
Towards Optimal IT Availability Planning:
Methods and Tools

Emmanuele Zambon

Composition of the Graduation Committee:

Chairman and Secretary
Prof. dr. ir. A.J. Mouthaan Universiteit Twente

Promotors
Prof. dr. S. Etalle Universiteit Twente
Prof. dr. R.J. Wieringa Universiteit Twente

Members
Prof. dr. P.H. Hartel Universiteit Twente
Dr. A. Pras Universiteit Twente
Prof. dr. F. Massacci Università di Trento
Prof. dr. E.R. Verheul Radboud Universiteit Nijmegen
Dr. A. Herrmann Axivion GmbH

CTIT Ph.D. Thesis Series No. 10-188
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE
Enschede, The Netherlands

IPA: 2011-03
The work in this thesis has been carried out under the
auspices of the research school IPA (Institute for Programming
research and Algorithms).

ISBN: 978-90-365-3102-3
ISSN: 1381-3617
DOI: 10.3990./1.9789036531023
http://dx.doi.org/10.3990/1.9789036531023

Typeset with LATEX. Printed by Wöhrmann Print Service.
Cover design: Emmanuele Zambon and Nicole Mazzocato.

Copyright © 2010 Emmanuele Zambon, Enschede, The Netherlands.
All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage or retrieval system, without the prior written permission of the author.

http://dx.doi.org/10.3990/1.9789036531023

Towards Optimal IT Availability Planning:
Methods and Tools

DISSERTATION

to obtain
the doctor’s degree at the University of Twente

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday, 20th of January 2011 at 13.15

by

Emmanuele Zambon

born on 27th of November 1980,
in Vicenza, Italy

The dissertation is approved by:

Prof. dr. S. Etalle Universiteit Twente (promotor)
Prof. dr. R.J. Wieringa Universiteit Twente (promotor)

To Nicole

Abstract

The availability of an organisation’s IT infrastructure is of vital importance
for supporting business activities. IT outages are a cause of competitive liability,
chipping away at a company financial performance and reputation. To achieve
the maximum possible IT availability within the available budget, organisations
need to carry out a set of analysis activities to prioritise efforts and take decisions
based on the business needs. This set of analysis activities is called IT availability
planning.

Most (large) organisations address IT availability planning from one or more
of the three main angles: information risk management, business continuity and
service level management. Information risk management consists of identifying,
analysing, evaluating and mitigating the risks that can affect the information pro-
cessed by an organisation and the information-processing (IT) systems. Business
continuity consists of creating a logistic plan, called business continuity plan,
which contains the procedures and all the useful information needed to recover
an organisations’ critical processes after major disruption. Service level manage-
ment mainly consists of organising, documenting and ensuring a certain quality
level (e.g. the availability level) for the services offered by IT systems to the busi-
ness units of an organisation.

There exist several standard documents that provide the guidelines to set up the
processes of risk, business continuity and service level management. However, to
be as generally applicable as possible, these standards do not include implementa-
tion details. Consequently, to do IT availability planning each organisation needs
to develop the concrete techniques that suit its needs. To be of practical use, these
techniques must be accurate enough to deal with the increasing complexity of IT
infrastructures, but remain feasible within the budget available to organisations.
As we argue in this dissertation, basic approaches currently adopted by organisa-
tions are feasible but often lack of accuracy.

In this thesis we propose a graph-based framework for modelling the availabi-

i

lity dependencies of the components of an IT infrastructure and we develop tech-
niques based on this framework to support availability planning. In more detail
we present:

1. the Time Dependency model, which is meant to support IT managers in the
selection of a cost-optimal set of countermeasures to mitigate availability-
related IT risks;

2. the Qualitative Time Dependency model, which is meant to be used to sys-
tematically assess availability-related IT risks in combination with existing
risk assessment methods;

3. the Time Dependency and Recovery model, which provides a tool for IT
managers to set or validate the recovery time objectives on the components
of an IT architecture, which are then used to create the IT-related part of a
business continuity plan;

4. A2THOS, to verify if availability SLAs, regulating the provisioning of IT
services between business units of the same organisation, can be respected
when the implementation of these services is partially outsourced to external
companies, and to choose outsourcing offers accordingly.

We run case studies with the data of a primary insurance company and a large
multinational company to test the proposed techniques. The results indicate that
organisations such as insurance or manufacturing companies, which use IT to
support their business can benefit from the optimisation of the availability of their
IT infrastructure: it is possible to develop techniques that support IT availability
planning while guaranteeing feasibility within budget. The framework we propose
shows that the structure of the IT architecture can be practically employed with
such techniques to increase their accuracy over current practice.

ii

Acknowledgements

This last four years of my life have been a true adventure. This final achieve-
ment would have never been possible without the help of special people I would
like to thank.

I first met Sandro in a pub in the UK (we were there for a conference, do
not misunderstand!) He begun the conversation – we were in front of a couple
of beers – with his usual question: “what do you want to do in your life?”. And
within two hours I was convinced to apply for a PhD position. He has become
my daily supervisor: I couldn’t have been more lucky! He is a brilliant researcher
and an amazing coach, he taught me most of the things I know about scientific
research and about writing papers. And he has provided me the best motivations
to finish my PhD even when I couldn’t see the end of it. But most importantly, he
has become a good friend.

It was not before the second year of my PhD that I got to know Roel, my
promotor, he had been ill for a very long time. But even before I met him I had
the pleasure to read his monthly reports about the status of his medications and all
the interesting things he learnt about being hospitalised: real fun! Then we started
working on research. It was challenging, but it was worth it. During our monthly
meetings you gave direction to my research (“What is the problem we are solving
here?”), helping to put the pieces together. And we also wandered in historical
conversations and “meta-questions” which were always interesting. Thanks.

I want to thank Pieter for all the support he gave me during these four years:
he has welcome me at the DIES group and kept an eye upon me. Thanks again
for reading this thesis so thoroughly, for giving me valuable comments that really
helped me improve it and for patiently answering all my questions all the times I
was popping up at your door.

The person who hatched to have me sitting at the same table with Sandro in
that pub is my friend Damiano. I will never thank him enough for what he did.
I have met Damiano at high school, and from then on we have been studying,

iii

working and having fun together. During these four years we have also done
research together, probably not as much as I would have wanted, though. In fact,
when we do research together we are able to create this amazing process of one
coming out with a vague idea and the other one taking the idea to the next level
and so on until it becomes something very interesting: I still remember the two
of us inventing a new anomaly detection engine in only one night! Already from
the early days we have been trying to start up our own business (I remember the
first attempt was in the field of CDs and DVDs . . .). It has been quite a winding
road to come to SecurityMatters, and it would never have been possible to reach
this point without the key insertion of Sandro in what I now consider a damn good
team: I think we must be proud of it.

Nicole, you are the most important person in my life and I have many things
to thank you for. You gave me the freedom of doing the PhD, even if this implied
not being together for almost three years. You have turned this into a strength:
after all the time apart we are now more tied than ever. You chose to join me in
the Netherlands, winning all the hesitations, and now we have the opportunity of
living together. You always supported me, even in the darkest moments . . . and
you also proofread this thesis twice!

Thanks to the RMC team at “The Company” for the support they provided
during the case studies: Jeroen, Coen, Peter, Barry, Leo and Wim.

Thanks to colleagues and friends for the good time spent together. Ayse, my
research and journey mate, Stefano, Marco, Anna, Lorenzo, Zlatko, Lianne, An-
dreas, Daniel, Dulce, Chen, Dina, Julius, Michele, Nienke, Bertine. Thanks to my
former colleagues at Valueteam and KPMG (especially Marco for his contribu-
tions to this thesis). My great friend and companion in music Claudio, who made
me the honour of being my paranymph, and all the other band mates: Luca, An-
drea, Sandro. My friends in Italy: Giulio, Damiano, Roby, Paolo, Nicolò, Jacopo,
Davide, Stefano, Tommaso, Matteo, Giulio, Mirco, Valentina, Roberto and all the
others that I cannot mention since I already communicated the final number of
pages to the editor.

Il ringraziamento più grande va ai miei genitori. Questa tesi vi appartiene,
perchè io sono il prodotto del vostro amore e di tutti i sacrifici che avete fatto
per la mia educazione. È un debito che non potrò mai ripagare, consideratelo un
anticipo.

Enschede, December 2010.

iv

Contents

1 Introduction 1
1.1 Availability Planning . 2
1.2 The Problem . 8
1.3 Technical Research Questions . 9
1.4 Contributions . 10

1.4.1 Thesis Overview and Publications 12

2 Quantitative Decision Support for Model-Based Mitigation of Availa-
bility Risks 15
2.1 Introduction . 16
2.2 Relevant methodologies for IT availability management 17
2.3 The Time Dependency (TD) model 18

2.3.1 Risk mitigation . 24
2.4 Prototype implementation . 30

2.4.1 UPPAAL implementation 32
2.4.2 Prolog implementation . 36

2.5 Discussion . 37
2.6 Related work . 41
2.7 Concluding remarks . 43

3 Model-based Qualitative Risk Assessment for Availability of IT In-
frastructures 45
3.1 Introduction . 46
3.2 The Qualitative Time Dependency (QualTD) model 49

3.2.1 Definition of the ToA . 50

v

CONTENTS

3.2.2 Risk identification . 53
3.2.3 Risk evaluation . 55
3.2.4 Output of a RA using the QualTD model 57

3.3 Case-study . 61
3.3.1 The industrial context . 61
3.3.2 Availability RA using the QualTD model 66

3.4 Case-study evaluation . 74
3.4.1 Stakeholders, goals and criteria 75
3.4.2 Design of the evaluation process 76
3.4.3 Evaluation of the criteria . 78
3.4.4 Applicability to other scenarios 82

3.5 Related work . 83
3.5.1 Combining the QualTD model to standard RA Methods . . 83
3.5.2 Dependency-based techniques for RA 89

3.6 Concluding remarks . 93

4 A Model Supporting Business Continuity Auditing & Planning in In-
formation Systems 95
4.1 Introduction . 96
4.2 Time Dependency and Recovery model 97

4.2.1 Incidents and their propagation 100
4.2.2 Assessing the RTO . 102

4.3 The Practice . 108
4.4 Discussion . 111
4.5 Related Work . 113
4.6 Concluding remarks . 114

5 A2THOS: Availability Analysis and Optimisation in SLAs 115
5.1 Introduction . 116
5.2 Related Work . 119
5.3 Analysis of the minimal service availability 122
5.4 Optimisation of outsourced services 130
5.5 Implementation and benchmarks 134
5.6 Methodology - practical use of A2THOS 138
5.7 Concluding remarks . 144
5.8 Proof of Theorem 5.1 . 145

vi

CONTENTS

5.9 Representation capabilities . 148

6 Concluding Remarks 151
6.1 Summary and conclusions . 151
6.2 Future work . 157

A Dependency Graphs Analysis, FTA and FMEA 159

B Building Dependency Graphs 161

vii

CONTENTS

viii

Chapter 1
Introduction

Today, organisations use Information Technology (IT) to support most of their
business operations. The global connectivity brought by the Internet has created
new business opportunities, such as Business Process Outsourcing or e-commerce,
and boosted the business of telco companies. IT is widely used to develop, market
and distribute products or services, as well as to support the business management
activities (communications, accounting, customer relationship management, etc.).
Organisations that could continue to operate without computers before mainframe
or even the Internet era are now so heavily dependent on IT that they rely on a near
100% availability of their IT systems to carry out their business.

Therefore, guaranteeing the availability (defined as: ensuring that authorised
users have access to information and associated assets when required [46]) of
business-supporting IT systems has become important for these organisations [60,
89, 109, 105]. IT outages are a cause of competitive liability, chipping away at
a company financial performance and reputation. A report based on a 2007 sur-
vey from HP [16] estimates average hourly cost of downtime to the considerable
amount of $ 90,000 (per company), with a loss of nearly $ 1M per outage. Disas-
ters involving availability of IT systems are fairly common, since nearly 31% of
companies polled in the survey by HP had to carry out their plans in a real disaster.
However, most downtime is caused by non-disastrous events. 90% of downtime
reported by survey respondents was due to network/telecommunications issues,
hardware or software failures or operator errors.

To deal with IT outages, organisations can adopt a wide range of technical
solutions that have been refined over the years. For example, a classic solution for
availability is redundancy, which consists of duplicating the critical components
of a system in such a way that when one of them fails it is replaced by its duplicate
and the system continues to operate. However, such measures are expensive and

1

Chapter 1. Introduction

the budget organisations can spend on IT availability is limited. Budget is mainly
limited by two factors: first, the spendings for maintaining IT systems must not
exceed the benefit these systems provide to the organisation and secondly, there
are constraints imposed by the environment the organisation is operating in, such
as laws and regulations for government organisations, or market competition for
enterprises. The best an organisation can do is to find the optimal balance between
the achieved availability and its cost (the cost of the work needed for finding the
balance must be taken into account as well). However, achieving such an opti-
mal balance is difficult. It requires knowledge from different domains: business
management, IT management and security. For this reason, different people from
different fields are usually involved, with communication problems and conflict-
ing goals. Achieving an optimal balance also requires that business and IT are
properly aligned and that decisions are made in each case based on the global
business objectives, the technological constraints and the security threats.

In this thesis we focus on the analysis activities that organisations carry out to
control the availability of business supporting IT systems.

1.1 Availability Planning

We call IT availability planning the set of analysis activities by which organi-
sations set the requirements and take decisions regarding the availability of the IT
systems supporting their business. Availability planning allows organisations to
find the design for the availability of their IT infrastructure that supports their busi-
ness at best within the budget limitations. Guidelines for planning the availability
of IT are given in standard IT management methodologies such as COBIT [90]
and ITIL [62]. Most (large) organisations address IT availability planning from
one or more of the three main angles: risk management, business continuity and
service level management, which we will now introduce.

Information Security Risk Management

Information security risk management is the process of dealing with the risks
information and information processing assets (including IT assets) are exposed
to.

Risk management is widely considered a key factor for improving an organi-
sation’s IT performance. Risk management is also required by regulation, such as
the Sarbanes-Oxley Act of 2002 [112] or the international agreement Basel II [86]
(International Convergence of Capital Measurement and Capital Standards), to en-
sure that the organisation is operating properly.

2

1.1. Availability Planning

To introduce the risk management process we follow ISO 27005 (former BS
7799-3 [21]), one of the most popular standards: the same general principles are
shared by almost all risk management standards.

Figure 1.1: The Risk Management process model of ISO 27005

Risk management consists of four main tasks (see Figure 1.1): (1) assessing
and evaluating the risks (risk assessment), (2) selecting and implementing controls
to treat the risks (risk treatment or risk mitigation), (3) monitoring and reviewing
risks and (4) maintaining and improving the risk controls. The whole process
is cyclic and it is meant to be repeatedly applied during the life cycle of the IT
system(s) under consideration. The two tasks of risk management that are more
relevant for availability planning are Risk Assessment (RA) and Risk Mitigation
(RM).

Risk management is relevant for optimising IT availability in that it enables
the organisation to discover the risks to the business associated to disruptive events
on the IT infrastructure, to rank them according to the business objectives and to
plan the most effective strategies to deal with them.

A risk assessment identifies potential harmful threats and vulnerabilities of the
system target of assessment, determines their likelihood, the harm they can cause
and ranks them accordingly. Figure 1.2 shows the interpretation of risk given in
NIST SP 800-100 [18], as a function of threat, vulnerability, likelihood and im-
pact. Risk management best practices prescribe that risk assessments should be
run periodically, to cope with the evolution of the target system, of the organisa-
tion using the system and of the security related issues.

The second main task, risk mitigation, consists of developing and implement-
ing a strategy to manage risks by choosing a proper risk treatment strategy and

3

Chapter 1. Introduction

Figure 1.2: The risk function in NIST SP 800-100

by implementing controls. Risk management strategies are risk avoidance (elimi-
nate, withdraw from or not become involved), risk reduction (optimise - mitigate),
risk sharing (transfer - outsource or insure) and risk retention (accept and budget).
Controls can be technical and organisational (involving people and procedures).

Business continuity

Business continuity management is the process supporting the recovery of in-
terrupted business critical functions after a disruptive incident. Incidents include
local incidents (e.g. building fires), regional incidents (e.g. earthquakes), or na-
tional incidents (e.g. pandemic illnesses). The outcome of business continuity is
a logistic plan called the Business Continuity Plan (BCP).

When an organisation has IT systems supporting its business operations, part
of the business continuity plan must address the recovery of the IT infrastructure.

The process of planning, implementing and maintaining a business continuity
plan is described in the BS 25999-1 standard [41] released by the British Standard
Institute but widely used also outside the United Kingdom. According to this
standard, the main activities of business continuity management involving IT can
be summarised as (a) an analysis of the (business) continuity requirements for the
components of the IT infrastructure, (b) an analysis of threats and their impact
scenario, (c) the design and implementation of business continuity strategies (the
BCP) satisfying the business requirements with regards to the different impact
scenarios, and (d) the maintenance and improvement of the BCP. Figure 1.3 shows
the main activities of business continuity management and their relation.

We now describe in more detail the steps involved in activities (1) and (2),
which are the ones that have mostly to do with IT availability planning:

1. Business Impact Analysis (BIA): BIA is the study and assessment of effects
to the organisation in the event of the loss or degradation of business func-
tions resulting from a destructive event (incident).

2. Set the Maximum Tolerable Period of Disruption (MTPD): based on the re-
sults of the BIA, an MTPD has to be set for all the key business activities.

4

1.1. Availability Planning

1. BIA

2. MTPD

3. RTO

a. Business
continuity

requirements

4. Threat
analysis

5. Impact
scenarios

b. Threat and
impact analysis

c. BCP

Design Implementation

d. Maintenance
and improvement

of the BCP

Figure 1.3: The main tasks of business continuity management. Blocks are tasks,
and edges indicate that information from one block is used in the other

The MTPD expresses the “duration after which an organisation’s viability
will be irrevocably threatened if product and service delivery cannot be re-
sumed” [41].

3. Set the Recovery Time Objectives (RTO): based on the MTPD, an RTO is
determined for all the assets (i.e. people, premises, IT systems) that support
a certain activity. The RTO expresses the amount of time to restore an asset.
In case a certain business activity is supported by IT, the RTO need to be
determined for each component of the IT infrastructure.

4. Threat analysis: this step consists of selecting and analysing the threats that
could compromise the organisation business. Typical threats taken into ac-
count in this analysis include natural disasters (e.g. floods and earthquakes),
terrorist attacks or pandemic infections.

5. Impact scenarios: based on the results of the threat analysis, several sce-
narios in which a threat materialises are taken into consideration. For each
scenario a (worst-case) estimate is made of the impact on the organisation’s

5

Chapter 1. Introduction

assets (in this case IT components). These scenarios are then grouped to-
gether and used to build the BCP.

A BCP specifies the recovery procedures to ensure RTOs can be respected
in case of different impact scenarios (e.g. major power failure, loss of a building
etc.). For IT, these procedures include the minimal set of IT components that are
needed to run the organisation’s business functions, and the order on which IT
components should be recovered, based on their RTO. Other sections of a BCP
include the backup strategies for IT processed information that should make sure
that business relevant data is up-to-date with respect to a predefined Recovery
Point Objective (RPO). Finally, the BCP needs to be regularly updated as soon
as changes happen in the organisation. The plan is tested by simulating recov-
ery scenarios (or when it is actually used in case of an incident) and improved
accordingly.

Business continuity contributes to optimise IT availability in case of incidents
by limiting the losses they cause to the organisation.

Service level management

An IT service abstracts a functionality provided by the IT infrastructure to
its final users (e.g. sending and receiving e-mails). Organisations business units
are IT service users. IT services can either be acquired internally from the IT
department, or externally from IT outsourcing companies.

The quality of IT services is controlled through Service Level Agreements
(SLAs). An SLA is a contract specifying the (measurable) value agreed by the
service provider and the service user for a certain quality parameter. For instance,
the cost of a service usually depends on the SLA associated to it. Organisations
use SLAs to guarantee that the IT services comply with the business requirements.
The process of managing SLAs is called Service Level Management.

The ITIL framework provides guidelines on how to do Service Level Manage-
ment (SLM). The four main tasks involved are: (1) ensuring that agreed service
levels are met, (2) ensuring service levels comply with the available budget, (3)
producing and maintaining a catalogue of the services and (4) establishing service
continuity plans.

Availability is one of the most used quality parameters for SLAs. For example,
a typical SLA for availability is to guarantee that a service will have – say – 99%
of uptime in a month. Therefore, a successful SLA management is important to
optimise IT availability, as it allows the organisation to set a trade-off between the
availability level and its associated cost during normal business operations.

Summarising, to successfully plan the availability of an IT infrastructure, IT

6

1.1. Availability Planning

managers need first to agree with the business units on the required availability
levels for the IT systems supporting the organisation’s business. They then need
to control the IT infrastructure and make sure availability levels can be respected
within the available budget. The main control points are based on (1) the man-
agement of availability-related IT risks, which need to be identified, evaluated
and mitigated when needed, (2) the IT-related section of the BCP, which is meant
to ensure that IT systems are recovered after disasters within a predefined time
agreed with the business units and (3) the contractual agreements (SLAs) with IT
service providers to make sure that the required availability level for IT services
is guaranteed to business units during normal circumstances.

These three control points address IT availability from three different angles,
which require different techniques. However, these angles target the same IT
infrastructure. In any case the analyst has to determine how the infrastructure
behaves in case one or more of its components fail and how such failures relate
to the supported business activities. Based on this observation, the models and
techniques we will present in this thesis share the same underlying representation
(dependency graphs) of the main availability properties of the IT system under
exam.

Figure 1.4 provides an overview of the concepts we just described, and iden-
tifies the activities related to availability planning in the three angles of risk, busi-
ness continuity and service level management.

Risk
Assessment

Risk
Mitigation

Monitor and
review

Maintain and
improve
controls

Information Security
Risk Management

BIA (MTPD,
RTO, RPO)

Threat
analysis /

impact
scenarios

Implementation

Maintain and
improve the

BCP

Business Continuity

Ensure service
levels are met

S.L. Management

Ensure service
levels comply

with the budget

Produce and
maintain the

service catalogue

Establish service
continuity plans

Availability
Planning

Figure 1.4: Availability planning in relation to risk management, business conti-
nuity and service level management

7

Chapter 1. Introduction

1.2 The Problem

The standards we mentioned so far draw the guidelines for doing the activities
described in Section 1.1. However, to be as generally applicable as possible, these
standards do not include implementation details. For example, risk assessment
standards indicate that the risk assessor should identify threats, but do not specify
how this is done in practice. For this reason, each organisation that wants to
optimise its IT availability need to find the concrete techniques that suit its needs.

To be of practical use, such techniques must comply with at least two require-
ments:

1. accuracy: they must allow the calculation of the different availability figures
needed for risk management (e.g. the system outage caused by an incident),
business continuity planning (e.g. the system recovery time) and service
level management (e.g. the minimal monthly system uptime) as precisely as
needed;

2. feasibility within budget: their use must require an amount of information
and resources that the organisation is able to provide.

There is a group of more advanced approaches proposed by the academic com-
munity and another of more basic approaches adopted by the business community.
Many of the approaches in the first group consist of statistical models describing
in detail the functional aspects of the IT infrastructure to be analysed in relation
to the probabilities of the various infrastructure components failures. For each
infrastructure component the analyst has to define the relevant internal states of
the component, the probability of transition from one state to the others and the
connection of each component state to the state of the other components in the
infrastructure. With such a model one can in principle deduce any required availa-
bility figure of the IT infrastructure. There exist several modelling techniques that
can be used for this purpose. For example, Markov models, Bayesian networks
and Petri nets have been used in the reliability field for the design and analysis
of a number of availability critical systems. Although exact, these techniques are
not often applied to plan the availability of business supporting IT infrastructures
because of scalability issues. To apply them, an analyst has to model all the inter-
nal states of each component and deduce (or estimate) the transition probability
for each pair of states. Obtaining this information requires a considerable effort.
Therefore, this kind of analysis process is in most cases too slow to comply with
the requirement of being feasible within budget.

The second group uses limited or no modelling and mainly relies on the exper-
tise of the personnel devoted to the task for the availability analysis. However, due

8

1.3. Technical Research Questions

to the increasing complexity of the IT infrastructure to be managed, even experts
can make mistakes. Incidents affecting the availability of a marginal component
of an IT system can propagate in unexpected ways to other, more essential compo-
nents that functionally depend on the presumed marginal component. Mistakes in
availability planning can lead to costly IT service disruptions, or to overspending
to obtain an availability level which is too high with respect to the organisation’s
business needs. For example, underestimating the system availability can lead to
the adoption of costly countermeasures which are not actually required.

For these reasons, organisations aim at improving the quality of their risk,
business continuity and service management processes using methods with a higher
degree of accuracy than current practice affords, but that are still feasible within
budget. It is the goal of this thesis to propose and validate such a method.

1.3 Technical Research Questions

Based on the analysis of the above mentioned problem, this work focuses on
the following practical research aim:

“Design and validate techniques that improve the accuracy and effectiveness of
availability planning, while guaranteeing feasibility within budget.”

To achieve this aim we focus on the following research questions.

1. “How can we improve the accuracy of current techniques for assessment
and mitigation of availability-related IT risks, while guaranteeing feasibil-
ity within budget?”
The assessment of availability-related risks requires techniques that can ac-
curately determine the consequences (impact) the disruption of an IT com-
ponent can have on the IT infrastructure and on the business operations
supported by it. Optimisation techniques are also required during the risk
mitigation phase to support the decision process of adopting the most cost-
effective countermeasures to protect agains risks.

2. “How can we improve the accuracy of current techniques for creating and
maintaining business continuity plans, while guaranteeing feasibility within
budget?”
Creating and maintaining an effective business continuity plan requires tech-
niques and tools to make sure business continuity requirements set on IT
components are aligned with the business needs. In other words, with such
techniques analysts can check that RTOs are compliant with the existing

9

Chapter 1. Introduction

MTPDs. Due to budget limitations, it could be the case that MTPDs can-
not be respected in all cases. Therefore, analysts and decision makers need
techniques to estimate how often this is expected to happen, and therefore
the risk of not complying with MTPDs.

3. “How can we improve the accuracy of current techniques for managing
availability-related SLAs, while guaranteeing feasibility within budget?”
To ensure the availability level of a service is met, techniques are needed to
properly calculate the availability of an IT service at design or implemen-
tation phase. With this information, it is possible to set availability service
levels which can be met during the service life. When planning availabi-
lity service levels, it is also important to comply with budget limitations.
For this reason, techniques are needed to support the cost/benefit decisions
IT managers have to take regarding the design choices that influence the
availability of IT services.

1.4 Contributions

To address the research questions we have developed a set of architecture-
based techniques that support availability planning. Figure 1.5 gives an overview
of our suite of techniques.

Risk
Assessment

Risk
Mitigation

Monitor and
review

Maintain and
improve
controls

Information Security
Risk Management

BIA (MTPD,
RTO, RPO)

Threat
analysis /

impact
scenarios

Implementation

Maintain and
improve the

BCP

Business Continuity

Ensure service
levels are met

S.L. Management

Ensure service
levels comply

with the budget

Produce and
maintain the

service catalogue

Establish service
continuity plans

TD model
(Chap. 2)

QualTD
model

(Chap. 3)
TDR model
(Chap. 4)

A2THOS
(Chap. 5)

Figure 1.5: An overview of our suite of techniques in relation on the availability
planning activities they support the most

10

1.4. Contributions

The Time Dependency (TD) model and the associated framework support the
assessment and mitigation of availability-related IT risks. The model is based on
a graph of the components of the IT architecture and of their dependencies. The
framework allows one to determine the impact of the disruption of an IT com-
ponent to the organisations processes and to optimise the choice of availability-
related risk mitigation strategies according to the expected benefit they deter-
mine and on their cost. The framework follows the quantitative risk assessment
paradigm, in which risks are expressed in a range of magnitudes which can be
measured (e.g. expected monetary loss).

The Qualitative Time Dependency (QualTD) model and framework for the
assessment of availability-related IT risks is an extension of the TD model with
enhanced modelling capabilities (it supports a wider range of dependencies among
the IT components). It also allows the risk assessor to relate the identified threats
with the vulnerabilities of the IT components to determine the risk caused by
availability-related incidents. The QualTD model is meant to be used for risk
assessments that follow the qualitative paradigm, in which risks are described
by values in an ordinal scale which at most allow value comparison (e.g. high,
medium or low). This improves the feasibility of our technique, as it does not
require quantitative data about incident likelihood and financial losses, which can
be difficult to acquire. Under this aspect, the QualTD model can be also seen as
an abstraction of the TD model in which numerical values are replaced by ordered
labels.

The Time Dependency and Recovery (TDR) model and tool supports the as-
sessment of a business continuity plan. It is based on the same representation of
the IT infrastructure we use in the TD model but it includes the concept of inci-
dent repair time. The model allows one to assess a business continuity plan by
checking whether the MTPDs set on the critical business activities are met by the
RTOs set on the underlying IT infrastructure, and whether RTOs are truly pairwise
compatible. The model also allows to evaluate the risk that MTPDs are exceeded.

A2THOS is a framework to calculate the availability of partially outsourced IT
services in presence of SLAs. A2THOS consists of a model of an IT system
(which provides multiple services), an algorithm to calculate the minimal availa-
bility of each service given the minimal availability of the (outsourced) service
components, and an algorithm to compute the cost-optimal choice of the availa-
bility of the system components based on the target availability of the exported
services. There exist techniques, such as fault trees, which allow one to calculate
the availability of a system. However, such techniques are not always applicable

11

Chapter 1. Introduction

in case of the outsourcing of system components, as the required information is
not available: A2THOS overcomes this limitation.

1.4.1 Thesis Overview and Publications

We now explain the contributions of each chapter of this work.

Quantitative Decision Support for Model-Based Mitigation of Availability
Risks (Chapter 2) In this chapter we present the TD model and describe how
to use it to determine the risk caused by the disruption of a component of the
architecture. We then show how to model risk mitigation strategies and how to
determine the set of these strategies which has the best cost/benefit trade-off. Fi-
nally, we discuss the feasibility and implementation of our model based on the
information about a risk assessment carried out by KPMG-Italy at an insurance
company. This work appears in a refereed workshop paper [7], which is joint work
with D. Bolzoni, S. Etalle and M. Salvato.

Model-Based Qualitative Risk Assessment for Availability of IT Infrastruc-
tures (Chapter 3) In this chapter we introduce the QualTD model. We then
show how to apply the QualTD model in a practical case-study we carried out
on the authentication and authorisation system of a large multinational company.
Based on the case-study we also address the accuracy of our technique in relation
to the ones used by the company and then deepen the discussion on its feasibility
by presenting a review of risk assessment methodologies and their compatibility
with our technique. This work appears in a journal paper [2], which is joint work
with S. Etalle, R.J. Wieringa and P.H. Hartel.

A Model Supporting Business Continuity Auditing & Planning in Informa-
tion Systems (Chapter 4) In this chapter we present the TDR model. We de-
scribe how to use the model to assess a business continuity plan and to evaluate
the risk that MTPDs are exceeded. Finally, we discuss the feasibility and imple-
mentation of our model based on the IT infrastructure of an insurance company
provided by KPMG-Italy. This work appears in a refereed conference paper [5],
which is joint work with D. Bolzoni, S. Etalle and M. Salvato.

A2THOS: Availability Analysis and Optimisation in SLAs (Chapter 5) In
this chapter we present A2THOS. We first introduce the model and provide the
theoretical foundations for calculating and optimising the IT system availability

12

1.4. Contributions

based on the model. We then discuss the feasibility and usefulness of our frame-
work based on two case-studies we carried out at a large multinational company.
This work appears in a journal submission [1], which is joint work with S. Etalle
and R.J. Wieringa.

13

Chapter 1. Introduction

14

Chapter 2
Quantitative Decision Support for
Model-Based Mitigation of
Availability Risks*

We start here with the first research question:
“How can we improve the accuracy of current techniques for assessment and

mitigation of availability-related IT risks, while guaranteeing feasibility within
budget?”

Risk management is addressed in two separate chapters of this thesis: the
present one focuses on the mitigation of availability-related risks, while the second
one on their assessment.

Although these two steps of risks management should be logically presented in
the reverse order, we prefer this one as the model for risk mitigation was developed
before the one for risk assessment, and the latter extends some of the concepts
presented in the former.

*This chapter is a minor revision of the paper “Model-Based Mitigation of Availability
Risks” [7] published in the Proceedings of the Second IEEE/IFIP International Workshop on
Business-Driven IT Management (BDIM ’07), pages 144-156, IEEE Computer Society, 2007.

15

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

2.1 Introduction

In this chapter we focus on mitigating the risks related to the availability of
the IT infrastructure. This is particularly challenging because of the (temporal)
dependencies linking the various constituents of an IT infrastructure (machines,
processes, assets, etc.) with each other. In complex information systems, a failure
in a remote component may propagate across the infrastructure and eventually
affect the availability of a good deal of the entire system. Failing to appropriately
assess the consequences of such propagations will result in inaccurate RA and
RMs.

We argue that current risk management methodologies (e.g. ISO 17799 [44],
ISO 13335 [42] and OCTAVE [82]) show accuracy limitations when evaluating
and mitigating availability risks. This is due to the fact that they do not fully con-
sider the consequences of the functional dependencies between the constituents of
an IT infrastructure: the consideration of these dependencies is mostly left to the
judgement of the assessor carrying out the RA phase (although this is not made
explicit). Thus, these methodologies are mainly useful to identify and fix individ-
ual risks an organisation is exposed to (see also Section 2.2). On the other hand,
these dependencies are mentioned in more specific assessment methods such as
the Business Continuity Plans, like in the new standard BS25999 [41] (see Sec-
tion 2.2 for a detailed overview). These methods, however, do not specify how to
use this information for RM, making their use unfeasible.

Our thesis is that it is possible to carry out an accurate tool-based RM by us-
ing the data collected during RA and BCP activities, under the hypothesis that
such data is available and sufficiently accurate. To substantiate this thesis, in this
chapter we present a framework and a tool for the assessment and mitigation of
availability-related IT risks. The framework is based on the Time-Dependency
(TD) model, an extended instance of the IT infrastructure model as it is described
in BS25999 (which largely coincides with the data collected by the KARISMA
tool developed at KPMG for RA, see Section 2.4). This model allows us to deter-
mine how incidents will propagate across the organisation, and therefore what is
the actual impact of incidents. With this information, we can carry out an optimi-
sation study by comparing the true expected benefit determined by the different
countermeasures that can be put in place to cope with the various risks.

As we will mention, the computational complexity of the problems posed by
our method, make it impossible to carry out the underlying analysis by hand, and
this is why the method we propose requires the presence of an appropriate tool.
We have implemented the tool using UPPAAL CORA [52] and Prolog.

We consider our solution a concrete enhancement to RM methodologies, pro-
viding automatic support to better evaluate the IT relationships and dynamics.

16

2.2. Relevant methodologies for IT availability management

The remainder of this chapter is organised as follows: in Section 2.2 we briefly
introduce some of the methodologies describing the current practice in IT and risk
management. In Section 2.3 we present the TD model and show with a running
example how it can be used to develop a cost-optimal risk mitigation strategy.
In Section 2.4 we describe the prototype implementation of these algorithms and
their use in combination with a risk management supporting tool developed at
KPMG. In Section 2.5 we discuss the feasibility of our model both on the infor-
mation needed to build it and on the computational complexity of the algorithms
to determine the cost-optimal risk mitigation strategy. Finally, in Section 2.6 we
present the related work.

2.2 Relevant methodologies for IT availability man-
agement

There exists a number of standards and methodologies for IT management as
we briefly introduced in Chapter 1. Among them, COBIT (Control Objectives
for Information and related Technology) [90] and BS25999 [41] are of particular
relevance for this work. COBIT is the de facto standard for IT control and man-
agement, addressing IT governance and control practices. It provides a reference
framework for managers, users and security auditors. COBIT is mostly based on
the concept of control (be it technical or organisational) which is used to assess,
monitor and verify the current state of a certain process (that may refer to proce-
dures, human resources, etc.) involved in the IT system. To implement COBIT,
the organisation must benchmark its own processes against the control objectives
suggested by the framework, using the so-called maturity models (derived from
the Software Engineering Institute’s Capability Maturity Model [65]). Maturity
models basically provide: (1) a measure for expressing the present state of an or-
ganisation, (2) an efficient way to decide which is the goal to achieve and, finally,
(3) a tool to evaluate progress toward the goal. Maturity modelling enables one
to identify gaps and demonstrate them to the management. Key Goal Indicators
(KGI) and Key Performance Indicators (KPI) are then used to measure, respec-
tively, when a process has achieved the goal set by management and when a goal
is likely to be reached or not. Since COBIT does not suggest any technical so-
lution but only organisational solutions, organisations often combine the control
practices of COBIT with the technical security measures described in the Code of
Practice for Information Security Management part of the ISO 17799 [44] stan-
dard.

Although COBIT does not provide any practical solution for mitigating the
risks, it requires the organisation to implement a Business Continuity Plan (BCP)

17

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

to improve the availability of its IT infrastructure and its core processes. Until
2003, no methodology was available to conduct this activity in a precise way.
The new standard for managing business continuity BS25999 [41] is mainly fo-
cused on providing guidelines to understand, develop and implement a BCP, and
aims at providing a standard methodology. This standard requires the organisa-
tion to complete different steps when preparing the BCP: (1) identify the activi-
ties/processes which carry the core service used by the organisation, (2) identify
the relationships/dependencies among themselves, (3) evaluate the impact of the
disruption of the core services/processes previously identified (Business Impact
Analysis, BIA). The most critical activities/processes are intended to be the ones
whose direct/indirect monetary loss is significantly high.

When the risk has been assessed and evaluated, one has to identify the best
countermeasures to reduce the risk. Typically, there exists a number of different
solutions (technical or organisational) from which business and IT managers must
choose the best one(s) matching the required security level and the available bud-
get (or finding the best compromise between the cost of the countermeasures and
the benefit they provide). As we mentioned before, current methodologies are not
sufficiently taking into account how business processes are linked together and the
way a single incident could propagate and affect more of the organisation’s IT sys-
tems. The fact that COBIT and ISO 17799 do not consider dependencies between
processes has even greater impact in the mitigation phase of availability risks: it
is standard practice to protect the processes whose availability has a greater direct
impact on the organisation goals, while a more accurate analysis in many cases
reveals that it is more cost effective to protect some of the processes that have an
indirect impact as well.

2.3 The Time Dependency (TD) model

The framework we propose is based on a timed dependency graph, a directed
and acyclic graph modelling the architecture of the organisation’s IT-related in-
frastructure (including a part related to the organisation’s business goals). To sim-
plify the exposition, we indicate by R+ the set of nonnegative real numbers, and
we use the following sets to indicate domains: T is the set of all time intervals
(expressed in hours), Eur is the domain of monetary values (expressed in Euro).

Assumptions We start by providing a brief summary of the data we need to
build the model, later we describe this data in more detail and we discuss about
the feasibility of obtaining accurate information.

1. A timed dependency graph, consisting of: a set of nodes (processes, appli-

18

2.3. The Time Dependency (TD) model

cations, etc.) and a set of edges between these nodes. Edges model which
nodes depend on other nodes and must contain an estimate of how long a
node would be able to survive if another one it depends on becomes unavail-
able. We express this measure in hours.

2. The cost associated to the downtime of those processes directly affecting
the business objective of the organisation (indirect dependencies are taken
care of by the model). We express this measure in Euro per hour.

3. A list of possible incidents affecting the IT infrastructure, together with
a conservative estimate of the average downtime each of them cause (per
node), given the controls already in place. We also need an estimate of their
expected frequency. For the sake of uniformity, in the sequel we express the
downtime caused by each incident in hours and their estimated frequency
in times per year.

4. A list of countermeasures. For each countermeasure we need an estimate
of (a) their deployment and maintenance costs (expressed in Euro per year),
(b) the effect is has on the estimated frequency of the incidents and/or on
the downtime they cause.

In Section 2.5 we address the problem of how and when this data can be collected
during the RA and BCP processes.

Timed dependency graph The basic elements of the model are the constituents
of the IT infrastructure. We follow notable architecture frameworks such as TO-
GAF [113], Zachman [114] and ArchiMate [84] as well as IT Governance solu-
tions (IBM [26] and ISACA [90]), to determine those elements which may directly
or indirectly be involved in an incident:

• business processes: the activities related to the organisations’ business e.g.
producing a specific product, managing customer orders or invoicing;

• IT services: the functionalities provided by IT systems to support business
operations, e.g. e-mail service, digital identity management, instant mes-
saging;

• applications: the software that provides IT services e.g. production con-
trol applications, customer relationship management (CRM) applications
or databases;

• technology: hardware systems, computer networks and industry-specific
technology needed to enable applications;

19

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

• infrastructure or facilities: physical locations necessary to house IT tech-
nology.

Running example - Part 2.1. We present here an example (intentionally oversim-
plified) of the business/IT infrastructure of a small bank segment with ten compo-
nents (see Table 2.1):

Table 2.1: List of the components of a portion of an enterprise organisation’s IT
infrastructure and its supported business processes.

Id Description
p1 Customer management process
p2 Financial services process
a1 Home banking application
a2 On-line trading application
a3 Financial founds management application
db1 Checking account database
db2 Trading database
m1 Application server machine
m2 Oracle machine
m3 Oracle machine
n1 Network segment

p1 and p2 are two business processes; a1, a2 and a3 are three applications sup-
porting business processes while db1 and db2 are two databases accessed by ap-
plications. Finally, m1, m2 and m3 are the three machines running applications
and n1 is the network segment connecting the three machines.

We represent the organisation’s IT infrastructure and the business processes it
supports by using a graph, where nodes represent the basic components of the in-
frastructure and labelled edges between nodes represent their dependencies. The
presence of an edge from node a to node b indicates that b depends on a, and that
if a becomes unavailable for long enough, b will become unavailable as well. In
modelling this, we also indicate how long b will be able to survive without the
presence of a. We do that by annotating each edge with the survival time: the
time span the dependent node can survive if the other one fails. While for some
dependencies, such as the dependency of an application on the machine it runs on,
this amount is obviously set to zero, in case of dependencies between applications
this can vary between zero and several hours (e.g. in case an application needs to
be fed by another one with data at regular time intervals). Sometimes it is pos-
sible to extract this information from the functional requirements documentation

20

2.3. The Time Dependency (TD) model

or from the SLA specification. Although one can argue that these values could
change over time, we have empirically verified (by inspecting documentation of
several enterprise organisations) that risk management practice does not require
such a level of detail yet. A tutorial on how to build dependency graphs can be
found in Appendix B of this thesis.

Definition 2.1. A timed dependency graph is a pair ⟨N,→⟩ where N is a set of
nodes and →⊆ N ×N ×T .

We write n1
tÐ→ n2 as shorthand for (n1, n2, t) ∈→.

A timed dependency graph allows one to express e.g. the dependencies of
hardware components on the physical environment they are located in, the de-
pendency of an application on the machines it runs on, and the dependency of a
business process on the applications supporting it. We will show in Section 2.5
(as well as in Appendix B) that in certain cases the construction of this graph can
be automated.

p1
(60 €/h)

p2
(120€/

h)

a1 a2 a3

db1 db2

m1 m2 m3

n1

0m
10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 2.1: A timed dependency graph example

Running example - Part 2.2. Figure 2.1 shows a timed dependency graph built
with the components from Table 2.1. The edges connecting n1 to m1, m2 and
m3 express the dependency of the machines on the network connection with other
machines. The connections from m1 to a1, a2 and a3, from m2 to db1 and from m3

21

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

to db2 express the dependency of software processes (applications or databases)
on the machines they run on. For all of these connections the survival time is set
to zero, since none of the components can survive the disruption of the ones it
depends on, not even for a short time. In turn, p1 depends on both a1 and a2, since
the customer management is achieved by providing on-line banking and trading,
but with different time constraints (five hours for a1 and only one hour for a2).
Similar reasoning applies to a1 and p2.

Notice that these dependencies are AND relationships: a node depending on
two or more other nodes is disrupted even if just one of these are affected by an
incident. For the sake of simplicity, in this chapter we do not consider OR rela-
tionships, even though it would be possible to include them in our model (as we
will see in Chapter 3).

The number of IT components can be very large in a real business environ-
ment. However, some of the information needed to build the graph can be avail-
able as a result of a RA (the first RA step, according to NIST methodology [73], is
system characterisation). For instance, the KARISMA tool developed at KPMG
to support RA requires – among other things – the collection of enough data to
build an accurate timed dependency graph. Any other similar tool will basically
do the same.

Incidents and their propagation Once the model of the IT architecture is de-
fined, it is possible to simulate the availability of the system during and after the
occurrence of an incident. We define incidents as events causing the unavailability
of a given set of IT components for a given time.

