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Samenvatting

Lopende robots zijn cool. De aanblik van zo’n mooi stukje voortstappend tech-
niek spreekt velen tot de verbeelding. Momenteel worden lopende robots dan
ook regelmatig ingezet in de entertainmentindustrie. Behalve leuk kunnen lo-
pende robots ook nuttig zijn: in de toekomst kunnen ze bijvoorbeeld taken over-
nemen in het huishouden, in kantooromgevingen en in de zorg. Onderzoek naar
lopende robots heeft, behalve voor het maken van lopende robots zelf, nog meer
nut. Zo kunnen verschillende onderzoeksgebieden die betrekking hebben op lo-
pende robots (bijvoorbeeld de analyse van multi-body-dynamica en contactmo-
dellen), direct toegepast worden op andere vlakken van de robotica zoals het
aansturen van (industriële) robotarmen en het ontwikkelen van grijpers. Ook le-
ren we door het onderzoek veel over menselijk lopen; die kennis wordt toegepast
bij revalidatie en het maken van protheses en orthoses.

In dit proefschrift worden vijf onderzoeksvragen beantwoord die van belang zijn
voor de ontwikkeling van tweebenige (bipedal) lopende robots. De onderzoeks-
vragen zijn gecategoriseerd in drie hoofdonderwerpen: analyse, regeling en aanstu-
ring en ontwerp. De onderzoeksvragen worden hieronder besproken. De hoofd-
stukken van dit proefschrift zijn ieder gebaseerd op een artikel dat is gepubli-
ceerd bij of verzonden naar een conferentie.

DEEL I: Analyse

Hoe kunnen we het gedrag analyseren van een 2D passief-dynamische loper
die over oneffen terrein loopt?
Een bekende analyse-tool voor 2D passief-dynamische lopers1 is de post-impact
Poincaré-sectie: het ‘vlak’ in de toestandsruimte bestaande uit alle mogelijke toe-
standen2 van de loper direct na de voet-impact op vlakke vloer. Dit concept kan

12D loper: een lopertje dat niet naar links en rechts kan omvallen; alleen naar voren en achteren
(de bewegingsruimte is gereduceerd tot een tweedimensionaal vlak). Passief-dynamische loper: maakt
gebruik van het natuurlijke (passieve) zwaaigedrag van de benen; hierdoor is voor het naar voren
zwaaien van het been geen energie nodig.

2Toestand: de positie en snelheid van alle ledematen van de robot (Engels: state).
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echter niet gebruikt worden als de loper op oneffen terrein loopt. In dit proef-
schrift wordt hiervoor een oplossing geboden in de vorm van een mapping die
met iedere mogelijke post-impact toestand op oneffen terrein een punt op de
Poincaré-sectie associeert (hoofdstuk 2).

Kunnen we, door middel van een ‘andere kijk’ op de robot, meer inzicht krij-
gen in de dynamica?
Om de toestand van een robot numeriek te representeren (zodat ermee gerekend
kan worden) maken we vaak gebruik van coördinaten. Er bestaan vele verschil-
lende coördinaatrepresentaties (b.v. absolute hoeken, of juist relatieve) van een
toestand; welke representatie het meest geschikt is hangt af van het specifieke
probleem dat opgelost moet worden. Sommige problemen kunnen ook zonder
het gebruik van coördinaten (geometrisch) worden opgelost.

Voor lopende robots wordt vaak een coördinaatrepresentatie gekozen waarbij de
torso het referentielichaam is. In dit proefschrift wordt aangetoond dat dit niet
altijd de meest geschikte keuze is; soms is de standvoet als referentielichaam be-
ter. De vergelijkingen die de bewegingen van de robot beschrijven worden dan
eenvoudiger en door deze te bestuderen kan men beter inzicht krijgen in de ro-
botdynamica (hoofdstuk 3).

In dit proefschrift wordt een methode beschreven om, gegeven de grondcontact-
wrench (de kracht die de grond uitoefent op de voet van de robot), op een co-
ordinaat-vrije manier de positie te bepalen van het Zero-Moment Point3 (ZMP).
In plaats van wiskundige vergelijkingen wordt er gebruik gemaakt van geome-
trische relaties, wat het inzicht in de materie verhoogt (hoofdstuk 4).

Vaak helpt het om voor de analyse een versimpeld model van de robot te ge-
bruiken. In dit proefschrift wordt zo’n model besproken: het locked inertia model.
Hierin wordt de robot voorgesteld als zijnde één star lichaam. De wiskundige
vergelijkingen van het model zijn veel eenvoudiger dan die van de robot zelf
en kunnen gebruikt worden als startpunt voor analyse van de dynamica van de
robot (hoofdstuk 5).

DEEL II: Regeling en aansturing

Hoe kunnen we een robot regelen om hem te stabiliseren in de laterale (zij-
waartse) richting?
In dit proefschrift worden twee regelaars besproken die dit kunnen bewerkstel-
ligen. Beide maken gebruik van ‘laterale voetplaatsing’: door de voet iets meer
naar links of rechts neer te zetten, kan gezorgd worden dat de robot niet naar
links of rechts omvalt.

Bij de eerste methode (toegepast op een zeer simpel loper-model) wordt precies

3De positie van dit punt (op de vloer) geeft een indicatie of de standvoet stevig op de grond staat.
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halverwege de stap (mid-stance) de zijwaartse snelheid van de heup gemeten en
via een lineaire P-regelaar teruggekoppeld naar de zijwaartse positie van de voet.
Er wordt numeriek aangetoond dat deze regelaar een stabiel systeem oplevert
met een grote robuustheid tegen verstoringen (hoofdstuk 6).

De tweede methode gebruikt het Extrapolated Center of Mass4 (XCOM) als invoer
voor de (lineaire) regelaar. Deze methode is geïmplementeerd in TUlip5. Test-
resultaten laten zien dat de robot met de regelaar inderdaad stabiel is in laterale
richting (hoofdstuk 7).

Hoe kunnen we de actuatoren verbeteren om een minimaal energieverbruik te
verkrijgen?
De actuatoren (‘motoren’) die in de meeste lopende robots zitten zijn niet erg
energiezuinig. In dit proefschrift wordt een concept voor een nieuw type actuator
geïntroduceerd dat negatieve arbeid mechanisch kan opslaan en later hergebrui-
ken. De actuator bestaat uit een DC motor, een rem om de motoras vast te zetten,
een spiraalveer en een ‘oneindig variabele transmissie’ (IVT) (hoofdstuk 8).

DEEL III: Ontwerp

Hoe kunnen we het knie- en enkelgewricht van een lopende robot verbeteren?
Het kniegewricht van Dribbel6 en het enkelgewricht van TUlip voldeden niet aan
onze verwachtingen. Door veel aandacht te besteden aan het formuleren van de
precieze eisen van de gewrichten, kwamen we tot creatieve ontwerpoplossingen.

Het eerste ontwerp is een innovatief knie-blokkeermechanisme, dat ervoor zorgt
dat het standbeen van de robot gestrekt blijft. Het is gebaseerd op een ‘vierstan-
genmechanisme’ (four-bar linkage) en blokkeert door middel van een mechanische
singulariteit: een bepaalde stand van het mechanisme waarin één bewegingsrich-
ting van het mechanisme geblokkeerd wordt. Het geblokkeerd houden van de
knie kost geen energie terwijl het deblokkeren zeer gemakkelijk gaat. Het ont-
werp is succesvol toegepast in de 2D loper Dribbel (hoofdstuk 9).

Het tweede ontwerp is een twee-graden-van-vrijheid enkelbesturing. In plaats
van het gebruik van één motor voor het actueren van de x-as en één voor de y-as,
zijn beide motoren gemonteerd in een differentieelopstelling. Draaien de motoren
beide in dezelfde richting, dan wordt de x-as geactueerd; draaien ze in tegenge-
stelde richting, dan wordt de y-as geactueerd. Voordeel hiervan is dat de kracht
van beide motoren samen gebruikt kan worden voor de enkelafzet tijdens het
lopen, waardoor kleine motoren kunnen volstaan (hoofdstuk 10).

4De positie van dit punt (op de vloer) geeft een indicatie van waar de voet neergezet moet worden
om de robot in één stap tot stilstand te brengen.

5TUlip, een 3D lopende robot, is ontwikkeld in een samenwerkingsproject van de Universiteit
Twente (vakgroep Control Engineering), en de Technische Universiteiten van Delft en Eindhoven.

6Dribbel, een 2D lopende robot, is ontwikkeld op de vakgroep Control Engineering van de Univer-
siteit Twente.
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Summary

Walking robots are cool. The appearance of such a beautiful piece of technol-
ogy that moves around in the way that we humans do, is appealing to many.
Consequently, walking robots are regularly being used in the entertainment in-
dustry. Apart from being fun, walking robots can also be useful: in the future
they can for example take over tasks in household, office environments and the
health care sector. Research on walking robots is, except for making the walking
robots themselves, of more use. Several research areas related to walking robots
(such as analysis of multi-body dynamics and contact models) can be directly ap-
plied in other robotics fields such as the control of (industrial) robot arms and
the development of grippers. Also, by researching walking robots, we learn a lot
about human walking; this knowledge is being applied in rehabilitation and the
development of prostheses and orthoses.

In this thesis five research questions are discussed that are related to the develop-
ment of two-legged (bipedal) walking robots. The research questions are catego-
rized in three main topics: analysis, control and actuation and design. The research
questions are discussed below. Each chapter of this thesis is based on an article
which was published at or submitted to a conference.

PART I: Analysis

How can we analyze the behavior of a 2D passive dynamic walker that is walk-
ing on rough terrain?
A well-known analysis tool for 2D passive dynamic walkers1 is the post-impact
Poincaré section: the ‘plane’ in the state space consisting of all possible states2 of
the walker directly after foot-impact on a flat floor. This concept however can not
be used if the walker is walking on rough terrain. In this thesis a solution to this

12D walker: a walking system that cannot fall sideways; only forward and backward (the motion
space is reduced to a two-dimensional plane). Passive dynamic walker: utilizes the natural (passive)
swinging motion of the legs; because of this no energy is required to swing the leg forward.

2State: the position and velocity of all parts of the body.
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is given by providing a mapping that associates with each possible post-impact
state on rough terrain a point on the Poincaré section (chapter 2).

By looking at the robot from a different ‘perspective’, can we gain more insight
in its dynamics?
In order to represent the state of a robot numerically (to be able to do calculations
with it), we often make use of coordinates. There exist many different coordinate
representations (e.g., absolute angles, or relative ones) of a state; which of the
representations is most suitable depends on the exact problem that needs to be
solved. Some problems can also be solved without the use of coordinates, i.e., in
a geometric manner.

For walking robots usually a coordinate representation is chosen in which the
torso is the reference body. In this thesis it is shown that this is not always the best
choice; sometimes it is more convenient to take the stance foot as the reference
body. The equations that describe the motions of the robot become simpler and
by studying these, one can gain better insight in the robot dynamics (chapter 3).

In this thesis a method is presented for determining the position of the Zero-
Moment Point3 (ZMP) in a coordinate-free way, given the ground reaction wrench
(the force the ground exerts on the foot of the robot). Instead of using mathemat-
ical equations, the method uses geometrical relations, which gives more insight
in the material (chapter 4).

It is often helpful to use a simplified model of the robot. In this thesis such a
model is discussed: the locked inertia model. In this model the robot is represented
as a single rigid body. The mathematical equations of this model are much sim-
pler than those of the robot itself and can be used as a starting point for analysis
of the dynamics of the robot (chapter 5).

PART II: Control and actuation

How can we control a walking robot in order to stabilize it in the lateral (side-
ways) direction?
In this thesis two controllers are discussed that can achieve this. Both controllers
make use of ‘lateral foot placement’: positioning the foot a little to the left or right,
which prevents the robot from falling sideways.

In the first method (applied to a very simple walker model), the sideways velocity
of the hip is measured, exactly halfway the step (at mid-stance). This velocity is
then, through a linear P-controller, fed back to the lateral position of the foot.
It is shown numerically that this controller yields a stable system with a large

3The position of this point (on the floor) gives an indication whether the stance foot is firmly
standing on the ground.
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robustness margin (chapter 6).

The second method uses the Extrapolated Center of Mass4 (XCOM) as input of the
(linear) controller. This method was implemented in TUlip5. Experimental re-
sults show that the robot is indeed stabilized in the lateral direction (chapter 7).

How can we improve the actuators in order to get minimum energy consump-
tion?
The actuators (‘motors’) commonly used in walking robots are not very energy
efficient. In this thesis a concept is introduced for a new type of actuator which
can store negative work mechanically and re-use it later. The actuator consists of
a DC motor, a clutch to fix the motor axis, a rotational spring and an ‘infinitely
variable transmission’ (IVT) (chapter 8).

PART III: Design

How can we improve the knee and ankle joints of a walking robot?
The knee joint of Dribbel6 and the ankle joint of TUlip did not meet our expecta-
tions. By paying much attention to formulating the exact requirements of these
joints, we came up with creative design solutions.

The first design is an innovative knee locking mechanism, which keeps the stance
leg of the robot stretched. It is based on a four-bar linkage and locks by means of
a mechanical singularity: a certain configuration of the mechanism in which one
direction of motion of the mechanism is locked. Keeping the knee locked does
not require any energy, and unlocking goes easily. The design was successfully
applied on the 2D walker Dribbel (chapter 9).

The second design is a two-degrees-of-freedom ankle actuation system. Instead
of using one motor for actuating the x-axis and one for the y-axis, both motors are
mounted in a differential setup. When both motors turn in the same direction, the
x-axis is actuated; if they turn in opposite direction, the y-axis is actuated. The
advantage of this is that the force of both motors together can be used for ankle
push-off, which allows the use of smaller motors (chapter 10).

4The position of this point (on the floor) gives an indication of where the foot should be placed in
order to bring the robot to a stand-still in one step.

5TUlip, a 3D walking robot, was developed in a collaboration project of University of Twente (the
Control Engineering group) and the Technical Universities of Delft and Eindhoven.

6Dribbel, a 2D walking robot, was developed at the Control Engineering group of the University of
Twente.
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Chapter 1

Introduction

1.1 The field of walking robots

Walking robots are fascinating machines. They beautifully combine advanced
technology on the one side, and basic human-like behavior on the other. Scientif-
ically, walking robots can also be seen as interesting research objects. One of the
reasons for that is that many different disciplines are needed in order to be able
to build them and make them walk properly. Walking robots themselves and the
research conducted on it will be focused upon in more detail below.

1.1.1 Walking robots

There are different types of walking robots. The most appealing are walking
robots that are roughly shaped like a human: two legs, two arms, a torso and
a head. These are called humanoid robots. Robots that have two legs (but are not
necessarily) humanly shaped are called bipedal robots. Opposed to that are multi-
legged robots, which are usually inspired by some animal. Some of the smaller
multi-legged robots are very capable of negotiating rough terrain such as debris
of collapsed buildings. Therefore, they are sometimes used in search and rescue
operations to find casualties.

Some of the walking robots that exist today are shown in figure 1.1. It should be
noted that only a small part of all existing robot designs are actually commercially
available; most are prototypes from universities or spin-off companies. This the-
sis discusses bipedal walking only, therefore, the rest of this section will focus on
bipedal robots.

Humanoid robots gradually find their way into the entertainment industry. Now-
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a b c

d e

Figure 1.1: Various walking robots:
a) PetProto, the precursor to Petman, Boston Dynamics,
b) TUlip, collaboration between University of Twente, Delft University of Technology

and Eindhoven University of Technology,
c) HRP-4C, National Institute of Advanced Industrial Science and Technology

(AIST) (Nakaoka et al., 2009).
Picture: courtesy of AIST, http://www.aist.go.jp,

d) RHex, Kod*lab, University of Pennsylvania (Komsuoglu et al., 2010),
e) Jena Walker II, University of Jena (Seyfarth et al., 2009).
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adays, they are often exhibited at technological fairs, at which they receive much
attention. Still, they can only perform their act in a very-well structured envi-
ronment, such as a specially prepared stage. Their capabilities grow year by year
however, and the author expects that the first shows of a humanoid robot walking
among the crowd will emerge in the near future.

A second use of bipedal (in particular: humanoid) robots will be in household,
office and elderly care environments. The expectation is that at first these robots
will assist humans in delivering things (e.g., bringing the mail), and later simple
manipulation tasks such as pouring in water or (un)locking a door can be done.
Compared to walking robots, wheeled robots are much easier to manufacture and
control. However, as our daily environment is optimized for walking, wheeled
robots may easily get into problems when they come across an obstacle such as a
door step or a staircase.

A commonly heard objection to humanoid nursing robots is “I don’t want a robot
at my bed, I want a human being!”. In the author’s opinion however, these robots
should (and will) not become a replacement for the human nurses. Instead, they
assist the human nurses by doing the ‘annoying jobs’ such that the nurses get
time again for the real interaction with the patients.

1.1.2 Research on walking robots

Apart from the walking robots themselves, research being conducted on walk-
ing robots has more value. Many problems that are studied for usage in walking
robots appear in other fields of science as well. Below some examples are dis-
cussed. Note that this thesis is limited to the dynamics of walking only, so things
like artificial intelligence (when should the humanoid robot do what) are out of
the scope of this list.

