km around the equator

an energy-efficient architecture that allows for long battery life when listening to a
digital radio broadcast. The second example, a mobile Digital Video Broadcast for
Satellite (DVB-S) receiver for in-car infotainment, is described in section ..

The mobile communication receivers are used to show how a generic stream
processing platform, as presented in chapter , can be used in different circumstances.
For both receivers, digital processing is used to allow for high spectrum utilization
and for reducing the analog front-end constraints (like filter selectivity, energy per
transmitted bit, and tuner flexibility). The digital processing can be modeled using
streaming dataflow models. The DRM application has been used as a key application
within the S project [] and DVB-S was used as a research vehicle in the CMOS
Beamforming Techniques project []. The DRM application is an example of a low-
power application for handheld devices, where battery capacity is limited. The DVB-S
application poses less power constraints, as its application to in-car infotainment
enables a reasonable battery capacity. However, due to the large number of antenna
elements, the power budget and processing performance of the overall receiver
are important. Before discussing these applications, we first discuss some of the
frequently used DSP kernels and their implementation on the Montium TP based
MPSoC, such that they can be referred to in the next two sections discussing the
applications.

. Common DSP kernels

In this section, frequently used DSP algorithms are presented. First several classes of
FFTs and their implementations on the Montium TP are discussed in section ...
Then, a generic implementation of FIR filters on the Montium TP is analyzed.
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.. Fast Fourier Transform

The Discrete Fourier Transform (DFT) transforms a digital signal from the time
domain to the frequency domain. It is defined by the following relation between N
input samples x [n] and N output samples X [k]:

X [k] =
N−1∑

n=0

x [n]W nk
N , k = 0,1, . . . ,N − 1 (.)

where W nk
N = e−j2π

nk
N are primitive roots of the unit circle, also called twiddle factors.

Each of the N outputs is the sum of N terms, so a direct computation of this formula
requires O

(
N2

)
operations. The inverse operation, the Inverse Discrete Fourier

Transform (iDFT), converts the frequency domain samples back to the time domain
and is defined as follows:

x [n] =
1
N

N−1∑

k=0

X [k]W −nkN , n= 0,1, . . . ,N − 1 (.)

The FFT efficiently implements the DFT by exploiting symmetry in its twiddle
factors . The best known FFT algorithm is the algorithm proposed by Cooley and
Tukey [], who generalized the decomposition into any arbitrarily sized FFT. Their
algorithm recursively re-expresses a DFT of length N = N1 ·N2 into smaller DFTs of
size N1 and N2. For an FFT with a length that is a power of x (called radix-x), the
recursion can be done in logx (N ) stages using an x-input butterfly. For example,
Equation . shows how Equation . can be rewritten into a radix- FFT:

X [k] =

N
2 −1∑

m=0

x [2m]W
(2m)k
N +

N
2 −1∑

m=0

x [2m+ 1]W
(2m+1)k
N

=

N
2 −1∑

m=0

x [2m]Wmk
N
2

+W k
N

N
2 −1∑

m=0

x [2m+ 1]Wmk
N
2

(.)

where k = 0,1, . . . ,N −1. Hence, the FFT has been reduced to two smaller FFTs which,
on their turn, can be rewritten again according Equation ..

The partitioning presented here is only useful for radix- FFTs. For other FFT
sizes, different algorithms can be used. A flexible FFT algorithm is the Prime Factor
Algorithm (PFA), as presented by Good []. For any FFT of length N = N1 ·N2
where N1 and N2 are coprime, a partitioning similar to Equation . can be applied
where the intermediate multiplication with a twiddle factor can be skipped. The
smaller FFTs of length N1 and N2 can be implemented with any FFT algorithm.

Good’s mapping optimizes the PFA for the number of calculations to be done,
but assumes that input data is ordered in Ruritanian Correspondence (RC) order and

In this thesis, we use the notation DFT-N and FFT-N to indicate an DFT and FFT operating on N
time samples and resulting in N frequency components.
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output data in Chinese Remainder Theorem (CRT) order or vice versa, as presented
by Temperton []. Therefore, the input n and output k are reindexed using the
following equations:

n= 〈n1N2 + n2N1〉N (.)

k =
〈
k1N

−1
2 N2 + k2N

−1
1 N1

〉
N

(.)

where 〈a〉N denotes a (mod N ). N−1
1 denotes the modular multiplicative inverse of

N1 (mod N2), such that N1N
−1
1 = 1 (mod N2).

The re-indexing of n is called RC reordering and the re-indexing of k is called
CRT reordering. Using these new indices, the DFT can be rewritten as follows:

X
[
k1N

−1
2 N2 + k2N

−1
1 N1

]
=

N1−1∑

n1=0




N2−1∑

n2=0

x [n1N2 + n2N1]W
n2k2
N2


W

n1k1
N1

(.)

where the inner sum is a DFT of size N2 and the outer sum is a DFT of size N1 while
no intermediate multiplication is required.

Using Equation ., the input vector x [n] is remapped in RC order as follows:

xRC [n1,n2] = x [n] (.)

For example, with an FFT- (where N1 = 3 and N2 = 2), the inputs for the first FFT-
are xRC [0,0] = x [0], xRC [1,0] = x [2], and xRC [2,0] = x [4], while the second FFT-
operates on the other inputs (xRC [0,1] = x [3], xRC [1,1] = x [5], and xRC [2,1] = x [1]).

Similarly, the CRT reordering of the output X [k] is done using Equation .:

X [k] = XCRT

[
〈k〉N1

,〈k〉N2

]
(.)

A graphical description of the steps required for a PFA decomposed FFT using
Good’s mapping is given in Figure .. First, the input reordering is done, then N2
times an FFT-N1 is performed (visualized with the horizontal planes in Figure .)
and N1 times an FFT-N2 is performed on the results (visualized by the vertical planes
in Figure .) and finally the outputs are reordered.

.. Radix- FFT

The radix- decomposition, as presented in Equation ., is the most used FFT
implementation. However, other efficient implementations do exist. For example,
the split radix FFT was proposed by Yavne [] and later reintroduced by Duhamel
and Hollman []. Their solution is based on a partitioning different from the
partitioning used by Cooley and Tukey. In stead of re-expressing an FFT-N in smaller
FFTs of size N1 and N2, it recursively expresses the FFT-N in one FFT of size N

2 and
two FFTs of size N

4 . For a long time, this partitioning has been considered to have the
lowest arithmetic operation count (total number of additions and multiplications)
for computing power-of- FFTs.
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Input ordering (RC) FFT-N1 FFT-N2 Output ordering (CRT)

x [n] X [k]

xRC [n1,n2] XCRT

[
〈k〉N1

,〈k〉N2

]

Figure . – Steps in a PFA decomposed FFT

An efficient implementation of a mixed radix-/ FFT processor is presented
in []. The design is flexible and can be reconfigured at runtime to vary the FFT
size between -point and -point. However, due to its specialized design, other
FFTs are not supported.

... Implementation

The implementation of a radix- butterfly operation can be done very efficiently on

the Montium TP. Due to the symmetry in the twiddle factors (W n·(k+N/2)
N/2 =W nk

N/2

and W n·(k+N/2)
N = −W nk

N ), Equation . can also be expressed as:

X [k] =

N
2 −1∑

m=0

x [2m]Wmk
N
2

+W k
N

N
2 −1∑

m=0

x [2m+ 1]Wmk
N
2

(.)

X
[
k+

N
2

]
=

N
2 −1∑

m=0

x [2m]Wmk
N
2
−W k

N

N
2 −1∑

m=0

x [2m+ 1]Wmk
N
2

(.)

Note that
∑N

2 −1
m=0 x [2m]W

mk
N
2

and
∑N

2 −1
m=0 x [2m+ 1]Wmk

N
2

both define an FFT-N/2. These

FFTs can be rewritten to FFT-N/4 by reapplying Equation .. Finally, this results in
an FFT- (where N = 2 and Wmk

N
2

=Wmk
1 = 1 for any m and k):

X [k] = x [0] +W k
2 x [1] (.)

X [k+ 1] = x [0]−W k
2 x [1] (.)

which is also called the butterfly operation. This operation can be mapped efficiently
on the Montium ALUs (see Figure .). In one clock cycle, the ALUs can execute a
complex multiplication and perform the butterfly operation.

With one butterfly operation, two results out of N are calculated. Therefore,
N/2 butterfly operations are required to calculate all N results. Since the FFT-N
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Figure . – FFT butterfly ALU mapping

can be calculated by dividing it into two FFT-N/2 and combining the intermediate
results with N/2 butterfly operations, the calculation of one FFT-N requires N/2
butterfly calculations, followed by twice an FFT-N/2. In this way, an FFT-N can be
decomposed into log2N stages consisting of butterfly operations. These operations
can be fully pipelined (which costs  additional cycles for the start and end of the
pipeline), hence N/2 + 2 cycles are required for one stage. In total, the FFT-N
can be executed in

(
N
2 + 2

)
log2N clock cycles []. Due to the partitioning, the

output data of the last stage has to be reshuffled. The FFT results are produced in
a bit-reversed address order. Such reordering is supported in hardware within the
AGUs of the Montium’s memories. Hence, reversing the address bits costs no clock
cycles as it is done simultaneously with the calculation of the next memory address.

... Block-mode versus streaming-mode

The block-mode version of the radix- FFT mentioned above operates on an input
vector x (consisting of N time samples) stored in memory and results in an output
vector X (consisting of N frequency components) that is stored in another part of
the Montium TP’s memory. Before the execution of the FFT butterflies, the input
vector is first received and stored via a DMA transfer. Then, the execution is started
and upon completion, the results are retrieved using another DMA transfer. For the
operation of a radix- FFT in streaming-mode, a part of the input can be loaded
simultaneously with the first butterfly calculations and the results can be streamed
to the output as soon as a part of the results has been reordered. For both modes, the
communication bandwidth determines the communication overhead of the FFT. An
example of the execution of an FFT- in both modes is shown in Figure ., where
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Cin (input communication) P (processing) Cout (output communication) TSlack (Slack Time)

s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6
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(a) Schedule of a radix- FFT operated in block-mode

s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6

time

0 Tframe 2 ∗ Tframe

(b) Schedule of a radix- FFT operated in streaming-mode

Figure . – Example schedules of the block-mode and streaming-mode implementations of an FFT

the notation sx shows the execution of the xth stage of the FFT.
In the example of Figure ., an FFT- is executed. For the block-mode version

of the FFT, the total number of tile clock cycles required to process one FFT is:

Tblock = Tcomm + Tcomp

= 2 · 2N
L

+
(N

2
+ 2

)
log2 (N )

=
4N
L

+
(N

2
+ 2

)
log2 (N ) (.)

where L indicates the number of samples that is loaded into the Montium TP si-
multaneously (see also the notes on parallel DMA transactions supported by the
DMA controller discussed in section ...). The input communication time for N
complex numbers (so 2N words) is equal to the output communication time, hence
Tcomm = 2 · 2N

L . In the example used in Figure ., N = 64 and L= 1. As a result, the
worst-case C/C ratio for the block-mode operated FFT- is Tcomm

Tcomp
= 256/L

204 = 1.25/L.

Table . shows an overview of the computation and communication times for all
radix- FFTs between FFT- and FFT-.

The streaming-mode implementation is capable of reading the input data during
the first stage of the FFT and writing the results during the last stage of the FFT.
In the first stage, each butterfly operation is performed on the samples x [i] and
x [i+N/2]. Hence, if the samples are read in linear order (sample x [i] is followed
by x [i+ 1]), the first N/2 + 1 samples need to be read before the first butterfly
operation can be performed. Figure .(b) shows how a part of the inputs is read,
and then the processing of stage  is started during the input reading. As mentioned

The schedule does not include the possible delays caused by the NI message protocol that is used to
start the DMA transactions and algorithm execution.
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Table . – Communication to computation ratio of different radix- FFTs.

(a) Block-mode

N Tcomp Tcomm
C/C
ratio

16 40 64
L

1.60
L

32 90 128
L

1.43
L

64 204 256
L

1.25
L

128 462 512
L

1.11
L

256 1040 1024
L

0.98
L

512 2322 2048
L

0.88
L

1024 5140 4096
L

0.80
L

(b) Streaming-mode

N Tcomp Tcomm
C/C
ratio

16 40 64
L -10 1.60

L -0.25
32 90 128

L -18 1.43
L -0.20

64 204 256
L -34 1.25

L -0.17
128 462 512

L -66 1.11
L -0.14

256 1040 1024
L -130 0.98

L -0.13
512 2322 2048

L -258 0.88
L -0.11

1024 5140 4096
L -514 0.80

L -0.10

in section ..., communication and computation can be done simultaneously.
However, if the input stream is delayed, the processing is also delayed. Since Tcomm
is defined as the overhead caused by communication, for the streaming-mode FFT
we define Tcomm = Tcomm,input − Tcomp,stage1 + Tcomm,output =

4N
L −

(
N
2 + 2

)
.

Tstreaming = Tcomm + Tcomp

=
4N
L

+
(N

2
+ 2

)
(log2 (N )− 1) (.)

Due to the bit-reversed order in which results are produced in the last stage [],
the data can only be streamed out in linear order after finishing that stage. Hence,
computation and communication cannot be combined during the last stage. In total,
the communication overhead includes half of the input streaming and all output
streaming. For the streaming-mode example depicted in Figure . (where N = 64
and L = 1), the C/C ratio then becomes 1.25

1 − 0.17 = 1.08, which is about %
smaller than the block-mode implementation.

.. Non-power-of-two FFT

The required DFTs for DRM are those operating on , , , , , ,
,  and  samples [, ]. For the iDFTs, the required sizes are ,
, , , ,  and  points. The restriction of the radix FFT is that it can
only handle FFTs that have a length that is a power of the radix value (for example
two for radix-). Hence, of the DFTs mentioned above only the , ,  and
-point can be implemented using the radix- solution. A frequently used method
to implement non-radix- FFTs is by applying zero padding, which appends zeros

Output ordering is required if the next process does not support bit-reversed indexing of the stream.
Therefore, the output communication overhead could be reduced considerably. However, this
optimization is not useful for the general case and therefore, we consider in-order communication as
a requirement.
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Figure . – -QAM bit errors occurring due to transmission and decoding

to the input vector and increases its length to a power-of-two, such that a regular
radix- FFT can be applied. However, this changes the filter response of the FFT and
therefore the data stream will lose its orthogonal characteristics.

To illustrate the effects of zero padding on a stream of OFDM symbols, we
simulated an OFDM system with -Quadrature Amplitude Modulation (QAM)
modulation transmitting  symbols. Figure .(a) shows the input bits after
modulation by the transmitter. After transforming the input samples with an Inverse
Fast Fourier Transform (iFFT), it was sent via an Additive White Gaussian Noise
(AWGN) channel. Two different receivers were used to transform the samples back
to the frequency domain: one of them used an FFT with a length equal to the length
of the sender’s iFFT (see Figure .(b)), while the other receiver used a larger FFT
with zero padding (see Figure .(c)). The effect of the white noise added by the
channel is clear: small errors occur in the received samples. However, for the zero
padding based receiver, the input samples are not recognizable at all. Usually, in
most applications the error introduced by zero padding is acceptable as the gain
in performance is more important. However, OFDM-based applications use the
orthogonal characteristics of FFTs to improve the spectral efficiency and, therefore,
the requirements for the FFT are more stringent. In order to obtain an acceptable
performance, efficient non-power-of-two FFT implementations are required.

