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Chapter 1

Introduction

Fluid flows with interfaces involve combinations of gasses, liquids and solids
and have many applications in nature and industry. Examples include flows
with bubbles, droplets or solid particles, wave-structure interactions, dam
breaking, bed evolution, Rayleigh-Taylor and Kelvin-Helmholtz instabilities
and industrial processes such as bubble columns, fluidized beds, granular
flows and ink spraying. The flow patterns in these problems are complex
and diverse and can be approached at various levels of complexity. Often
the interface is not static but moves with the fluid flow velocity and in more
complex cases interface topological changes due to breakup and coalescence
processes may occur. Solutions often have a discontinuous character at the
interface between different fluids, due to surface tension and other effects.
In addition, the density and pressure differences across the interface can
be very high, like in the case of liquid-gas flows. Also, the existence of
shock or contact waves can introduce additional discontinuities into the
problem. Because of the continuous advances in computer technology the
numerical simulation of these problems is becoming increasingly affordable.
However, there are several issues related to solving flows with interfaces nu-
merically. These include issues regarding accuracy and conservation of the
flow field quantities near the interface, robustness and stability of the in-
terface coupling, complex geometries, unstructured mesh generation and



Chapter 1 Introduction

motion, mesh topological changes and computational efficiency. A numer-
ical method which has received much attention in recent years and which
is especially suited for dealing with flows with strong discontinuities and
unstructured meshes is the discontinuous Galerkin finite element method.

In this thesis a novel discontinuous Galerkin front tracking method for
two-fluid flows is presented, which is accurate, versatile and can alleviate
some of the problems commonly encountered with existing methods. In
order to explain and motivate the choices made for the numerical method,
first the most important aspects of the space-time discontinuous Galerkin
finite element method are discussed. This is followed by a discussion of
important existing techniques for dealing with interfaces. Based on this
discussion the interface related choices in the method are explained. Finally,
the research objectives are stated.

The discontinuous Galerkin (DG) finite element method was first pro-
posed by Reed and Hill for solving the neutron equation [69]. It was further
developed for hyperbolic partial differential equations by Cockburn et al.,
who introduced the Runge-Kutta discontinuous Galerkin (RKDG) method
[17, 18, 19, 20] and its generalization, the local discontinuous Galerkin
(LDG) method [21]. See also [8, 9, 10, 11, 47, 59]. For a complete survey
of DG methods and their applications, see [22]. In [23] post processing to
enhance the accuracy of the solution was introduced. Recently, also space-
time DG methods have been proposed which make use of advancing front
strategies [62, 94].

The main feature of DG methods is that they allow solutions to be dis-
continuous over element faces. The basis functions are defined locally on
each element with only a weak coupling to neighboring elements. The com-
putational stencil is therefore very local; hence, DG methods are relatively
easy to combine with parallel computation and also hp-refinement, where
a combination of local mesh refinement (h-adaptation) and adjustment of
polynomial order (p-adaptation) is used. Another important property is
that DG discretizations are conservative. Near discontinuities higher or-
der DG solutions will exhibit spurious oscillations. These oscillations may
be removed by using slope limiting, shock fitting techniques or artificial
dissipation in combination with discontinuity detection. Recently, Luo et
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al. [56] proposed the Hermite WENO limiter for DG methods, which uses
Hermite reconstruction polynomials to maintain a small stencil even for
higher order solutions. Krivodonova et al. [51] proposed a discontinuity
detector for DG methods for hyperbolic conservation laws based on a re-
sult of strong superconvergence at the outflow boundary of each element.
The discontinuity detector is used to prevent activation of the slope limiter
in a smooth solution, which would otherwise reduce accuracy.

The space-time discontinuous Galerkin finite element method (STDG)
introduced by van der Vegt and van der Ven ([98]) is a space-time variant
of the DG method which is especially suited for handling dynamic mesh
motions in space-time (See also [7, 49, 83, 100]). It features a five-stage
semi-implicit Runge-Kutta scheme with coefficients optimized for stabil-
ity in combination with multigrid for accelerated convergence to solve the
(non)linear algebraic equations resulting from the DG discretization.

Many methods have been proposed for computing flows with interfaces
or, to be more general, fronts [77]. By looking at the front representation
in the mesh one can distinguish between front capturing and front tracking
methods. Other methods exist, such as particle methods and boundary
integral methods, but these are not relevant for the current discussion.

In front capturing methods a regular stationary mesh is used and there
is no explicit front representation. Instead, the front is either described by
means of marker particles, like in the marker and cell method, or by use of
functions, such as in the volume of fluid and level set methods. The earliest
numerical method for time dependent free surface flow problems was the
marker and cell (MAC) method [26, 43]. Being a volume marker method
it uses tracers or marker particles defined in a fixed mesh to locate the
phases. However, the large number of markers required to obtain sufficient
accuracy makes the method expensive.

In the Volume of Fluid (VoF) method [44, 66, 76, 109] a fractional
volume or color function is defined to indicate the fraction of a mesh ele-
ment that covers a particular type of fluid. Algorithms for volume track-
ing are designed to solve the equation ∂c/∂t + ∇̄ · (cu) = 0, where c de-
notes the color function, u the local velocity at the front, t the time and
∇̄ = (∂/∂x1, · · · , ∂/∂xd) the spatial gradient operator in d-dimensional
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space. In the VoF method typically a reconstruction step is necessary to re-
produce the interface geometry from the color function. More accurate VoF
techniques like the Piecewise Linear Interface Construction (PLIC) method
attempt to fit the interface by means of piecewise linear segments. VoF
methods are easy to extend to higher dimensions and can be parallelized
readily due to the local nature of the scheme. Also, they can automatically
handle reconnection and breakup. Also, current VoF methods can conserve
mass. However, VoF methods have difficulty in maintaining sharp bound-
aries between different fluids, and interfaces tend to smear. In addition,
these methods can give inaccurate results when high interface curvatures
occur. The computation of surface tension is not straightforward and in
addition spurious bubbles and drops may be created. Recently, Greaves
has combined the VoF method with Cartesian cut-cells with adapting hi-
erarchical quadtree grids [40, 41], which alleviates some of these problems.

The Level Set Method (LSM) was introduced by Osher and Sethian in
[60] and further developed in [1, 79, 84]. For a survey, see [80]. In the LSM
an interface can be represented implicitly by means of the 0-level of a level
set function ψ(x, t). The evolution of the interface is found by solving the
level set equation ∂ψ/∂t + u · ∇̄ψ = 0, with u the interface velocity. To
reduce the computational costs a narrow band approach can be used, which
limits the computations of the level set to a thin region around the interface.
To enhance the level set accuracy it can be advected with the interface
velocity, which for this purpose is extended from the interface into the
domain. In case the level set becomes too distorted a reinitialization may be
necessary. Various reinitialization algorithms are available based on solving
a Hamilton-Jacobi partial differential equation [45, 61, 64]. Although the
choice of the level set function is somewhat arbitrary, the signed distance
to the interface tends to give the best accuracy in computing the curvature
of the interface. Also, the LSM is easy to extend to higher dimensions and
can automatically handle reconnection and breakup. The LSM, however,
is not conservative in itself. Recent developments include the combination
of the VoF method with the Level Set Method [85].

Front capturing methods have the advantage of a relatively simple for-
mulation. The main drawback of these methods lies in the need for com-
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plex interface shape restoration techniques, which often have problems in
restoring the smooth and continuous interface shape, particularly in higher
dimensions.

In front tracking and Lagrangian methods the front is tracked explicitly
in the mesh. Front tracking was initially proposed in [73] and further devel-
oped in [35, 36, 37, 55, 58, 90, 95] and [96]. For a survey, see [46] and [74].
The evolution of the front is calculated by solving the equation ∂x/∂t = u

at the front, where x is a point at the front and u its velocity. Glimm et
al. [38] have combined front tracking with local grid based interface recon-
struction using interface crossings with element edges. More recently they
have proposed a fully conservative front tracking algorithm for systems of
nonlinear conservation laws in [39].

Front tracking methods are often combined with either surface markers
or cut-cells to define the location of the front. In the cut-cell method
[4, 16, 24, 28, 48, 63, 68, 89, 91, 92, 93, 105, 106, 107] a Cartesian mesh is
used for all elements except those which are intersected by the front. These
elements are refined in such a way that the front coincides with the mesh. At
a distance from the front the mesh remains Cartesian and computations are
less expensive. A common problem with cut-cell methods is the creation
of very small elements which leads to problems with the stiffness of the
equations and causes numerical instability. One way to solve this problem
is by element merging as proposed in [108].

In Lagrangian or moving mesh methods [25, 27, 32, 33, 34, 57, 75] the
mesh is modified to follow the fluid. In these methods the mesh can become
considerably distorted, which gives problems with the mesh topology and
stretched elements. In the worst case, frequent remeshing may be necessary
([2, 54]). In cases of breakup and coalescence, where the interface topology
changes, these methods tend to fail.

Front tracking methods are good candidates for solving problems that
involve complex interface physics. They are robust and can reach high
accuracy when the interface is represented using higher order polynomials,
even on coarse meshes. A drawback of front tracking methods is that they
require a significant effort to implement, especially in higher dimensions.

To meet the aim of the present research it was chosen to combine a
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space-time discontinuous Galerkin (STDG) discretization of the flow field
with a cut-cell mesh refinement based interface tracking technique and a
level set method (LSM) for computing the interface dynamics. The STDG
discretization can handle interface discontinuities naturally, is conservative
and has a very compact computational stencil. The level set method has the
benefit of a simple formulation which makes it easier to extend the method
to higher dimensions and also provides the ability to handle topological
changes automatically. The interface tracking serves to maintain a sharp
interface between the two fluids. This allows for different equations to
be used for each fluid, which are coupled at the interface by a numerical
interface flux, based on the interface condition. In addition, front tracking
methods typically have high accuracy. Cut-cell refinement is used since it
has the benefit of being local in nature and also is relatively easy to extend
to higher dimensions. In order to structure the investigation, three research
objectives are defined:

1. Develop a space-time discontinuous Galerkin method in combination
with an accurate interface treatment using cut-cells and a level set
method. To ensure that the complete method will have good stability
and accuracy properties the individual components of the method
need to connect and interact with each other correctly. Furthermore,
the issue of performance should also be taken into consideration.

2. Investigate the numerical properties and performance of the method
for a number of test problems. Firstly, a number of benchmark tests
will be considered with the purpose of validating various individual
aspects the method. Secondly, a number of more challenging real
life applications will be considered, to investigate the behavior of the
complete method.

3. Investigate the design and implementation aspects of the method.
Since the method is composed of many complex parts its implemen-
tation is expected to be non trivial.

This thesis contains and extends the material presented in [81] and [82].
The outline is as follows. In Chapter 2 the numerical technique for the
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solution of two-fluid flows is presented, followed in Chapter 3 by a discus-
sion of several numerical problems with growing complexity. In Chapter
4, design and implementation issues of the two-fluid method are discussed.
Finally, in Chapter 5 conclusions and recommendations for further research
are presented.
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Chapter 2

Two-Fluid Space-Time

Discontinuous Galerkin

Finite Element Method.

Part I: Numerical Algorithm

2.1 Introduction

In this chapter a novel numerical method is presented for solving two-fluid
flows which combines aspects of front capturing and front tracking meth-
ods with a space-time discontinuous Galerkin (STDG) finite element dis-
cretization. This new approach provides an accurate and versatile scheme
for dealing with interfaces in two-fluid flow problems which can alleviate
some of the problems encountered in existing methods. In order to explain
and motivate the choices made in this method, first some aspects of existing
techniques for dealing with interfaces are discussed. This is followed by a
discussion of the space-time discontinuous Galerkin finite element method.

In Front Tracking methods the front is tracked explicitly in the mesh,
typically by either moving the nodes in the mesh (Lagrangian methods) or
by means of local h-refinement (Cut-Cell method). Front tracking meth-
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ods can reach high accuracy when the interface representation is detailed
enough, even on coarse meshes. Also, due to the explicit representation of
the interface front tracking methods are good candidates for solving prob-
lems that involve complex interface physics. A drawback of front tracking
methods is that they require a significant effort to implement, especially
in higher dimensions, due to the complexity of the geometric refinement.
Also, interface topological changes due to breakup or merging typically
cannot be handled easily. A problem which is most notable in Cut-Cell
methods, is the occurrence of small elements which can result in stiffness
of the equations and numerical instability. In Lagrangian front tracking
methods frequent remeshing may be required when the mesh deformations
are large which introduces additional interpolation errors and is computa-
tionally expensive.

In front capturing methods the interface is not explicitly represented
in the mesh but instead a regular stationary mesh is used in combination
with an alternative interface representation, most often by means of parti-
cles or functions. Examples of front capturing methods are the Marker And
Cell (MAC), the Volume of Fluid (VoF) and the Level Set (LSM) meth-
ods. In general, front capturing methods have the benefit of a relatively
simple formulation; hence, they are easy to extend to higher dimensions.
However, these methods tend to have difficulties in maintaining a sharp in-
terface between fluids and may require complex interface shape restoration
techniques. Also, front capturing methods can typically handle interface
topological changes well but spurious interfaces may spawn in cases.

In the numerical method presented in this thesis front capturing and
front tracking techniques are combined. The method makes use of two
meshes, a background mesh for level set computations and a two-fluid mesh
for two-fluid flow computations, as illustrated in Figure 2.1. The refined
mesh is constructed from the background mesh based on the 0-level set by
means of cut-cell mesh refinement.

In this chapter the numerical method will be discussed. The numerical
applications are relegated to Chapter 3. The outline of this chapter is as
follows. In Section 2.2 the flow and level set equations are introduced. In
Section 2.3 the background and refined meshes are discussed and the mesh

10



2.1 Introduction

Two fluid problem

ψ=0

Fluid 2

Fluid 1

Flow dataGeometry
Interface

Flow velocity

Background mesh Refined mesh

Exact

Geometry
Interface

Approximate

Figure 2.1: Representation of a flow problem in the two-fluid method. The background
mesh is used for computing the interface dynamics by means of the level set method. The
refined mesh is used for flow computations. The zero level set ψ = 0 provides the basis for
the refinement of the background mesh into the refined mesh. The level set is advected
with the flow velocity.
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refinement procedure is presented. In Section 2.4 the flow and level set dis-
cretizations and the Runge-Kutta semi-implicit time integration method
for the solution of the algebraic equations resulting from the numerical dis-
cretization are discussed. In Section 2.5 the two-fluid algorithm is presented
which is followed in Section 2.6 by a final discussion and conclusions.

2.2 Equations

2.2.1 Two-fluid flow equations

Considered are flow problems involving two fluids as illustrated in Figure
2.2. The two fluids are separated in space-time by an interface S. Let
i = 1, 2 denote the fluid index. Furthermore, let x = (t, x̄) = (x0, · · · , xd)
denote the space-time coordinates, with d the spatial dimension, x̄ =
(x1, · · · , xd) the spatial coordinates and t ∈ [t0, T ] the time coordinate, with
t0 the initial time and T the final time. The space-time flow domain for fluid
i is defined as E i ⊂ R

d+1. The (space) flow domain for fluid i at time t is
defined as Ωi(t) = {x̄ ∈ R

d|(t, x̄) ∈ E i}. The space-time domain boundary
for fluid i, ∂E i is composed of the initial and final flow domains Ωi(t0) and
Ωi(T ), the interface S and the space boundaries Qi = {x ∈ ∂E i|t0 < t < T}.
The two-fluid space-time flow domain is defined as E = ∪iE

i, the two-fluid
(space) flow domain at time t as Ω(t) = ∪iΩ

i(t) and the two-fluid space-
time domain boundary as ∂E = ∪i∂E

i. Let wi denote a vector of Nw flow
variables for fluid i. The bulk fluid dynamics for fluid i are assumed to be
given as a system of conservation laws:

∂wi

∂t
+ ∇̄ · F i(wi) = 0, (2.1)

where ∇̄ = (∂/∂x1, . . . , ∂/∂xd) denotes the spatial gradient operator and
F i(wi) = (F i

1, · · · , F
i
d) the spatial flux tensor for fluid i with F i

j the j-th
flux vector and j = 1, · · · d. Reformulated in space-time (2.1) becomes:

∇ · F i(wi) = 0, with

F i(wi) = (wi, F i(wi)), (2.2)

12
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x

t

y

Ω (t)

ε2ε1

(t)2 1Ω

S

t=t0

t=T

Fluid 2Fluid 1

Figure 2.2: An example two-fluid flow problem in space-time. Here E i and Ωi(t) denote
the space-time and space flow domains for fluids i = 1, 2; and, S denotes the interface
between the two fluids in space-time.

and ∇ = (∂/∂t, ∇̄) the space-time gradient operator and F i(wi) the space-
time flux tensor. The flow variables are subject to initial conditions:

wi(0, x̄) = wi
0(x̄), (2.3)

boundary conditions:

wi(t, x̄) =Bi
B(wi,wi

b) on Qi/S (2.4)

with wi
b the prescribed boundary data at Qi, and interface conditions:

wi(t, x̄) =Bi
S(w1,w2) on S. (2.5)

Since the actual flow variables, fluxes and initial, boundary and interface
conditions are problem specific they shall be provided in Chapter 3 where
the test cases are discussed.

13
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2.2.2 Level set equation

To distinguish between the two fluids a level set function ψ(x) is used:

ψ(t, x̄) =











< 0 in Fluid 1

> 0 in Fluid 2

= 0 at the interface.

(2.6)

Initially, the level set function is defined as the minimum signed distance
to the interface:

ψ(t, x̄) = α inf
∀x̄S∈S(t)

‖x̄− x̄S‖, (2.7)

where α = −1 in Fluid 1 and α = +1 in Fluid 2, x̄S denotes a point on the
interface S(t) and ‖.‖ is the Euclidian distance. The evolution of the level
set is determined by an advection equation:

∂ψ

∂t
+ ā · ∇̄ψ = 0, (2.8)

where ā = (a1, · · · , ad) is a vector containing the level set velocity, which
will be taken equal to the flow velocity. The level set function is subject to
initial conditions:

ψ(0, x̄) =ψ0(x̄), for x̄ ∈ Ω(t0). (2.9)

At the domain boundary the level set is subject to solid wall boundary
conditions:

ā(t, x̄) · n̄ =0, for (t, x̄) ∈ Q, (2.10)

where n̄ denotes the space outward unit normal vector at the domain
boundary.

14
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2.3 Meshes

2.3.1 Two-fluid mesh

To simplify computations, the two-fluid domain is subdivided into a number
of space-time slabs on which the equations are solved consecutively. Interval
(t0, T ) is subdivided into Nt intervals In = (tn, tn+1), with t0 < t1 < · · · <
tNt = T and based on these intervals domains E i are subdivided into space-
time slabs I i

n = {x ∈ E i|t ∈ In}. For every space-time slab I i
n a tessellation

T i,n
h of non-overlapping space-time elements Ki,n

j ⊂ R
d+1 is defined:

T i,n
h =

{

Ki,n
j ⊂R

d+1|

N i
h

⋃

j=1

K̄i,n
j = Ī i

n

and Ki,n
j

⋂

Ki,n
j′ = ∅ if j 6= j′, 1 ≤ j, j′ ≤ N i,n

h

}

(2.11)

with N i,n
h the number of space-time elements in the space-time slab I i

n for

fluid i and where K̄i,n
j = Ki,n

j ∪ ∂Ki,n
j denotes the closure of the space-

time element. The tessellations T i,n
h will be referred to as the two-fluid

or refined mesh (see Figure 2.3), since they will be constructed from a
background mesh by performing local mesh refinement. The tessellations
T i,n

h define the numerical interface Si,n
h as a collection of finite element

faces. The numerical interface is assumed to be geometrically identical in
both tessellations, S1,n

h = S2,n
h . Let Γi,n = Γi,n

I ∪ Γi,n
B ∪ Γn

S denote the set

of all fluid i faces Si,n
m , with Γi,n

I the set of internal faces, Γi,n
B the set of

boundary faces, and Γn
S the set of interfaces. Every internal face connects

to exactly two elements in T i,n
h , denoted as the left element Kl and the

right element Kr. Every boundary face connects to one element in T i,n
h ,

denoted as the element Kl. Every interface connects to one element from
T 1,n

h and also to one element from T 2,n
h .

The finite element space Bk
h(T i,n

h ) associated with the tessellation T i,n
h

15
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0t

t1

t2

N  −1t

Nt
t   = T

N  −1t

x
t

t

W 2
h

W 1
h

0

Interface

I

I

Figure 2.3: Two-fluid mesh.

is defined as:

Bk
h(T i,n

h ) = {w ∈ L2(E i
h) : w|K ◦GK ∈ P k(K̂),∀K ∈ T i,n

h } (2.12)

with E i
h the discrete flow domain, L2(E i

h) the space of square integrable

functions on E i
h, and P k(K̂) the space of polynomials of degree at most k

in the reference element K̂. The mapping G
Ki,n

j
relates every element Ki,n

j

to a reference element K̂ ⊂ R
d+1:

G
Ki,n

j
: K̂ → Ki,n

j : ξ 7→ x =

N i,n
F,j

∑

k=1

xk(K
i,n
j )χk(ξ) (2.13)

withN i,n
F,j the number of vertices and xk(K

i,n
j ) the coordinates of the vertices

of space-time element Ki,n
j . The finite element shape functions χk(ξ) are

defined on the reference element K̂, with ξ = (ξ0, · · · , ξd) the coordinates
in the reference element. Given a set of basis functions φ̂m defined on the
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reference element, the basis functions φm : Ki,n
j → R are defined on the

space-time elements Ki,n
j ∈ T i,n

h by means of the mapping G
Ki,n

j
:

φm = φ̂m ◦G−1

Ki,n
j

. (2.14)

On the two-fluid mesh the approximated flow variables are defined as:

wi
h(t, x̄)|

Ki,n
j

=
∑

m

Ŵi
m(Ki,n

j )φm(t, x̄) (2.15)

with Ŵi
m the expansion coefficients of fluid i. Each element in the two-fluid

mesh contains a single fluid. Therefore, in every element one set of flow
variables is defined. Because the basis functions are defined locally in every
element the space-time flow solution is discontinuous at the element faces.