Walking robots are usually modeled as multi-body systems. They are more com-
plex than most conventional multi-body systems (such as robotic arms) because
they are non-stationary (i.e., no fixed base) and may be considered having ‘chang-
ing end effectors’. With the latter it is meant that sometimes the left foot is the
‘end of the kinematic chain’, and sometimes the right foot is. If we consider a
humanoid robot, having also a head (usually including one or two cameras) and
two arms, we clearly have multiple end-effectors. The research being done on
describing this kind of systems can be used in for example multi-arm robot arms.

While walking, the feet of the robot periodically make contact with the ground.
This contact can be modeled in two different ways: either as a compliant contact
(approximation by a spring-damper) or as a rigid contact (approximation by an in-
finitely stiff connection), (Gilardi and Sharf, 2002). Both are used often in walking
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robots. Compliant models are easy to implement, but usually make the model
‘stiff’ (i.e., very high as well as very low eigenfrequencies within the model),
which results in long simulation times. Rigid contact models do not suffer from
this problem, but are hard to implement. Especially when multiple points are in
contact at the same time, it is complex to figure out if contact loss occurs at any of
the contacts (Ruspini and Khatib, 1997; Duindam, 2006). Other robotic fields in
which contacts play a role, such as grasping or object stacking, can use the same
strategies for coping with contacts as in walking robots.

The actuation of almost all walking robots that are being built today is done by
electrical motors. Although this type of actuators has reached a high level of ma-
turity, it is questionable whether this is, in the long term, the best actuator type
for walking robots. In order to make motors really suitable for walking, a few
properties have to be ‘faked’ by control (see section 1.3.2). The control methods
developed for this purpose can also be used in other fields of research, in partic-
ular in robots that interact with humans. A few experiments are being conducted
around the world on making walking robots with actuators that are not based
on DC motors (Verrelst et al., 2005; Kratz et al., 2007). Once more knowledge is
obtained on how to use these actuators in walking robots, the actuators can also
be implemented in other types of robots.

The same holds for the mechanical design of walking robots. Due to the high de-
mands on the mechanics (small and light to fit in the human-like shape, yet strong
and accurate to ensure performance), innovative concepts are used in walking
robot design. These concepts may be useful for other robots in other fields as
well.

Most robotics applications, such as industrial robot arms, use tight trajectory con-
trol algorithms, meaning that at each instant in time, the system should be as close
as possible to a desired trajectory. For walking robots the exact trajectory of each
joint is usually not so important; there are only bounds on the behavior. As an
example, in order to not topple over, the center of pressure of the robot should be
within the foot area, but where it is exactly does not matter (see chapter 4). This
freedom could be exploited in new control algorithms that eventually can also be
used in other fields of robotics.

Lastly, research on the dynamics of walking will lead to more insight in how hu-
mans walk. By either synthesizing or analyzing the gait of a robot that has more
or less the same shape as a human, we can learn the principles behind walking:
how exactly can we cope with disturbances and asymmetries, what if one of the
joints is limited in its agility, etc. Using a simple robot with only a few degrees of
freedom and a simple (known) controller, gives us the possibility to isolate and
study specific effects that influence the gait. The lessons learned can then be used
for rehabilitation, orthoses and prostheses.
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Figure 1.2: ‘Static walking’. As long as the center of mass of the robot is above the sup-
porting foot and the movements are so slow that any dynamic effects can be neglected, the
robot will not fall.

1.1.3 Different types of walking

Generally, the field of walking robots can be divided into two categories. Giv-
ing an adequate name to these categories is hard, and will become harder in the
future, as both categories tend to integrate more and more (which is a good de-
velopment). The two categories, which will be termed Zero-Moment Point walking
and limit cycle walking in this thesis, will be explained below, together with a dis-
cussion of the various names that are in use of the categories.

Zero-Moment Point walking

The easiest way to control a walking robot is by making sure that it is always in
static equilibrium. This is the case if

1. the center of mass (COM) of the robot is above the supporting foot, i.e., the
vertical projection of the COM onto the ground plane is within the convex
hull of the supporting foot (called the support polygon) as in figure 1.2, and

2. the movements of the robot are so slow that any dynamic effects can be
neglected.

As soon as the vertical projection of the COM gets outside the support polygon,
the foot will start to rotate (topple over) and the entire robot will fall. A good
term for this type of walking would be static walking.
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Figure 1.3: A 2D sketch showing the idea of extending static walking to include dynamics.
a) A robot and the desired acceleration of the COM. b) All accelerations involved and the
projection of the COM along aτ onto the ground plane (resulting in the FRI or (f)ZMP). In
this case, the FRI lies outside the convex hull of the support foot so the foot will start to
rotate about its rear edge. The ZMP or COP cannot leave the support polygon and coincides
with the rear edge of the foot in this case. It is assumed that there is no change in angular
momentum of the system.

The above can be extended by incorporating dynamics, in particular the acceler-
ation of the center of mass. Assume that we want to accelerate the COM of a robot
with acceleration ades, as shown in figure 1.3. In order to do that, we need torques
τ on the joints that result in an acceleration aτ , being the combination of:

1. the desired acceleration ades, and

2. an acceleration component aup to counteract the gravitational acceleration
agrav.

For the sake of simplicity, we assume that there is no change in angular momen-
tum of the system. Now instead of projecting the COM of the robot straight down
onto the ground plane, we project it along the vector aτ . The projection point
is known as the Foot Rotation Indicator (FRI), (Goswami, 1999) or (fictitious) Zero-
Moment Point1((f)ZMP), (Vukobratović and Borovac, 2004). Similarly to the static
case, if this point is outside the support polygon, the foot will start to rotate.
Contrary to the static case however, there is no direct link between the FRI being
outside the support polygon and falling of the robot (Pratt and Tedrake, 2006).

1If the point is within the support polygon, it is called Zero-Moment Point (ZMP). If the point is
outside the support polygon, it is called fictitious Zero-Moment Point (fZMP) and the ZMP is the point
on the support polygon closest to the fZMP.
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Figure 1.4: The ‘simplest passive dynamic walker’: three point masses connected with two
massless links, placed on a slope.

This has been (and probably will remain) a critical point of misunderstanding (Ito
et al., 2008). The reason why this fact gives so much confusion is probably because
if the foot is rotating about one of its edges, the robot is underactuated (there is
no actuator on the rotation edge of the foot) which makes precise control very
hard, but not impossible. Note that when we look at the static case (ades = 0) this
dynamic extension reduces to static walking again.

Many researchers, especially those working with many-degree-of-freedom walk-
ers, use the above concept. In order to keep the control simple, they choose to
make the supporting foot always stay firmly on the ground. This is done by
ensuring that the FRI never leaves the support polygon (e.g., by choosing COM
accelerations that are not too large). In that case we can always speak of the ZMP
when referring to the point (instead of the fZMP), hence the name for this type of
walking: ZMP walking.

The Zero-Moment Point was introduced by Vukobratović and Juričić (1969). Since
then, a large number of extensions and refinements have been made to the con-
cept in different directions, including ‘preview control’ (using the future reference
trajectory as control input) (Kajita et al., 2003; Park and Youm, 2007), walking on
stairs (Fu and Chen, 2008; Hirukawa et al., 2006) and irregular terrain (Sardain
and Bessonnet, 2004; Huang et al., 2008).

Limit cycle walking

There exist simple mechanisms that, when carefully started on a gentle slope,
exhibit natural walking behavior. They do this without any form of control, even
without any power source other than gravity. This fact has been known for more
than a century (Fallis, 1888). It is generally assumed that McGeer (1989, 1990a,b,c)
was the first to bring this notion into the scientific world, and since then many
researchers have dived into this subject.
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Consider a 2D mechanical structure as shown in figure 1.4: a ‘hip mass’ M, con-
nected to two ‘foot masses’ m by rigid links. The structure is put on a gentle slope
γ and gravity g is acting on the system. Collisions between the feet and ground
are considered fully inelastic and rigid. Friction is high enough to prevent slip-
ping. Each of the legs is either in the role of stance leg or in the role of swing leg.

At the start of each step the rear leg leaves the ground and swings forward as a
pendulum. If we allow ‘foot scuffing’ (that is, allow the swing foot to temporarily
penetrate the ground while swinging forward), the swing foot will end up in front
of the stance foot, impacting the ground. Due to the rigidity and inelasticity of
the collision, the rear foot will immediately leave the ground, starting a new step.
During each step, the walker converts potential energy (it walks down the slope)
to kinetic energy. At the end of the step, during foot impact, some of the kinetic
energy of the walker is dissipated. Besides very naturally looking, this type of
walking is very energy efficient.

There exist hip and foot trajectories such that after one complete step the state of
the walker is exactly the same as it was before (only translated along the slope),
i.e., if we denote the system state at the start of step k as xk, we have xk+1 = xk
for all k. Such a set of hip and foot trajectories is called a limit cycle. For a narrow
set of parameters, the limit cycle of the walker is even stable: there is a small
region around the limit cycle, called the basin of attraction (BOA), such that, when
the walker is started within the BOA, the walker converges to the limit cycle and
shows a stable walking gait. This type of walking is called passive dynamic walking:
it utilizes only the passive dynamics of the system. It should be noted that the
robustness of these passive dynamic walkers is very poor: if the walker is not
started very close to the limit cycle, it will fall inevitably.

Many researchers have investigated passive dynamic walkers in different forms:
with or without knees, with point feet or arc-shaped feet, with or without torso,
2D or 3D etc. (Goswami et al., 1996; Collins et al., 2001; Wisse et al., 2004; Chen,
2007; Kuo, 1999).

A natural extension to true passive dynamic walkers would be to add some form
of actuation. There are mainly two reasons to do so:

1. to provide the energy needed for walking, such that walking on a horizontal
floor (γ = 0) becomes possible,

2. to provide some means of control to increase robustness or versatility.

A common place for the actuator is between the legs in the hip (Wisse and van
Frankenhuyzen, 2003; Beekman, 2004). This way, the actuator can help the swing
leg to swing forward (provide energy for walking) and it can precisely position
the leg in order to increase robustness (control). Another common place for the
actuator is in the ankles (Hobbelen and Wisse, 2008), such that a push-off force
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can be generated. However, the potential of increasing robustness by control of
the ankle actuator is much less than it is with hip actuation. Dribbel, the first
walking robot developed at the Control Engineering Group at the University of
Twente, has both hip and ankle actuation (Franken, 2007).

This field of research suffers from an interesting conflict: on the one hand we
want to leave the walker alone in order not to disturb the nice passive dynamic
behavior, on the other hand, we want to actively control it in order to maximize
the robustness of the walker. Moreover, in order to keep the walker energy effi-
cient, the controller action should be as low as possible.

Fortunately, the passive dynamics in the system can also help here. When a dis-
turbance occurs, mechanical work should be done in order to restore the balance.
However, it is not necessary that the actuator itself does all the work. Ideally,
the actuator only changes the ‘shape’ of the system by a minimum control action,
such that the passive dynamics result in the rebalancing of the system energy.
As an example, consider the case where a walker has experienced a disturbance
which has reduced the kinetic energy of the hip (i.e., it slowed down the forward
motion of the hip). Now instead of actively accelerating the hip by applying a
large ankle torque, we could control the swing leg position such that a smaller
step is made than normal. This reduces the energy lost at the next foot impact, so
the total energy of the system is restored.

As already stated, the terms for different types of walking have become a little
confusing. Especially the group of walkers that are based on passive dynamic
walking but do have actuation are referred to by many different terms. Below, a
few are listed and the pitfalls are explained.

• As the ‘passive’ in ‘passive dynamic walking’ actually refers to the dynam-
ics being passive (not the walker), it can be argued that passive dynamic walk-
ing is a good term for the walkers considered, even if they are active. The
risk to confusion however is obvious, and therefore the use of this term
should be avoided.

• Following up on the previous term and its confusion, a term sometimes
seen is the paradoxical but correct powered passive dynamic walking (Camp,
1997; Mitobe et al., 2010).

• As the walkers considered are not passive anymore, people tend to simply
omit the word ‘passive’, resulting in the term dynamic walking (Kuo, 2007).
This term is not incorrect (the walkers are walking in a dynamical fashion),
but so are the ZMP-walkers! Therefore, this term does not distinguish be-
tween these two types and the use of this term should be avoided.

• The safe way is just describing the field instead of giving a direct name:
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walking based on passive dynamic walking (Wisse and van Frankenhuyzen,
2003; Collins et al., 2005), or, a little shorter, passivity-based walking (Hass
et al., 2006; Wang et al., 2008).

• Probably the best solution — the one that the author favors — is to com-
pletely abandon the words passive and dynamic and use the term limit cy-
cle walking instead (Hosoda and Narioka, 2007; Hobbelen, 2008). This term
exactly indicates the essence of all walkers in the category: the use of the
natural limit cycle.

The walking cycle of a limit cycle walker is dependent on the system dynamics
of the walker. Generally, only one limit cycle (i.e., one combination of step length,
step time, ground clearance etc.) comes naturally with a walker. This is a limi-
tation, because normally one wants to be able to make a robot exhibit different
gaits (at the very first, it should be able to transition from a ‘standing still gait’ to
a walking gait). Similarly to the control case described above, one can extend the
capabilities of a limit cycle walker in two ways: either by making the actuators
constantly do work to push the walker into a different ‘artificial’ limit cycle, or by
using the actuator to change the dynamics so that a different natural limit cycle
appears. As an example of the latter, consider a passive dynamic walker with a
variable stiffness torsional spring between its legs. By having an actuator increase
the stiffness, the natural swing frequency of the swing leg increases, putting the
walker in a different (faster) limit cycle (Kuo, 2002).

Closing the gap

Humans are a good example of the combination of both strategies. Obviously,
they have an enormous dexterity, which is due to the fact that they learned to do
full control on all limbs when needed. Also, when walking normally, the energy
consumption of humans is very low, suggesting that in that case extensive use is
made of the passive dynamics.

In order for future humanoid robots to be useful, they need both strategies as
well. They need the versatility from ZMP walkers to be able to start and stop
walking, turn and walk at different velocities, and they need the energy efficiency
of limit cycle walkers (having the naturally looking gait of limit cycle walkers can
be seen as a bonus). It is believed that, to reach the full potential of walking in
robots, both fields should merge into one integrated strategy. First attempts to
closing the gap for walking robots are being made (Hobbelen et al., 2008; Mitobe
et al., 2010).
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2D and 3D walkers

In the world of walking robots, a clear distinction is made between two-dimen-
sional (2D) and three-dimensional (3D) walkers. With a two-dimensional walker
(also called a planar walker) a walker is meant that can move in the sagittal plane
(forwards and backwards) but does not have any degrees of freedom to move in
the lateral plane (sideways). The reason to study two-dimensional walkers (both
in theory and in practice) is to split the complex problem of understanding walk-
ing into smaller problems: first concentrate only on the fore–aft motion, and only
then add the sideways motion.

In analysis and control, reducing the number of dimensions from three to two
reduces the complexity of locomotion to much less than 2/3rd of the original
complexity. Firstly, restricting to two dimensions reduces the number of direc-
tions to which a robot can fall; it cannot fall sideways. Secondly, in the 3D case,
the robot can rotate around its vertical axis and there exists complex coupling
between motions in the sagittal and lateral plane, which does not exist in 2D. Fi-
nally, the number of degrees of freedom of a 2D walker is generally much less,
which results in equations of motion that are actually manageable.

Building a 2D robot is a different story. As we live in a 3D world, any real robot
is essentially a 3D robot. In order to restrict its movements to two dimensions,
three methods are available:

1. mounting a two-legged robot on the end of a boom in such a way that it
can walk on the perimeter of a circle (figure 1.5a). This is a quite simple
construction, but takes a lot of lab-space;

2. mounting a two-legged robot on a suspension that inhibits movements in
sideways direction and rotation around the unwanted axes (figure 1.5b).
Care must be taken that the suspension does not influence the dynamics of
the walker too much. Therefore, it should not be too heavy and have as
little friction as possible;

3. building a free-walking four-legged robot with all its legs in line. The outer
legs are paired, as are the inner legs (figure 1.5c). The challenge in this
type of design is to make the paired legs identical, such that any sideways
motion is really impossible. The big advantage is that the robot is mobile so
it can easily be demonstrated anywhere.
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a

b c

Figure 1.5: Examples of 2D walking robots:
a) LEO, Delft University of Technology (Schuitema et al., 2010),
b) Lucy, Vrije Universiteit Brussel (Vanderborght, 2007),
c) Dribbel, University of Twente (Dertien, 2005).
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1.2 The VIACTORS project

Most industrial robots are manufactured as rigid as possible: in order to be accu-
rate, control should be stiff and the deformation of the links of the robot should
be minimal. Consequently, the robots need to be heavy and the actuators need
to be extremely powerful in order to achieve the desired accelerations. As long
as no humans are close to the robot, nothing is wrong with that, except perhaps
the relatively large energy consumption. However, for robots operating in the
vicinity of humans (think of a robotic arm mounted on a wheel chair of disabled
person, or a humanoid robot walking around in the same room as humans), this
is not a good choice. The problem is safety. The stiff controllers make that as soon
as a slight deviation is found between the desired end-effector trajectory and the
actual one, enormous forces are exerted. Moreover, as the impulse of a part of the
robot scales linearly with its mass, a heavy part will have a large impulse when
moving. Both can be dangerous if the robot accidentally comes in contact with a
human.

To solve the problem, one could use sensors to detect any accidental contact and
then, by very quick (thus stiff) control, react on the sensory information to min-
imize damage. If the system was designed well, this may be a good solution.
However, if the sensor or controller fails, the robot is still dangerous.