Definition 2.2 (Incident repair time). Let g = ⟨N,→⟩ be a timed dependency graph
and i ∈ I be an incident which disrupts a set of nodes M ⊆ N . The time needed to
repair a node n ∈M because of i is a mapping rt ∶ I ×M → T .

For instance, if we expect that the average occurrence of incident iwould bring
down machine m1 for 3 hours, we model this by setting rt(i,m1) = 3.

Running example - Part 2.3. Let us now introduce three different incidents af-
fecting the availability of m3: Table 2.2 presents them.

In i1 one of m3’s hard disks is broken and the repair time is the average time
required to replace the broken disk and restore data. i2 consists of a power dis-
ruption in the building hosting m3, in this case the repair time is the average
duration of a power disruption. i3 consists in an OS failure, due to software bugs,
causing the consequent freeze of applications running in m3 and the repair time
is the average time needed to detect the incident and reboot m3.

22

2.3. The Time Dependency (TD) model

Table 2.2: A list of incidents possibly affecting m3.

Id Description Target Repair time
i1 Disk failure m3 9h
i2 Power disruption m3 3h
i3 OS failure m3 2h

Every incident directly involves one or more nodes, causing them to be un-
available for a certain amount of time. During this time, the incident may propa-
gate to other nodes, following the timed dependency graph.

We say that an incident propagates from a node n1 to n2, if they have a func-
tional relationship and the unavailability time of n1, due to the incident, exceeds
the survival time of n2 with respect to n1, causing it to become unavailable until
the incident is resolved.

Incident downtime According to this observation, we can define the downtime
caused by an incident to any node of the timed dependency graph (including prop-
agation). This is the crucial information needed in the Risk Evaluation and Mit-
igation phases to determine the global consequences of an incident, as we will
address in Section 2.3.1.

Definition 2.3 (Incident downtime). Let g = ⟨N,→⟩ be a timed dependency graph,
i ∈ I be an incident happening on a set of nodes M ⊆ N . The incident downtime
is a mapping dt ∶ I ×N → T defined as:

dt(i, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n) if n ∈M
0 if n /∈M and Dn = ∅
0 if max

m
sÐ→n∈→dt(i,m) − s < 0

max
m

sÐ→n∈→dt(i,m) − s else.

This definition is well formed because we assumed g to be acyclic.

Running example - Part 2.4. Figure 2.2 shows how i1 propagates across our
organisation.
Assume that i1 occurs at t = 0: i1 brings down m3; at the same time db2 becomes
unavailable, since its survival time with respect to m3 is zero. After five minutes
a2 goes down and a3 follows after fifteen minutes. Accordingly to the timed depen-
dency graph, after one hour from the disruption of a2, the process p1 goes down

23

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

m3

db2

a2

a3

p1

p2

I1(t0) Repair(i1)

t (h)0 2 ... 10

Components available Components unavailable

stop(p2)stop(p1)stop(a3)stop(a2)

7 8

{...}

{...}

1 9

{...}

{...}

{...}

{...}

Figure 2.2: Propagation chart of incident i1.

and after eight hours p2 goes down as well. Nine hours after t0, all nodes become
available because i1 has been repaired.

2.3.1 Risk mitigation

The timed dependency graph allows us to model the propagation of incidents.
We now show how we can use this information for selecting the best set of coun-
termeasures; technically we aim at finding the set of countermeasures which min-
imises the cost due to the forecasted downtime of relevant business processes.

2.3.1.1 Evaluating risk

The first step toward risk mitigation is an accurate evaluation of the cost
(caused by losses) associated to the downtime of each process. In an organisa-
tion, there are usually only few processes which – if unavailable – directly cause a
real damage (in our running example, only p1 and p2). Clearly, this cost depends
on the business goals of the company (a one hour downtime of the web server
has a different monetary cost at Google than at an insurance company). To model
the cost of incidents we now define the damage evaluation function, relating the
disruption time to the (monetary) loss affecting the organisation.

Definition 2.4 (Damage evaluation). Let g = ⟨N,→⟩ be a timed dependency graph.

24

2.3. The Time Dependency (TD) model

The business-driven damage evaluation function (dam) is a mapping from down-
time to costs dam ∶ N ×T → Eur .

Running example - Part 2.5. In our simplified example, the downtime cost of p2
is 120 Euro per hour (see Figure 2.1), so dam(p2, t) = 120t. This means that the
occurrence of incident i1 (which – after propagation – causes a downtime of 55
minutes on p2) would create a damage of 110 Euro.

In practice, dam may not be linear (a downtime of 24 hours may well cause
more losses that 24 downtimes of one hour). In general, dam should be pro-
vided by the organisation’s business department for the most important business
processes and, in general, for all the business-relevant IT components in the or-
ganisation. In some cases, obtaining an accurate dam function can be a non-trivial
task: this is the case of business processes which do not cause any direct financial
loss if disrupted. In these cases, the organisation needs to quantify the loss of im-
material goods such as its reputation in the public opinion. Banks and insurance
companies are among the organisations that are more prepared to carry out this
task.

Frequencies and Global Cost Having determined the damage associated to an
incident, we need now just one last factor for an accurate risk evaluation, and that
is an assessment of the frequency (likelihood) of an incident.

Definition 2.5 (Incident frequency). Given a set of incidents I , the incident fre-
quency, is a mapping freq ∶ I → R+ .

For instance, freq(i) = 0.1 means that estimates indicate that incident i is likely
to happen once in ten years (on average). We should mention that NIST [73, 18]
suggests a qualitative approach to assess likelihood (High, Medium, Low), while
COBIT [90] promotes both qualitative and quantitative approaches. In this chapter
we require a numerical value, which in practice can be derived from the past
experiences of the assessment team or from public domain statistics.

Running example - Part 2.6. For the purpose of our running example we esti-
mate i1, i2 and i3 happen (on average) respectively 5, 12 and 50 times per year.
Consequently, freq(i1) = 5, freq(i2) = 12 and freq(i3) = 50.

Now, the downtime function computed using the timed dependency graph to-
gether with the damage and the frequency evaluation allows us to compute an
upper bound of the expected cost (per year) due to service downtime.

Definition 2.6 (Estimated downtime cost). Let g = ⟨N,→⟩ be a timed dependency
graph, I be a set of incidents, dt be the incident downtime mapping, freq be the

25

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

frequency mapping and dam the damage evaluation for g. The estimated down-
time cost for the system is defined as

esdc(I) = ∑
i∈I,n∈N

dam(n,dt(i, n)) ⋅ freq(i) (2.1)

Notice that esdc delivers precise results only when the following two assump-
tions hold: (1) incidents will not happen simultaneously, and (2) repetitions of the
same incident cause an equal repetition of the same damage. Intuitively, the bigger
the number of incidents and their duration, the less likely is that assumption (1)
will hold, since the probability of incidents happening simultaneously increases.
Should this be the case, the formula given in Definition 2.6 must be adjusted to
take into account the consequence of overlapping incidents on the same node.
For example, if a node is unavailable because of an incident and in the mean-
time another incident occurs on the same node, the damage to the organisation
does not grow because of the second incident, since the node is already unavail-
able (because of the first incident). However, when the probability of incidents
overlapping is small, the estimated downtime cost calculated with the formula of
Definition 2.6 gives an upper bound of the real cost, which complies with the
general risk management principle of assuming a realistic worst-case scenario in
estimating impact.

Running example - Part 2.7. Going back to our example, incident i1 causes an
yearly downtime on m3 of 45 hours (i.e. five times a downtime of 9 hours). Sim-
ilarly, incidents i2 and i3 cause an yearly downtime on m3 of 36 and 100 hours
respectively. Given the total number of hours in an year (8760), the probability
thatm3 is unavailable because of incident i1, i2 and i3 is respectively 0.005, 0.004
and 0.011. Assuming these three incidents are independent events, the probabil-
ity of incidents i1 i2 and i3 happening simultaneously is ∼ 0.0002 (less than two
hours in one year). We consider this probability to be sufficiently small to use the
formula of Definition 2.6 and obtain a reasonable upper bound of the estimated
downtime cost. Given the damage evaluation of p1 and p2 and the estimated fre-
quency of the set of incidents I = {i1, i2, i3}, the yearly estimated downtime cost
of the system is 7055 Euro.

2.3.1.2 Developing the risk mitigation strategy

The goal of risk mitigation is to bring down the estimated downtime cost by
applying a set of countermeasures, which can be technical and organisational.
To achieve full generality we define a countermeasure as a function which can
modify the timed dependency graph as well as the incident repair time and the
incident frequency. Each countermeasure has also a cost per year (summing the
amortisation and the maintenance costs).

26

2.3. The Time Dependency (TD) model

Definition 2.7 (Countermeasure). Let g = ⟨N,→⟩ be a timed dependency graph,
I be a set of incidents and rt and freq be the incident recovery time and frequency
functions for I . A countermeasure c, is a pair ⟨effect, cost⟩ where effect maps
g, rt, freq into g′, rt′, freq′, and cost ∈ Eur is the (amortised) cost per time unit
(year).

We note that in practice most countermeasures fall into one of two classes: fre-
quency countermeasures and time countermeasures, accordingly to the resulting
effect. The former reduce the frequency of a given incident, while the latter reduce
the downtime due to the incident (e.g. by reducing the incident recovery time or
by increasing the survival time). In frequency countermeasures, the projection of
effect on g′, rt′ is the identity function. It is worth noting that a countermeasure
completely preventing an incident can be modelled by setting to zero either the
frequency or the downtime relative to the incident.

Running example - Part 2.8. Table 2.3 reports a list of countermeasures to be
applied onm3 to mitigate the negative effects of incidents i1-i3 (disk failure, power
disruption and OS failure respectively). Notice that c1-c7 are technical counter-

Table 2.3: A list of countermeasures to be applied on m3 to mitigate the negative
effects of incidents i1-i3. Type F refers to frequency countermeasures, while type
T refers to time countermeasures.

Id Description Type Amortised Cost I Frequency Recovery time
C/y aft. bef. aft. bef.

c1 New disks F 1000 i1 3 5 9 9
c2 UPS T 3000 i2 12 12 1 3
c3 Backup machine T 4000 I - - 2 -
c4 Service pack F 900 i3 20 50 2 2
c5 New OS version F 6200 i3 5 50 2 2
c6 Patch #143 F 300 i3 40 50 2 2
c7 Patch #146 F 300 i3 42 50 2 2
c8 Disk backup strategy T 2000 i1 5 5 5 9

measures while c8 is organisational; moreover c1, c4-c7 are frequency counter-
measures since their effect is to reduce the frequency of certain incidents, while
c2, c3 and c8 are time countermeasures since their effect is to reduce the recovery
time on m3. Figure 2.3 shows the propagation of incident i1 after the application
of c8, which reduces the downtime of m3 to five hours. Since the survival time of
p2 (eight hours) is longer than the downtime of a2, p2 is never disrupted by this
incident, and the component relative to p2 of the cost of i1 is zeroed, reducing the
overall estimated downtime cost.

27

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

m3

db2

a2

a3

p1

p2

i1(t0)
c8

t (h)0 2

Components available Components unavailable

stop(p1)stop(a3)

stop(a2)

31 4 5

Figure 2.3: Propagation chart of incident i1 with countermeasure c8 in place.

It is usually possible to apply more than one countermeasure on the same node,
but for this we have to consider that one countermeasure may be incompatible with
another one. An OS patch, for example, can be incompatible with other patches;
moreover, deploying a backup machine can be useless if other backup techniques
are already in place.

For instance, in our Running Example, countermeasures c4-c7 are mutually
incompatible because the service pack can not be installed if single patches are
already installed, and because installing patches for the old OS version with the
new version already installed would be impossible.

By combining the timed dependency graph, countermeasures and incidents
with their cost and frequency, we now give a definition of best set of countermea-
sures as the set of countermeasures that reduces the estimated downtime cost the
most (taking into account the cost of the countermeasures). In the definition we
extend (2.1) to take into account the selected countermeasures. We also denote
by dtC(i, n) the downtime the incident i causes on node n in presence of a set of
countermeasures C = {c1, . . . , cn}. Likewise, rtC and freqC are respectively the
recovery time and frequency functions in presence of the set of countermeasures
C = {c1, . . . , cn}.

Definition 2.8. Let g = ⟨N,→⟩ be a timed dependency graph, I be a set of in-
cidents, C be a set of countermeasures, cost(C) be the sum of the costs of all
the countermeasures in C and dt(i, n,C) and freq(i,C) be the incident downtime
and frequency functions for incidents i ∈ I in the presence of countermeasures in
C.

28

2.3. The Time Dependency (TD) model

• We call estimated global cost of incidents I in presence of C the value:
esdc(I,C) = ∑i,n∈I×N dam(n,dt(i, n,C))freq(i,C) + cost(C)

• We say that BC ⊆ C is a best set of countermeasures (with respect to C) if
the countermeasures in BC are pairwise compatible, and for every SC ⊆ C
of pairwise compatible countermeasures, esdc(I,BC) ≤ esdc(I,SC).

Thus, the best set of countermeasures is the one minimising the expected
global cost (including the cost of the countermeasures). Similarly, the expected
benefit of a given set of countermeasures is the difference between the expected
downtime cost esdc(I) and the expected downtime cost after applying the coun-
termeasures: esdc(I,BC).

Two countermeasures are considered pairwise compatible if deploying one
countermeasure does not make impossible or useless to deploy a second one. For
example, in the set of countermeasures of Table 2.3, c6 (Patch #143) is not pair-
wise compatible with c5 (New OS version), since the patch is applicable only
to the “old” OS version. Similarly, c4 (Service pack) is not pairwise compatible
with c6, since by applying the OS service pack one fixes already the vulnerability
patched by (Patch #143), thus making its deployment useless.

Running example - Part 2.9. According to the information of Table 2.3 we can
now define the incident downtime and frequency functions in the presence of coun-
termeasures. To define the incident downtime in the presence of countermeasures,
we first need to define the incident recovery time in the presence of countermea-
sures, on which the dt function is based upon.

rt(i, n,C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = i2 and n =m3 and c2 ∈ C
2 if i = i1 and n =m3 and c3 ∈ C
2 if i = i2 and n =m3 and c3 ∈ C
2 if i = i3 and n =m3 and c3 ∈ C
5 if i = i1 and n =m3 and c8 ∈ C
rt(i, n) else.

The dt function in the presence of countermeasures is therefore defined as:

dt(i, n,C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n,C) if n ∈M
0 if n /∈M and Dn = ∅
0 if max

m
sÐ→n∈→dt(i,m,C) − s < 0

max
m

sÐ→n∈→dt(i,m,C) − s else.

The freq function is defined as:

29

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

freq(i,C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if i = i1 and c1 ∈ C
20 if i = i3 and c4 ∈ C
5 if i = i3 and c5 ∈ C
40 if i = i3 and c6 ∈ C
42 if i = i3 and c7 ∈ C
freq(i) else.

We can now compute esdc considering the three incidents (i1-i3) and each
possible combination of countermeasures (c1-c8). Recall that only the disruption
of p1 and p2 involve a loss to the organisation (see Figure 2.1). The result is
BC = {c1, c4}, i.e. the most cost-effective strategy to mitigate the risk is to install
the OS service pack and to update m3’s disks.

Summarising, our model provides IT managers with an effective way of de-
termining the most cost-effective risk mitigation strategy for availability-related
risks by choosing the best set of countermeasures for a given system. For space
reasons, we have not addressed other optimisation possibilities which are made
possible by this model, but one can use it to find for instance “the least expensive
set of countermeasures which bring the expected downtime of service A down to
10 hours per year” or “the best set of countermeasures within a given budget”.

2.4 Prototype implementation

A preliminary problem we had to solve when tackling the implementation is-
sue is that of building the timed dependency graph. The information about the
IT and business infrastructure is typically spread across a number of free text
documents. To build the model it is necessary to report information in a struc-
tured form, such as database tables. Fortunately there exist tools for support-
ing IT risk assessment and business continuity which can deliver this informa-
tion (previously collected through the tool) in a structured format. The Italian
branch of KPMG [102] (a worldwide company delivering also Information Risk
Advisory services) has developed a customisable tool, KARISMA (Kpmg Ad-
vanced RISk MAnagement), to support their RA (and business continuity) activi-
ties. KARISMA supports the risk advisory services of KPMG by providing a set
of information collection forms which are filled by the owners of IT assets and
business processes assisted by the KPMG personnel. The information collected
by KARISMA includes: (1) a map of the organisation’s IT infrastructure and
the business processes and subprocesses it supports, (2) the value of the business
processes to the organisation, (3) the estimate of likelihood and impact of a list of

30

2.4. Prototype implementation

threats and vulnerabilities (derived from the knowledge base of KPMG) that could
affect the IT infrastructure and (4) the current coverage and possible applicabil-
ity of security controls (mainly based on the ones proposed by ISO 27002 [46]).
KARISMA delivers a number of reports which summarise the current risk of the
IT infrastructure based on the collected information and point out the risk expo-
sure of each business process and subprocess.

We build the timed dependency graph by representing each entry in the database
table representing IT components with a node and each entry in the tables repre-
senting links between components (e.g. applications with machines or applica-
tions with applications through the exchanged data) with an edge between nodes,
annotated with the survival time.

After building the timed dependency graph we need to realise an algorithm
which (a) explores the timed dependency graph to simulate the consequences of
the incidents, (b) evaluates the global cost of a set of incidents, (c) simulates
the new behaviour of the TD model in presence of a set of countermeasures and
(d) evaluates the new global cost of the set of incidents with different subsets of
countermeasures. Figure 2.4 summarises the architecture of the prototype. The
task of building the TD model with the information in the KARISMA database is
accomplished by the data import component. Tasks (a)-(d) are carried out by the
simulation engine, the selection of the best set of countermeasures based on the
TD model is carried out by the optimisation algorithm by using the output of the
simulation engine.

To realise both the simulation engine and the optimisation algorithm we use in
first instance model checking [24], which is a technique to algorithmically analyse
concurrent systems, typically used for verifying if (a model of) the system satis-
fies some given properties, often specified as a model logic formula. The reason
of this choice is that model checkers are already devised to explore a graph of
several possible system behavioural traces, to find the one realising a given prop-
erty. Therefore, model checkers provide us with a way of doing fast prototyping
without sacrificing performance too much. Among the several model checkers
available (e.g. SPIN [38], SMV [57], etc.) we adopt UPPAAL [53], because (1) it
allows to specify a time dependent system (such as the one we need to model to
accomplish (a) and (c)) and (2) its extension – UPPAAL CORA – provides a cost
variable which can be used to implement (b) and (d) and provides an optimisation
algorithm that allows us to solve the optimisation problem of finding the best set
of countermeasures by minimising the cost.

31

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

Inventory of IT
components,

business
processes,

incidents and
countermeasures

Simulation
engine

Optimisation
algorithm

KARISMA
Database

Data import

TD Model [Timed dep.
graph, damage

evaluation, incidents
(frequency & recovery

time), countermeasures
(cost, effect)]

Best set of
counter-

measures

TD Model

Set of
counter-

measures

Estimated
global cost

Prototype tool

Figure 2.4: Architecture of our prototype. The information on the KARISMA
database is imported and converted into a TD model. The optimisation algorithm
is then run to determine which (sub)set of countermeasures produces the minimum
estimated global cost. The estimated global cost is calculated by the simulation
engine.

2.4.1 UPPAAL implementation

UPPAAL requires the system to be specified as a timed automaton [24, 14],
which is a finite automaton extended with a finite set of real-valued clocks. Clock
constraints, i.e. guards on edges, are used to restrict the behaviour of the au-
tomaton. UPPAAL CORA, is an extension of UPPAAL for cost optimal reach-
ability analysis which applies the theory of Linearly Priced Timed Automata
(LPTA) [52]. LPTA extend the model of timed automata with prices on all edges
and locations. In these models, the cost of taking an edge is the price associ-
ated with it, and the price of a location gives the cost-rate applied when delaying
in that location. In UPPAAL CORA prices are defined by means of an implicit
monotonically growing variable called cost.

UPPAAL has the additional advantage of allowing us to map in a relatively
natural way the main elements of our model into a timed automaton with the
same behaviour. This one-to-one translation helps avoiding side effects due to the
implementation.

We now show how we translate the elements of the TD model into UPPAAL
automata. UPPAAL allows one to group the definition of automata with similar
behaviour by means of templates. We build a separate template for nodes, edges,
incidents and countermeasures.

32

2.4. Prototype implementation

Figure 2.5 shows the template of an UPPAAL automaton implementing a node
of the timed dependency graph. A node can be in two states: Up and Down.
The initial state is Up. Another automaton can cause the node to transit to state
Down by sending a message in the shared channel variable take down. At the
same way, a node transits from state Down to state Up when a message is passed
through the shared channel variable bring up. When a node transits from state
Up to Down, its internal clock t is set to zero and starts counting the downtime
of the node. For each time unit that a node is disrupted, the global cost variable is
updated with the value of the esdc function, which returns the damage caused on
the current node by the downtime (t) caused by the current incident multiplied by
the current incident frequency.

Figure 2.5: Node representation in UPPAAL CORA

Figure 2.6 shows the template of an UPPAAL automaton implementing an
edge of the timed dependency graph. An edge can be in three main states: Up,
Down and Wait. The initial state is Up. There are two additional states, GoingUp
and GoingDown, which are so-called committed states (i.e. the automaton cannot
delay in that state), and are used to overcome technical limitations of the model
checker. The transition between the main states is regulated by means of two
channel variables src up and src down, which correspond respectively to the
bring up and take down variables of the source node. When the source node
of an edge goes down, it causes the edge automaton to transit to the Wait state
and delay in that state for exactly the survival time. Then, the edge transits to
the Down state and sends a message to bring down the destination node through
the take down dst channel variable, which corresponds to the take down
variable of the destination node. When the source node transits back to the Up
state, the edge transits to the Up state in turn and sends a message to the desti-
nation node through the channel variable bring up dst, which corresponds to
the bring up channel variable of the destination node.

Figure 2.6 shows the template of an UPPAAL automaton implementing an in-
cident. An incident can be in three main states: NotHappened, Happened and
Over, plus an additional committed state Resolved introduced for technical
reasons. The initial state is NotHappened. The boolean variable
incident taken is used to implement the assumption that incidents do not

33

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

Figure 2.6: Edge representation in UPPAAL CORA

occur simultaneously. When the incident transits to state Happened, a message
is sent through the shared channel variable take down, which corresponds to
the channel variable with the same name of the node automata that the incident
affects. The global variables incident freq and cur incident are also
set, with the values relative to the current incident, and will be used in the above-
mentioned esdc function. The automaton delays in state Happened for exactly
the amount of time provided by the rt variable, which corresponds to the result
of the rt function of the TD model. When the automaton transits to state Over,
a message is sent through the shared channel variable bring up, which corre-
sponds to the variable with the same name of the node automata affected by the
incident. The value of the incident taken and cur incident variables is
also reset.

Figure 2.7: Incident representation in UPPAAL CORA

Finally, Figure 2.8 shows the template of an UPPAAL automaton implement-

34

2.4. Prototype implementation

ing a countermeasure that reduces the frequency of incidents. Similar templates
exist for the other types of countermeasures with the same states but different
behaviour. A countermeasure can be in two main states: NotDeployed and
Deployed, plus an additional committed state IncidentFixed introduced
for technical reasons. The initial state is NotDeployed. A countermeasure can
transit to the Deployed state only if the boolean variable is applicable is
true. This variable is associated to the countermeasure by the countermeasure
id and is used to model the compatibility between countermeasures. When the
countermeasure transits to the Deployed state, the global cost is updated with
the yearly cost of the countermeasure, and the function env other counts is called
to set to false the is applicable variable of the other countermeasures in-
compatible with the current one. Once deployed, the countermeasure remains in
the deployed state until the incident it is meant to prevent happens. This is mod-
elled through a check on both the incident taken variable, which tells if an
incident is currently happening, and on the i c variable, which tells if the cur-
rent countermeasure mitigates the current incident. If this is the case, the global
variable incident freq is updated with the new value given by the counter-
measure, and the automaton returns to the Deployed state.

Figure 2.8: Frequency countermeasure representation in UPPAAL CORA

Once the automata templates are built (and initialised), we use the model
checker to compute the best set of countermeasures. This is achieved by asking
the model checker to verify the existence of a condition in which all the incidents
are in state Over and all the nodes are in state Up. This condition ensures that all
incidents have been completely repaired. For example, in the case of our running
example, the condition would be as follows:

E<> i1.Over and i2.Over and i3.Over and p1.Up and p2.Up and a1.Up
and a2.Up and a3.Up and db1.Up and db2.Up and m1.Up and m2.Up
and m3.Up and n1.Up

When asked to verify such a condition, the model checker automatically com-
putes a trace that minimises the global cost variable. The best set of countermea-
sures can thus be obtained by checking the state of the countermeasures in the

35

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

final trace produced by the model checker. The best set of countermeasures is
given by all the countermeasures that are in state Deployed.

As all model checkers, UPPAAL CORA suffers from the state-space explosion
problem, which refers to the fact that the size of the state space grows exponen-
tially in the number of components of the model to be analysed. This results
in a performance degradation that makes impossible to analyse arbitrarily large
models. In our case, the state space is given by the number of automata (nodes,
edges, incidents and countermeasures) in the model. A further problem in our
case is given by the fact that the model checker has to compute an optimisation of
the global cost by selecting which countermeasures will transit to the Deployed
state.

To test our implementation we use a dataset related to a real insurance com-
pany collected by KPMG auditors using KARISMA during a RA. The dataset
contains all the information needed to build the timed dependency graph (19
macro business processes and 122 sub-processes); the remaining information (about
incidents, costs and countermeasures) is also provided by the KPMG auditing
team who conducted the assessment. In first instance, to avoid the state explosion
problem and maintain a reasonable computational time, we perform the analysis
on portions of the infrastructure, and then merge results. Each portion of the in-
frastructure took on average one hour to be processed. In second instance, we
realise a translation of the TD model into Prolog.

2.4.2 Prolog implementation

Our Prolog algorithm implements the definitions of Section 2.3 for the timed
dependency graph (sets are translated into lists), incidents, countermeasures and
for the functions to calculate the estimated global cost of a set of incidents I in
the presence of countermeasures C esdc(I,C) (see Definition 2.8).

To compute the best set of countermeasures, we first create a brute-force algo-
rithm which finds an optimal solution by trying all the possible combinations of
countermeasures. The pseudo-code of this algorithm is shown in Algorithm 2.1.
In the algorithm, I is the set of incidents and C is the set of available countermea-
sures.

Secondly, we develop a second algorithm which finds a partial optimal solu-
tion. The pseudo-code of this algorithm is shown in Algorithm 2.2. In this second
algorithm, the best set of countermeasures is computed iteratively by adding at
each iteration the countermeasure that reduces esdc the most. When all the coun-
termeasures have been evaluated, or no countermeasure is left that can reduce
esdc, the search for new countermeasures to add is considered finished and the
algorithm stops. This algorithm is based on the heuristics of selecting at each it-

36

2.5. Discussion

Algorithm 2.1 Brute-force algorithm for the selection of the best set of counter-
measures
best cost =∞
BSC = ∅
for all SC ∈ ℘(C) do

current cost← esdc(I,SC)
if current cost < best cost then

current cost← best cost
BSC← SC

end if
end for

eration the best (i.e. the most cost effective) countermeasure, given the cost and
effect of the countermeasures already selected. This heuristics is based on the
simple intuition that most of the times the major reduction of downtime cost is
achieved by applying a set of very effective countermeasures.

In general, there is no guarantee that the solution produced by this algorithm
coincides with the global optimum found using the brute-force algorithm. In more
detail, the proposed heuristics would fail to select countermeasures which – con-
sidered in isolation – do not substantially decrease the estimated downtime cost,
but work very well in combination. However, our experiments show that the par-
tial solution is often close to the optimal one. For instance, in the case of our
running example the solution found with Algorithm 2.1 coincides with the one
found with Algorithm 2.2.

The Prolog implementation allows us to deal with the entire dataset at once,
without splitting the IT infrastructure, and tens of incidents while maintaining the
computational time in the order of minutes. We carry out optimal analysis for
partitions of up to 18 countermeasures and a partial optimal analysis that can deal
with thousands of them, on a 3GHz Pentium IV machine with 1Gb RAM.

2.5 Discussion

The technique we propose in this chapter to support IT managers in select-
ing the best strategy to mitigate availability-related IT risks is based on the TD
model, which is an approximation of the real IT infrastructure, its connection to
the organisation business, the incidents that could affect it and the possible coun-
termeasures to deploy. The approximation of our TD model is based on some
main assumptions which we discussed in Section 2.3 and we now summarise:

37

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

Algorithm 2.2 Algorithm for the partial optimal selection of the best set of coun-
termeasures
best cost =∞
BSC = ∅
while C ≠ ∅ do

best c = NIL
for all c ∈ C do

SC← BSC + c
current cost← esdc(I,SC)
if current cost < best cost then

current cost← best cost
best c← c

end if
end for
if best c ≠ NIL then

BSC← BSC + best c
C ← C − best c

else
break while

end if
end while

38

2.5. Discussion

1. a failure on an IT component propagates to other components following the
functional dependencies among components in the way described by the
timed dependency graph;

2. the survival time of one component with respect to the failure of another
one can be reasonably approximated to an average value;

3. once the effects of incident on a set of components have been repaired, the
components that are unavailable because of incident propagation become
available;

4. the damage of the disruption of a business activity (process) can be reason-
ably approximated as a function of the process disruption time;

5. incidents do not usually overlap (i.e. the chance that two different incidents
happen at the same time is negligible);

6. the effect of combined countermeasures can be estimated by IT managers.

Under these assumptions, the accuracy of the results delivered by our tech-
nique depends on the accuracy of the input data available. This means that in-
accurate information (e.g. regarding the damage of the disruption of a business
process, or the frequency of an incident) can mislead the selection of the best
set of countermeasures. However, the selection of risk mitigation strategies is
anyhow prone to this problem: IT managers are asked to take decision based on
incomplete or inaccurate information. The advantage of using our model is that it
provides IT managers with a framework that allow them to deal with the complex
problem of addressing the dependencies among IT components and of business
functions on IT in the selection of countermeasures. In this way IT managers can
avoid judgement errors and better document and justify their decisions.

The other interesting point of discussion is under which circumstances it is
feasible to adopt our model. We split this discussion in two parts: the first regards
the possibility of collecting accurate information, the second regards the complex-
ity of the optimisation algorithms with respect to the size of the IT infrastructure
under exam.

Input Data The main concern regarding the feasibility of our approach is whether
it is possible to collect accurate information required to build the TD model. The
main result of our case study with KPMG is the indication that this information
can be available.

39

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

Based on the experience we gained during the case study, we note that the
required data is typically available after a serious quantitative risk assessment and
business continuity plan.

First of all, an accurate map of the IT infrastructure is required by a business
continuity plan carried out following the BS25999 [41] standard (and is also avail-
able after standard RAs). We have seen in our case-study that such information is
enough to build the timed dependency graph. Most of the information required to
build the timed dependency graph is also available when the IT infrastructure is
modelled by an architectural framework, such as TOGAF [113], Zachman [114]
and ArchiMate [84]. Indeed, the layers defined in those frameworks are similar to
the ones we adopt for our model, though used for different purposes (e.g. archi-
tectural support, new component impact evaluation, etc.). Since those frameworks
are widely employed (ArchiMate for instance is used within the Netherlands by
ABN Amro and the Dutch Tax Office), and are supported by several tools, they
provide us an indirect confirmation of the feasibility of actually obtaining the data
we need.

Secondly, an inventory of possible incidents, together with their frequency
has to be compiled during the quantitative RA (e.g. following the ISAMM stan-
dard [93]). To this end, we note that many organisations do not follow the quanti-
tative approach because of the limited amount of quantitative data about security
events. The choice of the qualitative approach is also influenced by the general
business view of risk in the organisation. For instance, financial institutions (e.g.
banks and insurance companies) are used to quantitatively assess financial risks as
part of their core business: therefore, IT managers of financial institutions are en-
couraged to adopt the quantitative approach since it is well understood and used
by the top management. It is common practice, and a well-known principle in
RM [73], to derive this information from previous observations. We believe that
one possible approach to obtain a quantitative estimate about incident frequency
is to mix historical data about incidents with the expertise of the risk assessor. It
is possible to gather historical data about the availability of IT systems or system
components in two main ways: (1) by using publicly available information for
recurrent incidents (e.g. disk breakdowns) and (2) by combining the use of so-
called configuration management tools to collect the past availability of every IT
component with a systematical root-cause analysis to determine the main factors
causing the unavailability of (part of) the IT infrastructure after every disruption.
After these observations are obtained, the final probability can be obtained by in-
tegrating them with the personal belief of the analyst by using the Bayesian update
procedure suggested by Reitan in [67].

Finally, a complete evaluation of the effectiveness of chosen incident response
strategies (i.e. countermeasures) is required by many standards e.g. NIST SP 800-

40

2.6. Related work

30 [73]: thus, the organisation is also required to quantify downtime costs of the
different IT components before and after the countermeasures have been applied.

To further substantiate our argument, we note that this data is also collected
by tools devised to assist the RA and RM processes. For instance, KARISMA
is based on COBIT and ISO 27002, and it is very likely that other tools for RA
supporting the quantitative paradigm and based on these standards would collect
the same kind of information. Our system can thus be regarded as an additional
component for KARISMA or for any other similar tool for RA.

Computational complexity The second concern regarding the feasibility of our
approach is whether the algorithms underlying our framework are not too complex
to be carried out in reasonable time. It is easy to see that evaluating the optimal
set of countermeasures with the brute-force algorithm has complexity in the order
of (x × c!), where x is the cost of calculating the global estimated cost of inci-
dents in the presence of countermeasures (esdc). The main problematic factor in
the equation is of c!, which indicates that the presence of a relatively large set of
countermeasures would make it infeasible to carry out a brute-force analysis to
find the best set of countermeasures. On the other hand, the algorithm for calcu-
lating the partial optimal set of countermeasures has (worst-case) complexity in
the order of (x × c2). Although it does not computes the optimal solution, this
algorithm can be applied to the large sets of countermeasures which can be found
in real-world cases.

Other ways to bring down the c! would include splitting the set of counter-
measures into various set of independent countermeasures, which would make it
possible to apply compositional methods. However, our current implementation
does not support this feature.

2.6 Related work

There exist various academic frameworks for carrying out RA, but they all
differ from our proposal in that they do not model the propagation of incidents
across an organisation as precisely as we do. For instance, Lenstra and Voss [55]
present a quantitative approach to IT risk management to determine the optimal
RM strategy given a limited budget. Their approach requires performing a risk
assessment on all the applications supporting business processes and identifying
the (monetary) loss due to each threat on the business process they support, thus
the risk is evaluated in terms of the likelihood and the loss. Authors define an
action plan (set of countermeasures) as something influencing the likelihood of a
threat thus reducing the risk; furthermore they associate a cost to it. The selection

41

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

of the best set of action plans consists in finding the set that mostly reduces the
likelihood of all threats within a given budget. Since this approach is designed
to deal with threats to all the three aspects of information security (CIA), to keep
it feasible it lacks in a complete representation of the constituents of an IT in-
frastructure (machines, facilities, etc.) and in modelling the time dependencies
between them, which - as we have discussed in the introduction - is essential for
properly modelling the availability risks. Our model, on the other hand, being
specifically tailored for availability risks, takes into consideration the time depen-
dencies and therefore allows us to simulate how an incident propagates across the
organisation.

Furthermore, the authors’ choice of allowing a single, atomic, action plan per
threat implies that the risk management team should already have found man-
ually the best set of countermeasures to be applied in response to an incident.
The proposed framework then, simply decides whether to apply or not this set of
countermeasures. On the other hand, our model is able to compute the best set of
countermeasures without requiring this pre-processing phase and allowing one to
find a more fine-grained solution.

Asnar and Giorgini [10] introduce an extended Tropos [19] goal model to anal-
yse risk at organisation level and to identify and enumerate relevant countermea-
sures for RM. Their approach is mainly devoted to the enumeration of incidents
and countermeasures, while our approach focuses on selecting and prioritising
incidents to be mitigated and possible countermeasures to perform the mitiga-
tion. Another proposal is that of Aagedal et al. [8], who developed the CORAS
framework to produce an improved methodology for precise, unambiguous, and
efficient risk analysis of security critical systems. CORAS focuses on the tight
integration of viewpoint-oriented visual modelling in the RA process, using an
UML-based approach in the context of security and RA. Our approach is orthog-
onal to CORAS, in the sense that we could use the output of CORAS to feed out
tool.

In addition to academic work there exist a number of commercial tools sup-
porting the risk management and RM process. The most closely related to our
work are CounterMeasures and GSTool. Alion’s CounterMeasures [83] performs
risk management based on the NIST 800 series and OMB Circular A-130 USA
standards. It provides the ability to perform cost/benefit analysis and ROI on
countermeasures. GStool [97] is developed by Federal Office for Information Se-
curity (BSI) to assist users of the IT Baseline Protection Manual. GStool supports
a qualitative assessment of protection requirements. The main difference between
these approaches and ours is that they face the countermeasures selection by an
economic prospective (ROI) or a technical prospective only, rather we merge the

42

2.7. Concluding remarks

two aspects in an holistic behavioural model of the whole organisation. For a
wider list of risk management supporting tools refer to [96].

Finally, our work has some analogy with some proposal for using model
checking to assess the survivability of distributed systems [47, 25]. Jha and
Wing [47] use the NuSMV model checker to model the distributed environment
and generate a failure scenario graph (sum of counterexamples of survivability
properties) by injecting faults into the model. Secondly, they add some additional
information about the probability of harmful events to perform reliability analysis
and cost/benefit analysis of possible countermeasures. Our approach differs in that
we model also time dependencies between IT components: thus we are able to per-
form a more accurate evaluation of the global impact. Furthermore our approach
is strictly focused on information risk management. Cloth and Haverkort [25] de-
velop a model checking-based approach to evaluate the survivability of a system.
Survivability is defined as the ability of a system to recover in a timely manner
predefined service levels after the occurrence of a disaster. They describe the sys-
tem as a Stochastic Petri net and then automatically convert it into a Continuous
Time Markov Chain (CTMC). Finally they use a model checking engine to obtain
a time-probability chart that expresses the recovery probability in relation to the
recovery time.

2.7 Concluding remarks

In this chapter we focus on supporting the selection of mitigation strategies of
risks related to the availability of an organisation’s IT infrastructure. We argue
that the way present methodologies address the time and functional relationships
between the constituents of the IT infrastructure is inadequate to properly evaluate
the global consequences of an incident. Our contribution consists of a model,
a technique and a tool which takes into account the global impact of a set of
risks in supporting the choice of the best set of countermeasures to cope with
them. The selection process we propose complies with standard requirements for
risk mitigation, i.e. it supports the selection of countermeasures which are: (1)
appropriate to the business needs, (2) commensurate with the business value of
assets and with the risk faced and (3) consistent and cost effective. This is achieved
by employing the TD model that allows us to represent the actual propagation of
an incident across the organisation and to deal with the countermeasures selection
process. To this end, the presence of a tool is necessary due to the complexity of
the selection process.

After the case-study carried out with data provided by KPMG, we argue that
the input required by our approach can be available after a serious quantitative

43

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of
Availability Risks

RA has been carried out; this makes our proposal attractive for organisations in
which the qualitative paradigm is mostly used (e.g. some financial organisations).
However, we believe a more wide study could help identifying more precisely
which kind of organisations could benefit from this approach.

We see two main limitations of our approach. First, since it requires the quan-
tification of damage, incident downtimes and frequencies, it is not readily usable
in organisations that carry out risk assessments following the qualitative paradigm.
Secondly, although the accuracy of results depends on the accuracy of the input
data, our model does not provide an indication on the uncertainty of the results
accuracy. Being able to specify the uncertainty about a certain input value and ob-
taining results that indicate the result uncertainty could be a desirable feature for
decision makers which in our opinion deserves future exploration and improve-
ment on the TD model.

Our approach is aimed at finding the set of countermeasures minimising the
expected yearly cost due to the unavailability of IT services. Here we note that
a related organisation goal is that of achieving a given Recovery Time Objective
(RTO), i.e. the latest point in time at which operation must resume after a failure.
While this does not reduce the value of our proposal, we believe our model for
incident propagation can be extended to analyse the required steps to achieve the
given RTO. This topic will be further discussed in Chapter 4.

Finally, our system is particularly suited to support continuous risk manage-
ment [61]: thanks to its fine granularity, it can be easily reviewed to match situ-
ational changes, allowing for early detection of service deterioration, and prompt
reaction to changing environments.

44

Chapter 3
Model-based Qualitative Risk
Assessment for Availability of IT
Infrastructures*

In the previous chapter we presented the Time Dependency (TD) model, which
is meant to be used for the mitigation of availability risks in a quantitative way.

Risk assessments can be carried out following two main paradigms: quan-
titative and qualitative. In quantitative risk assessments, risks are evaluated by
means of numeric values. The magnitude of the difference between risk values is
therefore known. In qualitative risk assessments risks are evaluated by means of
descriptive “labels” (e.g. high, medium, low) for which only the order is known
(i.e. high > medium > low). The qualitative paradigm is the one that is used the
most in IT risk assessments, since it does not require numerical data regarding the
likelihood of incidents and the associated monetary losses which can be difficult
to obtain.

The TD model is devised for risk mitigation and it assumes that most of the
assessment has already been carried out.

In this chapter, we introduce the QualTD model, which is meant to be used for
risk assessments. The QualTD model extends the representation power of timed
dependency graphs by including the ability to model redundancy of IT compo-
nents in the infrastructure.

*This chapter is a minor revision of the paper with the same name [2] published in the journal
Software and System Modelling (SOSYM), pages 1-28, Springer Berlin/Heidelberg, June 2010.

45

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

3.1 Introduction

In this chapter we focus on the following general problem: defining a tech-
nique for assessing availability-related IT risks which is simple enough to be in-
cluded in a real RA, while at the same time providing solid guarantees in terms of
accuracy and replicability (i.e. obtaining the same results based on the same input
information) of the results it delivers.

The concrete problem that leads to the definition of the above general problem
statement regards a large multinational company and the method the company
uses to assess availability risks. While it is satisfied with the fact that using the
present RA method they can perform RAs in time, the company aims at improving
their RAs by assessing risks more accurately, and reducing the dependency of the
results on the personnel carrying out the RA (i.e. when determining the impact
level of a threat). At the same time, the company wants to keep the method feasible
in terms of both the amount and the detail level of the information, and of the time
and resources needed to carry out an RA. In other words, any improvement of their
current RA method and techniques should not require information that the team
carrying out the RA cannot obtain, and should ensure that the results of the RA
can still be delivered timely to the requester. The natural choice to achieve these
goals is to decompose the risk into its constituting factors so that the following
two requirements are met:
(a) the decomposition is accurate, i.e. has a true relationship with the complex risk
to be assessed;
(b) data can be collected cost-effectively.

To solve this problem, in this chapter we introduce the Qualitative Time De-
pendency (QualTD) model and the technique associated with it. The QualTD
model and technique allow one to carry out a qualitative assessment of availabi-
lity risks based on the propagation of availability incidents in an IT architecture.
Incident propagation is used to increase the accuracy of incident impact estima-
tion. Likelihood estimation is not specifically addressed by our technique, but can
be based on existing likelihood estimation models (see Section 3.2 for details).

To model the assessed system we use a timed AND /OR dependency graph
in which system components are represented by nodes and the functional depen-
dencies (along with time constraints) are represented by edges between nodes.
Dependencies are derived from the IT system architecture.

In order to evaluate the technique based on the QualTD model we:

1. carry out an assessment of the availability risks on the global identity and
authentication management system of the company (an availability-critical
system) by following the company RA method together with the QualTD

46

3.1. Introduction

model to assess the impact of the threats and vulnerabilities present in the
system, from now on we call this assessment RA2;

2. compare the results on the impact estimation obtained from RA2 with the
results produced during a previous assessment carried out by the company
using their internal RA method only, from now on RA1 (to this end, we
used the likelihood estimates from RA1 to ensure that the results of the two
RAs could be comparable);

3. identify some general factors that justify the adoption of our technique also
in other cases based on the results of point (2);

4. indicate how to generalise the approach we followed in the present case
to other assessments, carried out following other popular (standard) risk
management methods;

5. provide a brief review of other RA techniques based on dependency graphs
which we found in the literature, and we discuss the results they deliver and
their applicability to the present RA case.

Our results indicate that:

1. there is evidence supporting that the technique using the QualTD model
satisfies requirement (b), i.e. it is feasible to embed the QualTD model with
the company’s RA method without requiring too much time or unavailable
information;

2. the QualTD model constitutes an improvement towards requirement (a), i.e.
according to the RA team of the company, the technique using the QualTD
model delivers better results in terms of accuracy (due to a more accurate
impact estimation) and helps delivering more inter-subjective results (i.e.
less dependent on the personnel carrying out the RA);

3. other RA techniques based on dependency graphs [12, 34, 40, 50] do not
satisfy requirement (b), i.e. they could not be applied to the present case, due
to the fact that they require information that is unavailable or that requires
too much time to be extracted.