An example of a suitable FFT algorithm for implementing the non-power-of-two
FFT lengths is the mixed-radix algorithm []. An implementation of the PFA based
FFT was presented in []. Bi and Chen present a fully optimized FFT algorithm for
any FFT of length q∗2N []. Their solution is based on a split-radix algorithm which
is manually optimized. A more flexible solution using a split-radix FFT is presented
in [], which is optimized to reduce the complexity of address pattern generation
and memory lookup with a butterfly efficiency comparable to the Cooley-Tukey.
Another efficient FFT algorithm is the Winograd FFT []. Several implementations
of the Winograd FFT algorithm were proposed [–].

A manual partitioning of an FFT-, based on the PFA, was published by
Rivaton et al []. By partitioning the FFT in a radix- part and a non-radix- part,
an efficient implementation can be made that consists of a regular structure. The
partitioning was generalized in [, ], such that any FFT required for DRM can
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Table . – A selection of the FFTs that can be generated with the PFA mapping, where N = (2p+ 1) · 2q .
FFTs used in DRM are underlined.

p q

4 5 6 7

2 80 160 320 640
3 112 224 448 896
4 144 288 576 1152
5 176 352 704 1408
6 208 416 832 1664
7 240 480 960 1920

be generated from one template. Table . presents the FFTs that can be generated
from the template. The implementation of this generalized partitioning is explained
in the next section.

... Implementation

Using the PFA decomposition described in Equation ., any FFT required for DRM
mentioned in Table . can be implemented. These FFTs can be mapped on the
Montium architecture according the same mapping scheme. This makes it possible
to generate a large number of configurations based on the same decomposition and
mapping structure. As an example of these FFTs, we use the FFT- to describe
the implementation of any non-power-of-two FFT.

The FFT- is partitioned using the parameters N1 = 2 · 7+ 1 = 15 and N2 =
27 = 128. According to the PFA approach, the FFT is decomposed into  times
FFT- followed by  times FFT-. The order of decomposition can be chosen
arbitrarily, but the proposed decomposition leads to a better fit on the Montium
architecture.

Figure . shows the steps that need to be taken in order to compute the FFT-.
Firstly, the input data is distributed over the input memories. Secondly, the FFT-
is then performed on  blocks of  input samples and the results are distributed
over the memory such that the FFT- can be operated. Thirdly, each FFT- then
processes a block of data and writes its results in the memory. Finally, the output
data from the FFT- are reordered. Each of the steps is explained in more detail in
the next paragraphs.

Non-radix- part Generally, the N1 = 2p+ 1 FFTs can be simplified by exploiting
the symmetry in the twiddle factors. BecauseN1 is odd, Equation . can be rewritten
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to Equation .:

X [0] =
N1−1∑

n=0

x [n]

X [k] =


T< [k] + T= [k] , 1 ≤ k ≤ N1−1

2
T< [N1 − k]− T= [N1 − k] , N1+1

2 ≤ k < N1
(.)

where

T< [k] = x [0] +

N1−1
2∑

n=1

(x [n] + x [N1 −n]) ·<
(
W nk
N1

)

T= [k] =

N1−1
2∑

n=1

(x [n]− x [N1 −n]) ·=
(
W nk
N1

)

For the summations in T< and T=, the operands are multiplied with a twiddle
factor. Two inputs are added before a multiplication and the butterfly structure
of the Montium TP is used to calculate X [k] = T< [k] + T= [k] and X [N1 − k] =
T< [k] − T= [k] concurrently. Four ALUs are occupied to compute both outputs in
parallel, while the fifth ALU is used to compute the X [0] component simultane-
ously with the computation of X [1] and X [14]. For the calculation of X [k], the
values of x [n] and x [N1 −n] are required simultaneously. Therefore, x

[
0 . . . N1−1

2

]

and x
[
N1+1

2 . . .N1 − 1
]

are stored in different memories such that these values can be
accessed simultaneously. These simultaneous calculations result in a reduction of
the number of multiplications by a factor of , compared with the calculation of a
normal DFT.

In general, the number of clock cycles required to compute an odd-size FFT-N1

on the Montium TP, using the partitioning presented above, equals
(
N1−1

2

)2
+ N1−1

2 =
1
4

(
N2

1 − 1
)
. So, this approach is only viable for small N1 as for larger odd values the

complexity grows exponentially with the size of N1. The execution of an FFT-,
based on this optimized implementation for the Montium TP, requires  clock
cycles. Theoretically, the FFT- could have been computed more efficiently by
again applying the PFA with FFT- and FFT-. Using the PFA, the FFT- has to be
performed  times (5×2 = 10 clock cycles), followed by  times the FFT- (3×6 = 18
clock cycles), resulting in  clock cycles. However, this requires reordering of the
intermediate results which cannot be implemented efficiently on the Montium TP.
The reordering costs for an FFT- would at least require another two times 
cycles (for both input and output reordering), hence adding  cycles to the costs.
Therefore, the presented mapping is the better alternative.

Radix- part The FFT- is implemented using a standard radix- approach.
Radix- algorithms can be calculated efficiently on the Montium TP since one FFT-
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can be executed in a single clock cycle. A detailed explanation of the mapping is
presented in section .. and more detailed in [, ]. The computation of such an
FFT-N2 requires

(
N2
2 + 2

)
· log2 (N2) clock cycles. Hence, the execution of an FFT-

requires  clock cycles.

Input and output ordering In traditional radix- FFT implementations, the most
difficult part is the bit-reversed addressing scheme of either the input or output
values. In most DSP architectures, and Montium TP as well, special hardware in the
AGU overcomes this problem. However, in the PFA both input and output have to be
reordered according the RC or CRT mapping. Because the input reordering is done
in the Montium TP, the user of the algorithm has the possibility to stream in the data
into the Montium TP in-order.

The address patterns for RC ordering cannot be generated efficiently with the
AGU. Moreover, since the input values for the FFT- are stored in two memories,
address patterns become even less regular. A straight-forward solution for the order-
ing would be to use a LUT containing the reordered addresses for all input values.
The first  positions in the coefficient memories (the two memories connected to
ALU) are occupied for the twiddle factors used by FFT partitions (the non-radix-
part and radix- part presented in the previous section). Therefore, for a FFT-N with
N > 768, the Montium TP memories cannot be used as a LUT. For the FFTs used
in DRM, this only holds for the FFT-. For smaller FFTs this is the preferred
approach. This ordering approach can be used for the real and imaginary part of two
samples simultaneously, such that all input samples can be reordered in dN1

2 e ∗N2 +2
clock cycles.

For the input reordering for the FFT- we use the following steps:

. The complex input vector is written in-order into  local memories m1.1 and
m2.1

. An indirection read address is calculated using Equations . and .

. Using the indirection address, an input value is selected from the local memo-
ries m1.1 and m2.1

. The value is stored in the other local memories m1.2 and m2.2 using the current
write address (initially set to 0)

. The write address in memories m1.2 and m2.2 are incremented by one

Steps  to  are repeated  times, until all values xRC have been reordered. The
calculation of the indirection address and storage of the value in the local memories
can be pipelined, such that each clock cycle one value can be stored. In total, the
pipelining overhead includes  clock cycles, so the full input reordering is done in
N +4 clock cycles. Figure .(a) shows the FFT- input data after input reordering.
Figure .(b) shows how the results of the FFT- are stored in the memory. For the

Note that only the real part of xRC is shown; the imaginary part is stored in the memories m3.1 and
m4.1 in an identical order and the  steps are taken simultaneously for the imaginary part.
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Figure . – Intermediate memory organization for FFT-

Table . – Implementation costs of FFTs used in DRM. Reordering costs are shown for input ordering;
output ordering costs are equal.

FFT N1 N2 execution reordering

112 7 16 472 66
176 11 16 960 98
224 7 32 1014 130
288 9 32 1450 162
352 11 32 1950 194
576 9 64 3116 322

1920 15 128 14098 1924

output ordering we use the same principle, but now the selected complex values are
streamed to the NoC via the NI.

The most complex step in the ordering process of the outputs is the calculation of
the indirection address. This address has to be calculated using modulo operations.
In Appendix C we explain the output ordering for streaming out the complex sample
X [k] in linear order.

Computational complexity The total number of clock cycles required to calculate
a non-power-of-two FFT of lengthN = N1 ·N2 isN1· cycles(FFT-N2) +N2· cycles(FFT-
N1):

Tcomp = N1 ·
(N2

2
+ 2

)
· log2 (N2) +N2 · 14

(
N2

1 − 1
)

(.)

In Table ., the implementation costs of the FFTs used in DRM are listed.

... Scaling

A fixed-point implementation of a digital signal processing algorithm is liable to
overflow after an addition. To prevent overflow, the amplitude of the input signal can
be limited or the intermediate values can be scaled down. Scaling the intermediate
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Figure . – Positions in the FFT- algorithm where scaling can be applied

fixed-point numbers results in a shift of the decimal point. For example, scaling a
number in (1,15)-fixed-point notation by  results in a number in (7,9)-fixed-point
notation.

Due to the additions in each of the stages, the worst-case increment of intermedi-
ate results of an FFT equals

√
2 after each stage [], but in normal operation with a

signal that contains several frequency components, the scaling factor can be smaller.
This results in a more accurate output signal. Therefore, we implemented a flexible
solution, that supports scaling the signal at predefined positions. After every stage of
an FFT, scaling can be applied, as depicted in Figure .. Note that scaling does not
necessarily have to be applied at once. Hence, multiple scaling positions can be used
to obtain the total scaling by dividing S in smaller fractions Si . S0 denotes the input
scaling factor and Si denotes the scaling factor during stage i of the radix- FFT. It is
up to the user of the algorithm to choose these values. Suppose we have a required
total scaling factor of . The scaling can be positioned in the beginning (S0 = 128),
which results in a less accurate result and low risk of overflow. Moving scaling to the
end of the algorithm will improve the accuracy but increases the risk of overflow. In
any of the combinations the designer has to adjust the correct fixed-point notation of
the output result.

Scaling accuracy To demonstrate the accuracy of the algorithm, the FFT- was
executed with several combinations of scaling factors (see Table .). The overall
scaling factor S was  in all cases. The difference in the cases is the amount of
scaling during the algorithm. For the lower case numbers the scaling is put toward
the end of the algorithm, which gives a higher accuracy. For the higher case numbers
the risk of overflow is lower.

The input used for the test cases was a typical complex DRM sample stream
consisting of  samples. The sample stream was cut in  segments of 
samples and on each segment an FFT- was applied. The maximum amplitude of
the stream was scaled to three levels (%, % and % of the fixed-point scale) to
analyze the effects of the input scaling and intermediate scaling. The results of the
FFT computed by the Montium TP are compared with a floating-point FFT calculated
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Table . –  cases to demonstrate the accuracy of the FFT-

Case Scaling factors

S0 S1 S2 S3 S4 S5 S6 S7

        
        
        
        
        
        
        
        
        
        
        

by Matlab. For both, a total scaling factor of  was used.
Figure . depicts the maximum and average errors that occur in each of the

cases and, per case, for  scaling levels of the input signal. The errors are calculated
based on the error of all  frequency bins, averaged over the  segments. Errors
are represented in terms of LSBs of a -bit fixed-point represented number. Since
parts of the internal datapath in the ALUs of the Montium TP are -bit wide, in
an ideal situation the arithmetic operations can be performed more accurately than
-bit. As a result, the error (in bits) can be negative, as shown in several of the
cases in Figure .. In the figure, the horizontal lines indicate the error of the ARM
implementation. Note that the ARM implementation is -bit, while the Montium
TP only operates in -bit mode.

From this figure it is clear that, for an input signal with % of the range, the
low numbered cases have a higher accuracy. However, applying such input scaling
decreases the dynamic range of the algorithm considerably, resulting in a less accurate
Fourier transform. Therefore, input scaling should be avoided as much as possible.
From Figure . it can be concluded that cases ,  and  have the best performance,
independent of the input scaling. On the other hand, if input scaling is not applied
and the input signal is too strong, the risk of overflow is higher.

These results show the benefit for partial reconfiguration, where the system can
quickly adjust the scaling factors depending on the input signal level. It can make a
trade-off between accuracy and the risk of an overflow.

... Block-mode versus streaming-mode

The FFTs have been implemented for both the block-mode and streaming-mode
operation types. In the block mode, the input samples need to be ordered (in RC
order as explained before) before they can be transferred to the memories of the

Overflow is noticed if the maximum error is above the . bits
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Figure . – Rounding errors for various scaling combinations

Montium TP. Loading the ordered input samples for an FFT-N takes 2N/L clock
cycles. When the execution is started, the Montium TP applies input scaling by
multiplying the input stream with a factor 1

S0
. This can be done in N/2 + 2 clock

cycles, because  complex numbers can be scaled simultaneously and the pipelining
effects introduce  additional clock cycles. After applying input scaling, the execution
is started. Table . shows the execution times for each of the FFTs. When the FFT
has finished, the results can be transferred from the memories and then need to be
reordered. Retrieving the output samples for an FFT-N takes another 2N/L clock
cycles. Both the input and output ordering have to be done outside the Montium TP.
Therefore, the total number of clock cycles required for the execution of an FFT-N is
(2N/L) + (N/2+ 2) +N1 ·

(
N2
2 + 2

)
· log2 (N2) +N2 · 1

4

(
N2

1 − 1
)
+ (2N/L).

The streaming mode version requires no external processing. First, data is
streamed into the Montium TP memories in the received order. Then, using the
indexing as described in section ... and Appendix C, it is reordered to the cor-
rect format. Simultaneously with the input ordering, the input scaling is applied
to prevent overflows during the FFT. When the FFT computation is finished, the
results are read in CRT order from the memories (as explained in section ...)
and written to the network via the NI. Due to the complex address calculation re-
quired for input and output ordering, the streaming-mode FFT is only implemented
for L = 2, where the real and imaginary part of each sample are stored simultane-
ously at identical offset addresses of different Montium TP memories. Therefore,
streaming the input samples for an FFT-N is done in N cycles. The execution of a
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Table . – Communication to Computation ratio of FFTs used in DRM

(a) Block-mode

N Tcomp Tcomm C/C ratio

112 604 448/L 0.74/L
176 1156 704/L 0.61/L
224 1274 896/L 0.70/L
288 1774 1152/L 0.65/L
352 2388 1408/L 0.59/L
576 3760 2304/L 0.60/L

1920 17946 7680/L 0.43/L

(b) Streaming-mode

N Tcomp Tcomm C/C ratio

112 604 224 0.48
176 1156 352 0.37
224 1274 448 0.44
288 1774 576 0.40
352 2388 704 0.36
576 3760 1142 0.37

1920 17946 3840 0.27

streaming-mode FFT is done similarly to the execution of a block-mode FFT. Reorder-
ing and streaming the output samples is also done in N cycles. The total number of
clock cycles required for the execution of an FFT-N in streaming-mode operation is
N +N1 ·

(
N2
2 + 2

)
· log2 (N2) +N2 · 1

4

(
N2

1 − 1
)
+N .