Another way to cope with the problem is by not making the robot stiff in the
first place; instead use light constructions (and compensate for deformation by
control) and use a special type of actuators that can be adapted to the task at
hand: strong if they need to but compliant if they can. Such actuators are called
variable-impedance actuators.

The VIACTORS project, a project supported by the European Commission un-
der the 7th Framework Programme, addresses the development and use of safe,
energy-efficient, and highly dynamic variable-impedance actuation systems.

One of the ‘work packages’, WP5, focuses on locomotion with variable-impedance
actuation, in particular (Viactors, 2011): analysis, simulation and development of
legged locomotion systems which are, at the same time, robust, in terms of the
ability of the system to stabilize its motion under substantial disturbances, and
energy efficient, in terms of minimization of the energy consumptions. Focus
points are:

• Morphological analysis and definition of metrics for “locomotion controlla-
bility”;

• Implementation of developed actuators and control in humanoid robots;

• Modeling and simulations of (new actuation for) robust and energy efficient
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legged locomotion;

• Experiments of (new actuation for) robust and energy efficient legged loco-
motion.

The following partners are in the consortium of VIACTORS: German Aerospace
Center (DLR), University of Pisa, University of Twente, Imperial college Lon-
don, Italian Institute of Technology and Free University of Brussels. The author’s
Ph.D. position at the University of Twente has been financed for 40 % by VIAC-
TORS.

1.3 Main topics of the thesis

Building walking robots is a multi-disciplinary job; it requires knowledge from
different research areas to succeed. For this thesis it was chosen to take a look
at various disciplines instead of focusing on one aspect only. The thesis contains
three parts, which are discussed in more detail below.

1.3.1 Analysis

Analysis is the art of studying the behavior of a (complex) system and trying to
find rules that explain the behavior, in order to gain understanding of the system.
An important aspect of analysis is the modeling of the system: the process of
making a (mathematical) system description in which only the relevant aspects
of the system are included. As an example, for general kinematics and dynam-
ics analysis of a walking robot, it is often sufficient to make a rigid body model, in
which each link of the robot is represented as an infinitely stiff mass and the con-
nections between the links are represented as ideal prismatic or revolute joints.
For different research questions, different aspects of a robot may be important,
therefore different models should be used.

Many ‘tools’ are available for model making and analysis of the model. For very
simple walkers, typically 2D limit cycle walkers with three or less degrees of free-
dom, the equations of motion may be simple enough to analyze analytically. This
can lead to basic but important conclusions such as the fact that for the ‘simplest
walker model’ the swing foot velocity just before foot impact does not influence
the dynamics for the next step (see chapter 2). For slightly larger models, the
equations of motion are already too complex, and one must resort to analyzing
numerical trends or specific properties of the equations of motion, such as the
Poincaré section, the step-to-step function and its eigenvalues (Goswami et al.,
1996).
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When the walkers become even more complex, typically the ZMP walkers that
have many degrees of freedom, the analysis tools described above do not work
anymore (the models are too complex to do such analysis and for ZMP walkers
the limit cycle analysis is irrelevant anyway). In those cases one can resort to
analysis tools like the center of mass (COM), extrapolated center of mass (XCOM)2

(Hof, 2008), center of pressure (COP), Zero-Moment Point (ZMP), locked inertia
and others. These are all concepts that ‘transform’ the full high-dimensional state
of the system to a meaningful two- or three-dimensional point in Euclidean space.

Often it is helpful to ‘look at the walker from a different point of view’. For
example, when calculating the result of an inelastic collision between two bodies,
it makes more sense to look at the impulses of the bodies than at their velocities:
the equations become simpler just by taking different look. This can also be done
for walking robots. By using different mathematics (e.g., Screw theory, (Ball, 1900)
instead of classical mechanics), analysis of the model can become much simpler.

Because walking robots are very complex systems with highly non-linear behav-
ior, proper analysis tools are a necessity for building good robots. Without them,
it is simply impossible to figure out whether a robot will be able to walk or not. In
order to understand increasingly better the walking behavior of walking robots,
new analysis tools constantly need to be developed.

1.3.2 Control and actuation

If there are actuators in a walking robot, these actuators should be steered in some
way: a controller is needed. The non-linearity of the robots, as well as their very
limited margin of robustness (if any), may put high demands on the controllers.

For ZMP walkers, tight trajectory control is often used. Low-level feed-forward
controllers cancel out all internal dynamics and impose the accelerations obtained
from the desired trajectories while linear feed-back controllers compensate for
model mismatch and disturbances.

For limit cycle walkers, it is usually tried to make the controllers as simple as
possible, in order not to disturb the passive dynamic behavior too much. Often
ordinary linear feedback controllers are used. By choosing the input and output
of the controller carefully, very nice results can be achieved, even with linear
controllers (see chapter 6).

The controller inside a walking robot can make or break the robot’s performance.
Where a simple controller could barely keep a robot walking, a slight improve-
ment (or even proper tuning) may improve the gait a lot. Therefore, research on
proper control is vital for walking robots.

2Also known as the Instantaneous Capture Point (Pratt et al., 2006; Koolen, 2011).
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An ideal actuator is a lossless converter of energy from one domain (e.g., electrical)
into mechanical energy (and vice versa), which does not influence the dynamics
of the joint, other than by the actuation torque. Electrical motors, the most-used
actuators for walking robots, are unfortunately far from ideal. Firstly, because of
the series resistance in the electrical part of the motor, electrical energy is dissi-
pated when a force is generated, even if no mechanical work is done. Secondly,
the motor’s moment of inertia and friction (especially the gearbox) heavily influ-
ence the dynamics of the joint (i.e., the motor is not backdrivable). Especially for
limit cycle walkers, this is undesired.

Biological muscles are, in some sense, better. Although they are certainly not loss-
less (Whipp and Wasserman, 1969), their backdrivability (in uncontracted condi-
tion) is much better than DC motors. Furthermore, muscles can exert high peak
forces, which allows for quick disturbance rejection. The benefits of muscles are
clearly seen in many walking organisms: their locomotion is highly energy effi-
cient and robust. It is the author’s strong belief that, until an entirely new class of
(muscle-like) actuators is mature enough for usage, we will not be able to build
humanoid robots that are as versatile and robust against disturbances as humans.

As long as we still have to work with electric motors, there are ways to ‘fake’ ide-
ality of some aspects of the actuator. Especially backdrivability (i.e., acting as a
pure force source) can be mimicked by embedding the motor in a series elastic actu-
ator and applying appropriate control (Pratt and Williamson, 1995). This concept
can be extended to a more versatile type of actuator, as discussed in chapter 8.

1.3.3 Design

Thanks to the recent improvements of materials and manufacturing techniques
(3D printing for example) and to the miniaturization of electronics, humanoid
robots start to look better and better. In some cases (e.g., HRP-4C, figure 1.1c)
the developers have succeeded to compress all the hardware into the posture
of a normal human being. Still, the robots lack functionality that is needed for
really useful behavior. For example, in order to reduce weight, each hand of
HRP-4C is only provided with 2 degrees of freedom (Kaneko et al., 2009). So,
future developments in design will be necessary for improving this.

For limit cycle walkers the design criteria are different than for ZMP walkers.
As the internal dynamics of the system are important, this has to be taken into
consideration much more than in ZMP walkers. As an example, for a good gait the
mass ratio between upper and lower leg should be approximately 10:1 (Franken
et al., 2008), which limits freedom of putting heavy actuators in the lower leg.
Creative designs can help in such cases; by combining existing technology in
innovative ways, solutions can be generated for the problems. In this way, clever
design can help increasing the potential of limit cycle walkers.
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1.4 Thesis outline

1.4.1 Research goals

In this thesis a number of questions are addressed, all relevant to walking robots:

1. How can we analyze the behavior of a 2D passive dynamic walker that is
walking on rough terrain?

2. By looking at the robot from a different ‘perspective’, can we gain more
insight in its dynamics?

3. How can we control a walking robot in order to stabilize it in the lateral
(sideways) direction?

4. How can we improve the actuators in order to get minimum energy con-
sumption?

5. How can we improve the knee and ankle joints of a walking robot?

1.4.2 Contents of each chapter

Each chapter in this thesis is based on a paper which has been published at or
submitted to a conference (with the exception of chapter 3, which has not been
published before). The contents of each chapter is mostly identical to the origi-
nal paper, but at some points the chapters in this thesis are more extensive: they
contain content that was originally removed from the paper to get it within the
conference’s six-page limit (with the exception of chapter 7, which has under-
gone a major revision). Because of the fact that the chapters are based on separate
papers, the contents of the chapters overlaps in some places. Below a short de-
scription is given of each chapter, and it is indicated to which research goal the
chapter contributes.

PART I: Analysis

Chapter 2 addresses question 1 from the research goals. A standard way of an-
alyzing the behavior of a 2D walker is by using the so-called Poincaré map: a
function which, given the walker’s state x+k at the start of step k, returns the new
state x+k+1 at the start of step k + 1. In this chapter it is shown that this method
can not be used for walkers on an irregular floor. An extension to this theory is
proposed that does make it possible. Furthermore, the relation is shown between
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different types of disturbances and curves on the Poincaré section, introducing a
new way of analyzing the walker’s behavior.

Chapter 3 addresses question 2 from the research goals. The configuration of a
walking robot can be described as the pose (position and orientation) of one of the
rigid bodies (called the ‘reference body’) of the robot plus all internal joint angles.
It is customary to take the torso as reference body. In this chapter it is shown
that in some cases it is more convenient to take the stance foot as reference body:
the equations become easier. It is also shown how the reference body change (a
standard non-linear coordinate transformation) is done on a 3D walking robot.

Chapter 4 addresses question 2 from the research goals. A widely used concept in
robot walking is the Zero-Moment Point (ZMP). The theory about ZMP, including
equations on how to calculate its position, exists already for over 40 years. In this
chapter it is explained how the position of the ZMP can be found geometrically
(i.e., in a coordinate-free manner) from the ground contact wrench. In order to
arrive at this, general theorems are presented on how one can decompose one
wrench W into other wrenches W ′1 and W ′2.

Chapter 5 also addresses question 2 from the research goals. It focuses on simpli-
fication of the dynamic model of a 3D walker; in particular the approximation of
the walker by one single rigid body (the locked inertia) rolling over the sole of a
curved foot.

PART II: Control and actuation

Chapter 6 addresses question 3 from the research goals. In this chapter a specific
3D walker model is used that, in its limit cycle, exhibits time-symmetrical behav-
ior (i.e., the trajectories played backwards are identical to the trajectories played
forwards). In the case of a disturbance, the trajectory becomes asymmetric; the
amount of asymmetry is used as an input for a (linear) stabilizing foot placement
controller.

Chapter 7 also addresses question 3 from the research goals. In this chapter it is
explained how the walking robot ‘TUlip’ is controlled by means of the extrapolated
center of mass (XCOM). The XCOM is a projection of the robot’s center of mass
(COM) onto the ground plane, where the direction of projection is dependent on
COM’s velocity. Experiments on the real robot are presented.

Chapter 8 addresses question 4 from the research goals. In this chapter a new ac-
tuation concept is presented, called the very versatile energy efficient actuator, V2E2.
An ideal actuator is just an energy converter (e.g., from the electrical to the me-
chanical domain). The V2E2 has, on top of that, a mechanical energy storage ele-
ment (a spring) and an ‘infinitely variable transmission’ (a continuously variable
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transmission that can have a positive as well as negative transmission ratio). The
power of the V2E2is its ability to store negative work mechanically and release it
when positive work is needed.

PART III: Design

Chapter 9 addresses question 5 from the research goals. It describes the design
of a new knee locking mechanism for the 2D walking robot Dribbel. The mecha-
nism keeps the leg in extended position while it serves as stance leg. It does this
by exploiting a mechanical singularity which, in theory, can withstand arbitrary
large torques while consuming no energy. Unlocking however only requires a
minimum amount of energy. In this chapter the system is described in detail and
experiments are presented that show the benefits of the system.

Chapter 10 also addresses question 5 from the research goals. It describes the
analysis, design and control of a new ankle actuation system for the 3D walking
robot TUlip. The system consists of two series-elastic actuators (DC-motors with
springs in series) that drive both the x-axis (sideways rotation) and y-axis (for-
ward/backward rotation) of the ankle, in a differential set-up. The analysis of
this non-linear, coupled series elastic system is treated in this chapter, as well as
some control issues following from the series elasticity and non-linearity.
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Chapter 2

The Poincaré section and basin of
attraction of a 2D passive dynamic

walker on an irregular floor

This chapter is based on the following article (van Oort and Stramigioli, 2012):

The Poincaré section and basin of attraction of a
2D passive dynamic walker on an irregular floor

Gijs van Oort and Stefano Stramigioli
Submitted to IEEE International Conference on

Robotics and Automation (ICRA’12).

Abstract—In analysis of passive dynamic walking, one often makes use of the
Poincaré section and basin of attraction. In this chapter we show that these
methods cannot be used when the walker walks on an irregular floor. As a so-
lution we propose three different mappings (called stance foot angle mapping,
rotation mapping and integration mapping) and show that integration mapping
is optimal for analysis. Furthermore, we introduce a new way to visualize the
relation between disturbances of different magnitude and the states on the
Poincaré section. This opens a new way of analyzing the walker’s behavior.
We show the effectiveness of the proposed methods by means of a simple sim-
ulation experiment.

23
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2.1 Introduction

For more than two decades already people have researched passive dynamic
walking. A passive dynamic walker is a mechanical system that, when ‘launched’
from a gentle slope, can exhibit stable walking behavior (McGeer, 1990b). There
are no actuators in the system; all energy needed for walking is obtained from
gravity’s potential field. For quite a large range of parameters stable walking can
be achieved, but the robustness of these walkers is very poor (i.e., if the walker is
not started ‘close to the periodic trajectory’, it falls).

For analyzing the behavior of passive dynamic walkers, the notions of Poincaré
section, and basin of attraction are often used. Although these have been studied
intensively in the past (by Goswami et al. (1998); Liu et al. (2007); Schwab and
Wisse (2001) and more), we found that they were often only loosely defined; usu-
ally just by a sentence that only intuitively makes sense1.

In this chapter we will define the Poincaré section and the basin of attraction in
a more formal manner, and show that this has implications if one wants to use
them on irregular floors. Secondly, we show the relation between points on the
basin of attraction and various disturbances. This helps in understanding how
various disturbances influence the gait.

This chapter is organized as follows. At the end of this introduction, we intro-
duce two walker models that we will use throughout the chapter and spend some
words on irregular floors. In section 2.2 we introduce the equations that describe
the behavior of the walkers. Then, in section 2.3 we give a definition of the Poin-
caré section. It also contains the main contribution of this chapter: the description
of how to deal with irregular floors and the Poincaré section. In section 2.4 we
give a definition of the basin of attraction and discuss the usage of the area of
basin of attraction as a measure of robustness. Section 2.5 contains the second
contribution of this chapter, being the relation between points on the basin of at-
traction and various disturbances. Finally, in section 2.6 we show by means of
some experiments the usage of the methods.

2.1.1 Test models

In this chapter, we use two different 2D walker models for our simulations. These
are described below. The first walker model is the model used by Garcia et al.
(1998). It is a compass walker model (no knees) with point feet, a unit point mass
M at the hip, very small foot mass (m � M), having unit length legs, walking

1A notable exception is the work by Grizzle et al. (2001), which thoroughly defines the Poincaré
section. His definition however, is incompatible with irregular floors.
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Figure 2.1: The two walker models used in this chapter. a) the ‘first walker model’; b) the
‘second walker model’.

Parameter Name Model 1 Model 2 Unit

Hip mass M 1 1 kg
Leg mass m 10−4/0∗ 0.5 kg
Additional leg inertia I 0 0.02 kgm2

Center of mass c 1 0.5 m
Leg length l 1 1.2 m
Foot radius r 0 0.2 m
Gravity g 1 1 m/s2

Slope angle γ 0.009 0.01 rad
∗ In order to avoid numerical problems, a leg mass of m =
10−4 kg was used for the integration of f . For the impact equa-
tions g a leg mass of m = 0 kg was used (see also section 2.2).

Table 2.1: Parameters of the two walker models used in this chapter (see also figure 2.1)

down a gentle slope in a unit gravity field. Foot scuffing is ignored, ground con-
tact is assumed rigid, and no slip occurs. The walker has no inputs; it is fully
autonomous.

The second walker model is a slightly extended model, featuring arc-shaped feet,
non-negligible leg mass and leg inertia. Note that the first model is a special case
of the second model; it can be obtained by setting the appropriate parameters to
zero. Figure 2.1 and table 2.1 summarize both models.

We used Matlab to simulate the walkers. Our code is based on Matlab code by
Pranav Bhounsule (Ruina, 2010).
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Figure 2.2: The second walker model experiencing a step-down of height hi on an irregular
floor.

2.1.2 Irregular floor

In this chapter, we consider walkers walking on ‘irregular floors’. We model the
floor as follows. A floor has a fixed slope γ and consists of piecewise constant-
height parts, placed such that during stance-phase, the stance foot will always
stay on the same part (i.e., it will not roll onto a new part of different height);
see figure 2.2. Any parts on which the walker will not step (dotted in the figure)
are considered unimportant and are not modeled at all. More specifically, we do
not consider collisions between the swing foot and these parts. Hence, the floor
is fully specified by one unique slope γ and, for each step, a step-down of height
hi ∈ R, being the height difference between the two parts that will support the
walker.