2.3.2 Background mesh

In the construction of the two-fluid mesh T n
h it was assumed that every

element contains exactly one fluid or equivalently that the interface is rep-
resented by a set of finite element faces. In order to define a mesh which
satisfies this requirement, a level set function ψh is defined on a space-time
background mesh T n

b .
For every space-time slab In a tessellation T n

b of space-time elements
Kn

b,j̃
⊂ R

d+1 is defined:

T n
b =

{

Kn
b,j̃

⊂R
d+1|

Nb
⋃

j̃=1

K̄n
b,j̃

= Īn

andKn
b,j̃

⋂

Kn
b,j̃′

= ∅ if j̃ 6= j̃′, 1 ≤ j̃, j̃′ ≤ Nb

}

(2.16)

with Nb the number of space-time elements. The tessellation T n
b will be

referred to as the background mesh. In two and three space-time dimensions
the background mesh is composed of square and cube shaped elements,
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respectively. The finite element space, mappings and basis functions are
identical to those defined for the refined mesh in Section 2.3.1 except when
dealing with the background mesh these will be denoted using a subscript
b. On the background mesh a discontinuous Galerkin approximation of the
level set is defined as:

ψh(t, x̄)|Kn
b,j̃

=
∑

m

Ψ̂m(Kn
b,j̃

)φm(t, x̄), (2.17)

with Ψ̂m the level set expansion coefficients. A discontinuous Galerkin
discretization is used because the level set is advected with the flow velocity
and will develop discontinuities in the vicinity of shock waves. In addition,
a discontinuous Galerkin approximation of the level set velocity is defined
as:

āh(t, x̄)|Kn
b,j̃

=
∑

m

Âm(Kn
b,j̃

)φm(t, x̄), (2.18)

2.3.3 Mesh refinement

After solving the level set equation the interface shape and position are
approximately known from the 0-level set. In order to define a mesh for
two-fluid flow computations, the background mesh is refined by means of
cut-cell mesh refinement. In the refined mesh the interface is represented
by a set of faces on which the level set value is approximately zero.

The discontinuous nature of the level set approximation is not desirable
for the mesh refinement, since it can result in hanging nodes. Hence the
level set is smoothed before performing the mesh refinement. Assuming
computations have reached time slab In the level set approximation ψh is
smoothed by first looping over all elements in In and storing the multiplicity
and the sum of the values of ψh in each vertex. For every vertex in In the
continuous level set value ψc

h is calculated by dividing the sum of the ψh

values by the vertex multiplicity. In every background element in In, ψh

is then reinitialized using the ψc
h values in the element vertices. To ensure

continuity of the mesh only the values of the level set in the background
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2.3 Meshes

Algorithm 1 Mesh refinement algorithm.

FOR every element Kn
b,j̃

in T n
b DO

Calculate intersection of 0-level set ψc = 0 with Kn
b,j̃

Select refinement rule
Create and store interface physical nodes xI

FOR all child elements ĵ defined by the refinement rule DO

Create Ki,n

h,ĵ
and store in T i,n

h

END DO
END DO

Generate faces for T i,n
h

FOR every element Ki,n
h,j in T i,n

h

Initialize data on Ki,n
h,j

END DO

elements belonging to the previous time slab In−1 are used at the faces
between the previous and the current time slab.

The mesh refinement algorithm is defined in Algorithm 1. The algo-
rithm consists of a global element refinement step, in which all the elements
of the background mesh are refined consecutively according to a set of re-
finement rules. The refinement rules define how a single element will be
refined given an intersection with a 0-level set. The global refinement step
is followed by a face generation step to create the connectivity between the
refined elements. The face generation is straightforward and will not be
discussed.

Given a smoothed level set, the element refinement is executed sepa-
rately for each background element. For a given background element, it is
first checked if the element contains more than one fluid by evaluating the
level set at each vertex of the element. If the level set has the same sign in
every vertex, the element can contain only one fluid and it is copied directly
to the refined mesh T n

h . Alternatively, the type of cut is determined from
the level set signs. Depending on the cut type, the element is refined, based
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Chapter 2 Two-Fluid STDGFEM. Part I: Numerical Algorithm

on a predefined element refinement rule for that type and the actual cut
coordinates. The resulting elements are stored in T n

h . The element refine-
ment rules have been designed such that for two neighboring elements the
shared face is refined identically at both sides. Hence, no hanging nodes
will occur in the refined mesh. The interface cut coordinates xI for an edge
cut by the interface are calculated as:

xI =
xAψh(xB) − xBψh(xA)

ψh(xA) − ψh(xB)
, (2.19)

where xA and xB denote the coordinates of the edge vertices. For simplicity
it is assumed that the level set is non-zero and can only be positive or
negative in the vertices.

Because the refinement type is only based on the level set signs in the
background element vertices, in cases where more than one interface inter-
sects an element an ambiguity will occur where exactly the interface lies
and the refinement rule will give rise to elements for which the fluid type is
ambiguous. However, the fluid types of these elements can easily be found
by computing the level set signs in the element midpoints.

The mesh refinement algorithm allows for freedom in choosing the ele-
ment refinement rules. However, to avoid difficulties with face integration
the refined mesh should have full connectivity. Element refinement rules
have been developed for two and three dimensions, similar to [38], which
will be discussed now.

2.3.4 2D Refinement

Considered is a 2D background mesh containing only square elements. In
order to define the 2D mesh refinement, first the symmetries of the square
are introduced, followed by a discussion of all the relevant types of cuts in
2D and the introduction of a set of base types. Next, the square permuta-
tions are applied to the base types to find for each cut type the base type
and the permutation which maps the base type to the cut type. Finally, the
actual refinement rules are defined for each of the base types. In the mesh
refinement algorithm, the refinement rule for a given cut type is obtained
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Figure 2.4: Vertex and edge numbering and nodal coordinates for the reference square.

by permuting the element refinement rule of the base type to the given cut
type.

Square symmetries

The vertices and edges of the reference square are numbered using Local
Node Indices (LNI) as shown in Figure 2.4. A square has a total of 8
symmetries usually referred to as the dihedral group D4. Of these 4 are
rotational symmetries and 4 are reflection symmetries. To describe the
permutations there are two main notations, firstly as a decomposition in a
product of disjoint cycles and secondly in relation notation. For example,
in performing a counter clockwise rotation by 90 degrees, vertex 0 will
move to vertex 1, vertex 1 to vertex 3, vertex 3 to vertex 2 and vertex 2 to
vertex 0. In a decomposition in a product of disjoint cycles this is denoted
as (0132). In relation notation it is denoted as {1, 3, 0, 2}, where the index
into the array gives the ’from’ vertex and the value gives the ’to’ vertex. The
square symmetries are defined in Table 2.1. Here, permutation 0 describes
the identity, permutations 1− 3 describe rotations and permutations 4− 7
describe reflections.

In the refinement algorithm permutations are needed not only of the
vertices but also of nodes lying on edges. For this purpose the edge mid-

21



Chapter 2 Two-Fluid STDGFEM. Part I: Numerical Algorithm

Table 2.1: Square symmetries.
index disjoint cycles relation notation Comment
0 (0)(1)(2)(3) {0, 1, 2, 3} Identity
1 (0132) {1, 3, 0, 2} 90◦ right rotation
2 (03)(12) {3, 2, 1, 0} 180◦ right rotation
3 (0231) {2, 0, 3, 1} 270◦ right rotation
4 (02)(13) {2, 3, 0, 1} Reflection x-axis
5 (01)(23) {1, 0, 3, 2} Reflection y-axis
6 (03)(1)(2) {3, 1, 2, 0} Reflection diagonal
7 (12)(0)(3) {0, 2, 1, 3} Reflection diagonal

Algorithm 2 Algorithm to determine edge permutation.

Given an edge with index i on the reference square
Get the vertex indices of the two edge vertices
Determine the permutation of the vertex indices
Find the index of the permuted edge from the permuted vertex indices

points are numbered from 4 to 7, ordered in the same way as the edges.
Given the index of the edge, the index of the edge midpoint is found by
adding 4, the number of vertices of the square. Hence, the permutation
of an edge midpoint is found directly from the permutation of the edge.
The permutation of an edge is found by looking at the permutations of
its vertices. The algorithm is given in Algorithm 2. As an example, when
applying permutation 1 to the edge 0, first the edge vertices are retrieved,
in this case 0 and 1. Permuting these vertices gives permuted edge vertices
1 and 3; hence, the permuted edge is 2.

2D base types

The classification of the 2D cuts is based on the values of the level set in
the four vertices of the square. Each type is defined as a series of four signs
corresponding to the level set signs in the four vertices. For example one
type is defined by − − ++. Switching to a binary representation with −
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Table 2.2: Binary codes of the 2D base types. Each code represents a combination of
level set signs for each of the 4 background element vertices, where a negative (positive)
level set sign is represented by a 0 (1).

index binary
code

number

0 0111 7
1 0011 3
2 0110 6

and + corresponding to 0 and 1, respectively, we can assign the number
0011 = 3. Since a square has 4 vertices, there are 24 = 16 possibilities.
In two-dimensional space-time three refinement types have been defined as
given in Table 2.2. In Figure 2.5 the signs of the level set in each vertex
for every type are shown. In Figure 2.6 the corresponding cuts are shown,
where for simplicity the interface cuts at the edges midpoints only. For
Type 2 two types of interface cuts are possible. The refinement rule will be
able to handle both possibilities.

2D base type permutations

The symmetries of the square are applied to the base cut types to find for
each cut type the base type and the permutation from the base type to the
cut type. For simplification, the sign of the level set in vertex 0 is assumed
to be − (0), meaning that the cut types need to be explicitly defined only
for the indices 0 − 7. To calculate the cut type for an index in the range
8 − 15 the index value only has to be subtracted from the number 15. In
Table 2.3 the base type is given for each cut type, based on the index of
the cut type. The algorithm used to fill the table is given in Algorithm 3.
Due to symmetries in the base types, different permutations can give equal
results; hence, the permutation index is not necessarily uniquely defined.
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Figure 2.5: The vertex level set signs for the 2D base types.

Table 2.3: 2D base types corresponding to cut type indices 0 − 15.
index base

type
index base

type

0 No cut 8 Type 0
1 Type 0 9 Type 2
2 Type 0 10 Type 1
3 Type 1 11 Type 0
4 Type 0 12 Type 1
5 Type 1 13 Type 0
6 Type 2 14 Type 0
7 Type 0 15 No cut
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Figure 2.6: The interface cuts for the 2D base types. For type 2 two interface cuts are
possible, which are both supported by the type 2 element refinement rule.

Algorithm 3 Algorithm for filling the permutation lookup table.

Initialize permVec[8] of [type index, perm index] with [-1,-1]
FOR type index i from 0 to 3 DO

FOR permutation index j from 0 to 7 DO
Determine permutation j of cut type i
Calculate index k of the permuted type
Store [i,j] in permVec[k]

END DO
END DO
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Figure 2.7: The element refinements for the 2D base types.

2D base type refinement

The element refinements for the 2D base types are shown in Figure 2.7 and
the element refinements are given in Table 2.4. The algorithm to determine
the element refinements given a level set configuration on a reference square
is defined in Algorithm 4.

2.3.5 3D Refinement

Considered is a 3D background mesh containing only cubical elements. In
order to define the 3D refinement, first the symmetries of the cube are
introduced, followed by a discussion of all the relevant types of cuts in 3D
and the introduction of the 3D base types. Next, the cube permutations
are applied to the base types to find for each cut type the base type and
the permutation which maps the base type to the cut type. Finally, the
actual refinement rules are defined for each of the base types.
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Table 2.4: 2D base type element refinements.
Type
index

Child
index

Child LNI Fluid
type

0 0 {0, 4, 5} 0
1 {4, 1, 3} 1
2 {5, 3, 2} 1
3 {5, 4, 3} 1

1 0 {0, 1, 5, 6} 0
1 {5, 6, 2, 3} 1

2 0 {0, 4, 5} 0
1 {4, 1, 6} 1
2 {6, 3, 7} 1
3 {7, 2, 5} 0
4 {5, 4, 7, 6} 0 or 1

Algorithm 4 Algorithm for determining element refinements.

Calculate index i for level set configuration
get base type from permVec[i]
IF base type does not equal −1 (unhandled type)

FOR all child elements j DO
FOR all local node indices k of child element j DO

IF (k < 4) (square vertex)
Get permutation index l from permVec[i]
Determine permuted local node index k′ of node k

ELSE IF (4 < k < 8) (edge midpoint)
Calculate edge index e = k − 4
Find permuted edge index e′

Calculate permuted local node index k′ = e′ + 4
END IF
Store k′ as local node index of permuted child element j

END DO
END DO

END IF
Return permuted child elements local node indices

27



Chapter 2 Two-Fluid STDGFEM. Part I: Numerical Algorithm

X

Y

Z

X

Y

Z

7

4
7

32

10

6

5
6

0

54

3

8

2

10

1

11

(+1,−1,+1)(−1,−1,+1)

(+1,+1,−1)(−1,+1,−1)

(+1,−1,−1)(−1,−1,−1)

(+1,+1,+1)(−1,+1,+1)
9

Figure 2.8: Vertex and edge numbering and nodal coordinates for the reference cube.

Cube symmetries

The vertices and edges of the reference cube are numbered as shown in
Figure 2.8. A cube has a total of 48 symmetries which are usually referred
to as octahedral symmetries, since the symmetries of the cube are the same
as those of its dual, the octahedron. Of these 24 are rotational symmetries
which are orientation preserving. The remaining 24 are combinations of
rotations and reflections. The cube symmetries are defined in Table 2.5.
Here, permutation 0 describes the identity permutation, permutations 1−6
describe a 90 degree rotation around the axis from the face center to the
opposite face center, permutations 7−9 describe 180 degree rotation around
the axis from the face center to the opposite face center, permutations
10 − 15 describe 180 degree rotation around the axis from the edge center
to the opposite edge center and permutations 16 − 23 describe 120 degree
rotation around a body diagonal. Permutations 24−47 are defined by taking
permutations 0 − 23 and applying inversion (07)(16)(25)(34). Similarly to
what was done in the 2D refinement using Algorithm 2, the edge midpoints
are numbered from 8 to 19 and the index of the edge midpoint is found by
adding 8, the number of vertices of the cube, to the index of the edge.
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Table 2.5: Octahedral symmetries.
index disjoint cycles relation notation Comment
0 (0)(1)(2)(3)(4)(5)(6)(7) {0, 1, 2, 3, 4, 5, 6, 7} Identity
1 (0132)(4576) {1, 3, 0, 2, 5, 7, 4, 6} 90◦ rotation z-axis
2 (0231)(4675) {2, 0, 3, 1, 6, 4, 7, 5} 90◦ rotation z-axis
3 (0462)(1573) {4, 5, 0, 1, 6, 7, 2, 3} 90◦ rotation x-axis
4 (0264)(1375) {2, 3, 6, 7, 0, 1, 4, 5} 90◦ rotation x-axis
5 (0154)(2376) {1, 5, 3, 7, 0, 4, 2, 6} 90◦ rotation y-axis
6 (0451)(2673) {4, 0, 6, 2, 5, 1, 7, 3} 90◦ rotation y-axis
7 (03)(12)(47)(56) {3, 2, 1, 0, 7, 6, 5, 4} 180◦ rotation z-axis
8 (06)(24)(17)(35) {6, 7, 4, 5, 2, 3, 0, 1} 180◦ rotation x-axis
9 (05)(14)(27)(36) {5, 4, 7, 6, 1, 0, 3, 2} 180◦ rotation y-axis

10 (01)(25)(34)(67) {1, 0, 5, 4, 3, 2, 7, 6} 180◦ rotation {0, 1}, {6, 7} midpoints
11 (02)(16)(34)(57) {2, 6, 0, 4, 3, 7, 1, 5} 180◦ rotation {0, 2}, {5, 7} midpoints
12 (07)(13)(25)(46) {7, 3, 5, 1, 6, 2, 4, 0} 180◦ rotation {1, 3}, {4, 6} midpoints
13 (07)(16)(23)(45) {7, 6, 3, 2, 5, 4, 1, 0} 180◦ rotation {2, 3}, {4, 5} midpoints
14 (04)(16)(25)(37) {4, 6, 5, 7, 0, 2, 1, 3} 180◦ rotation {0, 4}, {3, 7} midpoints
15 (07)(15)(26)(34) {7, 5, 6, 4, 3, 1, 2, 0} 180◦ rotation {1, 5}, {2, 6} midpoints
16 (0)(7)(142)(356) {0, 4, 1, 5, 2, 6, 3, 7} 120◦ rotation body diagonal {0, 7}
17 (0)(7)(124)(365) {0, 2, 4, 6, 1, 3, 5, 7} 120◦ rotation body diagonal {0, 7}
18 (1)(6)(053)(247) {5, 1, 4, 0, 7, 3, 6, 2} 120◦ rotation body diagonal {1, 6}
19 (1)(6)(035)(274) {3, 1, 7, 5, 2, 0, 6, 4} 120◦ rotation body diagonal {1, 6}
20 (2)(5)(063)(147) {6, 4, 2, 0, 7, 5, 3, 1} 120◦ rotation body diagonal {2, 5}
21 (2)(5)(036)(174) {3, 7, 2, 6, 1, 5, 0, 4} 120◦ rotation body diagonal {2, 5}
22 (3)(4)(056)(172) {5, 7, 1, 3, 4, 6, 0, 2} 120◦ rotation body diagonal {3, 4}
23 (3)(4)(065)(127) {6, 2, 7, 3, 4, 0, 5, 1} 120◦ rotation body diagonal {3, 4}
24 (07)(16)(25)(34) {7, 6, 5, 4, 3, 2, 1, 0} Inversion ((07)(16)(25)(34))
25 (0635)(1427) {6, 4, 7, 5, 2, 0, 3, 1} 90◦ rotation + Inversion
26 (0536)(1724) {5, 7, 4, 6, 1, 3, 0, 2}
27 (0365)(1274) {3, 2, 7, 6, 1, 0, 5, 4}
28 (0563)(1472) {5, 4, 1, 0, 7, 6, 3, 2}
29 (0653)(1247) {6, 2, 4, 0, 7, 3, 5, 1}
30 (0356)(1742) {3, 7, 1, 5, 2, 6, 0, 4}
31 (04)(15)(26)(37) {4, 5, 6, 7, 0, 1, 2, 3} 180◦ rotation + Inversion
32 (01)(23)(45)(67) {1, 0, 3, 2, 5, 4, 7, 6}
33 (02)(13)(46)(57) {2, 3, 0, 1, 6, 7, 4, 5}
34 (06)(17)(2)(3)(4)(5) {6, 7, 2, 3, 4, 5, 0, 1} 180◦ rotation edge + Inversion
35 (05)(1)(27)(3)(4)(6) {5, 1, 7, 3, 4, 0, 6, 2}
36 (0)(14)(2)(36)(5)(7) {0, 4, 2, 6, 1, 5, 3, 7}
37 (0)(1)(24)(35)(6)(7) {0, 1, 4, 5, 2, 3, 6, 7}
38 (03)(1)(2)(47)(5)(6) {3, 1, 2, 0, 7, 5, 6, 4}
39 (0)(12)(3)(4)(56)(7) {0, 2, 1, 3, 4, 6, 5, 7}
40 (07)(132645) {7, 3, 6, 2, 5, 1, 4, 0} 120◦ rotation body diagonal
41 (07)(154623) {7, 5, 3, 1, 6, 4, 2, 0} + Inversion
42 (023754)(16) {2, 6, 3, 7, 0, 4, 1, 5}
43 (045732)(16) {4, 6, 0, 2, 5, 7, 1, 3}
44 (013764)(25) {1, 3, 5, 7, 0, 2, 4, 6}
45 (046731)(25) {4, 0, 5, 1, 6, 2, 7, 3}
46 (026751)(34) {2, 0, 6, 4, 3, 1, 7, 5}
47 (015762)(34) {1, 5, 0, 4, 3, 7, 2, 6}
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Table 2.6: Binary codes of the 3D base types. Each code represents a combination of
level set signs for each of the 8 background element vertices, where a negative (positive)
level set sign is represented by a 0 (1).

index binary
code

number index binary
code

number

0 00100000 32 7 00100100 36
1 00100010 34 8 01100100 100
2 10100010 162 9 10100101 165
3 10101010 170 10 00101101 45
4 10110010 178 11 00101001 41
5 10100011 163 12 01101001 105
6 00101000 40

3D base types

Like in the 2D refinement, the 3D types are classified based on the values
of the level set in the vertices. Thirteen configurations were identified, and
these are given in Table 2.6. In Figure 2.9 the signs of the level set in each
vertex for every base type are shown. In Figure 2.10 the corresponding cuts
are shown, where for simplicity the interface cuts at the edges midpoints
only. It should be noted that level set configurations 6 − 12 allow for
multiple interface cuts. This ambiguity is solved by making sure that for
each level set configuration the element refinement rule is such that also
multiple element cuts can be handled.