Table . shows the C/C ratio for all FFTs used for the DRM receiver, for both
block-mode and streaming-mode operation.

... Conclusion

The Montium TP is very well suited for executing algorithms with a regular kernel
operation. Due to the parallelism in the data path, it can perform up to  operations
in parallel, while each operation can use up to  inputs. The memory bandwidth
that is delivered by the  local memories is tremendous. For algorithms like the
FFT, it is clear that the kernel operation (a butterfly) is done repeatedly. The memory
bandwidth required for executing a full butterfly operation in one clock cycle can be
provided by the Montium TP, while the address patterns that are used for accessing
the memories are generated quite easily. The implementation of a wide range of non-
power-of-two FFTs and iFFTs on the Montium TP architecture have been discussed
in detail. This range of FFTs showed to be an ideal test-case to explore and validate
the flexibility of the coarse-grained architecture.

The class of non-power-of-two FFTs is less regular than the class of radix- FFTs.
By optimizing the algorithm for regularity and not for the number of multiplications,
we managed to map a non-power-of-two FFT on the Montium TP. Using the Prime
Factor decomposition, the class of non-power-of-two FFTs could be partitioned such
that a radix- component was recognized (which can be mapped and executed very
efficiently on the Montium TP) together with a small odd DFT. The  memories
available in the Montium TP enable parallel addressing of multiple inputs for a DFT,
such that the DFT can be operated slightly more efficiently. Hence, the DFT’s com-
plexity was reduced from N2 to 1

4

(
N2 − 1

)
. We showed that a further decomposition

Due to external input and output ordering for the block-mode implementations, the actual C/C
ratio depends on the overhead caused by the processor applying input and output ordering.
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of the DFT is not desirable as the regularity of the decomposed algorithm decreases
and performance will not increase. Hence, the solution described in section ..
is considered to be the most efficient FFT mapping for the current Montium TP
architecture.

The possibility to use the data path for the generation of addresses makes it
possible to map almost any algorithm with less regular addressing patterns to the
Montium TP. Although this type of address pattern calculation is difficult, there is
still enough regularity left in the non-power-of-two FFT to map the address calcula-
tion efficiently. Generic modulo operations are difficult to implement in hardware;
however, the (pseudo-) modulo operations required for address calculations can be
implemented efficiently using the Compare/Select unit available in each ALU in the
Montium TP. Following generations of the Montium TP may be more efficient in
such address calculations if a (pseudo-) modulo operations would be implemented
in the AGU.

.. Finite Impulse Response filter

The FIR algorithm is defined as a convolution of an input vector x (consisting of M
time samples) with a coefficient vector c (consisting of M coefficients). It is used to
apply spectral filtering, by applying frequency dependent gain and phase correction.
After the convolution, the result sample stream y is a filtered variant of the input
stream x.

y [t] =
M∑

k=0

x [t+ k]c [N − k] (.)

where y, x and c are vectors containing real numbers and M equals the number of
filter taps, which can be used to design a M + 1th order filter.

An FIR filter can also be implemented as a complex filter (where y, x and c are
complex numbers). Both versions are described in the next sections.

... Real FIR filter

Similar to the FFT operation, we mapped the FIR algorithm to the Montium architec-
ture for both operation modes: block-mode and streaming-mode. Since an FIR filter
consists of real multiplications and additions only, the Montium ALUs can be used
to perform  filter taps simultaneously in one clock cycle. The result si of ALU i is
sent to its left neighbor ALU i − 1, that adds the result during the next clock cycle
to the next coefficient multiplication (see Figure .). Therefore, for an M-taps FIR
filter one output sample y can be calculated in in

⌈
M
5

⌉
+ 1 clock cycles (pipelining in

the filter introduces one additional clock cycle).
The block-mode implementation of an FIR filter applies filtering to a block of

data with length N . This block of data is stored in one memory and the filtered result
is stored in another memory. For each sample in the input block, one convolution is
applied. Therefore, the total number of clock cycles needed by the block-mode filter
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Figure . – Mapping of a -taps FIR filter on the Montium ALUs

is:

Tblock = Tcomm + Tcomp

= 2 · N
L
+N ·

⌈M
5

⌉
+ 1 (.)

The streaming-mode FIR filter operates on individual samples in the input stream,
which are received simultaneously with the processing during the first clock cycle. As
a result, the communication overhead is reduced to 0. For a fair comparison between
the block-mode and streaming-mode implementations, we consider the costs for
processing N input samples with the streaming-mode implementation:

Tstreaming = Tcomm + Tcomp

= N ·
⌈M

5

⌉
+ 1 (.)

Hence, for a -tap FIR filter and an input data size of  samples, the worst-
case C/C ratio for the block-mode version is 2048

1025 ≈ 2.00 (again, L= 1), whereas the
streaming-mode version has a C/C ratio of 1

1025 ≈ 0.00.

... Complex FIR filter

A complex FIR filter is functionally comparable with the real variant. However, since
all multiplications are complex multiplications,  ALUs are required per filter tap.
Therefore, the number of clock cycles for a complex FIR differ from the number of
clock cycles for calculating a real FIR filter. The computation of the block-mode
implementation can be done in N ·M + 1 clock cycles. Since complex samples are
loaded, the communication time also doubles.

Tblock = Tcomm + Tcomp

= 4 · N
L
+N ·M + 1 (.)

such that the C/C ratio becomes 4∗N/L
N ∗M+1 = 4/M ∗L.
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Figure . – DRM super frame structure showing three frames containing time pilot cells (symbols
with mainly dark colored cells), frequency pilot cells (inserted diagonally) and SDC cells
(included within the first few symbols at the start of the super frame) (picture modified
from [])

For the streaming-mode filter, loading one complex sample is done simultaneously
with computation (thus, requiring L = 2 to read one complex sample at once) and
therefore only writing the last complex value of the N filtered results is done in one
additional cycle:

Tstreaming = Tcomm + Tcomp

= 1+N ·M + 1 (.)

Hence, the streaming-mode C/C ratio of a complex FIR filter equals 1
N ·M+1 ≈ 1

N ·M .

. DRM receiver

The DRM standard [] specifies digital radio broadcasting in frequency bands
below MHz. DRM is a possible successor of AM radio used for point-to-multipoint
broadcast and it is based on OFDM modulation and MPEG- audio source coding.
Conventional FM and AM radio systems use a separate frequency band for each
channel. A DRM stream consists of a multiplex of three information channels that
are combined into a DRM super frame (shown in Figure .). The first of these three
channels, the Fast Access Channel (FAC), describes the encoding used by the physical
layer, such that the bit stream can be decoded. The second channel, the Service
Description Channel (SDC), describes the configuration of the channel multiplex
itself and the demodulation settings that were used to transmit the actual data. The
Main Service Channel (MSC) contains the actual data stream that is sent to the
MPEG- decoder.

Figure . shows an overview of the baseband processing for DRM. The electro-
magnetic wave is received by an antenna that is connected to a Radio Frequency
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Figure . – DRM receiver, modified from []

(RF) front-end. After the Analog-to-Digital Converter (ADC), a subband is selected
digitally by the Digital Down Converter (DDC). To avoid interference between OFDM
symbols, the transmitter adds a small guard period to each symbol. This guard period
is removed from the received data stream by the Guard Time Removal (GTR) block.
Small deviations between the mixing frequency of the transmitter and the receiver
(which can occur in the RF front-end as well as in the DDC) result in a frequency
shift of the received data stream. The Frequency Offset Correction (FOC) block in
the receiver compensates for this effect and results in a corrected data stream, which
is converted to an OFDM symbol by the DFT. The symbol consists of a stream of cells
that contain the samples for the three information channels (as explained before),
together with a number of pilot cells which can be used for synchronization and
channel estimation purposes. Since the transmitter adds known pilot cells to the
data stream, the receiver can use the pilot cells to estimate the quality of the channel
and compensate all cells in the super frame using the channel equalization block.
Then, the corrected cells are demapped over the three information channels such
that they can be demodulated and decoded. The processing blocks are controlled
by the blocks within the global control & estimation block, which synchronize the
processing blocks and set the parameters for the filters. They provide feedback
obtained from the demodulated OFDM symbols to the time domain processing
blocks (see section ..). For brevity reasons, the functionality provided by the
global control and estimation blocks is discussed in the next sections together with
the functionality of the processing blocks.

The baseband processing of a DRM receiver includes several OFDM demodulation
modes (see Table .) which are used for different channel conditions. Mode A is used
for short distance broadcasting with very little multipath propagation and Doppler
effect. This mode enables the highest data rate of all modes, however, with the lowest
robustness. In case multipath propagation does occur, mode B is chosen. With a
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Table . – DRM demodulation modes

Unit Symbol
Mode

A B C D

Useful Time [ms] Tu 24 21.33 14.66 9.33
Guard Time [ms] Tg 2.66 5.33 5.33 7.33
Symbol duration [ms] Ts 26.66 26.66 20 16.66
Symbol rate [Hz] Rs 37.5 37.5 50 60
Samples per symbol (before GTR) 320 320 240 200
Symbols per frame Ns 15 15 20 24
DFT size Nu 288 256 176 112
#Modulated carriers Nm 225 205 137 87
Max. datarate [kbps] 72.0 56.1 45.5 30.6
Min. datarate [kbps] 6.3 4.8 9.2 6.1

medium range transmission, this is the most used modulation scheme. For longer
range transmission or in case of Doppler effects, mode C is better suited. The longest
transmission ranges can be reached with mode D, which is similar to mode B but has
a much higher resistance to multipath and Doppler effects.

Each of the modulation schemes leads to different processing requirements. The
main difference is in the OFDM demodulation, which is implemented by a DFT. In
the next sections the DSP blocks of Figure . and their implementation on the
Montium TP are explained in more detail. An overview of their implementations is
given in section ...

.. Time domain processing

With the four modulation schemes, DRM is robust to changes in the environment as
both temporal and frequency dependent errors can be detected. First, the received
samples (temporal domain) are corrected and then converted to the frequency domain
for further postprocessing.

... Digital Down Converter

DRM uses the frequency band below MHz. Within this band, many subbands can
be identified on which different channels are mapped. Since the total DRM band can
be sampled directly, a relatively simple front-end can be used together with digital
channel selection to create a very flexible receiver. Such digital channel selection is
done with a DDC []. First, the samples received by the ADC are multiplied by a
digital mixer, such that the result contains both the sum and difference frequency as
shown in Equation .:

va (t) ∗ vb (t) = AaAb
2

[cos (2π (fa − fb) t)− cos (2π (fa+ fb) t)] (.)
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where vx (t) = Ax sin (2πfxt) for x = a,b. Assuming the channel of interest is located
at the carrier frequency fc and has a bandwidth δ. Then, the transmitted signal va
at frequency fa = fc is multiplied by a digitally generated frequency fb = fmix =
fc − δ (where fmix denotes the mixer frequency of the receiver), the result contains a
frequency component fa − fb = δ (which is the selected channel) and a component
fa+ fb = 2 ∗ fc − δ. The latter component is undesired and therefore, is filtered using
a low-pass filter. After the low-pass filter, the information left is only available for
frequencies in the range 0 < f < 2δ. If k ∗δ = fmix with k an integer value, decimation
can be done easily by removing k − 1 samples from each sequence of k intermediate
results. For other downsampling ratios where k1 ∗ δ = k2 ∗ fmix, the intermediate
results are interpolated k2 times, followed by k1 times decimation. This can be
implemented efficiently with a decimation filter.

The digital clock is generated by a local Numerically Controlled Oscillator (NCO),
that generates a pair of (cos (2π (fmix − δ) t) , sin (2π (fmix − δ) t)) signals and multi-
plies these with the input stream, resulting in an in-phase signal (denoted by I) and
a quadrature-phase signal (denoted by Q). The low-pass filter is implemented using
two Cascading Integrating Comb (CIC) filters (one for the I and one for the Q part
of the input stream) and decimated using a polyphase FIR filter. In this way, for the
case discussed by Bijlsma [], a .MHz input DRM signal is downconverted
to  kHz.

The implementation of the DDC on a Montium TP requires  clock cycles []
to downconvert  real input samples to one complex output sample. If the
algorithm is operated in block-mode, the input communication time equals 2668

L , the
processing time equals  cycles, and the output communication time requires 2

L

cycles. Hence, the block-mode C/C ratio equals 2668/L+2/L
2668 ≈ 1/L. In the streaming-

mode operation mode, the  input samples are received while processing, such
that the communication overhead is only based on the output communication time (
clock cycle per operation of the entire algorithm), such that the streaming-mode C/C
ratio equals 1

2668 ≈ 0. Therefore, the clock frequency for streaming-mode operation
is only determined by the input sample rate (. MHz), while for the block-
mode operation the clock frequency has to be doubled (. MHz) to provide
the same output data rate. These effects are also depicted in Figure ., which
shows the advantage of the streaming-mode implementation to the block-mode
implementation.

... Guard Time Removal

The transmitted signal may suffer from multi-path effects. For example, caused by
reflections of the signal against large objects like buildings. As a result, at the receiver
side two or more incoming signals are received simultaneously. This is problematic
in case the time difference between symbols is larger than the guard time. This will
result in Inter Symbol Interference (ISI). At the transmitter side, the signal to be

For example, a .MHz data stream can be downconverted to a MHz data stream by first interpo-
lating it such that a MHz sampling rate is obtained, following by a / decimation resulting in a
MHz output stream.
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(a) Schedule of a DDC operated in block-mode

DDC DDC
time
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(b) Schedule of a DDC operated in streaming-mode

Figure . – Example schedules of the block-mode and streaming-mode implementations of a DDC.
Here, the block-mode implementation borrows a part of the next time frame for output
communication, while the streaming-mode implementation introduces a considerable slack
time.

Ng Nu

OFDM symbol

Cyclic prefix

Figure . – OFDM symbol before Guard Time Removal, showing the useful part and the guard time.

transmitted is extended for a certain period by prepending it with a cyclic copy of a
part of the symbol (see Figure .). The extension of the original symbol is called
guard time. Since the guard time (Tg in Table .) contains redundant information,
the GTR block removes that part such that the actual symbol with length Nu = Tu ∗ fδ
remains, where fδ denotes the DDC output data rate (see also Table .).