We define a flat floor as a floor that has hi = 0 ∀i. Note that a flat floor is not
necessarily horizontal (it can have a non-zero γ). In our definition, the flat floor
is the opposite of an irregular floor. We usually will consider a floor that only has
one non-zero step-down; and therefore we will omit the subscript i.

2.2 Dynamic equations

The state space of each of the models is X = TS2 (the tangent of the 2-sphere S2),
i.e., the state can be denoted as x = [θ1 θ̇1 θ2 θ̇2]

T .

During swing phase, the evolution of the state can be described by a continuous-
time differential equation (the equations of motion):

ẋ = f (x), (2.1)
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where f is a nonlinear continuous function. The exact equations of motion for
the first model are written out in (Garcia et al., 1998). Note that during normal
walking, θ̇1 < 0. As soon as the swing foot hits the floor (‘heelstrike’ or ‘impact’),
the state is instantaneously reset using the impact equations

x+ = g(x−), (2.2)

where x− and x+ denote the state just before and just after the moment of impact
respectively and g is a continuous function. The impact equations also effectuate
the leg-relabeling. The post-impact velocities θ̇+1 , θ̇+2 are linear in θ̇−1 and θ̇−2 .

On a flat (i.e., non-irregular) floor, the moment of impact is when x ∈ S0, where

S0 = {x ∈ X | θ2 = 2θ1, both legs on the ground
−π < θ2 < 0, stance foot behind swing foot
θ̇1 < 0, forward movement
θ̇2 < 2θ̇1 swing foot goes down}.

(2.3)

In the field of hybrid systems, S0 ⊂ X is called the switching surface, and the
impact equations g are seen as a function g : S0 → X . We define S?• as the image
of g when applied to S•; i.e., by definition X ⊃ S?0 = {g(x−)|x− ∈ S0}. In
the case of irregular terrain, a step down or obstacles, the switching surface is
different. For example, when experiencing a step-down of height h, the moment
of impact (and thus the switching surface) for both walker models is

Sh = {x ∈ X | (l − r) cos(θ2 − θ1) = (l − r) cos θ1 + h,
−π < θ2 < 0, θ̇1 < 0,
sin(θ2 − θ1)(θ̇2 − θ̇1)− sin θ1 θ̇1 < 0}.

(2.4)

In order for the impact equations g to be valid always, any switching surface S•
should be in the domain of g. Therefore we’d rather see g as a function g : X →
X , meaning that it can return, for any state x− a post-impact state x+ if the swing
foot would hit an object at that particular x−.

For later reference, we show the impact equations g of the first walker model
(contrary to for example the equations by Garcia et al. (1998), this is valid for any
x− ∈ X ):




θ1
θ̇1
θ2
θ̇2




+

=




1 0 −1 0
0 cos θ2 0 0
0 0 −1 0
0 cos θ2(1− cos θ2) 0 0







θ1
θ̇1
θ2
θ̇2




−

. (2.5)

The impact equations of the second walker model are a much more complex
function of θ2. Around the limit cycle, having x− ≈ [−0.19 rad,−0.26 rad/s,
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−0.38 rad,−0.016 rad/s]T , the numerical approximation of the impact equations
for the second walker model is:




θ1
θ̇1
θ2
θ̇2




+

=




1 0 −1 0
0 0.91 0 0.072
0 0 −1 0
0 0.20 0 0.070







θ1
θ̇1
θ2
θ̇2




−

. (2.6)

From (2.3) and (2.5) it can be deduced that S?0 has the following properties:

∀x+ ∈ S?0 : θ+2 = 2θ+1 , both legs still on the ground;
θ+2 > 0, swing foot behind stance foot.

(2.7)

Moreover, if the inter-leg angle satisfies −π
2 < θ−2 < 0 (which is normally the

case), then after impact the hip will move forward (θ̇+1 < 0). For−π < θ−2 ≤ −π
2 ,

the hip will move backwards and the robot will fall. This is a very rare situation.
For the other switching maps S?• , properties similar to (2.7) hold.

For certain floor angles γ the walkers show stable walking behavior: as time goes
to infinity, the walkers converge towards a specific periodic orbit, called the limit
cycle (when started close enough to it).

2.3 The Poincaré section

A Poincaré section is an open subset X̃ of a ‘slice’ of the state space with a dimen-
sion one lower than the dimension of the state space X . It should be transversal
to the flow of the equations of motion f , i.e., no trajectory generated by f may
have two consecutive points on X̃ . If well chosen, the state trajectory of a walker
passes the Poincaré section once per cycle. This gives the ability to do analysis
on a per-step basis; the kth step gives a point x̃k ∈ X̃ . One can define the stride
function St : X̃ → X̃ , a (Poincaré) map that, given the state x̃k of step k, returns
the state x̃k+1 of the next step k+ 1, if it exists (McGeer, 1990c). A fixed point x̃? is a
special point on the Poincaré section, having the property that it is mapped onto
itself by the stride function, i.e., St(x̃?) = x̃?. By construction, it is the intersection
of the Poincaré section and a limit cycle trajectory. More than one fixed point may
exist on a Poincaré section.

A convenient and heavily used choice for the Poincaré section is to choose the
set of all possible states at the start of a step, i.e., just after impact (denoted X̃+).
We will refer to this choice of Poincaré section as the post-impact Poincaré section.
Similarly, a Poincaré section consisting of the set of all possible states at the end of
a step, i.e., just before impact, will be referred to as the pre-impact Poincaré section
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equations of motion

x̃+k+1 = St(x̃+k )

X̃ +
= S ?

0

X̃ −= S0

x̃?

impact equations

Figure 2.3: The evolution of the walker’s state along the limit cycle (black line) consists
of two parts: the integration of the equations of motion and the instantaneous impact
equations. We consider a flat floor in this figure. The two planes shown are the pre-impact
Poincaré section X̃− and post-impact Poincaré section X̃+. In gray the application of the
stride function St is shown. Note that in reality the whole state space is four-dimensional
and the Poincaré sections are three-dimensional.

X̃−. For a flat floor (i.e., θ−2 = 2θ−1 ) , we have X̃− = S0 and X̃+ = S?0 . In
figure 2.3 the limit cycle, Poincaré sections and stride function are visualized.

2.3.1 Poincaré section and irregular terrain

The definition of the post-impact Poincaré section gives difficulty when walking
on irregular terrain or when considering step-down disturbances. The problem
is that the set of all possible states at the start of the step is different for each step
(i.e., S?h1 6= S?h2 for h1 6= h2), and because the Poincaré section should be identical
for each step, we cannot simply use X̃+ = S?• (hence the nice and thorough
results of Grizzle et al. (2001) will fail in this case). Taking the Poincaré section
to be the union of all switch map images ∪hS?h (which solves the problem by
making all possible post-impact states part of X̃+) is neither a solution because
this set is not transversal to f anymore (and it is a four-dimensional space instead
of three-dimensional).

In order to be able to do post-impact Poincaré analysis even on irregular floors,
we need

1. one single Poincaré section X̃+ that is used for all steps, and

2. a way to associate (for each floor disturbance h) with each point on S?h a
point on this X̃+; in other words, a mapping

Πh : S?h → X̃+. (2.8)
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Figure 2.4: Three different mappings from a post-impact state onto the Poincaré section
after experiencing a step down h. The thin line represents the walker’s state; the thick
line the output state of the mapping. a) Stance-foot-angle mapping ΠS: the swing leg is
rotated until it hits the ground as if it were flat; b) Rotation projection ΠR: the walker is
rotated until the swing foot hits ground; c) Integration projection ΠI: the walker’s state is
integrated forward or backward in time until the swing foot hits the ground.

A natural choice for X̃+ would be to take the Poincaré section for undisturbed
steps, thus X̃+ = S?0 .

If the sections S?h and X̃+ are close to each other, a simple projection map may
suffice. We introduce two possibilities:

• Stance-foot-angle mapping ΠS:

ΠSh = [θ1 θ̇1 θ2 θ̇2]
T 7→ [θ1 θ̇1 2θ1 θ̇2]

T , (2.9)

i.e., we leave the stance foot angle as it is and adjust the inter-leg angle to
satisfy the constraints of (2.7).

• Rotation mapping ΠR:

ΠRh = [θ1 θ̇1 θ2 θ̇2]
T 7→ [ 1

2 θ2 θ̇1 θ2 θ̇2]
T , (2.10)

i.e., we leave the inter-leg angle as it is and rotate the whole walker around
the stance foot to satisfy the constraints of (2.7).

From figure 2.4a and b it is obvious that the results of the two mappings may
differ significantly, and the rotation mapping looks much better intuitively. Con-
sider a post-impact state x+ ∈ S?h and its image x̃+ = Πh(x+) ∈ X̃+. The best
mapping function Πh would be the function that minimizes the ‘distance’ be-
tween the evolution of the equations of motion f starting at x+ and the evolution
of f starting at x̃+ for all x+ ∈ S?h . Now for h < 0 (a step-up), the evolution of
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Figure 2.5: State space view of a walker experiencing a step-down. Heelstrike does not
occur on the pre-impact Poincaré section X̃−, but a little later, on switching surface Sh.
Consequently, the post-impact state x+ will not be at X̃+, but at S?h . For Poincaré analysis,
we need to map the post-impact state onto X̃+. The three different mappings described in
the text are shown.

f starting at x+ crosses the hyperplane X̃+. From the intersection point on, the
evolution of f starting from that point and continuation of the original trajectory
are identical, and therefore the mapping that maps x+ to the intersection point is
the best mapping there is, i.e., it is optimal in this sense. We will call this mapping
integration mapping ΠI and define it as follows:

ΠIh = x+ 7→
∫ t1

t0
f (x(t)) dt (2.11)

where x(t0) = x+ and t1 is the moment x(t) crosses X̃+ (i.e., θ2 = 2θ1). In the
case of h > 0 (step-down), the integration should be done backwards in time,
again until x(t) crosses X̃+. This is shown in figure 2.4c. Note that all mapping
equations are invariant for h and therefore, we will omit the h-subscript from now
on. In figure 2.5 the three mappings are shown.

A special case occurs when the walker experiences a step-up but has not enough
forward velocity to reach the point where x(t) crosses X̃+ (see figure 2.6a). Then
the walker will fall and (2.11) has no solution. This situation can be detected by
looking for a sign change in the vertical velocity vy f of the swing foot during
integration of (2.11); this occurs if

vy f = sin(θ2−θ1)(θ̇2 − θ̇1)− sin θ1 θ̇1 = 0. (2.12)

The total structure can be described as a fiber bundle (Bullo and Lewis, 2004),
where ∪hS?h is the total space, X̃+ is the base space and Π is the mapping π
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a

h

b

h

θ1<0

Figure 2.6: a) This walker has experienced a step-up and has not enough velocity to get
its swing foot to cross the ‘flat floor’. Obviously, the walker will fall. The dashed line is
the trajectory of the swing foot. b) This walker has experienced a large step-down and its
post-impact state is already past mid-stance. Therefore, during the following step, it will
not pass X̃M anymore.

to the base space. In the case of integration mapping, each fiber π−1(x) is the
evolution of f through x.

Apart from the already mentioned pre-impact and post-impact Poincaré sections,
any other Poincaré section can be defined along the trajectory of the walker. An
example is the mid-stance Poincaré section X̃M = {x ∈ X | θ1 = 0, θ̇1 < 0}
which was used for example by Rummel et al. (2010). In practice, this Poincaré
section does not suffer from the problem of needing mappings; all normal steps
pass through this section exactly once (an unconventionally high step-down may
however cause the walker to have a post-impact state where the stance leg has
already past θ1 = 0 however; see figure 2.6b). This seems like an advantage, but
actually there is not much difference: in both cases (post-impact or mid-stance
Poincaré section) you have to integrate the equations of motion from the post-
impact state to the Poincaré section.

2.3.2 Dimension of the Poincaré section

Generally, the Poincaré section is one dimension smaller than the state space. In
the case of our walker having a four-dimensional state space, it is thus three-
dimensional. When considering the post-impact Poincaré section of the first
walker model however, it can be shown that the part of the post-impact Poin-
caré section that is actually covered (the image of (2.5)) is only a two-dimensional
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Figure 2.7: For the first walker model walking on a flat floor, the image of the impact
equation (2.2) (i.e., the set of actual values that the post-impact state can take) is a two-
dimensional slice within the three-dimensional Poincaré section. The mesh shown was
obtained by applying (2.5) to a grid of x− = [θ1 θ̇1 2θ1 0]T with θ1 ∈ [−π/4 . . . 0 rad] and
θ̇1 ∈ [−0.8 . . . 0 rad/s]. On top of the mesh the (quite small) basin of attraction is plotted as
a black patch. At the bottom of the graph, the projection onto the (θ+1 , θ̇+1 ) plane is shown.
This is the commonly used way of visualizing the BOA.

manifold in the four-dimensional state space if the walker walks on a flat floor2

(i.e., θ−2 = 2 θ−1 ), being



θ1
θ̇1
θ2
θ̇2




+

=




− 1
2 θ−2

cos θ−2 θ̇−1
−θ−2

cos θ−2
(
1− cos θ−2

)
θ̇−1


 ;

θ−2 ∈ (−π, 0)
θ̇−1 ∈ R−

. (2.13)

The shape of the covered part of the Poincaré section is shown in figure 2.7. Also
shown is the basin of attraction, see section 2.4. The fact that (in the case of a
flat floor) only a two-dimensional part of the Poincaré section is covered was
also mentioned in other publications, but we have not found any reference to the
actual shape of the manifold (for example, Schwab and Wisse (2001) just omit-
ted the third and fourth dimension and described the stride function as a map
[θ+1 , θ̇+1 ]k+1 = St([θ+1 , θ̇+1 ]k). The value of θ̇+2 was not discussed at all).

2Garcia et al. (1998) and Norris et al. (2008) have also mentioned this fact. However, they attribute
this to the fact that the matrix in (2.5) can be written as a rank 2 matrix if one assumes that θ−2 =

2 θ−1 . This is not exactly the truth (the reason is that the matrix itself depends on the variables as
well). Although it is a necessary condition to have rank ≤ 2 (if it should be valid for any x−), it is
not sufficient. A necessary and sufficient condition is that there exists a coordinate transformation
z = Φ1(x) such that g expressed in z depends only on two coordinates and there exists no coordinate
transformation y = Φ2(x) such that g expressed in y depends only on one coordinate.
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Regarding the second walker model, inspection of (2.6) shows us that, at least
near the limit cycle, the post-impact state is dependent on θ̇−2 as well. This is due
to the non-zero moment of inertia of the legs. More precisely, when assuming
walking on a flat floor (θ−2 = 2 θ−1 ), we can write the matrix equation (2.6) only as
a rank 3 matrix equation, being




θ1
θ̇1
θ2
θ̇2




+

=




0 0 −1/2 0
0 0.91 0 0.072
0 0 −1 0
0 0.20 0 0.070







θ1
θ̇1
θ2
θ̇2




−

.

Therefore (see also footnote 2), the covered part of the Poincaré section is not two-
dimensional anymore; in theory it covers the whole 3D Poincaré space. However,
around the limit cycle, θ̇−2 is much smaller than θ̇−1 , and the numbers in the last
column of the matrix in (2.6) are much smaller than those in the second column.
Therefore, in practice the influence of θ̇−2 can be considered small, and the covered
part of the Poincaré section for this walker is a thin three-dimensional slice in X̃+.

2.4 The basin of attraction

2.4.1 Definition of the basin of attraction

In walking robot literature, two different interpretations of the basin of attraction
(BOA) are used, which can be defined as follows:

1. The basin of attraction B of a walker is the set of all states in the full state
space X that, when the walker is started in that state, result in an endless
forward walking motion, i.e.,

B = {x ∈ X |endless walking motion when started in x},

and

2. The basin of attraction B̃ of a walker is the set of all states in the Poincaré
section X̃ that, when the walker is started in that state, result in an endless
forward walking motion, i.e.,

B̃ = {x ∈ X̃ |endless walking motion when started in x}.

Note that B̃ = B ∩ X̃.

An example of the usage of the first interpretation can be found in Spong and
Bhatia (2003); the second interpretation is used in for example Wisse et al. (2004).
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Figure 2.8: The basin of attraction B is a tube around the limit cycle. The intersection with
a Poincaré section gives a Poincaré basin of attraction B̃.

In many papers however (e.g., Schwab and Wisse (2001); Hobbelen and Wisse
(2007); Liu et al. (2007); Wang et al. (2010)) the two interpretations are mixed up:
at first the BOA is introduced using the first interpretation, but then it is used
using the second.

Usually, from the context it is clear which definition is being used. In case of
doubt, one can use the terms global basin of attraction and Poincaré basin of attrac-
tion. The second definition is the most used, because it allows easy analysis of the
system. We will adopt this and we use the Poincaré basin of attraction in the rest
of this chapter. Figure 2.8 shows the two different basins of attraction and their
relation.

2.4.2 Comparison of basins of attraction

A plot of the basin of attraction may look attractive, but what is its usefulness
in judging the robustness of a walker? Many researchers consider the basin of
attraction to be some measure of robustness; by comparing two basins of attrac-
tion of different walkers, they try to determine which of the two walkers is most
robust. Usually it is assumed that a larger basin of attraction implies better ro-
bustness, i.e., the ‘volume’ of the BOA is taken as a measure for this (Jeon et al.,
2010; Liu et al., 2007).
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In most cases, comparing the basins of attraction of two different walkers is not
meaningful: from the basin of attraction one cannot immediately tell which one
is ‘better’. We can explain this with an easy contradictory example.