4. the QualTD model can be used in combination with other existing standard
methods, if the target method is compatible with some key features of the
QualTD model (see Section 3.5.1.2).

The last point deserves an additional explanation. A concern one has when in-
troducing a new technique for assessing specific risks is whether this technique fits

47

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

within more high level RA methods. Intuitively speaking, a general (say company-
wide) RA is usually carried out following a (high-level) method and a number of
specific techniques. The high-level method specifies the global lines to set up
the RA process and to embed it into the organisation. Examples of RA meth-
ods include CRAMM [92], IT-Grundshutz [101], OCTAVE [82] or the NIST SP
800-30 [73]; a more complete list can be found in Section 3.5.1. The RA method
usually includes a number of tasks (like evaluating the availability risks), and does
not fully specify how to implement them within a specific organisation. This gives
organisations the flexibility of choosing an appropriate technique. Techniques in-
clude Fault and Event Tree Analysis [76], Attack Graphs [71] or HazOP [22]. Our
contribution can be seen as a technique to assess availability risks. To establish to
which extent the QualTD model can be embedded in present popular RA meth-
ods, we have made a taxonomy of them and pointed out the conditions that need
to be satisfied for this embedding to be successful.

The QualTD model is geared to industrial practice-compliant RAs, since: (1)
it allows to link threats and vulnerabilities with the components of the IT system
under assessment and derive a list of incidents and (2) it is fully qualitative and
does not require numerical information which can be hard to gather. To make
the QualTD model qualitative we determine the impact and risk of availability
incidents when the estimates about the likelihood of threats and vulnerabilities,
the incident duration and the importance of the business functions supported by
the analysed IT system are expressed by values in an ordinal scale. The QualTD
model also supports AND /OR dependencies to specify with more flexibility the
behaviour of a component on the components it depends on when they fail.

This chapter is structured as follows: in Section 3.2 we formally present the
QualTD model and we explain how it works by means of a running example.
In Section 3.3 we first introduce the industrial context in which we tested the
QualTD model and then we present the technique we used to apply the QualTD
model to this industrial case. In Section 3.4 we describe the design, the criteria
and the assumptions we made to evaluate the QualTD model and technique, and
we present the evaluation results. In Section 3.5 we first discuss the applicability
of our technique in combination with standard risk management methods, and
then we compare our technique with other dependency-based RA techniques in
the literature. Finally, in Section 3.6 we draw the conclusions of the chapter.

48

3.2. The Qualitative Time Dependency (QualTD) model

3.2 The Qualitative Time Dependency (QualTD) model

We now introduce the model supporting our RA technique. To illustrate the
ideas we provide a running example showing how the QualTD model can be em-
ployed in practice.

The QualTD model represents the system Target of the Assessment (ToA) by
means of a timed AND /OR dependency graph in which nodes can be system com-
ponents, services or processes supported by the system, and dependencies among
nodes are the edges of the graph. Incidents that can affect the ToA are the results
of a combination of threats and vulnerabilities, and affect one or more nodes in
the graph. So for example, a threat can be a Denial of Service, a vulnerability can
be a buffer overflow, and an incident a Denial of Service on a specific application
carried out by exploiting the buffer overflow vulnerability. The effects of an in-
cident can propagate to another system component, service or process following
the dependencies in the ToA. The model allows us to compute the global impact
and the risk levels of the availability incidents hitting the ToA in the way we are
about to explain. Figure 3.1 summarises the main concepts of the QualTD model:
for each one of them we will provide a more detailed description in the sequel.
Nodes and edges are the constituents of a timed AND /OR dependency graph. In
turn, a node represents an asset constituting the IT architecture, and it is modelled
as a generalisation of IT components (e.g. network components, servers, appli-
cations) and IT services or processes, which can have a certain criticality for the
organisation’s business. Threats can materialise on IT components (with a certain
likelihood). IT components can (with a certain likelihood) have vulnerabilities.
Our definitions of threats and vulnerabilities are similar to the ones given in BS
7799-3 [21]. A combination of a threat, a vulnerability on a specific set of IT com-
ponents constitutes a security event (see BS 7799-3), which we call incident, and
can have a certain duration. Note that BS 7799-3 defines an incident as a security
event with good probability of damaging the organisation’s business. According
to this definition, an incident would be a combination of a threat and a vulnerabil-
ity on a specific set of IT components which have a good likelihood and impact.
For the sake of the presentation, we do not report in the diagram the concepts of
incident harm and risk, as well as incident risk aggregated by threat/vulnerability,
as they are complex concepts which are produced as the output of the model.

We split the presentation of the model according to the three phases of an
RA the model supports: (1) definition of the ToA, (2) risk identification and (3)
risk evaluation. To simplify the exposition we use the following sets to indi-
cate domains: M is the set of all the time interval lengths (expressed in min-
utes), B is the set of all the possible dependency (edge) types and it is defined as
B = {AND ,OR }, D is the set of all the qualitative values expressing duration

49

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

Figure 3.1: UML Class Diagram of the QualTD model. In the diagram, the
type name of the attributes (criticality, likelihood, downtime, survival time, de-
pendency type) is referred to by their initial letter only.

(e.g. Short, Long), L is the set of all the qualitative values expressing likeli-
hood (e.g. Likely, Unlikely), C is the set of all the qualitative values ex-
pressing business value/criticality of an asset (e.g. Critical, Unimportant),
H is the set of all the qualitative values expressing business harm (e.g. Severe,
Negligible) and R is the set of all the qualitative values expressing the risk
(e.g. High, Low).

3.2.1 Definition of the ToA

We model the ToA by means of an AND /OR graph which represents the com-
ponents of the ToA and their functional/technical and organisational dependen-
cies.

Definition 3.1 (Timed AND /OR dependency graph). A timed AND /OR depen-
dency graph is a pair ⟨N,E⟩ where N is a set of nodes representing the con-
stituents of the ToA, and E is a set of edges between nodes E ⊆ {⟨u, v,dept, st⟩ ∣
u, v ∈ N,dept ∈ B and st ∈M }.

Running example - Part 3.1. The ToA in this example is the portion of the IT
infrastructure of an organisation providing two IT services: eHoliday, the holi-
day reservation service for the employees of the organisation and CRM-Repository,

50

3.2. The Qualitative Time Dependency (QualTD) model

the organisations Customer Relationship Management (CRM) repository service.
These services are implemented by means of three applications: WS1, a web
server, DB1 and DB2, two databases. DB1 and DB2 contain replicas of the CRM
data, but only DB1 is used by WS1 as a repository for eHoliday. Applications
are running on two different servers: Server1 and Server2. eHoliday is
implemented by WS1 and DB1 and, if only one of them is off-line, the service will
be off-line as well. CRM-Repository is implemented by DB1 and DB2, but
both applications must be off-line for the service to be unavailable. WS1 and DB1
run on Server1, while DB2 runs on Server2. According to this description,
we build the timed AND /OR dependency graph g = ⟨N,E⟩ as follows:
N = {eHoliday,CRM-Repository,WS1,DB1,DB2,Server1,Server2}
, and
E = { ⟨Server1,WS1,AND ,0⟩, ⟨Server1,DB1,AND ,0⟩,
⟨Server2,DB2,AND ,0⟩, ⟨WS1,eHoliday,AND ,0⟩,
⟨DB1,eHoliday,AND ,0⟩, ⟨DB1,CRM-Repository,OR ,0⟩,
⟨DB2,CRM-Repository,OR ,0⟩ }.
Figure 3.2 shows the timed AND /OR dependency graph of this running example.

!"#$"%&'()*'+,%-'.)/0,

123 453 456

2%+7%+3 2%+7%+6

894 :"

894 894 894

7;.<%+0=).)*,>
!"##$%&'($%#)*+

?+%0>
,*-7;.<%+0=).)*,>

.*&/0-

?+%0>
0*+$%&*"123$

@+)*)@0.)*,>$4*+ @+)*)@0.)*,>$5637

Figure 3.2: The timed AND /OR dependency graph representing the ToA in our
running example. Nodes are the constituents of the (partial) IT infrastructure un-
der exam. Services are annotated with their criticality level for the organisation.
The figure also includes the vulnerabilities and threats which we will formally
introduce later in this section and specifically describe in the running example.

51

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

The nodes N of the graph are the constituents of an IT architecture together
with the business processes the IT supports, i.e. processes/services, applications,
technology, infrastructure or facilities (see Section 2.3 for a more complete de-
scription). Different IT components can be represented by means of a single node
in the graph, according to the abstraction level required by the RA. For exam-
ple, in a company-wide assessment we could represent an IT service (i.e. a set
of servers and all the applications running on them) by means of a single node,
while for the assessment of a specific IT system we model each component as an
individual node.

An edge from node b to node a indicates that a depends on b. The graph
supports both AND and OR dependencies. In the former case this means that a
becomes unavailable when any node it depends on is disrupted. In the latter case
a becomes unavailable when all nodes it depends on are disrupted. Each edge is
also annotated with the survival time (st), which indicates the amount of time v
can continue to operate after u is disrupted.

If a node a has an AND dependency on nodes b and c and an OR dependency
on nodes d and e at the same time, we read this as a having an AND dependency
on nodes b, c and x, with x having an OR dependency on nodes d and e. Similarly,
the survival time of node awith respect to nodes d and e becomes the survival time
of node x with respect to d and e, and the survival time of node a with respect to
x is set to zero. This concept is shown in Figure 3.3.

Figure 3.3: Equivalence of a graph with mixed AND and OR dependencies.

To complete the description of the ToA we include in the model an estimate
of the criticality of the business processes and of the IT services in the perspective
of the RA requester.

Definition 3.2 (Process/Service criticality). Given a timed AND /OR dependency

52

3.2. The Qualitative Time Dependency (QualTD) model

graph g = ⟨N,E⟩, the criticality of a process/service is a mapping criticality ∶
N → C .

Running example - Part 3.2. According to the business units of the organisation
using the IT system, the criticality level of eHoliday and CRM-Repository
is respectively Low and High.

criticality is defined only for those nodes which represent IT services or busi-
ness processes. It expresses the damage the company suffers if the node becomes
unavailable. For example, in a production company, an IT service supporting a
production line, which is a core business function, has a higher criticality than,
e.g. personal e-mail for employees.

3.2.2 Risk identification

After modelling the ToA, we identify the vulnerabilities which are present on
it, as well as the threats which could materialise on it, in particular the ones that
compromise its availability.

Definition 3.3 (Threat). Given a timed AND /OR dependency graph g = ⟨N,E⟩,
a threat is a potential cause of an incident, that may harm one or more nodes of
g. We call T the set of all the threats to the ToA.

Running example - Part 3.3. For the sake of simplicity, here we identify two
threats to the ToA: a Power outage can bring the servers off-line and a Denial
of Service (DoS) attack can cause the unavailability of the applications. Our set
of threats is therefore T = {Power outage,DoS}.

This is a common definition of threat, similar to that given in BS7799-3 [21];
moreover, it is fully compatible with the concept of threat the Company has
adopted in its internal RA method. The set of threats T our model addresses
are only the ones which have an impact on the availability of the ToA.

Definition 3.4 (Vulnerability). Given a timed AND /OR dependency graph g =
⟨N,E⟩, and the set of threats T , a vulnerability is a weakness of a node (or group
of nodes) in N that can be exploited by one or more threats in T . We call V the
set of vulnerabilities on the ToA.

Running example - Part 3.4. We identify two vulnerabilities which can be present
on the nodes of the ToA: Server1 does not have an Uninterruptible Power Sup-
ply (UPS) unit for power continuity in case of outage; moreover, DB1 and DB2
may crash after a buffer overflow attack. Our set of vulnerabilities is therefore
V = {No UPS,Buffer overflow}.

53

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

Also in this case, our definition of vulnerability is consistent with both the def-
inition given in RA standards, and with the concept of vulnerability the Company
has adopted in its internal RA method.

We model an incident as a security event (as defined in BS7799-3 [21]) caused
by a specific threat on a particular component of the IT architecture by exploit-
ing a specific vulnerability. Differently from the definition of incident given in
BS7799-3, we consider as incidents all security events, not only events “that have
a significant probability of compromising business operations”.

Definition 3.5 (Incident). Given a timed AND /OR dependency graph g = ⟨N,E⟩,
a set of threats T and a set of vulnerabilities V , an incident i is a 3-uple ⟨M, t, v⟩
with M ⊆ N , t ∈ T and v ∈ V , describing the combination of three events:

1. v is a vulnerability of each node n ∈M

2. t is the cause of i on each node n ∈M

3. t exploits v

We call I the set of all incidents generated from g, T and V . Moreover, we say a
node n is directly affected by an incident i = ⟨M, t, v⟩ if n ∈M .

Running example - Part 3.5. By combining g, T and V we identify four incidents
that can hit the ToA: (i1) A power outage causes Server1 to stop because there
is no UPS, (i2) a DoS attack is performed on DB1 by exploiting the buffer over-
flow vulnerability, (i3) a DoS attack is performed on DB2 by exploiting the buffer
overflow vulnerability, and (i4) a DoS attack is performed both on DB1 and DB2
by exploiting the buffer overflow vulnerability. Our set of incidents is therefore
I = {i1, i2, i3, i4} where:
i1 = ⟨{Server1},Power outage,No UPS⟩, i2 = ⟨{DB1},DoS,Buffer overflow⟩,
i3 = ⟨{DB2},DoS,Buffer overflow⟩, i4 = ⟨{DB1,DB2},DoS,Buffer overflow⟩.

The last concept we introduce for risk identification is incident propagation.

Definition 3.6 (Incident propagation). Given a timed AND /OR dependency graph
g = ⟨N,E⟩ and an incident i = ⟨M, t, v⟩, we say that i can propagate to a node
n ∈ N if:

1. n ∈M , or

2. ∃e ∈ E ∣ e = ⟨m,n,AND , st⟩ and i propagates to m, or

3. ∀e ∈ E ∣ e = ⟨m,n,OR , st⟩, i propagates to m.

54

3.2. The Qualitative Time Dependency (QualTD) model

Running example - Part 3.6. We want to know if the incident
i1 = ⟨{Server1},Power outage,No UPS⟩ propagates to eHoliday. Al-
though eHoliday is not directly affected by the incident, it depends on WS1 and
DB1, which in turn depend on Server1. Server1 is directly affected by the
incident, therefore we know that i1 will propagate to eHoliday.

Definition 3.7 (Nodes affected by the propagation of an incident). Given a timed
AND /OR dependency graph g = ⟨N,E⟩ and an incident i = ⟨M, t, v⟩, Propi =
{n ∈ N ∣ i propagates to n}.

Running example - Part 3.7. According to Definition 3.7, the set of nodes af-
fected by the incident i1 = ⟨{Server1},Power outage,No UPS⟩ is Propi =
{ Server1,WS1,DB1,eHoliday }.

3.2.3 Risk evaluation

The last piece of information we include in the model regards likelihood and
duration of incidents. In more detail, a threat is characterised by two indicators:
(1) the threat likelihood and (2) the time needed to solve the disruption caused by
the threat, e.g. a Short or Long disruption, or even more than two disruption
lengths.

Definition 3.8 (Threat likelihood). Given the set of threats T , the threat likelihood
is a mapping t-likelihood ∶ T → L .

Running example - Part 3.8. Security analysts have assigned a likelihood to the
threats in T using the following scale: Very Likely, Likely and Unlikely.
The likelihood of Power outage is Unlikely and the likelihood of DoS is
Likely.

The likelihood of a threat is an estimate of the probability of the threat ma-
terialising on the ToA. Here we have made the (simplifying) assumption that the
likelihood of a threat is a property of the threat itself and it is independent from the
IT component the threat occurs on. The assumption holds for most of the threats,
but not for targeted attacks (i.e. attacks crafted for and directed to a specific IT
component), since the likelihood of the attack is influenced by the value of the
targeted component. In this case we split the threat into a number of new threats,
each of them representing a specific IT component being targeted.
It is common practice in qualitative RAs to assess the likelihood of threats by
means of so-called likelihood models. Each model combines different parame-
ters, e.g. difficulty of the attack, resources needed, etc. to determine the final
likelihood of a threat. However, it is out of the scope of this work to specify such

55

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

a model. In the literature there exist works proposing models for specific contexts
(e.g. eTVRA [69] for telco networks).

Definition 3.9 (Incident duration). Given a timed AND /OR dependency graph
g = ⟨N,E⟩ and a set of incidents I , the incident duration is a mapping dt ∶ I×N →
D .

Running example - Part 3.9. According to the stakeholders of the IT system,
an incident is classified as a Long disruption if it takes more than 3 hours to
be repaired, as a Short one otherwise. The contract signed with the power
company guarantees that a power disruption is repaired on average in 6 hours.
Therefore, i1 is classified as a Long disruption. Since restoring DB1 or DB2 after
they crashed only requires a restart, incidents i2, i3 and i4 are classified as Short
disruptions.

dt(i,n) is an estimate of the (average) time a node n is out of service when inci-
dent i occurs. If we consider, for example, a buffer overflow attack which causes
the stop of an application, the disruption time is the time needed to detect that the
application is no longer running and to restart it. We do not take into account the
time needed to fix the vulnerability exploited by the threat (e.g. the time to patch
the system), unless this activity is needed to restore the functionalities of the sys-
tem. To keep the model qualitative, and to match the Company method, we apply
a discretisation of the disruption time in terms of short disruption (i.e. shorter
than a given threshold) and long disruption (i.e. longer than a given threshold),
which constitute our D set.

We now associate vulnerabilities with their likelihood.

Definition 3.10 (Vulnerability likelihood). Given a timed AND /OR dependency
graph g = ⟨N,E⟩, and the set of vulnerabilities V , the vulnerability likelihood is
a mapping v-likelihood ∶ V × ℘(N)→ L , where ℘(N) is the power set of N .

Running example - Part 3.10. Security analysts have assigned a likelihood to
the vulnerabilities in V using the following scale: Very Likely, Likely
and Unlikely. The likelihood of No UPS and Buffer overflow is Very
Likely.

The v-likelihood(v, Nv) is an estimate of the probability that the vulnerability
v is present in the set of homogeneous nodes Nv, i.e. nodes which can suffer from
the same vulnerability with the same likelihood. The simplest and most frequent
case is when we determine the likelihood of a vulnerability being present on a
single node of g. However, we might also need to consider the likelihood of a
vulnerability being present on a set of homogeneous nodes which are involved in
a specific incident. For example, consider the case in which some malware causes

56

3.2. The Qualitative Time Dependency (QualTD) model

a number of servers to stop working by exploiting a vulnerability which is present
in an application deployed on all of these servers: in this case we need to estimate
the likelihood of the vulnerability being present on all of the servers running the
application with the vulnerability, since the resulting incident would affect all of
them at once.

In case of an accurate RA (e.g. when it is possible to do technical vulnerability
verification such as penetration testing), the fact that an application is present on
an IT component can be determined without uncertainty; for example by making
sure a buffer overflow affects a web server by trying to exploit it. However, in
most cases, due to lack of time, the RA team has to rely on indirect (and therefore
uncertain) information, for example, by consulting the NIST National Vulnerabil-
ity Database [108] to check if the web server may suffer from a specific buffer
overflow vulnerability. v-likelihood is the expression of this uncertainty.

3.2.4 Output of a RA using the QualTD model

We use the information contained in the model to calculate the risk associated
with an incident, which is influenced by the likelihood that the threat occurs in the
ToA (which is a property of the ToA), the likelihood that a vulnerability is present
in a node or a set of nodes (which expresses the uncertainty about whether or
not the vulnerability is present in the nodes) and the estimated disruption severity.
In more detail, an incident causes (by propagation) a disruption with a certain
duration on some nodes of the timed AND /OR dependency graph which have a
certain criticality. We call this combination the global impact of the incident.

We assume that the more critical the processes/services affected and the longer
the disruption, the greater the impact of the incident will be, i.e. the global impact
of an incident is monotone.

Definition 3.11 (Global impact). Given a timed AND /OR dependency graph
g = ⟨N,E⟩, an incident i = ⟨M,v, t⟩, a monotone composition function harm ∶
C ×D → H mapping criticality and duration to business harm, and a monotone
aggregation function impact-agg ∶ H × ... × H → H ; the global impact of i is
defined by global-impact ∶ I → H , such that:

global-impact(i) = impact-aggn∈Propi
(harm(criticality(n),dt(i, n))) (3.1)

Running example - Part 3.11. The RA team has decided that the global impact
of an incident is calculated using the following rules:
a) the global impact is Critical if the incident causes the disruption of at least
one service with High criticality;
b) the global impact is Moderate if the incident causes a Long disruption on

57

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

any service, or a Short disruption of at least a service with Medium criticality;
c) the impact is Insignificant otherwise.
For example, if we take the above definition a), the impact-agg function is given by
the “at least one service” statement, and the harm function is given by associating
any disruption of a service with High criticality to the Critical impact. Ac-
cording to these rules the criticality of i1, i2, i3 and i4 is respectively: Moderate,
Insignificant, Insignificant, Critical.

Now that we have defined the incident global impact we can evaluate the in-
cident risk, which is a composition of the likelihood of the threat, the likelihood
of the vulnerability and the global impact of the disruption caused by the threat
materialising.

Intuitively, this means that the more likely it is that a threat materialises on
an IT component (or a set of them), or the more likely it is that the component
is vulnerable to that threat, and the more harmful the threat is, the more reasons
there will be to protect it against this incident. As for the global impact, also the
incident risk is therefore monotone.

Definition 3.12 (Incident risk). Given an incident i = ⟨M, t, v⟩, the incident risk is
a monotone composition function i-risk ∶ L ×L ×H →R mapping t-likelihood(t),
v-likelihood(v) and global-impact(i) to the risk level of i.

Running example - Part 3.12. As for the global impact, the RA team has decided
that the risk level of an incident is calculated using the following rules:
a) the risk level is High if either the incident has a Critical global impact
and at least Likely threat and vulnerability likelihood, or if the global impact
is Moderate and threat and vulnerability likelihood are both Very Likely;
b) the risk level is Medium if either the incident has a Critical global impact
and the threat and vulnerability likelihood are both at most Likely, or if the
global impact is Moderate and either threat or vulnerability likelihood is Very
Likely;
c) the risk level is Low otherwise.
In this case, i-risk is implemented by means of these three rules, which associate
the combination of global impact, threat likelihood and vulnerability likelihood to
the correspondent risk level. According to these rules, the risk level of i1, i2, i3
and i4 is respectively: Medium, Low, Low and High.

An additional operation one would like to do is to aggregate the incident risk in
terms of threats and vulnerabilities. Evaluating risk in terms of threats and vulner-
abilities is important to determine both the risk profile of the ToA, i.e. which threat
sources are the most harmful, and to prioritise vulnerabilities to be addressed (i.e.
patched) first.

58

3.2. The Qualitative Time Dependency (QualTD) model

Definition 3.13 (Incident risk aggregated by Threat/Vulnerability). Given a timed
AND /OR dependency graph g = ⟨N,E⟩, a threat t and the set of incidents
It = {i ∣ i = ⟨Mt, t, vt⟩}, a vulnerability v and the set of incidents Iv = {i ∣ i =
⟨Mv, tv, v⟩} and a monotone aggregation function risk-agg ∶R × ... ×R →R ;
the risk of a threat t is an aggregation of the risk level of all the possible incidents
which can originate from that threat (It), i.e. the mapping t-risk ∶R × ...×R →R
such that:

t-risk(t) = risk-aggi∈It(i-risk(i)) (3.2)

Similarly, the risk of a vulnerability v is the aggregation of the risk level of all
the possible incidents in which that vulnerability has been exploited (Iv), i.e. the
mapping v-risk ∶R × ... ×R →R such that:

v-risk(v) = risk-aggi∈Iv(i-risk(i)) (3.3)

Running example - Part 3.13. If we use Max as the aggregation function risk-agg
to calculate the risk level aggregated by threat/vulnerability, we assign each threat-
/vulnerability the maximum risk level of the incidents they are involved in. In this
way, the risk level of Power outage and DoS is respectively Medium and
High. Accordingly, the risk level of No UPS and Buffer overflow is re-
spectively Medium and High.

The QualTD model supports the traceability of the RA results. For instance,
suppose the RA has been carried out, and after some time we want to recall why
a DoS is a High risk for our system; we can go through the records of the model
and discover that:

1. it is Likely that a DoS is carried out by exploiting a Buffer overflow
on both DB1 and DB2;

2. both DB1 and DB2 are Very Likely to be prone to a Buffer overflow;

3. the resulting incident causes a Short disruption of the High critical ser-
vice CRM-Repository;

4. according to points 1–3 and to the impact and risk level definitions, the risk
of a DoS in the system is High.

When doing impact and risk evaluation we use the composition and aggrega-
tion functions harm, impact-agg, i-risk and risk-agg, which operate with qualita-
tive values (e.g. High likelihood and Low impact): the definition of the compo-
sition and aggregation functions is outside the scope of our model and it is left to
the choice of the RA team. However, these functions must be monotone and se-
mantically sound with relation to the meaning that the qualitative values involved

59

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

have for the stakeholders of the RA (i.e. it should make sense given the informal
meaning of the words). For example, the definition of Critical impact we give
in the running example part 11 is semantically sound; whereas it would not have
been sound if we defined as Critical an incident causing a Short disruption
on a service with Low criticality. In the running example and in Section 3.3.2 we
describe two possible implementations of harm, impact-agg, i-risk and risk-agg,
based on descriptive tables which define all the possible combinations of input
and output values.

Rationale for a QualTD model

It is legitimate to argue whether the model is sound or not. It is sound iff
disruptions in the model propagate in the same way as in the real system. In
principle, this could be tested by creating faults in components of the system (or
of a twin test system). Regarding soundness, the system we propose has three
intrinsic “limitations”: (a) it has only AND and OR nodes, (b) it does not consider
the “recovery time” of the single components, and (c) it works only if the graph is
acyclic. In our opinion, the first limitation is not a problem, as it is simple to model
even very complicated dependencies with the use of only AND and OR nodes.
The second limitation is a design choice which keeps the model simple, and in
our experience does not affect the fidelity of the model. In any case, it is possible
to extend our system to also take the individual recovery time into consideration,
for example by assigning the recovery time to the nodes and then adding it to
the incident downtime during incident propagation. The third limitation is in our
opinion the only true limit of the model. Our experience says that acyclic graphs
are perfectly suitable to model practical IT architecture. However, it is possible to
contrive examples in which this is not the case. For such examples, either one is
able to “abstract away” the cycles (for instance by analysing them separately and
modelling them with a single node), or our model is simply not applicable. Once
one accepts the above three intrinsic limitations, then soundness follows from the
soundness of the AND and OR basic nodes: assuming that (1) the nodes of the
timed AND /OR dependency graph include all the components of the ToA, and
that (2) for every component the availability dependency of this component on
other components is correctly and completely included in the graph by means of
AND /OR edges, then the fact that an incident on a certain (set of) components
will propagate in the ToA as predicted by the QualTD model can be proved by
using standard graph theory. We skip the demonstration for space reasons.

It is the task of the risk assessor using the technique based on the QualTD
model to make sure that hypotheses (1) and (2) are reasonably verified in a spe-

60

3.3. Case-study

cific case. In Section 3.3 we will show the technique we used to build the timed
AND /OR dependency graph as completely and correctly as possible.

3.3 Case-study

In this section we show how the QualTD model can be used in a practical RA
by describing the case-study we carried out with it. We will also use this case-
study to evaluate our technique. Let us start by describing the context in which it
was carried out.

3.3.1 The industrial context

The organisation We carried out the case-study at a large multinational com-
pany with a global presence in over 50 countries (from now on we call it the
Company) counting between 100.000 and 200.000 employees. The Company IT
unit supports the business of hundreds of internal departments by offering thou-
sands of applications accessed by approximately 100.000 employee workstations
and by many hundreds of business partners. The IT facilities for the European
branch are located at one site: our RA was conducted at that site. IT services are
planned, designed, developed and managed at the Company’s headquarters; those
services, such as e-mail or ERP systems, are part of the IT infrastructure which is
used by all the different Company’s branches all over Europe.

The stakeholders of the IT service are: (1) the Company’s Global IT Infras-
tructure (GIT) management department, (2) the Risk Management and Compli-
ance (RMC) department, (3) users: the Company’s units using IT services (in-
cluding GIT and RMC) and (4) an outsourcing company managing parts of the IT
infrastructure on behalf of GIT.

GIT provides basic IT infrastructure services such as desktop management,
e-mail and identity management. IT services are designed internally by GIT and
then partly outsourced for implementation and management to another company.
The outsourced tasks include specialised coding, server management, help-desk
and problem solving services.

RMC supports the compliance to internal policies and best practices of the
Company IT services; part of the tasks of RMC is to perform on-demand security
RAs for the IT services of GIT. An RA is usually requested by the owner of the IT
service each time a new service is developed or a new release of an existing one
is about to be deployed.

The other business units of the Company rely on these IT services for the con-
tinuity of their business. Some of these IT services are developed and managed by

61

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

the business unit itself (e.g. if they are specific to the competence area of the unit),
while global company services (e.g. authentication, e-mail system) are provided
by GIT. For efficiency reasons, like in most other large organisations, business
units exchange services by means of a “enterprise internal market”: one business
unit pays another one for the use of a given service and the service provider unit
finances its activities by means of these funds. This mechanism increases the
efficiency of internal service management.

The implementation and the management of some IT services are outsourced
to another company, which we call the Service Provider. Although the servers
running the IT services are owned by the Company and physically kept within its
data centres, the Service Provider manages the OS and the software running on
them. Moreover, for some services, the Company outsources also the development
(e.g. coding, deployment) of the custom applications to the Service Provider. The
Service Provider has signed contracts with the Company which include Service
Level Agreements (SLAs) regarding both the security of the information managed
by the outsourcing company and the availability of the outsourced services.

The target of assessment The system on which we focus our case-study is
called Oxygen. Oxygen is the global Identity Management for employees and
sub-contractors of the Company. The goals of the system are:

1. Identity Management: to provide enterprise-wide standard identities for all
employees and contractors of the Company, integrate identities with the dif-
ferent identity authoritative sources (e.g. the Human Resources information
system) and manage them through a governed process and ensure regulatory
and privacy compliance.

2. Identity/Account Linking and data synchronisation: to provide a holistic
view of the many accounts possessed by a person, enforce account termina-
tion when a person leaves the Company, enable data synchronisation among
identity provider and identity consuming systems for data accuracy and pro-
vide credential mapping, a foundation for Single Sign-On.

3. Identity Service for authentication and authorisation: to provide operational
directory services for general applications to be used for authentication and
authorisation, to provide unique, standard, organisation-wide identifiers for
employees and contractors, and to provide a foundation for advanced au-
thentication and authorisation in the future.

Oxygen is designed and implemented by the GIT department, while the man-
agement of the servers running it is outsourced to the Service Provider.

62

3.3. Case-study

!"#$%&%'(
)%*+#

,+&-#+.

)#
+-
&/
#(
0*

+%
12

30#+1%&*$12(
)%*+#

,
+&
-#
+.

30#+1%&*$12(
)%*+#

30#+1%&*$12(
)%*+#

4002&/1%&*$5
.0#/&6&/
)%*+#7.8

,1%1(#$%+'

9:,(
;1$1<#;#$%

!"#$%&%'(
2&$=&$<

>#$#+12(100?(
1@%A?

)0#/&6&/(100?(
1@%A?

3B'<#$

,+&-#+.

Figure 3.4: An overview of the Oxygen architecture

Figure 3.4 depicts the design of Oxygen: the system is composed of a number
of identity stores, which are identity databases implemented by means of directory
services. The main Identity Store keeps information about all of the identities and
their attributes. The Operational and the Application-specific stores contain a
(partial) replica of this information and are accessed by the different applications
which require identities for authentication and identification. Replication of the
identity stores is required for performance reasons.

Oxygen collects identity data from different authoritative sources, such as the
information system of the Human Resources department. Data acquisition is per-
formed by means of drivers, which also take care of synchronising data between
the different identity stores.

In addition to the identity stores, Oxygen exports also a service portal, which
allows employees of the Company to manage part of their identity record (e.g.
updating their home address, changing password).

The existing RA method In 2008, the RMC department carried out an RA on
the Oxygen system following its internal RA process, which is mainly based on
the guidelines provided by BS7799-3 [21], while the official security control pol-
icy is compliant with the ISO 27002 [46] standard.

The upper part of Figure 3.5 depicts the process usually followed by RMC.
In the following list we describe the 6 tasks composing the RMC process and we
link them with the steps of the QualTD technique.

1. RA intake: the RA team (composed of people from the RMC department)

63

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

!"#
$%&'()

*+,-%),,
$./'0&
"%'12,-,

34"
!-,(
56-76-&-8
,'&-7%

567/7,'1#
79#
:7%&671,

;70+.)
%&'&-7%#
'%<
6)/76&-%=

;)9-%-8
&-7% 79#
&>)#37"

?)6@-0)A
5670),,#
06-&-0'1-&2

!-,(#
$<)%&-9-8
0'&-7%

!-,(#
B@'1+'8
&-7%

!-,(
56-76-&-8
,'&-7%

!"#$%&'()*+,(-++.++#.&/($0"1.++

23%456 +/.$+

Figure 3.5: The internal RA process (above) linked to the steps of the QualTD
technique which complement the process (below)

and the requester project responsible agree on the scope of the RA and the
Target of Assessment (ToA). The requester also submits proper documen-
tation about the IT service to the RA team. This task corresponds to the
definition of the ToA (see Section 3.2.1) in the QualTD technique.

2. Business Impact Analysis (BIA): the RA team, together with the owner of
the ToA, determines the desired levels of Confidentiality, Integrity and Av-
ailability for the ToA (e.g. HIGH integrity and availability and LOW con-
fidentiality). They do this by analysing the impact that a breach of one of
the three security properties on the information managed by the ToA would
have on the business unit in a realistic worst-case scenario. They also de-
termine which legislation or regulation requirements the ToA has to comply
with (e.g. SOX [112] compliance). During this task the definition of the ser-
vice/process criticality in the QualTD technique (see Section 3.2.1) should
be made.

3. Threat/Vulnerability Assessment (TVA): the RA team analyses the ToA and
determines which threats/vulnerabilities the ToA is exposed to. Risk identi-
fication is based on a fixed list of threats/vulnerabilities which has been de-
rived from a number of existing RA standards (e.g. BS7799-3, ISO 17799,
BSI IT-Grundshutz [21, 44, 101]) and customised to fit the needs of the
Company. The BIA influences the TVA in the sense that the threat list
is customised according to the required levels of confidentiality, integrity

64

3.3. Case-study

and availability of the ToA: the higher the security level, the more de-
tailed the list. The list is then used to check if the main components of
the ToA (e.g. network communication, user interface, etc.) are exposed to
the threats/vulnerabilities. At this stage, threats/vulnerabilities are flagged
as applicable/not applicable to the considered component of the ToA, and as
covered/not covered according to the fact that controls that could mitigate
them are already deployed. This task corresponds to the risk identification
step (see Section 3.2.2) in the QualTD technique.

4. Risk prioritisation: it consists in the evaluation of likelihood and impact
of the threats/vulnerabilities which have been marked as applicable and not
covered during the TVA. The risk assessors estimates the likelihood of a
threat/vulnerability based on the company likelihood model, which takes
into account several factors, e.g. resources, technical skills and time needed,
or attacker motivation. They estimate the impact of a threat/vulnerability,
based on the possible incident scenarios that the threat/vulnerability could
determine in the ToA. These scenarios are figured out by the RA team based
on their personal skills and their knowledge of the ToA. Likelihood and
impact are then combined to determine the resulting risk, based on a risk
aggregation matrix very similar to the one of Table 3.2. Threats and vul-
nerabilities are then prioritised based on their risk level: the higher the risk,
the higher the priority for controls. This task corresponds to the risk evalua-
tion and to the output of the QualTD technique steps (see Section 3.2.3 and
Section 3.2.4).

5. Proposal of Controls: the RA team proposes a plan to cope with the identi-
fied risks, and identifies controls to mitigate the likelihood of the threats or
to protect the ToA from the identified vulnerabilities. Examples of proposed
controls include password policies, authentication mechanisms or Intrusion
Detection/Prevention Systems.

6. Documentation and reporting: the RA team presents the results of the RA
to the requester. It is not mandatory for the requester to communicate with
the RA team about follow-up actions taken as a consequence of the RA.

The average time needed for an RA is approximately 240 man-hours (2 people
for 3 weeks), depending on the size of the ToA (usually, RMC carries out RAs
on ToAs which are comparable in size with Oxygen). Roughly, the first 80 man-
hours are spent on steps 1 and 2 and for reading all the relevant documentation,
another 80 man-hours are spent in steps 3 and 4, and the remaining 80 man-hours
are spent in step 5 and to prepare the final report to be exposed during step 6. The

65

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

RA team consists of two people performing the same task independently and then
peer-reviewing each other’s findings to come to a more objective final result.

The RA team uses three main sources of information: (a) documentation pro-
vided by the requester, (b) interviews with the requester and (c) vulnerability scans
and other forms of direct investigation of security weaknesses.

Documentation includes results from previous assessments (i.e. RAs and secu-
rity auditing activities), all the design and development documents (i.e. functional
specifications, security design, technical architecture design and software design)
and SLAs and outsourcing contracts.

Interviews with the requester are carried out after reading the documentation
to clarify doubts and to set the boundaries of the RA. Another interview is carried
out to address the BIA and, after step 4, to discuss about the main risks identified.

Optionally, the RA includes active forms of investigation of security weak-
ness. The general principle RMC follows is trust but verify, which means that
documentation about security measures implemented is trusted, but verified in its
main aspects by means of, for example, vulnerability scanners.

3.3.2 Availability RA using the QualTD model

In this section we describe how we employed the QualTD model together with
the RA method of the Company for the new RA of Oxygen. The main difference
of a RA carried out following the Company internal RA process only with one
carried out following our technique is that we build a timed AND /OR dependency
graph of the ToA and link threats and vulnerabilities with each other and with
the nodes of the graph to better estimate impacts. As we discuss in more detail
in Section 3.4, we used likelihood estimates carried out by the Company RMC
personnel, since the QualTD model does not specifically address this topic.

We combined the QualTD model with four tasks of the Company internal RA
process, as we show in the lower part of Figure 3.5. First, we included in the RA
Intake the activity of building the timed AND /OR dependency graph. We spent
80 man-hours to perform this task. We also re-performed part of the BIA: instead
of only defining the security requirements for Confidentiality, Integrity and Av-
ailability, we also assessed the criticality level of the main IT services of the ToA.
We spent one man-hour on this. Finally, we carried out the Threat Vulnerability
Analysis and Risk prioritisation by using the QualTD model as we explained in
Section 3.2. We spent 72 man-hours to perform this task.

To build and run the QualTD model for Oxygen we relied on two sources of
information: technical documentation and interview sessions. In practice we used

66

3.3. Case-study

the same documentation the RA requester provided for RA1, as we describe in
Section 3.3.1. In more detail, four documents were made available for the RA:

1. The functional specification document: this document describes the func-
tionalities provided by Oxygen and how the functional architecture is de-
signed, i.e. software components, what is their task and how they relate to
each other.

2. The security architecture and design document: this document describes
which security measures are implemented, e.g. server redundancy, and how
they are implemented, e.g. which services are redundant and where they are
located.

3. The internal SLA document: this document describes the quality of service
parameters which are guaranteed to the users of Oxygen. In the context of
availability, this document describes the availability figures for the different
services provided by Oxygen, e.g. the authentication service is guaranteed
to be available 99% of the times.

4. The network diagram: this document describes which are the actual servers
running the different components of the Oxygen system, which software
they are running and in which datacenter they are being managed.

We now describe in detail the activities we performed. For the sake of expo-
sition we split the description according to the tasks that compose the Company
RA process. Each task is further split according to the related step of the QualTD
model of Section 3.2, as shown in Figure 3.5.

3.3.2.1 RA Intake

Defining the ToA The first step is building the timed AND /OR dependency
graph for Oxygen. According to the level of abstraction required for this RA, we
modelled the following node types:

1. Datacenters: from the security architecture document and the network di-
agram we extracted the two buildings hosting the datacenters in which the
servers are split for redundancy purposes.

2. Network components: from the security architecture document and the net-
work diagram we extracted the firewalls protecting the different servers and
enabling access to the Oxygen services from the internal network.

67

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

3. Servers: from the security architecture and the network diagram we ex-
tracted which servers are used.

4. Applications: from the security architecture, the network diagram and the
functional specification documents we extracted the applications running on
each server.

5. IT Services: from the functional specification and the internal SLA docu-
ment we extracted the services exported by Oxygen, linking them to the
applications implementing them.

The most challenging task in building the timed AND /OR dependency graph
was determining the dependencies among the nodes. The dependencies among
buildings, network components, servers and applications could be inferred from
the network diagram and the security architecture. Unfortunately, the functional
specification document, which should link software to IT services, only referred
to “logical” software components, which are not directly linked to the servers and
the applications running on them. For instance, the functional component which
acquires identity information from the different authoritative identity sources is
actually implemented by three different applications: a Java-based web service,
a Directory service and a DBMS; in turn, the DBMS also supports other func-
tional components. To determine these dependencies we proceeded by refine-
ment: whenever in the documentation we found that a certain application runs
on a certain server, or that the application implements a certain service, we drew
a new dependency among these nodes. Then, we cross checked the information
from the functional specification and the network diagram documents to make
sure the dependencies we found were consistent throughout all the documents.
When we found an inconsistency, we updated the model and iterated the process.
We reached a “stable” version of the model after the third iteration of this process.

To support this step we developed a graphical tool. The tool allowed us to
draw the timed AND /OR dependency graph, show it and modify it quickly dur-
ing the interview sessions. The resulting graph is made of 65 nodes and 112
edges. Among the nodes we count 13 IT services, 32 applications, 14 servers
equally distributed between 2 datacenters and connected simultaneously to 2 dif-
ferent network segments by means of 2 different firewalls. Building the first pro-
totype version of the graph took us approximately 40 man-hours, using only the
four documents we described as a source.

After building this prototype version of the timed AND /OR dependency graph
we checked it with the RMC personnel during an interview session: we showed
the graph and explained the reasons motivating each dependency drawn; we then
asked for possible missing ones. For example, we showed that a failure in the

68

3.3. Case-study

Figure 3.6: This timed AND /OR dependency graph resembles the one actually
built for Oxygen. We observe from the bottom: datacenters, network components,
servers, applications and IT services. Solid edges are AND dependencies, while
dashed edges are OR dependencies.

DBMS would lead to the unavailability of the identity data acquisition service
and we asked if this conclusion was consistent with their knowledge of the sys-
tem. The answer was positive; no inconsistencies were found during this session.
Finally, we performed another interview session with the developers of the system
to further check for consistency and completeness of the timed AND /OR depen-
dency graph. During this session we focused our explanation of the graph on the
reasons motivating the choice of modelling a dependency between two nodes. For
example, we motivated the choice of drawing a dependency from the DBMS to
the application server since the Web Service uses the DBMS to store configura-
tion parameters, and the unavailability of the DBMS would cause the Web Service
to be unable to operate in turn. We found some discrepancies between our model
and the behaviour of the system which is currently implemented. These discrepan-
cies were due to inaccurate or outdated information in the functional specification
document: we decided to keep the graph coherent with the actual implementa-
tion of Oxygen, instead of the one present in the documentation. RA1 did not
spot these discrepancies, as the analysis of the ToA required to build the timed
AND /OR dependency graph is much more detailed than the analysis required for
an assessment which does not require to build any formal model.

Figure 3.6 shows an anonymised version of the timed AND /OR dependency
graph we obtained at the end of this task. During the task, although we did not
know anything about Oxygen before our RA, we were able to build the timed

69

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

AND /OR dependency graph based on the available documentation. We only relied
on interviews to confirm the correctness of the graph, not to build the graph itself.
This ensures the method can be used by any risk assessor, who must not be an
expert of the ToA.

3.3.2.2 Business Impact Analysis

After we built the timed AND /OR dependency graph, we considered the Busi-
ness Impact Analysis (BIA), which results in determining the required level of
availability for the whole Oxygen system and the criticality level of all the IT ser-
vices exported by Oxygen. We did this by interviewing the GIT department board,
together with a member of the RMC department.

Since the required level of availability for Oxygen had already been assessed
during RA1, we only made sure that that part of the BIA was still valid. The GIT
personnel confirmed that Oxygen requires a High level of availability. We then
used this parameter during the risk identification phase for the selection of the
threats and vulnerabilities to be used, as we describe in Section 3.3.2.3.

The new step of the BIA required by the QualTD model, which is not part
of the RA method of the Company, consists of assessing the criticality of the IT
services. For each IT service in the timed AND /OR dependency graph we asked
the GIT personnel if it had a High, Medium or Low criticality. In this way we
defined the criticality function (see Definition 3.2).