The beginning of a symbol can be found via an auto-correlation of the received
signal. The position nε of the guard time in the input stream x can be estimated
using Equation .:

n̂ε = argmax
ntr

∣∣∣∣∣∣∣∣

ntr+Ng−1∑

i=ntr

x∗ [i]∣∣∣x∗ [i]
∣∣∣
· x [i+Nu]∣∣∣x [i+Nu]

∣∣∣

∣∣∣∣∣∣∣∣
(.)

where x∗ denotes the complex conjugate of x, n̂ε denotes the estimation of nε, ntr
is used to indicate the trial position (the candidate frame start position) for the
correlation window (0 ≤ ntr < Nu), Ng = Tg ∗ fδ denotes the number of samples in the
guard time interval, and arg expresses the index where the maximum correlation is
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found.
Before the calculation of the auto-correlation in Equation ., the input stream

x first needs to be normalized; for each sample the squared length x< [i]2 + x= [i]2

is calculated and fed into a LUT containing the inverse square root function:

LUT (i) =
1√
i
, where i = 0,1, . . . ,1023 (.)

such that the outcome of the LUT contains 1
|x[i]| . This calculation is done for each

sample in x and the results are multiplied with x to obtain normalized values. Since
these operations can be pipelined on the Montium ALUs, the computational costs for
normalization are

(
Nu +Ng

)
+2 clock cycles per symbol (the  additional clock cycles

are caused by the filling and flushing of the pipeline) []. After the normalization,
the multiplication x∗ [i] ∗x [i+Nu] is done once for all values of i, hence it can also be
implemented in

(
Nu +Ng

)
+ 2 clock cycles. The correlation sum is calculated for all

trial positions in the correlation window. By reusing the intermediate accumulated
value for the summation for trial position ntr (see Equation .), the result of the new
x∗ [i+ 1]∗x [i+ 1+Nu] is added and the result of the old x∗ [i −Nu]∗x [i] is subtracted,
the summation for trial position ntr + 1 is calculated. Therefore, the calculation of
all trial positions requires

(
Nu +Ng

)
clock cycles. The location of the maximum

absolute correlation value within this range of trial positions is searched and used for
the further FOC operation. This requires two searches through the correlation results
(so 2∗

(
Nu +Ng

)
clock cycles) to ensure local correlation maxima are not selected (see

[, section .] for a detailed explanation of this problem and the implementation
of the search algorithm). In total the GTR can be calculated in about 5∗

(
Nu +Ng

)
+4

clock cycles on the Montium TP.
The GTR operates on Nu +Ng complex input samples, which can be loaded

in
2∗(Nu+Ng)

L clock cycles. After removing the guard time, the result consists of Nu

complex samples (which can be retrieved in 2∗Nu
L clock cycles) and the maximum

correlation result (a single complex value, which can be retrieved in 2
L clock cycles).

The resulting C/C ratio depends on the values of Nu and Ng, which vary for the
different modes of DRM. An overview is given in Table .. Note that this operation
can only be done efficiently in block-mode operation, because the correlation requires
at least Nu +Ng samples buffered in the local memories.

... Frequency Offset Correction

The signal is transmitted at a certain carrier frequency fc within the DRM band.
A mixer in the RF front-end shifts the carrier frequency fc to a low frequency by

This operation requires at least
(
2 ∗Nu +Ng

)
samples to be available in memory, because of the Nu

possible trial positions for which the correlation is done using the next
(
Nu +Ng

)
samples. However,

because the last Nu samples are used again for the next symbol, they do not have to be loaded again
during the next execution.
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Table . – Communication to computation ratio for the GTR for the  DRM modes

Mode Nu Ng Tcomm Tcomp C/C ratio

A 288 32 1218/L 1604 0.76/L
B 256 64 1154/L 1604 0.72/L
C 176 64 834/L 1204 0.69/L
D 112 88 626/L 1004 0.62/L

multiplying it by a locally generated frequency fmix close to the carrier frequency,
such that an ADC can sample the signal. However, because the actual mixer frequency
fmix slightly deviates from the transmitted carrier frequency fc, the resulting sampled
values contain a small frequency offset. As a result, the auto-correlation discussed in
the previous section contains a small error since the frequency offset for the useful
part of the symbol is slightly different from the frequency offset during the guard
time period. The FOC block compensates for this error. This means that every sample
in the OFDM symbol needs to be multiplied by a correction factor.

The frequency offset ∆f introduced by the mixer causes a phase shift of the input
signal xin:

x [n] = xin [n] · e−jϕf [n]+ϕ0 (.)

where ϕ0 is a constant phase offset that is corrected by the channel equalization
block. The other phase error component, ϕf , is defined as follows:

ϕf [n] = 2π
∆f

fmix
n (.)

The frequency offset can be estimated using the following equation []:

∆f̂ =
1

2π
1
Tu
∠




nε+Ng−1∑

i=nε

x∗ [i]∣∣∣x∗ [i]
∣∣∣
· x [i+Nu ]∣∣∣x [i+Nu ]

∣∣∣


 (.)

where ∠x equals the phase of the complex value x.
Note that this equation resembles Equation .. By using the phase of the

maximum correlation result found by the GTR, the estimated phase error ϕ̂f [n]
can be calculated using Equation .. Then, the sample x [n] is multiplied with a
correction factor ej·ϕ̂f [n] which is calculated using a LUT. Again, these operations can
be pipelined such that the correction of all Nu samples can be done in Nu + 2 cycles
by the Montium TP (due to the pipeline delay of  additional clock cycles, similar as
mentioned before).

The FOC can be operated in either a block-mode operation or a streaming-mode
operation. In the block-mode, the vector containing Nu complex samples and the
maximum correlation result from the GTR are read in 2Nu+2

L cycles. The result is
retrieved in 2Nu

L cycles. Hence, the C/C ratio for block-mode operation equals about
(4Nu+2)/L
Nu+2 ≈ 4/L for all DRM modes. For the streaming-mode implementation, the

communication adds no overhead to the processing, so the C/C ratio equals 0.
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.. Time domain to frequency domain conversion

The DFT converts a sample stream from the time domain to the frequency domain,
where the output of the conversion is called an OFDM symbol. The symbol consists
of many sub-carriers (for example, a mode B symbol contains  sub-carriers) of
which a part is used to carry information (for example,  out of  sub-carriers
are used in mode B). Those sub-carriers carrying data are called cells.

In addition to the DFTs presented in Table ., additional DFTs and iDFTs were
required for a DRM receiver to improve the channel quality and to suppress possible
interferers [, section ..]. These transforms can be separated in two classes: the
class which consists of DFTs of 2N points and the class which consists of DFTs of size
2p ∗ (2q+ 1), where N = [4 . . .11], p = [4 . . .7] and q = [3 . . .7]. The implementation
of the DFTs of the first class (also known as radix- FFT) is presented in section ..,
and for the second class (here referred to as non-power-of-two FFT), an efficient
implementation of the conventional DFT is presented in section ...

.. Frequency domain processing

Within each super frame, pilot cells are transmitted that can be used to detect the
channel quality. The first few symbols of each super frame contain the Service
Description Channel information about the modulation scheme used for the Main
Service Channel. For the synchronization of frames, the first symbol of each frame
contains time pilot cells at fixed sub-carrier positions with a known constant value
(called boost factor) of which the amplitude has to be normalized to

√
2. The obtained

normalization factor for such a sub-carrier position is used for the channel equaliza-
tion, to correct the same sub-carrier position in all next symbols, until the next time
pilot cell is transmitted on the sub-carrier.

... Channel equalization

During the transmission, the signal is distorted because of noise, Doppler shift and
multi-path effects. Some of these may cause frequency dependent distortions, which
means that individual cells of the symbol may have to be adapted differently. The
channel processing block corrects the gain and phase of all cells by multiplying each
cell with a complex number obtained from the channel estimation block. In order to
detect frequency dependent errors in the signal, a cyclic pattern of frequency pilot
cells with a known gain and phase is transmitted within each frame. Hence, by
analyzing these pilot cells, the channel distortion can be estimated such that the rest
of the frame can be corrected.

For the equalization of one symbol consisting of Nm modulated carriers (see
Table .), each carrier is multiplied by a correction factor. Hence, the total computa-
tional costs for the channel equalization is Nm complex multiplications, which can
be done in Nm + 2 clock cycles on the Montium TP ( clock cycles delay due to the
pipelining overhead). During the reception of a DRM superframe, the channel is
assumed to be constant. Therefore, the correction factors calculated by the channel
estimation block are stored in the local Montium memories once for each superframe.
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For the block-mode implementation of the channel equalization, a symbol is stored
inside the local memory before processing ( 2∗Nm

L clock cycles because of complex
values) and retrieving the result from the local memory is done in an equal number
of clock cycles. The total C/C ratio for block-mode is therefore 4Nm/L

Nm+2 ≈ 4/L. The
streaming-mode implementation combines input and output communication with
the computation, such that the C/C ratio becomes 0

Nm+2 = 0.

... Cell demapping

After equalization, the non-pilot cells in the symbol are split into the three informa-
tion channels FAC, SDC and MSC. For each of the transmission modes, the order
of demultiplexing in a DRM super frame is fixed. Hence, each of the information
channels can be created by reading cells from the super frame in that particular fixed
order.

The demultiplexing order of the symbols is defined using a set of equations
to calculate the indices []. A direct calculation of the equations is relatively
expensive, as they cannot easily be defined in terms of differential equations. An
effective implementation for the indexing could be the use of a LUT containing
indices. In total, a super frame contains at most  cells (for mode A, where
 frames each consist of  symbols containing  cells) to  cells (for mode
D, where  frames each consist of  symbols containing  cells). Hence, the
memory requirements for implementing a LUT containing all indices is considerable.
Moreover, cell demapping is not computationally intensive. Therefore, the cell
demapping was considered to be executed on a different processor architecture than
the Montium TP, for example on an ARM processor [].

... QAM demapping

After cell demapping, the information channels are demodulated to a bitstream.
This is done via demapping, where each cell (a complex (I ,Q) signal) is converted
to bits. The FAC is always modulated with -QAM, whereas the SDC may be either
modulated using -QAM or -QAM and the MSC can be modulated using -QAM,
-QAM or -QAM. Here only the -QAM modulation is discussed, because its
principles are similar to those of the  and -QAM variants.

Figure .(a) shows an example of the constellation diagram for -QAM, which
contains all possible modulation points (depicted by the black dots) and their asso-
ciated codes (bit codes close to the dots). Whenever a cell is received, its I and Q
component will probably deviate from the constellation points because noise is added
at the receiver. The constellation point closest to the point received has the highest
probability to be the actual transmitted point, hence that point is selected. The
sequence of bits obtained after QAM demapping is further processed, for example
with a Viterbi decoder and MPEG- decoder.

The mapping of the (I ,Q) values onto QAM constellation point associated codes
can be varied depending on the encoding technique used. A flexible solution for
demapping these varying constellation mappings is the usage of a LUT which is
addressed using the I and Q values of a cell and returns the bits associated to that
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Figure . – -QAM modulation

cell. Since, for the Montium TP, the maximum size of a single LUT is  entries,
the I and Q parts of a cell are combined to a -bit address. A lookup operation
can be done by sending a -bit value to the AGU (see also section ...), which
can be instructed to select either the MSBs of the value (if the value is a signed
fixed-point represented value) or by using the  LSBs of the value (if the value is an
unsigned integer value). The -bit address is composed from the MSBs from the I
part of the cell concatenated with the MSBs from the Q part of the cell.

For the integer lookup, first the MSBs of the I part are selected by applying a
bit mask and the Q part is shifted over  positions to the right (inserting zeroes at
the left side):

Imsb = I&“1111100000000000′′ (.)
Qshift =Q >> 11 (.)

Then, the address aint is generated by combining the shifted Imsb field (with zeroes
inserted at the left) and the Qshift field using a bitwise or:

aint = Imsb >> 6|Qshift (.)

The calculation of Imsb andQmsb (Equation . and .) can be done simultaneously
in one clock cycle and the calculation of aint (Equation .) can be done in a second
clock cycle.

The fixed point lookup can be implemented slightly more efficiently:

Imsb = I&“1111100000000000′′ (.)
Qshift =Q >> 5 (.)

where the right shift of the Q part is a logical shift, such that zeroes are inserted at
the left. The address afixed is generated by combining the Imsb and Qshift fields using

After the right shift, applying a logic & operation to mask the lower  bits does not modify the
result. Therefore, the masking operation is not done.
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a bitwise or:
afixed = Imsb|Qshift (.)

The calculation of Imsb, Qshift and afixed can be implemented on one Montium ALU
in a single clock cycle.

For both implementations, the actual demapping now only consists of a lookup in
a memory. Since the Montium TP memories can be used as  entry LUTs, where
for the integer lookup the  LSBs of the address are used and for the fixed point
lookup the MSBs of the address are used. The lookup itself requires one clock cycle.
Hence, the demapping of one cell can be done in  clock cycles (using a fixed point
lookup) or in  clock cycles (using an integer lookup). The operations performed in
these  or  clock cycles can be fully pipelined, such that one lookup can be started
each clock cycle. Both solutions offer an identical accuracy as they both use the entire
LUT. Its  entries are used as  columns (for the I part of the cell) and  rows
(for the Q part of the cell), where a column can be selected by the  upper bits and a
row can be selected through the  lower bits. The -QAM demodulation required
by the MSC channel uses an x constellation diagram, which is encoded using 
bits for the I part and  bits for the Q part of a cell. Because  bits are available for
both the I and Q parts, the resolution provided by the LUT is high enough to allow
for accurate demodulation. The number of cells to be demapped depends on the
transmission mode and spectrum occupancy [, section .]. Therefore, at most
Nm cells per symbol have to be demapped. This can be done in Nm + 1 clock cycles
for the fixed-point lookup implementation. Since reading the input and storing the
demapped result requires two additional clock cycles, the total calculation costs
Nm + 3 clock cycles for the fixed-point mapping and Nm + 4 clock cycles for the
integer mapping. The communication time for the block-mode operation equals
Tcomm = 2 2Nm

L and for the streaming mode all communication is done while the
computation takes place, hence Tcomm = 0. Therefore, the C/C ratio for block-mode

equals
4Nm

L
Nm+3 ≈ 4

L and for the streaming-mode it equals 0
Nm+3 = 0.

The sequence of bits obtained after QAM demapping is further processed, for
example in a Viterbi decoder and MPEG- decoder.

.. DRM implementation overview

An overview of the Montium TP implementation costs for each of the baseband
processing blocks presented in Figure ., is given in Table .. Note that the
numbers given for the DDC are independent of the transmission mode. For the FFT
implementation costs, refer to section ...

Looking at the C/C ratio columns in Table ., it can be concluded that the
streaming-mode implementation for most operations introduces a considerably
lower overhead in communication.

The combination of all blocks discussed in the previous sections is presented in
an SDF model depicted in Figure .. It is based on the implementation costs for a
mode A receiver; for the other modes, the model is identical while only the execution
times differ slightly.
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Table . – Implementation costs for the DRM baseband processing operations, expressed in clock cycles
per OFDM symbol for each of the DRM transmission modes. Cell demapping is assumed to be
performed by a GPP as its operations cannot be mapped on the Montium TP efficiently.