Consider two walkers, A and B. Assume that walker B moves twice as fast as
walker A and that the basin of attraction of walker B is the same as that of walker
A but stretched a factor of two in the velocity direction. If we consider the volume
of the BOA’s as a measure of robustness, we may conclude that walker B is twice
as robust as walker A. However, if we would normalize the plots relatively to the
fixed point x̃?, we would conclude that both robots are equally robust. Thus, our
conclusion depends on our choice of representation and not solely on the walker
properties.

Mathematically speaking, considering the volume of the BOA makes no sense at
all. This is because the BOA is a subset of X = TS2, and a thing as a volume is
not defined on TS2. We could abuse the fact that TS2 is locally homeomorphic to
R4 to define a volume for a small part of the domain, but then the volume will
be dependent on the homeomorphism used. In the case of our simple walkers
(figure 2.7), the unit of the volume (assuming the mis-use of the homeomorphism)
is rad3/s2, which is physically not something meaningful. Furthermore, if we
would use different coordinates, the volume measurement would change too. In
other words, the ‘volume’ of the BOA is not an intrinsic property of the walker, it
is influenced by the choice of coordinates. Even worse: by sticking strictly to this
‘definition’, we would conclude that the first walker is not robust at all because
the volume of its basin of attraction is zero (a 2D surface in a 3D space has no
volume).

In practice however, in some cases it may still be meaningful to compare two
different basins of attraction: if two very similar walkers have the same fixed
point x̃? and the same coordinates and homeomorphism are used. An example is
if we have one robot and test different closed-loop controllers on it. It is required
then, however, that all controllers act identically when the walker is in its limit
cycle (otherwise, the different set-ups still have different fixed points).

2.5 Relation between BOA and disturbances

The assumption is often made that a larger basin of attraction directly implies
a more robust walker. Intuitively this sounds reasonable: if a larger part of all
possible states is inside the BOA, then the chances are higher that the visited states
are inside. The thing that we are interested in however, is not purely ‘how much
of the states’ is within the BOA, but much more something like ‘how much of the
important states’ is within the BOA. In other words: it does not help to make
the basin of attraction larger if the majority of the added states is never reached
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anyway. Therefore, it is interesting to know which part of the Poincaré section
is covered during normal walking (with disturbances). Below we present a new
way of visualizing the relation between the Poincaré BOA and disturbances: a
curve on the Poincaré section, associated with the disturbance.

Let us investigate some disturbance (e.g., an impulsive torque around the stance
ankle just after the start of the step, or a step-down) with magnitude d ∈ R.
When experiencing a disturbance (i.e., d 6= 0), the walker will deviate from its
limit cycle, and thus cross the post-impact Poincaré section at a point x̃(d) 6= x̃?.
We can draw a curve consisting of all points {x̃(d)|d ∈ R}. By definition, this
curve fully lies in the covered part of the Poincaré section and it includes the fixed
point x̃? (for d = 0). If and only if the disturbance is such that the walker will not
fall, then the point x̃(d) lies within the basin of attraction. For large disturbances,
the walker cannot complete a full step (e.g., for a large step-up the swing foot will
never reach the floor level after foot-scuffing), so not for each d there exists a x̃(d).

As an example we inspect the following disturbances on the walker:

• An impulsive torque p ∈ R around stance ankle just after the start of the
step; the maximum value P such that the walker survives a constant impul-
sive torque of each −P < p < P is said to be a measure of robustness; the
larger P, the more robust the walker against this type of disturbance. This
disturbance can also be interpreted as being an impulsive backward push
at the hip just after the start of the step.

• A step-down h ∈ R; The maximum value H such that the walker survives
a step down of each −H < h < H is said to be a measure of robustness; the
larger H, the more robust the walker against this disturbance. In order to
use the Poincaré section, we used the integration mapping ΠI.

Figure 2.9 shows the curves of the two types of disturbance on top of the basin
of attraction of the second walker model. By using this method, we immediately
see that when considering these two disturbances, only a small part of the basin
of attraction is important for the practical robustness of the walker; the whole
lower-right part is never reached by any of the disturbances.

So we learned that if we want to make the walker more robust against these dis-
turbances by extending the basin of attraction (e.g., by applying control), then we
should focus on extending the top part.

The relation between basin of attraction and permanent disturbances (such as pa-
rameter change, joint friction or a different slope) can not be investigated through
this method. The reason is that a walker with a permanent disturbance has a
different limit cycle and a different basin of attraction than the original walker.
Therefore, comparison of the disturbance to the original basin of attraction has
no meaning.
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Figure 2.9: The relation between post-impact basin of attraction (red) and disturbances
of different type and magnitude on our second walker model. The basin of attraction is
actually a three-dimensional volume (not a slice); shown here is the projection onto the
θ+1 θ̇+1 -plane. It can be observed that only a small part of the basin of attraction is actually
visited when considering these disturbances. The fixed point is encircled in the plot.
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Figure 2.10: The covered part of the basin of attraction of the first walker model, with
overlaid the line representing all states corresponding to a step-down (using the integra-
tion mapping method). The thick points on the line correspond to h = {. . . ,−2,−1, 0,
1, 2, . . . }mm.
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2.6 Experiments

In order to test the above ideas, we investigated the step-down event of the first
walker model (which is known to have bad robustness against step-downs) in
more detail. Firstly, we made a one-step simulation of different step-downs in
the range of −0.01 to 0.01 m and overlaid it on the basin of attraction. The result
is shown in figure 2.10. It can be observed that the major part of the step-downs
leads to a fall. An interesting thing is that the intersection of the line and the
basin of attraction seems to be non-continuous; it spans the following ranges:
[−0.7 . . . 1.5 mm], [2.1 . . . 2.3 mm] and a very small region around 2.5 mm. In or-
der to verify this, we simulated two walkers experiencing a step-down of 1.8 mm
(should fall) and 2.2 mm (should walk) respectively. The walkers were started
from the fixed point and after a few steps the step-down was applied. Figures 2.11
and 2.12 show the results. Indeed the expected behavior can be observed. Note
that this behavior is consistent with results from Hobbelen and Wisse (2007).

2.7 Conclusions and future work

In this chapter we have introduced a way to deal with Poincaré sections in the
case of an irregular floor. We have shown that the image of the switching surface
S? can not be used as a Poincaré section in that case, because for each drop in floor
height h this surface is different. We introduced three different mappings from
any switching surface S?h to some Poincaré surface X+ = S?0 (i.e., as Poincaré
section we chose the image of the switching surface belonging to a zero-height
step-down). We showed that the integration mapping ΠI is the optimal mapping
in the sense that for some state x, ΠI(x) gives the most accurate information on
the future behavior of the system.

Furthermore, we introduced a way of relating different types of disturbance to
curves on the Poincaré section. If we evaluate the reaction of the walker at a
few different magnitudes of a certain disturbance, and connect the thus obtained
points on the Poincaré section, we get a curve associated with the disturbance.
This curve necessarily goes through the fixed point and it gives insight in how
the system will behave as a response to the disturbance. As an example, we
showed the curves for two different disturbances, and by means of an experiment
we showed that this method indeed provides good information on the expected
behavior of the walker.

As for future work, the mapping to the Poincaré section gives us the ability to
work with the Poincaré section and its derivative tools (e.g., the stride function,
the linearization thereof, and the basin of attraction) in the case of irregular floors,
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Figure 2.11: The stance leg angle θ1 and inter-leg angle θ2 (as a function of time) of the first
walker model experiencing a step-down of 1.8 mm. After the step-down (encircled), the
walker stumbles for three steps and then falls forward.
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Figure 2.12: The stance leg angle θ1 and inter-leg angle θ2 (as a function of time) of the
first walker model experiencing a step-down of 2.2 mm. After the step-down (encircled),
the walker stumbles a little, but it keeps walking; eventually converging to the limit cycle
again.
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which opens a new field problems and solutions to be explored.

A natural extension to the (1D) curves associated with a disturbance is to intro-
duce 2D planes associated with two disturbances. For example, one can make a
combination of two different disturbances during the same step and check if they
reinforce each other or cancel each other out. Another interesting feature would
be to create a surface of the response to two sequential step-downs.
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Chapter 3

Coordinate transformation as a help
for analysis, simulation and

controller design in walking robots

The contents of this chapter has not been published before.

Abstract—In this chapter we show how a change of coordinates—in particu-
lar, the choice of the stance foot as reference body—can facilitate both model
analysis and controller design for humanoid robots. Firstly, it is shown what
the coordinate transformation looks like, all in directly applicable equations.
Then a few examples are given of things that become easier due to the coordi-
nate change.

43
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3.1 Introduction

In robotics it customary to describe the mechanics of the robot by means of a
model. The model consists of the state (pose and velocity of each part of the
robot) and equations of motion that tell how the state evolves in time.

In order to do calculations, the state needs to be expressed in numbers. For mobile
robots, usually the pose and velocity of one body (called the reference body in
this chapter) are taken as numerical entries in the state, as well as the (angular)
positions and velocities of all joints. For walking robots the most obvious choice
is to take the torso as reference body. This is often convenient because

1. the notion of ‘position of the robot’ is, intuitively, more related to the posi-
tion of the torso than to to any of the other parts, and

2. it is symmetric with respect to left and right steps.

Sometimes however, it is useful to choose a different reference body, for example
the stance foot. Advantages of this choice of reference body are, amongst others:

1. During normal walking, the stance foot is standing still on the ground. So,
the reference body is fixed and its velocity is zero. This makes analysis of
the system easier.

2. Forces acting on the reference body appear directly in the equations of mo-
tion. Choosing the stance foot as a reference body thus implies that ground
reaction forces can easily be handled.

3. As will be shown in section 3.3.3, the form of the mass matrix in stance foot
coordinates is much more useful than the original mass matrix.

More than in other literature, we explicitly denote how (in which coordinate rep-
resentation, with respect to which body etc.) all elements of the equations are
expressed. The reason for that is twofold. Firstly, the whole point of this chapter
is in the difference between different representations. Therefore, it is important
that there can be no confusion about which representation is used. Secondly, by
explicitly denoting these things, it is easier to directly implement the equations,
lowering the chance of mistakes.

In this chapter we combine some well-known principles (state representation,
non-linear coordinate transformation and analysis tools from walking robots).
We will show that, when using coordinate transformations, analysis algorithms
on walking robots can become much easier, reducing the chance of errors when
implementing. This is especially useful for actual realization of analysis algo-
rithms in robot prototypes. Usually, in such prototypes, the state of the robot is
calculated in only one representation. The equations in this chapter are ready-to-
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Figure 3.1: A rigid body mechanism floating in space.

use for transforming the state into another representation. The individual results
in this chapter are not new, but the bundling can be helpful for those who are
working hands-on with walking robots.

Basically, this chapter deals with ‘just mathematical manipulation’: everything
we do here can also be done without coordinate transformation of the dynamics
(transforming the controller instead). In many cases however, our method gives
more insight and less chance to errors because it allows the user to see the model
in the way he wants when developing a controller.

The chapter is structured as follows. Section 3.2 present a general representation
of a rigid body system with its equations of motion, and then gives explicit equa-
tions for the coordinate transformation. In section 3.3 we present a few applica-
tions that, with the proper coordinate transformation, become easier to handle. A
few notations used in this chapter, as well as some important identities, are listed
in the appendix 3.A.

3.2 Coordinate transformation of the robot’s dynamic
equations

3.2.1 Dynamic equations of a floating rigid-body system

Consider a 3D, (n + 1)–body, n–joint system that is floating in space (figure 3.1).
We assume that all joints are rotational. This system has N = 6 + n degrees of
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freedom. If we choose some body ‘a’ as the reference body, the system’s configu-
ration can be denoted as

Q(a) = (Hw
a ; q) , (3.1)

where Hw
a ∈ SE(3) denotes the pose of reference frame Ψa rigidly connected to

body a (the superscript ‘w’ means that it is expressed in world coordinates), and
q ∈ Rn denotes the vector of all joint angles. The subscript in parentheses in Q(a),
indicates that we chose body ‘a’ as reference body. We will use this convention
throughout the whole chapter.

We define the generalized velocity vector v(a) (again with body ‘a’ as reference
body) as

v(a) :=
(wTw

a
q̇

)
(3.2)

where wTw
a is the twist (Featherstone, 2007) of the reference body ‘a’, relative to

the world frame Ψw, expressed in world coordinates of Ψw. The relation between
wTw

a and the evolution of Hw
a is given by

wT̃w
a = Ḣw

a Ha
w (3.3)

where T̃ ∈ se(3) is as in (3.36). Note that v(a) is not the time derivative of Q(a),
but there is a linear, bijective mapping between them:

v(a) = Φ(a)(Q(a)) Q̇(a). (3.4)

We can write for the kinetic co-energy of the system:

E∗(q, v(a)) =
1
2 vT

(a) M(a)(q) v(a) (3.5)

where M(q) is the mass matrix of the system. An explicit expression for M(q) is
given by Stramigioli et al. (2009). Note that E∗ is independent on the pose H of
the reference body. The generalized momentum of the system can now be defined
as

P̄(a)(q, v(a)) :=
(wP

p(a)

)
= M(a)(q) v(a) (3.6)

where wP is the total momentum screw of the system (independent on the choice
of reference body) expressed in world coordinates, and p(a) are the momenta as-
sociated with the system’s internal joints (these are dependent on the choice of
reference body).



Coordinate transformation 47

Using the above we can write the dynamic equations of the system in a gravity
field as

˙̄P(a) = C(a)(Q(a), P̄(a))P̄(a) + G(a)(Q(a)) + τ̄(a) (3.7)

where C(Q, P̄)P̄ is a vector containing centrifugal, Coriolis and other internal

components, G(Q) contains the gravitational forces, τ̄(a) :=
(wWa

τ

)
are the gen-

eralized forces collocated with v, such that τ̄T v equals the power flowing into the
system. By construction, the first six elements of τ̄, wWa, are the wrench (Feath-
erstone, 2007) on the reference body; the last n elements are the joint torques. An
external wrench acting on a different body (e.g., body i) can be described as the
linear combination

τ̄(a) =

(
I6×6(wJa

i
)T

)
wWi, (3.8)

where wJa
i = wJa

i (q) is the geometric jacobian, mapping the joint velocities to the
relative twist of body i:

wTa
i = wJa

i (q) q̇. (3.9)

By integrating (3.7) we find an expression for P̄ as a function of time. The veloc-
ity v can then be found with the inverse of (3.6), and finally the evolution of Q
by (3.3).

The matrices M, C and vector G contain the model information; obtaining them
can be hard. Fortunately, there are some modeling packages available that do
the job (Controllab Products B.V., 2011; Dynasim, 2011). In a real robot it is often
useful to have an accurate dynamic model of the plant available for the controller.
The equations for M, C and G can be directly copied from the simulation model
in that case.

3.2.2 The coordinate transformation

Presented here is a standard non-linear coordinate transformation, as explained
in many textbooks on non-linear dynamics, such as those by Isidori (1995) and
Nijmeijer and van der Schaft (1990). The equations are worked out for our special
case: a multi-link rigid-body system, having, amongst others, a torso (‘tor’) and
a stance-foot (‘stf’).

Assume that the variables and equations of motion are known in torso represen-
tation and we want to have the stance foot as our new reference body, i.e., we
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want to find the transformation that, given Q(tor), v(tor), τ̄(tor) and (3.7), results in
a Q(stf), v(stf), τ̄(stf) and new equations of motion expressed in these variables.

There exists a (bijective) non-linear mapping between the configuration represen-
tations Q(stf) and Q(tor):

Q(stf) =

(
Hw

stf
q

)
= S(Q(tor)) =

(
S̃ (Q(tor))

q

)
. (3.10)

The relation between v(stf) and v(tor) can be found by writing

v(stf) =

(wTw
stf

q̇

)
=

(wTw
tor +

wTtor
stf

q̇

)
=

(wTw
tor +

wJtor
stf q̇

q̇

)

= E(Q(tor)) v(tor)

(3.11)

with

E(Q(tor)) =

[
I6×6

wJtor
stf (q)

0n×6 In×n

]
. (3.12)

Note that E is always invertible.

The kinetic co-energy is, of course, independent on our choice of coordinates,
hence

1
2 vT

(stf) M(stf) v(stf) =
1
2 vT

(tor) M(tor) v(tor) (3.13)

which we can use to find the mass matrix and generalized momentum in new
coordinates (dependencies of Q(tor) are left out for brevity):

M(stf) = E−T M(tor) E−1, (3.14)

P̄(stf) = M(stf) v(stf) = E−T P̄(tor). (3.15)

We can now use (3.7) and (3.15) to find expressions for C(stf), G(stf) (dependencies
of Q(tor) and q̇ are left out again):

d
dt P̄(tor) = C(tor) P̄(tor) + G(tor) + τ̄(tor)

d
dt

(
ET P̄(stf)

)
= C(tor) ET P̄(stf) + G(tor) + τ̄(tor)

ET ˙̄P(stf) + ĖT P̄(stf) = C(tor) ET P̄(stf) + G(tor) + τ̄(tor)

(3.16)

so
˙̄P(stf) = E−T(C(tor)ET − ĖT)︸ ︷︷ ︸ P̄(stf) + E−TG(tor)︸ ︷︷ ︸+ E−T τ̄(tor)︸ ︷︷ ︸
˙̄P(stf) = C(stf) P̄(stf) + G(stf) + τ̄(stf).