After this last interview we had a final (approved) version of the timed AND /OR de-
pendency graph representing the ToA.

3.3.2.3 Threat/Vulnerability Analysis

Risk identification Recall that the RMC department adopted a threat/vulnerability
list for their RAs, which was extracted from a number of standard RA methods
and customised to fit the needs of the Company. To be able to compare the results
of RA2 with RA1 we used the same threats and vulnerabilities. We will describe
in more detail the reasons why we chose to do this in Section 3.4.

The list comprises a total of 121 threats and vulnerabilities. Since we only
assess availability risks, we selected the subset of this list with an impact on av-
ailability, relying on the classification done by the RMC which determines for
each entry if it has an impact on confidentiality, integrity or availability. Conse-
quently, the set T was composed of 22 threats and the set V of 39 vulnerabilities.
Moreover, according to the Company RA method, threats and vulnerabilities are
selected based on the required level of Confidentiality, Integrity or Availability for

70

3.3. Case-study

the ToA. Since the level of availability of Oxygen has not changed in the two RAs
we are allowed to use the same availability threats and vulnerabilities.

The next step we carried out was to link threats with vulnerabilities. During
RA1 threats and vulnerabilities were assessed separately, while the QualTD model
requires us to link threats with vulnerabilities (thereby making explicit the reason-
ing that was implicitly done during RA1). We did this by selecting, for each of
the 22 threats, which one of the 39 vulnerabilities the threat can exploit to materi-
alise. To validate our threat-vulnerability mapping we explained our choices to the
RMC personnel during an interview session and we integrated our mapping based
on their opinion. Although no major inconsistency was found, we had to change
a small number of mappings, because of a misinterpretation of the description of
some threats.

Subsequently, we determined which nodes of the timed AND /OR dependency
graph were targeted by threats and in which nodes a certain vulnerability was
present. To do this we evaluated which kind of node the threat/vulnerability ap-
plies to; for example, a power disruption can only affect a datacenter, a DoS attack
can only affect software nodes.

Finally, we enumerated the availability incidents following Definition 3.5.
This task was performed automatically by intersecting threats with the nodes they
target, vulnerabilities with the nodes they are present in and threats with the vul-
nerabilities they can exploit. We inserted all this information in a database. There-
fore, listing incidents was nothing more than building a view on the existing table
schema. We checked our results with the RMC personnel, to detect inconsis-
tencies in our mapping, but we found no discrepancy, as mapping threats and
vulnerabilities to asset types was quite an unambiguous task.

3.3.2.4 Risk prioritisation

Risk evaluation We used the estimates of the likelihood of threats and vulnera-
bilities from RA1, (for the definition of the t-likelihood and v-likelihood functions
see Definition 3.8 and Definition 3.10). The estimate was done in terms of High,
Medium and Low likelihood level, according to the likelihood model adopted by
the RMC team, which is based on eight different parameters (e.g. time needed for
the attacker, technical skills needed, etc.). The reason why we did not do our own
estimate of the likelihood is twofold: first, we needed to ensure that the results
of the two RAs could be comparable and, since our model only implies a differ-
ent way in estimating the impact, likelihood had to be kept fixed. Second, since
the results of this second RA are meant to be used by GIT, we wanted the likeli-
hood estimates to be based on the professional judgement of the RMC personnel,
instead of ours.

71

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

To assess incident duration (i.e. the dt function of Definition 3.9) we first used
the Company-internal SLAs to set the threshold between a Short and Long in-
cident duration. The Company-internal SLAs give an availability figure for the IT
services provided by Oxygen. For example, they guarantee that the identity data
acquisition service will be available for a certain fraction of time in a month. We
set the threshold as the longest amount of time (in hours) the service can be out of
service while remaining compliant with its SLA. For example, if the availability
figure is 99.5% in a month (i.e. 30 days), we set ∼ 4 hours as our threshold. We
choose this measure since, in this case, the SLAs were set to give an indication
about how long a certain service can be disrupted without causing excessive prob-
lems to the Company’s business. In this way we distinguished between Short in-
cidents (i.e. those shorter than the maximum tolerated disruption time in a month)
and Long ones (i.e. those which last longer than the maximum tolerated disrup-
tion time in a month). Subsequently, we analysed the time needed to solve each
of the incidents. We considered both the time needed to detect the disruption and
the time needed to fix the problem. The resulting total disruption time, which we
compared with the threshold, is the sum of these two parameters. We performed
this analysis based on both the information we gained from the SLA document
the Company has signed with the outsourcer, and the opinion of the developers of
the Oxygen system. The SLA document contains the maximum response time for
incidents happening in the portions of the system for which management has been
outsourced. For all the remaining parts of the system we relied on the judgement
of the GIT developers.

With this we had acquired all the information needed to run the model and
obtained the global impact of the incidents and their risk. For each incident i we
used the timed AND /OR dependency graph to determine the set Propi of the pro-
cesses and services which were affected by the incident given the IT components
the incident directly targets as we described in Definition 3.7. Subsequently, we
used Table 3.1 to determine the global impact level. The definitions we used are
based on the requirements for availability the GIT has set on Oxygen during the
meeting in which we assessed the criticality of services/processes. These defini-
tions are an implementation of the combination of the composition function harm
and the aggregation function impact-agg of Definition 3.11.

We then used the definitions of Table 3.2 to determine the risk level associated
with every incident. The definition of the risk level we give was built on the
indications of the RMC personnel and it is an implementation of the function
i-risk of Definition 3.12.

The choice of using these two tables to evaluate the global impact and the
risk level was driven by two main motivations: first, the functions defined by the
tables are monotone, therefore they are compliant with the requirements of Def-

72

3.3. Case-study

Table 3.1: Global impact level determination.

Impact level Definition

Critical
At least one service/process with High criticality is disrupted
for a Long period of time.

Serious
At least one service/process with High criticality is disrupted
for a Short period of time.

Significant
At least one service/process with Medium criticality is dis-
rupted for a Long period of time.

Moderate
At least one service/process with Medium criticality is dis-
rupted for a Short period of time.

Marginal
At least one service/process with Low criticality is disrupted
for a Long period of time.

Insignificant
No service/process is disrupted or only service/process with
Low criticality are disrupted for a Short period of time.

Table 3.2: Incident risk level determination.

Risk level Definition

High
Impact is Critical, both threat and vulnerability likelihood are
Medium. Impact is Serious, both threat and vulnerability likelihood
are High.

Med-High

Impact is Critical, either threat or vulnerability likelihood is Low.
Impact is Serious, both threat and vulnerability likelihood are
Medium. Impact is Significant, both threat and vulnerability like-
lihood are High.

Med

Impact is Serious, either threat or vulnerability likelihood is Low.
Impact is Significant, both threat and vulnerability likelihoods are
Medium. Impact is Moderate, either threat or vulnerability likelihood
is High.

Med-Low

Impact is Significant, either threat or vulnerability likelihood is
Low. Impact is Moderate, both threat and vulnerability likelihood are
Medium. Impact is Marginal, both threat and vulnerability likeli-
hoods are High.

Low In other cases.

inition 3.11 and Definition 3.12, and they allow one to trace back the reasons
causing the assignment of a certain risk level to a certain incident (see Running
example 3.13). Secondly, the alternative choice of assigning a numerical value to
each qualitative one (e.g. High = 3, Med = 2 and Low = 1) and then perform math-
ematical operations on them (e.g. sum, multiplication or average) would not work
in our case. In fact, although this is a very popular and widely adopted technique

73

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

in RAs (e.g. see Cunningham et al. [27]), it only provides meaningful results if we
know the exact ratio among the qualitative values (e.g. if we knew that High is
exactly three times Medium we could assign 9 to High and 3 to Medium). Since
our RA was carried out in a completely qualitative manner, we only know that
High is bigger than Medium, but we do not have any indication on how big the
ratio is between them, therefore, we cannot perform any mathematical operation
on these values. In other words, we work with values in an Ordinal scale, while
the other approach would at least require values in an Interval scale, as shown by
Herrmann [37].

Having determined the risk level, we ranked availability incidents according
to their risk. However, to complete the outcome of the threat/vulnerability assess-
ment step, we also needed to rank the most dangerous threats and vulnerabilities
for Oxygen. We did this by assigning each threat/vulnerability the risk of the in-
cident they cause, which has the highest level associated. In other words, we used
max as the aggregation function risk-agg of Definition 3.13.

3.4 Case-study evaluation

In this section we make an evaluation of our case-study. To this end, the
methodology we follow is the one introduced by Wieringa et al. [77, 78] for tech-
nical research, which is based on the following two statements:

1. solution & context produces effects

2. effects satisfy (to an acceptable extent) stakeholder-motivated
criteria

Wieringa et al. observe that each technological solution which is applied in
a context produces some effects on it. The effects may (or may not) contribute
to satisfy some goals defined by the stakeholders of the research context. The
evaluation criteria set by the stakeholders must be in a measurable or comparable
form, so that if two different solutions are applied to the same context, they can
be evaluated and compared with relation to these criteria. The reasoning scheme
can be applied when a solution is specified but not yet implemented [36] or after
a solution is implemented [66].

In our case, the technical solutions to be evaluated are the RAs performed on
the Oxygen system: the first is done following the RA method of the Company
and the second made by integrating the same method with the QualTD model.
The context in which we apply these solutions is described in Section 3.3.1.

74

3.4. Case-study evaluation

3.4.1 Stakeholders, goals and criteria

First, we present the stakeholder’s goals and the derived evaluation criteria,
which we have already briefly introduced in Section 3.3.1. These goals regard
both specifically (the security of) Oxygen and the quality of the general RA pro-
cess. Methodologically, we derive the goals by analysing the description of the
activities GIT provided us during the interviews; subsequently we defined the cri-
teria to measure those goals. Finally, we validated the goals and criteria by means
of interviews with the stakeholders. For the sake of the presentation we only re-
port the results of this activity in the list below. Although our case-study will
not allow us to evaluate all the criteria, we report them all to give an overview of
stakeholder’s objectives.

Goals and criteria regarding Oxygen:

• GIT

1.1 The goal Ensure cost/effective mitigation controls and timely miti-
gation plans is measured by the quality criterion Cost for managing
High/Medium/Low risks.

1.2 The goal Implement controls with the least possible contractual and fi-
nancial impact is measured by the quality criterion number of controls
with contractual and financial impact.

• Services depending on Oxygen

1.3 The goal Have the authentication/identity service for their application
available when needed is measured by the quality criteria number of
times authentication was not available in one month and number of
times identity management was not available in one month.

• The Service Provider

1.4 The goal Manage systems with the least possible effort and by remain-
ing compliant with SLAs is measured by the quality criteria Euro/resources
employed for managing hardware/software and to guarantee SLAs (in-
cluding consequences for not fulfilling contractual obligations).

Goals and criteria regarding the RA process:

• RMC

2.1 The goal Ensure good quality of the RA Service is measured by the
quality criterion number of important risks for the RA requester iden-
tified during an RA vs. number of unimportant risks.

75

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

2.2 The goal Make the RA process more efficient is measured by the qual-
ity criterion number of man-hours employed for an RA by the members
of the team.

2.3 The goal Make the RA process less subjective is measured by the qual-
ity criterion number of choices let to the risk assessor.

• GIT

2.4 The goal Use global (shared) solutions to solve the same problem in
different systems is measured by the quality criteria number of months
to implement controls and number of different solutions employed to
solve the same problem in different systems.

3.4.2 Design of the evaluation process

Given the stakeholders goals and criteria, we use them to analyse and compare
the results of RA2 with those of RA1.

First, we briefly discuss the procedure we followed. In this analysis we assume
that, given a method to calculate the risk in an RA, the quality of an RA is only
determined by the knowledge of the risk assessor about: (a) the ToA, (b) threats
and their likelihood, (c) vulnerabilities and their likelihood and (d) how threats,
vulnerabilities relate to each other and impact the ToA. We choose not to include
all the social/organisational factors, e.g. the relationships among the stakeholders
and their commitment to IT security, the alignment of all the stakeholders with
respect to the organisation business goals, etc. These factors are indeed very im-
portant for the success of an RA but, for the sake of this evaluation, we assume
them to have remained steady in the Company throughout the two RAs, and there-
fore to have no impact. For more examples of other IT RA social/organisational
success factors, please refer to [90, 32]. The experiment we carried out compares
the results of two RAs, performed sequentially by different people on the same
IT system. For these reasons, to keep the experiment under control, we needed to
make sure that: (1) the order in which the RAs were carried out does not influence
their results, and (2) the quality of the results does not depend on the security skills
of the people carrying out the RAs. To accomplish these conditions we conducted
RA2 before having access to the results of RA1, but using the same sources of in-
formation. We used the same list of threats and vulnerabilities, as well as the same
likelihood estimation, in both the RAs and we made sure the technique we em-
ployed to relate threats, vulnerabilities and nodes did not depend on the particular
security skills of the risk assessor.

Table 3.3 summarises the conditions that we enforced to ensure the two RAs
are comparable.

76

3.4. Case-study evaluation

Table 3.3: RA comparison control variables

(1) RA Order (2) Security skills

(a) ToA

Used the same documentation
in the two RAs. RA2 is blind
to the results of RA1 (see Sec-
tion 3.3.2.1).

Build the timed AND /OR de-
pendency graph does not require
to be an expert of the ToA (see
Section 3.3.2.1).

(b) Threats & like-
lihood

The same threat list and like-
lihood estimation was used for
RA1 and RA2 without any
change (see Section 3.3.2.3).

Only the security skills of the
RMC team have been employed
in the two RAs for threat iden-
tification and likelihood estima-
tion (see Section 3.3.2.3).

(c) Vulnerabilities
& likelihood

The same vulnerability list and
likelihood estimation was used
for RA1 and RA2 without any
change (see Section 3.3.2.3).

Only the security skills of the
RMC team have been employed
in the two RAs for vulnerability
identification and likelihood es-
timation (see Section 3.3.2.3).

(d) Combining
threats, vulnerabil-
ities and nodes

RA2 does not use any informa-
tion of RA1 about this (see Sec-
tion 3.3.2.3).

We combined threats with
vulnerabilities in accordance
with the personnel who car-
ried out RA1. Linking
threats/vulnerabilities with
nodes does not depend on
particular security skills (see
Section 3.3.2.3).

In the next sections we compare the results ofRA2 with relation toRA1. To do
that we use four evaluation criteria from the list of Section 3.4.1. These parameters
are: (2.1) the number of important risks for the RA requester vs. the number of
unimportant ones (recall that in RA1 a risk is the combination of the likelihood
and impact of a threat/vulnerability), (2.2) the number of man-hours employed to
carry out the RA, (2.3) the number of choices that the RMC personnel have to
take and (1.1) the cost of managing availability risks. The other criteria of the list
are not decidable by a risk assessor but would be observable after the system has
been in use for a while. An RA will have an impact on how the system scores on
these criteria but based on our evaluation alone we cannot tell what the impact of
our technique will be.

For the sake of presentation, we summarise the results: (1) the QualTD model
has improved the (perceived) accuracy of RA2 by increasing the number of iden-
tified important risks for the RA requester, (2) it introduced an overhead in the
number of hours employed, (3) it helped reducing the subjectivity of impact es-

77

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

timates in RA2 and (4) thanks to the effects of points (1) and (3), the QualTD
model supports a better risk prioritisation, which is one of the requirements for
optimising the cost of risk mitigation.

To further substantiate our findings, our technique should be tested by people
who did not participate in its development. We plan to have this test done by the
RMC personnel of the Company.

3.4.3 Evaluation of the criteria

Evaluation of Criterion 2.1: number of important risks for the RA requester
vs. number of unimportant risks

The first evaluation criterion is given by the number of important risks for
the RA requester with respect to the less important ones and it expresses the
result quality of an RA method. With important risks, here we mean the
threats/vulnerabilities which have a high or medium risk level (i.e. the ones that
will be taken into account when deciding the risk profile of the system and the
risk mitigation strategy) which are judged to have been assessed accurately. In
this case the number of relevant risks identified in the two RAs is not influenced
by the number of threats/vulnerabilities identified or by their likelihood, as the list
of threats/vulnerabilities remained the same in both assessments as well as their
likelihood estimation. On the other hand, the risk of a threat/vulnerability can be
overestimated or underestimated in case certain incidents and their impact are not
taken into account in the RA. In this case, we would have important risks which
are not considered when the risk level of the corresponding threat/vulnerability
has been underestimated, or less important risks considered as important, when
the risk level of the corresponding threat/vulnerability has been overestimated.
We focus our evaluation on this aspect.

To determine the performance in identifying important risks of RA2 with re-
spect to RA1, we compared and analysed the results of the two RAs together with
the RMC personnel.

First, we made sure that risks were evaluated following the same criteria in
both RAs, i.e. given the same threat and vulnerability likelihood and impact levels,
the resulting risk level is the same.

Secondly, we analysed the cases in which the two RAs gave different results
and we analysed the reasons for the difference. Table 3.4 summarises our findings.
The RMC personnel acknowledges that in all cases, the risk estimation made in
RA2 is more accurate than the one previously made in RA1. For this reason, in
Table 3.4 we set the estimation given by RA2 as a reference for RA1 and we say
RA1 overestimates the risk level of a threat/vulnerability when the risk level given

78

3.4. Case-study evaluation

byRA1 is higher than the one given byRA2 for that threat/vulnerability. The same
applies when the risk level given by RA1 is lower than the one given by RA2, in
this case we say RA2 underestimates the risk level of a threat/vulnerability.

Table 3.4: Summary of the number of differences between the two RAs.

Threats Vulnerabilities Total
Related to Availability 22 39 61
RA1 overestimates risk level 1 2 3
RA1 underestimates risk level 5 13 18
Differences caused by factors not re-
lated to the QualTD model

1 6 7

Differences caused by using the
QualTD model

5 9 14

In seven cases, the reason of the difference was due to external causes that do
not involve the use of the QualTD model. For example, in RA1 the vulnerabilities
regarding the configuration of the Company network were usually underestimated
on purpose. This because the final report of the RA carried out without the model
was directed to the GIT board, who is not directly managing the Company net-
work. Consequently, the judgement of the RMC team was that it was not useful
to point out the obvious in the report, since the RA requester had no way of man-
aging that kind of risk. The remaining 14 differences are due to a better quality of
RA2.

According to our analysis, the success of RA2 is due to the fact that the
QualTD model enables the risk assessor to estimate with more precision the im-
pact of a threat materialising, and also to determine the impact of the vulnerabili-
ties, by explicitly linking them to the incidents they can cause: all these operations
are hard to perform without an architecture model that allows one to reason about
the availability impact. For example, the impact of malware (e.g. worms) spread-
ing across the Company network and infecting the (few) Windows servers of Oxy-
gen were underestimated due to the lack of awareness of the risk assessors during
RA1 about the connections between these servers and other core components of
Oxygen.

Evaluation of Criterion 2.2: number of man-hours employed for an RA

We split the analysis on time consumption of the two RAs according to the
four steps of the Company RA process supported by the QualTD model.

1. RA intake: the time needed to accomplish this step with the Company
method is 80 man-hours (by two people) on average. Building the timed

79

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

AND /OR dependency graph certainly constitutes an overhead, since it re-
quires to formalise the knowledge acquired from the documentation and it
also required at least one additional meeting with the developers of the sys-
tem. In our case, we spent approximately 80 man hours (by one person)
to finish the RA intake step using the QualTD model. About 40 man-hours
were needed to gain knowledge of the Company, which would not have been
necessary by an experienced RA team in the Company itself. So we think
that one person of the RA team of the RMC department, experienced as we
are, would have needed about 50 man-hours to build the timed AND /OR de-
pendency graph. Currently, the RA intake takes 80 man-hours (by two peo-
ple), so the overhead introduced by our model would be of approximately
10 man-hours. Whether this is worth the investment depends on the benefits
to be gained from this in terms of a more accurate RA and in terms of the
reusability of this graph for future RAs of this or other (related) systems.

2. BIA: including the estimation of the service/process criticality into the Busi-
ness Impact Analysis is an inexpensive task, since it is already included in
the procedure followed by the RMC personnel, only in an informal way.
Moreover, we experienced that it was easy for the GIT to rank the services
by criticality, since this knowledge is part of their everyday business. For-
malising service/process criticality took less than one man-hour.

3. TVA: differently to the Company method, the QualTD model explicitly re-
quires to link threats and vulnerabilities to the nodes of the timed AND /OR de-
pendency graph to evaluate the risk. This task took us approximately 30
man-hours more than the time normally employed by the RMC personnel.
However, this is partly due to the fact that we had to “learn” and get used to
the definitions of the threats and vulnerabilities of the list provided by the
Company. We estimate that, should we have known them better we would
have done the same job in half the time. Moreover, another good part of the
work was that of manually linking threats and vulnerabilities to nodes; we
did this step by hand and it was very time consuming: a proper GUI would
have saved us other time.

4. Risk prioritisation: using the QualTD model does facilitate this step. In fact,
following the Company RA process, the RA team has to perform a (time-
expensive) peer review of the risk evaluation performed by each member
of the team, i.e. the team members have to go through their personal esti-
mation of likelihood and impact for each threat/vulnerability and, in case
they find any discrepancy, determine the reasons motivating each decision
and reach a final agreement on the proper likelihood/impact levels. The

80

3.4. Case-study evaluation

QualTD model allows one to automatically prioritise threats and vulnerabil-
ities. Moreover, as risks are evaluated in a more detailed level (i.e. incidents
instead of threats/vulnerabilities), the QualTD model facilitates the discus-
sion on the final impact level of threats/vulnerabilities. For example, during
the discussion with the RMC personnel on the final results of RA2, we used
the model to explain why a certain threat or vulnerability had a certain risk
level by going into detail on the incidents that these threats and vulnerabil-
ity are involved in. This technique was judged very useful and practical by
the RMC personnel. It is also possible to reuse most of the work of link-
ing threats, nodes and vulnerabilities for future RAs on the same ToA, this
would reduce to zero the difference with the original method in the time
consumption on the TVA step.

Evaluation of Criterion 2.3: number of choices let to the risk assessor

Making the RA results more inter-subjective (i.e. shared among the RA stake-
holders) is one of the original goals of the RMC department, which aims at (a)
delivering better quality results by identifying as many potential and relevant risks
as possible, and (b) being able to justify the reasons why a certain threat or vul-
nerability was given a certain risk level.

The QualTD model supports the first objective by “forcing” the risk assessor
to systematically explore all the possible combinations of threats and vulnerabili-
ties, thus reducing the risk of mis-estimating the importance of a certain threat or
vulnerability.

Regarding the second objective, since the QualTD model requires to enumer-
ate explicitly availability incidents, it is easier for the risk assessor to trace the
reasons why a threat/vulnerability was given a certain risk level (recall that we
can calculate an aggregated risk level for both threats and vulnerabilities from the
incident risks). Moreover, a member of the RMC department has to give (ex-
plicitly or implicitly) four subjective estimates to evaluate a single incident: the
likelihood of the threat, the likelihood that the vulnerability is present in some
nodes, the duration of the incident and the criticality of the services/processes it
hits. By applying the QualTD model, the global impact of an incident is based on
the criticality of the nodes involved, which is given by the RA requester. In this
way we reduce by one fourth the number of choices to be taken by the RMC per-
sonnel (alone) for each incident, and increases the inter-subjectivity of the results,
as the criticality of the services has to be agreed upon before the RA starts. In other
words, even if the subjectivity of the estimates is still present, it depends less on
the expertise of the single risk assessor and it is shared with the risk assessment
requester, who is the final user of the assessment results.

81

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

Evaluation of Criterion 1.1: Cost of risk management

The budget for managing risks is always limited. In this perspective, optimis-
ing the costs of risk management means achieving at least the same security level
for at most the same price. To achieve this goal it is important to adequately pri-
oritise the risks one wants to manage in terms of: (a) the risk level and, (b) the
cost to mitigate that risk. By providing a more precise risk prioritisation based on
(a), the QualTD model supports part of the decision process of prioritising risks
for mitigation purposes. At present time however, the model does not include any
means of prioritising risks with respect to (b). Actually, our model bears similar-
ities with the quantitative TD model [7] which, on the other hand, does include
countermeasures and enables one to run an optimisation algorithm which select
the best risk mitigation strategy taking into account (a) and (b). We believe that
the same approach is applicable also to the QualTD model with few modifications.
This is, however, beyond the scope of this chapter, and left as future work.

3.4.4 Applicability to other scenarios

Based on the experience of the case-study, we observe that there are two main
factors which determined the success of the QualTD model.

First, the model forces the RA team to follow a more systematic approach,
this means that there is less space for human errors and that the model provides
an affordable way to deal with the complexity of the ToA. The QualTD model
shares this characteristic with many other model-based approaches, as for ex-
ample model checking techniques. This also means that, as other model-based
approaches, it requires a preliminary investment in terms of time and resource to
build the model. With this case-study we showed that the time investment does
not exceed 50% of the time spent in an RA carried out without the model, and
the resources commonly available for an RA are sufficient to build the model. In
general, this investment can be very worthwhile (because e.g. it allows one to
reuse the information gathered or it allows one to identify problems that would
remain undetected with other techniques), or just a waste of resources. In our
case, as confirmed by the RMC team, a QualTD model built for an RA can be
widely reused in the following RAs of the same ToA; the resource investment
can thus be compensated by reusing the model in successive RAs. This makes it
particularly suitable when the ToA is periodically subject to RAs. Moreover, we
believe our model-based RA approach should only be used when it either allows
one to save resources in the long run (as explained above) or when the need for
accurate results is worth the effort of using it. In the case analysed here, Oxygen
is an availability-critical system for the Company, and therefore the need for ac-

82

3.5. Related work

curacy in the assessment justified the time overhead it introduced. Also, the need
to optimise the budget for risk mitigation could be a leading factor for choosing
the QualTD model and afford its initial time overhead. Another scenario in which
using the QualTD model could be convenient is when the timed AND /OR depen-
dency graph can be built automatically (e.g. when a configuration management
database is already present and can be used to build the graph), since in this case
there is almost no time overhead.

A second success factor of the QualTD model is that it links the knowledge
about security with the components of an IT architecture, their technical and func-
tional dependencies and their importance. With this case-study we showed that the
QualTD model structures information in a way that is simple enough to be used
and complete enough to cover all the aspects that are important for a security RA.
In fact, we did not find any uncovered risk area in RA1 which was not covered in
RA2. For this reason, we think that the QualTD model is particularly suitable to
be used to assess the availability risks of an IT infrastructure or of parts of it.

3.5 Related work

This section is divided in two parts. In the first part we make a taxonomy
of standard RA methods, and we single out the methods, or the characteristics
of these methods, that are compatible with the technique we presented in this
chapter. In the second part we do a literature review of the techniques that use
dependency-based models to improve the quality of an RA; we compare them
with the technique we presented in this chapter and we discuss their applicability
to the chapter’s industrial case.

3.5.1 Combining the QualTD model to standard RA Methods

In this part we look at general RA methods, and we discuss under which cir-
cumstances the QualTD model can be used in combination with them. To do this,
we first make a taxonomy of RA methods.

3.5.1.1 A taxonomy of RA methods

To provide a snapshot of the state-of-the-art within RA methods we follow the
survey by the European Network and Information Security Agency (ENISA) [96].
The survey consists of a list of sixteen RA methods currently in use. Among
these methods we only consider international standards, i.e. those which are avail-
able in English and which are actually in use in more than one country. Ac-

83

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

cording to these criteria, we reduce the initial list of sixteen methods to ten:
CRAMM [92], EBIOS [94], ISAMM [93], ISO 13335-2 [42], ISO 17799 (now
ISO 27002) [46], ISO 27001 [45], IT-Grundshutz [101], MEHARI [106], OC-
TAVE [82], NIST SP 800-30 [73]. The remaining six methods are dropped be-
cause of two reasons: Austrian IT Security Handbook, Dutch A&K Analysis and
MARION because only available in a single language (German or Dutch), while
ISF, MAGERIT and MIGRA because of lack of relevant documentation. Finally,
since the list on the ENISA survey is admittedly not complete, we augment it with
another popular method, the Australian/New Zeland standard for risk manage-
ment AS/NZS4360 [85], and with CORAS [28], the method resulting from the
EU-funded project IST-2000-25031. We explicitly choose to exclude Common
Criteria [43] from this list as it is not properly an RA method, even if it requires
some risk analysis to be performed.

For the sake of the presentation, we classify the twelve methods by means of
three parameters: (1) the scale used to evaluate risk and risk factors (quantitative
or qualitative), (2) which factors are proposed in the method to evaluate the impact
level and (3) the underlying view on how risk is evaluated.

Parameter (1) determines if the risk level measures something that can be
(meaningfully) expressed in numbers (e.g. money), or something which can only
be expressed with ordered labels (e.g. high, medium, low). In other words, a qual-
itative method measures the level of a risk factor in an ordinal scale (i.e. only
ordering among values are known), while a quantitative method uses measures in
interval or ratio scales (i.e. the magnitude of the difference between two values
in the scale is known; ratio scales also define an absolute and non arbitrary zero
point).

Parameter (2) indicates which factors influence the impact of a security event
(i.e. a threat, a vulnerability or an incident), and to which extent the method is
constrained by these factors. Some methods only give general guidelines (e.g.
the damage to the organisation), while others strictly define a particular set of
parameters (e.g. the monetary loss, or the affected business processes).

Parameter (3) investigates what determines the risk level of a security event
and how different properties are combined. To this end we elaborated five different
profiles (Type 1 to Type 5):

1. Type 1:
Risk(Threat, Asset) = Likelihood(Threat) ⊗ Vulnerability(Threat, Asset) ⊗
Impact(Threat, Asset)
In Type 1 methods, risk is analysed with relation to a threat and an asset,
or a group of assets and it is evaluated as the combination of the likelihood
of the threat, the vulnerability level of the asset(s) to the threat and the

84

3.5. Related work

impact of the threat on the asset(s). For example, a Type 1 interpretation
of risk is: the risk of a burgle entering my house is obtained by combining
(1) the chance that a burgle wants to enter my house (likelihood), (2) the
fact that windows in my house are sometimes left open (vulnerability) and
(3) what the burgle can steal once in my house (impact). We argue that
this approach can be applied both to fine-grained assessments (i.e. taking
into account single assets and asset-specific threats) and to more high-level
assessments (i.e. taking into account only classes of assets and high level
threats).

2. Type 2:
Risk(Threat, Asset, Needs) = Impact(Threat, Needs)⊗ Vulnerability(Threat,
Asset)
In Type 2 methods, risk is analysed with relation to a threat, an asset and
some security needs on the system and it is evaluated as the combination
of the vulnerability of the asset and the impact of the threat on the secu-
rity needs. For example, a Type 2 interpretation of risk is: the risk of a
burgle entering my house given the fact that no unauthorised people shall
enter my house since I keep confidential work information there is obtained
by combining (1) how bad it is that a burgle steals my confidential work
information (impact) and (2) the fact that my house windows are sometimes
left open (vulnerability). We argue that this approach is suitable where se-
curity requirements are clearly specified, for example for software products
developed by following a rigorous software engineering process.

3. Type 3:
Risk(Threat, Asset) = AnnualLossExpectancy(Threat, Asset) = Probabil-
ity(Threat, Asset) ⊗ AverageLoss(Threat, Asset)
In Type 3 methods, risk is analysed w.r.t a threat and an asset, is intended
as the annual loss expectancy (in monetary terms) and it is evaluated as the
combination of the probability of the threat affecting the asset and the av-
erage loss of the resulting incident. For example, a Type 3 interpretation
of risk is: the risk of a burgle entering my house is obtained by combin-
ing (1) the probability of a burgle entering my house (probability) and (2)
the average value of the goods the burgle can steal in my house (average
loss). We argue that this approach is suitable in all the situations in which
decisions are taken based on a financial cost/benefit analysis (e.g. insurance
companies), and in which quantitative data is available (e.g. for critical in-
frastructures).

4. Type 4:
Risk(Threat, CriticalAsset) = Impact(Threat, CriticalAsset) ⊗ Vulnerabil-

85

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

ity(CriticalAsset)
In Type 4 methods, risk is analysed with relation to a threat and an asset
that has previously been identified as critical, and it is assessed as the com-
bination of the impact of the threat on the critical asset and the vulnerability
of the asset. For example, a Type 4 interpretation of risk is: given that
I consider critical the goods in my house, the risk that a burgle enters my
house is obtained by combining (1) the damage due to the effects of my
critical goods being stolen (impact) and (2) the fact that my house windows
are sometimes left open (vulnerability). We argue that this approach is suit-
able where there are critical assets to be protected (e.g. for utility network
infrastructures).

5. Type 5:
Risk(Incident, Asset) = Likelihood(Incident) ⊗ Consequences(Incident, As-
set)
In Type 5 methods, risk is analysed with relation to an incident (i.e. a
combination of a threat and some vulnerabilities) and an asset, and it is
evaluated as the combination of the likelihood of the incident and the con-
sequences of the incident itself. Unlike for the Type 1 approach, this ap-
proach attributes risk levels only to security incidents (i.e. a threat exploiting
a vulnerability) to assess their risk. For example, a Type 5 interpretation
of risk is: the risk that a burgle enters my house through an open window is
obtained by combining (1) the chance that a burgle wants to enter my house
and that the window is left open (likelihood) and (2) the consequences due
to my goods being stolen (consequences). We argue that this means that it
is more suitable to be applied to fine-grained RAs and it is harder to apply
to the high-level ones.

Table 3.5 reports the results of the classification. Most of the methods are
meant to be used with qualitative measurements, and this confirms the fact that
most RAs today are carried out in a qualitative way, mainly due to lack of reliable
quantitative data or to time constraints [15].

Regarding impact level evaluation, we observe that ISO 13335-2 and ISO
17799 only specify that the impact of a security event is tied to the business
harm suffered from the organisation. Furthermore, AS/NZS 4360 also specify
the possibility of a business advantage of undertaking a certain risk, e.g. leav-
ing servers unpatched may lead to a quicker time to market for the organisation.
CRAMM, IT-Grundshutz, NIST SP 800-30 and CORAS specify more precisely
how the impact level should be assessed, since they introduce the concept of dam-
age scenarios: the RA team should identify different impact scenarios (e.g. from
Catastrophic to Marginal) which describe the negative consequences of a

86

3.5. Related work

Table 3.5: Classification of the RA methods.

Method Evaluation scale Impact evaluation Risk evaluation
CRAMM Qualitative Based on open damage scenarios Type 1
EBIOS Qualitative Based on security needs Type 2
ISAMM Quantitative Based on monetary loss Type 3
ISO 13335-2 Both Based on the business harm N/A
ISO 17799 Qualitative Based on the business harm N/A
ISO 27001 Qualitative N/A N/A
IT-Grundschutz Qualitative Based on open damage scenarios Type 5

MEHARI Qualitative
Based on fixed damage scenar-
ios

Type 1

OCTAVE Qualitative Based on critical assets Type 4
NIST SP 800-30 Qualitative Based on open damage scenarios Type 1

AS/NZS 4360 Both
Based on a balance between
business harm and business ad-
vantages

Type 5

CORAS Both Based on open damage scenarios Type 5

risk event on the organisation. We say that these scenarios are “open” as these
methods do not specify a particular set of scenarios or they do not require to use
the ones they propose. On the other hand, MEHARI is based on a “fixed” impact
scenario, i.e. the description of the consequences is fixed, and the risk assessor
can only rank them. EBIOS imposes that the impact level of a security event is
assessed in terms of the security needs (i.e. a security requirement on the IT as-
sets) that the event violates. Similarly, in OCTAVE the impact level is measured
in terms of how “hard” the security event is hitting a mission-critical asset (e.g. a
server which has been pre-determined to be critical for the organisation). Finally,
ISAMM measures impact by means of the money the organisation can loose be-
cause of a security event.

Regarding risk level evaluation, we observe that CRAMM (which mostly im-
plements the principles given in BS7799-3 [21]), MEHARI and NIST SP 800-30
share the same common view on risk, i.e. they all consider risk as a combination
of the likelihood and the impact of a threat to hit a group of assets and the vul-
nerability level of this group of assets. Similarly, IT-Grundshutz, AS/NZS 4360
and CORAS consider risk as the combination of the likelihood of an incident
(i.e. a threat exploiting some vulnerabilities) and the consequences (positive or
negative) of this incident happening. On the other hand, Type 2, Type 3 and
Type 4 profiles are intrinsically tied to a particular approach to RA, since Type
2 and Type 4 rely on qualitative concepts for defining risk (e.g. critical assets,
security needs) and Type 3 relies on the quantitative concepts of probability and

87

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

average monetary loss. Finally, we observe that the methods of the ISO family
do not adopt any risk analysis profile. This is due to the fact that, according to
ENISA [96], ISO 13335-2 is a very general guideline to set up a risk management
framework, while ISO 17799 and ISO 27001 are actually not real methods for
risk management, but rather compliance standards, reporting a list of controls for
good security practices and the requisites that an existing method should have to
be standard-compliant respectively.

3.5.1.2 Applying the technique based on the QualTD model together with
other RA methods

With applying the QualTD model-based technique to an RA method we mean
carrying out some specific parts of the RA process (i.e. definition of the ToA, BIA,
risk identification, risk evaluation and risk prioritisation) for availability risks by
using the QualTD model.

According to our classification scheme, the original RA method followed by
the Company is qualitative, based on the business harm and Type 1with relation
to the risk level evaluation. The new RA method which integrates our technique
based on the QualTD model remains qualitative, but it is based on open damage
scenarios and has a basic risk level evaluation of Type 5. We also define a
procedure to aggregate the evaluation of incident risks per threat and vulnerability,
making the evaluation scheme compliant to the original Type 1.

From the perspective of the risk level scale, the QualTD model can only be
used together with a qualitative RA method; (on the other hand the TD model we
proposed in Chapter 2 can only be used with quantitative ones).

From the perspective of impact level determination, we showed in the present
case how the QualTD model is compatible with methods evaluating the impact in
terms of business harm.
On the other hand, for methods adopting damage scenarios, the integration with
our technique is only possible if the scenario descriptions used by the organisa-
tion undertaking the RA can be associated with the unavailability of a node in the
timed AND /OR dependency graph.
For methods in which the impact level is based on critical assets, e.g. OCTAVE,
the QualTD model cannot be applied as it is, since in the current specification we
do not give a definition of critical assets. However, one possible way of adapt-
ing the model to this purpose consists in first determining the most critical pro-
cesses/services and then using the timed AND /OR dependency graph to find the
nodes supporting those processes/services.
We also observe that it is hard to integrate our technique with methods based on
security needs, such as EBIOS. Innerhofer-Oberperfler and Breu [40] introduced

88

3.5. Related work

an approach, which shares some similarities with ours, and is suitable to be used
in combination with these methods: we will present this approach in more detail
in Section 3.5.2.
Finally, in the present specification of the model, we do not consider the business
advantage of a certain risky factor, as required by AS/NZS 4360: this is the only
obstacle we see for the integration of the QualTD model with this standard.

Regarding risk level evaluation, the QualTD model can be integrated with any
method adopting the Type 5 approach. For example, our model could be used
in combination with CORAS as an additional, availability-specific, technique to
determine the consequences of threats, in substitution of the traditional HazOp,
FTA and FMECA techniques.
We showed in the present case how we integrated the QualTD model with a Type
1 method by means of a threat and vulnerability (aggregated) risk level defini-
tion table. We believe that this approach is applicable in general if it is time and
information-wise feasible for the risk assessor to explicitly enumerate the vulner-
abilities present in the ToA.
Integration with a Type 4 is instead more challenging, as it would require an
approach similar to the one we described previously for OCTAVE.
Finally, RAs following Type 2 and Type 3 methods cannot be integrated with
our model, due to the fact that Type 2 methods already (implicitly) take into
consideration the consequences of incident propagation in the definition of the
security needs for each asset in the ToA, while Type 3 methods are quantitative.

3.5.2 Dependency-based techniques for RA

Some academic researchers propose to use dependencies to improve the qual-
ity of security RAs. They have addressed this topic from multiple perspectives,
such as information security, business administration and software engineering.
In the literature of security RA we find three kinds of dependencies: security
dependencies, software dependencies and organisational and technical/functional
dependencies. In this section we will examine previous literature on these three
fields which matches our work. Moreover, since our method considers the third
kind of dependencies, in the final part of this section we also enumerate some
techniques to build technical/functional timed AND /OR dependency graphs.

Security dependencies Baiardi et al. [12] propose a framework for RA of in-
formation infrastructures by building a hyper-graph of security dependencies, i.e.
dependencies on the security properties of the system: confidentiality, integrity
and availability. The timed AND /OR dependency graph is a form of attack graph
in which nodes are the components of the infrastructure, and edges between nodes

89

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

represent the dependency of a component on some security properties of the com-
ponent it is linked to. Threats are represented as users of the infrastructures pos-
sessing some security properties on some contents, while vulnerabilities are con-
ditions allowing the extension of security rights from one component to another.
The framework allows one to rank countermeasures and create risk mitigation
plans. A countermeasure can reduce the vulnerability level of a component, up-
date dependencies, update the initial properties of a threat or increase the resources
needed for an attack. Attack graph-based approaches are known to have scalabil-
ity problems (e.g. see Lippmann et al. [56]) in terms of the number of hosts under
assessment. This is due to the fact that building such graphs requires a large
amount of work which can be only partially automated. Moreover, they require
extensive and difficult to obtain attack details: this information was not available
in the Oxygen RA and we believe it would not be readily available in most RAs.
On the other hand, our approach is in principle less precise, but it also works when
attack details are limited, as the propagation of an availability incident is mostly
dependent on the architecture of the ToA, and this information is in many cases
readily available.

Software dependencies Goseva-Popstojanova et al. [34] present a semi-quanti-
tative approach for assessing reliability and availability related risks at early phases
of a software life cycle by using the UML representation of the ToA. In this work,
the authors use dependencies between software components to assess the likeli-
hood of a fault propagating from a component to the other. In more detail, they
use the following UML constructs: software architecture diagrams, use case dia-
grams, sequence diagrams and state charts of software components. By means of
this information, they estimate the probability of failure of a software component,
and the probability of failure of two software components interacting with each
other. They consider the complexity of a software component in order to calculate
the probability of its failure, and the number of messages exchanged by compo-
nents to determine the probability of an interaction failure. They give the impact
of a failure in a qualitative scale ranging from Minor to Catastrophic. Then, they
calculate the risk level distribution of each UML use case scenario by building
a Markov model from the scenario sequence diagram. Finally, they average all
the single use case risk distributions to determine the overall system risk. This
approach, however, is not readily applicable to all IT RAs. First, it specifically
targets the assessment of risks to software components, but it is less suitable to be
used for a whole IT system which includes not only software but also hardware,
network components and their interaction. Secondly, as threats only software and
communication failures are taken into account. In the RA of a whole IT system
one is interested in assessing incidents caused by other threats (e.g. DoS attacks)

90

3.5. Related work

and this approach does not provide a way to do this. Finally, in the Oxygen case
we did not have any UML representation of the ToA and no quantitative figures
about the likelihood of threats.

Organisational and technical/functional dependencies Innerhofer-Oberperfler
and Breu [40] propose a model-driven approach for assessing IT-related risks us-
ing an enterprise architecture as the basis of the model. They group entities of the
enterprise architecture in four hierarchical layers: business, application, technical
and physical layer. They derive – by refinement – business security objectives and
requirements from this enterprise architecture and from the dependencies among
its constituents. The refinement process follows a top-down approach starting
from high-level business units to technical and physical devices. Then, they iden-
tify and analyse risks to the security requirements by selecting threats and vul-
nerabilities from standard security methods, e.g. BSI IT-Grundshutz [101]. Once
risks are identified, they do a bottom-up aggregation of risk scenarios to make
sure risks become clearly understandable at each level of the organisation (i.e.
from technical to business levels). The approach is qualitative and not linked to a
specific threat-list, with a risk analysis technique very similar to the one presented
in the EBIOS [94] method. In our view, the strong point of this approach is that
RA is fully embedded on the organisation at all levels, from the technical level to
the business management level. On the other hand, it imposes that the whole or-
ganisation is aligned and has agreed on security requirements at all levels, before
the assessment can be done. This is a strong assumption for normal enterprise or-
ganisations in which such a cooperation among the many business units and the IT
department is hardly achieved. For example, in our case we had little information
regarding the high-level goals of the organisation and the main difficulty in ap-
plying this method would have been deriving the full list of security requirements
from (unknown) high level goals. Our approach on the other hand, only requires
the business owner(s) to give a relative value to the different IT services involved
in the RA, which is much easier to gather from business-oriented people.