3D base type permutations

The cube permutations are applied to the thirteen types of cuts to find the
cut types permutations. In Figure 2.11 an example is shown of a permuta-
tion of the type 0 cut. To calculate the cut type for an index in the range
128 − 255 the index value only has to be subtracted from the number 255.
In the Table 2.7 the cut types for indices 0− 127 are given. The number of
permuted cases for every type are given in Table 2.8. In the implementation
a lookup table is used of size 256 which stores the type index (0−12) of the
cut and a permutation index (0 − 47) from that base type. The algorithm
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Figure 2.9: The vertex level set signs for the 3D base types.
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Figure 2.10: The interface cuts for the 3D base types. For types 6 − 12 the level
set configuration allows for alternative cuts not shown here, which are supported by the
element refinement rule for that type.
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Table 2.7: 3D base types corresponding to cut type indices 0 − 127.
index base

type
index base

type
index base

type
0 No cut 43 Type 4 86 Type 10
1 Type 0 44 Type 8 87 Type 2
2 Type 0 45 Type 10 88 Type 8
3 Type 1 46 Type 5 89 Type 10
4 Type 0 47 Type 2 90 Type 9
5 Type 1 48 Type 1 91 Type 8
6 Type 6 49 Type 2 92 Type 5
7 Type 2 50 Type 2 93 Type 2
8 Type 0 51 Type 3 94 Type 8
9 Type 6 52 Type 8 95 Type 1
10 Type 1 53 Type 5 96 Type 6
11 Type 2 54 Type 10 97 Type 11
12 Type 1 55 Type 2 98 Type 8
13 Type 2 56 Type 8 99 Type 10
14 Type 2 57 Type 10 100 Type 8
15 Type 3 58 Type 5 101 Type 10
16 Type 0 59 Type 2 102 Type 9
17 Type 1 60 Type 9 103 Type 8
18 Type 6 61 Type 8 104 Type 11
19 Type 2 62 Type 8 105 Type 12
20 Type 6 63 Type 1 106 Type 10
21 Type 2 64 Type 0 107 Type 11
22 Type 11 65 Type 6 108 Type 10
23 Type 4 66 Type 7 109 Type 11
24 Type 7 67 Type 8 110 Type 8
25 Type 8 68 Type 1 111 Type 6
26 Type 8 69 Type 2 112 Type 2
27 Type 5 70 Type 8 113 Type 4
28 Type 8 71 Type 5 114 Type 5
29 Type 5 72 Type 6 115 Type 2
30 Type 10 73 Type 11 116 Type 5
31 Type 2 74 Type 8 117 Type 2
32 Type 0 75 Type 10 118 Type 8
33 Type 6 76 Type 2 119 Type 1
34 Type 1 77 Type 4 120 Type 10
35 Type 2 78 Type 5 121 Type 11
36 Type 7 79 Type 2 122 Type 8
37 Type 8 80 Type 1 123 Type 6
38 Type 8 81 Type 2 124 Type 8
39 Type 5 82 Type 8 125 Type 6
40 Type 6 83 Type 5 126 Type 7
41 Type 11 84 Type 2 127 Type 0
42 Type 2 85 Type 3
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Figure 2.11: An example of a 3D permutation.

Table 2.8: Number of permutations for the 3D base types.
type number of cases type number of cases

0 8 7 4
1 12 8 24
2 24 9 3
3 3 10 12
4 4 11 8
5 12 12 1
6 12

used to fill the table is Algorithm 3, adapted to 3D.

3D base type refinement

In order to define the element refinement of the 13 base types, first a sur-
face refinement is defined, which is based on the 2D refinements illustrated
in Figure 2.7. The surface refinements are shown in Figure 2.12. Element
refinements have been manually devised based on the surface refinements.
The element refinements for the 13 base types are given in Tables 2.9 and
2.10. In some of the refinements an additional node is used, which is lo-
cated at the interface center and has LNI 20. To determine the element
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Figure 2.12: The surface refinements for the 3D base types.
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Table 2.9: Element refinements for 3D base types.
Type
index

Child
index

Child LNI Fluid
type

Type
index

Child
index

Child LNI Fluid
type

0 0 {11, 1, 3, 5, 7} 0 10 {7, 15, 18, 20} 1
1 {9, 0, 1, 4, 5} 0 11 {3, 1, 15, 20} 0
2 {1, 5, 9, 11} 0 12 {5, 18, 1, 20} 0
3 {2, 9, 11, 14} 1 13 {18, 15, 1, 20} 0
4 {14, 4, 5, 6, 7} 0 14 {2, 11, 6, 20} 1
5 {4, 5, 9, 14} 0 15 {3, 15, 11, 20} 0
6 {5, 7, 11, 14} 0 16 {7, 6, 15, 20} 1
7 {5, 9, 11, 14} 0 17 {11, 15, 6, 20} 1

1 0 {0, 1, 9, 4, 5, 17} 0 18 {20, 7, 18, 6, 17} 1
1 {1, 3, 11, 5, 7, 19} 0 19 {20, 18, 5, 17, 4} 0
2 {1, 11, 9, 5, 19, 17} 0 6 0 {1, 11, 9, 20} 0
3 {2, 9, 11, 6, 17, 19} 1 1 {1, 3, 11, 20} 0

2 0 {20, 8, 1, 11, 3} 0 2 {20, 9, 14, 12, 17} 0 or 1
1 {20, 0, 8, 2, 11} 1 3 {5, 1, 16, 20} 0
2 {4, 12, 17, 20} 0 4 {12, 16, 1, 20} 0
3 {12, 0, 2, 20} 1 5 {20, 5, 7, 1, 3} 0
4 {6, 17, 2, 20} 1 6 {3, 7, 11, 20} 0
5 {12, 2, 17, 20} 1 7 {14, 11, 7, 20} 0
6 {12, 8, 0, 20} 1 8 {5, 16, 7, 20} 0
7 {8, 5, 1, 20} 0 9 {16, 17, 7, 20} 0
8 {12, 5, 8, 20} 0 10 {9, 14, 11, 2} 1
9 {4, 5, 12, 20} 0 11 {9, 11, 14, 20} 0 or 1
10 {20, 1, 5, 3, 7} 0 12 {12, 16, 17, 4} 1
11 {20, 2, 11, 6, 19} 1 13 {12, 17, 16, 20} 0 or 1
12 {20, 11, 3, 19, 7} 0 14 {7, 14, 17, 6} 0
13 {17, 5, 4, 20} 0 15 {7, 17, 14, 20} 0
14 {19, 7, 5, 20} 0 16 {1, 12, 9, 0} 0
15 {6, 19, 17, 20} 1 17 {1, 9, 12, 20} 0
16 {17, 19, 5, 20} 0 7 0 {0, 1, 9, 20} 0

3 0 {0, 8, 2, 11, 4, 16, 6, 19} 1 1 {1, 11, 9, 20} 0
1 {8, 1, 11, 3, 16, 5, 19, 7} 0 2 {1, 3, 11, 20} 0

4 0 {0, 8, 2, 12} 1 3 {0, 9, 4, 20} 0
1 {1, 8, 5, 10} 0 4 {9, 14, 4, 20} 0
2 {2, 10, 3, 15} 1 5 {14, 6, 4, 20} 0
3 {2, 6, 17, 19} 1 6 {0, 1, 13, 20} 0
4 {2, 19, 15, 8, 10} 1 7 {13, 16, 0, 20} 0
5 {2, 17, 19, 12, 8} 1 8 {4, 0, 16, 20} 0
6 {4, 5, 12, 17} 0 9 {1, 13, 3, 20} 0
7 {5, 7, 15, 19} 0 10 {18, 3, 13, 20} 0
8 {5, 8, 10, 19, 15} 0 11 {7, 3, 18, 20} 0
9 {5, 12, 8, 17, 19} 0 12 {3, 11, 7, 20} 0

5 0 {20, 0, 8, 2, 11} 1 13 {6, 7, 14, 20} 0
1 {20, 8, 1, 11} 0 14 {14, 7, 11, 20} 0
2 {0, 2, 12, 20} 1 15 {4, 6, 16, 20} 0
3 {6, 17, 2, 20} 1 16 {16, 6, 18, 20} 0
4 {4, 12, 17, 20} 0 17 {18, 6, 7, 20} 0
5 {12, 2, 17, 20} 1 18 {9, 11, 14, 20} 0
6 {0, 12, 8, 20} 1 19 {9, 14, 11, 2} 0 or 1
7 {1, 8, 5, 20} 0 20 {13, 16, 18, 20} 1
8 {4, 5, 12, 20} 0 21 {13, 18, 16, 5} 0 or 1
9 {8, 12, 5, 20} 0
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Table 2.10: Element refinements for 3D base types (continued).

Type
index

Child
index

Child LNI Fluid
type

Type
index

Child
index

Child LNI Fluid
type

8 0 {1, 10, 8, 5, 18, 16} 1 6 {0, 12, 1, 20} 0
1 {14, 16, 18, 8, 10} 0 or 1 7 {12, 16, 1, 20} 0
2 {16, 18, 14, 6} 0 8 {16, 5, 1, 20} 0
3 {14, 8, 10, 9, 11} 0 or 1 9 {5, 18, 1, 20} 0
4 {4, 16, 14, 6} 0 10 {18, 15, 1, 20} 0
5 {4, 14, 16, 9} 0 11 {15, 3, 1, 20} 0
6 {14, 8, 16, 9} 0 or 1 12 {3, 15, 11, 20} 0
7 {9, 4, 16, 0, 8} 0 13 {6, 14, 19, 20} 0
8 {18, 7, 14, 6} 0 14 {20, 11, 15, 14, 19} 0 or 1
9 {18, 14, 7, 11} 0 15 {5, 16, 18, 20} 0
10 {14, 10, 11, 18} 0 or 1 16 {6, 19, 17, 20} 0
11 {11, 18, 7, 10, 3} 0 17 {20, 17, 19, 16, 18} 0 or 1
12 {2, 9, 11, 14} 1 18 {9, 11, 14, 20} 0 or 1

9 0 {2, 11, 14, 0, 8, 12} 1 19 {12, 17, 16, 20} 0 or 1
1 {3, 15, 11, 1, 13, 8} 0 20 {18, 19, 15, 20} 0 or 1
2 {7, 19, 15, 5, 16, 13} 1 21 {9, 14, 11, 2} 1
3 {6, 14, 19, 4, 12, 16} 0 22 {12, 16, 17, 4} 1
4 {11, 15, 14, 19, 8, 13, 12, 16} 0 or 1 23 {18, 15, 19, 7} 1

10 0 {0, 1, 9, 20} 0 12 0 {0, 8, 9, 20} 0
1 {9, 1, 11, 20} 0 1 {3, 11, 10, 20} 0
2 {3, 11, 1, 20} 0 2 {20, 8, 10, 9, 11} 0 or 1
3 {0, 9, 12, 20} 0 3 {0, 9, 12, 20} 0
4 {6, 17, 14, 20} 0 4 {6, 17, 14, 20} 0
5 {20, 12, 9, 17, 14} 0 or 1 5 {20, 12, 9, 17, 14} 0 or 1
6 {20, 12, 13, 0} 0 6 {0, 12, 8, 20} 0
7 {20, 13, 15, 1, 3} 0 7 {5, 13, 16, 20} 0
8 {3, 15, 11, 20} 0 8 {20, 16, 13, 12, 8} 0 or 1
9 {6, 14, 19, 20} 0 9 {3, 10, 15, 20} 0
10 {20, 11, 15, 14, 19} 0 or 1 10 {5, 18, 13, 20} 0
11 {6, 17, 19, 20} 0 11 {20, 18, 15, 13, 10} 0 or 1
12 {9, 11, 14, 20} 0 or 1 12 {3, 15, 11, 20} 0
13 {9, 14, 11, 2} 1 13 {6, 14, 19, 20} 0
14 {12, 17, 13, 20} 0 or 1 14 {20, 11, 15, 14, 19} 0 or 1
15 {17, 19, 13, 20} 0 or 1 15 {6, 19, 17, 20} 0
16 {19, 15, 13, 20} 0 or 1 16 {5, 16, 18, 20} 0
17 {19, 17, 13, 5} 1 17 {20, 17, 19, 16, 18} 0 or 1
18 {17, 4, 5, 12, 13} 1 18 {9, 11, 14, 20} 0 or 1
19 {19, 5, 7, 13, 15} 1 19 {12, 17, 16, 20} 0 or 1

11 0 {0, 1, 9, 20} 0 20 {8, 13, 10, 20} 0 or 1
1 {9, 1, 11, 20} 0 21 {18, 19, 15, 20} 0 or 1
2 {3, 11, 1, 20} 0 22 {9, 14, 11, 2} 1
3 {0, 9, 12, 20} 0 23 {12, 16, 17, 4} 1
4 {6, 17, 14, 20} 0 24 {8, 10, 13, 1} 1
5 {20, 12, 9, 17, 14} 0 or 1 25 {18, 15, 19, 7} 1
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refinements given a level set configuration on a reference cube Algorithm 4
is used, adapted to 3D.

2.3.6 Merging

The occurrence of small elements in the refined mesh tends to cause nu-
merical stability and performance problems. To solve these problems an
element merging procedure was developed.

Let Ki,n
k , k = 0, · · · , Nĵ denote a collection of elements which need be

merged, determined by means of a merging strategy to be discussed later.
The merged element Ki,n

m,ĵ
is defined as:

Ki,n

m,ĵ
=

N
ĵ

⋃

k=0

Ki,n
k . (2.20)

For each merged element Ki,n

m,ĵ
the minimum and maximum bounding points

xmin
ĵ

and xmax
ĵ

are defined componentwise as:

xmin
ĵ,l

= min
∀x∈Ki,n

m,ĵ

xl, l = 0, . . . , d

xmax
ĵ,l

= max
∀x∈Ki,n

m,ĵ

xl, l = 0, . . . , d, (2.21)

with d the space dimension. Let xmin
j̃

and xmax
j̃

denote the minimum and

maximum bounding points of background element Kn
b,j̃

. It is assumed that

all background mesh elements are of equal size and shape; hence, xmax
j̃

−

xmin
j̃

= hb,j̃ = hb = constant. For each merged element the minimum and

maximum lengths relative to the background element are defined as:

ǫmin
ĵ

= min
l=0,··· ,d

xmax
ĵ,l

− xmin
ĵ,l

hb,l

ǫmax
ĵ

= min
l=0,··· ,d

xmax
ĵ,l

− xmin
ĵ,l

hb,l
. (2.22)
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Figure 2.13: Illustration of the first step in the merging strategy. The dotted lines
represent the background element and the solid lines represent the collection of child
elements of one of the fluid types. The collection on the left has an ǫmin > ǫMIN and
hence is considered a valid merged element in itself. The collections in the middle and
on the right are have a small ǫmin and require merging with a neighboring element.

In addition two predefined parameters, ǫMIN = 0.9 and ǫMAX = 1.9, are
introduced. The merging strategy is defined for each fluid i individually as
follows:

• Step 1: For each background element Kn
b,j̃

retrieve the collection of

all child elements that contain fluid i. For this collection of elements
compute ǫmin and ǫmax and store these values on the background
element. If the background element does not contain fluid i elements
it is unavailable for merging and ǫmin = ǫmax = 0.0. If ǫmin < ǫMIN

the collection defines a small or thin merged element and requires
merging involving one or more neighboring background elements. If
ǫmin > ǫMIN the collection itself defines a valid merged element. Step
1 is illustrated in Figure 2.13.

• Step 2: Using a loop over the faces in the background mesh, it is
determined for each background element Kn

b,j̃
which neighboring ele-

ments Kn
b,k, k = 0, . . . , Nj̃ are usable for merging, which is the case if

the neighboring element contains a collection of fluid i elements with
ǫmin > ǫMIN . Step 2 is illustrated in Figure 2.14.
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minε     =1.0 minε     =0.0

minε     < εMIN

minε     < εMIN

minε     > εMIN

1 20

4 5

876

3

Fluid 0
Fluid 1

Figure 2.14: Illustration of the second step in the merging strategy for fluid type 0 and
background element 4. The background elements are shown in dotted lines and the 0-
level set is shown as a dashed line. Background element 4 has an ǫmin < ǫMIN and hence
requires merging with one or more of the neighboring elements 1, 3, 5 and 7. Elements
1 and 3 both contain enough fluid 0 (ǫmin > ǫMIN ) and hence are valid candidates for
merging, while element 5 and element 7 do not contain enough fluid 0 (ǫmin < ǫMIN )
and hence are invalid candidates for merging.
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• Step 3: The merged elements are determined in three steps. Each step
corresponds to a different type of merging, and these are illustrated
in Figure 2.15. After a background element has been used in merging
it is marked as UNAVAILABLE.

– Type 1: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN and if it has at least two available neigh-
boring elements for which ǫmin < ǫMIN . If so, merge all refined
elements Ki,n

j with the correct fluid type i contained in these
background elements.

– Type 2: For each available individual background element Kn
b,j̃

check if ǫmin < ǫMIN . If so loop over all available neighboring
elements Kn

b,k, k = 0, · · · , Nj̃ with Nj̃ the number of available
neighboring elements. For each combination of the background
element Kn

b,j̃
and a neighboring element Kn

b,k determine ǫmin
k .

Find the k̃ for the combination which has the largest size, ǫmin
k̃

>

ǫmin
k , k = 0, · · · , Nj̃ . Merge all refined elements Ki,n

j with the
correct fluid type i contained in the background elements Kn

b,j̃

and Kn
b,k̃

.

– Type 3: For each available individual background element Kn
b,j̃

check if ǫmin > ǫMIN . If so check if it contains more than one
element Ki,n

j with the correct fluid type i and if so merge these
elements.

The merged elements tend to have complex shapes which makes it dif-
ficult to find suitable reference elements and basis functions. To alleviate
this problem a bounding box element is introduced ([31]), which is simple
shaped and contains the merged element. This merging procedure is illus-
trated for two dimensions in Figure 2.16 and an example of a mesh with
merged elements in two dimensions is shown in Figure 2.17.

Let Ki,n

M,ĵ
denote the bounding box of the merging element Ki,n

m,ĵ
. The

finite element space, mappings and basis functions used for the bounding
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Type 1 Type 2 Type 3

Figure 2.15: The three types of merged elements. The solid lines represent the refined
elements that will be combined into a single merged element. The dotted lines repre-
sent the background mesh and the dashed lines represent the interface at positions not
occupied by the merged element.

Bounding box elementMerged elementCollection of elements

Figure 2.16: A collection of elements, their merged element and its bounding box
element, in physical space.
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Figure 2.17: Refined mesh showing the merged elements as colored collections of child
elements.

box elements are identical to those defined for the refined mesh. On the
bounding box element the approximated flow variables are defined as:

wi
h(t, x̄)|

Ki,n

M,ĵ

=
∑

m

Ŵi
m(Ki,n

M,ĵ
)φm(t, x̄) (2.23)

with Ŵi
m the flow coefficients of fluid i. Each merged element contains

exactly one fluid. For all elements Ki,n
k ⊂ Ki,n

m,ĵ
the flow evaluation is

redefined as an evaluation in the bounding box element:

wi
h(x)|

Ki,n
k

= wi
h(x)|

Ki,n

M,ĵ

. (2.24)

Integration of a function f(wi
h) over a merged element Ki,n

m,ĵ
is performed by
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integrating over all the individual elements and summing the contributions:

∫

Ki,n

m,ĵ

f(wi
h)dK =

N
ĵ

∑

k=0

∫

Ki,n
k

f(wi
h)dK. (2.25)

2.4 Space-time discontinuous Galerkin discretiza-

tion

2.4.1 Flow discretization

The discontinuous Galerkin finite element approximation for two-fluid flows
on the refined mesh T i,n

h is found by multiplying (2.2) with an arbitrary

test function v ∈ Bk
h(T i,n

h ) and integrating over all elements in the domains
E1 and E2:

∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

v∇ · F i(wi) dK = 0. (2.26)

Applying Gauss’ theorem results in:

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇v · F i(wi) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

F i,l(wi,l) · nl
K vl dS = 0, (2.27)

where F i,K and wi,K are the limiting trace values at the face S of element
Ki,K , K = l, r.
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Let the trace vK
h of a function vh on a face S with respect to the

element KK ,K = l, r be defined as vK
h = limǫ↓0 vh(x − ǫnK

K ), where
nK
K = (n0, . . . , nd) is the space-time outward unit normal vector at the

face S with respect to element KK . Left and right normal vectors of a
face are related as nl

K = −nr
K. The element local trace v±h of a func-

tion vh on a face S is defined as v±h = limǫ↓0 vh(x ± ǫnK). The average
{{F}} of a scalar or vector function F on the face Sm ∈ ΓI is defined as
{{F}} := 1

2 (F l + F r), where l and r denote the traces at elements Kl and
Kr, respectively. The jump JF K of a scalar function F on the face Sm ∈ ΓI

is defined as JF K := F lnl + F rnr and the jump JGK of a vector function
G on the face Sm ∈ ΓI is defined as JGK := Gl · nl + Gr · nr. The jump
operator satisfies on ΓI the product rule JFGK = {{F}}JGK + JF K{{G}}.