(3.17)

An analytical expression for Ė can be found, as shown in appendix 3.B. With that,
all elements of the coordinate transform are known analytically.



Coordinate transformation 49

3.2.3 Interpretation of the coordinate transformation

The ‘conventional representation’ of the state, (Q(tor), P̄(tor)), is intuitive in the
sense that one usually thinks as ‘the pose and velocity of the robot’ as being ‘the
pose and velocity of the torso’. This is understandable; the torso is the largest and
heaviest part of the robot. The pose and velocity of the torso are directly available
in this representation of state, as Hw

tor and wTw
tor respectively.

The ‘stance foot representation’ of the state,
(
Q(stf), P̄(stf)

)
does not give any direct

information about the pose and velocity of the torso; instead it gives the pose and
velocity of the stance foot. Since the stance foot is usually stationary, the pose Hw

stf
does not change during one step, and the velocity wTw

stf is zero. What remains in
the state is only the joint angles and angular velocities. This is closely related to
the actual situation: as long as the robot is standing on one foot, it behaves just
like a fixed-in-the-world manipulator, having only rotational joints to take into
account.

One may see this situation as follows: as long as the stance foot has contact with
the ground, the foot may be considered to be rigidly connected to the ground.
Consequently, the apparent mass of the foot will be increased by the ground,
being infinite. Hence, the foot (with ground) is now the largest and heaviest part
of the robot, which justifies the choice of the stance foot as reference body.

3.2.4 The double support phase

When the robot is in double support phase, there is a constraint on the relative
movement of the two feet. This causes the number of usable degrees of freedom
of the robot to decrease. Therefore, any state representation with the original
number of degrees of freedom (N = 6+ n) is redundant. The equations of motion
can then only be solved by applying constraint methods such as Lagrangian mul-
tipliers, or by introducing stiff spring-damper systems that force the constraint to
be kept.

The coordinate transformation presented in this chapter is a bijective transforma-
tion, i.e., for each state representation (Q(tor), P̄(tor)) there exists one unique state
representation

(
Q(stf), P̄(stf)

)
and vice versa. Hence, both state representations

have the same number of degrees of freedom and are redundant in the double
support phase. Of course, the transformed state representation is as valid as the
original state representation (if the right constrains methods are applied), but the
nice properties (as explained in the next section) disappear. Therefore, the coor-
dinate transformation does not give any advantages (nor any disadvantages) in
the double support phase. In the next section we assume that one and only one
foot is on the ground.
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3.3 Applications

In this section, a few examples are given of how the above math makes life easier
for those who want to study bipedal walking.

3.3.1 Static analysis: joint torques and stability

Using (3.16), it is easy to find the joint torques needed to keep the robot static in
a particular pose (as mentioned earlier, this method only works for open-chain
systems, so the robot should have exactly only one foot on the ground). The
information is useful for checking if the actuators you have chosen will suffice
for this task. By setting ˙̄P(stf) and P̄(stf) to zero, we find

τ̄(stf) =

[
stfWstf

τ

]
= −Gstf(Q). (3.18)

The torques τ are the joint torques needed to keep the robot in the position. Equa-
tion (3.18) can be evaluated for a set of different poses, giving a set of required
torques. These are minimum requirements for the actuators (of course, dynamics
may add additional requirements to the actuators).

It is also interesting to check if the robot, in a certain static pose, does not fall over.
In addition to the above-mentioned joint torque conditions, a necessary condi-
tion is that the Foot Rotation Indicator1 (FRI) (Goswami, 1999) must be within
the convex hull of the stance foot (the two conditions together are sufficient as
well). The coordinate transformation directly gives us the necessary wrench on
the stance foot, stfWstf =

[
mx my mz Fx Fy Fz

]T . From this, the position of the FRI,
expressed in coordinates of the stance foot’s reference frame, can be found to be
(see also (3.33))

stf pfri =



−my/ fz
mx/ fz

0


 . (3.19)

Checking to see if the FRI is within the stance foot’s convex hull is now easy
because the FRI is already expressed in convenient coordinates. For example, if
we consider a rectangular foot with length l and width w, the conditions for the

1The Foot Rotation Indicator is defined as the “point on the foot/ground surface, within or outside
the support polygon, where the net ground reaction force would have to act to keep the foot stationary”
(Goswami, 1999).
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FRI being within the convex hull are

−l/2 < −my/ fz < l/2 and (3.20)

−w/2 < mx/ fz < w/2. (3.21)

3.3.2 Rigid foot contact

When simulating a walker, there are two options to model foot contact with the
ground: compliant and rigid (Gilardi and Sharf, 2002) contact modeling. Compli-
ant contacts are easier to model, but may be inaccurate and increase simulation
time because they introduce high-frequency dynamics. Rigid contacts are gener-
ally faster in simulation but need more sophisticated math. In the field of bipedal
walking, rigid contacts are usually assumed to be inelastic, which is also assumed
here. Furthermore, we assume that the foot is exactly parallel to the ground dur-
ing the collision (i.e., all edges of the foot touch simultaneously). The process of
simulating foot contact by means of a rigid contact model consists of three phases:

1. collision, by means of an impulsive ground reaction force,

2. ‘resting contact’, by means of a ground reaction force usually calculated
with the aid of Lagrangian multipliers, and

3. contact loss.

These three phases are described in more detail below.

Stramigioli et al. (2009) explained how the impulsive ground reaction force τ̄(a) =( aWa
τ

)
= AT

(a) λ(P, Q) δ(t− ti) (where δ(t− ti) indicates a Dirac pulse at impact
time ti) can be found that brings the foot velocity wTw

stf to zero instantaneously in
a coordinate system with arbitrary reference body a:

λ = −(A(a) M−1
(a) AT

(a))
−1 A(a) M−1

(a) P̄−(a), (3.22)

where A(a) = A(a)(q) =
[
I6×6

wJa
stf
]

and P̄−(a) is the generalized momentum vec-
tor just before impact. This leads to the post-impact momentum

P+
(a) =

(
I − AT

(a)(A(a)M−1
(a) AT

(a))
−1 A(a)M−1

(a)

)
P−(a) (3.23)

and, by v+(a) = M−1
(a) P+

(a) and similar for v−(a), we obtain

v+(a) =
(

I −M−1
(a) AT

(a)(A(a)M−1
(a) AT

(a))
−1 A(a)

)
v−(a). (3.24)

When we choose the coordinate system with stance foot as the reference body,
then (because by construction wJstf

stf = 0) matrix A reduces to the constant matrix
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A =
[
I6×6 06×n

]
and thus τ̄(stf) =

( stfWstf
τ

)
=
(

λ(P,Q) δ(t−ti)
0

)
. This indicates

that, when simulating an impact which instantaneously brings the foot velocity
to zero, only an impulsive wrench on the stance foot is exerted, no joint impulses
are generated by the impact. This is logical, because what is actually simulated
is the just the impulsive force the ground exerts on the foot. Note however, that
the impact does affect the velocities of the joints, which can be seen by closer
inspection of (3.24).

Keeping the stance foot in place after it made contact with the ground can be
done by using the technique of lagrangian multipliers. An expression for the
acceleration a(stf) = v̇(stf) of the system is:

a(stf) =

[
stfṪw

stf
q̈

]
= Ṁ−1

(stf)P̄(stf) + M(stf)
˙̄P(stf). (3.25)

We can rewrite (3.16) as (where all A = A(stf))

˙̄P(stf) = C(stf)P̄(stf) + G(stf) + A′Tτ + AT stfWstf (3.26)

where A is as above and A′ is its ‘opposite’: A′ =
[
0n×6 In×n

]
. stfWstf is the un-

known ground reaction force (wrench) that keeps the foot from accelerating. We
demand that the first six elements of a(stf) are zero, i.e., Aa(stf) = 0. Therefore after
pre-multiplying (3.25) by A, setting it to zero, inserting (3.26) and reordering, we
find the wrench needed to keep the foot in place:

stfWstf = −(AMstf
−1 AT)−1(AṀ−1

(stf)P̄(stf)+

AM−1
(stf)(C(stf)P̄(stf) + G(stf) + A′Tτ)). (3.27)

In order to find stfWstf, we need the time derivative of M−1
(stf). Several techniques

are available to find this (Muller, 2007).

It is not guaranteed that the floor can indeed deliver this required force to keep
the foot stationary. If not, then the foot would accelerate and we would have
contact loss (or at least contact change, if the foot starts to rotate about an edge).
A good measure for detecting contact loss or change is the ‘foot rotation indicator’
(FRI) together with the sign of the local z-component of the ground reaction force
(Goswami, 1999).

Especially when considering multiple contacts or impacts during contact of an-
other part of the system, it becomes hard to find out when exactly there is contact
loss. As an example, when a rigid body system already has some contact point
while another points collides, the first point may or may not lose contact. This
problem is addressed by Ruspini and Khatib (1997), where Linear Complemen-
tarity Problem (LCP) solving is used.
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3.3.3 Mass matrix and P(I)D control

Using normal, fixed-coefficient PD or PID control (we will speak of PD control in
the remainder of this section for brevity) on joints has the following two disad-
vantages:

1. due to coupling in the system, a torque on one joint will influence the move-
ment of other joints as well, and

2. because the configuration of the robot is time-varying, the perceived inertia
of each joint changes all the time. Hence, the performance of a PD controller
on the joint will vary too.

By using the transformed mass matrix M(stf), these two problems can be over-
come.

Firstly, let us focus on the transformation of the mass matrix in a qualitative way.
Given a bipedal robot hanging in the air, with the torso fixed. Now, if we want
to give a foot some rotational acceleration, we need only a little actuator power
in the ankle to do so; we only have to accelerate the foot’s inertia. If we look at
the mass matrix M(tor), we will see that the associated element (M(i+6)(i+6) if the
ankle joint is joint i) is small.

Now if we make the robot stand on this leg, the same rotational acceleration re-
quires a much larger torque — the whole robot’s inertia needs to be accelerated
instead of only the foot’s (or, from a different perspective, the inertia of the foot
was increased by the earth’s inertia). This is something which cannot be deduced
from M(tor). However, this information is correctly given in M(stf): the associated
element M(i+6)(i+6) naturally reflects the relation between torque and achieved
rotational acceleration at all times.

The fact that we have a good representative of the mass matrix, gives us the op-
portunity to do true MIMO (multiple input, multiple output) control. Assume we
want to steer joint qi to a desired angle q̂i(t) with a PD-controller, such that the
controller’s contribution to the joint’s acceleration is q̈C,i = K (q̂i − qi) + D d

dt (q̂i −
qi). Furthermore, the controller should not influence the other joints, so q̈C,j = 0
for all j 6= i (other forces and controllers may accelerate the joints, though). The
joint torques τ needed to achieve the desired contribution to the acceleration on
all these joints can be found by

[
stfWstf

τ

]
= M(stf) q̈C (3.28)

where q̈C =
[
0 · · · 0 q̈C,i 0 · · · 0

]T , or
[

stfWstf

τ

]
=
(

M(stf)
)

col i q̈C,i (3.29)
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where
(

M(stf)
)

col i is the i-th column of M(stf). W indicates the additional ground
reaction forces resulting from the joint torques and can be used to estimate if
the desired acceleration causes the stance foot to move (which is generally un-
desired). By using this controller structure and the appropriate M, reflecting the
current state of the robot, we can tune the desired behavior (bandwidth etc.) once
by adapting K and D, and the performance of the controller will be the same, no
matter what state the robot is in.

Similarly, it is also easy to do complete feed-forward, i.e., calculating the required
torques τ̄(stf) from the desired accelerations: one uses (3.25) to determine the de-
sired ˙̄P(stf) and then (3.16) to find the torques. However, in the field of dynamically
walking robots, this is generally not desired; we want to use the natural dynamics,
not destroy it.

3.4 Conclusions and future work

In this chapter we have presented explicit equations for a coordinate transforma-
tion which changes the reference body for a free-floating rigid-body structure. We
showed, by means of some examples, that a change of reference body from torso
to stance foot is useful in analysis (section 3.3.1), simulation (section 3.3.2) and
control (section 3.3.3). The applications are not new, but they all become simpler
because of the coordinate transformation.

By means of the coordinate transformation, the state of the robot is represented
in a way that is ‘more closely to what actually happens’: interaction with the
environment (i.e., the ground), mainly goes through forces acting on the stance
foot; these forces are directly visible in τ̄(stf). As long as the stance foot has full
contact with the ground, the robot behaves like a fixed-to-the-world manipulator,
which is exactly reflected in the transformed state. When applying a torque on a
joint, the forces needed on the foot to make sure it stays on the ground can easily
be calculated (section 3.3.2) and actually have a meaningful interpretation: these
are really the forces that the ground exerts on the foot.

Future work will be twofold. Firstly, the ‘tools’ presented here will be used for
developing new robust walking controllers. Secondly, it is expected that more
sophisticated coordinate transformations may make other things easier, so we
will certainly have a look into that. Priority is to find meaningful coordinate
transformations for the double support phase.
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3.A List of mathematical notations and identities

Proofs of the identities below can easily be found or derived with the help of
textbooks on geometric dynamics such as (Featherstone, 2007).

H j
i = ‘Homogeneous matrix’, expressing the pose (position and

orientation) of frame Ψi in coordinates of frame Ψj.
(3.30)

cTb
a = Twist (generalized velocity) of body a relative to body b,

expressed in the coordinate frame of body c.
(3.31)

cWa = Wrench (generalized force) acting on body a expressed in
the coordinate frame of body c.

(3.32)

c pa = Position of point a expressed in coordinates of frame Ψc, (3.33)

x̃ =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 Same for p̃, ṽ and ω̃ (3.34)

H j
i =

[
Rj

j pj
i

0 1

]
⇔ AdH =

[
R 0

p̃R R

]
(3.35)

T =

[
ω
v

]
⇔ T̃ =

[
ω̃ v
0 0

]
(3.36)

T =

[
ω
v

]
⇔ adT =

[
ω̃ 0
ṽ ω̃

]
(3.37)

jT•• = AdH j
i

iT•• (3.38)

jW• = AdHi
j

T iW• (3.39)

jTc
a = jTc

b +
jTb

a (3.40)

3.B Analytical expression for Ė

The time derivative Ė can analytically be expressed as (the derivation is left be-
hind):

Ė =

[
06×6

wJ̇tor
stf (q)

0n×6 0n×n

]
, (3.41)

where the ith column of wJ̇tor
stf , denoted as

(wJ̇tor
stf

)
col i, (and associated with move-
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ment of joint i) is equal to
(wJ̇tor

stf
)

col i = ad
(

wTw
tor +

wJtor
∗(i) q̇

) (wJtor
stf
)

col i (3.42)

where ad(•) as in (3.37) and wJtor
∗(i) denotes the geometric jacobian of the ‘parent’

rigid body ∗(i) to which joint i is attached (e.g., in figure 3.1, joint 2 is attached to
body 1 so ∗(2) = 1).
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Geometric interpretation of the
Zero-Moment Point

This chapter is based on the following article (van Oort and Stramigioli, 2011):

Geometric interpretation of the Zero-Moment Point
Gijs van Oort and Stefano Stramigioli

Proc., IEEE International Conference on Robotics and Automation (ICRA’11)
pages 575–580, May 2011.

Abstract—In this chapter we show that the concept of screws and wrenches
gives us tools to geometrically establish the relation between the ground reac-
tion wrench and the Zero-Moment Point. In order to arrive at this, we show
how a wrench can be decomposed into separate components. The proposed
method gives a general, completely coordinate-free way to find the ZMP and
contributes in improving the geometrical insight.

57
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4.1 Introduction

The Zero-Moment Point, ZMP (Vukobratović and Borovac, 2004), is widely known
in the area of walking robots. Numerous researchers have investigated this point
and have given their own definitions and interpretations of it (for references, see
section 4.2). The theory on screws, introduced by Ball (1900) is a 6D generaliza-
tion of velocity and force, being the Twist and Wrench respectively. This approach
is coordinate-free, meaning that the equations and their results are invariant for
the choice of coordinates. The absence of coordinates gives greater flexibility (the
equations work for any orientation of the robot; they are not limited to a certain
pose in the world), reduces the chance of errors (e.g., one cannot be tempted to
make assumptions like ‘the robot will walk approximately in x-direction, so let’s
use the x-coordinate for the distance traveled’ because the lack of coordinates
implies that no x-direction was defined in the first place), and most importantly,
mimics what happens in nature: nature does not have coordinates at all; the laws
are completely dictated by the physics of the system, by nothing more. The con-
cept is also called ‘geometric dynamics’, emphasizing the fact that everything
follows from the geometric properties of the system (in a broad sense, e.g., geo-
metric mass and force distribution), not from the way you look at the system (i.e.,
which coordinates you use).

In this chapter we combine the knowledge of the Zero-Moment Point and screw
theory, to give a novel, geometric interpretation of the Zero-Moment Point. We
will show how the position of the ZMP can be found from the ground reaction
wrench (the generalization of the ground reaction force) and geometric rules on
wrench decomposition. This leads to more insight in the position of the ZMP and
how this relates to the ground wrench exerted on the foot.