Mode C/C ratio ‡
A B C D block streaming

mode mode

DDC 2668 2668 2668 2668 1/L 0
GTR 1604 1604 1204 1004 0.68/L 0.68/L∗
FOC 290 256 176 112 4/L 0
FFT 1450 1040 960 472 0.675/L 0.423
Channel eq. 225 205 137 87 4/L 0
Cell demapping† – – – – – –
QAM demapping 226 206 138 88 4/L 0

Total 6463 5979 5283 4431
† Cell demapping was not implemented on the Montium TP and is assumed to be implemented by an

external GPP.
‡ C/C ratios are based on the average of the 4 DRM modes.
∗ The GTR has only been implemented for block-mode operation. The streaming-mode implementation

of the GTR is comparable, where first the entire input symbol is stored in memory, execution is enabled
and after finishing the resulting symbol is streamed out.
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Figure . – DVB-S satellites in orbit

. Mobile DVB-S receiver

The DVB-S [, ] standard uses the Ku-band (. to .GHz) for broadcasting
multi-media streams. Large dish based earth uplink stations transmit the DVB-S
signal to the satellite. An uplink signal is received by the satellite and retransmitted
by a transponder. Each transponder contains a receiver, amplifier, transmitter and
an antenna that sends the received signal in a certain frequency band back to earth.
In total, tens of signals can be transmitted simultaneously within the Ku-band,
where each individual signal is transmitted by a separate transponder. To avoid
interference between such transponders of satellites close to each other, the spectrum
assignment for these transponders is done such that nearby satellites do not reuse
the same spectrum. The shape of the transponder antenna determines how the
Electro-Magnetic (EM) field is created. Such a field can be described by a field vector
which consists of two polarization components []. When the phase difference
between the components is ±◦ and the field components are equal in amplitude,
the field is said to be circularly polarized. When the phase difference is ◦ or ◦, the
field is said to be linearly polarized.

The type of antenna used determines the polarization type of the EM wave. For
example, a vertically mounted antenna for terrestrial broadcasting typically transmits
a vertically polarized signal. Hence, the receiver also uses an antenna that is sensitive
to vertically polarized signals (for example, the antenna on a car). Another reason
for choosing either linear or circular polarization is the effects of the channel. Due
to reflection by rain drops, a Left-hand side (LHS) circularly polarized wave may be
inverted to a Right-hand side (RHS) circularly polarized signal. Linear polarization
is less affected by rain drops, hence this polarization technique is used for DVB-S.

The DVB-S standard does not define a minimum distance between the longitude
of two satellites. Figure . shows an overview of satellites currently orbiting
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Figure . – Snapshot of . – . GHz spectrum usage. The horizontal axis indicates the east
longitude of a satellite, while the vertical axis shows the transponder usage of that satellite.

within the Clarke belt. For each satellite, it shows the transponders in a part of
the spectrum range, where both horizontally and vertically polarized transponders
are displayed. An observation of the spectrum usage by the satellites, depicted in
Figure ., shows that the typical spacing between two satellites broadcasting in
the same frequency range with the same polarization is about ◦ of latitude.

The bandwidth used for each transponder is about MHz; however, the exact
bandwidth and spacing between transponders can be chosen arbitrarily. DVB-S uses
the full transponder bandwidth to modulate a single carrier, which on its turn can
consist of a multiplex of one or multiple data streams. This is comparable to the
cell multiplexing of multiple information channels into a DRM stream, as presented
in section .. The data streams in DVB-S can contain either MPEG- audio/video
streams or it can be used for other services, like subtitling, electronic program guides
or weather information. Although DVB-S requires a line-of-sight connection, it can
cope with severe attenuation, since a Signal to Noise Ratio (SNR) of  dB is enough
for correct demodulation.

Conventional DVB-S systems use dish antennas, which are pointed directly at
the satellite. The geometry of the dish determines the signal quality. In order to
have a sufficient SNR, the dish must be steered very accurately. Typically, this is
done by hand. Therefore, the dish is unsuitable for mounting on vehicles that are
moving, such as cars or yachts. A dynamically steered antenna can be used to
ensure correct pointing while moving. For example, by moving the antenna using
a servo motor, the pointing can be controlled []. However, using such mechanics

Satellite information obtained from http://joshyfun.cjb.net.
In contrast to DRM, for DVB-S no adaptive channel modulation techniques are applied. Its successor,

DVB-S, does support different modulation schemes to increase the channel utilization and data
rates [].

http://joshyfun.cjb.net
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Figure . – Linear phased array mounted on the roof of a car

is expensive, heavy, energy consuming and slow. An electronically steered phased
array system is more beneficial, since it consists of multiple antennas mounted at
fixed positions. Moreover, it enables the reception of broadcasts from multiple
satellites simultaneously by using two or three independent beams for a single
phased array antenna. This is useful, when multiple users want to receive signals
from different satellites simultaneously. The next sections deal with beamforming
and beam steering using a phased array antenna based DVB-S receiver, mounted on
a car as shown in Figure ..

.. Phased array antenna processing

A phased array receiver consists of multiple antennas which are used to create a
larger virtual single antenna. Phased array systems are based on coherent sum-
mation of signals from multiple antennas in an array layout to make a transceiver
directional (see Figure .). For in-phase signals, the waves add up constructively
and for ◦ out-of-phase signals the waves add up destructively. Assume a single
omni-directional wave source, emitting a spherical waveform in time and space.
Equation . describes the wave observed from a distance l:

s (t, l) = A · cos (ωt ± kl) (.)

where A is the amplitude, ω the frequency, k the wave number, t time and l the path
length from the source.

For a source in the far field perpendicular to the array, the wavefront is considered
planar (l is equal for all antennas) and the received signals add up constructively.
If the plane of the array is not perpendicular to the direction of the source, the
wavefront arrives at different times at the antennas.

Assume the phased array consists of a sequence of antennas placed at a fixed
distance d apart on a straight line. Such an antenna is referred to as a Uniform Linear
Array (ULA). A wavefront arriving at an angle θ incident to the array then travels a
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Figure . – Generic phased array receiver

distance ∆l = d · sin (θ) further to each next antenna, which results in a time delay
∆t = ∆l

c between the signals (where c is the propagation speed of radio waves).

Definition  (Narrowband). A signal in the band between fl and fh is said to be a
narrowband signal if fh−fl

(fh+fl)/2 < 0.01 [].

If the signal is a narrowband signal, a time delay is considered to result in a phase
shift (∆ϕ = ω ·∆t) giving rise to the term phased array. The result of the addition of
allN antenna signals, called array factor, then can be described as follows:

Sa (θ) =
N∑

i=1

aie
jΦi =

N∑

i=1

aie
j 2π
λ (N−i)d sin(θ) (.)

where θ is the so-called scan angle, ai denotes the amplitude of the signal received at
the ith antenna, Φi = (1− i)∆ϕ equals the phase difference for antenna i with respect
to antenna  and λ= c

f is the wave length of the signal carrier.
The solid line in Figure . shows an example array factor of an array consisting

of  antenna elements. It shows the maximum sensitivity (the main beam at 0◦),
Different definitions of the array factor are given in literature [, –]. For this thesis, we

adopt the definition given by Visser [].
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Figure . – Effect of beam steering in direction θ0 on the array factor Sa (θ) (using  antenna elements).
The solid line shows the pattern when all antenna samples are added without compensation,
while the dashed line shows the array pattern when a linear increasing phase shift is added
to all elements.

maximum suppression (nulls, for example at ◦ and ◦) and sidelobes (local maxima
at ◦, ◦, etcetera). When the signals received by the individual antenna elements
are multiplied by different ejϕi values, the main beam can be steered into another
direction θ0 [, ]. The result of this multiplication is shown in Equation .:

Sa (θ) =
N∑

i=1

aie
j[ 2π

λ (N−i)d sin(θ)+ϕi ] (.)

For example, the dashed line in Figure . shows the directional sensitivity of the
same array where the main beam is steered (θ0 = 25◦) by applying a linear phase taper
to all antenna elements such that ϕi = −2π

λ (N − i)d sin (θ0). Then, Equation .
can be written as follows:

Sa (θ) =
N∑

i=1

aie
j 2π
λ (N−i)d[sin(θ)−sin(θ0)] (.)

It is also possible to change the shape of the beams by applying an amplitude taper,
resulting in more suppression in the side beams as shown in Figure .. This is
done by modifying the gain ai applied to individual antenna elements. By choosing
ai = 1 for i = 1,2, . . . ,N (uniform taper) the main beam is as small as possible, but the
sidelobe suppression is limited (- dB for the first sidelobe). Each tapering function
has different characteristics; an overview of many different functions can be found

Note that only the front face of the array antenna (-◦ to ◦) is shown. The range between -◦ to
-◦ (the rear face) has an identical, mirrored array pattern. For brevity reasons, figures in this thesis
only show the front face of the array pattern.
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Figure . – Effect of gain tapers on the array factor (using  antenna elements). The solid line shows an
uniform gain taper and the thin line shows a Hamming window based tapering.

in []. For example, a Hamming window can be used for sidelobe suppression by
choosing the antenna gain elements as follows:

ai =
25
46

+
21
46

cos (2πpi) (.)

where pi = i − N+1
2 equals the position (in units of d) of antenna element i with

respect to the center of the array []. If using such a window, the sidelobes are
suppressed by - dB at the costs of an increasing main beam width (see Figure .).
Hence the array has become less sensitive to strong interferers far from the targeted
direction but more sensitive to interferers close to the main beam. In this thesis we
assume a uniform taper, because the directivity of the main beam is considered very
important and uniform tapering provides a small main beam.

The DVB-S requirements for beam width, array gain, and the location of the
satellites can be used to determine the phased array requirements. The satellite
location with respect to the receiver is determined by the receiver’s location on earth.
As an example, for a receiver located in Europe, the satellite’s altitude is about ◦ (for
Athens, Greece) to ◦ (for Oslo, Norway) with respect to the orthogonal direction to
the horizontal plane at that location. Since the array is mounted horizontally on a
car roof, it should be designed such that the beam can be pointed in the region of
40◦ < θ0 < 70◦ (and in the mirrored direction −70◦ < θ0 < −40◦) in order to support
satellite reception in the whole continent with a varying car orientation. The antenna
requirements for DVB-S are determined by the main beam width and the total
antenna gain. Figure . shows how increasing the number of antennas from  to 
changes the resulting beam width. For estimating the minimum number of antennas
required for DVB-S, Figure . can be used. It shows how the main beam width
changes with the steering angle θ0, for multiple array sizes. As can be seen, the ◦
beamwidth required for DVB-S for pointing a beam into the region between −70◦
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< θ0 < 70◦ can be obtained by using  antenna elements (indicated by the black
square in Figure .). Therefore, for the remainder of this thesis we will assume
N = 64 for the DVB-S receiver.

Using a phased array antenna for the reception of satellite signals enables multi-
channel reception. This can be done by either pointing multiple beams at different
satellites or by receiving multiple channels from a single satellite using a single
beam. The latter case requires a wideband receiver that covers at least the bandwidth
range in which both channels are transmitted. Hence, for example if fc1 = 10.79 GHz
and fc2 = 11.23 GHz, the minimum bandwidth range should be MHz. Because
of the relatively large frequency difference the narrowband assumption is is not
valid and the beamformer can not be controlled with a phase shifter solution. As a
result, the digital implementation of such a receiver is very expensive. Therefore, we
assume a multi-channel DVB-S receiver that uses  beams (denoted B = 3 during the
remainder of this thesis), each of which can be tuned individually.

Figure . shows a generic phased array receiver structure. After the RF front-
end, the analog signal is quantized and sampled by an ADC. Then, using an equal-
ization filter, the received sample stream is corrected for electrical or mechanical
distortions of the antenna, the front-end and the wireless channel. The signals are
then combined by the beamforming processing (beamformer) to create a resulting
signal, such that the main beam is pointed into a direction of interest.

Definition  (snapshot). A snapshot consists of the values obtained when sampling

A ULA based array can only be used to receive signals in one plane. Therefore, in reality the array
should be a -dimensional structure consisting of  ×  antenna elements. However, in this thesis
we assume a -dimensional array can be used, since this decreases the modeling complexity of the
receiver and processing while its concepts remain the same.
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Figure . – Main beam width varying over steering direction for several phased array sizes. For all
arrays, d = λ/2, using a constant gain taper and linear phase taper. For all array sizes, the
front main beam and rear main beam join when the pointing direction nears ±◦, resulting
in a sudden increase of the main beam width.

all antenna elements of a phased array at the same time instant.

The Beamsteering (BS) block controls the steering angle and shape of the formed
beam by generating a so-called steering vector (denoted by ~φ), which is in fact a
combined gain and phase tapered weighting vector that is used by the beamforming
block. Note that the same antenna signals can be used to form multiple beams in
different directions simultaneously. For each beam, the antenna signals are combined
with a different steering vector. In a dynamic environment where transmitters and/or
the receiver are continuously moving, adaptive processing is required for the receiver
to detect and follow transmitters. One example would be the application of the DVB-
S satellite receiver mentioned in section .mounted on a vehicle, for example on the
roof of a car or on the cabin of a yacht. Figure . shows the phased array processing
chain that is used for DVB-S reception, in case beam steering is required. For each of
the blocks in the chain after the ADC, we will shortly describe the functionality and
the number of clock cycles needed when it is implemented on a Montium TP.

... Calibration and equalization

For accurate beamforming, it is important that the gain (over the whole frequency
band) and delay of each antenna up to the beamforming is equal. To realize this,
antenna calibration and/or channel equalization has to be applied.

Calibration refers to the correction of antenna signals, required to adapt ampli-
tudes and phases so the individual antenna signals can be used by the beamformer.
The RF frontend response is sensitive to changes of the thermal noise caused by
temperature changes of the environment [], resulting in a time dependent error.
Another distortion in the frontend is jitter in the Local Oscillator (LO) distribution
path [], which can be most accurately described as the period frequency displace-



 Chapter . Case Studies from Mobile Communication Receivers

DOA
estimation

RF
frontend

AD
conversion

EqualizationRF
frontend

AD
conversion

EqualizationRF
frontend

AD
conversion

Equalization

Beam
forming

Matched
filter

QPSK
demapping

Beam
steering

Beam
forming

Matched
filter

QPSK
demapping

Beam
steering

Beam control

Figure . – Main system blocks in the phased array receiver used for DVB-S reception

ment of the signal from its ideal location. In the RF front-end, jitter introduces phase
errors such that the ADC may sample wrong data. These effects, however, cannot be
avoided as they vary quickly over time.

Manufacturing problems (for example, incorrect antenna placement or bad con-
nections in the path between the antenna and the ADC) and temperature deviations
are much less changing and therefore, these effects can be calibrated every few
milliseconds to seconds to improve the overall SNR of a the phased array antenna.
Such calibration can be done using an inline circuit [] or by generating test data
that is fed into the antennas via an internal network. However, for both solutions,
additional hardware in the analog frontend is required, which is not covered in this
thesis. Therefore, calibration is not within the scope of this thesis.

Equalization is done per antenna to correct for frequency dependent variations in

the frontend. Such variations can be corrected by using an
(
Feq − 1

)th
order complex

FIR filter, where the minimum order can be determined based on the required SNR
and filter roll-off characteristics. For this thesis, we consider an equalization filter
using Feq = 5 taps []. As such a filter is needed for each antenna, the amount
of processing can easily become as large as the beamforming itself. However, it is
independent of the number of beams that are formed. As discussed in section ...,
the implementation of a complex FIR filter on the Montium TP costs  clock cycle per
filter tap per input sample. Therefore, the processing costs for allN = 64 antenna
filters sum up toN ∗Feq = 320 clock cycles (averaged per input sample).