By using a conservative flux, F l(wl) · nl
K = −Fr(wr) · nr

K; hence,
JF(w)K = 0, the integration over the internal faces is rewritten as:

∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

F i,l(wi,l) · nl
K vl + F i,r(wi,r) · nr

K vr dS

=
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

{{F i(wi)}} · JvK dS. (2.28)

So far the formulation has been strictly local, in the sense that neighboring
elements and also the initial, boundary and interface conditions are not in-
corporated. In order to do this, numerical fluxes are introduced. At internal
faces the flux is replaced by a numerical flux Hi

I(w
l,wr,nK), which is con-

sistent: H(w,w,nK) = F(w)·nl
K, and conservative. Likewise at the bound-

ary faces the flux is replaced by a numerical flux Hi
B(wl,wr,nK), which is

also consistent. At the interface the flux is replaced by a numerical interface
fluxHi

S(wi,l,wi
s,nK), with wi

s the ghost state at the interface for fluid i. Us-
ing the fact that for a conservative flux {{H(wl,wr,nK)}} = H(wl,wr,nK)
and replacing the trial and test functions by their approximations in the
finite element space Bk

h(T i,n
h ), the weak formulation is defined as:
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Find wi
h ∈ Bk

h(T i,n
h ) such that for all vh ∈ Bk

h(T i,n
h ):

−
∑

Ki,n
j ∈T i,n

h

∫

Ki,n
j

∇vh · F i(wi
h) dK

+
∑

Si,n
m ∈Γi,n

I

∫

Si,n
m

Hi
I(w

i,l
h ,w

i,r
h ,nK) (vl

h − vr
h) dS

+
∑

Si,n
m ∈Γi,n

B

∫

Si,n
m

Hi
B(wi,l

h ,w
i
b,nK)vl

h dS

+
∑

Si,n
m ∈Γi,n

S

∫

Si,n
m

Hi
S(wi

h,w
i
s,nK)vl

h dS = 0,

i = 1, 2, n = 0, · · · ,Nt − 1. (2.29)

Introduction of the polynomial expansion (2.15) in (2.29) and using the
basis functions φl for the test functions gives the following discretization in
each space-time element Ki,n

j :

Li,n
kl (Ŵn,Ŵn−1) = 0, i = 1, 2, n = 0, · · · ,Nt − 1,

k = 0, · · · ,Nw − 1, l = 0, . . . ,N i,n
B,j − 1 (2.30)

with Nt the number of time slabs, Nw the number of flow variables, N i,n
B,j
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2.4 Space-time discontinuous Galerkin discretization

the number of basis functions. The nonlinear operator Li,n
kl is defined as:

Li,n
kl = −

∫

Ki,n
j

(∇φl)j · F
i
kj(w

i
h)dK

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
I

∫

Si,n
m

HI,k(w
i,−
h ,wi,+

h ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
B

∫

Si,n
m

HB,k(w
i,−
h ,wi,+

b ,nK)φl dS

+
∑

Si,n
m ∈∂Ki,n

j ∩Γi
S

∫

Si,n
m

HS,k(w
i,−
h ,wi,+

s ,nK)φl dS. (2.31)

In equation (2.30) the dependency of Li,n
kl on Ŵn−1 stems from the

integrals over the internal faces connecting the current and previous time
slabs. The numerical fluxes are problem dependent and will be discussed
in Chapter 3 for specific test problems.

2.4.2 Level set discretization

The level set equation can be characterized as a hyperbolic partial differ-
ential equation containing an intrinsic nonconservative product, meaning
that it cannot be transformed into divergence form. This causes problems
when the level set becomes discontinuous, because the weak solution in the
classical sense of distributions does not exist. Thus, no classical Rankine-
Hugoniot shock conditions can be defined. Although the level set is initially
smooth, it can become discontinuous over time due to discontinuities in the
global flow velocity advecting the level set. In order to find a discontinuous
Galerkin discretization for the level set equation, valid even when level set
solution and velocity become discontinuous, the theory presented in [71] is
applied. For simplicity the same notation will be used as in [71].

In general, a hyperbolic system of m partial differential equations in
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nonconservative form in q space dimensions can be defined as:

Ui,0 + Fik,k +GikrUr,k = 0, i, r = 1, · · · ,m (2.32)

with U the vector of variables, F the conservative spatial flux tensor, G the
nonconservative spatial flux tensor and where (.),0 and (.),k, k = 1, · · · , q
denote partial differentiation with respect to time and spatial coordinates,
respectively. The space-time DGFEM weak nonconservative formulation of
this system is defined as:

0 =
∑

K∈T n
h

∫

K
(−Vi,0Ui − Vi,kFik + ViGikrUr,k)dK

+
∑

K∈T n
h

(

∫

K(t−n+1)
V L

i U
L
i dK −

∫

K(t+n )
V L

i U
R
i dK)

+
∑

S∈Sn

∫

S
(V L

i − V R
i )P̂nc

i dS

+
∑

S∈Sn

∫

S
{{Vi}} (

∫ 1

0
Gikr(χ(τ ;UL, UR))

dχr

dτ
(τ ;UL, UR)dτn̄L

k )dS, (2.33)

where V denotes the vector of trial functions and χ denotes the path func-
tion. The nonconservative flux is defined as:

P̂nc(UL, UR, v, n̄
L) = (2.34)























FL
ik − 1

2

∫ 1
0 Gikr(χ(τ ;UL, UR))dχr

dτ (τ ;UL, UR)dτn̄L
k , if SL > v

{{Fik}}n̄
L
k + 1

2((SR − v)Ū∗
i + (SL − v)Ū∗

i − SLU
L
i − SRU

R
i ),

if SL < v < SR

FL
ik + 1

2

∫ 1
0 Gikr(χ(τ ;UL, UR))dχr

dτ (τ ;UL, UR)dτn̄L
k , if SR < v,

where SL and SR denote the minimum and maximum wavespeeds, v denotes
the grid velocity and Ū∗

i denotes the average star state solution. When using
a linear path χ = UL + τ(UR − UL), dχr

dτ (τ ;UL, UR) = (UR − UL).
The level set equation can be considered a special case of (2.32), where

the state and fluxes are defined as U = ψh, F = 0, G = āh. The following
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simplification can be made:

∫ 1

0
Gikr(χ(τ ;UL, UR))

dχr

dτ
(τ ;UL, UR)dτn̄L

k

=

∫ 1

0
ā(χ(τ ;ψL

h , ψ
R
h ))(ψR

h − ψL
h )dτn̄L

k

= − {{āh}}JψhK. (2.35)

Hence, the nonconservative level set discretization becomes:

∑

Kn
b,j̃

∈T n
b

∫

Kn
b,j̃

−
∂φl

∂t
ψh + φl āh · ∇̄ψh dK

+
∑

Kn

b,j̃
∈T n

b

(∫

Kn
b,j̃

(tn+1)
φl

l ψ
l
h dS −

∫

Kn
b,j̃

(tn)
φl

l ψ
r
h dS

)

+
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

(φl
l − φr

l ) P̂
nc dS

−
∑

Sn
b,m̃

∈Γn
b

∫

Sn
b,m̃

{{φl}} JψhK {{āh}} dS = 0, (2.36)

with

P̂nc =











+1
2JψhK {{āh}} if SL > 0

+1
2(SR(ψ∗

h − ψR
h ) + SL(ψ∗

h − ψL
h )) if SL < 0 < SR

−1
2JψhK {{āh}} if SR < 0

(2.37)

where SL = min{āL
h · n̄L

K , ā
R
h · n̄L

K} and SR = max{āL
h · n̄L

K , ā
R
h · n̄L

K} the
minimum and maximum wavespeeds and where the star state level set value
is defined as:

ψ∗
h =

{

ψL if (SL + SR)/2 > 0

ψR if (SL + SR)/2 < 0.
(2.38)
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Algorithm 5 Pseudo-time integration method for solving the non-linear algebraic
equations in the space-time discretization.

1. Initialize first Runge-Kutta stage: W̄i,(0) = Ŵi,n.

2. Calculate W̄i,(s), s = 1, · · · , 5:
(1 + αsλ)W̄i,(s) =

W̄i,(0) + αsλ

(

W̄i,(s−1) − ∆t (M i,n)−1 L(W̄i,(s−1),W̄i,n−1)

)

3. Update solution: Ŵi,n = W̄i,(5).

At boundary faces the level set boundary conditions (2.10) are enforced by
specifying the right state as:

ψr(t, x̄) =ψl(t, x̄)

ār(t, x̄) = āl(t, x̄) − 2(āl(t, x̄) · nK)nK, for (t, x̄) ∈ Q. (2.39)

2.4.3 Pseudo-time integration

By augmenting the flow equations with a pseudo-time derivative, the dis-
cretized equations (2.30) are extended into pseudo-time, resulting in:

M i,n
ml

∂Ŵ i,n
km

∂τ
+ Li,n

kl (Ŵn,Ŵn−1) = 0, (2.40)

using the summation convention on repeated indices, and with

M i,n
ml =

∫

Ki,n
j

φlφm dK (2.41)

the mass matrix. To solve (2.40) a five stage semi-implicit Runge-Kutta
iterative scheme is used [50, 98] as defined in Algorithm 5. Starting from
a guess for the initial solution, the solution is iterated in pseudo-time until
a steady state is reached, which is the real time solution of the space-time
discretization. Here λ = ∆τ/∆t denotes the ratio of pseudo time and
physical time step, and the coefficients αs are defined as: α1 = 0.0791451,
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2.5 Two-fluid algorithm

α2 = 0.163551, α3 = 0.283663, α4 = 0.5, α5 = 1.0. The physical time step
∆t is defined globally by using a Courant-Friedrichs-Levy (CFL) condition:

∆t =
CFL∆t h

Smax
, (2.42)

with CFL∆t the physical CFL number, h the inradius of the space pro-
jection of the element and Smax the maximum value of the wave speed on
the faces. The five stage semi-implicit Runge-Kutta iterative scheme is also
used for solving the discretized level set equation.

2.5 Two-fluid algorithm

The two-fluid algorithm is defined in Algorithm 6. The operations at the ini-
tialization, in the inner iteration and at the time slab update are illustrated
for two space-time dimensions in Figures 2.18, 2.19 and 2.20, respectively.
In the inner iteration and at the time slab update the flow approximation

w
i,n
h is reinitialized with the solution average from the previous time slab:

w
i,n
h (t, x̄) = w̄

i,n−1
h (tn, x̄). (2.43)

When, for a fluid type, no solution exists in the previous time slab, the
element is marked as such and is reinitialized at a later stage by using
the reinitialized solution from a neighboring element in the new timeslab.
To make the flow reinitialization compatible with the element merging it is
preceded by a projection step, in which the solution in each merged element
is projected onto the refined elements of which it is composed. After solving
the flow equations the level set velocity an

h is reinitialized as:

∫

Kn
b,j̃

ān
h(x)φl(x) dK =

∫

Kn
b,j̃

un
h,k(x)φl(x) dK. (2.44)

In order to evaluate the flow velocity un
h,k on the background mesh, for

every element Ki,n
j in the refined mesh T n

h , a child to parent mapping H
Ki,n

j
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Algorithm 6 Computational steps in the two-fluid method. Lines 1-6 detail the
initialization, lines 13-22 the inner iteration and lines 8-12 time slab update. The initial-
ization, inner iteration and time slab update are illustrated for two space-time dimensions
in Figures 2.18, 2.19 and 2.20.

1. n = 0
2. Create background mesh T n−1

b

3. Initialize level set ψn−1

h (x) on T n−1

b

4. Initialize level set velocity ān−1

h (x) on T n−1

b

5. Create refined mesh T i,n−1

h based on ψn−1

h = 0

6. Initialize flow field w
i,n−1

h (x) on T i,n−1

h

7. WHILE n < Nt DO
8. Create background mesh T n

b

9. Initialize level set ψn
h(x) on T n

b as ψn−1

h (tn, x̄) on T n−1

b (2.46)
10. Initialize level set velocity ān

h(x) on T n
b as ān−1

h (tn, x̄) on T n−1

b (2.47)

11. Create refined mesh T i,n

h,0 based on ψn
h = 0

12. Initialize flow field w
i,n

h,0(x) on T i,n

h,0 as w
i,n−1

h,0 (tn, x̄) on T i,n−1

h (2.43)

13. k = 0
14. WHILE two-fluid mesh has not converged: |ek − ek−1| > ǫIF DO
15. Solve ψn

h on T n
b

16. Calculate level set interface error ek = ‖ψn
h‖

IF
2

17. Create refined mesh T i,n

h,k based on ψn
h = 0

18. Initialize flow field w
i,n

h,k(x) on T i,n

h,k as w
i,n−1

h (tn, x̄) on T i,n−1

h (2.43)

19. Solve w
i,n

h,k(t, x̄) on T i,n

h,k

20. Initialize level set velocity ān
h(x) on T n

b as u
i,n

h,k(x) on T i,n

h (2.44)

21. k = k + 1
22. END DO
23. n = n+ 1
24. END DO
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Figure 2.18: At initialization, first the background mesh is created. Because the
solution from the previous time step is required in the evaluation of the numerical flux at
the time slab face, the background mesh is conveniently composed of a current (n) and
a previous (n− 1) time slab (a). Next the level set is initialized on the background mesh
(b). Based on the 0-level set, the background mesh is refined to obtain the refined mesh
(c). Finally, in all elements of the refined mesh the flow variables are initialized (d). The
initialization is performed on the current as well as a previous time slab.
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Figure 2.19: In the inner iteration, given level set and flow solutions on the background
and refined meshes (a1, a2), first the level set is solved on T n

b (b). Based on the 0-level
set the background mesh is refined to obtain a new two-fluid mesh T n

h , on which the flow
field is reinitialized and solved (c). Finally, the level set velocity is reinitialized with the
flow velocity.
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Figure 2.20: When moving to the next time slab, given level set and flow solutions on
the background and refined meshes (a1, a2), first a new background mesh T n

b is created,
on which a level set is initialized and solved (b). Based on the 0-level set, the background
mesh is refined to obtain the two-fluid mesh T n

h , on which the flow field is initialized (c).
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is defined:

H
Ki,n

j
= G−1

Ki,n
j

◦GKn
b,j̃
, (2.45)

where GKn
b,j̃

and G
Ki,n

j
are the mappings from the reference element to the

physical space of the background and the child element, respectively. The
mapping H

Ki,n
j

maps the element Ki,n
j to its parent element Kn

b,j̃
in the

background mesh T n
b . The inverse mappings G−1

Kn

b,j̃

always exists, since the

background elements are by construction never degenerate. The child to
parent mapping is illustrated in Figure 2.21. At the time slab update the
level set approximation ψn

h is reinitialized as:

ψn
h(t, x̄) = ψn−1

h (tn, x̄) (2.46)

and the level set velocity approximation an
h is reinitialized as:

ān
h(t, x̄) = ān−1

h (tn, x̄). (2.47)

2.6 Discussion

A space-time discontinuous Galerkin finite element method for two-fluid
flows has been presented which combines aspects of front tracking and front
capturing methods with cut-cell mesh refinement and a STDG discretiza-
tion. It is anticipated that this scheme can accurately solve smaller scale
problems where the interface shape is of importance and where complex
interface physics are involved. Special attention has been paid to making
the scheme as generic as possible to allow for future implementations in
higher dimensions. The STDG discretization ensures that the scheme is
conservative as long as the numerical fluxes are conservative. The problem
with cut-cell mesh refinement with small cells is solved by using element
merging. Topological changes such as merging and coalescence are han-
dled in the method due to the level set method. Care must, however, be
taken since topological changes may conflict with the conservativity of the
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Figure 2.21: The child to parent mappingH
K
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is composed of the mappingG
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from

the child reference element to child physical element and the inverse mapping G−1
Kn

b,j̃

from

background physical element to the background reference element. The child physical
element is connected to the background physical element through the identity mapping
Id.
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scheme especially on coarse meshes and may cause non-convergence of the
flow solution. In Chapter 3 the method will be tested on a number of test
problems.
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Chapter 3

Two-Fluid Space-Time

Discontinuous Galerkin

Finite Element Method.

Part II: Applications

3.1 Introduction

In Chapter 2 a space-time discontinuous Galerkin (STDG) finite element
method for two-fluid flows was presented. This space-time discontinuous
Galerkin (STDG) finite element method offers high accuracy, an inherent
ability to handle discontinuities and a very local stencil, making it relatively
easy to combine with local hp-refinement. For the interface handling a
front tracking approach is used because front tracking methods are capable
of high accuracy. The front tracking is implemented using cut-cell mesh
refinement because this type of refinement is very local in nature and hence
combines well with the STGD. To compute the interface dynamics the
level set method (LSM) is used, because of its ability to deal with merging
and breakup, because it was expected that the LSM combines well with
the cut-cell mesh refinement and also because the LSM is easy to extend to
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higher dimensions. The small cell problem caused by the cut-cell refinement
was solved by using a merging procedure involving bounding box elements,
which improves stability and performance of the method. The interface
conditions can be incorporated in the numerical flux at the interface and
the STDG discretization ensures that the scheme is conservative as long as
the numerical fluxes are conservative.

In this chapter the method is applied to a number of model problems
in two and three space-time dimensions which range from one dimensional
linear advection tests to complex two-fluid problems including a magma -
ideal gas shock tube test and a shock wave - helium cylinder interaction
test. The interface is assumed to be clean and without surface tension and
therefore continuity of the normal velocity and pressure is imposed [29, 78].
The simulations have been performed using three dimensional space-time
codes based on the hpGEM software framework for Discontinuous Galerkin
finite element methods [65].

The outline of this chapter is as follows. First, in Section 3.2 the two-
fluid flow error measurement is explained. In Section 3.3 the HWENO
slope limiter is introduced. In Sections 3.4-3.9 the test results are discussed.
Finally, in Section 3.10 a discussion and conclusions are presented.

3.2 Error measurement

Let wi
h(tn+1,x) denotes the approximate flow solution, wi(tn+1,x) the exact

flow solution and Ωi
h(tn+1) the spatial mesh for fluid i at time t = tn+1,.

The L2 flow error at time t = tn+1 is defined as:

‖wi
h(tn+1, ·) − wi(tn+1, ·)‖L2(Ωi

h
(tn+1)) =

(
∫

Ωi
h
(tn+1)

|wi
h(tn+1,x) − wi(tn+1,x)|2dx

)1/2

. (3.1)

The order of accuracy with respect to the norm ‖.‖ is defined as
log( ‖fh −f‖/‖fh/2−f‖ )/log(2), where fh and fh/2 denote numerical solu-
tions on embedded meshes Ωn

h and Ωn
h/2, with h the mesh width. It should
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be noted that the refined meshes are often only approximately embedded,
hence a small error is introduced in the orders of accuracy for the flow
solutions.

The STDG method has order of accuracy O(hp+1) for smooth solutions
and order of accuracy O(h1/2) for discontinuous solutions ([53, 83]). Front
capturing and tracking techniques can help to improve the accuracy of the
STDG method around discontinuities.

Solutions will be plotted as discontinuous data without any postpro-
cessing to give a clear illustration of the behavior of the STDG numerical
scheme in each individual element.

3.3 Slope limiter

Around strong discontinuities which are not captured or tracked DG solu-
tions show spurious oscillations. To control these oscillations the Hermite
WENO slope limiter introduced in [56] is used. The limiter is applied after
every physical time step to the spatial solution at the most recent time
level. Since a space-time mesh is used, this means the limiter is applied at
time slab faces. Let Sn+1

e denote a time slab face on which the solution re-
quires limiting. The solution after slope limiting is defined as the weighted
sum of a number of reconstructed polynomials Pi(uh), i = 1, · · · ,NP :

ũh =

NP
∑

i=1

wiPi(uh), (3.2)

where uh denotes the numerical solution on Sn+1
e , ũh the limited solution

on Sn+1
e and NP the number of reconstructed polynomials. The weights

are defined as:

wi =
(ǫ+ oi(Pi))

−γ

∑NP−1
k=0 (ǫ+ ok(Pk))−γ

, (3.3)
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Figure 3.1: Lagrange stencils for quadrilateral shaped time slab faces.

with ǫ > 0 and γ > 0 constants. Here oi(Pi) denotes the oscillation indicator
for element Ke:

oi(Pi) = ‖∇̄Pi‖L2(Sn+1
i ), (3.4)

with ‖.‖L2(Sn+1
i ) the L2 norm at time slab face Sn+1

i and ∇̄ the space

gradient operator.

Each polynomial Pi(uh) is constructed from the numerical solution uh

on a specific stencil Sn+1
i of time slab faces, where the shape of the sten-

cil depends on the type of reconstruction polynomial and the shape of
the face Sn+1

e . Three types of reconstruction polynomials are considered:
Lagrange, Hermite, and, the linear projection of the original polynomial.
The corresponding stencils are shown for quadrilateral shaped faces in Fig-
ures 3.1, 3.2 and 3.3, respectively. For the Lagrange polynomials, the
stencil is composed of the face Sn+1

e and also d of the Nn neighboring
faces Sn+1

li,j
, j = 0, · · · , d − 1, where d denotes the space dimension and

li,j ∈ {0, · · · , Nn}. For the Hermite polynomials, every stencil is composed
of just two time slab faces, namely the face Sn+1

e and one neighboring
face Sn+1

h where h ∈ {0, · · · , Nn}. For the linear projection the stencil is
composed only of the face Sn+1

e .