Kim et al. [50] propose a model to assess and prioritise security risks and their
treatment in the context of a communication infrastructure. They do this by deter-
mining the magnitude of damages produced by a threat to the assets of the ToA,
also taking into account incident propagation. To model incident propagation they
use technical and functional dependencies among the assets of the communication
infrastructure: for each threat they create a workflow (graph) of the incident prop-
agation, with the assets as nodes and the relevant dependencies as edges. They
annotate each edge with the probability that the destination node is affected by the
damage on the source node. Finally, they model the vulnerability level of an asset
by considering the “age” of the asset. Starting from the assumption that systems

91

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

age over time, and because of the increased level of knowledge attackers gain on
the weaknesses of the asset, attacks are supposed to have a greater probability of
success over time if the system is not timely patched. Using incident propaga-
tion graphs and likelihood distribution functions, the authors are able to calculate
the risk of an infrastructure over time, and to prioritise the actions to be taken to
control those risks. This approach is substantially quantitative, and this makes
it harder to apply due to lack of information: the data available for Oxygen was
insufficient to estimate the level of weakness of the system over time. Moreover,
it only considers the component’s age to determine its vulnerability level, which
is limiting in many situations. For example, according to the SLAs with the out-
sourcing company, patching is performed quite regularly on Oxygen: therefore
the weakness (vulnerability) level of the assets is almost constant.

Building a dependency graph Every technique using dependencies for RA is
based on the possibility of constructing a dependency graph describing the ToA.
Building the dependency graph is an “extra” step which is not required by tradi-
tional RA methods, as they mainly rely on the same information but in an implicit
form. For this reason, building the dependency graph in a time-effective way is
essential for the applicability of dependency-based RAs.

A technical/functional dependency graph can be built either manually or au-
tomatically. Manual methods involve acquiring information by functional and
technical documentation and from interviews, like we did in the Oxygen RA. On
the other hand, Static Dependency Analysis [49] and Active Dependency Discov-
ery [20] are two automatic techniques to automatically create the graph.

The former method is based on using application configuration files to derive
dependencies, e.g. the web.xml file for Java web applications. The main draw-
back of this method is that it does not generate a full, cross-domain dependency
graph. This is due to the fact that some dependencies are never derivable from a
configuration file, and to the high number of different formats configuration files
can take.

The latter method consists of measuring the variation of certain QoS parame-
ters (e.g. availability or response time) of the ToA after some of its components are
deliberately perturbed. For example, by simulating a network traffic overload it is
possible to measure the dependency of the response time of a software component
with relation to the network service it relies on.

An example of an Active Dependency Discovery technique was proposed by
Bagchi et al. [11] for the availability of e-commerce environments. The authors
propose to inject faults on the test/benchmark environment of the ToA and detect
availability dependencies; the same dependencies are then also assumed to hold on
the production system. This technique allows one to quickly build a dependency

92

3.6. Concluding remarks

graph without the need to know perfectly the implementation details of the ToA.
However, to build a reliable dependency graph, the test/benchmark system must
be identical to the production system, which is not the case for Oxygen.

3.6 Concluding remarks

In this chapter we introduce the QualTD model and technique for the qual-
itative assessment of availability risks based on the propagation of availability
incidents in an IT architecture. We apply the model and technique to a real-world
case by carrying out an RA on the authentication and authorisation system of a
large multinational company. We compare the results of this RA with the ones
obtained from a previous RA carried out internally by the Company on the same
system. We then evaluate the results with respect to the goals of the stakeholders
of the system.

Our results show the feasibility of the QualTD model and technique, and in-
dicate that the model provides better results in terms of accuracy, in terms of
impact estimates and reduces the number of subjective decisions taken by the risk
assessor. The reasons of success are mainly due to the systematic nature of the
approach and to the completeness of the information the model includes. These
factors help the risk assessor to deal with the complexity of the ToA in such a way
that no relevant risk factor is neglected. Our analysis also shows that the QualTD
model is particularly suitable to assess the availability risks of IT infrastructures
or parts of them, when RAs are carried out regularly on the same target and when
the final results of the RA are used to prioritise the risk mitigation strategies. In
more detail, we speculate that using the IT architecture helps the risk assessor
to better understand the availability-related IT risks. In turn, this can be used to
improve the IT architecture with respect to availability issues.

In addition, we analyse 12 RA standard methods, and we discuss which char-
acteristics of the standard methods are compatible with the QualTD model-based
technique. Our analysis shows that the QualTD model can be used in combina-
tion with many of the most popular RA standard methods. This indicates a wide
range of applicability of the technique, also in organisations not using the same
RA method we used in this case.

Finally, we make a review of academic works we found in the literature which
apply dependency analysis to RA. We show the type of risk analysis these tech-
niques allow and we discuss their applicability to our real-world case. Our analy-
sis shows that none of the techniques examined are directly applicable to our case
either because they require information that was not readily available, or because
they cannot satisfy the requirements of the stakeholders.

93

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT
Infrastructures

94

Chapter 4
A Model Supporting Business
Continuity Auditing & Planning in
Information Systems*

In Chapter 2 and Chapter 3 we presented two models and techniques which
can be used to support the assessment and mitigation of availability risks. In this
chapter we address the second research question:

“How can we improve the accuracy of current techniques for creating and
maintaining business continuity plans, while guaranteeing feasibility within bud-
get?” .

We do this by introducing a new model, which is based on timed dependency
graphs as the TD model, but includes a new calculation framework that supports
business continuity.

*This chapter is a minor revision of the paper with the same name [5] published in the Proceed-
ings of the First International Conference on Global Defense and Business Continuity (ICGD&BC
’07), pages 33-42, IEEE Computer Society, 2007.

95

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

4.1 Introduction

Business Continuity (BC) is the process supporting an organisation in coping
with the disruptive events that may affect its infrastructure. The goal of BC is to
guarantee that – after incidents – the organisation will recover operations within
a predefined time. This is achieved by developing a Business Continuity Plan
(BCP) and then putting it into practice in case of disruptive incidents. In general,
a BCP consists in developing and implementing a strategy to manage incidents
to the organisation’s assets and recover operations. As for risk mitigation, since
not all possible incident scenarios can be covered and not all possible incident
recovery strategies put in place (because of financial and practical limitations)
BCP includes the evaluation and the conscious acceptance of a residual risk.

Today, business activities of most organisations depend on IT systems. There-
fore, a portion of every BCP is dedicated to the recovery procedures for IT sys-
tems. In this chapter we focus on the IT-related portion of BC.

One of the main goals of any BCP is achieving that crucial business processes
should recover from disruption within a predefined Maximum Tolerable Period of
Disruption (MTPD). The MTPD expresses the maximum acceptable downtime to
guarantee the business continuity. As expected, the MTPD depends heavily on the
business goals and we assume it is defined in terms of the business processes, and
determined by the business unit.

Since business processes typically depend on a variety of underlying IT as-
sets, the MTPD has a direct and indirect impact on the maximum downtime that
these assets may exhibit in practice. Indeed, the standard technical means to re-
alise a given MTPD is to define Recovery Time Objectives (RTOs) on all assets
supporting business activities for which the Business Impact Analysis (BIA) has
determined that it is necessary to ensure continuity; RTOs strongly depend on the
technical and organisational measures the IT department implements to deal with
incidents.

Problem Nowadays, determining RTOs that apply to the IT assets is done man-
ually, and it is a subjective work which heavily depends on the experience of the
IT personnel. This is not only error-prone, but it does not scale well (to the point
that often, determining RTOs is not even done for all the components of the IT
infrastructure, despite being required by the standard methodology for business
continuity BS25999-1 [41]). Moreover, it is inconvenient in case of changes in
the IT infrastructure or in the business goals. In particular, new contracts and
agreements can have an impact on the quality of service a business process should
deliver and ultimately on the MTPD associated to it. Likewise, changes in the IT
infrastructure may affect dependencies and therefore the impact of the (RTOs of

96

4.2. Time Dependency and Recovery model

the) IT assets on the business MTPDs. In both cases, adapting the BCP to these
changes, usually requires a costly new analysis involving both the IT and business
units of the organisation.

Contribution We present a new model-based tool to support the analysis of
temporal dependencies among IT assets and between IT assets and business pro-
cess. The primary goals of our model and tool are (1) to support the IT depart-
ment in setting and validating the RTOs of the IT assets of the organisation (2)
to evaluate assigned RTOs w.r.t. the given MTPD to find critical points in the IT
infrastructure. Ultimately, our model allows one to put down the fine-grained set
of premises and assumptions to infer that a given MTPD will be achieved.

While achieving these goals, we argue that our model is particularly useful for
dynamically auditing the BCP in various ways: first, the tool allows one to visu-
alise immediately how changes in business goals or in the IT infrastructure affect
the compliance with given (or modified) MTPDs; in particular, it is possible to
compute whether the measures already in place continue giving enough guaran-
tees also after the changes. Secondly, it allows one to validate the actual response
of the IT infrastructure w.r.t. the expected behaviour, promoting a continuous re-
finement of the model which can adapt to new external circumstances, allowing
for early detection of new threats to the business continuity targets.

Technically, this model is based on dependency graphs as the ones we pre-
sented in Chapter 2 and Chapter 3. However, here the graph is used for different
purposes, and there are modelling differences (e.g. the recovery time of incidents)
due to the different requirements of BC with respect to RM. However, it is possi-
ble to reuse the definition of timed dependency graph and some of the associated
algorithms to explore it.

This chapter is organised as follows: in Section 4.2 we introduce the Time De-
pendency and Recovery model and we show how the model can be used to asses
RTOs set on the IT assets and MTPDs set on the business functions (processes)
these assets support. In Section 4.3 we present the application of the model in a
real-world case and in Section 4.4 we discuss the feasibility of our approach in
other cases. Finally, in Section 4.5 we present the related work.

4.2 Time Dependency and Recovery model

We now present the Time Dependency and Recovery (TDR) model, which al-
lows us to (1) model the MTPD set on the business processes, (2) model the RTO
set on the components of the IT infrastructure and (3) validate MTPDs and RTOs
with respect to the effect of incidents on the IT infrastructure.

97

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

We start by providing a brief summary of the data we need to build the model.

1. The information needed to build a timed dependency graph of the IT infras-
tructure (see Section 2.3 for a complete list).

2. A list of possible disruptive incidents affecting the IT infrastructure, to-
gether with the time needed to repair them (per node) given the controls
already in place. We also need an estimate of their expected frequency,
measured in times per year.

3. The MTPD value for each business process on the timed dependency graph.

4. Optionally, a first estimate of the RTO value for each node (not business
process) on the timed dependency graph.

In Section 4.4 we address the problem of how and when this data can be col-
lected during the business continuity management process.

Let us formalise the main notions. For this, we indicate by R+ the set of
positive real numbers, and by T the set of all time intervals (expressed in hours).

We represent the organisation’s business processes and the IT infrastructure
supporting them by a timed dependency graph. In this chapter we will use the
definition of timed dependency graph we first presented in Chapter 2. For the
sake of presentation, we will repeat here only the definition of timed dependency
graph and we will then introduce the running example that we will use to describe
the TDR model. For a more complete description, please refer to Chapter 2.

Definition 2.1. A timed dependency graph is a pair ⟨N,→⟩ where N is a set of
nodes and →⊆ N ×N ×T .

Running example - Part 4.1. We present here an example (intentionally oversim-
plified) of part of the business/IT infrastructure of a small bank (see Table 4.1).
The timed dependency graph in this example coincides with the one of the running
example in Chapter 2. p1 and p2 represent two business processes; a1, a2 and a3
are three applications supporting business processes while db1 and db2 are two
databases accessed by applications. Finally, m1, m2 and m3 are the three ma-
chines running applications and n1 is the network segment connecting the three
machines. Figure 4.1 shows a TDR model built with the nodes from Table 4.1.
The edges connecting n1 to m1, m2 and m3 express the dependency of the ma-
chines on the network connection with other machines. The connections from m1

to a1, a2 and a3, from m2 to db1 and from m3 to db2 express the dependency of
software processes (applications or databases) on the machines they run on. For
all of these connections the survival time is set to zero, since no component can

98

4.2. Time Dependency and Recovery model

Table 4.1: List of nodes composing part of the business and IT infrastructure of a
small bank

Id Description
p1 Customer management process
p2 Financial services process
a1 Home banking application
a2 On-line trading application
a3 Financial founds management application
db1 Checking account database
db2 Trading database
m1 Application server machine
m2 DBMS machine
m3 DBMS machine
n1 Network segment

p1 p2

a1 a2 a3

db1 db2

m1 m2 m3

n1

0m
10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 4.1: A timed dependency graph example

survive the disruption of the ones it depends on, not even for a short time. In turn,
p1 depends on both a1 and a2, since the customer management is achieved by
providing Internet banking and on-line trading, but with different time constraints
(five hours for a1 and only one hour for a2). A similar reasoning apply to a1 and
p2.

99

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

4.2.1 Incidents and their propagation

We adopt the same definition of incident of Chapter 2: an incident is a disrup-
tive event causing the unavailability of an IT component (or a set of them).

Since different incidents can happen with different frequencies, business con-
tinuity should deal with the frequency of incidents to determine how often will
the business operations be at risk of disruption and evaluate the associated risk.
We adopt the definition of incident frequency given in Chapter 2. For the sake of
presentation, we repeat here the definition.

Definition 2.5. Given a set of incidents I , the frequency estimate is a mapping
freq ∶ I → R+ .

For example, freq(i) = 3 indicates that incident i is estimated to happen 3
times per year.

Finally, every disruptive event takes some time to be repaired. Our model
encompasses an estimate of the repair time rt that is required by the affected nodes
to become operational again. Here it is important to notice that, in many cases,
it is difficult to guarantee an uniform repair time: repairing a disk could take up
to two hours in most cases (say, 90% of the cases), but up to four hours in the
remaining (exceptional) 10% of the cases. For instance, a software bug affecting
a new application can be repaired in eight hours if it is discovered during the
week, or within 24 hours during the week-end, due to lack of personnel. To be
sufficiently accurate, our model requires an estimate of the recovery time for both
the general and the exceptional cases. For this reason rt is expressed as a frequency
distribution.

Definition 4.1 (Time partition). Let τ ∈ T be a time interval, a time partition for
τ is a set TP of pairs ⟨part-desc,part-freq⟩ where:

• part-desc is a partition of time in τ ;

• part-freq is the frequency of part-desc in τ ;

• ∑{part-freq ∣ ⟨part-desc,part-freq⟩ ∈ TP} = 1.

In the above example, if we choose τ to be one week, a partition for τ would
be TP = {⟨Weekdays,0.71⟩, ⟨Weekend,0.29⟩}.

The definition of rt is a refinement of Definition 2.2.

Definition 4.2 (Incident repair time). Let g = ⟨N,→⟩ be a timed dependency
graph, i ∈ I be an incident happening on a set of nodes M ⊆ N , τ be a time
interval and TP be a partition for τ . The amount of time needed to repair a node

100

4.2. Time Dependency and Recovery model

n ∈M from the incident i happening at a time described by an element tp of TP is
the mapping incident repair time rt ∶ I ×N × TP→ T .

In our previous example about the software bug, the rt function is:
rt(SoftwareBug,Application, ⟨part-desc,part-freq⟩) =

⎧⎪⎪⎨⎪⎪⎩

8 if part-desc = Weekdays
24 if part-desc = Weekend

Every incident directly involves one or more nodes, causing them to be un-
available for a certain amount of time. During this time the incident may propa-
gate to other nodes following the timed dependency graph.

We say that an incident propagates from a node n1 to n2, if they have a func-
tional relationship (i.e. n1

sÐ→ n2) and the unavailability time of n1, due to the
incident, exceeds the survival time (s) of n2 with respect to n1. Node n2 will then
become unavailable until the incident is resolved.

According to this observation, we define the downtime caused by an incident
to any node of the timed dependency graph (including propagation). The defini-
tion of incident downtime is a refinement of Definition 2.3.

Definition 4.3 (Incident downtime). Let g = ⟨N,→⟩ be a timed dependency graph,
I be a set of incidents happening on a set of nodes M ⊆ N , let n ∈ N be a node
and Dn be the set of nodes n depends on (i.e. Dn = {m∣m sÐ→ n}), τ be a time
interval and TP be a time partition for τ . The incident downtime is a mapping
dt ∶ I ×N × TP→ T defined as:

dt(i, n, tp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n, tp) if n ∈M
0 if n /∈M and Dn = ∅
0 if max

m∈Dn,m
sÐ→n∈→dt(i,m, tp) − s < 0

max
m∈Dn,m

sÐ→n∈→dt(i,m, tp) − s otherwise.

Running example - Part 4.2. Figure 4.2 shows how an incident happening at a
certain time onm3 propagates across our organisation’s IT infrastructure. Assume
that incident i occurs at t = 0 and, according to the incident repair time, it is re-
paired within nine hours after t. It brings down m3; at the same time db2 becomes
unavailable, since its survival time w.r.t. m3 is zero. After five minutes a2 goes
down and a3 follows after fifteen minutes. Accordingly to the information in the
timed dependency graph, after one hour from the disruption of a2, process p1 goes
down and after eight hours p2 goes down as well. After i1 has been repaired, nine
hours after t, all nodes are repaired in turn.

101

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

m3

db2

a2

a3

p1

p2

i(t0) Repair(i)

t (h)0 2 ... 10

Components available Components unavailable

stop(p2)stop(p1)stop(a3)stop(a2)

7 8

{...}

{...}

1 9

{...}

{...}

{...}

{...}

Figure 4.2: Propagation chart of an incident

4.2.2 Assessing the RTO

Recall that our goal is assessing whether, during the normal operation, busi-
ness process will comply with the Maximum Tolerable Period of Disruption that
has been determined (by the business unit) for the business relevant processes.
The formal definition is the following.

Definition 4.4 (MTPD). Let g = ⟨N,→⟩ be a timed dependency graph and P ⊂ N
be the set of business processes. The Maximum Tolerable Period of Disruption is
a mapping mtpd ∶ P → T .

According to BS 25999-1, the MTPD is determined based on the impact that
the disruption of the business process would have on the organisation. The impact
is expected to increase over the disruption time, and to vary depending on the
day, month or point in the business lifecycle. The MTPD subsumes the impact
evaluation and expresses a single time value after which the impact of the process
disruption would become unacceptable for the organisation.

Running example - Part 4.3. The two business processes in our example are
noticeably time-dependent, because they both require customer interaction and,
in the case of p2, the operational disruption causes a direct financial loss to the
bank. Because of this, it is reasonable to assume that the MTPD is very short, as
reported on Table 4.2.

102

4.2. Time Dependency and Recovery model

Table 4.2: MTPD values for the processes

Id Description MTPD
p1 Customer management process 3h
p2 Financial services process 0.5h

4.2.2.1 Complying with the MTPD

One of our goals is to check under which circumstances we can expect to be
able to comply with the MTPD (i.e. we can expect all the business processes to
recover from disruptions within the maximum time given by the MTPD). To this
end, our model allows us to determine, given the MTPD for the business critical
processes, what is the maximum recovery time that each node in the TDR model
has to respect. Assuming that the timed dependency graph is acyclic this can be
defined as follows.

Definition 4.5 (mrt). Let g = ⟨N,→⟩ be a timed dependency graph, P ⊆ N be the
set of nodes in g representing business processes, then for each n ∈ N we define
the maximum recovery time of n mrt ∶ N → T as:

mrt(n) =
⎧⎪⎪⎨⎪⎪⎩

mtpd(n) if n ∈ P
min{mrt(m) + s ∣ (n sÐ→m) ∈→} else.

The definition of mrt is well formed under the assumption that every node
in the graph is (directly or indirectly) connected to a business process node, i.e.
∀n ∈ N , ∃p ∈ N,{n1, . . . , nx ∣ ni ∈ N} such that p is a business process and
(n s0Ð→ n1) ∈→, (n1

s1Ð→ n2) ∈→, . . . , (nx
sxÐ→ p) ∈→.

Assuming that the TDR model is faithful, i.e. that it reflects well how incidents
propagate across the infrastructure, the relevance of the maximum recovery time
is given by the following result.

Proposition 4.1. Let g = ⟨N,→⟩ be a timed dependency graph, let i be an incident
affecting a (set of) nodes and happening in a certain time partition tp and P ⊂ N
be the set of nodes representing business processes. If ∃n ∈ N ∖ P ∣ dt(i, n, tp) >
mrt(n) then ∃ p ∈ P for which dt(i, p, tp) > mtpd(p). On the other hand, if
∀n ∈ N ∖ P dt(i, n, tp) ≤ mrt(n), then ∄ p ∈ P ∣ dt(i, p, tp) > mtpd(p).

This proposition states that if an incident on a node is not repaired within
its MRT, then at least one business process will be disrupted for longer than its
MTPD. On the other hand, if an incident is always repaired within the nodes MRT,

103

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

then no business process will be disrupted for longer than its MTPD. It is possi-
ble to verify the intuition behind this proposition by comparing the definitions of
incident downtime (Definition 4.3) and the definition of maximum recovery time
(Definition 4.5). The maximum recovery time is calculated by taking into account
the MTPD set on business processes and to make sure that a the downtime of a
node does not cause (by propagation) a downtime on the business processes longer
than their MTPD.

Therefore, the mrt(n) we have defined is actually the maximum downtime we
can tolerate on n to ensure that the MTPD is respected for each business process
depending (directly or indirectly) on it. Of course, the validity of this result de-
pends on the accuracy of the TDR model, but it is worth mentioning here that (a)
as we discuss later, the data needed to build the TDR model is in most cases avail-
able and (b) the model can be refined over time by using statistics on incidents
and their recovery.

Recovery Time Objectives To comply with the MTPD, which is a high-level
measure imposed on the critical business processes, one sets a Recovery Time
Objective (RTO) on all the assets of the organisation that can be directly involved
in incidents (for IT this implies machines, applications, infrastructure, etc.). Our
tool can be used to do this in an automatic, fairly user-friendly way. This already
represent an improvement on everyday practices, which lack standard procedures
to set RTOs with the consequence that sometimes RTOs are not set at all.

Definition 4.6 (RTO). Let g = ⟨N,→⟩ be a timed dependency graph and P ⊂ N be
the set of nodes in g representing business processes, the Recovery Time Objective
is a mapping rto ∶ N ∖ P → T .

Proposition 4.1 implies that, if for each node n in which mrt(n) is defined
rto(n) ≤ mrtmt(n), then the compliance with respect to the RTO implies compli-
ance w.r.t. MTPD. Our model allows us to validate the RTO as follows.

Proposition 4.2. Let g = ⟨N,→⟩ be a timed dependency graph, and rto be an RTO
for it. Assume that for each n,m ∈ N such that n

sÐ→m the following holds:

rto(n) ≤ rto(m) − s (4.1)

Then, for any two nodes n and m, we have that an incident on the node n ∈ N
that causes on n a disruption shorter than rto(n) will never cause by propagation
on m a disruption longer than rto(m).

If (4.1) is not satisfied for some n, m, then an incident on n which causes on
n a downtime shorter than rto(n) would cause on m by propagation a downtime

104

4.2. Time Dependency and Recovery model

longer than rto(m). In other words, if (4.1) is not satisfied then one could witness
the paradoxical situation that the RTO on m is not satisfied because of an incident
on another node n, while this incident remained within the RTO of n in the first
place. RTOs are meant to define a local standard that guarantees a global continu-
ity level; because of this we believe that an RTO not respecting (4.1) would be of
no practical use.

Running example - Part 4.4. By applying Proposition 4.1 to the TDR model in
Figure 4.1, we evaluate the mrt for each node w.r.t. the MTPD expressed in the
previous example. Table 4.3 reports the original RTO value assigned in the tradi-
tional way (i.e. manually) by the IT-BCP group on the IT assets of the TDR model
as well as the automatically evaluated mrt. The RTO assigned on the IT assets is

Table 4.3: Manually assigned RTO vs. mrt values evaluated by means of the
model

Id RTO mrt
a1 6h 8h
a2 6h 4h
a3 6h 24h 30’
db1 5h 8h 10’
db2 5h 4h 5’
m1 5h 4h
m2 7h 8h 10’
m3 3h 4h 5’
n1 8h 4h

in some cases too short and in other cases too long, i.e. insufficient to ensure the
business continuity. By applying Proposition 4.2, we compare the original RTO
w.r.t. the mrt and find four critical points (outlined by a bold circle in Figure 4.3),
where the original RTO value exceeds the mrt.

4.2.2.2 Exceeding the MTPD

As it is impossible to achieve total security, it is often difficult to comply at all
times with the given MTPD. Disasters happen and it is normal to accept a residual
risk, implying that the given MTPD may be exceeded in truly exceptional situa-
tions. For instance, there could be some particularly serious incidents that cannot
be recovered in time. On the other hand, the IT department may be unprepared
to handle some disruptive events due to lack of personnel or resources. To deal
with that, two solutions are possible: (1) the organisation’s management decides

105

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

p1
MTPD 1h

p2
MTPD
0.5h

a1
RTO 6h
mrt 8h

a2
RTO 6h
mrt 4h

a3
RTO 6h

mrt
24h30'

db1
RTO 5h

mrt
8h10'

db2
RTO 5h
mrt 4h5'

m1
RTO 5h
mrt 4h

m2
RTO 7h

mrt
8h10'

m3
RTO 3h
mrt 4h5'

n1
RTO 8h
mrt 4h

0m
10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 4.3: Critical points in which the manually assigned RTOs exceed the max-
imum recovery time.

to employ more resources and deploy new control measures allowing to shorten
the disruption time, or (2) the risk of exceeding the MTPD is accepted within a
given probability.

However, to be able to accept the risk of exceeding the MTPD, an organisation
needs to have a reasonable estimate of how often this is going to happen in a given
time period (which could be one year or ten years, for instance).

To make this estimate we can use our TDR model. We know from Proposi-
tion 4.1 that every time an incident occurring on an node is not repaired within its
mrt one or more business processes depending on the node will become unavail-
able for longer than their MTPD.

Therefore, to evaluate the frequency a business process p exceeds its MTPD
we need to make an estimate of how many incidents affecting a node on which
p (directly or indirectly) depends on, cause the mrt of the node to be exceeded.
To this end we use the recovery time distribution that is evaluated during the RA
phase of the business continuity management process.

Definition 4.7 (Frequency mrt is exceeded). Let g = ⟨N,→⟩ be a timed depen-

106

4.2. Time Dependency and Recovery model

dency graph, n ∈ N be a node, p ∈ P ⊆ N be a business process and mtpd(p)
be its MTPD. If I is a set of incidents affecting n, τ a time interval and TPi the
time partition for τ on which the incident recovery time for i ∈ I is assessed, then
the frequency n exceeds its mrt because of incidents in I is given by the mapping
Φ ∶ N × I → R+ :

Φ(n, I) =∑
i∈I

⎡⎢⎢⎢⎢⎣
freq(i) ∑

tp=⟨part-desc,part-freq⟩∈TPi and dt(i,n,tp)>mrt(n)
part-freq

⎤⎥⎥⎥⎥⎦

Intuitively, Φ(n, I) expresses an upper bound on the number of times a node n
exceeds its mrt because of a set of incidents I (i.e. when the incident occurrences
are not overlapping). The following proposition expresses how we use Φ to evalu-
ate freq-ex(p), which expresses (the upper bound of) how many times the MTPD
is exceeded, given a business process p.

Proposition 4.3. Let g = ⟨N,→⟩ be a timed dependency graph, p ∈ N be a busi-
ness process and I be a set of incidents, then:

freq-ex(p) = Φ(p, I) (4.2)

In other words, how often a process exceeds its MTPD is determined by the
sum of the frequencies the nodes it depends on exceed their mrt. With such an
information, the business unit is able to verify if the residual risk it is willing
to accept is not further exceeded by the IT department. Such a condition would
require the development of more effective strategies to reduce the recovery time
to incidents.

Running example - Part 4.5. Let us introduce two incidents i1 and i2, the first
affecting a2, the second affecting db2. i1 is estimated to happen five times a year
and it is repaired within three hours in the 80% of the cases and within eight
hours in the remaining 20%. i2 is estimated to happen seven times a year and it
is repaired within four hours in the 90% of the cases and within six hours in the
remaining 10%. If we consider the MTPD of p1 (three hours), then the mrt is 4h
for a2 and 4h5’ for db2. The (upper bound of the) frequency db2 exceeds its mrt
is 0.7 times a year, while the (upper bound of the) frequency a2 exceeds its mrt is
1 time a year. Consequently, assuming that the only incidents affecting the nodes
in the timed dependency graph are i1 and i2, our tool allows us to compute that
p1 is expected to exceed its MTPD at most 1.7 times a year (once a year by 3h,
equivalent to the 200% of the MTPD, and 0.7 times a year by 1h55’, equivalent
to the 164% of the MTPD).

107

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

4.3 The Practice

Our experience on BCP auditing is based on the general approach used by
KPMG Italy. We implemented a prototype tool from our model as an additional
component of KARISMA (which is the tool developed at KPMG to support RA,
see Section 4.4): this enables us to repeat and validate the assessment previously
done by the KPMG auditing team.

The tool is composed of two main modules: the data import module and the
algorithm module. The goal of the data import module is to obtain the data needed
to build the TDR model from the KARISMA database. It reuses some of the code
written for the prototype we built to test the TD model (see Section 2.4). The data
import module allows us to obtain sufficient information to build the timed depen-
dency graph, plus a list of (business continuity-related) incidents, their frequency
and recovery time. In addition, we obtain the MTPD value for all business pro-
cesses and subprocesses and the value of the previously assessed RTO for some
nodes of the timed dependency graph (only the applications).

The algorithm module implements the algorithms to compute the incident
downtime (see Definition 4.3), the maximum recovery time (see Definition 4.5),
the frequency MTPDs are violated (see Definition 4.7) and to find critical points
in the previously assessed RTOs (according to Propositions 4.1 and 4.2).

The pseudo code for the algorithm to compute the maximum recovery time
is shown in Algorithm 4.1, while the algorithm to find critical points is shown in
Algorithm 4.2.

Algorithm 4.1 Algorithm to compute the maximum recovery time of a node
function mrt(n)
if n is process then

return mtpd(n)
else

return min {mrt(m) + s ∣ (n sÐ→m) ∈→}
end if
end function

We tested our model with the information of an Italian primary insurance com-
pany obtained from the KARISMA database. This data was collected during an
auditing activity carried out by KPMG to set-up a BCP, and contains information
regarding the business and IT infrastructure of the primary insurance company
(19 macro business processes and 122 sub-processes) and the results of the BIA
analysis carried out by the KPMG personnel, which provides the MTPD value
for each business process and subprocess. The remaining information required by

108

4.3. The Practice

Algorithm 4.2 Algorithm to find critical points
function critical(n, ε)
if n is process then

return false
end if
if rto(n) - mrt(n) > ε then

return true
end if
for all (n sÐ→m) ∈→ do

if rto(n) ≤ rto(m) - s then
return true

end if
end for
return false
end function

our model (about incidents, repair time and frequencies) was also provided by the
KPMG auditing team who conducted the assessment.

Regarding the BIA, the procedure used by KPMG analysts to establish the
MTPD for the business processes is based on the qualitative analysis of the im-
pact, as perceived by the process owner (business unit), of the consequences of a
disruption on the process itself. On the other hand, regarding RTOs, only certain
nodes (most of the applications) are taken into consideration and are labelled with
an RTO, since it is difficult to properly evaluate the relationships between the dif-
ferent nodes manually. The approach followed by the KPMG analysts to assign
an RTO to application nodes is to set a value smaller or equal to the minimum
MTPD value of the processes (or subprocesses) that the application supports. Fig-
ure 4.4 shows an example of such an assignment with the (anonymised) data of
the primary insurance company. Application A2 supports two business processes:
P2 and P3. P2 has an MTPD of 7 hours, while P3 has an MTPD of 20 hours. The
RTO on A2 is set to 7 hours, which is equal to the minimum MTPD value of the
two processes A2 supports.

The first important contribution of our model is that all the relationships are
evaluated, thus enabling the IT department to extract the RTO values for each in-
volved node (even machines, network and infrastructure components). We used
the mrt value automatically calculated by the tool as RTO for all the nodes of the
TDR model. In this way, we are sure that RTOs are compatible with the MTPD
of the business processes (see Proposition 4.1), and that RTOs are pairwise com-
patible (see Proposition 4.2). Having an RTO set for all the components of the IT
infrastructure allows the IT department to systematically assess its ability to com-

109

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

P1
MTPD 5h

A1 A21h

0h 0h0h

RTO = 7h =
min {7h, 20h}
mrt = 6h

P3
MTPD 20h

P2
MTPD 7h

RTO = 5h =
min {5h}
mrt = 5h

critical point

Figure 4.4: An example of critical point found with our tool. The misleading
evaluation of A2’s RTO to 7h is caused by the lack in considering the relationship
of A2 with A1. If A2 is repaired in more than 6h, process P1 will be disrupted for
more than its MTPD.

ply with these RTOs, to develop strategies to achieve them in case of disruption
and, if necessary, agree with the business unit on an exceeding rate.

Secondly, we found some critical points in the previous setting of RTO val-
ues for the application nodes composing the IT infrastructure of the insurance
company. In case of applications supporting both business processes and other
applications, we found that the RTO was in some cases underestimated (longer
than required) because the dependencies between applications had not been taken
into consideration when initially assigning RTOs. In the case of Figure 4.4 we see
a simple example of such critical point. According to KPMG’s method of assign-
ing RTOs, the RTO of A2 is set to 7 hours. However, in case A2 is disrupted and
becomes operational after 7 hours, A1 would be unavailable for 6 hours, which
conflicts with its RTO (5 hours) since it would cause P1 to be unavailable for 6
hours (i.e. longer than its MTPD).

Summarising, our tool allows one to perform two different assessments: firstly
to set properly RTO values for a given IT infrastructure component; secondly, to
support auditors during the BCP validation. Once a BCP has been established
and put in place, the validation phase occurs to ensure that the plan is adequate,
complete and appropriate w.r.t. the organisation’s IT infrastructure [70]. A crucial
point is based on the auditing of recovery controls: the auditor must verify that
RTO values meet the business requirements. Our tool supports this kind of veri-
fication, since every check can be made in an automatic way (after the model is
created or updated), possibly discovering weaknesses in the BCP.

110

4.4. Discussion

4.4 Discussion

In this section we argue the feasibility of our approach and its usefulness to
support dynamic auditing of the BCP.

Feasibility The main concern regarding the feasibility of our approach is whether
organisations are able to collect the required information to build the model. For-
tunately, the experience with KPMG shows the data it requires can be available (at
least at some financial organisations). More in general, the TDR model requires
information to (1) build a timed dependency graph, (2) enumerate incidents to-
gether with their estimated frequency and repair time, (3) collect the MTPD for
business processes and (possibly) the existing RTO set on the components of the
IT infrastructure.

Regarding (1), in Chapter 2 and in Chapter 3 we discussed the feasibility of
acquiring information to build a timed dependency graph (the information needed
to build a timed AND /OR dependency graph is almost the same of the one required
for a timed dependency graph). The same considerations also hold for this case.

Regarding (2), an inventory of possible incidents has to be compiled during
the RA phase of the business continuity management process. Incidents can be
derived from existing threat lists which can be found on several standard methods
(e.g. in BS 7799-3 [21]). Most of the incidents that are of interest in business
continuity management are natural disasters (e.g. flooding, storms, etc.) or in-
frastructure faults (e.g. power outages). For this kind of incidents there is more
information publicly available with respect to other kinds of IT security events
(e.g. hacker attacks). In fact, the second ones are more difficult to analyse due to
lack of detailed historical records, since organisations normally tend not to dis-
close information about them. On the other hand, a numerical value about the
expected frequency of – say – a lightning hitting a datacentre can be reasonably
obtained based on historical records (e.g. from the frequency of storms in the area
a datacenter is located).

Finally, regarding (3) we note that according to the BS 25999-1 standard, es-
tablishing an MTPD for the critical business functions is a key activity to set up
a BCP. Therefore, we can assume an organisation willing to set up or assess an
existing BCP to have carried out the BIA. To further substantiate this argument,
we note that this data is also collected by tools devised to assist the creation of a
BCP. For instance, this was the case in the case-study we carried out. Among the
information KARISMA collects via a question-driven procedure, there is a map
of the business processes. The Business Impact Analysis focuses on the mapped
processes and produces, among others, the MTPD value for them.

111

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

Continuous Auditing Finally, we argue that our framework is particularly use-
ful to support a dynamic auditing process. The concept of dynamic auditing is
well-known among the risk management strategies, particularly in the field of
software engineering [61]. The goal of this process is to continuously assess
what could go wrong in projects (i.e. what the risks are), determining which of
these risks are most relevant, and implementing strategies to deal with them.
Even though many of the methodologies for risk management [18, 45], as well
as those for BC [41], include a monitoring and reviewing step, this process can
be performed with different degrees of granularity, according on how flexible the
adopted techniques are. For example, a change on the IT infrastructure, involv-
ing the dismantling of a set of applications and machines and the introduction of
new software and hardware components, may involve either the assessment of the
new components only, or of the whole organisation, depending on how much it is
possible to reuse the previous assessment results.

Thanks to the fine granularity and the high degree of independence of the used
information (time dependencies, assessment of incidents, importance of processes
to the business), our model and tool are particularly suitable to support a dynamic
assessment process.

For instance, when dealing with a change in the organisation, be it the rear-
rangement of the IT infrastructure or a new business strategy, after a simple up-
date of the model, the framework can be used to evaluate the new time constraints
within which incidents must be repaired to preserve the business continuity. In the
case a new component is added to the information system, it is only necessary to
add the new component in the TDR model and specify its functional and temporal
relationships with the other components to evaluate its new RTO. On the other
hand, if a process becomes more important for the organisations business (due to
changes in business strategy), it is possible to change its MTPD and automati-
cally assess the IT infrastructure to verify if it is still able to ensure the new time
constraints.

In addition, after the occurrence of an incident, our model allows us to ver-
ify if the incident response propagation is compliant with the expected behaviour.
It might happen that a time dependency between two applications, that was es-
timated to be of one hour, is in fact of one hour and a half. Furthermore, one
might observe that the response time to an incident exceeds the forecasted RTO.
In those cases, the model can be easily updated with the new collected informa-
tion, thereby allowing to rapidly assess the new situation and develop new and
more efficient BC strategies, if needed. This feature adds quality to our solution
since it enables the BC team to organically capitalise on practical experience to
improve accuracy of the model and of the outcome in time.

In this perspective, the ability to easily refine the model helps at improving the

112

4.5. Related Work

way organisations traditionally deal with incidents. Instead of simply solving the
problem when it happens and then forgetting about it, our solution promotes the
continuous monitoring of the performances of the repair operations by collecting
new information as incidents occur and then use them to improve the efficiency of
the response on new occurrences.

Summarising, our system allows one to (a) easily adjust the model to changes
in the organisation and/or its business target, without the need of a complete new
assessment, and (b) refine the model (i.e. make it more precise) in the moment in
which new and more accurate information is available about the actual behaviour
of the organisation.

4.5 Related Work

Although the business continuity management process is well described in a
number of works [51, 62] and recently has been standardised by the British Stan-
dard Institute [41], formal models to support it are still understudied. Despite this
situation, there are some specific fields for which specific tools have been devel-
oped to accurately evaluate the survivability of IT systems. This is the case of
telecommunication networks, where the high availability of the network must be
ensured through a proper BCP. Jrad et al. [48] propose a BCP model devised to
determine the expected downtime due to disaster events as well as normal and
software failures in a networked environment and especially tailored for telecom-
munication networks. The model can be also used to predict the probability that a
disaster will cause a service disruption. The model could be integrated with ours
to provide an estimate of incident likelihood and repair time. Our model could
then be used to set or assess RTOs on the infrastructure.

Another approach to evaluate the survivability of a system is the one proposed
by Cloth and Haverkort in [25]. They describe the system under assessment as
a Stochastic Petri net and then automatically convert it into a Continuous Time
Markov Chain (CTMC) . Finally they use a model checking engine to obtain a
time-probability chart that expresses the recovery probability in relation to the
recovery time. The model outcome is typically used to deal with dependability
issues in system design, but is not readily usable for the business continuity of
large infrastructures. To apply this approach a fine grained description of the
system is required. However, obtaining information at this detail level might be
hard in terms of time and resources.

In addition to academic work, there exist a number of commercial tools sup-
porting BCP. The most closely related to our work is Shadow Planner [111]. It
is an (industrial) application developed to support organisations in assessing risks

113

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in
Information Systems

and establish a BCP. The software has several modules to map the organisations’
IT infrastructure, collect BIA information, asset values, etc. Thus, it is able to
evaluate the monetary impact of a certain incident. Differently from our approach,
it is not based on a model and the relationships between different IT infrastructure
components are not properly evaluated. This could hardly affect the way a disrup-
tion event is evaluated, resulting in an erroneous planning of countermeasures to
ensure business process MTPDs (and the related RTOs).

4.6 Concluding remarks

In this chapter we address IT availability planning by considering the IT-
related part of business continuity management.

We present the TDR model and framework to support the set up and validation
of a BCP. The model allows one to: (1) determine the maximum recovery time an
IT component needs to be restored after a disruptive event to comply with the
business requirements (i.e. the MTPD of the business processes the IT component
supports), (2) validate the compliance of RTOs set on IT components w.r.t. the
maximum recovery time, (3) validate the mutual compatibility of RTOs set on
IT component that depend on each other and (4) evaluate the residual risk of a
given BCP by considering the frequency MTPDs set on business processes may
be violated.

Finally, we provide evidence about the feasibility of our approach by reporting
on their successful application in the validation of the BCP of an italian primary
insurance company, carried out with data collected by the Italian branch of KPMG
S.p.a. and discuss the applicability of our model-based technique to similar cases
in which the information required by our model is available.

114

Chapter 5
A2THOS: Availability Analysis and
Optimisation in SLAs*

Having addressed the first research question regarding the management of av-
ailability risks in Chapter 2 and Chapter 3, and the second research question about
business continuity management in Chapter 4, we now address the third and final
research question:

“How can we improve the accuracy of current techniques for managing availability-
related SLAs, while guaranteeing feasibility within budget?”

In this chapter we focus on the problem of analysing and optimising the av-
ailability of so-called mixed sourced IT services, i.e. services which are (partly)
managed by an outsourcer and regulated by means of SLAs. To address this topic
we introduce a model-based framework called A2THOS.

*This chapter is a minor revision of the paper with the same name [1] submitted for publication
at the International Journal of Network Management (NEM) in April 2010.

115

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

5.1 Introduction

Nowadays, the IT infrastructure of most large organisations is so complex that
it is often organised in terms of services that are offered as part of an internal
market in which different business units offer and buy IT services to and from
each other. In some cases, services are acquired from an external organisation
rather than from an internal business unit (outsourcing). Typically, services of-
fered by an internal provider are customised and tailored to support the business
goals of the organisation, while those offered by external providers are standard-
ised and large-scale, and therefore are less specific but potentially cheaper than
those implemented internally. In some cases, internal providers outsource some
sub-services to external ones, for instance when it lacks specific competencies
(e.g. SAP configuration). This is a so-called mixed sourcing strategy.

Regardless of whether the service is bought internally or externally, the terms
and conditions of the contract are determined in the SLA. (Figure 5.1 summarises
the concept of mixed-sourced IT services regulated by SLAs.) For instance,
ITIL [62] is one of the most popular frameworks providing guidelines and best
practice for a correct IT service management and it describes this process in detail
in [64].

In this chapter we focus on IT service availability, which is at the core of
customer satisfaction and business success for organisations [63], and indeed it is
one of the main topics in a SLA. In fact, a typical SLA includes hard clauses on
the minimal availability of the service offered (for example, it may include that
the service should not be “down” for more than two hours per week, and a penalty
fee for each week in which this is not satisfied).

Now, the two concerns we focus on (and at the same time the two questions to
which we provide an answer within the limits of the settings of this chapter) are:

1. how can a business unit check and/or guarantee that a given (offered) service
will respect some given minimal availability levels;

2. as (1.) while minimising costs.

Let us elaborate on these two points and explain why they are not only rele-
vant, but also non-trivial problems.

An IT service is usually offered by a system consisting of several compo-
nents. These components can interact in non-trivial ways: for instance a compo-
nent could be crucial to the service in a way that if the component is unavailable
then the service becomes unavailable as well; other components may be organised
in such a way (e.g. exploiting redundancy) that only if a number of them fails the
service will be affected. In addition, a component may depend in a non-trivial
way on sub-services which are in turn regulated by other SLAs.

116

5.1. Introduction

IT (3)

Business Unit 1 Business Unit 2 Business Unit 3

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

IT
Services SLAs

Business (1)

External IT Service Providers (6)

Supporting
Services SLAs

Applications Technology Infrastructure

(2) (4)

(5) (7)

Figure 5.1: Mixed-sourced IT service provision regulated by SLAs. The organisa-
tions business units (1) use IT services (2) provided by the internal IT department
(3). These services are regulated by means of SLAs (4). In turn, the IT department
is using supporting services (5) offered by an external provider (6) to run (part of)
the IT infrastructure. Also these services are regulated by means of SLAs (7).