The relation between ground reaction wrench and ZMP has been (indirectly) pre-
sented before (Takao et al., 2003; Park et al., 2005; Sardain and Bessonnet, 2004),
but without any discussion nor proof. The mathematical expression for the ZMP
has been known for over 40 years now, so in that sense the final result of this
chapter is not new. The insightful, graphical way of achieving the result however
is the real contribution of this chapter.

In sections 4.2 and 4.3 we introduce the key terms of this chapter further. We will
address some issues of the ZMP, and show how a wrench can be shown uniquely
in a graphical way. In section 4.4 we show and prove three ways of decomposing
a wrench into two separate components (analogous to decomposition of a force
into two components). In section 4.5 we present the main contribution of this
chapter, being the geometric relation between the ground reaction wrench and the
ZMP. In section 4.6 it will be shown that this leads to a simple explicit expression
for the ZMP position. Conclusions are discussed in section 4.7.
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4.2 The Zero-Moment Point

The Zero-Moment Point, ZMP, was introduced by M. Vukobratović and D. Juričić
around 1969 (Vukobratović and Juričić, 1968, 1969) (although the term ZMP was
only introduced a few years later). It should be noted that “. . . the notion of ZMP
has never been introduced in the form of a formal definition. . . ” (Vukobratović
and Borovac, 2004). This has given rise to dozens of researchers giving their own
definitions and interpretations to this point. In general, the definitions of the ZMP
can be divided into two groups:

1. Definitions in which the position of the ZMP is related to gravity and inertia
forces, e.g.:

• “The ZMP is defined as that point, on the ground at which the net mo-
ment of the inertial forces and the gravity forces has no component,
along the horizontal axes.” (Dasgupta and Nakamura, 1999),

• “The ZMP is the point on the ground where the tipping moment acting
on the biped, due to gravity and inertia forces, equals zero, the tip-
ping moment being defined as the component of the moment that is
tangential to the supporting surface.” (Sardain and Bessonnet, 2004),

2. Definitions in which the position of the ZMP is related to the ground-reac-
tion force acting on the robot, e.g.:

• “The ZMP (Zero-Moment Point) is defined to be a point on the ground
at which the tangential component of the moment generated by the
ground reaction force/moment becomes zero.” (Harada et al., 2003),

• “The pressure under supporting foot can be replaced by the appro-
priate reaction force acting at a certain point of the mechanism’s foot.
Since the sum of all moments of active forces with respect to this point
is equal to zero, it is termed the Zero-Moment Point (ZMP).”1 (Vuko-
bratović et al., 2001).

Interestingly, both cited definitions in group 1 (as well as most others in this
group) fail to include external disturbance forces (such as someone pushing the
robot), which makes these definitions incomplete. After fixing this (for example,
the first definition would become: The ZMP is defined as that point, on the ground
at which the net moment of the inertial forces, the external disturbance and grav-
ity forces has no component, along the horizontal axes), all definitions are correct

1At first glance, this definition seems incorrect because it is well-known that the existence of a
moment around the ZMP is allowed as long as it is has no component along the ground surface.
However, the author (the inventor of the ZMP) cleverly chose to use the ‘pressure under supporting
foot’, which, by definition, only has a component perpendicular to the ground surface. This indeed
results in an appropriate reaction force at the ZMP having no moment at all. The friction forces along
the ground surface, that would give a vertical moment around the ZMP, were simply ignored.
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and (necessarily) will give the same location for the ZMP. This location is equal to
the location of the Center of Pressure (CoP). A sufficient amount of papers have
already been written to prove all this (Sardain and Bessonnet, 2004; Goswami,
1999)2, so we will not repeat that.

Contrary to what is stated in many papers, e.g., Vukobratović and Borovac (2004),
there is no direct relation between the ZMP lying strictly within the support poly-
gon (as opposed to lying on the edge of it) and ‘falling’ of the robot. Two examples
suffice to show this:

1. Consider a bipedal robot standing on one leg, having unactuated ankles.
This system acts like an (unstable) inverted pendulum and thus the robot
falls down. However, as no torques were exerted on the foot, the foot could
remain on the ground without starting to rotate, so the ZMP was always
inside the support polygon.

2. Consider a bipedal robot walking exactly like a human, without falling. Just
like humans do, the robot will rotate its feet about the front and rear edge
while walking, so the ZMP sometimes does lie on the edge of the support
polygon (not strictly within it) although the robot is not falling.

To be short, the ZMP lying strictly within the support polygon only tells us that
the stance foot (or feet, if the robot is in double-support phase) will not start to
rotate about one of its edges. This is neither a sufficient nor a necessary condition
for walking without falling (Pratt and Tedrake, 2006). It must be said however,
that having the ZMP strictly within the support polygon makes continuous pose
control of the robot a lot easier3, which is probably the reason that so many people
think that it is the only solution.

4.3 Wrench — a 6D force

In this chapter we will use the widely known concept of wrenches, from geomet-
ric mechanics (Ball, 1900; Murray et al., 1994). A wrench is a 6D generalization
of a force. Any combination of forces and moments can be replaced by a single
force and a moment in a plane perpendicular to the force (Poinsot’s theorem (Ball,
1900)) and therefore by one wrench.

We will first introduce the notion of a screw. A screw S consists of an (undirected)
axis (∆) in space and an associated scalar λ ∈ R called the pitch (the unit of λ is

2In these papers it was assumed that there are no external disturbances, but the results still hold if
there are.

3When the foot is rotating about one of its edges, we essentially have an underactuated system,
which is hard to control exactly. Luckily, for walking without falling, we believe it is not necessary to
exactly control the robot’s pose at all times.
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Fλ}

(∆)(∆)

a b

S

Figure 4.1: a) Graphical representation of a screw S. The pitch λ is shown with two small
ticks on the axis (direction from the large to the small disk). b) Graphical representation of
a wrench in a 3D space: the magnitude of force F along axis (∆) is indicated by the length
of the arrow. The magnitude of moment M along (∆) is indicated by the distance between
the two discs (direction from the large to the small disc). Note that we did not explicitly
draw the pitch anymore, as drawing the magnitude of the moment directly gives the same
information but in a more intuitive way.

[m]). The axis can be fully specified by the position r of some point on the axis
and a (unit) direction vector ω, such that (∆) = {r + α ω|α ∈ R}. A graphical
representation of a screw is shown in figure 4.1a. Because the axis is undirected,
the screw S = (ω, r, λ) is the same screw as S∗ = (−ω, r, λ).

A wrench W, having intensity v, on a screw S (having axis (∆) and pitch λ) can
be interpreted as a combination of:

1. A (linear) force F = v ·ω along axis (∆), and

2. A (rotational) moment M = λF = λ v ·ω along axis (∆).

The pitch λ is the ratio between amount of moment (in [Nm]) and amount of
force (in [N]). In order for the wrench to be fully specified, the parameters of the
screw S must be known, as well as the intensity v of the wrench. This is similar
to the case of a linear force on an axis: there the parameters of the axis as well as
the magnitude of the force are enough for the force to be fully specified. In order
to specify the direction of the force (either towards one end of the axis or towards
the other), we will use the direction of vector ω: if the force goes into the direction
of ω, we will denote a positive v, otherwise a negative one.

A graphical representation of a wrench is shown in figure 4.1b. The magnitude
of the force (which is equal to the intensity of the wrench) and magnitude of
the moment are indicated with the lengths of the arrow and distance between
the disks respectively. In order to have a meaning, ‘reference lengths’ must be
provided, as shown in figure 4.2.

The numerical expression of the wrench depends on the choice of coordinates,
thus on the chosen reference frame Ψref. Hence, when expressing a wrench in
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1 m
10 N
1 Nm

F

M}

(∆)

a

F

M}

(∆)

b

Figure 4.2: a) Introduction of reference lengths. In the lower left, a scale for meter, New-
ton and Newton meter are given. It can be deduced that this wrench has |F| = 35 N,
|M| = 2.4 Nm and (thus) λ = −0.07 m. The vector and discs can (independently) be freely
translated along the axis without losing meaning, hence b) represents the same wrench.
We will use the scaling shown in this figure for the other figures in this chapter.

numbers, the choice of coordinates must always be given, otherwise it is unclear
what the numbers actually mean. In this chapter we use a pre-pended superscript
to express the reference frame, in the following way:

aW : A wrench expressed in reference frame Ψa.

Note that it is necessary to denote the reference frame only when a wrench is
expressed in numbers; not when drawing the wrench graphically (which makes
drawing wrenches completely coordinate-free) or manipulating the equations.

One way to numerically represent a wrench is in so-called Plücker coordinates
(Featherstone, 2007):

refW =

(
m
f

)
= v

( (r ∧ω
ω

)

︸ ︷︷ ︸
linear force

+ λ

(
ω
0

)

︸ ︷︷ ︸
moment

)
, (4.1)

where v refers to the intensity of the wrench, r is a vector from the reference
frame’s origin to some point on the screw axis, ω is the unit vector indicating the
direction of the axis and λ is the pitch. The ∧ denotes the cross product. m and f
are (3× 1) vectors. The coordinates

( m
f
)

can be interpreted as follows: the wrench
W is equal to a linear force f exerted at the origin of the reference frame, plus a
moment m.
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F

(a) (b)

M

a b

Figure 4.3: a) A wrench representation of a pure force (λ = 0). b) A wrench representation
of a pure moment (λ = ∞). For reference lengths, see figure 4.2.

A pure force F along an axis (a) can be represented by a wrench with intensity
v = |F| along a screw with axis (a) and zero pitch. In Plücker coordinates this
results in:

refWforce = v
( (r ∧ω

ω

)
+ 0 ·

(
ω
0

) )
= v

(
r ∧ω

ω

)
. (4.2)

So, even though this describes a pure force, the moment part in Plücker coordi-
nates is non-zero due to the arm of the force with respect to the coordinates used.
A pure moment M about an axis (b) can be represented by a wrench with inten-
sity v → 0 along a screw with axis (b) and infinite pitch λ → ∞; such that the
magnitude of the moment becomes a finite value: v∗ = λv = |M|. Here we intro-
duced the pseudo-intensity v∗ in order to circumvent problems with zero intensity.
In Plücker coordinates we have:

refWmom = lim
v→0

λv→|M|

v
( (r ∧ω

ω

)
+ λ

(
ω
0

) )
= λv

(
ω
0

)

= v∗
( 1

λ

(
r ∧ω

ω

)
+

(
ω
0

) )
= v∗

(
ω
0

)
.

(4.3)

From (4.3) it is clear that, indeed, a pure moment is invariant for translation of its
axis: the position of the axis, indicated by r, falls out of the equation. In figure 4.3
the graphical representation of a pure force and a pure moment as wrench are
shown.

The wrench is the dual of the Twist T, as generalized 6D velocity; i.e., expressed
in coordinates of any reference frame Ψa, the product (aWT · aT) ∈ R equals the
power supplied by W.
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F
F′1

F′2

(∆
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′ 2

(∆)′1
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Figure 4.4: a) A linear force F, decomposed into two components F′1 and F′2; b) A moment
M, decomposed into two components M′1 and M′2.

4.4 Decomposition of a wrench

The principle behind decomposition of wrench W is to find wrenches W ′1 . . . W ′n
that, together, do the same work as W when applied on a moving rigid body
for any motion. Mathematically this is not challenging at all, since wrenches
represented in Plücker coordinates can be summed:

refW = ∑
i

(
refW ′i

)
. (4.4)

Geometrically however, the problem is much more interesting: given n screws
S′1 . . . S′n, do there exist wrench intensities v′1 . . . v′n such that the composition of
the n wrenches together yields the original wrench W?

In this section, we give conditions for the decomposition of a wrench W on screw
S into two components W ′1, W ′2 along screws S′1, S′2. Decomposition into more
than two forces is not considered because it is not needed in this chapter.

Firstly, we will review some decomposition rules for pure forces and pure mo-
ments:

DEC1 A pure force F along axis (∆) can be decomposed into pure forces F′1 and
F′2 along axes (∆)′1 and (∆)′2 if and only if:

1. either the axes (∆), (∆)′1 and (∆)′2 intersect each other in one point p
and the plane spanned by the direction vectors ω′1 and ω′2 (which must
have distinct directions) contains the direction vector ω (figure 4.4a),
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(∆)

(∆)′F

F

F′
M′

(∆)′M

}
r

Figure 4.5: Decomposition of force F into (translated) force F′ and moment M′. F and r
are not necessarily perpendicular.

2. or all axes (∆), (∆)′1 and (∆)′2 are parallel and lie in the same plane.
This is the limit case for p→ ∞ of the first condition.

If (∆)′1 and (∆)′2 are different from each other, then the decomposition is
unique, i.e., there exists exactly one set of force magnitudes {|F′1|, |F′2|} that
yield a valid decomposition.

DEC2 A pure moment M along an axis (∆) can be decomposed in pure mo-
ments M′1, M′2 along axes (∆)′1, (∆)′2 if and only if:

1. either the plane spanned by the direction vectors ω′1 and ω′2 (which
must have distinct directions) contains the direction vector ω (see fig-
ure 4.4b),

2. or all axes (∆), (∆)′1 and (∆)′2 are parallel.

In the first case, the decomposition is unique, in the second case it is not.
Note that the decomposition rule for a pure force (DEC1) is a subset of the
decomposition rule for a pure moment. Hence, a moment can always be
decomposed along axes that fulfill the conditions for force decomposition.

DEC3 A force F along axis (∆) can be decomposed into a force F′ along axis
(∆)′f and a moment M′ about an axis (∆)′m if and only if (∆) ‖ (∆)′f and
(∆)′m is perpendicular to the plane spanned by (∆) and (∆)′f . Let r be a
vector from some point on (∆) to some point on (∆)′f . Then |F′| = |F| and
M′ = −r ∧ F. See figure 4.5.

For general wrenches, things are a bit more complicated: we do not only have
restrictions on the axes, but also on the pitches of each screw. Firstly, we will
present two trivial cases of a wrench decomposition into two components.
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Theorem 1 A wrench W on screw S can be decomposed into one wrench W ′f on screw
S′f representing a pure force (λ′f = 0) plus one wrench W ′m on screw S′m representing
a pure moment (λ′m = ∞), if axis (∆)′f coincides with (∆) and axis (∆)′m is parallel to
(∆).

Proof Assume that the conditions on axes (∆)′f (defined by ω′f and r′f ) and (∆)′m
(defined similarly) are met, i.e., ω′f = ±ω; r′f = r; ω′m = ±ω; r′m = arbitrary.
Without loss of generality we can assume that ω′f = ω′m = ω (by changing the
sign of the (pseudo-)intensities v′f and v∗′m if necessary). By expressing the wrench
in Plücker coordinates (and using (4.2) and (4.3)), we can show that indeed there
exist intensities v′f and v∗′m that give a valid decomposition W = W ′f + W ′m:

v
(

r ∧ω
ω

)
+ λv

(
ω
0

)
= v′f

(
r′f ∧ω′f

ω′f

)
+ v∗′m

(
ω′m
0

)
(4.5)

so choosing v′f = v and v∗′m = λv will do. This is actually the way a wrench is
built in the first place: it consists of a pure force F = v · ω along axis (∆) plus a
pure moment M = λv ·ω around this axis.

The converse of this theorem (decomposition is possible only if the screw axes sat-
isfy the constraints) is not true. As a counter-example see DEC3, where a wrench
(a pure force in this case) is decomposed into a pure force and pure moment while
the screws are perpendicular instead of parallel.

Theorem 2 A wrench W of intensity v on screw S, can be decomposed into two wrenches
W ′1 and W ′2 on screws S′1 and S′2 if the axes (∆)′1 and (∆)′2 satisfy the conditions of DEC1
and the pitches satisfy λ′1 = λ′2 = λ.

Proof Assume that all conditions are satisfied. Wrench W consists of a force F
along (∆) and a moment M = λF around it. According to DEC1, F can be de-
composed into F′1 and F′2 along (∆)′1 and (∆)′2. The same holds for decomposition
of M into M′1 = λF′1 and M′2 = λF′2. Now F′1 and M′1 can be taken together again
to form wrench W ′1; similarly for W ′2. A more mathematical proof is given in the
appendix.

The converse of this theorem is not true: there are many sets of screws {S′1, S′2}
along which a wrench can be decomposed that do not satisfy the above condi-
tions.

A more general theorem can be stated, which will be useful for the determination
of the ZMP later on:
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Theorem 3 A wrench W of intensity v on screw S, can be decomposed into a wrench
W ′f on screw S′f representing a pure force (λ′f = 0) and a wrench W ′m on screw S′m
representing a pure moment (λ′m = ∞) if and only if:

• axes (∆) and (∆)′f are parallel (i.e., S′f is obtained by translating S a certain dis-
tance (r′f − r)), and

• the translation vector (r′f − r) is such that(
ω ∧ (r′f − r) + λω

)
‖ ω′m. (4.6)

Proof A valid decomposition can be made if and only if there exist (pseudo-)
intensities v′f and v∗′m such that W = W ′f + W ′m:

v
(

r ∧ω
ω

)
+ vλ

(
ω
0

)
= v′f

(
r′f ∧ω′f

ω′f

)
+ v∗′m

(
ω′m
0

)
. (4.7)

The lower line of (4.7) implies that vω = v′f ω′f , thus (because ω and ω′f are unit
vectors) ω′f = ±ω and v′f = ±v. Again, without loss of generality we may
assume that ω and ω′f have the same direction (thus v = v′f ). The top line of (4.7)
can now be written as

(r− r′f ) ∧ω + λω =
v∗′m
v

ω′m. (4.8)

Indeed, a suitable v∗′m can be found if and only if the left hand side of (4.8) is
parallel to ω′m.