Each Lagrange polynomial PL,i is constructed using only the solution
averages for the time slab faces of the Lagrange stencil. Let xe, xa and xb

denote the face midpoints in physical coordinates for the time slab faces
Sn+1

e ,Sn+1
li,0

and Sn+1
li,1

. The reconstructed Lagrange polynomial PL,i is de-
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Figure 3.3: Stencil used for the restriction of the original polynomial for quadrilateral
shaped time slab faces.

fined as:

1

|Sn+1
e |

∫

Sn+1
e

PL,i dK =
1

|Sn+1
e |

∫

Sn+1
e

uh dK

1

|Sn+1
li,0

|

∫

Sn+1
li,0

PL,i dK =
1

|Sn+1
li,0

|

∫

Sn+1
li,0

uh dK

1

|Sn+1
li,1

|

∫

Sn+1
li,1

PL,i dK =
1

|Sn+1
li,1

|

∫

Sn+1
li,1

uh dK (3.5)

with i = 0, · · · , 3 and li ∈ {(0, 1), (0, 2), (1, 3), (2, 3)} for quadrilateral
shaped time slab faces. Each Hermite reconstruction polynomial PH,i is
constructed from the solution average in the time slab face Sn+1

e and the
average solution gradient from one neighbor time slab face and is defined
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as:

1

|Sn+1
e |

∫

Sn+1
e

PH,i dK =
1

|Sn+1
e |

∫

Sn+1
e

uh dK

1

|Sn+1
e |

∫

Sn+1
e

∂PH,i

∂x
dK =

1

|Sn+1
hi

|

∫

Sn+1
hi

∂uh

∂x
dK

1

|Sn+1
e |

∫

Sn+1
e

∂PH,i

∂y
dK =

1

|Sn+1
hi

|

∫

Sn+1
hi

∂uh

∂y
dK

(3.6)

with hi = i and i = 0, · · · , 3 for quadrilateral shaped time slab faces. The
linear projection of the original polynomial PO is treated as a Hermite
reconstruction polynomial, with Sn+1

hi
= Sn+1

e and is defined as:

1

|Sn+1
e |

∫

Sn+1
e

PO dK =
1

|Sn+1
e |

∫

Sn+1
e

uh dK

1

|Sn+1
e |

∫

Sn+1
e

∂PO

∂x
dK =

1

|Sn+1
e |

∫

Sn+1
e

∂uh

∂x
dK

1

|Sn+1
e |

∫

Sn+1
e

∂PO

∂y
dK =

1

|Sn+1
e |

∫

Sn+1
e

∂uh

∂y
dK

(3.7)

The slope limiter only needs to be active at places where the solution
displays strong discontinuities and for this purpose the discontinuity detec-
tor proposed by Krivodonova [51] is used. The discontinuity factor I of a
numerical solution uh at the time slab face Sn+1

e is defined as:

I =
|
∫

∂Sn+1
e

(u−h − u+
h )de|

h(p+1)/2|∂Sn+1|‖u−h ‖L∞

, (3.8)

where u−h and u+
h denote the solution traces from the inside and the outside

of the time slab face, at time tn+1 and considering only space directions,
∂Sn+1

e denotes the time slab face boundary, which is composed of a number
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of finite element edges, and h is the radius of the circle circumscribing Sn+1
e .

The solution is assumed to be smooth when I < I0 and discontinuous when
I > I0, with I0 a constant parameter determining the amount of limiting.

3.4 Linear advection

Considered first are a number of single-fluid linear advection problems in
one space dimension. The purpose of these tests is to check the accuracy of
the STDG method without interface tracking, for continuous and discon-
tinuous solutions, respectively, and also to investigate the effect of interface
tracking on the accuracy for a discontinuous solution. In all test cases linear
basis functions are used.

The linear advection equation:

∂ρ

∂t
+ a

∂ρ

∂x
= 0, (3.9)

with ρ the advection variable and a = 5m/s the advection velocity, is solved
on a spatial domain [−5m, 5m] from time t = 0 s to 1 s. Continuous and
discontinuous initial conditions are defined as:

ρ(t, x) = ρ0(x) =

{

1.5 + 0.5 cos (π(x+ 2.5)) for |x+ 2.5| ≤ 1 m

1.0 for |x+ 2.5| > 1 m,
(3.10)

and

ρ(t, x) = ρ0(x) =

{

2.0 for x < −2.5 m

1.0 for x > −2.5 m,
(3.11)

respectively. At the inflow boundary Dirichlet boundary conditions are
used:

ρ(t, x) = ρ0(x) at x = −5 m (3.12)

Since this is a single-fluid test, an upwind flux is used everywhere. The
exact solution to (3.9) is:

ρ(x, t) = ρ0(x− at). (3.13)
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Table 3.1: Error and order of accuracy in the L2 norm of the advection variable in the
linear advection test with smooth initial conditions (3.10) and without interface tracking.

Nx × Nt L2 error L2 order

20 × 10 0.287488 −
40 × 20 0.0986332 1.543
80 × 40 0.0212308 2.216
160 × 80 0.00459294 2.209

Table 3.2: Error and order of accuracy in the L2 norm of the advection variable for the
linear advection test with discontinuous initial conditions (3.11) and without interface
tracking.

Nx × Nt L2 error L2 order

20 × 10 0.327226 −
40 × 20 0.255301 0.358
80 × 40 0.198344 0.364
160 × 80 0.1537 0.368

The simulations are performed at CFL∆t = 1.0.

First, the method is tested for the smooth initial solution (3.10) without
mesh refinement. The solution at time t = 1 s is illustrated in Figure 3.4
(left). The results are presented in Table 3.1, where the L2 errors and
corresponding orders of accuracy are given for various mesh resolutions.
Orders of accuracy of approximately 2 are observed, which is as expected
since the STDG is of order O(hp+1) for smooth solutions.

Second the method is tested for the discontinuous initial solution (3.11)
without mesh refinement. The solution at time t = 1 s is illustrated in
Figure 3.4 (right). Near the interface spurious oscillations are visible. The
results are presented in Table 3.2, where the L2 errors and the corresponding
orders of accuracy are given for various mesh resolutions. In the L2 norm
the orders of accuracy are approximately 0.36, which is as expected since
for discontinuous solutions computed on a static mesh the order of accuracy
will typically not exceed O(h1/2).

Third the method is tested for a discontinuous initial solution (3.11)
with mesh refinement. The numerical solution at time T = 1 s and the
refined space-time mesh using 20 elements are shown in Figure 3.5. The
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Figure 3.4: The exact (dotted) and numerical (solid) solutions at time t = 1 s of the
linear advection tests without mesh refinement for continuous (left) and discontinuous
initial conditions (right) using 160 elements.

performance of the two-fluid scheme is optimal for this test, with the error
in the solution and the interface position both at machine precision. This
is the case because the interface movement is linear in space-time; hence,
the interface is represented exactly in the refined mesh.

Fourth, the method is tested for a non constant advection velocity a =
−xm/s, a discontinuous initial solution (3.11) and with mesh refinement.
The exact solution is given as:

ρ(t, x) = ρ0(xe
t). (3.14)

and the exact interface position at time t is xIF (t) = −2.5 e−t m. In this
test the discontinuity moves nonlinearly; hence, it cannot be represented
exactly in the mesh. In Figure 3.6 the space-time mesh and solution are
shown for a mesh of 20 elements and it is observed that the discontinuity
is not resolved very well. The results are presented in Table 3.4.

Fifth, the same case as in the fourth test is considered, but at the dis-
continuity solid wall conditions are applied, implemented as a zero flux. By
using solid wall conditions at the discontinuity, it is treated as an interface;
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Figure 3.5: Space-time mesh and numerical solution at time t = 1 s of the linear
advection test with mesh refinement for discontinuous initial conditions using 20 elements.

Table 3.3: Error and order of accuracy in the L2 norm of the advection variable for
the linear advection test with non constant velocity a = −xm/s and upwind flux at the
discontinuity.

Nx × Nt L2 error L2 order

20 × 10 0.0408045 -
40 × 20 0.0254312 0.682
80 × 40 0.017552 0.535
160 × 80 0.0117917 0.5739

hence, the problem is considered as a two-fluid problem. In Figure 3.7 so-
lution is shown for a mesh of 20 elements. The interface is captured much
better. The results are presented in Table 3.4. In the L2 norm the error
converges to O(h1/2).

In conclusion, results were presented for a number of single-fluid linear
advection tests in one space dimension. For a uniform mesh and contin-
uous and discontinuous solutions respectively the theoretical L2 orders of
accuracy could be confirmed. The results for the discontinuous solution
were improved greatly by applying mesh refinement to capture the discon-
tinuity. In addition results were presented for a non constant advection
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Figure 3.6: Space-time mesh and solution at time t = 1 s for the linear advection test
with non constant velocity a = −x using 20 elements and upwind flux at the discontinuity.

Table 3.4: Error and order of accuracy in the L2 norm of the advection variable for the
linear advection test with non constant velocity a = −xm/s and solid wall flux at the
discontinuity.

Nx × Nt L2 error L2 order

20 × 10 0.00112646 -
40 × 20 0.000735784 0.614
80 × 40 0.000736948 −0.00228
160 × 80 0.000551662 0.4178

velocity a = −xm/s. When using an upwind flux at the discontinuity, it
was observed that the discontinuity could not be captured very well. When
using a solid wall flux at the interface, the discontinuity could be captured
much better.

3.5 Zalesak disc

In order to investigate how well the method can handle moving interfaces
in two space dimensions, the Zalesak disc test problem [110] is examined.
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Figure 3.7: Solution at time t = 1 s for the linear advection test with non constant
velocity a = −xm/s using 20 elements and solid wall flux at the discontinuity.

A disc, initially as shown in Figure 3.8, is rotated counterclockwise one
period around the domain midpoint (x, y) = (0, 0)m with velocity u =
(−2πy, 2πx)m/s. The purpose of this test is to check the accuracy of the
level set solution obtained with the discontinuous Galerkin method. The
test also serves to illustrate the level set smoothing procedure and the
two-fluid mesh refinement. The most difficult part in this test consists of
capturing the sharp corners of the disc. The level set equation is solved in
two space dimensions on the domain [−4m, 4m] × [−4m, 4m] from time
t = 0 s to 1 s.

The simulations are performed at CFL = 1.0. In Figure 3.9 the ap-
proximate disc at the initial and the final time is shown for 80 × 80 and
160 × 160 elements, respectively. The interface evolution for 80 × 80 ele-
ments is shown in Figure 3.10. At the initial time the level set shows an
error near the sharp edges of the disc, due to the fact that the nonlinear
initial level set conditions cannot be represented exactly using piecewise
linear polynomials. Also, after one rotation the level set solution shows a
relatively large error near the sharp edges of the disc. It is expected that
the results will improve by using a higher order level set approximation or
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Figure 3.8: Zalesak disc test problem.

by applying h-refinement. The latter option is preferred since in general
the level set velocity will be obtained from the flow velocity and may not
be of high order.

From the test results it is concluded that when sharp corners are present
in the problem, the accuracy of the method is expected to suffer quite
severely. However, even for a smooth interface, small errors in the level set
and interface position are likely to be present.

3.6 Sod’s ideal gas shock tube

Considered is Sod’s ideal gas shock tube test [88]. The purpose of this
test is to investigate the performance of the method for a case where the
interface moves with the flow velocity. To account for this, two solve steps
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Figure 3.9: The refined mesh at the initial time (left) and after one rotation (right) for
the Zalesak disc test problem for a mesh with 80×80 (top) 160×160 (bottom) elements.
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Figure 3.10: Interface evolution for the Zalesak disc test problem for the first 1/4
rotation for a mesh with 80 × 80 elements. 73
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are used for the flow and level set equations in each time step. The contact
wave is considered an interface and is captured using the two-fluid method.

The one dimensional Euler equations expressing conservation of mass,
momentum and energy are defined as

∂ρ

∂t
+
∂(ρu)

∂x
= 0

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0

∂(ρE)

∂t
+
∂(u(ρE + p))

∂x
=0, (3.15)

with ρ the density, u the fluid velocity, p the pressure and ρE = ρu2/2+ ρe
the total energy, with ρe the internal energy. In addition to these equations
an equation of state (EOS) is required to account for the thermodynamic
properties of the ideal gas:

e =
p

ρ(γ − 1)
, (3.16)

where γ = 1.4. The Euler equations are solved on a spatial domain
[−5m, 5m] from time t = 0 s to 0.01 s. Initially the interface is located
at x = 0m and both fluids are in constant states:

(ρ, u, p)(0, x) = (3.17)
{

(ρL, uL, pL) = (2.37804 kg/m3, 0 m/s, 2.0 × 105 Pa) for x < 0 m

(ρR, uR, pR) = (1.18902 kg/m3, 0 m/s, 1.0 × 105 Pa) for x > 0 m.

At the boundaries solid wall conditions are imposed:

u · n̄ = 0 at x = ±5 m (3.18)

At the interface the velocity and pressure are continuous.
The solution to (3.15), illustrated in Figure 3.11, features an expan-

sion wave moving to the left with head speed SLH = −343.138m/s and
tail speed SLT = −241.218m/s, a contact wave moving to the right with
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Figure 3.11: The solution structure of the ideal gas shock tube.

speed SC = 84.9331m/s and a shock wave also moving to the right with
speed SR = 397.861m/s. Between the expansion and the contact wave
the solution is constant and equal to the left star state (ρ∗L, u

∗, p∗) and
between the contact and the shock wave the solution is also constant and
equal to the right star state (ρ∗R, u

∗, p∗), where ρ∗L = 1.84490 kg/m3 , ρ∗R =
1.51174 kg/m3 , u∗ = 84.9331m/s and p∗ = 1.40179 × 105 Pa.

Let w = (ρ, ρu, ρE) and F = (ρu, ρu2 + p, u(ρE + p)) denote the con-
servative variables and flux vectors. The HLLC flux provides an accurate
solution to the Riemann problem, which is an initial value problem for the
Euler equations, where the initial conditions consists of two constant states:

w(x, 0) =

{

wL when x < 0

wR when x > 0.
(3.19)
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The HLLC flux extended to space-time meshes [6, 98] is defined as:

HHLLC =
1

2

(

FL + FR

− (|SL − v| − |SM − v|)w∗
L + (|SR − v| − |SM − v|)w∗

R

+ |SL − v|wL − |SR − v|wR − v(wL + wR)

)

, (3.20)

with v the interface velocity. It is assumed that the speeds are the same
at both sides of the contact wave, so SM = u∗L = u∗R = u∗. From the
Rankine-Hugoniot relations F(wK)−F(w∗

K) = SK(wK −w∗
K) with K = L

or R for the left and the right waves, respectively, the following relations
are found for the star state variables:

ρ∗K = ρK
SK − uK

SK − u∗

ρ∗Ku
∗(u∗ − SK) = (pK − p∗) + ρKuK(uK − SK), (3.21)

and also an approximation for the speed SM = u∗ of the contact wave is
obtained:

SM =
ρRuR(SR − uR) − ρLuL(SL − uL) + pL − pR

ρR(SR − uR) − ρL(SL − uL)
. (3.22)

The wave speeds SL and SR are estimated as:

SL = min(uL − aL, uR − aR), SR = max(uL + aL, uR + aR). (3.23)

By using the Rankine-Hugoniot relations of the left wave and substituting
the left and right states and wave speeds, the values of w∗

L are calculated
as:

w∗
L =

SL − uL

SL − SM
wL +

1

SL − SM





0
p∗ − pL

p∗SM − pLuL



 , (3.24)
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and likewise for w∗
R by replacing L with R. By using the expression for ρ∗K

and u∗ in the Rankine-Hugoniot relation for the momentum of the left and
the right moving wave, the intermediate pressure is found:

p∗ = ρL(SL − uL)(SM − uL) + pL = ρR(SR − uR)(SM − uR) + pR. (3.25)

The Euler equations are discretized using the set of primitive variables
v = (ρ,u, p). This is motivated by the observation that in many two-fluid
flow problems the velocity and often also the pressure are continuous across
the interface while the momentum and energy are not. Since the conser-
vative equations are used mass, momentum and energy are still conserved.
The approximate primitive variables are defined as:

v
p,i
h (t, x̄)|Kn

j
=

∑

m

V̂i
m(Ki,n

j )φm(t, x̄) (3.26)

with V̂i
m the primitive flow approximation coefficients. The discretized

equations extended into pseudo-time become:

M̃ i,n
mlkp

∂V̂ i,n
pm

∂τ
+ Li,n

kl (Ŵn(Vn),Ŵn−1(Vn−1)) = 0 (3.27)

with

M̃ i,n
mlkp =

∫

Ki,n
j

φlφm
∂wi

k

∂vi
p

dK. (3.28)

The discretized equations are simplified by using evaluations in the element
midpoints xmid and replacing the φlφm terms by the delta function δlm in
(3.28) to obtain:

Ñ i,n
kp

∂V̂ i,n
pl

∂τ
+ Li,n

kl (Ŵn(Vn),Ŵn−1(Vn−1)) = 0 (3.29)

with

Ñ i,n
kp = |Ki,n

j |
∂wi

k

∂vi
p

(xmid). (3.30)
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Algorithm 7 Pseudo-time integration method for solving the non-linear algebraic
equations in the space-time discretization.

1. Initialize first Runge-Kutta stage: V̄i,(0) = V̂i,n.

2. Calculate V̄i,(s), s = 1, · · · , 5:

(1 + αsλ)V̄i,(s) = V̄i,(0) + αsλ

(

V̄i,(s−1)

−∆t (Ñ i,n)−1 L(W̄i,(s−1)(V̄i,(s−1)),W̄i,n−1(V̄i,(n−1)))

)

3. Update solution: V̂i,n = V̄i,(5).

To account for the change in variables the Runge-Kutta pseudo time inte-
gration method is modified with Ñ in the following way:

At the interface the HLLC flux for a contact discontinuity is used. As-
suming the interface coincides with the contact wave, SM = v and the
corresponding HLLC flux defines the contact HLLC flux HC

HLLC :

HC
HLLC =

1

2

(

FL + FR + (SM − SL)(wL − w∗
L)

+ (SM − SR)(wR − w∗
R) − SM (wL + wR)

)

. (3.31)

By inserting the expressions for w∗
K , it follows that:

HC
HLLC = (0, p∗, p∗u∗)T (3.32)

which shows that there is no mass flux through the contact interface. At
the domain boundary faces the solid wall conditions are implemented in
the HLLC flux by defining the right state as:

ρR = ρL, uR = −uL, pR = pL. (3.33)

The simulations are performed at CFL∆t ≈ 0.4.
The test results using the contact flux (3.32) are presented in Table 3.5.

The solution converges in the L2 norm. In Figure 3.12 the evolution of
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Table 3.5: Error and order of accuracy in the L2 norm of the density for the ideal gas
Euler shock tube test using the contact interface flux.

Nx × Nt L2 error L2 order

40 × 40 0.0708762 −
80 × 80 0.0484641 0.548

160 × 160 0.0296357 0.710
320 × 320 0.0213965 0.467
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Figure 3.12: The time evolution of the interface and level set solution at time t = 0.01 s
for the ideal gas shock tube using 320 background elements, the contact flux and no slope
limiter.

the interface position for the first few time steps and the level set at the
final time are shown. It is observed that in the first few time steps the
interface moves too slow. The density, density zoom, velocity and pressure
profiles at the final time are shown in Figure 3.13. Because the interface
moves too slow initially, small undershoots are created in the density at the
interface, which remain in the numerical solution until the final time. Small
oscillations are also observed in the density, velocity and pressure profiles
which radiate outwards from the interface.

In order to diminish the observed oscillations at the interface, an alter-
native interface flux is proposed, which is defined separately for the left and
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Figure 3.13: The exact (dotted) and numerical (solid) density, density zoom, veloc-
ity and pressure at time t = 0.01 s for the ideal gas shock tube using 320 background
elements, the contact flux and no slope limiter.
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Table 3.6: Error and order of accuracy in the L2 norm of the density for the ideal gas
Euler shock tube test with interface tracking and using the interface flux (3.34).

Nx × Nt L2 error L2 order

40 × 40 0.0729742 −
80 × 80 0.0492437 0.567

160 × 160 0.0300191 0.714
320 × 320 0.0217169 0.467

right sides of the interface:

HL
HLLC =w∗

L(SM − v) + HC
HLLC

HR
HLLC =w∗

R(SM − v) + HC
HLLC (3.34)

When the interface representation in the mesh is exact, SM = v and the in-
terface flux is reduced to HC

HLLC . The interface numerical flux now removes
the small numerical oscillations caused by errors in the interface shape and
position at the cost of mass conservation at the interface. The results with
the interface flux (3.34) are presented in Table 3.6. The solution converges
in the L2 norm. In Figure 3.14 the density, density zoom, velocity and
pressure profiles at the final time with the interface flux (3.34) are shown.
Again, the interface moves too slow initially, causing undershoots in the
density at the interface, which remains in the numerical solution until the
final time. The density, velocity and pressure profiles do not show the os-
cillations observed before with the contact interface flux. In Figure 3.15
the mass evolution of the two fluids is shown. The mass loss is very small
for this test.

In order to remove the spikes appearing near the expansion and shock
waves in the solution with the interface flux (3.34) the HWENO slope
limiter is used, and in Figure 3.16 the resulting density, density zoom,
velocity and pressure profiles at the final time are shown. The slope limiter
reduces the spikes at the expansion and shock waves. However, a small
offset error is observed in the density, velocity and pressure profiles in the
star region.

Finally, the simulation is run without the initial time steps, from t =
T/10 to t = T . The resulting density profile is shown in Figure 3.17. The
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Figure 3.14: The exact (dotted) and numerical (solid) density, density zoom, veloc-
ity and pressure at time t = 0.01 s for the ideal gas shock tube using 320 background
elements, interface flux (3.34) and no slope limiter.
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Figure 3.15: Relative mass over time of the left (left) and right (right) fluids for the
ideal gas shock tube using 320 background elements, interface flux (3.34) and no slope
limiter. The relative mass is defined as |Me −Mh|/Me, with Me the exact and Mh the
numerical amount of mass.

results are much better than those obtained previously, especially near the
interface. This is because the error made in the first number of time steps,
when the rarefaction, contact and shock waves are too close to each other
to be resolved well numerically, remains in the simulation for all subsequent
time.