For the block-mode implementation, the processing costs depend on the size
of the block that is filtered. Using the FIR filter mentioned above, filtering of one
block of length 5 ∗ Lb requires 5 ∗ Lb + 1 cycles. Loading the block of input data
into the Montium TP using a DMA transfer via L channels then takes 2∗Lb

L cycles.
Retrieving the filtered antenna data takes another 2∗Lb

L cycles. The total C/C ratio

for the block-mode equalization filter therefore becomes 4∗Lb/L
5∗Lb+1 = 0.8/L.
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A streaming-mode implementation of the same FIR filter allows for reading a
sample, filtering the sample in  cycles and writing the sample in another cycle.
Pipelining can be used to continuously read samples while processing the previous
sample and storing a previous result, such that the communication does not slow
down the processing. After processing Lb samples, the communication only adds
2/L clock cycles delay due to the last write action. Therefore, the streaming-mode
C/C ratio equals 2/L

5∗Lb ≈ 0 (assuming the input stream with length Lb consists of at
least tens of samples).

.. Beamformer

To implement phase shifting in the digital domain, a FIR filter can be used, which
consists of complex multiplications followed by addition. In the narrowband case, a
-tap FIR filter per antenna is sufficient, which costs  complex multiplication per
antenna. The phase correction with a complex multiplication has the advantage that
it is flexible with respect to the beam-shape and its angle (see figures . and .).
In case of multiple targets, multiple beamformers are required and each beamformer
can be pointed in a different direction independently, while its shape may differ from
other beams. However, the costs for this flexibility are considerable as processing
costs increase linearly with the number of beams. The calculation of the ith beam is
described by Equation .:

bi [t] =
N∑

n=1

~ψni [k] · ~xn [t] (.)

where ~xn denotes the sample stream received from the nth antenna and ~ψni [k] denotes
the steering coefficient for that antenna to form the ith beam during the kth beam
update interval. The update frequency depends on the dynamics of the device the
antenna is mounted on (for example, a car or yacht).

Definition  (beam update interval). The beam direction is updated once during
each beam update interval, which consists of ku antenna samples.

Equation . can be implemented with one complex multiplication and one
accumulation per beam per sample per antenna. This can be executed in  clock
cycle for the Montium TP, so forN antennas and B beams, the beamforming costs
N ∗B clock cycles per snapshot. For the DVB-S receiver discussed before (N = 64
and B = 3), the beamformer costs are  clock cycles per snapshot. In block-mode
operation, first the snapshot is transported into the Montium TP using a DMA transfer
in 2N /L clock cycles (factor  because the antenna data is complex). The B resulting
beam values are retrieved using 2B/L cycles. Hence, the C/C ratio for block-mode

beamforming is 2∗(N+B)/L
N∗B = 2∗67/L

192 = 0.70/L. In streaming-mode operation, the
snapshot is loaded simultaneously with the multiplication by the steering vector for
the  beams. After the processing stage, the  results are communicated. Therefore,
the streaming-mode C/C ratio equals 2∗B/L

N∗B = 2/L
N = 0.03/L.
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.. Beamsteering

The pointing direction and shape of the beam are controlled by the beam control
part in Figure .. Since the receiver might be continuously moving, an adaptive
beamsteering algorithm is required. There are  classes of adaptive beamsteering
algorithms []. Spatial beamforming algorithms use correlation between the data
streams received by individual antennas. These algorithms require a considerable
amount of processing, as the correlation needs to be done over long data streams
and over multiple antennas. Algorithms of the temporal beamforming class rely
on correlation between the received data stream and a known reference stream.
For example, when multi-path effects can occur, often pilot symbols are added to
synchronize with the received signal. The third class consists of so-called blind
beamforming algorithms. These algorithms use structural or statistical properties of
the received signal to correct the beam direction.

In the initial situation where the satellites have not been detected yet, a search
action has to be done to find the location of possible transmitters. This can be done
with a so-called Direction of Arrival (DOA) estimation algorithm. Since, in the case
of DVB-S reception in a moving vehicle, there is no reference signal available in the
initial situation, only a spatial beamforming algorithm can be used for DOA estima-
tion. Examples of suitable DOA algorithms are Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) [, ] and MUltiple SIgnal Classifi-
cation (MUSIC) []. The disadvantage of these algorithms is their high complexity
of O

(
N 4

)
(where N is the number of antennas) due to the correlation operations

calculated for all possible antenna pairs. Therefore, a real-time implementation of
such algorithms is very computationally intensive and should be avoided. Direction
of Arrival estimation can be done initially to find the location of transmitters, and
then it can be replaced by a less costly tracking algorithm. Hence, although its
implementation is very computationally intensive, the effect of the processing costs
on the longer period is very small. Therefore, for the remainder of this thesis we will
assume that initial locations of transmitters are known. For more information on
DOA estimation, we refer to [].

Once the initial locations of the satellites are known, a tracking algorithm is
enabled. As mentioned in the previous section, QPSK is used for transmitting DVB-S
symbols. This modulation technique has well-defined structural and statistical prop-
erties. The signal is modulated in phase only, which is a strict structural property.
The highest utilization of the channel can be reached when the usage of all constella-
tion points is uniformly distributed, so transmitted symbols have a clear statistical
property. Since the gain is assumed to be constant, a so-called Constant Modulus
Algorithm (CMA) can be used efficiently []. Xu proposed an extension to CMA
that allows for correction of phase deviations []. CMA uses both the antenna
samples (~x) as well as the output y of the beamformer to adjust the current steering
vector (~φ, see Figure .).

The beam steering block determines the steering vector ~φ such that the error of
the beamformer output y, with respect to the expected output, is minimized for both
the magnitude and phase. The expected output has a magnitude of

∣∣∣y
∣∣∣ = 1 and its
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Figure . – Beamformer and beam steering blocks

phase matches the phases of the QPSK constellation points, shown in Figure .(a).
This is done by applying an iterative gradient descent method to decrease a cost
function J that estimates the error of the received signal (using the steering vector
~φ) compared to the expected output. This is described by Equation ., taken
from []:

J
(
~φ
)
= E

(∣∣∣y
∣∣∣2 − 1

)2
+E

(
sin2 (2∠y)

)
(.)

where E (x) indicates the expected value of x. Xu [] constructs a recurrent gradient
descent equivalent of Equation ., using an instantaneous approximation for the
estimated costs. As a result, Equation . is rewritten to:

~φ [n+ 1] = ~φ [n]−µ∇~φJ

= ~φ [n]−µ ·
8j

(∣∣∣y
∣∣∣4 −

∣∣∣y
∣∣∣2
)
+ 4sin (4∠y)

4j · y · ~x (.)

which can be slightly simplified to:

~φ [n+ 1] = ~φ [n]−µ ·
2
(∣∣∣y

∣∣∣4 −
∣∣∣y
∣∣∣2
)
− j sin (4∠y)

y
· ~x (.)

where ∠x defines the angle of x (in radians).
The operations involved in calculating Equation . are graphically presented

in Figure .. The effort in calculating Equation . scales linearly with the
number of antennas N , because ~x and ~φ are vectors of length N . The calculation

of µ · 2
(|y|4−|y|2)−j sin(4∠y)

y only consists of scalar operations and therefore requires a

fixed number of operations independent of N . Using the steering vector ~φ, the
beam pattern tracks the transmitter. Multiple transmitters can be tracked by adding
a beamformer and a CMA algorithm for each transmitter. As a result, the total
complexity for tracking B beams with CMA equals O (NB).

Most computations in Equation . are straightforward except for the following
operations which need more attention: transformation from Cartesian coordinates to
polar coordinates (section ...), sine calculation (section ...) and the complex
division (section ...).
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Figure . – Block diagram of the CMA adaptive beamsteering algorithm

... Coordinate transformation

The conversion from Cartesian coordinates (x,y) to polar coordinates (r,θ) and
back requires some goniometric operations. These could be implemented by a large
LUT, at the cost of limited accuracy. A more efficient and accurate approach is
the COordinate Rotation DIgital Computer (CORDIC) algorithm. It was originally
proposed by Volder [] as an iterative approach based on shift and add operations
to apply coordinate transformations, which heavily rely on trigonometric functions.
Extensions were proposed by Walther [] to implement other operations like
division, square root, Fourier transforms and many others. We mapped the algorithm,
as described in [], to the Montium TP. For the conversion from Cartesian to polar
coordinates, the equations for the so-called vectoring mode are:

xi+1 = xi − yi · di · 2−i (.)

yi+1 = yi + xi · di · 2−i (.)

zi+1 = zi − di · tan−1
(
2−i

)
(.)

where di = +1 if yi < 0, −1 otherwise. When the number of iterations n is increased,
the final values will converge to:

xn = An

√
x2

0 + y
2
0 (.)

yn = 0 (.)

zn = z0 + tan−1
(
y0

x0

)
(.)

An =
n∏

i=1

√
1+ 2−2i (.)
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Figure . – Mapping of CORDIC equations on Montium ALUs

such that r = xn
An

and θ = zn.
The mapping of these equations onto Montium ALUs is shown in Figure ..

The decision variable di , which depends on the sign of yi , is generated using the
status bits of the function units. Then, based on the status bit, the new values of xi+1,
yi+1 and zi+1 can be calculated. For the calculation of xi+1, the value of yi · 2−i is
calculated by shifting yi over i bits to the right. The calculation of xi+1, yi+1 and zi+1
depends on di , the sign of yi . For xi+1, di is a by-product of the logic shift yi >> i
(= yi · 2−i) operation. For yi+1 and zi+1, di is determined explicitly by the sign of yi .
Both the positive and negative values of the left operand are calculated. For example,
for calculating xi+1 the value of yi ·2−i and its negative value are both calculated and
based on the the decision variable di one of them is subtracted from xi . The values for
tan−1

(
2−i

)
are calculated offline and stored in a ROM. During the calculation of the

CORDIC equations, an AGU reads the memory from an address based on the current
iteration number i and writes the value to the register file for ALU . Hence, reading
these constants does not require any additional clock cycles. Using this mapping, all
three CORDIC equations can be calculated in a single clock cycle.

The accuracy of an example operation of the implemented algorithm is shown
in Figure .. It depicts the accuracy, expressed in number of fractional bits, of
the CORDIC algorithm after each iteration for a typical case operation. As can
be seen in Figure ., during each iteration approximately one additional bit of
precision is obtained. Due to the bit shift operations and the limited word-width of
the Montium TP, the smallest possible error is reached after  iterations. If more
than  iterations are done, the -bit word width limits the algorithm’s accuracy as
quantization errors due to arithmetic operations are larger than the gain in precision
by the algorithm.

As identified by [, ] the CORDIC equations . to . are only valid for
rotation angles between −π2 and π

2 . For rotation angles between −π2 and −π, an initial
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Figure . – Error between Montium result and input value (in bits) after each CORDIC iteration

rotation over π
2 is applied and for rotation angles between π

2 and π, an initial rotation
over −π2 is applied. These initial rotations can be realized with a set of equations .
to ..

x0 = −d · y (.)
y0 = d · x (.)

z0 = z+ d · π
2

(.)

where d = +1 if y < 0, −1 otherwise.
The Montium implementation of these equations is comparable to the mapping

presented for the regular CORDIC operations in Equation . to Equation ., with
identical processing requirements in terms of clock cycles. Hence, the calculation of
the initial equations can be done in one additional iteration.

... Sine calculation

The sine function (see Figure .) could be calculated very accurately using CORDIC.
However, this requires an additional CORDIC operation which is expensive in terms
of clock cycles. Instead, we chose to map the sine function to a LUT which is stored
inside one of the memories. The upper  bits of the -bit fixed point angle are
used as address for the lookup. Such a lookup only requires  clock cycles, which is
less compared to running a complete CORDIC operation with comparable accuracy.
Due to the quantization of the lookup address, the accuracy of a lookup operation
is limited to  bits. As can be seen in Figure ., a comparable accuracy can
be obtained by running  CORDIC iterations. If a higher precision is required,
CORDIC is preferable to a lookup operation.
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... Complex division

The complex division could be implemented by using  CORDIC operations, one
real division and  multiplications [], which is useful for implementation on
multiplier-limited architectures. The Montium TP, however, contains multipliers
and therefore, the complex division can be implemented much more efficiently.
Assume a division between the complex numbers X = a+ jb and Y = c+ jd. The
division can be rewritten as follows:

X
Y

=
a+ jb

c+ jd
=
a+ jb

c+ jd
· c − jd
c − jd =

ac+ bd

c2 + d2 + j
bc − ad
c2 + d2 (.)

Now define e = 1
c2+d2 . After substitution in Equation ., we get:

a+ jb

c+ jd
= . . .= (ac+ bd) · e+ j (bc − ad) · e (.)

which can be implemented by  multiplications,  additions and the costs for the
calculation of e.

Note that e = 1/
(
c2 + d2

)
= 1/ |Y |2. For the division used in Equation ., X

corresponds with the nominator and Y corresponds with the denominator which

is y (the beamformer output), so e = 1/
∣∣∣y
∣∣∣2. As can be seen in Figure ., the

calculation of
∣∣∣y
∣∣∣2 is already done. Its inverse can be calculated efficiently by using a

LUT, similar to the sine calculation. The values of 1/
∣∣∣y
∣∣∣2 with

∣∣∣y
∣∣∣2 ∈ [0, . . . ,1〉 are in

the range of 〈1, . . . ,∞〉, which cannot be represented in a . fixed point notation. A
straight-forward LUT based implementation is therefore not useful. In order to solve
this problem, the multiplication by a step factor µ (see Figure .) is included in the
LUT. Typically, µ= 0.005 is used for the best tracking results. So, instead of using

a LUT containing values 1/
∣∣∣y
∣∣∣2, the LUT consists of values µ/

∣∣∣y
∣∣∣2 which contains

unsaturated values for all µ ≤
∣∣∣y
∣∣∣2 < 1 (see Figure .). We use a LUT with 

entries to calculate the inverse of
∣∣∣y
∣∣∣2. For such a LUT, the first  entries are saturated

(since 0...2
512 < µ). However, since the CMA algorithm is used to normalize

∣∣∣y
∣∣∣2 to ,

the probability of a lookup of one of these saturated values is very low. Hence, the
calculation of a complex division requires in total multiplications,  additions and
 clock cycles for one lookup operation.

... CMA implementation costs

In total, the operations presented in the previous sections can be executed by the
Montium TP in  clock cycles. The algorithm is executed once for each update
of the beam direction. Using a DMA transfer, one antenna snapshot consisting of
N complex samples can be stored in 2N /L clock cycles. Loading the previous
beam sample y takes 2/L cycles. The resulting steering vector, consisting of N
To emphasize the saturated positions in the LUT, µ has been slightly increased in the picture.
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Figure . – Contents of the LUT for calculation of µ
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complex samples, is retrieved in as many clock cycles as the snapshot loading costs.
Therefore, in block-mode operation the communication time for the CMA algorithm
is (4N + 2)/L cycles. Since the processing requires  clock cycles, the C/C ratio
of CMA equals 4∗64+2/L

288 = 0.90/L.
The scalar operations depicted in Figure . have to be calculated first, before

the new steering vector can be calculated based on the current steering vector and
the current antenna snapshot. A streaming-mode implementation of the latter part,
where the current antenna snapshot is multiplied by a scalar value and added to
the current steering vector (Equation .), can be implemented in a streaming
fashion. Due to pipelining, the communication overhead in this part is hidden in
the processing, where only the storage of the last steering vector element is left as
communication overhead. As a result, the current (complex) beam value y and the
last (complex) steering vector element contribute to communication overhead, so the
C/C ratio for the streaming-mode implementation becomes 4/L

288 ≈ 0.01.