To ensure that the minimal service availability remains within the agreed mar-
gins, IT managers can take reactive (e.g. monitoring, measuring) and/or proactive
measures. A key proactive measure is planning and designing service availability
when services are created or changed. At the business level, planning service av-
ailability allows the service provider to set availability figures on the SLAs that
both satisfy the customer needs and can be guaranteed by the technical infras-
tructure providing the service. To achieve this at the technical level the service
provider needs to (a) calculate the availability of the IT system providing the ser-
vice(s) based on the information available on system components, and (b) make
appropriate system design choices to support a specific availability level by se-
lecting the system components based on their contribution to the availability of
the system.

Reliability studies have introduced a number of by now standard techniques
(e.g. Continuous Time Markov Chains (CTMC) [68] and Petri Nets [33]) which
allow one to compute system availability when the mean time between compo-
nent failures and the mean time to repair a component is known. However, in the
context of mixed-sourced IT services, this information is usually not available. In-

117

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

stead, SLAs between the external and the internal provider typically only include
the minimal guaranteed availability of the component. Therefore, it is not pos-
sible to apply these standard techniques to calculate the system availability (see
Section 5.2 for details).

Regarding the second point, the service catalogue of most IT outsourcing com-
panies include different availability levels (e.g. gold, silver and bronze) with dif-
ferent associated prices (same service, only different availability levels, at differ-
ent costs). Service providers need to minimise the cost of outsourced (sub)services
while guaranteeing that their own service achieves the desired minimal availability
level. Given the interactions mentioned above, this is a non-trivial optimisation
problem: one needs to determine the combination of minimal availability levels
for the sub-services in such a way that the total cost is minimal while ensuring
that the resulting service achieves the availability specified in the SLAs. This can-
not be solved without the use of specific optimisation algorithms and typically IT
managers choose non-optimal, conservative solutions.

Contribution We present A2THOS, a framework for the analysis and optimisa-
tion of the availability of mixed-sourced IT services. The framework consists of
(1) a modelling technique to represent partially-outsourced IT systems, their com-
ponents and the services they provide, based on AND /OR dependency graphs,
(2) a procedure to calculate (a lower bound of) the system availability given the
(lower bounds of) components availability, and (3) a procedure to select the opti-
mum availability level for outsourced components in order to guarantee a desired
target availability level for the service(s) and to minimise costs.

An AND /OR dependency graph is an AND /OR graph in which nodes rep-
resent system components and services, and edges between nodes represent the
functional dependency of one node with the other. We use the graph in order to
calculate a state function describing the availability of each service based on the
state of the components (operational or not operational). We then use the state
function and the information about components availability to determine a lower
bound for the availability of the service, by setting up a linear programming prob-
lem. Based on this procedure, we finally present the procedure to set up an integer
programming problem which allows one to determine the cost-optimal combina-
tion of availability levels for outsourced components in order to guarantee a target
service availability. We show the practical use of A2THOS by implementing it in
a tool which we apply to the service availability planning of an industrial case.
In Chapter 3 we argue that reliable quantitative information for risk assessments
can be hard to acquire, especially regarding likelihood of threats (e.g. hacker at-
tacks) and precise financial loss estimates. However, in the case of service level
management this is not the case. Both internal SLAs between an organisation IT

118

5.2. Related Work

department and business units and external SLAs between the IT department and
external service providers include a quantitative value expressing the lower bound
of the IT service availability. This allows us to apply in this chapter a quantitative
technique.

Limitation of the approach A2THOS uses an AND /OR dependency graph to
represent IT systems, thus it is unable to explicitly represent failure recovery
mechanisms such as availability of spare parts. Spare parts are used to imple-
ment warm and cold standby mechanisms. For example, to shorten the downtime
caused by a server breakdown, the system administrators can keep another server
ready to replace the broken one. This second server is the spare part. When it
is always running (but not operating) and the workload of the broken server is
automatically routed to the spare server, this mechanism is called hot standby.
When the workload of the broken server needs to be manually routed to the spare
server, this mechanism is called warm standby. When the spare server is not read-
ily available, but it needs a setup phase before the workload of the broken server
can be redirected to it, the mechanism is called cold standby. Our representation
allows us to explicitly model hot standby mechanisms by using OR nodes, but it
is not applicable in case of warm and cold standby mechanisms. We share this
limitation with other well-known modelling techniques, such as traditional Fault
Trees (FTs) and Reliability Block Diagrams (RBDs).

Organisation The rest of the chapter is organised as follows. In Section 5.2 we
present the related work in the fields of reliability and IT service composition. In
Section 5.3 we provide the mathematical foundation for using them to calculate
service availability. In Section 5.4 we present the procedure to find the optimal
choice of availability level for outsourced components. In Section 5.5 we describe
the tool we created to implement the A2THOS framework and the benchmarks we
conducted to test its scalability performances. Finally, in Section 5.6 we show how
we applied A2THOS to a practical case of service availability planning in an in-
dustrial context. Section 5.8 and Section 5.9 are two appendix sections presenting
the proof of one of the theorems we introduce and the representation capabilities
of our model with respect to RBDs respectively.

5.2 Related Work

In this section we discuss related works in four relevant areas for our problem:
(1) the general approach to calculate system availability, (2) modelling techniques

119

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

to represent the system under analysis, (3) existing tools and (4) other approaches
taking into account availability to optimise IT service composition.

The general approach Referring to a classic formulation [13] taken from the
reliability theory, a repairable system is a system which can be repaired after a
failure.

In the simplest case, the system m for which availability must be determined
is represented by the state function χ(m, t) which assumes value 1 if m is oper-
ating within tolerances at time t, 0 otherwise. The general way of calculating the
availability of a repairable system is to assume it has an independent, exponential
distribution of failure and repair time (a so-called stationary alternating renewal
process [58]). However, to do so one must know at least two properties of the
system: its failure rate λ, and its repair rate µ. The first property specifies how
often the system will fail on average, i.e. its Mean Time Between Failure (MTBF):
λ = 1

MTBF . The second one specifies its Mean Time To Repair (MTTR): µ = 1
MTTR .

Under this assumption the limiting availability is then obtained by the formula
Ā = µ

µ+λ .
In the general case, the system can assume more than two states. Such a

system is called complex. A complex system is a system which is made of inter-
connected components that as a whole exhibit one or more properties depending
on the properties of the individual component. For example, a complex system
can be made of two “simple” components (i.e. two components that can indepen-
dently be either in operative or in repairing state). The state of the system depends
on the state of the two components: the system may work properly even if one
component only is operative, or it may need both components to be operative. To
model the state of the system, a state formula is used. Components can have more
than two states (e.g. operative, planned maintenance, emergency repair, etc.). To
compute the availability of complex systems, CTMC [68], or Petri Nets [33] are
used. To employ such techniques, one has to (1) define a state formula of the
system based on the component’s state, and (2) know the transaction probability
of each component from one state to the other.

In our case, the information available in the SLAs for outsourced components
concerns only a minimal availability in a given time frame (e.g. one month).
Therefore, classic techniques are not applicable to this problem, as the internal
states of each component and the probability of state transition (i.e. failure and
repair rate) are only known by the outsourcing company.

System modelling Several approaches have been proposed in the literature for
system reliability modelling. FTs and RBDs are the most used ones. However,
we should mention that also other approaches have been proposed, e.g. Torres-

120

5.2. Related Work

Toledano and Sucar [75] use Bayesian networks, and Leangsuksun et al. [54] use
an UML representation (although in this second case the authors do not provide
the mathematical support for reliability analysis). In FTs, a number of compo-
nents (called basic events) are linked together to make up a system according to
AND/OR relationships. The same behaviour is achieved in RBDs through SE-
RIES/PARALLEL compositions. According to [33], FTs are easy to use, as they
do not require very skilled modellers, and relatively fast to evaluate, as it is pos-
sible to use very efficient combinatorial solving techniques to obtain most of the
reliability indexes.

In FTs, the system state is represented by the top event, i.e. the root of the
tree. It is possible to build a boolean equation from the FT, and to reduce it to
the minimal cut set, i.e. the smallest set of combinations of basic events (com-
ponent failures) which all need to occur for the top event to take place (system
failure) [76]. Based on the minimal cut set, a combination of combinatorial tech-
niques and CTMC or Petri nets is then used to calculate the system (limiting)
availability.

According to Flamini et al. [33], the main limitation of FTs and RBDs consists
in the lack of modelling power, as they do not allow to model maintenance-related
issues explicitly. To solve this problem, FTs and RBDs have been extended into
Dynamic FTs [30] and Dynamic RBDs [29], allowing one to model maintenance-
related issues.

The modelling notation we use in this chapter (AND /OR dependency graphs)
can be seen as a condensed form of FTs. With a single AND /OR dependency
graph we are able to model a forest of FTs sharing (some of) the basic events (i.e.
the failure of a component), but with different top events. A single AND /OR de-
pendency graph can thus model separately the failure of all the business services
which the IT system provides, and for which a specific availability level must be
calculated. In fact, it is possible to (automatically) transform any AND /OR de-
pendency graph into a forest of FTs, as well as in a set of RBD, as we show in
Section 5.9. We share with FTs the use of minimal cut sets, which in our notation
are called Dependency Sets (see Section 5.3), but the availability calculation we
apply to AND /OR dependency graphs is different from the one used in FTs (for
the reason we mentioned above). In Appendix A we will give a more detailed
explanation of the differences between FTs and the AND /OR dependency graphs
we use in A2THOS.

Tools IBM Tivoli [100] and HP Business Availability Centre [98] are two of
the most popular configuration management tools. These tools are meant to sup-
port IT managers in the configuration and maintenance of complex IT systems.
Among the many features they possess, they can be used to manage SLAs, in-

121

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

cluding availability levels. One can assign to each IT component the availability
level imposed by SLAs, and keep track of the actual availability levels to check
for SLA compliancy. However, to the best of our knowledge there is no support
for the analytical calculation of the service availability.

Galileo [74], Coral [17], Relex [110] and BlockSim [88] are tools operating
with Dynamic FTs. Although integrating the A2THOS engines in one of these
tools would be useful, this was not possible: Relex and BlockSim are commercial
tools, Coral is mostly a MatLab library without a GUI, and Galileo is free soft-
ware, but not open source. For these reasons we developed our prototype as an
independent Java/Prolog tool.

Availability in service composition In the field of IT service composition, sev-
eral approaches have been proposed that consider availability as one of the QoS
parameters to optimise the performances of the resulting composite IT service.
Gu et al. [35] propose QUEST, a framework to schedule dynamically a composite
IT service while satisfying QoS requirements (e.g. response time and availability)
imposed by SLAs. Zeng et al. [81], Yu et al. [80] and Ardagna et al. [9] propose
scheduling techniques to create a cost-optimal execution plan for composite web
services which respect QoS parameters (including availability) defined in SLA
contracts.

In all these works, an estimation of the availability of the composite service
is made by multiplying the availability level of the components (expressed as a
real number in the interval [0,1]). This is possible thanks to two simplifying as-
sumptions. First, all the components must be available at the same time for the
system to operate (i.e. the system is an AND-combination of its components and
it becomes unavailable in the moment that any of its component is unavailable).
Secondly, the resulting availability is not a lower bound, i.e. there can be a run of
the composite service in which the resulting availability is lower than the calcu-
lated one. Differently from these approaches, A2THOS is able to deal with a wider
range of dependencies, namely combinations of AND and OR dependencies. In
the sequel we also argue in more detail why OR dependencies are necessary to
model complex IT services correctly. A2THOS also allows one to calculate an
absolute lower bound for the availability, which can be safely included in an SLA
contract.

5.3 Analysis of the minimal service availability

We now present the theoretical foundations of A2THOS. Let us first start with
an intuitive explanation. We model the system using a AND /OR dependency

122

5.3. Analysis of the minimal service availability

graph, in which a node represents a component of the system that at any given
time may (or may not) be available. A directed edge from node m to node n
indicates that m depends on n, i.e. that the availability of m depends also from the
availability of n in a way that we are about to explain.

In an AND /OR dependency graph, a node m can be unavailable because of an
internal failure, or because (some) nodes it depends on are unavailable. To model
internal failure, to each node m we associate a (virtual) internal node m′. We say
that the internal node m′ is unavailable if the node is unavailable because of an
internal failure. Therefore, internal nodes are just a notation artefact with no other
fundamental purpose than indicating the internal failure of a node.

To model the fact that m becomes unavailable because one or more nodes it
depends on are unavailable, we then consider nodes of two types: AND and OR .

!

"#"$

!

"#"$

!

"$

!

"#"$

"#

!

"$ "#

(a) AND

!

"#"$

!

"#"$

!

"$

!

"#"$

"#

!

"$ "#

(b) OR

Figure 5.2: Two simple AND /OR dependency graphs, respectively with AND and
OR nodes. Each of these nodes can also be indicated as internal nodes (i.e. m′ is
the internal node of m).

If m is a node in an AND /OR dependency graph and n1, . . . , nk are the nodes m
depends on, we say that

• m is unavailable at time t iff its internal node m′ is unavailable at time t or

– at least one node in n1, . . . , nk is unavailable at time t, in case m is an
AND node.

– n1, . . . , nk are all unavailable at time t, in case m is an OR node,

Formally,

Definition 5.1 (AND /OR dependency graph). An AND /OR dependency graph
⟨N, E⟩ is a directed and acyclic graph (DAG) where N is the set of nodes, and
is partitioned in AND-N and OR-N, and E is the set of edges E ⊆ {⟨u, v⟩ ∣ u, v ∈
N}.

123

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Given a graph ⟨N, E⟩, we call N ′ the set of the internal nodes of g; N ′ = {n′
internal of n ∣ n ∈ N}.

Running example - Part 5.1. In this example we analyse the availability of an IT
system providing two IT services (Service1 and Service2), and implemented
by means of three applications (App1, App2 and App3) running on five differ-
ent servers (Srv1, Srv2, Srv3, Srv4, Srv5). Service1 is implemented by
App1 and App2 in such a way that the service goes off-line only when both ap-
plications are off-line (OR dependency). Service2 is implemented by App3,
and App3 depends on App2 to work properly. App1 is a distributed application
running on Srv1, Srv2 and Srv3 in such a way that it can operate only if both
Srv1 and either Srv2 or Srv3 are on-line. App2 runs on Srv3, and App3
runs in both Srv4 and Srv5 with a load-balancing mechanism, such that it can
continue to operate even if one of them is off-line. Finally, the system is protected
by the firewall FW1. According to this description, we build the AND /OR depen-
dency graph g = ⟨N,E⟩ as follows:
AND-N = {Service1, Service2, FW1 App1, App2, App3, Srv1, Srv2,
Srv3, Srv4, Srv5}, OR-N = { OR1, OR2, OR3 }, and E = { ⟨Srv1, App1⟩,
⟨Srv2, OR2⟩, ⟨Srv3, OR2⟩, ⟨Srv3, App2⟩, ⟨Srv4, OR3⟩, ⟨Srv5, OR3⟩, ⟨OR2,
App1⟩, ⟨OR3, App3⟩, ⟨App1, OR1⟩, ⟨App2, OR1⟩, ⟨App2, App3⟩, ⟨App3,
Service2⟩, ⟨FW1, Service1⟩, ⟨FW1, Service2⟩, ⟨OR1, Service1⟩ }.
To model the OR dependencies correctly we added three virtual nodes to act as
logical gates: OR1, OR2 and OR3. These nodes do not correspond to any existing
component of the system, and therefore they cannot fail by themselves. Similarly,
also the two nodes representing services (Service1 and Service2) corre-
spond to system functionalities which cannot fail by themselves. Figure 5.3 shows
the AND /OR dependency graph of our running example.

In classic reliability theory, the internal state of a node is described by a ran-
dom variable which assumes value 1, corresponding to the functioning state, and
0, corresponding to the failed state. Accordingly, the state of a system made of
multiple components is described by a vector of random variables, each describing
the state of one component. It is also possible to describe the state of a (sub)system
with values 0 or 1 as a function of the states of the (sub)system components.

We represent these concepts by means of the state function χ. Given a node
m, χ(m′, t) is 0 iff m at time t suffers an internal failure, and is 1 otherwise.
Similarly, χ(m, t) = 0 indicates that the node m is unavailable at time t. As
explained above, the state function of a node m is a function of the state of its
internal node and the state functions of the nodes it depends on. This is formalised
in the next definition.

Definition 5.2 (State Function). Let g = ⟨N,E⟩ be an AND /OR dependency

124

5.3. Analysis of the minimal service availability

!"#$%&"'

()' *+'

!"#$%&",

-..,-..' -../

(),

!#$' !#$, !#$/ !#$0 !#$1

()/

!"#$%!&"'"()"*()(!+,-./00 !"#$%!&"'"()"*()(!+,-./012

34-567%

89:-567%

;(5&"'"()"*()(!+,-./000

;(5&"'"()"*()(!+,-./00 ;(5&"'"()"*()(!+,-./00 ;(5&"'"()"*()(!+,-./002

Figure 5.3: The AND /OR dependency graph representing the system we analyse
in our running example. AND nodes are represented by the ∧ symbol, OR nodes
by the ∨ symbol.

graph. We say that χ is a state function for g iff χ ∶ (N ∪N ′) ×R+ → {0,1}, and
for each m ∈ N and t ∈ R+ the following holds: let n1, . . . , nk be the nodes in N
m depends on. Then

χ(m, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

χ(m′, t) ⋅ χ(n1, t) ⋅ . . . ⋅ χ(nk, t), if m is an AND node

χ(m′, t) ⋅max(χ(n1, t), . . . , χ(nk, t)), if m is an OR node
(5.1)

Using this function, we can represent the part of a time interval [t0, t1] in
which a given node is available as the infinite set {t ∈ [t0, t1] ∣ χ(m′, t) = 1}.

So, given the state function of all the internal nodes in an AND /OR depen-
dency graph, one can iteratively compute the state function of all the nodes in the
graph (here the fact that the graph is acyclic guarantees that the above function
is well defined). It should also be noted that χ(m, t) is a random variable, as a
function of random variables.

According to the dependability theory [13], the interval availability of a node
m is the fraction of a given interval of time that m operates within tolerances.
Supposing the given interval of time is [t0, t1], the formula of interval availability
is given by:

Ā(m, t0, t1) =
1

t1 − t0 ∫
t1

t0
χ(m, t)dt (5.2)

125

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

The limiting interval availability, or steady-state availability, is the expected
fraction of time in the long run that the system operates within tolerances
(limt→∞ Ā(m, t0, t)).

The formulas for availability we just described, however, are too general to
perform numerical calculations. χ(m, t), being a random variable, will be gov-
erned by a distribution function. Therefore, in reliability theory, it is common
practice to assume a stationary alternating renewal process, i.e. a system with
independent, exponential distributions of failure and repair times. Under this as-
sumption, the formula for the limiting interval availability is given by µ

λ+µ , where
λ is the failure rate and µ is the repair rate. λ and µ can be estimated for a real sys-
tem based on the MTBF and MTTR, and this allows one to compute the limiting
interval availability for a real system (under the given assumptions).

In SLAs, the agreed minimal availability is always indicated as fraction of up-
time in a given time frame (e.g. 0.98 uptime per month). Notice that the presence
of the time frame is crucial: for instance, guaranteeing 0.99 uptime per month is
more difficult than guaranteeing 0.99 uptime per year. In the first case the system
may not be off-line for more than 7.2 hours in a row, while in the second case the
system may be off-line for up to 87.6 hours in a row. Equation, (5.2) can be seen
as a formalisation of the availability parameter used in SLAs.

The availability of a component is also given under the assumption that any
other component it depends on is always available. For example, for server man-
agement, the SLA ensures a given availability level, provided that the data centre
the server is deployed in and the network the server is connected to are operating
within tolerances.

Now, the technical question we are going to address in the rest of this section,
the answer of which will form the basis of our approach, is the following.

Let us fix a reference time interval [t0, t1] and suppose that we know a lower
bound for the availability of the internal nodes of the nodes in a graph, i.e. for
each n′ ∈ N ′, we know an αn′ such that the state function χ satisfies the following
equation:

(av(n′) =) 1

t1 − t0 ∫
t1

t0
χ(n′, t)dt ≥ αn′ (5.3)

where av(n’) is the fraction of the time interval [t0, t1] in which n′ was operating
within tolerance. Given an arbitrary node m ∈ N , what can we say about av(m)
in the same time period? In particular, can we compute a lower bound for it?

Since in SLAs the components availability is given, in the context of this chap-
ter we do not need to make assumptions on the distribution of component faults
and repairs. This allows us not to define the distribution function that governs the
internal state of components.

126

5.3. Analysis of the minimal service availability

Dependency Sets

To answer the question above, we have to introduce the concept of dependency
set. The dependency set of a nodem is the set of the smallest sets of internal nodes
in the AND /OR dependency graph which, if all unavailable at the same time, will
cause the failure of m. The elements of a dependency set have the same property
as the minimal cut sets of a FT, and can be obtained similarly by representing
the graph as a boolean equation and the using substitution methods to reduce the
equation. We will now present a more formal definition of dependency sets.

Definition 5.3. Consider an AND /OR dependency graph g = ⟨N,E⟩ and a node
m ∈ N . The dependency set of m, DEPSm ⊆ ℘(N’), is defined inductively as
follows.

• If m is a leaf node, then DEPSm = {{m′}}.

• Ifm has children n1 .. nk; let DEPSn1 , . . . ,DEPSnk be the dependency set of
n1, . . . , nk and assume (without losing generality) that for every i, DEPSni =
{Di,1, . . . ,Di,li}, then:

– if m ∈ AND-N then
DEPSm = {{m′}} ∪⋃i∈[1 .. k] DEPSni;

– if m ∈ OR-N then
DEPSm = {{m′}} ∪ {D1,j1 ∪ ⋅ ⋅ ⋅ ∪Dk,jk ∣Di,ji ∈ DEPSni}.

Running example - Part 5.2. By applying the recursive Definition 5.3 to our
example AND /OR dependency graph, we obtain the following dependency sets
for Service1 and Service2: DEPSService1 = {{FW1’}, {App1’, App2’},
{App1, Srv3’}, {Srv1’, App2’}, {Srv1’, Srv3’}, {App2’, Srv2’, Srv3’},
{Srv2’,Srv3’}. DEPSService2 = {{FW1’}, {App2’}, {App3’}, {Srv3’}, {Srv4’,
Srv5’}}. For the sake of presentation we did not include in the dependency sets
the internal nodes that cannot fail by themselves (i.e. Service1′, Service2′,
OR1′, OR2′ and OR3′). It is easy to see that when the nodes of any of the elements
of DEPSService1 are unavailable at the same time, Service1 is unavailable,
and the same for DEPSService2.

The dependency set of a node is always a set of sets of internal nodes, so
without loss of generality, we can always write DEPSm = {D1, . . . ,Dk}.

As for minimal cut sets in FTs, a relevant property of DEPSm is that, if the
internal m′ of m is available at a given time t, then m is not available only if there
exists DEPSm such that at least all the internals of the nodes contained in one
element D of DEPSm are all unavailable. More formally, if we fix a time t then

χ(m, t) = 0⇔ ∃D ∈ DEPSm,∀d ∈D,χ(d, t) = 0 (5.4)

127

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

For the sake of presentation we skip the (straightforward) demonstration of this
property.

As an example let us consider the two toy cases described in Figure 5.2. In
case (a), DEPSm = {{m′},{n′1},{n′2}}; so if χ(m, t) = 0 and χ(m′, t) = 1, then
either χ(n′1, t) = 0 or χ(n′2, t) = 0. In case (b), DEPSm = {{m′},{n′1, n′2}}; so if
χ(m, t) = 0 and χ(m′, t) = 1, then both χ(n′1, t) = 0 and χ(n′2, t) = 0.

The following theorem states that if we know a lower bound for the availability
of the internal nodes of an AND /OR dependency graph then we can effectively
compute an optimal lower bound of the availability of each node m ∈ N in the
graph. In the theorem we will also explain the meaning of an optimal availability
lower bound.

Theorem 5.1. Let g = ⟨N,E⟩ be an AND /OR dependency graph, [t0, t1] be a
time interval, and for each n′ ∈ N ′ let αn′ be a real value αn′ ∈ [0,1]. Then, for
each m ∈ N we can compute αm, such that for each state function χ for g the
following holds:

IF ∀n′ ∈ N ′ 1

t1 − t0 ∫
t1

t0
χ(n′, t)dt ≥ αn′ (5.5)

THEN
1

t1 − t0 ∫
t1

t0
χ(m, t)dt ≥ αm (5.6)

αm is optimal if we can find a χ for g such that (5.5) holds and in (5.6) equality
holds.

We provide the proof for this theorem in Section 5.8. As a result of the proof,
we obtain a method to calculate the lower bound αm of the availability of any node
m in the graph. The method consists in solving the following linear programming
problem.

αm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 1 − u1 − ⋅ ⋅ ⋅ − uk
subject to
u1 = (1 − a1,1) = ⋅ ⋅ ⋅ = (1 − a1,l1)
⋮
uk = (1 − ak,1) = ⋅ ⋅ ⋅ = (1 − ak,lk)
∀n ∈ N,∑di,j∈Dn 1 − ai,j ≥ 1 − αn′
a1,1, . . . a1,l1 , . . . , ak,1, . . . , ak,lk ≥ 0

(5.7)

Intuitively, the availability of m is minimal when m is sequentially disrupted
by the simultaneous failure of all the internal nodes of each element of DEPSm.
Without loss in generality, we can write DEPSm = {D1, . . . ,Dk}, and for each Di

128

5.3. Analysis of the minimal service availability

we can write Di = {di,i, . . . , di,li}. According to this notation, ui in (5.7) represent
the unavailability caused to m by Di and ai,j represent the availability of the ele-
ment di,j ∈ Di. Given two elements D1,D2 ∈ DEPSm, these two elements might
not be pairwise disjoint (i.e. D1 ∩D2 ≠ ∅) because some elements in D1 and D2

refer to the same node. In (5.7) we call Dn the set of elements di,j which all refer
to the same node n. The objective function of (5.7) represents the availability of
node m, which is expressed as 1 less the unavailability caused by each element
in DEPSn. The first k conditions impose that the internal nodes of each element
Di ∈ DEPSn are unavailable at the same time: this ensures m is disrupted because
of the simultaneous failure of all the internal nodes in Di. The subsequent condi-
tion imposes for each node n ∈ N that the availability of its internal node n′ is not
less than αn′: in this way we ensure that, even if an internal node n′ is contained
in more than one element of DEPSn, the unavailability caused by its failure will
not exceed its upper bound (1−αn′). The last condition ensures no negative value
can be used to represent availability. A solution to (5.7) can be found by using the
simplex algorithm.

From now on, we call αm determined from (5.7) the minimal aggregated avail-
ably level of m.

Running example - Part 5.3. According to the dependency sets we previously de-
termined and to (5.7), the linear programming problem which determines αService1
is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimize 1 − u1 − u2 − u3 − u4 − u5 − u6 − u7 subject to
u1 = (1 − aFW1,1)
u2 = (1 − aApp1,2) = (1 − aApp2,2)
u3 = (1 − aApp1,3) = (1 − aSrv3,3)
u4 = (1 − aSrv1,4) = (1 − aApp2,4)
u5 = (1 − aSrv1,5) = (1 − aSrv3,5)
u6 = (1 − aApp2,6) = (1 − aSrv2,6) = (1 − aSrv3,6)
u7 = (1 − aSrv2,7) = (1 − aSrv3,7)
1 − aFW1,1 ≥ 1 − αFW1′ = 0.001

(1 − aApp1,2) + (1 − aApp1,3) ≥ 1 − αApp1′ = 0.01

(1 − aApp2,2) + (1 − aApp2,4) + (1 − aApp2,6) ≥ 1 − αApp2′ = 0.005

(1 − aSrv1,4) + (1 − aSrv1,5) ≥ 1 − αSrv1′ = 0.001

(1 − aSrv2,6) + (1 − aSrv2,7) ≥ 1 − αSrv2′ = 0.001

(1 − aSrv3,3) + (1 − aSrv3,5) + (1 − aSrv3,6) + (1 − aSrv3,7) ≥ 1 − αSrv3′ = 0.01

aFW1,1, aApp1,2, aApp1,3, aApp2,2, aApp2,4, aApp2,6, aSrv1,4,

aSrv1,5, aSrv2,6, aSrv2,7, aSrv3,3, aSrv3,5, aSrv3,6, aSrv3,7 ≥ 0

Which gives a lower bound for the availability of Service1 of 0.984. Similarly,
we can determine αService2 = 0.972. Figure 5.4 shows one possible scheduling

129

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

for the failure of the components on which Service1 depends on, resulting in
Service1 having an availability of αService1 (0.984).

!"#$

!"#%

!"#&

'(($

'((%

)*$

+ +,++- +,+$ +,+$-
!"#$#%&#'%&%() *+,-./$%0.1

Figure 5.4: One possible scheduling for the failure of FW1, App1, App2, Srv1,
Srv2 and Srv3 resulting in Service1 having an availability of 0.984. System
components are on the vertical axis and the components unavailability fraction of
time (∈ [0,1]) is on the horizontal axis.

5.4 Optimisation of outsourced services

In the last section we have seen that determining the minimal availability level
of a complex system is a non-trivial problem, that can be solved by reducing it to
an optimisation problem. A relevant application of this result is the minimisation
of the costs of outsourced subcomponents. Given that outsourcing has a cost that
may depend (also) on the minimal availability guaranteed for the outsourced com-
ponent, a manager typically needs to minimise the costs of the outsourcing while
guaranteeing that the services provided by the system meet the target availability.

The situation is the reverse from the one in the previous section: instead of
calculating the service minimal availability given the minimal availability of the
various system components, one wishes to calculate what is the least expensive
combination of components given the target minimal availability of the services.
Thus, availability level optimisation consists in determining the assignment of an
availability level to the components of the system for which it is possible to choose
among different availability levels, so that:

130

5.4. Optimisation of outsourced services

1. a minimal aggregated availability level is ensured for the services provided
by the system;

2. the cost of the assignment is minimal.

To this end we distinguish among three types of nodes in an AND /OR de-
pendency graph: target availability nodes, variable availability nodes and given
availability nodes. More formally, given an AND /OR dependency graph ⟨N,E⟩,
N = NT ∪NV ∪NG, where NT , NV and NG are the pairwise disjoint sets of target,
variable and given availability nodes.

Target availability nodes are the nodes modelling the services provided by the
system. The target expresses the minimal availability level which the system is or
should be able to guarantee regarding a given functionality (service). Typically,
we define a target availability level on the service nodes of the AND /OR depen-
dency graph, whenever there is an SLA (be it company internal or not) which
imposes a certain level of availability for them.

Definition 5.4 (Target availability level). Given an AND /OR dependency graph
⟨N,E⟩, and NT ⊂ N the set of target availability nodes, the target availability
level of a node is a mapping target-availability ∶ NT → [0,1].

Running example - Part 5.4. Our example system provides two main function-
alities, described in the AND /OR dependency graph by the Service1 and
Service2 nodes. The functionality described by Service1 is more mission-
critical than the one described by Service2, and an SLA set on the system
ensures a minimal availability level of 0.99 for Service1 and of 0.983 for
Service2. Accordingly, target-availability(Service1) = 0.99 and
target-availability(Service2) = 0.983.

Variable availability nodes model the situation in which it is possible to choose
the availability level of a component among different options. A typical case of
variable availability level is when the management of system components is out-
sourced to another department or to another company: in these cases, the system
manager may have the possibility to choose for each component a different av-
ailability level (e.g. gold, silver and bronze), with different quality level and a
different associated price.

We model the domain of a variable availability level by means of a set of
availability options.

Definition 5.5 (Availability option). Let ⟨N,E⟩ be an AND /OR dependency
graph, NV be a set of variable availability nodes and N ′

V be the set of the in-
ternals of the elements in NV .

131

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

• An availability assignment for NV is a function aa ∶ N ′
V → [0,1].

• An availability option for NV is a pair ⟨aa, c⟩, where aa is an availability
assignment and c ∶∈ R is the cost associated to it. We call O the set of all
the availability options.

Usually, a company might choose between different outsourcing options. No-
tice that the outsourcing option is given on a set of nodes, and not on a single
node. This allows us to model bulk discounts, i.e. the fact that outsourcing – say
– ten components is usually less expensive than ten times the outsourcing of a
single components. (For those who are familiar with optimisation problems: this
introduces a form of non-monotonicity in the outsourcing offers, where outsourc-
ing more services could be potentially less expensive than outsourcing a smaller
number of services. This non-monotonic aspect of the problem makes it more
difficult to find the optimal solution.)

Table 5.1: An example of availability level options price catalogue

Availability level Minimal quantity Windows price UNIX price

0.99 1 server 1000 Euro 900 Euro

0.99 6 servers 900 Euro 800 Euro

0.995 1 server 1300 Euro 1200 Euro

0.995 11 servers 1200 Euro 1100 Euro

0.998 1 server 1500 Euro 1400 Euro

0.998 6 servers 1400 Euro 1300 Euro

Running example - Part 5.5. An outsourcing company has provided an offer for
managing the servers in our example system. The offer includes different availa-
bility level options for the management of Windows servers and UNIX servers.
Table 5.1 summarises the price catalogue for this offer. In our example Srv1,
Srv2 and Srv3 are Windows servers with variable availability and both Srv4
and Srv5 are UNIX servers with variable availability. The set of variable availa-
bility nodes is NV = {Srv1,Srv2,Srv3,Srv4,Srv5}. According to the price
catalogue, there are number of availability levels at the power of
number of variable availability nodes (35 = 243) possible com-
binations for the minimal availability level of the elements in N ′

V , i.e. ∣O∣ = 243.
One of these combinations is ⟨aa1,4800⟩ where aa1(Srv1′) = aa1(Srv2′) =
aa1(Srv3′) = aa1(Srv4′) = aa1(Srv5′) = 0.99, and c = 3 ⋅ 1000+ 2 ⋅ 900 = 4800.

To guarantee that the condition 1) of our problem is met, we extend the defini-
tion of minimal aggregated availability to be applied also to nodes with a variable

132

5.4. Optimisation of outsourced services

availability. According to this, given a node t ∈ NT with target availability, we
call minimal-availability(t, o) the minimal aggregated availability of t when for
all nodes n with variable availability αn′ is determined by o.

Finally, a node with given availability model components for which the mini-
mal availability is known and not variable.

Definition 5.6 (Given availability level). Given an AND /OR dependency graph
⟨N,E⟩, and NG ⊂ N the set of target availability nodes, the given availability
level of a node is a mapping given-availability ∶ NT → [0,1].

Running example - Part 5.6. In our example the components whose minimal av-
ailability is given are FW1, App1, App2 and App3. Therefore, according to Fig-
ure 5.3 we have that given-availability(FW1) = 0.999, given-availability(App1) =
0.99, given-availability(App2) = 0.99 and given-availability(App3) = 0.993.

We now can give a more formal definition of the problem at hand. Let ⟨N,E⟩
be an AND /OR dependency graph,N = NT ∪̇NV ∪̇NG, a function target-availabiliy
on N ′

T , a function given-availability on N ′
G, a set O of availability options for NV

and a function minimal-availability for NT ×O. Find the option o ∈ O with mini-
mal cost such that ∀t ∈ NT , minimal-availability(t, o) ≥ target-availability(t).

As a result, we obtain the optimal assignment of variable availability levels as
the solution to the linear programming problem with variables in a finite domain
given by (5.8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

choose o = ⟨aa, c⟩ ∈ O to
minimize c
subject to:
mimimum-availability(t1, o) ≥ target-availability(t1)
⋮
minimal-availability(tP , o) ≥ target-availability(tP)

(5.8)

Running example - Part 5.7. Recall that the nodes with variable availability
are Srv1, Srv2, Srv3, Srv4 and Srv5. The set of availability options O is
made of 243 elements. We want to ensure that the lower bound of the monthly
availability is 0.99 for Service1 and 0.983 for Service2. Consequently, the
optimisation problem is as follows:

133

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

choose o = ⟨aa, c⟩ ∈ O to
minimize c
subject to:
minimal-availability(Service1, o) ≥ 0.99

miniaml-availability(Service2, o) ≥ 0.983

Which gives us a (optimal) solution with cost 6300 Euro when αSrv1’ = 0.998,
αSrv2 = 0.99, αSrv3 = 0.998, αSrv4 = 0.99 and αSrv5 = 0.998.

5.5 Implementation and benchmarks

Implementation We have implemented a prototype of A2THOS to run our lab
experiments and to support case-studies. The prototype is written in Java and
prolog in about 10,000 lines of code. We chose to use the ECLiPSe [95] prolog
platform since it provides a flexible yet powerful set of constraint solvers which
we need to deal with the linear programming problems of A2THOS. The available
solvers include fd, a solver for finite domain integer problems, ic a solver for hy-
brid integer/real-interval problems and eplex, an interface to an (external) simplex
solver library.

Figure 5.5: A2THOS architecture

Figure 5.5 shows the software architecture of our prototype. It consists of four
interacting components: the GUI front-end, the driver, the analysis and the optimi-
sation engines. The GUI front-end manages the interaction with the final user. It is
implemented as a standalone Java application and it allows the user to quickly cre-
ate the AND /OR dependency graph by dragging and dropping nodes and edges,

134

5.5. Implementation and benchmarks

to annotate each node with its availability figure(s) or availability level options
and to view the analysis and optimisation results. The analysis engine solves the
availability analysis problem, described in Section 5.3. It is implemented in pro-
log by using the eplex (simplex algorithm) solver of the ECLiPSe platform. The
optimisation engine solves the availability optimisation problem, which we de-
scribe in Section 5.4. It is also implemented in prolog by using the fd solver of
the ECLiPSe platform. Finally, the driver is written in Java and manages the in-
teraction of the Java components with the prolog ones. It uses the JavaECLiPSe
interface to build a prolog optimisation problem from the AND /OR dependency
graph and the other availability-related information inserted by the user. It then
translates the results given by the engines in a format that can be presented to the
user by the Java GUI front-end.

Benchmarks To be of practical use, our prototype needs to deliver a solution
to the linear programming problems in a reasonable time. Unfortunately, the
simplex algorithm has a worst-case exponential complexity [72], and solving by
brute-force linear programming problems with variables in a finite domain has an
exponential complexity in the number of variables and their domain size. This
means that the implementation does not scale, and therefore we have to bench-
mark whether it can tackle the size of a real-world IT system. In the sequel we
show that it does so, nevertheless we want to stress that our implementation is just
a proof of concept and its speed can with no doubt be improved: our goal is to
demonstrate how this can be done, and not that of providing a fast implementation.

We benchmarked the performance of our prototype by running it on inputs
with growing size. We run our test on a machine with an Intel Pentium 4 CPU
running at 3.6 GHz and with 2 GB RAM.

First, we benchmarked the availability analysis. Here, the complexity of the
simplex algorithm is determined by the number of variables and constraints of
the linear programming problem it solves. Therefore, we generate inputs for the
analysis engine by increasing the number of nodes and by adjusting the node types
and edges to obtain a growing number of constraints (and associated variables)
for the linear programming problem of (5.7). We set the maximum number of
nodes for our tests to 250 and the maximum number of constraints to 600. In
our experience these numbers correspond to a fairly large IT system. To increase
randomness we also repeat several times (five) the test for a certain number of
nodes and constraints, and we then calculate the average computation time. The
results are shown in Table 5.2. Our tests indicate that given a fixed number of
constraints, the computational time is basically linear in the number of nodes, and
that our prototype is able to handle an AND /OR dependency graph of 250 nodes
and 600 constraints on average in less than a minute.

135

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Table 5.2: Performance of the simplex algorithm for availability analysis

Nodes Constraints Time (s)
15 10 0.00001
15 20 0.002
60 10 0.001
60 20 0.005
60 60 0.02
120 10 0.004
120 20 0.01
120 100 0.09
120 150 0.22
120 250 0.8
120 300 1.3
120 600 20.2
250 10 0.009
250 20 0.011
250 100 0.22
250 150 0.5
250 250 1.6
250 300 2.6
250 600 41.1

Secondly, we benchmarked the optimisation algorithm. Our prototype imple-
mentation works by exhaustive searching the space of all available options and
choosing the best one. The algorithm is thus optimal (it finds the best solution,
every time), but its complexity is exponential in the number of variables (which
in this case corresponds to the number of nodes with variable availability). Again,
the fact that the algorithm is exponential means that we cannot expect it to scale
up indefinitely, and it is therefore important to assess via benchmarks how big of
a problem it is able to tackle.

We carried out these benchmarks as follows: we create a simple program
which takes as input the desired number of nodes with availability level options,
the average number and the average size of the dependency sets and generates a
random AND /OR dependency graph with random availability level options which
match the given parameters. We set three possible availability levels for nodes
with variable availability, since that is the most common configuration in out-
sourcing scenarios (gold, silver and bronze). We then solve the problem with our
optimisation engine and note the execution time. We use an increasing number of
nodes with variable availability (up to 50) and we specify different average num-

136

5.5. Implementation and benchmarks

ber and average sizes of the dependency sets. We repeat several times (five) the
test for each configuration in order to increase randomness.

Table 5.3: Performance of the availability optimisation algorithm with 50 variable
availability nodes

Independent nodes Time (s)
10 ≤ 0.01
15 0.01
20 197.20
25 5418.50
30 ≥ 21600.00

Our results indicates that the computational time is mostly influenced by the
number of independent nodes. By independent node here we mean a node that
appears in only one element of a dependency set. We report in Table 5.3 the
results of our tests with 50 nodes. As the number of independent nodes increases,
the computational time increases as well. We are able to solve a problem with 50
nodes among which 25 independent in one hour and a half. However trend is –
as expected – exponential, and with 30 independent nodes we exceed six hours of
computation. This is due to the fact that the solver has to explore all the possible
combinations of values for the variables associated to independent nodes, while
the domain of the other variables is limited by the problem constraints.

Our benchmark indicates that the crucial factor influencing the computation
time is the number of independent nodes (outsourced components) which con-
tribute independently to the system availability (AND dependency), and that the
algorithm as it is now is always able to handle situations with up to 25 such nodes.
In practice, this number is sufficient to model a single medium/large IT system, as
we will show in the next section. It is worth noting that one can break a huge IT
system into independent subsystems and apply the algorithm to them one by one.
In this light, 25 outsourced components represent a limit which is basically never
exceeded (in our industrial test case, which was carried out at a multinational
company, we had a maximum of 6 independent nodes).

In the unlikely case that one would need to apply the algorithm to a too large
system (e.g. exceeding the 40 AND-independent), one could still refer to the opti-
misation problem we have reported in Section 5.4, but then use a non-exhaustive
algorithm to find a solution to it. Non-exhaustive algorithms (e.g. those based
on local search [31]) have the disadvantage that they do not guarantee finding
the optimal solution (they usually find a local optimum, which is not guaranteed

137

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

to be a global optimum as well), but could probably easily scale to hundreds of
independent nodes.

5.6 Methodology - practical use of A2THOS

In this section we present a case-study we carried out on the IT infrastructure
of a large multinational company. With this case-study we want to address three
important questions regarding A2THOS:

1. can A2THOS be applied to a practical case, i.e. does it not require informa-
tion not available in practice?

2. does the prototype we implemented scale up to conditions of practice?

3. does A2THOS yield information useful for its intended users?

Let us now present the context in which we carried out the case-study. The
multinational company (from now on we call it the Company) has a global pres-
ence in over 50 countries and counts between 100.000 and 200.000 employees.
Our case-study was conducted at the site of IT facilities for the Company’s Euro-
pean branch.

The Company IT department supports the business of hundreds of other de-
partments by offering thousands of applications accessed by approximately one
hundred thousands employee workstations and by many hundreds of business
partners. IT services are planned, designed, developed and managed by the IT
infrastructure department located at the Company’s headquarters. These services
(e.g. e-mail or ERP systems) are part of the IT infrastructure which is used by all
the different Company’s branches all over Europe.

For efficiency reasons, like in most other large organisations, business units
exchange services by means of an “enterprise internal market”. One business
unit pays another one for the use of a given service and the service provider unit
finances its activities by means of these funds. Within this “internal market”,
the quality of the provided services is regulated by means of SLAs. Among the
other Quality of Service (QoS) parameters, SLAs include the minimal ensured
availability of the offered services.

IT services are designed internally by the IT department and then partly out-
sourced for implementation and management to another company. We call this
company the Outsourcer. The Outsourcer is a market-leading international IT ser-
vices provider. The outsourced tasks include application and server management,
help-desk and problem solving. Although the servers running the IT services are

138

5.6. Methodology - practical use of A2THOS

owned by the Company and physically kept within its data centres, the Outsourcer
manages the OS and the software running on them. The Outsourcer has signed
contracts with the Company which include SLAs regarding both the security of
the information managed by the outsourcing company and the availability of the
outsourced services.

The Company and the Outsourcer have established a standard contract regu-
lating the application and server management service provisioning. The standard
contract is made of several building blocks, e.g. UNIX server management, Win-
dows server management or Oracle database management. Every time the IT
department of the Company needs to deploy a new IT service, a new request is
issued to the Outsourcer to provide the building blocks needed by the service. The
QoS parameters of each building block are also standardised. Regarding availabi-
lity, for each building block the Company can choose among different guaranteed
minimal availability levels. The price for the provisioning of each building block
with specific QoS parameters is part of the price catalogue of the Outsourcer.