In conclusion, the two-fluid method has been applied to Sod’s shock
tube test. Using a contact interface flux oscillations were observed at the
interface. An alternative interface flux (3.34) was developed, reducing the
oscillations at the interface at the cost of conservation. The interface flux
(3.34) was tested with promising results. Using the slope limiter reduced
the spikes near the expansion and shock waves, but introduced a small
offset error in the star region. Starting the simulation at t = T/10 greatly
improved the numerical results.
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Figure 3.16: The exact (dotted) and numerical (solid) density, density zoom, veloc-
ity and pressure at time t = 0.01 s for the ideal gas shock tube using 320 background
elements, interface flux (3.34) and slope limiter.
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Figure 3.17: The exact (dotted) and numerical (solid) density and density zoom at
time t = 0.01 s for the ideal gas shock tube using 320 background elements, interface flux
(3.34), no slope limiter and starting at initial time t = T/10.

3.7 Isothermal magma - ideal gas shock tube

Considered is an isothermal magma - ideal gas shock tube problem. This
test is motivated by the high speed geological event analyzed in [12, 13,
14, 103] and [104] and it features very high density and pressure ratio’s
which cause strong oscillations around the interface between the gas and
magma with standard shock capturing schemes. The governing equations
for an effectively compressible magma are the Euler equations for mass and
momentum:

∂tw + ∂xF(w) = 0, (3.35)

with

w =

(

ρ
ρu

)

, F =

(

ρu
ρu2 + p

)

. (3.36)

For the ideal gas the one dimensional Euler equations (3.15) are used. The
magma consists of a mixture of molten rock and 2 wt% (weight percent-
age) H2O. At high pressure, the H2O only has a liquid form. When the
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pressure decreases water vapor is formed within the mixture due to de-
compression effects. In this situation the magma effectively is a pseudo
one-phase mixture. In explosive eruptions starting with a high pressure
difference viscosity effects are negligible at leading order relative to the
nonlinear inertial effects driven by the high bubble content. The total mass
fraction n0 of H2O in the magma consists of a fraction n(p) which is ex-
solved in the magma as gas and a fraction 1 − n(p) which is dissolved in
the magma as liquid.

The mixture of magma and liquid H2O has a density σ = 2500 kg/m3

and the water vapor has a density of ρg. The total void or bubble fraction
of the mixture is given by α = n(p)ρ/ρg. The density of the magma is
defined as ρ = αρg + (1 − α)σ. Using the relation for α and the ideal gas
law ρg = p/(RT ) gives:

ρ =

(

n(p)RmT

p
+

1 − n(p)

σ

)−1

, (3.37)

where Rm = 462J/kgK is the mixtures gas constant. This relation is only
valid when there are bubbles, i.e., n(p) > 0. The critical pressure pc is
reached when there are no longer any bubbles in the mixture. This is the
case when n(p = pc) = 0 which gives pc = (4/9) × 108 Pa. The magma
considered will be assumed to be compressible; hence, p < pc. For p ≥ pc

the following relation is used:

ρ = σ + c−2
m (p − pc), (3.38)

with cm = 2000m/s the speed of sound in bubble free magma. The mass
fraction n(p) is assumed to satisfy Henry’s law, which is valid when bubbles
and melt are in equilibrium:

n(p) = n0 − Shp
β. (3.39)

For basaltic high volatile magma, n0 = 0.02, β ≈ 0.5, T = 1200K and
Sh = 3.0 × 10−6 Pa−β. The magma is assumed to be isothermal at a
temperature of 1200K. For isothermal magma the density depends only
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on the pressure, ρ = ρ(p). The speed of sound a is defined for isothermal
magma as:

1/a2 ≡

(

∂ρ

∂p

)

T

= −ρ2 ∂(1/ρ)

∂p

= −ρ2

[

dn(p)

dp

(

RmT

p
+

1

σ

)

−
n(p)RmT

p2

]

. (3.40)

The simulations are performed on a spatial domain [−5m, 5m] from time
t = 0 s to t = 0.0075 s. Initially the interface is located at x = 0m, with
the magma on the left and the ideal gas on the right, and both fluids are
in constant states:

(ρ, u, p)(0, x) = (3.41)
{

(ρL, uL, pL) = (535.195 kg/m3, 0 m/s, 5 × 106 Pa) for x < 0 m

(ρR, uR, pR) = (1.18902 kg/m3, 0 m/s, 1.0 × 105 Pa) for x > 0 m.

At the boundaries solid wall conditions are imposed:

u · n̄ = 0 m/s at x = ±5 m. (3.42)

At the interface continuity of the velocity and pressure is imposed. The
exact solution is calculated by solving the magma and ideal gas Riemann
problem and consists of a left moving expansion wave with head and tail
speeds of SLH = −97.2861m/s, SLT = 186.409m/s respectively, a con-
tact wave which is identified with the magma-air interface and moves
with speed SC = 286.329m/s; and, a right moving shock wave with
speed SR = 555.540m/s. The left and right star states are defined
as: ρ∗L = 28.0517 kg/m3 , ρ∗R = 2.45364 kg/m3 , u∗ = 286.329m/s, p∗ =
2.89134 × 105 Pa. The solution structure is shown in Figure 3.18. At
the interface the interface flux (3.34) is used, adapted for use with isother-
mal magma. With the contact interface flux (3.32) the simulations were
not stable enough. At the boundary faces the solid wall conditions are
implemented in the HLLC flux by defining the right state as:

ρR = ρL, uR = −uL, pR = pL. (3.43)
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Figure 3.18: The solution structure of the Euler magma - ideal gas shock tube.

To account for the dependence of the level set on the flow velocity the
flow and level set are updated twice each time step. The simulations are
performed at CFL∆t ≈ 0.56. Primitive variable discretizations are used for
both fluids.

The test results for the solution at time t = 0.0075 s using the interface
flux (3.34) are presented in Table 3.7 and convergence in the L2 norm is
observed. In Figure 3.19 the interface evolution over time and the level set
profile at the final time are shown. Compared to the ideal gas shock tube
test results, it takes much longer for the interface to reach the star velocity.
Also, the level set becomes more distorted over time. The reason for this
behavior lies in the use of the global flow velocity for advecting the level
set. This problem can be fixed by reinitializing the level set every few time
steps. In Figure 3.20 the density, density zoom, velocity and pressure at
the final time using the interface flux (3.34) are shown. In Figure 3.21 the
mass evolution for the magma and the ideal gas when using the interface
flux (3.34) and without slope limiter is shown. The amount of mass loss is
negligible. In Figure 3.22 the density, density zoom, velocity and pressure
at the final time using the interface flux (3.34) and the slope limiter are
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Table 3.7: Error and order of accuracy in the L2 norm of the density for the isothermal
magma and ideal gas Euler shock tube test using the interface flux (3.34).

Nx × Nt L2 error L2 order

40 × 30 28.5747 −
80 × 60 16.7343 0.772

160 × 120 10.6157 0.657
320 × 240 5.95713 0.834

x

t

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

x

ψ

-4 -2 0 2 4
-6

-4

-2

0

2

4

6

Figure 3.19: The time evolution of the interface position and level set at time t =
0.0075 s for the Euler magma - ideal gas shock tube using 320 background elements,
interface flux (3.34) and no slope limiter.

shown. Like in the shock tube test with the ideal gas, the slope limiter
reduces the spikes at the shock wave but introduces a small offset error
in the density, velocity and pressure profiles in the star region. Also, in
the solution with the slope limiter the error in the shock position is visibly
larger, probably because of the numerical dissipation added by the slope
limiter to the flow velocity near the shock.

Finally, the simulation is run without the initial time steps, from t =
T/10 to t = T . The resulting density profile is shown in Figure 3.23.
Because the error made in the first number of time steps remains is excluded
in this simulation, the results are much better.
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Figure 3.20: The exact (dotted) and numerical (solid) density, density zoom, velocity
and pressure at time t = 0.0075 s for the Euler magma - ideal gas shock tube using 320
background elements, interface flux (3.34) and no slope limiter.
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Figure 3.21: Relative mass over time of magma (left) and ideal gas (right) for the Euler
magma - ideal gas shock tube using 320 background elements, interface flux (3.34) and
no slope limiter. The relative mass is defined as |Me −Mh|/Me, with Me the exact and
Mh the numerical amount of mass.

In conclusion, the two-fluid method was used to solve a magma - ideal
gas shock tube problem with the interface flux (3.34) with promising re-
sults. Using the slope limiter reduced the spikes near the expansion and
shock waves, but introduced a small offset error in the star region and also
decreased the accuracy of the shock position. Starting the simulation at
t = T/10 greatly improved the numerical results. In this test the level set
became very distorted, probably because of the advection with the global
velocity. Periodic reinitialization of the level set can be used to solve this
problem.

3.8 Cylinder flow

Considered is the subsonic flow of an ideal gas around a cylinder at Mach
number 0.38 ([9, 52, 99]). The purpose of this test is to compare the
performance of the method for cut-cell and boundary conforming meshes,
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Figure 3.22: The exact (dotted) and numerical (solid) density, density zoom, velocity
and pressure at time t = 0.0075 s for the Euler magma - ideal gas shock tube using 320
background elements and the interface flux (3.34) and slope limiter.
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Figure 3.23: The exact (dotted) and numerical (solid) density and density zoom at time
t = 0.0075 s for the Euler magma - ideal gas shock tube using 320 background elements
and the interface flux (3.34), no slope limiter and starting at initial time t = T/10.

respectively. The two dimensional Euler equations are defined as

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
+
∂(ρuv)

∂y
= 0

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2 + p)

∂y
= 0

∂(ρE)

∂t
+
∂(u(ρE + p))

∂x
+
∂(v(ρE + p))

∂y
=0, (3.44)

with ρ the density, u the velocity in the x direction, v the velocity in the y
direction, p the pressure and ρE = ρu2/2+ ρe the total energy, with ρe the
internal energy. In addition to these equations the equation of state (EOS)
3.16 is required to account for the thermodynamic properties of the ideal
gas. At the cylinder surface solid wall boundary conditions

(u, v) · n̄ = 0 (3.45)
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are imposed. The far field state is defined as:

ρ∞ = 1.18902 kg/m3, u∞ = 1.304 × 102 m/s,

v∞ = 0 m/s, p∞ = 1.0 × 105 Pa (3.46)

At the cylinder faces the solid wall conditions are implemented in the
HLLC flux by defining the right state as:

ρR = ρL

uR = uL − 2(uLnx + vLny))nx

vR = vL − 2(uLnx + vLny))ny

pR = pL. (3.47)

At the far field boundary the far field state is used.
The Mach number is defined as M = u/a with a =

√

λp/ρ the speed of
sound. Since the flow is subsonic, M < 1 everywhere. The total pressure
loss is defined as

ploss = 1 −
p

p∞

(

1 + 1
2(γ − 1)M2

1 + 1
2 (γ − 1)M2

∞

)
γ

γ−1

. (3.48)

For subsonic inviscid flow the total pressure loss should be zero; hence, it
is a good indicator for the accuracy of the numerical algorithm.

The test was performed both for a refined cut-cell mesh and a boundary
conforming mesh around the cylinder. Computations were continued until
steady state was reached. The cylinder has a radius of 1m. The cut-cell
simulations were performed using a 160×160 background mesh covering the
area [−10m, 10m] × [−10m, 10m]. The fitted mesh had 96 × 72 elements
and an outer radius of 56.6. In the tests only linear basis function were
used.

The results using a cut cell mesh with 160× 160 elements are shown in
Figures 3.24 and 3.25. The results using a boundary conforming mesh of
96 × 72 elements are shown in Figures 3.26 and 3.27.

For both types of meshes the results are of similar quality as those
found in [9] and [99]. No convergence problems such as experienced in
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Figure 3.24: Mesh and normalized pressure for M = 0.38 subsonic flow around a
cylinder of radius 1m and using a 160× 160 cut-cell mesh of dimensions [−10m, 10m]×
[−10m, 10m].
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Figure 3.25: Mach number and pressure loss for M = 0.38 subsonic flow around a
cylinder of radius 1m and using a 160× 160 cut-cell mesh of dimensions [−10m, 10m]×
[−10m, 10m].
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Figure 3.26: Mesh and normalized pressure for M = 0.38 subsonic flow around a
cylinder of radius 1m and using a 96 × 72 boundary conforming mesh with outer radius
56.6m.
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Figure 3.27: Mach number and pressure loss for M = 0.38 subsonic flow around a
cylinder of radius 1m and using a 96 × 72 boundary conforming mesh with outer radius
56.6m.
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[9] are observed, most likely because of the difference in element shapes,
triangles in [9] versus quadrilaterals here. The results using the boundary
conforming mesh are somewhat better than those with the cut-cell mesh.
The efficiency of the simulation with the cut-cell mesh can be improved by
regular h-adaptation of the background mesh near the cylinder boundary.

3.9 Helium cylinder - ideal gas shock interaction

To test the algorithm in a more complex setting computations are per-
formed on the interaction between a cylindrical helium volume in a tube
filled with an ideal gas and a Mach 1.22 shock wave [30, 42, 67, 102] as illus-
trated in Figure 3.28. For the Euler equations this problem has no unique
solution, because the shock induces a Rayleigh-Taylor instability at the in-
terface, but it presents a challenging test case for the numerical algorithm.
The adiabatic indices and the gas constants for an ideal gas and helium are
given as γI = 1.4, RI = 287.0J/kgK and γH = 1.67, RH = 2080.0J/kgK.
Initially the helium volume is a cylinder with a radius 0.025m and is located
at (x, y) = (0m, 0m) while the shock is located at x = 0.055625m. The
domain has dimensions [−0.11125m, 0.11125m] × [−0.0445m, 0.0445m].
Both fluids are modelled using the two dimensional Euler equations. The
initial state of the helium, and the ideal gas in front and behind of the
shock are given as:

(ρB , uB , vB , pB) = (0.164062 kg/m3, 0 m/s, 0 m/s, 1.0 × 105 Pa)

(ρL, uL, vL, pL) = (1.18902 kg/m3, 0 m/s, 0 m/s, 1.0 × 105 Pa) (3.49)

(ρR, uR, vR, pR) = (1.63652 kg/m3,−114.473 m/s, 0 m/s, 1.5698 × 105 Pa),

where the density of the helium is related to the density of the air in front
of the shock as ρB = ρLRI/RH . The shock velocity is VS = MaL =
418.628m/s, with aL =

√

γIpL/ρL = 343.138m/s. The states on both
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Figure 3.28: Helium cylinder - shock interaction test

sides of the shock wave are related through the Rankine-Hugoniot relations:

(ρR − ρL)VS = (ρRuR − ρLuL)

(ρRuR − ρLuL)VS = (ρRu
2
R − ρLu

2
L) + (pR − pL)

(ρRER − ρLEL)VS = uR(ρRER + pR) − uL(ρLEL + pL). (3.50)

Using the definition of the total energy, ρE = ρ(u2 + v2)/2 + ρe, and the
EOS for an ideal gas, ρe = p/(γI − 1), the Rankine-Hugoniot conditions
can be solved for ρR, uR and pR.

When the initial shock wave incidents the upstream boundary of the
helium volume, the shock is transmitted into the helium volume and ac-
celerates due to the decrease in density, while the upstream boundary of
the helium volume is set into downstream motion and an expansion wave is
generated moving in the upstream direction. When the transmitted shock
incidents the downstream boundary of the helium volume, the shock is
transmitted and decelerates, while the downstream boundary of the helium
volume is set into downstream motion and another expansion wave is gen-
erated moving in the upstream direction. Over time the helium volume
flattens and is subsequently transformed into a vortex like structure. Ba-
sically the cylindrical helium volume acts as a divergent lens for the shock
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wave. In addition, the top wall adds to the complexity of the solution
through a number of wave reflections.

At the top, bottom and left boundaries solid wall boundary conditions
are imposed. At the right boundary the ideal gas state behind the shock is
imposed weakly by using it as the external state of the numerical flux. At
the interface continuity of the normal velocity and the pressure is imposed
and the numerical flux (3.34) is used. To account for the dependence of the
level set on the flow velocity the flow and level set are updated twice during
each time step. Because the solution is symmetric with respect to the x-axis,
computations are performed on the half domain [−0.11125m, 0.11125m] ×
[0m, 0.0445m]. The simulations are run using 40×8, 80×16, 160×32 and
320 × 64 elements from time t = 0 s to 3.125 × 10−4 s at CFL ≈ 1.0 using
linear basis functions for the flow field and the level set, where the level set
smoothing reconstructs a bilinear level set. By solving for a linear level set
the Rayleigh-Taylor instability is effectively suppressed. Because the shock
is not very strong the slope limiter is not used.

The density contours for subsequent times are shown in Figures 3.29 and
3.30. The mesh at time t = 3.4375×10−4 s for different mesh resolutions is
shown in Figures 3.31 and 3.32. The evolution of helium mass over time for
different mesh resolutions is shown in Figure 3.33 and is relatively small.
The mesh evolution is illustrated for 80 × 16 elements in Figure 3.34.

In conclusion, the interaction between a helium cylinder and a shock
wave was simulated using the interface flux (3.34). The mass loss was
observed to be small.

3.10 Discussion

The space-time discontinuous Galerkin method with interface tracking has
been applied to a number of one and two dimensional single-fluid and two-
fluid test problems.

1. Using a one dimensional linear advection test it was observed that
the flow solution has approxmate orders of accuracy of 2 for smooth
initial conditions and 0.36 for discontinuous initial conditions, which
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Figure 3.29: Density contours at times t = 0.625 × 10−4 s, 0.9375 × 10−4 s, 1.25 ×
10−4 s, 1.5625×10−4 s, 1.875×10−4 s for the helium cylinder - ideal gas shock interaction
test using 320 × 64 elements.
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Figure 3.30: Density contours at times t = 2.1875 × 10−4 s, 2.5 × 10−4 s, 2.8125 ×
10−4 s, 3.125×10−4 s, 3.4375×10−4 s for the helium cylinder - ideal gas shock interaction
test using 320 × 64 elements.
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Figure 3.31: Mesh at time 3.4375 × 10−4 s for the helium cylinder - ideal gas shock
interaction test using 40 × 8 and 80 × 16 elements.
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Figure 3.32: Mesh at time 3.4375 × 10−4 s for the helium cylinder - ideal gas shock
interaction test using 160 × 32 and 320 × 64 elements.
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Figure 3.33: Relative helium mass over time for the helium cylinder - ideal gas shock
interaction test using 40× 8, 80× 16, 160× 32 and 320× 64 elements. The relative mass
is defined as |Me −Mh|/Me, with Me the exact and Mh the numerical amount of mass.

matched theoretical orders of accuracy obtained in various studies.
For the discontinuous solution, results improved when interface track-
ing was applied, because the interface could be captured exactly by
mesh refinement. For a non-constant advection velocity it was ob-
served that the interface tracking works quite well in combination
with solid wall interface conditions.

2. The level set accuracy was tested using Zalesak’s test. The shape
of the disc after one rotation was preserved well at smooth area’s of
the disc, while in the neighborhood of the sharp corners the accuracy
clearly suffered.

3. The method was applied to a one dimensional ideal gas single-fluid
Euler shock tube problem. Using a contact interface flux, oscillations
were observed at the interface. An alternative interface flux (3.34)
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Figure 3.34: Interface evolution for the helium cylinder - ideal gas shock interaction
test using 80 × 16 elements.
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was developed, which reduces the oscillations at the interface at the
cost of a very small mass conservation error. The interface flux (3.34)
was tested with promising results. Slope limiting reduced the spikes
in the solution but also caused a decrease in accuracy. Starting the
simulation at t = T/10 greatly improved the results.

4. The method was applied to a magma - ideal gas shock tube. This
test case featured two very different fluids and very high density and
pressure ratio’s. The method gave good results with the interface
flux (3.34). Slope limiting reduced the spikes in the solution but also
caused a decrease in accuracy. Starting the simulation at t = T/10
greatly improved the results.

5. The method was applied to subsonic flow around a cylinder at Mach
0.38. A comparison was made between the results using a boundary
conforming mesh around the cylinder and a cut-cell mesh. The result
matched those found in the literature. It was observed that for the
cut-cell mesh h-refinement should be applied to the background mesh
to increase performance.

6. The method was applied to calculate the interaction between a helium
cylinder and a shock wave using the interface flux (3.34). The mass
loss was observed to be small.

In general is was found that the level set deformation over time restricted
the simulation lengths. The addition of a level set reinitialization procedure
seems to be the most effective way to fix this problem. To improve the
efficiency and stability of the method the incorporation of hp-refinement
and a multigrid algorithm seems promising.
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Chapter 4

Design and Implementation

4.1 Introduction

In Chapter 2 a new method for two-fluid flow computations was presented,
which combines a space-time discontinuous Galerkin (STDG) finite element
discretization with cut-cell based front tracking and a level set method.
Since this method has a high degree of complexity its implementation is a
non trivial task and therefore in this chapter issues related to the design
and implementation of the two-fluid method will be addressed.

The outline of this chapter is as follows. In Section 4.2 aspects of the
object oriented design of the method are presented. In Section 4.3 the mesh
refinement implementation is discussed. In Section 4.4 the implementation
of the method in hpGEM, a package for discontinuous Galerkin finite el-
ement methods, is discussed. Finally, in Section 4.5 some conclusions are
presented.