.. Baseband processing

The modulation technique used in DVB-S for transmitting symbols is QPSK [].
QPSK modulation maintains a constant modulus, while the information is added
by applying a multiple of π

2 shift in phase to the carrier frequency. When switching
instantaneously between two symbols, high frequency components occur in the
transmitted signal due to discontinuity in the phase. The transmitter uses a pulse
shaping filter to suppress the high frequency components by spreading the signal
over a slightly wider frequency band. At the receiving side, a matched filter is then
used to restore the signal back into the original frequency band, such that the
modulation information can be reconstructed.
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Figure . – QPSK modulation

... Matched filter

The matched filter can be implemented using an FIR filter consisting of Fmf taps.
Since this filter is applied to the output of the beamformer, its complexity only
depends on the number of beams B. The matched filter is implemented using two
real FIR filters of Fmf = 9 taps [], for the I and Q parts of the beamformer output.
Hence, for  beams, this part of the baseband requires B∗2∗

(⌈Fmf
5

⌉
+ 1

)
= 3∗2∗2 = 12

clock cycles.
Since both filters are real FIR filters, the combined C/C ratio equals the C/C

ratio of an individual filter. Therefore, the block-mode C/C ratio is 2∗N/L
N ∗

⌈
9
5

⌉
+1
≈ 1/L.

For the streaming-mode filter, the C/C ratio is 1
N ∗

⌈
9
5

⌉
+1
≈ 0.

... QPSK demapping

The (I ,Q) signal obtained from the matched filter is converted to bits via QPSK
demapping. While QAM (presented in section ...) uses amplitude modulation
for the I and Q parts individually, QPSK modulation only applies a phase shift to
the combined (I ,Q) signal. Hence, the amplitude of the (I ,Q) pair is kept constant
while its phase is modified. Figure .(a) shows an example constellation diagram
for QPSK, where for each of the constellation points the accompanying bit code is
displayed.

The demapping is done identically to the QAM demapping presented in sec-
tion .... A LUT, containing the constellation point codes, is indexed using an
address composed from the I and Q parts of a received signal. Therefore, the compu-
tational complexity for both the address generation and the lookup action is identical
as presented in section ....
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Table . – Implementation costs for the DVB-S receiver, expressed in clock cycles per antenna snapshot.
Here, we assumedN = 64 and B = 3.

Clock cycles
C/C ratio

Block-mode Streaming-mode

Channel Equalization 320 0.8/L 0
Beam forming 192 0.70/L 0.03/L
Beam steering† 1/ku ∗ 288 1/ku ∗ 0.90/L 1/ku ∗ 0.01
Matched filter 12 1/L 0
QPSK demapping 2 4/L 0

Total 526
† Given CMA computation and communication costs are defined per beam update. However, for a realis-

tic update interval ku = 500, the average cost antenna snapshot is less than one clock cycle.

.. DVB-S implementation overview

In the previous sections, all blocks required for the reception and baseband process-
ing of a DVB-S receiver have been presented. Table . summarizes the communi-
cation and computation numbers of all blocks. For all blocks, an implementation
was presented for both operating modes. The complexity of the CMA algorithm
is linear with the number of antenna elements. Although (parts of) the algorithm
seem to be computationally intensive (for example, the CORDIC part for applying a
coordinate transformation), the average processing requirements posed by the CMA
algorithm are low, because the beam update interval is long. A considerable amount
of processing is done at the antenna channel, because of the channel equalization
filtering. However, its computational complexity is independent of the number of
beams.

The combination of all blocks discussed in the previous sections is presented in
an SDF model depicted in Figure .. Duplicator blocks denote a copying action,
such that a received token is duplicated and sent to different processes. For example,
the beamformer process and the decimation process at the left receive the same
tokens. A decimation process consuming ku tokens and producing 1 token removes
all tokens except for the first token received from the stream. The opposite operation,
the upsampling process, is implemented as a sample-and-hold operation. A token
received from its input stream is duplicated ku times on the output edge of the
upsampling process.
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. Conclusion

The majority of the kernels in both case studies show a streaming behavior and
they can be described mathematically. The streaming-mode implementation results
in a low communication overhead for these kernels. Kernels that do not support
streaming-mode communication can be implemented by a block-mode alternative,
where the usage of parallel DMA transfers might reduce the communication over-
head. Together, both communication modes allow for a low overhead in terms of
clock cycles, enabling a stream processing architecture that can be programmed
efficiently. For both applications in the case study, an SDF model was composed
to show the resulting computational complexity and the resulting communication.
We highlighted some of the Montium TP operations, to demonstrate that multiple
operations can be mapped on the Montium ALUs simultaneously, such that the total
number of clock cycles required for executing a kernel is reduced.

The Hydra NI, presented in this thesis, enables streaming-mode communication
such that concurrency in computation and communication can be exploited. More-
over, the communication abstraction provided by the Hydra NI enabled most of the
kernels to be implemented as streaming-mode algorithms, such that the kernels can
be operated very efficiently because the communication overhead is avoided. For
several basic operations we evaluated the communication to computation (C/C) ratio,
which can be used to analyze the communication overhead. If the implementation
of a kernel has a low C/C ratio, this indicates that the communication is cheap
compared to the processing.



Chapter 

Conclusion

The design, programming and use of a Multi-processor System-on-Chip (MPSoC)
for streaming Digital Signal Processing (DSP) applications involves a complex in-
tegration of hardware building blocks and tools for the design flow. In MPSoC
architectures, communication has become one of the most important factors because
it enables the cooperation between different processors within the MPSoC, but it can
also easily become one of the main bottlenecks if designed inaccurately. Efficient
communication enables high utilization of individual processors and, therefore, a
high performance of the MPSoC.

Latency and throughput of communication streams between processors determine
the lower bound of processing performance, as processors are blocked as long as
no input data is available. Hence, by minimizing the communication latency and
increasing the communication bandwidth, processors can execute more efficiently.
The use of a Network-on-Chip (NoC) enables multiple communication streams to
exist in parallel, such that a large aggregated bandwidth is provided. By offering
bandwidth guarantees to individual streams, the upper bound of latency of the
stream can be determined.

Efficient computation of kernels within an application is required to design a low
power/high performance MPSoC. The Montium TP is a reconfigurable tile processor
that is suitable for application in Multi-Processor Systems-on-Chip, as it can execute
complex instructions at a low energy budget. As it supports complex instructions,
many operations can be executed in parallel such that the number of operations per
clock cycle is high (typically, about  operations can be performed per instruction).
As a result, the clock frequency of the Montium TP can be lowered considerably, such
that low energy consumption is obtained. The Montium’s instruction memory can be
reconfigured very quickly, such that functionality can be replaced in only hundreds
of clock cycles.

A crucial component in the MPSoC is the interface between a processor and
the NoC. If the interface is inefficient, the bandwidth provided by the NoC cannot
be used by the processor or the processor cannot be used efficiently and therefore
latency of communication streams may become large. In this thesis we propose
the Hydra Network Interface (NI), an energy-efficient and reconfigurable network


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interface that connects the Montium TP to a NoC. It supports two different types
of operating modes: block-mode communication is based on Direct Memory Access
(DMA) transactions, such that other processors can read and write the Montium TP’s
memories and registers, and streaming-mode communication can be used to enable
concurrency in processing and communication. Other processors in the MPSoC can
control the Hydra NI by transmitting messages via the NoC to the Hydra NI. Using
a light-weight message protocol, the Montium TP can be started and halted, the
Montium TP can be reconfigured and the Montium memories and registers can be
accessed via DMA transactions. Since the Montium TP can be operated at different
clock frequencies, all data received by the Hydra from the NoC is stored in FIFO
buffers that are responsible for synchronization between the clock domains. Data
transmitted by the Montium TP to the NoC is stored in another set of FIFO buffers.
The overhead of the Hydra NI, compared to the Montium TP, is low. If constrained to
operate at a maximum clock frequency of MHz, the Hydra NI has a total area of
k gates or about .mm2 in . µm ASIC technology, which is about % of the
area of the Montium TP. For typical streaming DSP applications (see Table .), the
power distribution of one processing tile containing a Montium TP and a Hydra NI
shows that the Hydra NI contributes to about % to % of the total power budget.
Due to the message protocol, transmitted data is formatted in packets with a small
overhead of typically % to %. Therefore, we claim that the general overhead of
the Hydra NI, with respect to the Montium TP, is in the range between % and %.

Although efficient hardware architectures enable efficient processing, an inef-
ficient programming model may destroy the performance of the architecture. A
lot of effort has been (and is being) spent on automatic mapping of applications to
multi-processor architectures. In chapter  of this thesis, we present new ideas on
an application modeling technique that is suitable for modeling applications that
are closely related to mathematics, like streaming DSP applications. While many
proposed design flows focus on the parallelization of sequential (imperative) code to
parallel threads that can be executed by a multi-processor architecture, our approach
stays closely to the mathematical definition of an application (which is inherently
parallel). An Embedded Domain Specific Language (EDSL), implemented in Haskell,
is introduced in which applications are described. The EDSL can be used as a strongly
typed programming language and is constructed as a single data type. This has the
advantage that transformation functions can be defined for such a data type, to con-
vert the application implemented in the EDSL into another (functionally equivalent)
application. The correctness of these transformation rules can be proven, hence they
can be applied safely to the application without changing the functional behavior
and therefore the correctness. A special transformation rule is the partitioning rule,
which can be applied to kernels to split them in multiple smaller kernels that can
be mapped on a multi-processor system. The transformed application is converted
to a Synchronous Data Flow (SDF) model, which models execution times of parts
of the application (processes) and adds explicit communication between processes
using communication channels. We propose an SDF simulator framework that can
execute such a model, to simulate the behavior of an application and to test the
synchronization between processes. Since communication is explicit, output values
of processes can be analyzed to check the implementation correctness. To ease this
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analysis, the simulator can generate a visualization during the simulation, to show
the application structure and communication patterns. The effect of the operation
mode (block-mode or streaming-mode), that is to be used for the mapping of the
processes onto a processor, and the behavior of the interconnect (in terms of latency
and throughput) can be added to the SDF model. This enables accurate simulation of
the execution of the application on an MPSoC platform.

To evaluate the performance of applications mapped on the Montium TP, we
introduced the communication-to-computation (C/C) ratio that expresses the com-
munication overhead added to the processing, due to the different operating modes.
With this ratio, in chapter  the kernel operations identified in two wireless commu-
nication receivers are analyzed. For both operating modes the kernels are analyzed
and the C/C ratio is calculated. In general, block-mode operation adds more com-
munication overhead than streaming-mode. The C/C ratio of the streaming-mode
operations is lower than (or equal to) the C/C ratio for block-mode operation for
almost all analyzed kernels.

. Future work

The Annabelle MPSoC architecture presented in this thesis consists of an Advanced
RISC Machine (ARM)- processor and  Montium TPs. The ARM processor is
responsible for reconfiguring the Montium TPs and for configuring the NoC such
that communication channels between Montium TPs are opened. With the current
number of Montium TPs, the ARM processor can manage these tasks. However,
if the number of processors in the MPSoC is increased, the ARM processor may
not be capable of controlling all Montium TPs. Large Multi-Processor Systems-on-
Chip require an advanced distributed control mechanism such that the available
hardware resources (in terms of total processing power and aggregated interconnect
bandwidth) can be used efficiently. Increasing the number of processors on the
MPSoC will eventually require a new Complementary Metal Oxide Semiconductor
(CMOS) technology. This will have a considerable influence on the energy demands
of the entire chip, and therefore on the power management.

We presented a mathematic programming based design-flow for mapping appli-
cations to an MPSoC architecture. The EDSL, in which the application is described,
is constructed such that transformations can be applied to modify the language but
keep the functional behavior unchanged. Which transformation rules should be
applied to the language, and in which order, is currently decided manually. A typical
transformation rule that modifies the structure of the application is a partitioning
rule. Before partitioning an application, knowledge about the targeted MPSoC ar-
chitecture is required. We showed an example where partitioning of a large adder
resulted in an adder tree consisting of adders with less inputs. For that particular
example, the partitioning parameter was the number of operands that are added
by an adder in the Arithmetic Logic Unit (ALU) of a processor. However, for more
complex language constructions the partitioning rule is also much more complex.

The SDF simulator framework, presented in this thesis, is used for functional and
structural simulation of streaming DSP applications. An extension to Cyclo-static
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Data Flow (CSDF) simulations could be made to offer a more intuitive interface to
the application programmer, as CSDF models the individual phases of a process.
The current execution model in the simulator uses a naive scheduling mechanism,
where for all processes during each simulation cycle is checked whether the process
is waiting, executing or finished. If the execution times of all processes are large,
this results in many simulation cycles where nothing is actually calculated and there-
fore, those cycles could be skipped. Replacing the current scheduling mechanism
with a more efficient scheduler may improve simulation times, but will not change
functional and temporal behavior of the application.

In the Digital Video Broadcast for Satellite (DVB-S) application, where a phased
array is used as a steerable antenna, the quality of the received signal is very sensitive
to environmental distortions. For example, such distortions may be caused by objects
like buildings and trees, or radio waves transmitted by other devices. In situations
where the signal is distorted, channel equalization may improve the signal quality
after reception. In this thesis, the design of the antenna processing blocks like
calibration and equalization has been mentioned but was considered out of scope.
Further research on the use of these DSP operations is required to compensate for
deviations between simulation and real-life operation.
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Hydra NI timing diagrams

clk

dv

ft 11 01 00 01 00 01

data 0000 0011 0000 8000 0100 0006 8424 0447 0070 0010 00000200

ack

clk t

c dv

c addr 0 1 2 3 4 5 6 256 257 258 259

c data 0000 0011 0000 8000 0100 0006 8424 04470070

Figure A. – Timing diagram of the execution of a configuration packet


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clk

dv0

ft0 11 01 00 10

data0 200390007FFF 76425A82 30FC 0000 CF04 A57E 89BE 0000

ack0

dv1

ft1 01 00 10

data1 A0000000CF04A57E89BE 8000 89BE A57E CF04 0000

ack1

clk t

dma sel

dma rw

dma addr 0 1 2 3 4 5 6 7

dma mr

dma rs

gb9 7FFF 7642 5A82 30FC 0000 CF04 A57E 89BE

gb10 0000 CF04 A57E 89BE 8000 89BE A57E CF04

bus en9

bus en10

Figure A. – Timing diagram of a DMA load transaction for the Montium TP memories





clk

dv

ft 11 010001 00 01 00 01 00 01 00 10

data 2001 F300 FEF3 F500 16F2 F700 5436 F900 16F2 FB00 FEF3 0000

ack

clk t

dma sel

dma rw

dma addr 0

dma mr

dma rs

gb2 FEF3

gb4 16F2

gb6 5436

gb8 16F2

gb10 FEF3

bus en2

bus en4

bus en6

bus en8

bus en10

Figure A. – Timing diagram of a DMA load transaction for the Montium TP register files
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clk

dv0

ft0 11 0100

data0 4001200003FF

ack0

clk t

dma sel

dma rw

dma addr 0 1 2 3 4 5 6 7 8 9

dma mr

dma rs

gb2 FFD0 000D FFA3 0001 0002 FFDE 008B 00040008

bus en2

clk

dv0

ft0 00

data0 FFD0 000D FFA3 0001 0002 FFDE 008B0004

ack0

Figure A. – Timing diagram of a DMA retrieve transaction for the Montium TP memories
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Data flow simulator

B. Haskell

Several examples of Haskell constructions are given in Listing B.. More information
can be found on the Haskell website [].