One of the problems the IT infrastructure managers of the Company have to
deal with is how to determine the minimal availability level of new IT services.
In fact, this availability level is meant to be used to set up the Company internal
SLAs between the service provider (the IT department) and the service users (the
other departments of the Company). It is important that the IT infrastructure man-
ager is as precise as possible in determining the minimal availability level to be
agreed with the internal users. In fact, a too low value could prevent the agree-
ment to be reached, as the service users may not be willing to pay for a service
which does not fit their needs in terms of availability. On the other hand, a too
high value may impact the budget of the IT department, as for each time that the
SLA is not respected the department has to pay a penalty. Ultimately, if the SLAs
are violated too many times the service users may decide to terminate the service
delivery contract before the IT department has compensated the initial service es-
tablishment costs. The reverse problem faced by the IT infrastructure manager
is: if the service user has a specific requirement for the availability of the service,
which QoS levels should be agreed with the Outsourcer for the outsourced build-
ing blocks such that the resulting internal service availability level meets the user
requirements?

As we said, traditional approaches to the availability analysis are not quite
applicable to this context. In fact, traditional availability analysis of complex sys-
tems require the analyst to know for each system component the Mean Time To
Failure (MTTF) and Mean Time To Recovery (MTBR) parameters. The personnel
of the IT department can measure (or estimate) these parameters for the portion of
the IT system which is under its direct control. However, it cannot do this for the
parts (a large majority) that are managed by the Outsourcer. The only information

139

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

the IT manager can rely on for outsourced components is the guaranteed mini-
mal availability level agreed with the Outsourcer. Therefore, the IT infrastructure
manager currently estimates the service availability levels based on simple heuris-
tics (e.g. if he need 0.99 availability for the service, he will choose at least 0.99
availability for each building block).

In our case-study we addressed this problem using the A2THOS framework.
We structured the case-study in two sub-cases. In the first sub-case we carried
out the availability analysis of an IT system which is already in place for some
years. In the second sub-case we carried out both the availability analysis and the
optimisation for a new IT system which is about to be deployed. Our results have
been used by the IT manager both to set the internal SLAs for the new service and
to choose the proper availability level of the building blocks of the system.

In the first sub-case, the IT system we analysed is the authorisation and authen-
tication system of the Company, called Oxygen. To carry out the availability anal-
ysis we first needed to represent Oxygen as an AND /OR dependency graph. We
extracted the information from the network diagram, the functional specification
document, and the security architecture and design document. The procedure we
followed is described in Chapter 3. We used our tool to represent the AND /OR de-
pendency graph of the system and to annotate nodes with their minimal availabi-
lity level. The resulting graph consists of 65 nodes and 112 edges. Among the
nodes are 13 IT services, 32 applications, 14 servers equally distributed between
2 datacenters and connected simultaneously to 2 different network segments by
means of 2 different firewalls.

The second step of this sub-case is to determine the minimal monthly availa-
bility for the nodes in the graph. We extracted this information from the SLA
documentation attached to the standard contract signed between the Company
and the Outsourcer. Finally, we extracted the current minimal monthly availa-
bility of the IT services supported by Oxygen from the Company internal SLAs
documentation.

We used the analysis engine of our tool to carry out the availability analysis:
the whole algorithm completed in less than one minute for Oxygen.

Table 5.4 reports the results of our analysis. We report in the first column
the (anonymised) service, in the second column the minimal monthly availability
level of each service calculated with our tool and the existing minimal monthly
availability level reported in the internal SLAs in the third column. Compared
to the estimates made by the Company IT manager, we observe that the internal
SLA specifies for Service1, Service4, Service5 and Service10 a minimal availa-
bility level which could not be guaranteed even in the case when the Outsourcer
respects all its SLAs with the Company. This is a possible risk for the IT manager
for the reasons we discussed above. On the other hand, we also see that the min-

140

5.6. Methodology - practical use of A2THOS

Table 5.4: Results of the availability analysis on Oxygen

Service Calculated α Existing α
Service1 0.96 0.99
Service2 0.98 0.98
Service3 0.98 0.98
Service4 0.96 0.98
Service5 0.97 0.99
Service6 0.99 0.98
Service7 0.99 0.98
Service8 0.99 0.98
Service9 0.99 0.98
Service10 0.96 0.98
Service11 0.99 0.98
Service12 0.99 0.98
Service13 0.99 0.98

imal monthly availability level we calculated for Service6, Service7, Service8,
Service10, Service11, Service12 and Service13 is higher than the one specified in
SLAs. This is also a criticality for the IT manager, as he is spending more money
than needed to guarantee the availability level of the outsourced Oxygen building
blocks.

The system we analysed in the second sub-case is called Hydrogen and pro-
vides similar functionalities as Oxygen, but for the Company external contractors.
Hydrogen has been designed after Oxygen and is now in the final development
phase. In this phase, the internal SLAs with the Hydrogen service users are al-
ready set, and the Company IT manager has to issue a request to the Outsourcer
for the building blocks to deploy Hydrogen. He also has to specify in the request
the desired availability level for each building block. Therefore, in this second
phase of our case-study we use the availability level optimisation of the A2THOS
framework.

The first step of this sub-case is the same as in the previous case: building
the AND /OR dependency graph. To carry out this step we follow the same pro-
cedure we adopted for Oxygen (and described in more detail in Appendix B).
The resulting graph is made of 26 nodes and 33 edges. Secondly, we annotated
the nodes with given availability. These nodes represent the datacenters and the
network segments. We acquired this information from the IT department person-
nel, which keeps track of the monthly availability performances of their main IT
infrastructure components. We set the given availability as the lowest monthly

141

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

availability value observed in the monitoring data. Finally, we extracted the av-
ailability options for the eight variable availability nodes (servers). We obtained
the required information from the building block description documents and the
price catalogue provided by the Outsourcer to the Company. According to these
documents, the Outsourcer offers three availability levels for the six Unix servers
(0.995, 0.998 and 0.999) and two levels for the two Windows ones (0.995, 0.998).
The resulting number of availability options is 733.

We used our tool to obtain the optimal configuration of availability levels for
the servers of Hydrogen: the whole algorithm completed in less than one minute
for Hydrogen. If the Company IT managers adopted the same strategy chosen for
Oxygen (i.e. to choose the lowest availability level for all the outsourced compo-
nents), they would have spent as little as possible, but two services of Hydrogen
would have had a minimal availability lower than the one set in the internal SLAs.
The optimal combination computed with our tool ensures that the minimal availa-
bility is compliant with the SLAs for all the services, with a cost which is only 2%
greater. We also considered the effect of adding a further availability level (0.990)
to the price catalogue of the outsourced components, extrapolating the cost from
the existing ones. The resulting optimal allocation in this case would be ∼30%
lower. The IT managers will take their decisions based on these results. In more
detail, they will choose the optimal allocation we computed for Hydrogen, and
will negotiate with the Outsourcer the introduction of a new availability level of
0.990 for servers.

Let us now address the questions we listed at the beginning of this section.

Can the method be applied to a practical case? The fact that we were able to
successfully carry out the case-study presented above supports a positive answer
to this question. However, it only shows that we can use the method. Our appli-
cation has not revealed obstacles to usage by other people, but further evidence
would be needed to substantiate this claim positively. It is also interesting to dis-
cuss which other contexts A2THOS can be applied to. The information required
to use A2THOS can be summarised in (1) the components of the IT system un-
der analysis and their functional dependencies, (2) the minimal availability level
of each system component and (3) the different availability levels which can be
chosen for outsourced components and the associated cost. To use A2THOS in
other contexts, these three pieces of information must be available. We learnt
from this case-study that most of the information regarding (1) can be extracted
from the system functional and design documentation. The lacking parts can be
easily integrated by interviewing the technical personnel which designed or im-
plemented the system. Information regarding (2) is normally present in the SLA
documentation for outsourced components. For components which are managed

142

5.6. Methodology - practical use of A2THOS

internally, this information can be extracted by measuring the component’s perfor-
mance over time (as it was done by the Company in this case.) It is also possible to
calculate availability levels analytically, by using standard reliability techniques,
as we mentioned in Section 5.2. Information regarding (3) is only available if the
IT service provider allows its customers to choose among different availability op-
tions. Although some IT service providers do not provide this feature, we learnt
during our case-study that the Outsourcer is applying this strategy to all of its cus-
tomers. Therefore there are indications that say that A2THOS is also applicable
(at least) to these customers.

Does the prototype we implemented scale up to conditions of practice? In
this case-study we applied A2THOS to two distributed systems which are used by
a large multinational company. The size of these systems is comparable to the
size of the other systems the Company is using. The first scalability issue regards
the time needed to build an AND /OR dependency graph for these systems. As
we already argued above, the information required is available, but building an
accurate AND /OR dependency graph for an IT manager can be time consuming.
As the size of the system grows, the difficulty of choosing an (close to) optimal
combination of availability levels for outsourced components grows more rapidly
than the difficulty of building the graph. This suggests that it may be worth using
A2THOS for large systems, whose optimum component availability level combi-
nation is hard to find. Secondly, the case-study confirms that our prototype can
tackle large IT systems. We motivate this statement by the following two ob-
servations. First, the IT manager(s) of the Company make decisions about the
availability of outsourced system components for each new system introduced in
the IT infrastructure. In other words, the unit for the decision of the IT manager
is limited to one system at a time. This is not surprising, if we consider that an
organisation’s IT infrastructure is incrementally built following the needs of the
organisations: every time a new system is added to the infrastructure, only the
availability issues of that system are taken into account. Secondly, the size (in
terms of number of components) of the IT systems we analysed in our case-study
is comparable to the size of the other systems in the Company’s IT infrastruc-
ture. We expect to find the same system size in other (large) organisations as well.
According to this two observations, we can argue that the performances of our
prototype are sufficient in many practical situations, even with an IT system up to
three times larger than the ones we considered.

Does A2THOS yield information useful for its intended users? The feedback
we had from the IT management of the Company suggests a positive answer to this
question. In particular, they found the information useful for: (1) taking informed

143

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

decision about the planning of the availability of their IT services, (2) improve the
quality of the IT services provided to the business units of the Company and (3)
justify to the upper management the outsourcing costs in a more precise way. This
provides support for our claim of potential usefulness of A2THOS for its intended
contexts of application.

5.7 Concluding remarks

In this chapter we address availability planning from the angle of SLM. To
this end, we present A2THOS, a framework for the analysis and optimisation of
the availability of mixed-sourced IT services. The framework consists of (1) a
modelling technique to represent partially-outsourced IT systems, their compo-
nents and the services they provide, based on AND /OR dependency graphs, (2) a
procedure to calculate (a lower bound of) the system availability given the (lower
bounds of) components availability, and (3) a procedure to select the optimum
availability level for outsourced components in order to guarantee a desired target
availability level for the service(s) and to minimise costs. The engine we have
used is a proof-of-concept, and its speed can certainly be improved. This is how-
ever outside the scope of this work.

We have analysed the SLAs of a few organisations and we concluded that
in case of outsourcing, these SLAs were sub-optimal: the final availability levels
were achievable with less expensive means (in some cases, even better availability
levels were achievable at a lower cost). This is not surprising as the optimisation
of the SLAs is a non-trivial problem which in practice is “solved” by educated
guess by the chief IT officer. We have shown in this chapter that this problem can
also be tackled effectively using our modelling framework. Our benchmarks show
that – even though the underlying problem is exponential – A2THOS can tackle
IT systems which are three times larger than the ones we could find at a multina-
tional company. Given that the optimisation of the SLAs can save (immediately)
company money while leaving the global service level unchanged, we believe that
out framework could be profitably applied in practice.

144

5.8. Proof of Theorem 5.1

5.8 Proof of Theorem 5.1

Proof. Assuming without loss in generality that DEPSm = {D1, . . . ,Dk} andDi =
{di,1, . . . , di,li} we see that:

χ(m, t) = ∏
i∈[1 .. k]

(maxj∈[1 .. li]χ(di,j, t)) (5.9)

and calling χ(Di, t) = maxj∈[1 .. li]χ(di,j, t) we obtain

av(m) = 1

t1 − t0 ∫
t1

t0
χ(m, t)dt (5.10)

= 1

t1 − t0
∏

i∈[1 .. k]
χ(Di, t)dt (5.11)

Let τ(a) = {t ∈ [t0, t1] ∣ χ(a, t) = 1} be the subset of the interval [t0, t1] in
which a functions correctly, since χ ∶ N × [t0, t1]×{0,1} and χ is measurable (for
instance, in our context we can assume that, once we fix a node a, the graph of
χ(a, t) switches from 0 to 1 a finite number of times) we have that

∫
t1

t0
χ(a, t) ⋅ χ(b, t)dt = ∫

τ(a)
χ(b, t)dt = ∫

τ(a) ∩ τ(b)
1dt

Based on this, (5.10) becomes

av(m) = 1

t1 − t0 ∫τ(D1) ∩ ... ∩ τ(Dk)
1dt (5.12)

By set theory, if τ is a set and A,B ⊆ τ , we have that A ∩B = Aτ ∪Bτ τ

, where
A
τ

is the complement of A w.r.t. τ . Then, let τ = [t0, t1], we have that

av(m) = 1

t1 − t0 ∫τ(D1)τ ∪ ... ∪ τ(Dk)
τ τ 1dt (5.13)

Recall that, if X ⊆ τ and both are measurable,

∫
X
τ fdt = ∫

τ
fdt − ∫

X
fdt

thus:

av(m) = 1

t1 − t0
[∫

τ
1dt − ∫

τ(D1)τ ∪ ... ∪ τ(Dk)
τ 1dt] (5.14)

145

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Recall that if A and B are measurable and f with positive values, we have that
∫A∪B fdt ≤ ∫A fdt + ∫B fdt, where the equality holds if A and B have empty
intersection. Therefore we have that

av(m) ≥ 1 − 1

t1 − t0
[∫

τ(D1)τ
1dt + ⋅ ⋅ ⋅ + ∫

τ(Dk)
τ 1dt] (5.15)

Where the inequality becomes an equality if the Dis are pairwise disjoint.
Intuitively,

∫
τ(Di)τ

1dt

is the unavailability caused by the nodes in Di in the time interval τ = [t0, t1]. In
fact, let Di = {di,1, . . . , di,li}, we have that

∫
τ(Di)τ

1dt = ∫
τ(di,1) ∪ ... ∪ τ(di,li)

τ 1dt (5.16)

By set theory, if A,B ⊆ τ we have that A ∪Bτ = Aτ ∩Bτ
; then

∫
τ(Di)τ

1dt = ∫
τ(di,1)τ ∩ ... ∩ τ(di,li)

τ 1dt (5.17)

Recall that, if A and B are measurable,

∫
A ∩ B

1dt ≤ min(∫
A

1dt,∫
B

1dt)

thus:

∫
τ(Di)τ

1dt ≤ minj∈[1 .. li] ((t1 − t0) − ∫
τ(di,j)

1dt) (5.18)

We can substitute in (5.18) the inequality with an equality as we are interested in
the upper bound of the unavailability caused by the elements in Di. Substituting
(5.18) into (5.15) we obtain:

av(m) ≥ 1

− mini∈[1 .. l1] (1 − 1
t1−t0 ∫τ(d1,i) 1dt)

− . . .

− mini∈[1 .. lk] (1 − 1
t1−t0 ∫τ(dk,i) 1dt)

(5.19)

Let us now distinguish two cases: (a) Dis are pairwise disjoint, i.e. ∀i, j Di ∩
Dj = ∅, and (b) they are not pairwise disjoint. In (a) the inequality sign in (5.15)
becomes an equality sign. Therefore (5.15) becomes

146

5.8. Proof of Theorem 5.1

av(m) = 1 − 1

t1 − t0
[∫

τ(D1)τ
1dt + ⋅ ⋅ ⋅ + ∫

τ(Dk)
τ 1dt] (5.20)

and we can use (5.19) to determine av(m). Since all Dis are pairwise disjoint, if
di,j = n′, then 1

t1−t0 ∫τ(di,j) dt =
1

t1−t0 ∫
t1
t0
χ(n′, t)dt. Therefore, if we set ∀n′ ∈ N ′

av(n′) = αn′ , we determine αm from (5.19) by substituting 1
t1−t0 ∫τ(di,j) dt with

αn′ when appropriate.
In fact, in this case the various Dis are independent from each other and to

calculate the minimal availability (given the constraints on the availability of the
internal nodes) we can restrict the search to those schedulings in which the various
Dis are unavailable in non-overlapping time frames and all the elements of any
Di are unavailable at exactly the same time. For example, consider the case of
Figure 5.2-b. DEPSm = {{m′},{n′1, n′2}} and, according to (5.19), αm = 1 − (1 −
αm) − min((1 − αn1), (1 − αn2)). The availability of m reaches αm when (1) m′

is unavailable for 1−αm′ but not at the same time of n1 and n2, and (2) n1 and n2

are unavailable at the same time for min((1 − αn1), (1 − αn2)). This also shows
that it exists a state function for which, when avn′ == αn′ , then av(m) = αm.

In the general case (b), the elements Di of DEPSm are not pairwise disjoint,
i.e. ∃i, j ∣ Di ∩Dj ≠ ∅. By using (5.19) in this case we would obtain a value of
αm which is not minimal. To determine the availability lower bound αm we then
set-up a linear programming problem. For the sake of presentation, we call ai,j
the (unknown) quantity

1

t1 − t0 ∫τdi,j
1dt

and ui the (unknown) quantity

1 − 1

t1 − t0 ∫τ(di,1)τ ∩ ... ∩ τ(di,li)
τ 1dt

By substituting ai,j and ui in (5.15) where possible, we obtain the objective
function we need to minimise to find the lower bound we aim at. The first k
constraints are derived from (5.17) and ensure that the nodes belonging to a certain
Di can be unavailable all at the same time for ui.
Given the definition of dependency set, if we call D(n′) = {di,j ∣ di,j = n′}), then
we know that

av(n′) = 1
t1−t0 ∫

t1
t0
χ(n′, t)dt

= 1 −∑di,j∈D(n′) 1 − 1
t1−t0 ∫τ(di,j) 1dt

(5.21)

147

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

From (5.21) we derive a set of constraints which ensure that the lower bound
of the availability caused by each internal node n′ in all the elements of DEPSm
is the known value αn′ .

As a result we get the following linear programming problem:

αm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 1 − u1 − ⋅ ⋅ ⋅ − uk
subject to
u1 = (1 − a1,1) = ⋅ ⋅ ⋅ = (1 − a1,l1)
⋮
uk = (1 − ak,1) = ⋅ ⋅ ⋅ = (1 − ak,lk)
∀n ∈ N,∑di,j∈Dn 1 − ai,j ≥ 1 − αn′
a1,1, . . . a1,l1 , . . . , ak,1, . . . , ak,lk ≥ 0

(5.22)

A solution to this problem can be found by using the simplex algorithm. Such
a solution indicates both the lower bound for the availability ofm, i.e. the minimal
value of (5.15) With this we then proved our theorem.

5.9 Representation capabilities

In order to apply our approach to the real-world one could wonder if the tech-
nique we adopt to represent the complex system (AND /OR dependency graphs)
is expressive enough. A very popular and widely used approach to represent com-
plex systems for reliability and availability analysis is using RBDs. In this section
we show that our representation is at least as expressive as an RBD.

An RBD is a graphic representation of the complex system where every com-
ponent is represented by a block (rectangle) and it is connected to other compo-
nents, in series or parallel form. A serial connection between two blocks (see Fig-
ure 5.6a) means that the system (composed by the two blocks) is operational when
both blocks are operational. A parallel connection (see Figure 5.6b) between two
blocks means that the system is operational when at least one of the two blocks
is operational. The whole system is then modelled as a combination of series and
parallel blocks. A group of interconnected components can be represented as a
single macro-component. In turn, macro-components can be connected to other
components (e.g. see Figure 5.8) and grouped again. Hence, to prove that our rep-
resentation is as expressive as an RBD, we need to show how each one of the three
main operations on RBDs can be equally expressed as an AND /OR dependency
graph.

If we consider the serial system of Figure 5.6a, made of only two components,
the corresponding AND /OR dependency graph is given in Figure 5.7a. To rep-
resent the system we use an AND node X , which depends on nodes A and B.

148

5.9. Representation capabilities

(a) Series (b) Par-
allel

Figure 5.6: RBD

(a) Series (b) Parallel

Figure 5.7: AND /OR dependency graph

Similarly, the parallel system of Figure 5.6b is equivalent to the AND /OR depen-
dency graph in Figure 5.7b there the OR node X depends on nodes A and B.

Figure 5.8: RBD parallel composition

Regarding the composition operation, in Figure 5.8 we show the parallel com-
position of two components, where each of them is a serial composition two sub-
components, in parallel with two other sub-components. Figure 5.9 shows the
same system represented as an AND /OR dependency graph. We model as an
AND node X1 the serial composition of sub-components A and B, and as an
OR node X2 the parallel composition of sub-components C and D. Finally, we
add an OR node X which represents the parallel composition of the two above
mentioned components. It is easy to see that we can model any combination
of grouping and series/parallel compositions in the RBD, with a combination of
AND and OR nodes.

149

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Figure 5.9: AND /OR dependency graph parallel composition

150

Chapter 6
Concluding Remarks

We now summarise the contribution of this thesis, in relation to the research
aim and the related research questions discussed in Chapter 1. We also highlight
future research directions in the area of availability planning.

6.1 Summary and conclusions

In the introductory chapter we formulate the following research aim:

“Design and validate techniques that improve the accuracy and effectiveness of
availability planning, while guaranteeing feasibility within budget.”

We assume in Chapter 1 (confirmed by our findings in Sections 3.4, 4.3 and
5.6) that organisations are willing to improve their control over the availability
of their IT infrastructure to support business needs and reduce costs. To opti-
mise the IT availability level with regard to costs (large size) organisations adopt
a combination of risk, business continuity and service level management. We call
availability planning the set of analysis activities in risk, business continuity and
service level management by which organisations set the requirements and take
decisions regarding the availability of the IT systems supporting their business.
There are several standard methods that draw the guidelines for carrying out risk,
business continuity and service level management. To be as generally applica-
ble as possible, these standards do not include implementation details. Therefore,
each organisation needs to find the specific set of techniques that put into practice
standard guidelines and suit their needs. However, techniques supporting availabi-
lity planning are often too resource-consuming or they are error prone, relying on
people’s ability to cope with the increasing complexity of IT systems. Based on

151

Chapter 6. Concluding Remarks

these observations we then formulate in Chapter 1 three research questions which
address the research aim from the angle of risk management, business continuity
and service level management.

Below we list the research questions and the results of our explorations. The
first research question is:

“How can we improve the accuracy of current techniques for assessment and
mitigation of availability-related IT risks, while guaranteeing feasibility within
budget?”

In Chapter 2 we focus on the selection of a cost optimal mitigation strategy
for availability-related IT risks. We start with the observation that risk manage-
ment methodologies do not take into consideration the propagation of availability
incidents in the IT infrastructure when evaluating the strategies to cope with them.
This can result in the selection of unbalanced mitigation strategies that overprotect
some IT components considered important and leave under-protected other (only
apparently more marginal) components whose unavailability may still cause by
propagation a major damage to the organisation. To cope with this problem we
introduce the TD model and framework to carry out an accurate risk mitigation by
using the data collected during a quantitative risk assessment. We use this frame-
work in a case study making use of data of a primary insurance company provided
by KPMG. We run an optimisation study of the cost/benefit ratio of countermea-
sures, taking into account incident propagation and thus increasing the accuracy
of the selection process. Our case study provides evidence that the framework
based on the TD model can support decision makers in a more accurate selec-
tion of countermeasures with respect to current practice, without requiring them
knowledge about the underlying timed model checker involved. However, the
case study with KPMG also brings to light some limitations: (1) the model needs
reliable quantitative information: it can only be used in organisations that carry
out quantitative risk assessments, (2) how to obtain such information is not cov-
ered in depth, although in Section 2.5 we give some first indications, (3) we are
able to support only some of the possible risk mitigation strategies (i.e. the risk
reduction ones): risk avoidance, sharing and retention practices are not covered,
(4) our approach does not automatically deal with risk mitigation strategies that
are required by regulations: for them a manual pre-processing is still needed.

In Chapter 3 we introduce the QualTD model and framework which is meant
to be used to systematically assess availability-related IT risks in combination with
existing risk assessment methods. We use the framework based on the QualTD
model in a case study to test both its accuracy and feasibility. The results of
the case study and the review of existing risk management methodologies provide
evidence that the QualTD model constitutes an improvement towards the accuracy

152

6.1. Summary and conclusions

of risk assessment techniques adopted at the company we ran the case study at.
We registered more accurate results (∼20%) and a reduction by one fourth of the
number of choices left to the risk assessor (see Section 3.4.3). Our observations
indicate that similar advantages can be obtained for organisations adopting a risk
assessment approach similar to the one used by the company in the case study.
In more detail, based on the literature study on existing risk assessment methods,
we see that our framework adapts naturally to the methods that address risks as a
combination of threat, vulnerability and impact (see Section 3.5.1). On the other
hand, we also observe that our approach is not compatible with methods based
on security goals and requirements (e.g. EBIOS). Regarding feasibility, the case
study showed a small time overhead connected to the creation of the QualTD
model with respect to the company approach (see Section 3.4.3). However, we
expect that an organisation may be willing to accept that overhead in case the
increased accuracy is its desired goal. Finally, we note that our approach does
not address the following aspects of risk assessments. (1) Risk ownership (i.e. the
process of determining who is responsible for managing the identified risks) is not
addressed in depth, although it is a major success factor for the effectiveness of
risk assessments. (2) We do not discuss specific techniques to identify threats and
vulnerabilities. However, this topic is addressed in detail by other techniques (e.g.
HazOP [22] and its extension for security, Security HazOP [79]).

The second research question is:

“How can we improve the accuracy of current techniques for creating and main-
taining business continuity plans, while guaranteeing feasibility within budget?”

In Chapter 4 we focus on the analysis phase that precedes and follows the
creation of the IT-related part of a BCP. We observe that RTOs are an important
tool to ensure that a BCP meets the business continuity requirements of the or-
ganisation. We also observe that RTOs are manually set on the components of
the IT infrastructure. This is error prone and time consuming, to the point that
some IT components can receive RTOs that do not satisfy business requirements,
or not receive an RTO at all. A BCP which is based on such wrong premises can
be ineffective. To cope with this problem we introduce the TDR model and tool
and we test it in a case study run with the data of an insurance company provided
by KPMG. We use the TDR model to determine the maximum recovery time for
each component of the IT infrastructure and to assess that RTOs satisfy business
requirements and are consistent with each other. The results of the case study
provide evidence that the TDR model is able to identify critical points in which
manually set RTOs were not compliant with business requirements or within each
other, thus allowing a more accurate analysis of the business requirements. The

153

Chapter 6. Concluding Remarks

model can also be used to set RTOs in first instance, by using the calculated max-
imum recovery time as a starting value. However, due to the limited scope of the
case study we could not determine to what extent the resulting BCP was influ-
enced by these critical points. We believe this could be important to set with more
precision to what extent the TD model is useful for supporting business continuity
planning. We note that using the TDR model was feasible in our case study, and
that the information needed to build it can be assumed to be available for organi-
sations that follow the BS25999 business continuity standard and use supporting
tools similar to the one used by KPMG. However, the analysis phase of business
continuity management is not limited to RTOs. The main activities also involve
Recovery Point Objectives (RPOs), threat analysis and impact scenarios. RPOs
are used to set the acceptable latency of data that will be recovered for the infor-
mation assets needed to run critical business functions. Differently from RTOs
that are applied to IT components, RPOs are applied to information assets. The
TDR model does not support the assessment of RPOs, which requires additional
information about the lifecycle of data and on the business processes that use it.
However, it could be useful in the analysis of electronic backup strategies, for ex-
ample to check the consequences of IT faults on the availability of the backups.
The threat analysis has the purpose of identifying the threats that may compromise
business continuity. As for the threat identification in risk assessments, the TDR
model does not cover this topic. The model could in principle be used to support
the analysis of impact scenarios, to determine which IT systems are affected (also
by propagation) when a given threat materialises, similarly to what we do with the
TD and QualTD model. However, this feature was not tested and to support this
claim we would need at least one new specific case study.

The third research question is:

“How can we improve the accuracy of current techniques for managing availability-
related SLAs, while guaranteeing feasibility within budget?”

In Chapter 5 we focus on the analysis and optimisation of IT service availabi-
lity. We note that more and more frequently large organisations tend to delegate
(part of) the management of their IT service components to external outsourcing
companies. IT managers need to choose among different outsourcing companies
and different offers the one that suits their needs and their budget, and sign SLAs
with the outsourcing company to regulate (among others) the availability of the
outsourced service components. At the same time, IT managers need to sign simi-
lar SLAs with the other business units of the organisation, to guarantee the quality
of the IT services provided by the organisation’s IT department. To achieve the
best trade-off between outsourcing costs and the desired final service availabi-
lity, IT manager then need to optimise the choice of outsourcing companies and

154

6.1. Summary and conclusions

offers. Traditional reliability techniques cannot be used for this purpose as they
require information that is usually not reported in SLAs (i.e. MTBF and MTTR).
Therefore, IT managers are forced to take decisions based on their own experience
and on concepts like trusted partners and business relationships: this can lead to
a non-optimal allocation of resources and could cause frequent violations of the
internal SLAs. To cope with this problem we introduce A2THOS, a framework
for the analysis and optimisation of the availability of mixed-sourced IT services.
We provide a mathematical foundation of the algorithms A2THOS is based on.
We then test A2THOS in a case study carried out on two IT mixed-sourced IT
services of a large multinational company. A first result of the case study suggests
that A2THOS provides a more accurate evaluation of the minimal service availabi-
lity compared with the manual estimate made by IT managers, particularly when
the availability estimated by IT managers was lower than what guaranteed by
A2THOS. This seems to be confirmed, in the context of the case study, by the em-
pirical data on the past availability of some of the Oxygen services, which is much
better than the one guaranteed in the SLAs. A second indication of the case study
is that A2THOS was used to find the optimal combination of outsourcing offers
based on the resulting service availability. In this case we were able to achieve the
same service availability at a ∼30% lower price. However, the selection of out-
sourcing offers is often based on different other parameters: availability and price
are only two of them. Other parameters could be measurable, such as incident
response time, average service response latency or more difficult to quantify, such
as the reputation of the outsourcing company or the location where services are
being held. Therefore, we realise that the selection process cannot be delegated
solely to the result of an optimisation problem. The coverage of all possible se-
lection parameters is out of the scope of this chapter. For this reason, we see a
potential for the applicability of A2THOS only in the context of a wider frame-
work for supporting the selection of outsourcing offers, in which A2THOS is used
as a specific component for availability of mixed-sourced services.

The main conclusions we can draw from our findings are:

1. many organisations that use IT to support their business can optimise the
availability of their IT infrastructure with positive effects on their business
capabilities (see Sections 3.4, 4.3 and 5.6);

2. it is possible to develop techniques that support IT availability planning
while guaranteeing feasibility within budget from the angle of risk, business
continuity and service level management (see Sections 2.5, 3.4, 4.5, 5.5 and
5.6);

3. the structure of an IT architecture can be used for practical availability plan-
ning (see Sections 2.3, 3.3 and 5.2).

155

Chapter 6. Concluding Remarks

Regarding the feasibility within budget mentioned in the second point, based
on the results of our case studies we cannot guarantee that the techniques we
propose in this thesis are within the budget (i.e. feasible in terms of time and
resources) of any organisation. To guarantee this, we would need to estimate
the “budget” of all organisations. However, the case studies we conducted give
evidence that the cost of adopting our techniques is in the same order of magnitude
as the cost of the ones currently adopted by medium-large organisations. The same
thing could not be said for other solutions, e.g. very detailed model checking.

The third point is derived by observing that the techniques that we present in
this work are all based on a common representation of the architecture of (part
of) the IT infrastructure. This representation is captured by the timed depen-
dency graphs, and their extended versions timed AND /OR dependency graphs
and AND /OR dependency graphs, that we use to (a) list the relevant components
of the IT infrastructure and the business processes it supports and (b) capture the
functional dependencies among components to model the propagation of incidents
caused by component’s failure. We believe that using the same underlying view
of the IT infrastructure for risk, business continuity and service level management
contributes to create a common view about the availability issues of the IT in-
frastructure among the different IT managers involved. In turn, this can lead to a
better alignment of the efforts towards availability planning.

An interesting point that we encountered during our research regards the dif-
ferent views on the two main paradigms for risk management: the qualitative and
quantitative one. Based on our experience we can conclude that the most suit-
able approach to adopt depends on the context. A fine-grained quantitative risk
assessment can provide loss estimates that can be used to carry out optimisation
studies. However, it will never be more accurate than the input numbers it is based
on: when collecting accurate numbers is hard this may not be the right approach
to take. On the other hand, a well-motivated qualitative risk assessment can pro-
vide useful information without requiring numbers, but its results are not readily
spendable in optimisation processes. Based on our experience we observe that
organisations in which other risks (e.g. financial risks) are successfully assessed
following the quantitative paradigm choose to address IT risks following the same
paradigm. This is often the case for banks and insurance companies. The reason
for this is twofold: first, the managers of these organisations are used to address
risks in that way, and therefore they tend to push the IT department to stick to the
standards they like. Secondly, in these kinds of organisations there are in places
processes and metrics specifically tailored for quantitative risk assessments (think
for example of an insurance company, for which quantifying risks is part of the
primary business), which can be adapted or partly re-used for IT. The same can-
not be said for other kinds of organisations, in which reliable numerical values are

156

6.2. Future work

difficult to obtain as there are not enough clear data or metrics for this [39]. In this
case the qualitative paradigm is the preferred one.

Finally, we want to stress once again that the techniques we introduced in this
work are not an alternative to standard methodologies. Although they do not pro-
vide implementation details, standard methodologies do provide the guidelines to
successfully build into the organisation the processes of risk, business continu-
ity and service level management. Failure in properly setting up the processes
(including human factors and information communication) can compromise their
effectiveness as much as the lack of implementation details. Instead, we believe
our techniques can be successfully integrated with risk, business continuity and
service level management processes based on standard methodologies.

6.2 Future work

The results of this thesis open several possible future research directions.

Service degradation The TD and QualTD models can be extended to include
service degradation as part of the impact estimation process. For example, a DoS
attack could not succeed in shutting down completely an IT system, but it could
slow down its response time. Currently, this kind of impact can only be addressed
by considering the system operational if it can respond within a time and not oper-
ational otherwise. Including different operational levels can increase the accuracy
of risk evaluation when such an accuracy is required.

Dependency types The dependency graphs used by our techniques can be ex-
tended to support a wider range of dependency types. Currently, the TD and TDR
models only support AND dependencies, while the QualTD and A2THOS both
support AND/OR dependencies. There are however other dependency types; for
example the dependency “n out of m components are available” can be used to
model the case where if a node x depends on m nodes, it is considered available
if at least n of the m nodes are available. In this thesis we followed the engineer-
ing principle of starting with the simpler and most common cases. Therefore, we
did not include these dependency types as in our case studies we never found a
configuration requiring them. However, there could be cases in which the sup-
porting more dependency types could be a success factor for the adoption of our
techniques.

Inclusion of more sophisticated optimisations The optimisation problems and
algorithms of Chapter 2 and Chapter 5 can be extended to support more sophisti-

157

Chapter 6. Concluding Remarks

cated micro-economic models. Burgess gives in [23] an overview of the economic
game theory techniques (e.g. promise theory and principal agent theory) that can
be used to support decisions about the economic aspects of IT management. We
believe that integrating our optimisation algorithms with these techniques is an
interesting research problem which could increase the value of our techniques by
giving IT managers extra support in taking decisions.

Integration with configuration management tools Configuration management
is a field of management that focuses on maintaining a system’s requirements, de-
sign and operational information consistent with its performance and functional
attributes throughout its life. IT managers maintain such information by using
configuration management tools (e.g. IBM Tivoli [100]). Configuration manage-
ment tools could be used to feed our models with up-to-date information about
the architecture of IT systems, their functional design details and their past av-
ailability performances. In this scenario, IT managers could carry out availability
planning semi-automatically by using our techniques integrated with configura-
tion management tools.

158

Appendix A
Dependency Graphs Analysis, FTA
and FMEA

Dependency graphs are used by all models presented in this thesis to repre-
sent the (portion of) IT infrastructure to be analysed and its behaviour in case
of unavailability of one of the components. Dependency modelling shares some
similarities with other popular techniques such as Fault Tree Analysis (FTA) and
Failure Mode and Effects Analysis (FMEA) both in the way the model is built and
in the kind of analysis one can carry out with them. Therefore, we find useful to
give a top level description of what dependency modelling is compared to these
other two techniques. Table A.1 summarises the main features of each technique.

In FTA [76], a fault tree is a Rooted Directed Acyclic Graph (RDAG). The
graph is built starting from the root, which represents a so-called top-event i.e. an
undesired event involving the system (system or sub-system failure). Each node
in the graph is a mixture of logical gates (AND/OR) and events. The graph is built
top-down using information about events causing system disruption by trying to
enumerate all the combinations of other events that could cause the top level event.

The FMEA [59] technique is a list based on the enumeration of all the possible
system (and system component’s) failure modes and on the analysis of the effects
of failures. Failure modes are ranked according to a qualitative estimate of their
effect severity. According to Allen Long [103], FMEA is a bottom-up technique
and it is particularly suitable for the analysis and ranking of single failures of
components (as opposed to fault trees and dependency graphs which can also be
used to study the effects of combined simultaneous failures). A key preparatory
step for carrying out FMEA is to draw an architecture diagram of the system under
analysis which describes how the system is made and how it works. The schema is
meant to be used both for the enumeration of failure modes and for the evaluation

159

Chapter A. Dependency Graphs Analysis, FTA and FMEA

Table A.1: Global picture of the differences between FTA, FMEA and Depen-
dency modelling.

Input Output Structure Nodes Edges
FTA Information

about the
disruption
events in the
system.

All the com-
binations
of events
that can lead
to the top
event.

Rooted
Directed
Acyclic
Graph

Events and
logical
gates.

Cause and
effect re-
lationship
between
events

FMEA System
architecture
diagram
(including
components
and con-
nections
between
compo-
nents).

Component
failures plus
the effect of
component
failures on
the system.

List System
components
failing in a
certain mode
(entries in
the list).

N/A

Depdendncy
modelling

Information
about the ar-
chitecture of
the system.

A model of
the system
that can
be used to
simulate the
effect of a
component
failure on
the system.

Directed
Acyclic
Graph.

System com-
ponents.

Cause and
effect re-
lationship
about com-
ponent’s
failure.

of the failures effects. Indeed, most of the information needed to prepare such a
schema can also be used to build a dependency graph.

A dependency graph is a Directed Acyclic Graph (DAG) based on information
about the system architecture. Differently from a fault tree, a dependency graph
has nodes representing system components (as opposed to events) and edges ex-
pressing a cause and effect relationship among components meaning that the fail-
ure of one component causes the failure of the other. As we mentioned in Chap-
ter 5, a single dependency graph can model a “forest” of fault trees, each having
the failure of one of the functionalities of the system under analysis as top event.
Dependency graphs refer to the architecture of IT systems to enumerate the com-
binations of components failures that may cause the unavailability of one of the
system’s functionalities.

160

Appendix B
Building Dependency Graphs

In Chapter 3 we describe how we build a dependency graph for the case-study
in which we tested the QualTD model. In this appendix we generalise the de-
scription by providing general guidelines that can be used for the models and
tools described in this thesis.

The guidelines are derived from the experience we earned over time during
the case-studies we did. We organise these guidelines in the form of a tutorial
consisting of five steps. The steps describe how to gather information and how
to use such information to model the graph. The tutorial is meant to answer the
following questions:

• Who are the stakeholders of this model and what do they want to know? In
other words, what information does my model needs to include?

• What is the system that I need to model, what does it do and what are its
boundaries?

• How do I get information about the system?

• How do I model the various system components?

• How can I discover and model dependencies among system components?

We will also provide a small example of the outcome of each step in an “Ex-
ample” paragraph, referring to the running example of Chapter 3.

Although the exposition may suggest the process of building dependency graphs
is linear, in practice one could easily reach a certain step only to discover that the
information gathered in a previous step is incomplete or even incorrect. Should
this happen, it is necessary to rewind the process to one of the previous steps, add
the missing or incomplete information, and carry on.

161

Chapter B. Building Dependency Graphs

Step 0: Terms and concepts

To avoid confusion using this tutorial one needs to understand the following
terms and concepts and name them explicitly for the case-study at hand (i.e. name
the analyst, the system or the stakeholders).

• Analysis The activity for which the dependency graph is required. This can
either be in the context of risk management, business continuity or service
level management.

• Analyst The person or persons in charge of carrying out the analysis. Should
be independent from the stakeholders.

• Analysis result The information gained after carrying out the analysis, i.e.
the output in the form of the TD model, the QualTD model, the TDR model
or A2THOS.

• Stakeholder The person or persons who will use the analysis results as part
of an availability planning activity.

• System The target of the analysis, a composition of hardware, software and
procedures that make a unit in an IT infrastructure.

• Sub-system In a logical decomposition of a system, a portion of the system:
it can be a mixture of hardware and software that serve for one specific
purpose on the system.

• System component A portion of the system or system block that is mod-
elled by the analyst as an atom (i.e. it is assumed not to be made of other
components).

• Dependency A functional relation between two components such that the
availability of one component influences the availability of the other.

• Business Process A (business-related) procedure supported by IT.

• Service A functionality provided by the system to its intended users.

• IT service A functionality provided by a system or a (set of) components to
other components.

• Application Software running on a server as an OS process.

• Server The combination of hardware and operating system making a com-
puter.

162

• Location A physical place where servers and network components are stored
(e.g. a data centre).

• Network component The logical segment of a computer network or a de-
vice in the computer network devised to control the network traffic (e.g.
switches, routers firewalls, etc.).

Step 1: Stakeholders and goals

Before the analyst starts building the dependency graph, the first step consists
of determining (1) what kind of analysis the dependency graph is needed for and
(2) what kind of results are expected by the stakeholders.

This is important to keep the analyst focused on the important modelling de-
cisions, i.e. on the information that (directly or indirectly) involve the analysis
results.

For example, suppose the system under analysis is managed by more than one
unit/department: only one of them is a stakeholder (i.e. only one unit department
is interested in the analysis results) and only the portion of the system managed by
the stakeholder is of interest in the analysis. In this case, the different sub-systems
can be modelled with a different granularity: the sub-systems managed by the
stakeholder in more detail, the others in less detail, thus focusing the analysis
efforts on the aspects relevant for the stakeholders.

In many cases there is more than one stakeholder: the analyst has to determine
which stakeholder is responsible for the different sub-systems to be able to both
acquire information from the right source and to report the relevant analysis results
to each stakeholder.

Example (part 1) At the end of Step 1 the analyst may have acquired the fol-
lowing information:

1. the dependency graph is needed for a risk assessment on the availability of
two IT systems;

2. the systems are developed, managed and maintained by one department of
the organisation which is also the requester of the risk assessment;

3. the systems are used to manage holiday reservations for employees and cus-
tomer relationship management;

4. the department only manages servers and applications running on servers
related to the two systems: other IT services such as network connectivity,

163

Chapter B. Building Dependency Graphs

server name resolution (DNS) and even standalone applications are man-
aged by another department and are not of interest for the current risk as-
sessment.

Step 2: Global picture

The second step consists in creating a global picture of how the system works.
This is very important to set up a “skeleton” of the dependency graph and to
determine what other information the analyst needs to acquire.

The global system picture consists of a map of the main sub-systems, together
with their function and the interactions among them. To this end, when consid-
ering one sub-system, the analyst should determine if the sub-system needs other
sub-systems or system components to function properly, and make sure they are
represented in the map.

The global picture can be obtained in two main ways: either by reading exist-
ing documentation (e.g. requirements and specification documents) or by means
of interviews with people who know how the system is (will be) made and how
it works. This can refer to more than one person. For example, one could learn
how the system is made by asking the developer who made it, or from a system
administrator who performs the maintenance, while the information about what
the system does can be better obtained by the people who designed the system or
by an experienced system user.

When time is not a problem, the best thing to do is combining the two ap-
proaches. By first reading the documentation the analyst will make a first concept
of the system, which can then be refined during the subsequent interview sessions.

In both cases (documentation or interview) it is helpful to draw a first, rough,
picture of the system architecture. For example, when extracting information from
the documentation, a picture will help explaining the function and the connection
among the different sub-systems. In case of interviews, the picture will help com-
municating information and make sure information is communicated with the least
ambiguity as possible.