4.2 Object oriented design

The two-fluid method has been designed and implemented using Object
Oriented Programming (OOP). OOP is based on the use of self sufficient
modules called objects and their interactions. Each object has a blueprint,
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called a class, which defines the common attributes and methods of that
type of object. The attributes are encapsulated in the object, which en-
hances the safety of the data. The methods define the operations per-
formed by the object on its own data. Objects communicate with each
other through the process of message passing. Abstraction allows for the
definition of subclasses, which inherit the attributes and methods from their
parent classes, and in addition can introduce their own. Polymorphism en-
ables one common interface for many implementations, and for objects to
act differently under different circumstances.

General advantages of OOP are reusability, reliability, robustness, ex-
tensibility and maintainability, each of which is of great importance when
developing software with a high degree of complexity. For numerical meth-
ods OOP has the additional advantage that mathematical entities can be
directly related to individual classes, which allows for a strong connection
between the numerical method and its implementation. By using poly-
morphism a common interface can be defined for aspects such as problem
dimension and geometry types.

The Unified Modeling Language (UML) is a standardized graphical
modeling language which can be used for visualizing, specifying and con-
structing OOP software. The UML class diagram will be used to illustrate
classes, their attributes and operations. The algorithms will be defined
using pseudo code.

In the remainder of this section the OOP design for the two-fluid method
will be discussed.

4.2.1 Mesh

The two-fluid method involves two meshes. The first mesh is a static back-
ground mesh for solving the level set equation. The second mesh is used for
solving the two-fluid flow equations and is obtained by refining the back-
ground mesh where the level set is zero, to capture the interface between
the two fluids. An instance of a refined mesh is shown in Figure 4.1. In the
STDG numerical fluxes are usually conservative at each face and need to be
computed only once. Hence, it is efficient to perform computations using
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Figure 4.1: A two-fluid mesh showing the refinement around the interface. The num-
bering of the element, face and nodes is shown using larger to smaller font sizes.

two loops, one over elements and one over faces. Therefore, it is beneficial
to use a mesh composed of elements, faces and nodes. Each mesh is stored
in an object of class Meshm, where the superscript m = b,h is used to de-
note background and refined meshes, respectively. The class Meshm holds
containers for storing elements, faces and nodes where a container is de-
fined as a holder object used to store collections of objects. The use of data
containers allows for a separation of the various types of data related to a
single object. The containers are defined by classes ElementContainerm,
FaceContainerm and PhysicalNodeContainerm.

The container class types are chosen based on the type of operations
required. In addition to the type of operations it is also important at what
position in the container the operations take place. The background and
refined meshes are stored separately. An additional data structure stores
the relation between the two meshes. This approach has the advantage
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that the separate containers are kept simple. In addition, this separation
will make it easier to incorporate h-refinement at a later stage.

The containers classes have been chosen as follows:

• The ElementContainerm stores elements
Elementm[i], i = 0, · · · ,Nm

E , with Nm
E the number of elements. The

required operations are (1) inserting, (2) deleting, (3) iterating over
elements. The choice for the element container is a list.

• The FaceContainerm stores faces Facem[j], j = 0, · · · ,Nm
F , with

Nm
F the number of faces. The required operations are (1) insert-

ing, (2) deleting and (3) iterating over faces. Hence, the choice for
the face container is a list.

• The PhysicalNodeContainerm stores physical nodes
PhysicalNodem[k],k = 0, · · · ,Nm

N , with Nm
N the number of

nodes. The required operations are (1) inserting, (2) deleting, (3)
searching for nodes based on the nodal data (check if node exists)
and (4) iterating over the nodes. However, since operations (1)-(3)
are only required during mesh updates and are not performed very
often, a simple list should be sufficient. Alternatively, a search
optimized data structure like an ordered list may be used, with an
ordering based on the nodal coordinates.

The relation between the background and refined meshes is implemented
using a data structure MeshHierarchy[Nb

E]. It connects the parent el-
ements from the background mesh ElementContainerb[Nb

E] to the re-
spective child elements in the refined mesh ElementContainerh[Nh

E]. In
Figure 4.2 the class diagrams for the mesh related classes are given.

4.2.2 Element

The class Elementm[i] defines a single element. It stores the following
geometry related information:

• The geometry of the element in physical space, represented by an
object of the class PhysicalGeometry.
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�myPhysicalNodeContainer
NrElements�myElements NrFaces�myFaces �myPhysicalNodesPhysicalNode
�myFaceContainer NrPhysicalNodesElementContainer�myElements:Element+insert()+delete()+iterate()

Element Face
�myElementContainerFaceContainer�myFaces:Face+insert()+delete()+iterate()

PhysicalNodeContainer�myPhysicalNodes:PhysicalNode+insert()+delete()+search()

�myBackgroundMesh
MeshHierarchy�myBackgroundMesh:Mesh�myTwofluidMesh:MeshMesh�myElementContainer:ElementContainer�myFaceContainer:FaceContainer�myPhysicalNodeContainer:PhysicalNodeContainer�myTwofluidMesh

Figure 4.2: UML class diagram for the mesh classes. In the diagram every class is
represented by a box that contains, from top to bottom, the class name (written in
boldface), its attributes and its methods. The attributes are denoted by a - sign followed
by the attribute’s name, a : and the attribute’s class. The methods are denoted by a +
sign followed by the method’s name. Method arguments have been omitted to simplify
the diagram. The lines with diamonds denote aggregation relations between classes,
which indicate that the class on the side of the diamond owns a number of objects of the
other class type. The number of objects is either written at the right of the diamond or
omitted, in the case when the number equals one.
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• The geometry of the element in reference space, represented by an
object of the class ReferenceGeometry. The reference geometry
is used to define data expansions on the element and is also used for
integration.

• The mapping from the reference element onto the phys-
ical element, represented by an object of the class
ReferenceToPhysicalElementMapping. This mapping is
required for element and face integration and also for evaluations in
physical space.

• A child to parent element mapping, represented by an object of the
class ReferenceChildToParentElementMapping. This mapping
is required for prolongating and restricting solutions between the
background mesh and the refined mesh.

An instance of a physical geometry, reference geometry and reference ele-
ment to physical element mapping are illustrated in Figure 4.3. The class
PhysicalGeometry stores the following data:

• The global node indices (GNI) of vertices of the physical geometry,
stored using an array GNI[NPG

N ], with NPG
N the number of nodes.
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Each GNI corresponds to a physical point stored in the node con-
tainer. It is efficient to use GNI’s and a separate node container
because nodes are typically shared by multiple elements.

The class ReferenceGeometry stores the following data:

• The local node indices (LNI) of the vertices of the reference geometry,
stored using an array LNI[NRG

N ], with NRG
N the number of nodes of

the reference geometry.

• The nodal data corresponding to each LNI, stored in a node container
ReferenceNodeContainer[Nref

N ].

Typically only a few reference geometries are defined, each of which is
shared by a number of elements. Currently, in two space-time dimensions,
the two-fluid method requires triangle and quadrilateral reference geome-
tries and in three space-time dimensions, the two-fluid method requires
simplex, pyramid, prism and hexahedron reference geometries. The class
diagram for the element related classes is given in Figure 4.4. The mapping
from the reference onto the physical element, as represented by the class
ReferenceToPhysicalElementMapping is easily constructed from the
coordinates of the vertices in reference and physical space. In Figure 4.5
the element mappings used in the two-fluid method are illustrated.

The class Elementm[i] also stores information related to the two-fluid
refinement:

• Timeslab: Timeslab ∈ {Old,New}. Often, the STDG is imple-
mented using two timeslabs, one old and one new. The new timeslab
contains all the elements currently used in computations, while the
old timeslab contains the elements used in the previous time step.

• Fluid Type: FluidType ∈ {Fluid1,Fluid2}. The fluid type is used
to find out what variables are active and what equations need to
be solved in the element and on the element faces. An interface is
identified by unequal types of fluid in the left and right elements.
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«datatype»LNI
PhysicalGeometry�myGNIs:GNI

Element�myPG:PhysicalGeometry�myRG:ReferenceGeometry�myR2PElemMap:ReferenceToPhysicalElementMapping
�myRGReferenceGeometry�myLNIs:LNI�myPG ReferenceToPhysicalElementMapping

«datatype»GNINrGNI
�myR2PElemMapNrLNI�myGNIs�myLNIs

Figure 4.4: UML class diagram for the element class.

Finally, in addition to the information related to the element geometry
and the two-fluid refinement, the class Elementm[i] stores a number of
polynomial expansions for the test and trial functions. The expansions are
defined on the reference elements and linked to basis functions which are
also defined on the reference geometries:

• Basisfunctions: BasisFunctions[NBF], with NBF the number of ba-
sis functions.

The expansion coefficients are defined as:

• Flow Expansions: FlowExpansionCoefs[NFlow][NBF], with NFlow

the number of flow variables.

• Level Set Expansions: LevelSetExpansionCoefs[NBF].

The expansions used in the method are shown in Figure 4.6.
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NrBackgroundElements NrTwoFluidElements�myFlowData
FlowDataContainer�myFlowData:FlowData�myTwoFluidElemIds:ElementId

�myLevelSetData �myTwoFluidElemIdsLevelSetData�myBGElemIds«datatype»ElementId
NrBackgroundElementsNrTwoFluidElementsFlowData
Element�myElemId:ElementId

LevelSetDataContainer�myLevelSetData:LevelSetData�myBGElemIds:ElementId
�myElemId

Figure 4.6: UML class diagram for the expansion classes. The level set and flow field
expansions are defined on the reference background and refined elements, respectively.

4.2.3 Face

The class Face[j] defines a face which is either internal, connected to two
neighboring elements, or a boundary face, connected to one element. It
stores the following geometry related data:

• The geometry of the face in reference space, represented by an object
of the class FaceReferenceGeometry. The face reference geometry
is used in the face integration.

• The left and right element indices ElementLeft,ElementRight of the
elements connected to the face.

• The left and right local face indices (LFI) LFILeft,LFIRight. The
LFI indicates the location of the reference face in the reference ele-
ment.

• Two reference face to reference element map-
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ReferenceFaceToElementMappingElement ReferenceFaceToFaceMapping�myLeftElement
Face�myLeftElement:Element�myRightElement:Element�myLeftLFI:LFI�myRightLFI:LFI�myRF2FMap:ReferenceFaceToFaceMapping�myRF2EMap:ReferenceFaceToElementMapping

�myLeftLFI«datatype»LFI�
myRightElement�myRightLFI �myRF2FMap�myRF2EMap

Figure 4.7: UML class diagram for the face class.

pings ReferenceFaceToElementMappingLeft and
ReferenceFaceToElementMappingRight. These mappings
are required for face integration when evaluations in the reference
element are needed.

• The reference face to reference face mapping
ReferenceFaceToFaceMapping. This mapping is required
since the reference face orientation with respect to the left and the
right elements can be different.

The class diagram for the face related classes is given in Figure 4.7 and the
various face mappings are illustrated in Figure 4.8.

4.3 Mesh refinement

In this section the implementation of the two-fluid mesh refinement algo-
rithm for two and three space-time dimensions presented in Section 2.3
will be discussed. Based on a continuous level set function ψc defined on
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Ŝ
maps the reference face ŜK
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4.3 Mesh refinement

Algorithm 8 Mesh refinement algorithm.

1. FOR every Elementb[i] in Meshb DO
2. Calculate intersection of 0-level set ψc with Elementb[i]:

1) interface reference nodes N̂[NIF
N ]

2) local face indices LFI[NIF
N ]

3. Select RefinementType based on LFI[NIF
N ]

4. Create and store interface physical nodes NIF[NIF
N ]

5. FOR all child elements j defined by RefinementType DO
6. Create Elementh[j]
7. Store connectivity in MeshHierarchy[Nb

E]
8. Store Elementh[j] in Meshh

9. END DO
10.END DO
11.Generate faces for Meshh

12.FOR every element Elementh[j] in Meshh DO
13. Initialize data on Elementh[j]
14.END DO

the background mesh, the algorithm creates a refined mesh on which the
two-fluid flow computations can be performed.

In Algorithm 8 a reinterpretation of the mesh refinement algorithm
defined in Algorithm 1 is given, in terms of the UML classes defined in
Section 4.2.

The two-fluid element refinement is performed separately for each ele-
ment. Given an element, first the intersection of the 0-level set with the
element is calculated (Equation 2.19), from which is obtained a list of cut
node coordinates defined in the elements reference space, and corresponding
LFI’s. The list of LFI’s is used to find the type of the element refinement,
and based on this type the element refinement rule is retrieved, which de-
fines all the child elements in terms of the local node indices (LNI) of the
parent element and of the cut nodes. To create the child elements only these
LNI’s and the corresponding nodal coordinates are required. The two-fluid
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element refinement is illustrated in Figure 4.9. The use of refinement types
and LNI’s allows for a general definition of the two-fluid refinement, in the
sense that given a background element only the cut node positions and re-
finement type have to be specified for the two-fluid refinement to be fully
determined.
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Figure 4.9: Two-fluid element refinement. On the left a background reference element
is shown with nodes numbered with LNI’s 0 − 3 (normal fontsize), corresponding to the
nodal coordinates (−1,−1), (1,−1), (−1, 1), (1, 1), and faces numbered with LFI’s 0 − 3
(small fontsize). The background element is cut by an interface at the faces with LFI’s
0 and 2 and the resulting refinement is shown on the right. By assigning the interface
nodes (0.4,−1.0), (1.0, 0.1) the LNI’s 4 and 5 the child elements 0−3 (large fontsize) can
be defined in terms of their LNI’s as {0, 4, 2}, {4, 1, 5}, {5, 3, 2} and {4, 5, 2}.

From the collection of child elements Ki,n
j , the faces are generated as

follows. First for every element a face descriptor is created of each face of
that element, consisting of the element index, the local face index (LFI)
and the GNI’s of the face nodes, where the LFI is a number assigned to
each face in the reference element. The face descriptors are stored in a
container and sorted by the face node GNI’s. The faces are constructed by
looping over the ordered face descriptors, checking if subsequent descriptors
describe the same face or not, and creating an internal or boundary face.

The two-fluid element refinement was developed for two and three space-
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time dimensions using square and cube shaped background elements in Sec-
tions 2.3.4 and 2.3.5, respectively. The element refinement implementation
uses of a classification of cut types based on the sign of the level set in the
background element vertices. For this purpose the concept of a level set
code was introduced, a binary number that stores the signs of the level set
in all the vertices of the background element, where − and + correspond
to 0 and 1, respectively. The implementation incorporates the data defined
in these sections as follows:

1. Create the array Perm[i] which stores the permutations of the back-
ground element given in Tables 2.1 and 2.5 for two and three space-
time dimensions, respectively. For each permutation the permuted
LNI’s of all the cube vertex LNI’s are stored. Using Perm[i] an array
of permutations of the edges PermEdge[j] is derived (Algorithm 2).

2. Create the array BaseTypeBS[k] which stores the base types in
terms of their level set codes given in Tables 2.2 and 2.6 for two and
three space-time dimensions, respectively.

3. Create for every base type k an array elemRefType[k] which stores
for each element refinement rule the child elements in terms of their
LNI’s as defined in Tables 2.4 and 2.9, 2.10 for two and three
space-time dimensions, respectively. The LNI’s range from 0 to
Nv − 1, corresponding to the Nv background element vertices, Nv

to Nv +Ne − 1, corresponding to the interface cut nodes for each of
the Ne edges of the cube, and Nv + Ne, for an additional node in-
side the element. The child element fluid types are stored in an array
elemRefTypeFluidSigns[k], with values 0, 1 denoting the two-fluid
types and 2 denoting an ambiguous fluid type, which can occur when
two interfaces are present in the element.

4. Create the array permVec[l] which stores for each level set code l the
corresponding base type k and permutation i as defined in Tables 2.3
and 2.7 for two and three space-time dimensions, respectively. This
array is created at creation of the refiner object, by looping over all
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level set codes, applying each permutation and checking if it matches
a base type using Algorithm 3. During computations Algorithm 4 is
used. Given a level set code l the corresponding base type k and per-
mutation i are given by permVec[l]. The LNI’s of the child elements
given by elemRefType[k] are permuted using cubePerm[i] for
nodes 0 to Nv−1 and cubePermEdge[i − Nv] + Nv for nodes Nv to
Nv+Ne−1. NodeNv+Ne is always permuted onto itself. The child el-
ement fluid type is directly found from elemRefTypeFluidSigns[i].

The two-fluid element refinement requires the following data:

• Interface cut face indices LFIIF[NIF
N ] and cut node positions

NodesIF[NIF
N ], where NIF

N denotes the number of interface nodes.
The interface cut face indices are used to select a refiner type.

• Child element definition LNIl[NChildNodes],
l = 0, · · · ,NChildElememts. Here NChildElements denotes the
number of child elements and NChildNodes denotes the number of
local node indices defining child element l. The child elements are
defined in terms of the local node indices of the parent element
augmented with local node indices of the cut nodes.

The class diagram is given in Figure 4.10.

4.4 hpGEM

The process of implementing a DG method is very time consuming, due
to the relatively high complexity of these methods. However, implementa-
tions will often have a common basis of basic and potentially re-usable DG
functionality. This observation motivated the development of hpGEM [65],
an object-oriented software package for DG methods.

The codes implementing the two-fluid method used for the simulations
discussed in Chapter 3 were all created with help of the hpGEM pack-
age. The hpGEM package is implemented using the standardized and com-
monly used OOP language C++ and therfore shares many of the benefits
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NrOfrefTypes	myTwoFluidRefiners
	myCutNodes«datatype»LFI
LocalCutInfo	myCutLFIs:LFI	myCutNodes:ReferenceNode

«datatype»CLNI «datatype»ReferenceNode	myCutLFIsChildElementLocalDescriptor	myCLNIs:CLNI
TwoFluidRefinerContainer	myTwoFluidRefiners:TwoFluidRefinerTwoFluidRefiner	myChildElementDescriptors:ChildElementLocalDescriptor
	myCLNIsNrOfChildElemNodes
	myChildElementDescriptors

Figure 4.10: UML class diagram for the two-fluid refiner classes. The TwoFluidRefiner
data is static and defines for each refinement type the child elements. The LocalCutInfo
class is used during runtime for selecting a refiner and temporary storing the local cut
nodal data. It stores the cut node positions and the local face indices.

and drawbacks of this programming language. Polymorphism is featured
through the use of templates, which allow functions and classes to operate
with generic types. C++ templates add flexibility and because these are
instantiated at compile-time and after instantiation the resulting code is
equivalent to code written specifically for the passed arguments. Encapsu-
lation is implemented by allowing all members of a class to be declared as
either public, private, or protected, which allows for safer handling of data.
Namespaces are used to prohibit naming collisions and help make the code
structure more transparent. Also, C++ incorporates the Standard Tem-
plate Library (STL) which provides a number of container classes for often
used storage structures and access in an uniform manner by means of itera-
tors. The use of the hpGEM package allows for a reduction of development
time and provides quality control. In addition, hpGEM also provides a
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coding standard benefitting code sharing and maintenance.
In order to implement the method using the hpGEM package, a sep-

aration was made between parts that could be handled by hpGEM and
parts that needed to be added. The hpGEM package can handle basic DG
functionality available from the following subpackages:

• Geometry: Mesh generation, element and face factories, element, face
and node containers, physical and reference geometries and mappings.

• Base: Data storage on elements and faces, expansions, basis functions.

• Integration: Element and face integration including numerous inte-
gration rules.

• GlobalAssembly: Global assembly.

• Output: Output in Tecplot format.

The parts which needed to be added were mainly problem specific, consist-
ing of a main program, classes for the flow and level set variables, initial
and boundary conditions, element and face integrands, numerical fluxes
and the Runge-Kutta solver. In addition all classes related to the two-fluid
refinement had to be added. The problem specific parts were encoded using
the DG classes available from the hpGEM package as much as possible.

4.5 Discussion

In this chapter the object oriented programming (OOP) design and imple-
mentation of the two-fluid method in hpGEM, an OOP package for DG
methods, were discussed. The choice for the OOP language C++ was mo-
tivated by the general advantages of OOP such as reusability, reliability,
robustness, extensibility and maintainability. In addition the use of OOP
allowed for a strong connection between the numerical method and its im-
plementation. The use of hpGEM allowed for a reduction of the develop-
ment time and provided quality control and a coding standard benefitting
sharing and maintenance of the codes.
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Chapter 5

Conclusions and Further

Research

5.1 Conclusions

A novel numerical method for two-fluid flows has been presented. Here the
results of Chapters 2, 3 and 4 will be discussed in the contex of the research
objectives posed in the introduction.

1. The first research objective was to investigate and develop a discontin-
uous Galerkin method which could improve upon existing methods for
fluid flows with interfaces such as front tracking and front capturing
methods. This objective was addressed in Chapter 2 where a novel nu-
merical method for two-fluid flow computations was presented, which
combines the space-time discontinuous Galerkin (STDG) finite el-
ement discretization with the level set method and cut-cell based
front tracking. The space-time discontinuous Galerkin (STDG) finite
element method offers high accuracy, an inherent ability to handle
discontinuities and a very local stencil, making it relatively easy to
combine with local hp-refinement. For the interface handling a front
tracking approach was chosen because front tracking methods are ca-
pable of high accuracy. It was chosen to track the interface using
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cut-cell mesh refinement. Because this type of refinement is very
local in nature it combines well with the STGD. To compute the in-
terface dynamics the level set method (LSM) was chosen, because of
its ability to deal with merging and breakup, since it was expected
that the LSM combines well with the cut-cell mesh refinement and
also because the LSM is easy to extend to higher dimensions. The
small cell problem caused by the cut-cell refinement was solved by
using a merging procedure involving bounding box elements, which
improved stability and performance of the method. The interface con-
ditions could be incorporated in the numerical flux at the interface
and the STDG discretization ensures that the scheme is conservative
as long as the numerical fluxes are conservative. All possible cuts
the 0-level set could make with square and cube shaped background
elements were identified and for each cut an element refinement was
defined explicitly. To ensure connectivity of the refined mesh, the
dim-dimensional face refinements were defined equal to the dim− 1-
dimensional element refinements. It is expected that the scheme can
accurately solve smaller scale problems where the interface shape is
of importance and where complex interface physics are involved.