B. Simulator data types

A token is a black box container in which anything can be stored using the toToken()
function and which can be opened with the function fromToken(). The fromToken()
function includes error reporting in case the conversion did not succeed (for brevity
reasons not shown in Listing B.).

The simulator is recursively operated at a SimState item, that is constructed as
defined in Listing B..


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 −− Data t y p e s
 tuple : : ( Int , Char )
 l i s t : : [ Double ]

 −− A b s t r a c t data t y p e s us ing c o n s t r u c t o r s
 data Color = Red | Green | Blue | Cyan | Magenta | Yellow −− and more

 −− Record t y p e ” Rec ” i s d e f i n e d us ing a c o n s t r u c t o r ”R”
 data Rec = R { f i e l d : : Int , f i e l d : : Char }
 r = R { f i e l d =  , f i e l d = ’ a ’ }

 −− f i e l d names can be used as f u n c t i o n s on t h e r e c o r d
 a = f i e l d r −− e v a l u a t e s t o i n t e g e r va lue ’ ’

 −− D e f i n i t i o n o f a f u n c t i o n ” f ” with an argument o f t y p e ”a ” , r e s u l t i n g in a
 −− va lue o f t y p e ”b”
 f : : a −> b

 −− Quadrat ic formula , showing t h e use o f a ” where c l a u s e ” .
 −− E x p r e s s i o n s in t h e where c l a u s e ar e unordered .
 quadrat ic : : Float −> Float −> Float −> ( Float , Float )
 quadrat ic a b c = ( x , x )
 where
 x = (−b + sqrt ( d ) ) / (* a )
 x = ( b − sqrt ( d ) ) / (* a )
 d = b*b − *a * c

 −− L i s t s
 l = [ ,  ,  ,  ,  ]

 −− L i s t c o n c a t e n a t i o n ”++” g l u e s two l i s t s t o g e t h e r
 t w i c e l = l ++ l

 −− a p p l i c a t i o n o f an element −wise f u n c t i o n t o two l i s t s , r e s u l t i n g in a new l i s t
 zipWith : : ( a −> b −> c ) −> [ a ] −> [ b ] −> [ c ]
 zipWith [ ] = [ ]
 zipWith [ ] = [ ]
 zipWith f ( x : xs ) ( y : ys ) = f x y : zipWith f xs ys

 −− L i s t comprehens ion
 doubleList : : [ Int ] −> [ Int ]
 doubleList xs = [ *x | x <− xs ]

 −− Recurs ion
 fac : : Int −> Int
 fac  = 
 fac n = n * fac ( n−)

 −− P a t t e r n matching us ing s p e c i f i c v a l u e s ( ,  or any o t h e r number )
 f i b : : Int −> Int
 f i b  = 
 f i b  = 
 f i b n = f i b ( n−) + f i b ( n−)

 −− The Maybe a b s t r a c t data t y p e i s used t o i n d i c a t e a p o s s i b l e va lue t
 −− ( w r i t t e n as ” J u s t t ” ) or t h e a b s e n c e o f a va lue ( w r i t t e n as ” Nothing ”)
 data Maybe t = Nothing
 | Just t

 −− P a t t e r n matching us ing a b s t r a c t data t y p e c o n s t r u c t o r s (” Nothing ” or ” J u s t ” )
 addOne : : Maybe Int −> Int
 addOne ( Nothing ) = 
 addOne ( Just x ) = x+

Listing B. – Haskell examples
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 type Token = Dynamic

 fromToken : : ( Typeable t ) => Token −> t
 fromToken t = fromJust ( fromDynamic t )

 toToken : : ( Typeable t ) => t −> Token
 toToken t = toDyn t

 isEmpty : : Token −> Bool
 isEmpty t = fromDynamic t == Just ( )

 empty : : Token
 empty = toToken ( )

Listing B. – Token definition

 −− Simula tor t y p e s
 data Stream = Stream [ Token ]

 data Exec
 = Waiting
 | Running Int
 | Finished

 type ProcessExec = ( Exec , Buffer )
 type Buffer = [ Stream ]

 data SimState
 = SS { ps : : [ Process ]
 , cs : : [ Channel ]
 , exec : : [ ProcessExec ]
 }

 −− P r o c e s s t y p e s
 type ProcessID = Int
 type Fun = ( S t a t e −> [ Stream ] −> ( State , [ Stream ] ) )
 type S t a t e = Token

 type PortID = Int
 data Port
 = Data PortID
 | Sync PortID

 data Process
 = PS { pid : : ProcessID
 , f : : Fun
 , s t a t e : : S t a t e
 , i s : : [ ( Port , Int ) ]
 , os : : [ ( Port , Int ) ]
 , wcet : : Int
 }

 −− Channel t y p e s
 type ChannelID = String
 type ChannelContent = Stream

 data Channel
 = C { chid : : ChannelID
 , from : : ( ProcessID , Port )
 , to : : ( ProcessID , Port )
 , cont : : ChannelContent
 }

Listing B. – Simulator types





Appendix C

PFA address calculation

This example explains the output ordering for streaming out the complex sample
X [k] in linear order. The Chinese Remainder Theorem (CRT) mapping on the
Montium TP’s memories can be described as follows (only the real part of XCRT is
shown):

XCRT [k1,k2] =



m1.2

[
〈k1〉N2

2
+ k2

N2
2

]
, if k1 <

N2
2

m2.2

[
〈k1〉N2

2
+ k2

N2
2

]
, otherwise

(C.)

When equations . and C. are combined, the mapping of X [k] can be described
as follows (again only showing the real part):

X [k] =


m1.2

[
〈p [k]〉N

2

]
, if p [k] < N

2

m2.2

[
〈p [k]〉N

2

]
, otherwise

(C.)

where p [k] indicates the indirection address that is calculated as follows:

p [k] =

〈
65 · k+ 896 ·

⌊
k

64

⌋
+ (1024+ (16−N1) · 64) ·

⌊
k

15

⌋〉

N

(C.)

For example, to obtain the location ofX [3] from Equation C., one has to calculate
p [3] using Equation C.. As p [3] = 65 · 3 = 195 < 1920

2 , it is stored in m1.2 at address
position .

A full recalculation of the indexing address for each update is expensive. By
writing Equation C. in a differential form, it can be shown that the new address can


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be based on the current address such that it can be calculated efficiently:

c1 [k] =


896, if 〈k〉64 = 0
0, otherwise

c2 [k] =


1024+ (16−N1) · 64, if 〈k〉15 = 0
0, otherwise

∆ [k] = p [k − 1] + c1 [k] + c2 [k] + 65

p [k] =


∆ [k] , if ∆ [k] < 1920
∆ [k]− 1920, otherwise

(C.)

One ALU is used for determining the values of c1 [k] and c2 [k], which depend on
the current value of k. The calculation of the new p [k] requires a pseudo-modulo
operation. As mentioned before, an ALU has four inputs which can be used by four
function units. Two function units are used for the calculation of the two cases of
p [k]. A third function unit performs the test ∆ [k] < 1920 which can be mapped on
the conditional Compare/Select unit mentioned in section ... to select the result
of one of the first two function units depending on the test performed by the third.
All these operations can be executed on one ALU in one clock cycle. By subtracting
∆ [k]−1920, the sign is used to select the correct value for the output p [k]. This equals
the operation p [k] = 〈p [k − 1]+c1 [k]+c2 [k]+65〉N because p [k − 1] and c1 [k]+c2 [k]
both are larger than  and smaller than .



List of Acronyms

Acronyms
S Smart Chips for Smart Surroundings. vi, viii, , , , , 

ADC Analog-to-Digital Converter. , , , –
ADT Algebraic Data Type. , 
AGU Address Generation Unit. , , , , , 
AHB Advanced High-performance Bus. , 
ALU Arithmetic Logic Unit. –, , , , , , , , , , , ,
, 
AM Amplitude Modulation. , 
AMBA Advanced Microcontroller Bus Architecture. 
ARM Advanced RISC Machine. , , , , , 
ASIC Application Specific Integrated Circuit. , –, , 
AWGN Additive White Gaussian Noise. 

BE Best Effort. , 
BS Beamsteering. 

CIC Cascading Integrating Comb. 
CMA Constant Modulus Algorithm. –, , , 
CMOS Complementary Metal Oxide Semiconductor. , , , , 
CORDIC COordinate Rotation DIgital Computer. –, 
CRT Chinese Remainder Theorem. , , , 
CSDF Cyclo-static Data Flow. , , , –, , 

DAB Digital Audio Broadcast. 
DCT Discrete Cosine Transform. 
DDC Digital Down Converter. –, 
DFS Dynamic Frequency Scaling. 
DFT Discrete Fourier Transform. , , , , , , , , 
DMA Direct Memory Access. , , , –, , , , , , , , ,
, , –
DOA Direction of Arrival. 
DRM Digital Radio Mondiale. , , , , , , –, –, , –,
–, , , 





 Glossary

DSP Digital Signal Processing. , –, , , , , , , , , ,
–
DSP Digital Signal Processor. , , , , 
DSRA Domain Specific Reconfigurable Architecture. , 
DVB-S Digital Video Broadcast for Satellite. , , , , –, –, ,
, , 
DVS Dynamic Voltage Scaling. , 

EDSL Embedded Domain Specific Language. –, –, , , , 
EM Electro-Magnetic. 
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques. 

FAC Fast Access Channel. , 
FFT Fast Fourier Transform. , , –, –, , 
FIFO First In, First Out. –, , , , , 
FIR Finite Impulse Response. , , , , –, , , , –, , ,
, 
FM Frequency Modulation. , 
FOC Frequency Offset Correction. , , 
FPGA Field Programmable Gate Array. –

GALS Globally Asynchronous Locally Synchronous. 
GB Global Bus. , , , , , , , 
GP General Purpose. , 
GPP General Purpose Processor. , , , , 
GT Guaranteed Throughput. , 
GTR Guard Time Removal. , , –, 
GUI Graphical User Interface. , 

IC Integrated Circuit. , , 
iDFT Inverse Discrete Fourier Transform. , , 
iFFT Inverse Fast Fourier Transform. , 
IO Input/Output. , , , , 
ISI Inter Symbol Interference. 

KPN Kahn Process Network. , , , 

LAN Local Area Network. 
LHS Left-hand side. 
LM Local Memory. 
LO Local Oscillator. 
LSB Least Significant Bit. , , , 
LUT Lookup Table. , , , , –, , , , 

MAC Multiply Accumulate. , 
MoC Model of Computation. 
MPEG MPEG. , , , , 



Glossary 

MPSoC Multi-processor System-on-Chip. v, vi, –, –, , , , , , –,
, , , , , , , , , –
MSB Most Significant Bit. , , 
MSC Main Service Channel. , , , 
MUSIC MUltiple SIgnal Classification. 

NCO Numerically Controlled Oscillator. 
NI Network Interface. v, vi, , , , , , , –, , , , , , –,
, , , , , –
NoC Network-on-Chip. v, vi, , , –, , –, , –, , , , , ,
, , , , , , –

OFDM Orthogonal Frequency Division Multiplexing. , , –, , , ,

OSYRES Operating System for Real-Time Embedded Systems. 

PC Program Counter. 
PCB Printed Circuit Board. 
PFA Prime Factor Algorithm. –, –
PLL Phase Locked Loop. 
PP Processing Part. , 
PPA Processing Part Array. 

QAM Quadrature Amplitude Modulation. , –, 
QoS Quality of Service. , 
QPSK Quadrature Phase Shift Keying. , , , , 

RC Ruritanian Correspondence. , , , 
RF Radio Frequency. , , , , 
RHS Right-hand side. 
RISC Reduced Instruction Set Computer. 
ROM Read-only Memory. , , , , , 
RTOS Real-Time Operating System. 

SDC Service Description Channel. , , 
SDF Synchronous Data Flow. vi, , , , , , –, , , , , , ,
, –, , 
SDF SDF for Free. 
SESAME Simulation of Embedded Systems Architectures for Multi-level Exploration.

SIMD Single Instruction Multiple Data. 
SIO Streaming IO. , 
SNR Signal to Noise Ratio. , 
SRAM Static Random Access Memory. , , 

TDMA Time Divison Multiple Access. 
TP Tile Processor. vi, , , , 
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ULA Uniform Linear Array. , 

VBR Variable Bit Rate. 
VC Virtual Channel. v, vi, , , , , , , , , 
VCO Voltage-controlled oscillator. 
VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Lan-
guage. x, , 
VLSI Very-Large-Scale Integration. , 
VPDF Variable Phase Data Flow. 

XML Extensible Markup Language. 
XPP Extreme Processing Platform. 

YAPI Y-chart Application Programmer’s Interface. 
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[] Edith Beigné and Pascal Vivet. Design of on-chip and off-chip interfaces
for a GALS NoC architecture. In Proceedings of the th IEEE International
Symposium on Asynchronous Circuits and Systems, pages –, Los Alamitos,
CA, USA, March . IEEE Computer Society. ISBN ---. doi:
./ASYNC...

[] Open MPI. Open MPI: Open source high performacne computing, April .
URL http://www.open-mpi.org.

http://www.open-mpi.org


 Bibliography

[] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain,
George Bosilca, and Andrew Lumsdaine. Open MPI: A high-performance,
heterogeneous MPI. In Proceedings of the Fifth International Workshop on Al-
gorithms, Models and Tools for Parallel Computing on Heterogeneous Networks
(HeteroPar ’), Los Alamitos, CA, USA, September . IEEE Computer
Society.

[] Rostislav Dobkin, Ran Ginosar, and Christos P. Sotiriou. High rate data syn-
chronization in GALS SoCs. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, ():–, October . ISSN -. doi:
./TVLSI...
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Eötvös Loránd University, Hungary.

[] John C. Mitchell. Foundations for Programming Languages. The MIT Press,
Cambridge, MA, USA, September . ISBN ---.

[] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Cam-
bridge, MA, USA, February . ISBN ---.

[] Lodewijk T. Smit, Gerard J. M. Smit, Johann L. Hurink, Hajo J. Broersma,
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