Example (part 2) After Step 2 the analyst will have determined the main sub-
systems subject to analysis and drawn a rough picture of them (see Figure B.1).
The information acquired explains that the holiday reservation system is com-
posed of two sub-systems: a web application handling application logic and user
interaction and an Oracle database to store data. In turn, the CRM system consists
of two main sub-systems: a standalone GUI running on the employees worksta-

164

tions and an Oracle database with stored procedures to store and handle CRM
data.

Holiday reservation
application

(Web)

Holiday reservation

Database
(Oracle)

CRM
Database

(Oracle with replica)

CRM client application
(Standalone client on

employees
workstations)

Holiday reservation system

CRM

Figure B.1: Global picture of the system of the running example of Chapter 3.

Step 3: System boundaries

Setting system boundaries is important to limit the scope of the analysis to a
size that is both feasible for the analyst and meaningful for the stakeholders. This
activity mainly consists of deciding:

1. which functionalities provided by the system will be analysed;

2. which sub-systems will be included in the dependency graph;

3. the level of detail adopted in modelling each sub-system.

To do so, one has first to decide which system functionalities are of interest in
the current analysis. The analyst can derive this information from the results of
Step 1. For example, if a certain system functionality is not used by the any of
the stakeholders, it can be left out from the dependency graph both to reduce the
model complexity and to improve the readability of the graph for the stakeholders.

After enumerating the functionalities, the analyst has to determine which sub-
systems should be included in the model. This list will be used in next steps to
start building the dependency graph. The information needed to compile the list
of components can be extracted from the global system picture of Step 2. When
compiling the list, a useful trick is to mark each sub-system in the global picture

165

Chapter B. Building Dependency Graphs

as soon as it is added to the list. In this way, after the list is complete, there should
be no unchecked components, except for those that contribute to implement a
functionality that has been deliberately left-out from the analysis.

Finally, for each sub-system on the list, the analyst has to determine wether
it is in scope of the analysis (according to the results of Step 1). Some sub-
systems may be general IT services required for the system to function properly
(e.g. Internet connectivity, DNS servers, etc.). Sub-systems of this kind can be
modelled less precisely than the others, for example by representing them as a
single IT service node, regardless on how the service is implemented.

Example (part 3) After Step 3 is complete, the analyst can enumerate the fol-
lowing two services as in scope with the purposes of the analysis and the respon-
sibilities of the stakeholder:

1. Holiday reservation management service: this functionality includes the
complete management of holiday reservations.

2. CRM repository service: this functionality includes the storage and batch
processing of customer information, purchase orders and invoices.

According to the global picture derived from Step 2 and the analysis of stake-
holders and goals of Step 1, the following sub-systems are identified:

1. Holiday reservation application

2. Holiday reservation database

3. CRM database

Notice that the CRM client application has been left out from the list, as it
is not managed by the department requesting the analysis and it is therefore not
relevant for this risk assessment. The network connectivity sub-systems enabling
the systems to be accessed through the organisation’s LAN have been left out from
the picture for the same reason.

Step 4: Detailed system information

In this step, each sub-system is split into its basic components (e.g. applica-
tions, servers, network components, premises, IT services etc.).

After creating a list of the sub-systems the analyst has to acquire detailed in-
formation about every component of the sub-system. To do so, the analyst has

166

to find information describing how each sub-system is implemented and how it is
used.

In more detail, the analyst should determine the following information:

1. what applications are used to implement the sub-system, normally one sub-
system is made of a single application, but there might be cases in which
two or more interacting applications are used to build a single high-level
component;

2. by which server(s) run the identified applications, in case the component is
implemented by more than one server what is the purpose of the split (load
balancing, warm/cold/hot standby, etc.);

3. for each identified server, to which network is the server connected and
where is it physically located;

4. whether there is any other application running on the same server(s) for
different purposes;

5. how each component interacts with the others (e.g. which network proto-
col is used, which server/service pairs communicate, etc.): this is used to
determine the dependencies among components.

Sources of information for this can be:

• System documentation. Documentation includes functional specifications,
system design documents and network diagrams.

• Interviews. In case system documentation is not available, the same infor-
mation can be obtained by interviewing the personnel in charge of the sys-
tem design, development and maintenance.

• Architecture design tools. In case the system architecture is documented us-
ing an architecture design tool, it is possible to extract from it most of the in-
formation needed to build the dependency graph. Architecture design tools
are meant to support the design, analysis, visualisation and maintenance of
enterprise IT architectures. There exist a number of frameworks describing
formalisms for architecture design (e.g. TOGAF [113], Zachman [114] or
Archimate [84]). Each framework is supported by one or more tools that
implement the framework and help users in drawing IT architectures and
doing automatic analysis over them. In one of our case-studies we success-
fully built a dependency graph from an IT architecture described using the
ArchiMate framework. The architecture was designed with the Architect

167

Chapter B. Building Dependency Graphs

tool from BiZZdesign [87]. Architect supports a simple scripting language
to interact with an existing architecture project. We used the scripting lan-
guage to automatically export a dependency graph which could then be used
to run our models and tools.

• Infrastructure monitoring tools. In case the system is already deployed in
a production or even in a test environment, the analyst can use IT infras-
tructure monitoring tools such as Nagios [107] or Hyperic [99] (when avail-
able). These tools are typically made of several agents deployed on the hosts
of the IT infrastructure and a centralised repository collecting information
from agents. The analyst can consult the repository to learn (among others)
about the hosts deployed on the network, the services that are running on
them, their availability and the resource consumption (e.g. CPU, memory,
network bandwidth, etc.). This information can also help to ensure the com-
pleteness of information about the components that make up the system (as
it is probable that some components escape the attention during interview
sessions or not be mentioned in the documentation).

• Network traffic. A way of collecting information about the service depen-
dencies is to observe the network traffic exchanged by the identified hosts
for a sufficiently long time (e.g. one week). This helps determining with
more precision which services communicate with each other and how they
do that. As a consequence, dependencies among applications are more
clearly defined. Collecting network data and deriving dependency infor-
mation could also be automated, to speed up the process in case of large
systems, for example with tcpdump2csv, a tool that parses network traffic
captured through tcpdump and creates a CSV file which can then be used
to derive dependencies between servers/applications. A list of other tools
that can be used to discover dependencies from network traffic is available
in [91, 104].

Finally, it is also necessary to make sure no other sub-system (or component)
has been left out from the global picture. This can be done by cross-checking the
global picture with the information on design documentation and (when available)
with information coming from the deployed system (e.g. list of processes, traffic
exchanged from hosts etc.).

Example (part 4) After Step 4 the analyst discovers the following detailed in-
formation:

1. What applications are used to implement the sub-systems?

168

• The holiday reservation application sub-system is implemented by means
of a web application written in Java and running on a Tomcat servlet
engine.

• The holiday reservation database sub-system is implemented as a schema
in an Oracle DBMS.

• The CRM database is implemented as a schema and several stored
procedures in two replicated Oracle DBMS instances. The client GUI
application accesses the first instance by default, but if the instance
is unavailable it automatically tries to connect to the second one (hot
standby).

• The same Oracle instance is used for both the holiday reservation
database and the primary CRM database.

2. In which server(s) are the identified applications running?

• The web application for holiday reservation runs on Server 1.

• The first Oracle instance runs on Server 1.

• The second Oracle instance runs on Server 2.

3. To which networks is each server connected? This information is not rele-
vant as no network component is included in the dependency graph.

4. Are there other applications running on the servers? Reports from the sys-
tem administrators confirm no other application is running on Server 1 and
Server 2.

5. How does each component interact with the others?

• The web application for holiday reservation is accessed by users through
the HTTPS protocol.

• The web application for holiday reservation accesses the database through
the Oracle JDBC driver.

• The CRM GUI interacts with the Oracle database through the native
Oracle driver installed on the client workstations.

Step 5: Drawing nodes and edges

At this stage, the analyst has all the information to build the dependency graph.
Here we will use the notation of an AND /OR dependency graph, (see Chapter 5).

169

Chapter B. Building Dependency Graphs

In this notation, each node of the dependency graph can be either an AND node
(i.e. the node becomes unavailable when any of the nodes it depends on is un-
available) or an OR node (i.e. the node becomes unavailable when all the nodes
it depends on are unavailable). It is however straightforward to translate this no-
tation into the slightly different ones we adopted for timed dependency graphs in
Chapter 2 and Chapter 4 (with the difference that OR dependencies are not in-
cluded) and for timed AND /OR dependency graphs in Chapter 3, in which the
AND/OR behaviour of a dependency is annotated in the edge modelling the de-
pendency itself.

First, the analyst has to represent as graph nodes both the services identified
during Steps 1-3 and the components identified during Step 4. All nodes can be
initially modelled as AND nodes. As we described in Step 4, depending on the
results of Step 2, the sub-systems that are in the analysis scope may be modelled
more precisely than the ones that are outside its scope. For example, a typical
modelling approach for in-scope sub-systems is to represent each server (hardware
and operating system) and each application running on servers as separate node
in the graph, while for out-of-scope sub-systems one single node can be used,
disregarding its implementation details. It is useful to mark differently nodes
that represent different types of components (e.g. locations, network components,
servers, applications, services, processes, etc.), this can be done either by using a
naming convention (e.g. the name of an application always starts with “APP”), or
by using different colours.

Then, nodes have to be linked together according to their dependency rela-
tions discovered during Step 4. The analyst has to link node a with node b if b
depends on a in such a way that, if a is unavailable, b becomes unavailable in
turn. It is useful to start with the “trivial” dependencies, for example by link-
ing server nodes with the application nodes running on them, or linking location
nodes with the server nodes deployed in those locations. Next, the analyst can link
the application nodes with the service nodes describing the system functionalities.
Notice that one functionality could be granted by more than one application, and
there could be alternative applications providing the same functionality. In this
cases there is an OR dependency among the application nodes and the service
node. Since we created all AND nodes when modelling system components and
functionalities, we now need to add a logic OR node to which the service node
depends on. This OR node in turn depends on the applications implementing the
service, but it does not model any existing physical or logical system component.
Creating such OR nodes is useful since in this way one can create multiple groups
of different OR relations among components. This allows the analyst to model
dependencies such as a depends on (b ∨ c) ∧ (d ∨ e), or any other combination.
Finally, functional dependencies among application nodes can be modelled by

170

following the same procedure. To this end, it is important to make sure that any
dependency relation in the model represents the behaviour of the real system. A
mistake one can easily make is to link together two nodes because one has a sort
of functional dependency on the other, even if the failure of the former does not
cause the complete failure of the latter. This kind of situation has to be handled
in a different way, for example by linking the two nodes to the node that models
the functionality (service) expressed by the two. In this way, if any of the two
nodes fails, the functionality is unavailable and the semantic of the dependency is
preserved. For non-trivial dependencies, it might be useful to annotate the edge
modelling the dependency with a short description of the dependency type and a
reference to the source where the dependency information was taken. This im-
proves the readability of the the dependency graph for future analyses and helps
the analyst when presenting the analysis results.

After the dependency graph has been built, it is useful to validate it against the
documentation or the knowledge of the system designers/developers. To validate
against documentation the analyst has to check that the components described in
the documentation are all present as nodes in the dependency graph, and that all
the functional relationships described in the documentation and their semantics
are correctly captured in the graph. To validate against the knowledge of the
system designers/developers it is useful to organise a (preferably joint) interview
session in which the analyst describes the behaviour of the system starting from
the dependency graph: during the interview, the analyst should make sure that
nodes and dependencies are understood by the designer/developers and that they
confirm the behaviour of the system in case of component failure is correctly
modelled by the graph.

In theory, the analyst could describe a dependency graph by any representa-
tion technique that allows a computer program to use the representation and run
the analysis algorithms (e.g. a list representing nodes and an adjacency matrix to
represent edges). In practice, using tools that provide a graphic representation is
of great help both to ease the creation process for the analyst and to make the
representation understandable to stakeholders and interviewees.

We have developed for our case-studies a prototype GUI tool called Visual-
Sibyl [115] which allows the analyst to do all the basic operations to draw de-
pendency graphs (i.e. drag and drop nodes and edges, specify node types) and is
available for download. VisualSibyl is based on the Netbeans Visual Libraries for
graphically rendering the graph structure. It also implements the A2THOS algo-
rithms we described in Chapter 5. Figure B.2 shows the drawing of a dependency
graph using VisualSibyl.

An alternative choice to VisualSibyl consists of using Microsoft Visio: the

171

Chapter B. Building Dependency Graphs

Figure B.2: Using VisualSibyl to draw dependency graphs.

analysis algorithms can then be implemented through Visio macros written in the
Visual Basic Script language.

Example (part 5) The results of Step 5 are shown in figure B.3. According to
the results of Step 4 there are 7 identified nodes: two services (eHoliday and
CRM repository), three applications (Holiday reservation WebApp,
Oracle DB instance 1 and Oracle DB instance 2) and two servers
(Server 1 and Server 2). All nodes have been represented as AND nodes
and coloured according to their type.

The identified dependencies are 7 and are also derived from the detailed in-
formation of Step 4. Both Holiday reservation WebApp and Oracle
DB instance 1 depend on Server 1, while Oracle DB instance 2
depends on Server 2. The eHoliday service depends on both the Holiday
reservation WebApp and the Oracle DB instance 1 to work prop-
erly, as the failure of one of the two nodes would cause the stop of the holiday
management functionality. The CRM repository service depends on the two
Oracle database instances to run: in this case we have an OR dependency, as
both instances need to be unavailable for the service to be unavailable as well.

172

Therefore, to represent the OR dependency, we add an OR node on which the
CRM Repository service depends on. In turn, the OR node depends on both
Oracle DB instance 1 and Oracle DB instance 2.

Figure B.3: The dependency graph resulting from the running example of Chap-
ter 3.

173

BIBLIOGRAPHY

Author References

Journal Publications

[1] E. Zambon, S. Etalle, and R.J. Wieringa. A2THOS: Availability Analysis
and Optimisation in SLAs. International Journal of Network Management,
2010. Submitted for publication in April 2010.

[2] E. Zambon, S. Etalle, R.J. Wieringa, and P.H. Hartel. Model-based Quali-
tative Risk Assessment for Availability of IT Infrastructures. SOSYM: Soft-
ware and System Modelling, pages 1–28, 2010.

Refereed Conferences

[3] D. Bolzoni, E. Zambon, S. Etalle, and P.H. Hartel. Poseidon: a 2-tier
Anomaly-based Network Intrusion Detection System. In Proc: 4th IEEE
Int. Information Assurance Workshop (IWIA2006), pages 144–156, Lon-
don, UK, April 2006. IEEE Computer Society Press.

[4] A. Morali, E. Zambon, S. H. Houmb, K. Sallhammar, and S. Etalle. Ex-
tended eTVRA vs. Security Checklist: Experiences in a Value-Web. In
ICSE ’09: Proc. of the 31th IEEE International Conference on Software
Engineering, IEEE, pages 130–140. IEEE Computer Society Press, May
2009.

[5] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. A model support-
ing Business Continuity auditing & planning in Information Systems. In
Proc. of the First International Conference on Global Defense and Busi-
ness Continuity (ICIMP&BC ’07), IEEE, pages 33–42. IEEE Computer
Society Press, 2007. (Subsumed by Chapter 4 of this thesis).

International Workshops

[6] A. Morali, E. Zambon, S. Etalle, and P. Overbeek. IT Confidentiality Risk
Assessment for an Architecture-Based Approach. In BDIM ’08: Third
IEEE International Workshop on Business-Driven IT Management, IEEE,
pages 31–40. IEEE Computer Society Press, 2008.

[7] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. Model-Based Mitiga-
tion of Availability Risks. In BDIM ’07: Second IEEE/IFIP International

174

BIBLIOGRAPHY

Workshop on Business-Driven IT Management, pages 75–83, Munich, May
2007. IEEE Computer Society Press. (Subsumed by Chapter 2 of this the-
sis).

175

BIBLIOGRAPHY

General References

[8] J. Ø. Aagedal, F. den Braber, T. Dimitrakos, B. A. Gran, D. Raptis, and
K. Stëlen. Model-Based Risk Assessment to Improve Enterprise Security.
In EDOC ’02: Proc. 6th International Enterprise Distrubuted Object Com-
puting Conference, pages 51–63. IEEE Computer Society, 2002.

[9] D. Ardagna and B. Pernici. Global and Local QoS Guarantee in Web Ser-
vice Selection. In Business Process Management Workshops, pages 32–46,
2005.

[10] Y. Asnar and P. Giorgini. Modelling Risk and Identifying Countermea-
sure in Organizations. Technical report, University of Trento, 2006.
oai:UNITN.Eprints:1035.

[11] S. Bagchi, G. Kar, and J. Hellerstein. Dependency Analysis in Dis-
tributed Systems using Fault Injection: Application to Problem Determi-
nation in an e-commerce Environment. In DSOM ’01: Proc. 2001 In-
ternational Workshop on Distributed Systems: Operations & Manage-
ment , 2001. http://www.research.ibm.com/PM/DSOM2001_
dependency_final.pdf.

[12] F. Baiardi, S. Suin, C. Telmon, and M. Pioli. Assessing the Risk of an
Information Infrastructure Through Security Dependencies. Critical Infor-
mation Infrastructures Security, 4347/2006:42–54, 2006.

[13] R.E. Barlow and F. Proschan. Mathematical Theory of Reliability. SIAM:
Society for Industrial and Applied Mathematics Philadelphia, 1996.

[14] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and
Tools. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Con-
currency and Petri Nets, volume 3098 of LNCS, pages 87–124. Springer-
Verlag, 2003.

[15] S.P. Bennet and M.P. Kailay. An Application of Qualitative
Risk Analysis to Computer Security for the Commercial Sec-
tor. In Eighth Annual Computer Security Applications Confer-
ence, pages 64–73. IEEE Computer Society Press, April 1992.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?
isnumber=5913&arnumber=228232&count=25&index=15.

[16] J. Bennett. Business continuity and availability planning. Infosecurity,
4(1754-4548):38, 2007.

176

http://www.research.ibm.com/PM/DSOM2001_dependency_final.pdf
http://www.research.ibm.com/PM/DSOM2001_dependency_final.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5913&arnumber=228232&count=25&index=15
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5913&arnumber=228232&count=25&index=15

BIBLIOGRAPHY

[17] H. Boudali, P. Crouzen, and M.I.A. Stoelinga. A compositional semantics
for Dynamic Fault Trees in terms of Interactive Markov Chains. In Proc. of
the 5th International Symposium on Automated Technology for Verification
and Analysis, pages 441–456. LNCS, 2007.

[18] P. Bowen, J. Hash, and M. Wilson. NIST SP 800-100 - Information Secu-
rity Handbook: A Guide for Managers. Technical report, NIST National
Institute of Standards and Technology, 2006.

[19] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology. Tech-
nical report, University of Trento, 2002. oai:UNITN.Eprints:84.

[20] A. Brown, G. Kar, and A. Keller. An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a Distributed Appli-
cation Environment. In IM ’01: IEEE/IFIP International Symposium on
Integrated Network Management, pages 377–390, 2001.

[21] BS 7799-3 - Information security management systems - Part 3: Guidelines
for information security risk management, 2006.

[22] BSI. BS IEC 61882:2001 : Hazard and operability studies (HAZOP stud-
ies). Application guide. British Standards Institute, 2001.

[23] M. Burgess. System Administration and Micro-Economic Modelling. In
J. Bergstra and M. Burgess, editors, Handbook of Network and System Ad-
ministration, chapter 6.3, pages 729–773. Elsevier, 2007.

[24] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[25] L. Cloth and B. R. Haverkort. Model Checking for Survivability. In QUEST
’05: Proc. 2nd Int. Conference on the Quantitative Evaluation of Systems,
pages 145–154. IEEE Computer Society, 2005.

[26] R. Cocchiara. Beyond disaster recovery: becoming a resilient business.
Technical report, IBM, 2005. http://ibm.com/services/its/resilience.

[27] B. Cunningham, T. Dykstra, E. Fuller, C. Gatford, A. Gold, M.P. Hoag-
berg, A. Hubbard, C. Little, S. Manzuik, G. Miles, C.F. Morgan, K. Pfeil,
R. Rogers, T. Schack, and S. Snedaker. The Best Damn IT Security Man-
agement Book Period. Syngress Publishing, November 2007.

177

BIBLIOGRAPHY

[28] F. den Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen.
Model-based security analysis in seven steps — a guided tour to the
CORAS method. BT Technology Journal, 25(1):101–117, 2007.

[29] S. Distefano and L. Xing. A New Approach to Modeling the System Reli-
ability: Dynamic Reliability Block Diagrams. In RAMS ’06: Annual Reli-
ability and Maintainability Symposium, pages 189–195, Washington, DC,
USA, 2006. IEEE Computer Society.

[30] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic Fault-Tree Models
for Fault-Tolerant Computer Systems. IEEE Transactions on Reliability,
41(3):363–377, September 1992.

[31] Elsevier, editor. Handbook of Constraint Programming. F. Rossi, P. van
Beek and T. Walsh, August 2006.

[32] A. Evangelidis, J. Akomode, A. Taleb-Bendiab, and M. Taylor. Risk As-
sessment & Success Factors for e-Government in a UK Establishment. In
Electronic Government, volume 2456/2002, pages 93–99. Springer Berlin
/ Heidelberg, 2002.

[33] F. Flammini, N. Mazzocca, M. Iacono, and S. Marrone. Using Repairable
Fault Trees for the evaluation of design choiches for critical repairable sys-
tems. In HASE ’05: Proc. Ninth IEEE International Symposium on High-
Assurance Systems Engineering, pages 163–172, Washington, DC, USA,
2005. IEEE Computer Society.

[34] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D.E.M.
Nassar, H. Ammar, and A. Mili. Architectural-level risk analysis using
UML. IEEE Transactions on Software Engineering, 29:946 – 960, October
2003.

[35] X. Gu, K. Nahrstedt, R.N. Chang, and C. Ward. QoS-Assured Service
Composition in Managed Service Overlay Networks. In International Con-
ference on Distributed Computing Systems, page 194, Los Alamitos, CA,
USA, 2003. IEEE Computer Society.

[36] C.A. Gunter, E.L. Gunter, M.A. Jackson, and P. Zave. A reference
model for requirements and specifications. IEEE Software, 17(3):37–43,
May/June 2000.

[37] D.S. Herrmann. Complete Guide to Security and Privacy Metrics. Auer-
bach Publications, Boston, MA, USA, 2007.

178

BIBLIOGRAPHY

[38] G. J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.

[39] K.J. Soo Hoo. How much is enough: a risk management approach to com-
puter security. PhD thesis, Stanford University, Stanford, CA, USA, 2000.

[40] F. Innerhofer-Oberperfler and R. Breu. Using an Enterprise Ar-
chitecture for IT Risk Management. In ISSA ’06: Proc. In-
formation Security South Africa Conference, 2006. URL:
http://icsa.cs.up.ac.za/issa/2006/Proceedings/Full/115 Paper.pdf.

[41] British Standards Institute. BS 25999-1 - Business continuity management
- Part1: Code of practice, 2006.

[42] ISO/IEC 13335:2001 - Information Technology - Security techniques -
Guidelines for the management of IT security, 2001.

[43] ISO/IEC 15408:2006 - Common Criteria for Information Technology Se-
curity Evaluation. http://www.commoncriteriaportal.org/
thecc.html, September 2006.

[44] ISO/IEC 17799:2000 - Information Security - Code of Practice for Infor-
mation Security Management, 2000.

[45] ISO/IEC 27001:2005 - Information technology – Security techniques – In-
formation security management systems – Requirements, 2005.

[46] ISO/IEC 27002:2005 - Information technology – Security techniques –
Code of practice for information security management, 2005.

[47] S. Jha and J. M. Wing. Survivability analysis of networked systems. In
ICSE ’01: Proc. 23rd Int. Conference on Software Engineering, pages 307–
317. IEEE Computer Society, 2001.

[48] A.M. Jrad, C.K. Chan, and T.B. Morawski. Incorporating the downtime
due to disaster events in the network reliability model. In NETWORKS
2004: Proc. 11th International Telecommunications Network Strategy and
Planning Symposium, pages 365–371. IEEE Computer Society, 2004.

[49] G. Kar, A. Keller, and S. Calo. Managing Application Services over Service
Provider Networks: Architecture and Dependency Analysis. In NOMS ’00:
Proc. of the 7th IEEE/IFIP Network Operations and Management Sympo-
sium, pages 61–75. IEEE Press, 2000.

179

http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html

BIBLIOGRAPHY

[50] I-J. Kim, Y-J. Jung, JG. Park, and D. Won. A Study on Security Risk
Modeling over Information and Communication Infrastructure. In SAM
’04: Proc. of the International Conference on Security and Management,
pages 249–253. CSREA Press, June 2004.

[51] W. Lam. Ensuring Business Continuity. IT Professional, 4(3):19–25, 2002.

[52] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,
and J. Romijn. As Cheap as Possible: Efficient Cost-Optimal Reachability
for Priced Timed Automata. LNCS, 2102:493–506, 2001.

[53] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

[54] C. Leangsuksun, H. Song, and L. Shen. Reliability Modeling Using UML.
In Software Engineering Research and Practice, pages 259–262, 2003.

[55] A. Lenstra and T. Voss. Information Security Risk Assessment, Aggrega-
tion, and Mitigation. In ACISP ’04: Information Security and Privacy:
Australasian Conference, 2004.

[56] R.P. Lippmann and K.W. Ingols. An Annotated Review of Past Papers
on Attack Graphs. Technical report, Defense Technical Information Cen-
ter OAI-PMH Repository [http://stinet.dtic.mil/oai/oai]
(United States), 1998. http://en.scientificcommons.org/
18618950.

[57] Z. Liu and M. Joseph. Verification of Fault Tolerance and Real Time. In
FTCS ’96: 26th IEEE Symposium on Fault Tolerant Computing Systems,
pages 220–229. IEEE Computer Society, 1996.

[58] H. Maciejewskia and D. Caban. Estimation of repairable system availa-
bility within fixed time horizon. Reliability Engineering & System Safety,
93(1):100–106, January 2006.

[59] Military Standard MIL-STD-1629A. Procedures for Performing a Fail-
ure Mode, Effects and Criticality Analysis. USA Department of Defense,
November 1980.

[60] R.R. Muntz, E. de Souza e Silva, and A. Goyal. Bounding Availability
of Repairable Computer Systems. SIGMETRICS Performance Evaluation
Review, 17(1):29–38, 1989.

180

http://stinet.dtic.mil/oai/oai
http://en.scientificcommons.org/18618950
http://en.scientificcommons.org/18618950

BIBLIOGRAPHY

[61] R. L. Murphy, C. J. Alberts, R. C. Williams, R. P. Higuera, A. J. Dorofee,
and J. A. Walker. Continuous Risk Management Guidebook. Carnegie
Mellon Software Engineering Institute, 1996.

[62] Office of Government Commerce (OGC). Introduction to the ITIL Service
Lifecycle. TSO (The Stationery Office), 2007.

[63] Office of Government Commerce (OGC). ITIL Version 3 Service Design.
TSO (The Stationery Office), 2007.

[64] Office of Government Commerce (OGC). ITIL Version 3 Service Strategy.
TSO (The Stationery Office), 2007.

[65] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis. The capability
maturity model: guidelines for improving the software process. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[66] R. Pawson and N. Tilley. Realistic Evaluation. Sage Publications, 1997.

[67] T. Reitan. System Reliability. In J. Bergstra and M. Burgess, editors, Hand-
book of Network and System Administration, chapter 6.4, pages 775–809.
Elsevier, 2007.

[68] S. Ross. Introduction to Probability Models, Seventh Edition. Harcourt
Academic Press, 1989.

[69] J.E.Y. Rossebo, S. Cadzow, and P. Sijben. eTVRA, a Threat, Vul-
nerability and Risk Assessment Method and Tool for eEurope. In
ARES ’07: Second International Conference on Availability, Reliabil-
ity and Security, pages 925–933. IEEE Computer Society Press, April
2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4159893.

[70] S. A. Sayana. Auditing Business Continuity. Information Systems Control
Journal, 1:11–13, 2005. http://www.isaca.org/TemplateRedirect.cfm?/
template=/ContentManagement/
ContentDisplay.cfm&ContentID=23553.

[71] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated
Generation and Analysis of Attack Graphs. IEEE Symposium on Security
and Privacy, page 273, 2002.

[72] S. Smale. On the average number of steps of the simplex method of linear
programming. Mathematical Programming, 27(3):241–262, October 1983.

181

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4159893
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4159893

BIBLIOGRAPHY

[73] G. Stoneburner, A. Goguen, and A. Feringa. NIST SP 800-30 - Risk Man-
agement Guide for Information Technology Systems. Technical report,
NIST National Institute of Standards and Technology, 2002.

[74] K.J. Sullivan, J.B. Dugan, and D. Coppit. The Galileo fault tree analysis
tool. In Proc. of Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, pages 232–235. IEEE Computer Society, 1999.

[75] J.G. Torres-Toledano and L.E. Sucar. Bayesian Networks for Reliability
Analysis of Complex Systems. In IBERAMIA ’98: Proceedings of the
6th Ibero-American Conference on AI, pages 195–206, London, UK, 1998.
Springer-Verlag.

[76] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Hand-
book. Technical report, US Nuclear Regulatory Commission NUREG-
0492, 1981.

[77] R.J. Wieringa and J.M.G. Heerkens. Designing requirements engineering
research. In CERE ’07: Workshop on Comparative Evaluation in Require-
ments Engineering, pages 36–48. IEEE Computer Society Press, October
2007. http://eprints.eemcs.utwente.nl/13002/.

[78] R.J. Wieringa, N. Maiden, N. Mead, and C. Rolland. Requirements en-
gineering paper classification and evaluation criteria: a proposal and a dis-
cussion. Requirements Engineering Journal, 11:102–107, November 2006.

[79] R. Winther, O. Johnsen, and B.A. Gran. Security assessments for safety
critical systems using hazops. In Proc. of SAFECOMP 2001, pages 14–24.
Springer, 2001.

[80] T. Yu and K-J. Lin. Service Selection Algorithms for Web Services with
End-to-End QoS Constraints. In IEEE International Conference on E-
Commerce Technology, pages 129–136, Los Alamitos, CA, USA, 2004.
IEEE Computer Society.

[81] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-Aware Middleware for Web Services Compo-
sition. IEEE Transactions on Software Engineering, 30(5):311–327,
2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1291834.

182

http://eprints.eemcs.utwente.nl/13002/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1291834
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1291834

BIBLIOGRAPHY

Web References (Last Accessed: October 2010)

[82] C. J. Alberts and A. J. Dorofee. OCTAVE Criteria. Technical Report ESC-
TR-2001-016, Carnegie Mellon - Software Engineering Institute, Decem-
ber 2001. http://www.cert.org/octave/.

[83] Alion Science and Technology. CounterMeasures. http://www.
countermeasures.com.

[84] The ArchiMate project, 2009. http://www.archimate.org.

[85] Risk management - AS/NZS 4360:2004. http://www.
riskmanagement.com.au/, October 2004.

[86] Basel II: Revised international capital framework. http://www.bis.
org/publ/bcbsca.htm, 2005.

[87] BiZZdesign. Architect. http://www.bizzdesign.nl/index.
php/tools/bizzdesignarchitect, 2010.

[88] BlockSim: System Reliability and Maintainability Analysis Software Tool.
http://www.reliasoft.com/BlockSim/.

[89] CISCO Systems. Cisco 2007 Annual Security Report. http:
//www.cisco.com/web/about/security/cspo/docs/
Cisco2007Annual_Security_Report.pdf, 2007.

[90] CobiT 4.1 - Control Objectives for Information and related Technology.
http://www.isaca.org, 2007.

[91] L. Cottrell. Network Monitoring Tools. http://www.slac.
stanford.edu/xorg/nmtf/nmtf-tools.html, 2010.

[92] CRAMM v5.1 Information Security Toolkit. http://www.cramm.
com, 2009.

[93] A. Deladrière and M. Morrison. The risk management chal-
lenge. http://www.bankingfinance.be/40915/default.
aspx, March 2008.

[94] EBIOS - Expression des Besoins et Identification des Objectifs de Sécurité
- Section 2: Approach. http://www.ssi.gouv.fr/en/, 2004.

[95] The ECLiPSe Constraint Programming System. http://87.230.22.
228/.

183

http://www.cert.org/octave/
http://www.countermeasures.com
http://www.countermeasures.com
http://www.archimate.org
http://www.riskmanagement.com.au/
http://www.riskmanagement.com.au/
http://www.bis.org/publ/bcbsca.htm
http://www.bis.org/publ/bcbsca.htm
http://www.bizzdesign.nl/index.php/tools/bizzdesignarchitect
http://www.bizzdesign.nl/index.php/tools/bizzdesignarchitect
http://www.reliasoft.com/BlockSim/
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.isaca.org
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.cramm.com
http://www.cramm.com
http://www.bankingfinance.be/40915/default.aspx
http://www.bankingfinance.be/40915/default.aspx
http://www.ssi.gouv.fr/en/
http://87.230.22.228/
http://87.230.22.228/

BIBLIOGRAPHY

[96] ENISA. Risk Management: Implementation principles and Inventories for
Risk Management/Risk Assessment methods and tools. Technical report,
European Network and Information Security Agency (ENISA), June 2006.
http://www.enisa.europa.eu/rmra/rm_home.html.

[97] Federal Office for Information Security (BSI). GSTool. http://www.
bsi.bund.de/english/gstool/.

[98] HP. HP Business Availability Center. https://h10078.www1.
hp.com/cda/hpms/display/main/hpms_content.jsp?zn=
bto&cp=1-11-15-25_4000_100__, August 2009.

[99] Hyperic. http://www.hyperic.com.

[100] IBM. IBM Tivoli. http://www.ibm.com/software/tivoli/,
August 2009.

[101] BSI Standard 100-1 - Information Security Management Systems (ISMS).
http://www.bsi.de/english/gshb/, 2005.

[102] http://www.kpmg.com.

[103] R. Allen Long. Beauty & the Beast – Use and Abuse of
Fault Tree as a Tool. http://www.fault-tree.net/papers/
long-beauty-and-beast.pdf, Last checked in 2010.

[104] R. Marty. SecViz - Security Visualization. http://www.secviz.
org/, 2010.

[105] McAfee. In the Crossfire - Critical Infrastructure in the Age
of Cyber War. http://resources.mcafee.com/content/
NACIPReport, 2010.

[106] MEHARI 2007 - Risk Analysis Guide. https://www.clusif.
asso.fr/en/clusif/present/, April 2007.

[107] Nagios. http://www.nagios.org.

[108] NIST National Vulnerability Database. http://nvd.nist.gov/,
2009.

[109] PriceWaterhouseCoopers. BERR Information Security Breaches Survey
2008. http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml)
.pdf, 2008.

184

http://www.enisa.europa.eu/rmra/rm_home.html
http://www.bsi.bund.de/english/gstool/
http://www.bsi.bund.de/english/gstool/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
http://www.hyperic.com
http://www.ibm.com/software/tivoli/
http://www.bsi.de/english/gshb/
http://www.fault-tree.net/papers/long-beauty-and-beast.pdf
http://www.fault-tree.net/papers/long-beauty-and-beast.pdf
http://www.secviz.org/
http://www.secviz.org/
http://resources.mcafee.com/content/NACIPReport
http://resources.mcafee.com/content/NACIPReport
https://www.clusif.asso.fr/en/clusif/present/
https://www.clusif.asso.fr/en/clusif/present/
http://www.nagios.org
http://nvd.nist.gov/
http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml).pdf
http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml).pdf

BIBLIOGRAPHY

[110] Relex Software Corporation. http://www.relex.com.

[111] Shadow-Planner, Business Continuity Management software. http://
www.office-shadow.com/.

[112] Sarbanes-Oxley Act of 2002. http://frwebgate.access.
gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&
docid=f:h3763enr.tst.pdf, 2002.

[113] The Open Group. TOGAF (The Open Group Architecture Frame-
work), 2003. http://www.opengroup.org/architecture/
togaf8-doc/arch/.

[114] The Zachman Institute for Framework Advancement. Zachman Frame-
work. http://www.zifa.com/, 2007.

[115] Emmanuele Zambon. VisualSibyl: a GUI frontend for A2THOS. http:
//www.vf.utwente.nl/˜zambone/visual_sybil, 2010.

185

http://www.relex.com
http://www.office-shadow.com/
http://www.office-shadow.com/
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.zifa.com/
http://www.vf.utwente.nl/~zambone/visual_sybil
http://www.vf.utwente.nl/~zambone/visual_sybil

BIBLIOGRAPHY

186

Nomenclature

BC Business Continuity

BCP Business Continuity Plan

BIA Business Impact Analysis

COBIT Control Objectives for Information and related Technology

CRM Customer Relationship Management

CTMC Continuous Time Markov Chain

DoS Denial of Service

FT Fault Tree

GIT Global IT Infrastructure

IT Information Technology

ITIL Information Technology Infrastructure Library

MTBF Mean Time Between Failure

MTPD Maximum Tolerable Period of Disruption

MTTR Mean Time To Repair

QualTD Qualitative Time Dependency

RA Risk Assessment

RBD Reliability Block Diagram

187

BIBLIOGRAPHY

RM Risk Mitigation

RMC Risk Management and Compliance

RPO Recovery Point Objective

RTO Recovery Time objective

SLA Service Level Agreement

SLM Service Level Management

TD Time Dependency

TDR Time Dependency and Recovery

ToA Target of Assessment

TVA Threat/Vulnerability Assessment

188

Samenvatting

De beschikbaarheid van de IT-infrastructuur binnen een organisatie is van es-
sentieel belang voor de ondersteuning van bedrijfsactiviteiten. IT-uitval veroorza-
akt concurrerende aansprakelijkheid, tast de financiële prestaties en reputatie van
een bedrijf aan. Om het maximum aan IT-beschikbaarheid te bereiken binnen het
beschikbare budget, moeten organisaties een reeks analyseactiviteiten uitvoeren
om prioriteiten vast te stellen en beslissingen te nemen op basis van de bedrijfs-
behoeften. Deze reeks analyseactiviteiten wordt: “IT-beschikbaarheidsplanning”
genoemd.

De meeste (grote) organisaties leiden de IT-beschikbaarheidsplanning af van
één of meer van de drie belangrijkste facetten: informatie risico beheer, bedrijfs-
continuı̈teit en service level-beheer. Informatie risico beheer bestaat uit het iden-
tificeren, analyseren, evalueren en tegengaan van risicos die de informatie, verw-
erkt door een organisatie, en de informatieverwerkings-systemen kan beı̈nvloeden.
Bedrijfscontinuı̈teit bestaat uit het creëren van een logistiek plan, genoemd bedri-
jfscontinuı̈teitsplan, die de procedures en alle benodigde informatie bevat om de
cruciale processen van een bedrijf te herstellen na een ernstige verstoring. Service
level-beheer bestaat hoofdzakelijk uit het organiseren, documenteren en vezek-
eren van een bepaald kwaliteitsniveau (bijv. de beschikbaarheid) van de door het
IT-systeem aangeboden diensten aan de business units van een organisatie.

Er bestaan verscheidene standaarddocumenten welke een organisatie voorzien
van richtlijnen voor het opzetten van processen risico-, bedrijfscontinuı̈teit- and
service level-beheer. Echter, om te zorgen dat deze richtlijnen zo algemeen mo-
gelijk toepasbaar zijn omvatten ze geen implementatie details. Derhalve dient elke
organisatie afzonderlijk een IT-beschikbaarheidsplanning te ontwikkelen naar eigen
behoefte. Om praktisch bruikbaar te zijn moeten deze technieken nauwkeurig ge-
noeg zijn om de stijgende complexiteit van de IT-infrastructuur te ondervangen en
daarnaast uitvoerbaar blijven binnen het beschikbare budget van de organisatie.
Zoals we in dit proefschrift beargumenteren, basisbenaderingen die tegenwoordig

toegepast worden door organisaties zijn haalbaar maar vaak met een gebrek aan
nauwkeurigheid.

In dit proefschrift presenteren we een graafgebaseerd framework voor de beschik-
baarheidsafhankelijkheden van de componenten van een IT-infrastructuur èn on-
twikkelen we technieken gebaseerd op dit framework om de IT-beschikbaarheidsplanning
te ondersteunen. In meer detail behandelen we:

• het “Time Dependency model”, dat IT-managers ondersteunt bij het vast-
stellen van een reeks tegenmaatregelen om IT-beschikbaarheids gerelateerde
risico’s te verlagen met minimale kosten;

• het “Qualitative Time Dependency model”, dat bedoeld is om systematisch
de aanwezigheid van IT-beschikbaarheidsgerelateerde risico’s vast te stellen
in combinatie met bestaande risicoanalysemethodiek;

• het “Time Dependency and Recovery model”, dat een middel verstrekt aan
IT-managers om hesteltijd doeleinden op de componenten van een IT-architectuur
te bepalen of te bevestigen, die vervolgens worden gebruikt om het IT-
gerelateerde gedeelte van een bedrijfscontinuı̈teitsplan te creëren;

• A2THOS, om te controleren of de beschikbare SLA’s, die de provisioning
van de IT-diensten tussen de business units van dezelfde organisatie reg-
uleren, kunnen worden nageleefd wanneer de uitvoering van deze diensten
gedeeltelijk is uitbesteed aan externe bedrijven, èn om dienovereenkomstig
te kiezen voor aanbiedingen van externe bronnen.

We doen case studies om met behulp van de gegevens van een primaire verzek-
eringsmaatschappij en een grote multinational de voorgestelde technieken te testen.
De resultaten laten zien dat organisaties zoals verzekeringsmaatschappijen of fab-
rikanten, welke gebruik maken van IT, ter ondersteuning van hun bedrijf, kunnen
profiteren van de optimalisering van de beschikbaarheid van hun IT-infrastructuur.
Het is mogelijk technieken te ontwikkelen die de IT-beschikbaarheidsplanning on-
dersteunen en realiseerbaar zijn met beperkte uitgaven. Het door ons voorgestelde
framework laat zien dat de structuur van de IT-architectuur praktisch kan worden
toegepast met dergelijke technieken om de nauwkeurigheid ten opzichte van de
huidige praktijk te verhogen.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System
Architectures. Faculty of Mathematics
and Computing Sciences, TU/e. 2005-
06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electrical

Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simu-
lation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Processes
with Replication. Faculty of Math-
ematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Math-
ematics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data

Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.

Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Im-
plementation and Composition. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series
of Empirical Studies about the UML.
Faculty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and

Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical

Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.

Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-
cation for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of
Mechanical Engineering, TU/e. 2008-
16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty

of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Math-
ematics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Val-
idating Distributed Embedded Real-
Time Control Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-

ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transfor-
mation. Faculty of Science, UU.
2009-10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS using
JML. Faculty of Science, Mathematics
and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Pro-
gram Comprehension. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digi-
tal Exchange. Faculty of Mathematics

and Computer Science, TU/e. 2009-
15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2009-17

C. Kaliszyk. Correctness and Av-
ailability: Building Computer Algebra
on top of Proof Assistants and mak-
ing Proof Assistants available over the
Web. Faculty of Science, Mathematics
and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimization
and Their Applications to Medical Im-
age Analysis. Faculty of Mathematics
and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Compu-
tational Complexity of Probabilistic

Networks. Faculty of Science, UU.
2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and

Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-
tions, Implementations and Applica-
tions. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.
Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-
ence, UT. 2011-03

	Introduction
	Availability Planning
	The Problem
	Technical Research Questions
	Contributions
	Thesis Overview and Publications

	Quantitative Decision Support for Model-Based Mitigation of Availability Risks
	Introduction
	Relevant methodologies for IT availability management
	The Time Dependency (TD) model
	Risk mitigation

	Prototype implementation
	UPPAAL implementation
	Prolog implementation

	Discussion
	Related work
	Concluding remarks

	Model-based Qualitative Risk Assessment for Availability of IT Infrastructures
	Introduction
	The Qualitative Time Dependency (QualTD) model
	Definition of the ToA
	Risk identification
	Risk evaluation
	Output of a RA using the QualTD model

	Case-study
	The industrial context
	Availability RA using the QualTD model

	Case-study evaluation
	Stakeholders, goals and criteria
	Design of the evaluation process
	Evaluation of the criteria
	Applicability to other scenarios

	Related work
	Combining the QualTD model to standard RA Methods
	Dependency-based techniques for RA

	Concluding remarks

	A Model Supporting Business Continuity Auditing & Planning in Information Systems
	Introduction
	Time Dependency and Recovery model
	Incidents and their propagation
	Assessing the RTO

	The Practice
	Discussion
	Related Work
	Concluding remarks

	A2thOS: Availability Analysis and Optimisation in SLAs
	Introduction
	Related Work
	Analysis of the minimal service availability
	Optimisation of outsourced services
	Implementation and benchmarks
	Methodology - practical use of A2thOS
	Concluding remarks
	Proof of Theorem 5.1
	Representation capabilities

	Concluding Remarks
	Summary and conclusions
	Future work

	Dependency Graphs Analysis, FTA and FMEA
	Building Dependency Graphs