2. The second research objective was to investigate the numerical prop-
erties and performance of this method for model and real life prob-
lems. This objective was addressed in Chapter 3 where the method
was applied to a number of one and two dimensional single-fluid and
two-fluid test problems. The order of accuracy of the flow STDG
discretization was checked for a number of 1D linear advection tests,
and found to be approximately 2 for continuous and 0.36 for discon-
tinuous initial conditions. In order to test the level set accuracy the
Zalesak disc test problem was examined and it was found that that
the linear approximation of the level set gave a decrease in accuracy
near sharp corners. The accuracy of the method was examined for a
single-fluid ideal gas shocktube problem and a magma-air shocktube
problem featuring high density and pressure ratio’s. To remove flow
oscillations near the interface a novel interface flux was developed,
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based on the HLLC flux for a contact discontinuity, which could com-
pensate for small errors in the interface position by allowing for a
small mass loss. The resulting interface flux could handle interface
discontinuities well. For both tests orders of accuracy of about 0.5
for discontinuous flow solutions were found. Slope limiting was found
to reduce the spikes in the solution well but at the cost of a decrease
in accuracy. Next, the performance of the method was checked using
cut-cell and boundary wrapped meshes, by computing the subsonic
flow around a cylinder at a subsonic Mach number of 0.38. It was
found that the results were comparable. It was observed that for the
cut-cell mesh h-refinement should be applied to the background mesh
to increase performance. Lastly, the method was applied to calculate
the interaction between a helium cylinder and a shock wave. It was
found that the level set deformation restricted the simulation lengths.
The addition of a level set reinitialization procedure seems to be the
most effective way to fix this problem. To improve the efficiency
and stability of the method the incorporation of hp-refinement and a
multigrid algorithm seems promising.

3. The third research objective was to investigate the design and im-
plementation aspects for this method. This objective was addressed
in Chapter 4 where the Object Oriented Programming (OOP) design
and implementation of the two-fluid method were discussed. The
choice for the OOP language C++ was motivated by the general
advantages of OOP such as reusability, reliability, robustness, exten-
sibility and maintainability. In addition the use of OOP allowed for
a strong connection between the numerical method and its imple-
mentation. In addition, hpGEM, an OOP package for DG methods
was presented. The use of hpGEM allowed for a reduction of the de-
velopment time and provided quality control and a coding standard
benefitting sharing and maintenance of the codes.
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5.2 Further research

The following recommendations are made for further research:

• The strategy to define two-fluid elements can be generalized such that
it extends to four dimensions. Given the degree of generalization in
the current algorithm this appears to be possible although it will be
nontrivial.

• More advanced level set techniques can be implemented to reduce
level set deformation over time and improve the overall accuracy of the
method. This includes the narrow band approach, in which the level
set is solved only locally around the interface, level set reinitialization
and also the advection of the level set with the interface velocity,
which can be achieved by means of an extention velocity. For further
information, see [80].

• The incorporation of h-Refinement and/or multigrid algorithms to
improve the performance of the method.

Some interesting applications involve:

• The shallow water equations to simulate flooding and drying [5, 6,
15, 70, 86] two-phase flows [72] and other applications [3, 87, 101].
Because of the methods’ flexibility in defining flow domains with in-
terfaces it is expected that valuable contributions are possible in these
fields.

• The well known Rayleigh–Taylor and Kelvin-Helmholtz instability
tests, which are interesting because they feature extreme interface
deformation.

• Interface related phenomena with the method including interface
curvature, tension and contamination, chemical reactions and mem-
branes, which play a role in many real life two-fluid problems.

130



Bibliography

[1] Adalsteinsson, D. & Sethian, J.A. 1995 A fast level set method for propagating
interfaces, J. Comp. Phys. 118, 269–277.

[2] Ahn, H.T., Shashkov, M. 2009 Adaptive moment-of-fluid method, J. Comp. Phys.

228, 2792–2821.

[3] Akers, B., Bokhove, O. 2008 Hydraulic Flow through a Channel Contraction:
Multiple Steady States, Phys. Fluids, 20, 056601.

[4] Almgren, A.S., Bell, J.B., Collela, P. & Marthaler, T. 1997 A Cartesian
mesh projection method for the incompressible Euler equations in complex geometries,
SIAM J. Sci. Comp. 18(5), 1289–1309.

[5] Ambati, V.R. 2006 Flooding and drying in discontinuous Galerkin discretizations
of shallow water equations, ECCOMAS Egmond aan zee, European Conference on
Computational Fluid Dynamics. http://proceedings.fyper.com/eccomascfd2006/.

[6] Ambati, V.R. and Bokhove, O. 2007 Space-time discontinuous Galerkin discretiza-
tion of rotating shallow water equations, J. Comp. Phys., 225(2), 1233-1261.

[7] Ambati, V.R. and Bokhove, O. 2007 Space-time discontinuous Galerkin finite
element method for shallow water flows, J. Comp. Appl. Math., 204(2), 452-462.

[8] Atkins, H.L. & Shu, C.-W. 1998 Quadrature-free implementation of discontinuous
Galerkin methods for hyperbolic equations, AIAA J. 36, 775–782.

[9] Bassi, F. & Rebay, S. 1997 High-order accurate discontinuous finite element solution
of the 2D Euler equations, J. Comp. Phys, 138, 251–285.

[10] Bassi, F. & Rebay, S. 1997 A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes equations, J.

Comp. Phys. 131, 267–279.



Bibliography

[11] Biswas, R., Devine, K.D. & Flaherty, J. 1994 Parallel, adaptive finite element
methods for conservation laws, Appl. Numer. Math. 14, 255-283.

[12] Bokhove, O. 2001 Numerical modeling of magma-repository interactions, Univer-
sity of Twente, 97 pp, http://eprints.eemcs.utwente.nl/.

[13] Bokhove, O. 2002 Decompressie van magma in opslagtunnels, Ned-

erlands Tijdschrift voor Natuurkunde 68, 232–235, English version:
http://eprints.eemcs.utwente.nl/.

[14] Bokhove, O., Woods, A.W., & de Boer, A. 2005 Magma Flow through Elastic-
Walled Dikes, Theor. Comp. Fluid Dyn. 19, 261–286.

[15] Bokhove, O. 2005 Flooding and drying in finite-element Galerkin discretizations
of shallow-water equations. Part I: One dimension, J. Sci. Comp. 22, 47-82.

[16] Causon, D.M., Ingram, D.M., Mingham, C.G., Yang, G. & Pearson, R.V.

2000 Calculation of shallow water flows using a Cartesian cut element approach, Adv.

Water Resour. 23, 545–562.

[17] Cockburn, B. & Shu, C.W. 1989 TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for scalar conservation laws II: General framework,
Math. Comp. 52, 411-435.

[18] Cockburn, B., Lin, S.Y. & Shu, C.W. 1989 TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for scalar conservation laws III: One
dimensional systems, J. Comp. Phys. 84, 90–113.

[19] Cockburn, B., Hou, S. & Shu, C.W. 1990 TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for scalar conservation laws IV: The
multidimensional case, Math. Comp. 54, 545–581.

[20] Cockburn, B. & Shu, C.W. 1998 The Runge-Kutta discontinuous Galerkin finite
element method for conservation laws V: Multidimensional systems, J. Comp. Phys.

141, 199–224.

[21] Cockburn, B. & Shu, C.W. 1998 The local discontinuous Galerkin method for
time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35(6), 2440–

2463.

[22] Cockburn, B., Karniadakis, G.E. & Shu, C.W. 2000 Discontinuous Galerkin
methods theory, computation and applications, Lecture Notes in Computational Sci-
ence and Engineering. Vol.11, Springer, Berlin.

132



Bibliography

[23] Cockburn, B. et al. 2002 Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations, Math. Comp. 72, 577–606.

[24] Coirier, W.J. & Powell, K.G. 1995 An accuracy assessment of Cartesian-mesh
approaches for Euler equations, J. Comp. Phys. 117, 121–131.

[25] Cuenot, B., Magnaudet, J. & Spennato, B. 1997 The effects of slightly soluble
surfactants on the flow around a spherical bubble, J. Fluid Mech. 339, 25–53.

[26] Daly, B.J. 1969 Numerical study of the effect of surface tension on interface insta-
blility, Phys. Fluids 12, 1340.

[27] Dandy, D.S. & Leal, L.G. 1989 Buoyancy-driven motion of a deformable drop
through a quiescent liquid at intermediate Reynolds numbers, J. Fluid Mech. 339,
161–192.

[28] De Zeeuw, D., Powell, K.G. 1993 An adaptively refined Cartesian mesh solver
for the Euler equations, J. Comp. Phys. 104(1), 56–68.

[29] Edwards, D.A., Brenner, H. & Wasan, D.T. 1991 Interfacial processes and

rheology, Butterworth-Heineman, Stoneham, Reed publishing.

[30] Fedkiw, R.P. et al. 1999 A Non-Oscillatory Eulerian Apporach to Interface in
Multimaterial Flows (The Ghost Fluid Method), J. Comp. Phys. 152, 457–492.

[31] Fidkowski, K.J. & Darmofal, D.L. 2007 A triangular cut-cell adaptive method
for high-order discretizations of the compressible Navier-Stokes equations, J. Comp.

Phys. 225, 1653–1672.

[32] Fritts, M.J., Cowley, W., Trease, H.E, eds. 1985 The Free Lagrange Method,

Lect. Notes Phys. Vol. 238, Springer-Verlag, New York.

[33] Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O. Poulikakos. D. et al.

1993 Wetting effects on the spreading of a liquid droplets colliding with a flat surface:
experiment and modeling, Phys. Fluids A. 5, 2588–2599.

[34] Fyfe, D.E., Oran, E.S. & Fritts, M.J. 1988 Surface tension and viscosity with
Lagrangian hydrodynamics on a triangular mesh, J. Comp. Phys. 76, 349–384.

[35] Glimm, J., Isaacson, E., Marchesin, D. & McBryan, O. 1981 Front tracking
for hyperbolic systems, Adv. Appl. Math. 2, 91-119.

[36] Glimm, J. & McBryan, O. 1985 A computational model for interfaces, Adv. Appl.

Math. 6, 422–435.

133



Bibliography

[37] Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zhang, Q. & Zeng, Y. 1998
Three-dimensional front tracking, SIAM J. Sci. Comp. 19, 201–225

[38] Glimm, J. et al. 1999 Simple Front Tracking, Contemp. Math. 238, 133–149.

[39] Glimm, J. et al. 2003 Conservative front tracking with improved accuracy, SIAM

J. Num. Anal. 41-5, 1926–1947.

[40] Greaves, M.D. 2005 Simulation of viscous water column collapse using adapting
hierarchial grids, Int.J.Num.Meth.Fluids 50, 693–711.

[41] Greaves, D.M. 2006 Viscous wave interaction with structures using adapting
quadtree grids and cartesian cut cells, ECCOMAS CFD 2006, Delft.

[42] Haas, J.-F. & Sturtevant, B. 1987 Interaction of weak shock waves with cylin-
drical and spherical gas inhomogeneities, J.Fluid Mech. 181, 41–76.

[43] Harlow, F.H. & Welch, J.E. 1965 Numerical calculation of time-dependent vis-
cous incompressible flow, Phys. Fluids 8, 2182.

[44] Hirt, C.V. & Nichols, B.D. 1981 Volume of fluid (VOF) methods for the dynamics
of free boundaries, J. Comp. Phys 39, 201–255.

[45] Hu, C. & Shu, C.W.- 1998 A Discontinuous Galerkin Finite Element Method for
Hamilton-Jacobi Equations, NASA/CR-1998-206903, Hampton.

[46] Hyman, J.M. 1984 Numerical methods for tracking interfaces, Phys. D. 12, 396–

407.

[47] Jaffre, J., Johnson, C. & Szepessy, A. 1995 Convergence of the discontinu-
ous Galerkin finite element method for hyperbolic conservation laws, Math.Models

Meth.Appl.Sci. 5, 367.

[48] Johansen, H. & Colella, P. 1998 A Cartesian mesh embedded boundary method
for Poisson’s equation on irregular domains, J. Comp. Phys. 147(1), 60–85.

[49] Klaij, C.M., van der Vegt, J.J.W. & van der Ven, H. 2006 Space-time dis-
continuous Galerkin method for the compressible Navier-Stokes equations, J. Comp.

Phys. 217, 589–611.

[50] Klaij, C.M., van der Vegt, J.J.W. & van der Ven, H. 2006 Pseudo-time step-
ping methods for space-time discontinuous Galerkin discretizations of the compressible
Navier-Stokes equations, J. Comp. Phys. 219, 622–643.

134



Bibliography

[51] Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N. & Flaherty, J.E.

2004 Shock detection and limiting with discontinuous Galerkin methods for hyperbolic
conservation laws, Appl. Num. Math. 48, 323–338.

[52] Krivodonova, L. & Berger, M. 2006 High-order Accurate Implementation of
Solid Wall Boundary Conditions in Curved Geometries, J. of Comp. Physics, Vol.
211, 492-512.
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Summary

Multifluid and multiphase flows involve combinations of fluids and inter-
faces which separate these. These flows are of importance in many natural
and industrial processes including fluidized beds and bubble columns. Of-
ten the interface is not static but moves with the fluid flow velocity. Also,
interface topological changes due to breakup and coalescence processes may
occur. Solutions typically have a discontinuous character at the interface
between different fluids because of curvature and surface tension effects. In
addition, the density and pressure differences across the interface can be
very high, like in the case of liquid-gas flows. Also, the existence of shock
or contact waves can introduce additional discontinuities into the problem.

The aim of this research project was to develop a discontinuous Galerkin
method for two-fluid flows, which is accurate, versatile and can alleviate
some of the problems commonly encountered with existing methods.

A novel numerical method for two-fluid flow computations is presented,
which combines the space-time discontinuous Galerkin finite element dis-
cretization with the level set method and cut-cell based interface tracking.
The space-time discontinuous Galerkin (STDG) finite element method of-
fers high accuracy, an inherent ability to handle discontinuities and a very
local stencil, making it relatively easy to combine with local hp-refinement.
A front tracking approach is chosen because these methods ensure a sharp
interface between the fluids are capable of high accuracy. The front tracking
is incorporated by means of cut-cell mesh refinement, because this type of
refinement is very local in nature and hence combines well with the STGD.
To compute the interface dynamics the level set method (LSM) is chosen,
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because of its ability to deal with merging and breakup, since it was ex-
pected that the LSM combines well with the cut-cell mesh refinement and
also because the LSM is easy to extend to higher dimensions. The small
cell problem caused by the cut-cell refinement is solved by using a merg-
ing procedure involving bounding box elements, which improves stability
and performance of the method. The interface conditions are incorporated
in the numerical flux at the interface and the STDG discretization ensures
that the scheme is conservative as long as the numerical fluxes are conserva-
tive. All possible cuts the 0-level set can make with square and cube shaped
background elements are identified and for each cut an element refinement
is defined explicitly. To ensure connectivity of the refined mesh, the dim-
dimensional face refinements are defined equal to the dim− 1-dimensional
element refinements. It is expected that this scheme can accurately solve
smaller scale problems where the interface shape is of importance and where
complex interface physics are involved.

To investigate the numerical properties and performance of the numer-
ical algorithm it is applied to a number of one and two dimensional single
and two-fluid test problems, including a magma - ideal gas shocktube and
a helium cylinder - shock wave interaction problem. To remove oscillations
in the flow field near the interface a novel interface flux is presented, which
is based on the HLLC flux for a contact discontinuity and can compensate
for small errors in the interface position by allowing for a small mass loss.
Slope limiting was found to reduce spikes in the solution at the cost of a
decrease in accuracy. It was found that the level set deformation restricted
the simulation lengths. This problem can be solved by adding a level set
reinitialization procedure. To improve the efficiency and stability of the
two-fluid numerical algorithm it is advised to incorporate hp-refinement
and a multigrid algorithm.

Next, the Object Oriented Programming (OOP) design and implemen-
tation of the two-fluid method were discussed. The choice for the OOP
language C++ was motivated by the general advantages of OOP such as
reusability, reliability, robustness, extensibility and maintainability. In ad-
dition the use of OOP allowed for a strong connection between the numeri-
cal method and its implementation. In addition, hpGEM, an OOP package
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for DG methods was presented. The use of hpGEM allowed for a reduc-
tion of the development time and provided quality control and a coding
standard which benefitted the sharing and maintenance of the codes.
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Samenvatting

Meer vloeistof en meer fase stromingen worden gekenmerkt door de aan-
wezigheid van meerdere vloeistoffen en/of gassen en interfaces welke deze
van elkaar scheiden. Dit type stromingen is belangrijk in veel natuurlijke
en industriële processen zoals bijvoorbeeld geflüıdiseerde bedden en bel-
lenkolommen. De interface is meestal niet statisch maar beweegt met de
vloeistof. Ook kan de interface topologie veranderen door breking of samen-
voeging van interfaces. Grootheden zoals de dichtheid, tangentiële snelheid
en druk zijn vaak discontinu over de interface vanwege oppervlakte krom-
mings en -spannings effecten. Deze discontinüıteiten kunnen bovendien erg
sterk zijn, zoals in het geval van vloeistof-gas stromingen. Additionele dis-
continüıteiten zoals schokgolven of contact discontinüıteiten kunnen ook
een rol spelen.

Het doel van dit promotie onderzoek was het ontwikkelen van een dis-
continue Galerkin eindige elementen methode voor twee vloeistof en/of gas
stromingen, welke nauwkeurig en breed toepasbaar is en welke een alter-
natief kan bieden voor gangbare methoden.

Een nieuwe methode voor twee vloeistof en/of gas stromingen wordt
gepresenteerd, welke een ruimte-tijd discontinue Galerkin eindige elementen
discretisatie combineert met de level set methode en cut-cell interface track-
ing. De ruimte-tijd discontinue Galerkin (RTDG) eindige elementen meth-
ode biedt een hoge nauwkeurigheid, kan goed omgaan met discontinüıteiten
en heeft een erg lokaal rekenrooster, waardoor de methode relatief makke-
lijk te combineren is met lokale hp-verfijning. Er is gekozen voor een front
tracking methode vanwege de scherpe interface voorstelling en de hoge
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nauwkeurigheid van dit type methoden. De front tracking maakt gebruik
van cut-cell verfijning, welke vanwege haar lokale natuur goed te combineren
is met de RTDG. De interface dynamiek wordt berekend met behulp van de
level set methode (LSM). De LSM kan omgaan met interface samenvoeging
en breking en is makkelijk uit te breiden naar hogere dimensies. Een merg-
ing procedure wordt gebruikt om verfijnde elementen welke te klein zijn
samen te voegen, wat de nauwkeurigheid en stabiliteit van de methode ten
goede komt. De interface condities worden verwerkt in de numerieke flux
op de interface. De RTDG discretisatie zorgt ervoor dat het schema con-
servatief is zolang als de numerieke fluxen conservatief zijn. Alle mogelijk
doorsnijdingen van de 0-level set met vierkante en kubusvormige element
zijn gëıdentificeerd en voor elke type doorsnijding is een expliciete element
verfijning bepaald. Om de connectiviteit van het verfijnde mesh te kunnen
garanderen zijn de dim-dimensionale face verfijningen gelijk aan de dim-
1-dimensionale element verfijningen. Verwacht wordt dat deze methode
nauwkeurig kleinschalige problemen kan oplossen waar de interface vorm
en complexe interface fysica belangrijk zijn.

Om haar numerieke eigenschappen en efficiëntie te kunnen bepalen is
de numerieke methode gebruikt om een aantal meer vloeistof test prob-
lemen op te lossen in een en twee ruimte dimensies. Onder andere een
magma-lucht schokbuis probleem en een helium cilinder - schok golf inter-
actie probleem zijn opgelost. Om oscillaties in de stromings velden bij de
interface te verwijderen wordt een alternatieve interface flux gepresenteerd
welke gebaseerd is op de HLLC flux voor een contact discontinüıteit, en die
kan compenseren voor kleine fouten in de interface positie door een klein
massa verlies toe te staan. Om pieken in de oplossing te kunnen verwi-
jderen is gebruik gemaakt van slope limiting, welke echter een verlies van
nauwkeurigheid tot gevolg had. Er is gevonden dat de level set deformatie
de maximale simulatie lengte begrensde, wat opgelost kan worden door het
toevoegen van een level set re-initialisatie procedure. Om de efficiëntie van
de methode te verbeteren wordt geadviseerd hp-verfijning en een multigrid
algoritme toe te voegen.

Het objectgeoriënteerde programma (OOP) ontwerp en de implemen-
tatie van de methode zijn beschreven. De keuze voor de OOP taal C++
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was gemotiveerd door de voordelen van OOP zoals herbruikbaarheid, be-
trouwbaarheid, robuustheid, uitbreidbaarheid en onderhoudbaarheid. Ge-
bruik van de OOP resulteerde in een sterke connectie tussen de numerieke
methode en de implementatie. Ook is hpGEM, een OOP pakket voor DG
methoden gepresenteerd. Het gebruik van hpGEM bied een reductie van
de implementatie tijd, kwaliteits controle en een programmerings standaard
wat delen en onderhoud van de implementaties ten goed komt.
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