This result implies that for a given ω, ω′m and λ 6= 0 there exists one location of
screw S′f for which a valid decomposition exists (any translation (r − r′f ) which
satisfies (4.8) gives the same axis location; only translated along the axis itself,
for which the axis is invariant). If λ = 0 (W is a pure force), then there are two
possibilities: either ω′m ⊥ ω, in which case a valid decomposition exists for any
translation of S perpendicular to ω′2 (this is equivalent to DEC3), or no decom-
position on S′f and S′m exists at all. If one would take ω′m = ω′f = ω, then the
system reduces to the system described in theorem 1, and indeed (4.8) only has a
solution for r′f = r, i.e., the screws S and S′f coincide.

4.5 Construction of the ZMP using the ground reac-
tion wrench

If the ground reaction wrench Wgrf is known, the Zero-Moment Point can quite
easily be found geometrically. First we show how this is done; second we will
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W ′n

W ′⊥

Wgrf

l

foot
ground surface

P

ZMP

WWn-plane(∆)

θ

Figure 4.6: Geometric construction of the Zero-Moment Point from the ground contact
wrench Wgrf.

prove that indeed this algorithm gives us the ZMP.

1. Given the ground contact wrench Wgrf, on screw S (defined by axis (∆)
and pitch λ), find the point P, being the intersection between (∆) and the
ground plane.

2. By using theorem 2, decompose Wgrf (which has a force component f grf

and a moment component mgrf = λ f grf) into a wrench W ′n normal to the
ground surface plus a wrench W ′⊥ perpendicular to Wgrf, intersecting each
other in P. The force and moment components of the obtained wrenches are
denoted f ′n, f ′⊥ and m′n, m′⊥ respectively. Note that m′n = λ f ′n, m′⊥ = λ f ′⊥,
W ′n + W ′⊥ = Wgrf and thus f ′n + f ′⊥ = f grf and m′n + m′⊥ = mgrf.

3. Construct a vector l from P, perpendicular to the plane spanned by Wgrf

and Wn (this plane is denoted by WWn), having magnitude |l| = λ
| f⊥ |
| f grf| (the

direction of l follows from applying the right-hand rule, going from Wn to
Wgrf).

4. Now l points to the Zero-Moment Point.

The whole procedure is also sketched in figure 4.6.

Proof The proof shows that the ground reaction wrench is equivalent to a pure
force f̄ acting on the ZMP plus a moment m̄n that is perpendicular to the ground
surface. We introduce a reference frame Ψ0 somewhere in space with an arbitrary
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orientation, a vector p pointing from its origin to point P and a vector z = p + l
pointing from its origin to the supposed position of the ZMP. f̄ and m̄n can be

written as a wrench as W f̄ =

(
z ∧ f̄

f̄

)
and Wm̄n =

(
m̄n
0

)
respectively.

Assume that indeed l points to the ZMP, then the above defined f̄ and m̄n should
exist such that

Wgrf = W f̄ + Wm̄n

(
p ∧ f grf

f grf

)
+ λ

(
f grf

0

)
=

(
z ∧ f̄

f̄

)
+

(
m̄n
0

)
.

(4.9)

From this, it follows directly that f̄ = f grf. Because z = p + l, we can write the
top row of (4.9) as p ∧ f grf + λ f grf = p ∧ f̄ + l ∧ f̄ + m̄n which can be simplified
to ( f̄ = f grf)

λ f grf = l ∧ f grf + m̄n. (4.10)

It can be shown that l ∧ f grf = m′⊥ by proving the following (sufficient) condi-
tions:

1. m′⊥ ⊥ l — l is perpendicular to Wgrf and W ′n and, consequently, to any
vector in the plane spanned by them. Now W ′⊥ is in this plane, and thus so
is m′⊥ (which has the same direction as W ′⊥).

2. m′⊥ ⊥ f grf — W ′⊥ was constructed perpendicularly to Wgrf. By construction
m′⊥ ‖W ′⊥ and f grf ‖Wgrf. Therefore we have indeed m′⊥ ⊥ f grf.

3. |l ∧ f grf| = |m′⊥| — because l ⊥ f grf, we have |l ∧ f grf| = |l| · | f grf| =
λ
| f ′⊥ |
| f grf| · | f

grf| = |λ f ′⊥| = |m′⊥|.

4. l ∧ f grf = m′⊥ follows the right-hand rule — by inspection of figure 4.6.

By using l ∧ f grf = m′⊥ and the identities of step 2 of the ZMP construction algo-
rithm, (4.10) can be rewritten as

λ f grf = mgrf = m′⊥ + m′n = m′⊥ + m̄n (4.11)

so we can conclude that indeed there exists an f̄ = f grf and m̄n = m′n (which is
perpendicular to the ground surface) that satisfy (4.9), so indeed l points to the
Zero-Moment Point.

Remark 1 Both step 1 and 2 of the algorithm are only possible if (∆) is not parallel to the
ground plane. This is logical because if (∆) were parallel to the ground plane, the ground
does not exert a normal force; i.e., the ground does not support the foot and in that case
the ZMP does not exist.
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Remark 2 If (∆) is almost vertical, i.e., the friction forces are much smaller than the
normal force, we can approximate the magnitude |l| as follows: let θ be the angle between

f ′n and f grf (see figure 4.6); then | f ′⊥ |
| f grf| = tan θ ≈ θ ⇒ |l| ≈ λθ.

Remark 3 As l is perpendicular to W ′n (and thus to the ground’s normal), it it automati-
cally parallel to the ground surface. Therefore, l points to a point belonging to the ground
surface; which is in agreement with the commonly-known fact that the ZMP is a point on
the ground surface.

Remark 4 We never stated that the ground should be horizontal. In fact, we did not
even draw the reference from which a ‘world’s horizontal plane’ could be deduced. This
method works for any orientation of the ground plane (and the orientation does not need
to be known either). Of course, in order for the ZMP to make sense, the foot must make full
contact with the ground surface and therefore the ground surface under the foot should
be flat. It is however no problem to have different (possibly discontinuous) parts of flat
ground where the robot steps on.

Remark 5 From a decomposition point of view, the algorithm can be interpreted as fol-
lows. The ground reaction wrench consists of a force f grf and a moment mgrf along the
same axis (∆). In order to find the ZMP, we want to find a decomposition in a purely
vertical moment and a pure force. The moment mgrf can be seen as the composition of a
‘wanted’ vertical component m′n and an ‘unwanted’ remainder m′⊥. In order to cancel the
latter, we can translate f grf (according to theorem 3) along l, which introduces a cancel-
ing moment −m′⊥. The result is a translated version of f grf and the sum of all moments
m′n + m′⊥ + (−m′⊥) = m′n. The intersection of the translated f grf and the ground plane
is the ZMP.

4.6 Explicit expression for the ZMP position, given
the ground reaction wrench

4.6.1 Expression for the ZMP

The purpose of this section is to show that, when the ground reaction force/mo-
ment is known as a wrench, the expression for the ZMP is simple. Of course,
these equations give the same results as any ZMP other equation. Hence the ex-
pression presented here is most useful if the ground reaction force/moment is
already available as a wrench (otherwise other ZMP equations are usually more
direct and thus faster).
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Consider an arbitrary walking robot in single support phase and a reference
frame Ψ0 attached to the ground surface, such that the frame’s XY-plane coin-
cides with the ground surface and the frame’s z-axis points out of the ground
(note that we do not require the ground surface to be horizontal). Let the ground
reaction wrench 0Wgrf be known (see section 4.6.2), expressed in frame Ψ0. By us-
ing (4.9), we can find an explicit expression for the position of the ZMP, as shown
below. The ground reaction wrench can be written as (where we use f = f grf and
m = mgrf)

0Wgrf =

(0m
0 f

)
=

(0z ∧ 0 f̄
0 f̄

)
+

(0m̄n
0

)
(4.12)

where 0z (the position of the ZMP expressed in coordinates of Ψ0) is the unknown.
By using 0 f̄ = 0 f , 0z∧ 0 f̄ = −0 f̄ ∧ 0z and expanding the cross product, we obtain
for the top row of (4.12)




0mx
0my
0mz


=




0 0 fz −0 fy
−0 fz 0 0 fx

0 fy −0 fx 0






0zx
0zy
0zz


+




0m̄nx
0m̄ny
0m̄nz


 . (4.13)

The chosen position and orientation of Ψ0 implies that the coordinates of the ZMP,
0z, and the normal moment, 0m̄n, satisfy

0z =




0zx
0zy
0zz


 =



•
•
0


 ; 0m̄n =




0m̄nx
0m̄ny
0m̄nz


 =




0
0
•


 . (4.14)

By rewriting the first two rows of (4.13) and substituting the results from (4.14),
we obtain the explicit equation for the position of the ZMP expressed in coordi-
nates of frame Ψ0:

0z =




0zx
0zy
0zz


 =



−0my/0 fz

0mx/0 fz
0


 . (4.15)

4.6.2 Obtaining the ground reaction wrench

In a robot, the ground reaction wrench should be measured in some way. An easy
way to do this is by utilizing a 6D force sensor. By placing the reference frame Ψ0
in the origin of the sensor, oriented such that the XY-plane is aligned to the sole
of the foot, the forces and moments fx, fy, fz, mx, my, mz are directly the elements
of 0Wgrf. The fact that the reference frame may move relatively to the fixed world
does not invalidate the results.
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In simulation, the ground reaction wrench is usually already available in some
form because it is needed anyway for simulating the foot-ground interaction.

4.7 Conclusions

In this chapter we have shown that the concept of screws and wrenches gives us
tools to geometrically establish the relation between the ground reaction wrench
and the Zero-Moment Point. In order to arrive at this, we showed how a wrench
can be decomposed into separate components. The proposed method gives a gen-
eral, completely coordinate-free way to find the ZMP. The power of coordinate-
free analysis is broadly and recognized to prevent any kind of implicit (and pos-
sibly wrong) assumptions in the analysis. The method contributes to a better
insight in the problem and gives support for graphical animation of locomotion.

4.A A more mathematical proof of theorem 2

Proof The screws S, S′1 and S′2 can be represented by axis locations r, r′1 and r′2,
axis directions ω, ω′1 and ω′2 and common pitch λ = λ′1 = λ′2.

First condition — Without loss of generality we can assume that the location vec-
tors point to the intersection point and thus r = r′1 = r′2. The condition that ω′1
and ω′2 span a plane which contains ω implies that there exist an α and β such
that ω = αω′1 + βω′2. Now by choosing intensities v′1 = vα and v′2 = vβ, we can
write

W ′1 + W ′2 = v′1
( (r′1 ∧ω′1

ω′1

)
+ λ′1

(
ω′1
0

) )
+ v′2

( (r′2 ∧ω′2
ω′2

)
+ λ′2

(
ω′2
0

) )

=

(
r ∧ (v′1ω′1 + v′2ω′2)

v′1ω′1 + v′2ω′2

)
+ λ

(
v′1ω′1 + v′2ω′2

0

)

= v
( (r ∧ω

ω

)
+ λ

(
ω
0

) )

= W

(4.16)

which shows that indeed there exists a decomposition.

Second condition — All axes are parallel, thus ω = ω′1 = ω′2. Without loss of
generality we can assume that r, r′1 and r′2 lie on one line, thus there exists an α
such that r = α r′1 + (1− α)r′2. Now by choosing v′1 = vα, v′2 = v(1− α), we can
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write

W ′1 + W ′2 = v′1
( (r′1 ∧ω′1

ω′1

)
+ λ′1

(
ω′1
0

) )
+ v′2

( (r′2 ∧ω′2
ω′2

)
+ λ′2

(
ω′2
0

) )

=

(
(v′1r′1 + v′2r′2) ∧ω

(v′1 + v′2)ω

)
+ (v′1 + v′2) λ

(
ω
0

)

= v
( (r ∧ω

ω

)
+ λ

(
ω
0

) )

= W

(4.17)

which shows that indeed there exists a decomposition.
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Chapter 5

Compact analysis of 3D bipedal gait
using geometric dynamics of

simplified models

This chapter is based on the following article (Stramigioli et al., 2009):

Compact analysis of 3D bipedal gait using geometric dynamics of simplified models
Stefano Stramigioli, Vincent Duindam, Gijs van Oort and Ambarish Goswami
Proc., IEEE International Conference on Robotics and Automation (ICRA’09)

pages 1978–1984, May 2009.

Abstract—The large number of degrees of freedom in legged robots give rise
to complicated dynamics equations. Analyzing these equations or using them
for control can therefore be a difficult and non-intuitive task. A simplifica-
tion of the complex multi-body dynamics can be achieved by instantaneously
reducing it to an equivalent single inertial entity called the locked inertia.

In this chapter, we adopt the methods of geometric dynamics to analyze the
gait using the locked inertia of the robot. The analysis includes the rolling of a
biped on a 3D rigid foot and 3D impacts. An example of numerical optimiza-
tion of foot shape parameters is shown.

Our long-term objective is to develop the theoretical framework and to pro-
vide the necessary tools for systematic analysis, design, and control of efficient
biped robots.
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5.1 Introduction

The fundamental nature of locomotion has been compactly captured as “a ques-
tion of relating internal shape changes to net changes in position via a coupling
mechanism, most often either through interaction with the environment or via
some type of conservation law” (Marsden and Ostrowski, 1998). The use of ge-
ometric tools has been found to be very useful in generating insights into the
complex dynamics of locomotion systems. Geometric dynamics is a coordinate-
neutral framework which yields results only pertaining to the physics of the sys-
tem.

The utility of reduced models that capture the essentials of gait dynamics is
widely acknowledged. Simple biped models such as the different variations of
the inverted pendulum models have been proven immensely beneficial for the
study of gait and balance both for humans (Inman et al., 1981; Alexander, 1984,
1990; McMahon, 1984) and humanoid robots (Kajita and Tani, 1991; Kajita et al.,
2002; Sugihara and Nakamura, 2003; Komura et al., 2005).

Reduced humanoid models allow one to ignore the non-central aspects of dy-
namics and to express the complex gait dynamics in a minimalist way. While at
the final implementation stage one still needs to formulate control laws for the
entire system, it is at the analysis and planning stage where such reduced mod-
els demonstrate their value. These models not only enhance our understanding
of bipedal locomotion, but open the way to new classes of control laws, which
would otherwise be difficult or impossible to conceive.

Many studies have been performed for 2D passive dynamic walkers, starting
with the ground-breaking work of McGeer (1990b), and later on with various
systematic approaches, e.g., based on Poincaré mappings (Goswami et al., 1998;
Garcia et al., 1998) and passivity (Spong and Bullo, 2005; Duindam and Strami-
gioli, 2005). Several successful three-dimensional walking robots have been built
as well (Wisse and Schwab, 2001; Wisse, 2004; Collins et al., 2001), but most of
these results were achieved relying more in engineering insight and smart de-
signs rather than systematic analytical methods. The main difficulty when trying
to use analytic methods for 3D robots is the sheer complexity of the mechanisms
and their interaction with the 3D world.

Our present approach to tackling the complexity of 3D walking robots relies on
the very useful concept of locked inertia (Marsden and Ostrowski, 1998), more
commonly known in robotics as the composite rigid body inertia (Walker and Orin,
1982). The locked inertia of a humanoid robot is its instantaneous generalized
inertia, assuming that all of its joints are frozen. It has the same structure as
the generalized inertia of a single rigid body. We have recently shown (Lee and
Goswami, 2007) how using this concept an entire humanoid can be mapped into
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the much simpler entity called the Reaction Mass Pendulum (RMP). In this chap-
ter the instantaneous locked inertia is used to model and to analyze the 3D gaits
of humanoid robots including continuous dynamics, foot-ground impacts, and
natural rolling motion of curved feet on a support surface.

This chapter is structured as follows: section 5.2 presents a general form of the
dynamic equations of a walking robot and defines its locked inertia. Section 5.3
introduces a geometric description of 3D impacts. Section 5.4 presents the main
contribution of this chapter. It shows how the previous concepts can be used to
analyze and possibly to design the different phases of 3D gait of bipedal robots
with curved feet. In section 5.5 we present in a simulation example the optimiza-
tion of foot shape parameters, using the theory of section 5.4.

5.2 Dynamics of a Humanoid

A rigid body is characterized by its inertia tensor, which is a second order covari-
ant positive definite tensor. This tensor has a constant numerical representation
in any coordinate frame Ψb rigidly connected to the body (often called a body-
fixed frame). Furthermore, if the frame is chosen with the origin at the center of
mass and with the axes oriented along the principal axes of inertia, the matrix
representation of this tensor becomes a 6× 6 diagonal matrix of the form:

bIi =

(
J 0
0 mI3

)
(5.1)

where bIi denotes the inertia tensor of body i expressed in frame Ψb, m is the
mass of the body, and the elements of

J :=




Jx 0 0
0 Jy 0
0 0 Jz




describe the magnitudes of moments of inertia around the three coordinate axes.
If only the rotational dynamics are of interest, usually just the 3× 3 tensor J is
considered.

Consider now a floating mechanism composed of multiple rigid bodies, for ex-
ample, a humanoid robot floating in space, as shown in figure 5.1. Let us index
the bodies i ∈ {1, . . . , n}, rigidly attach a frame Ψi to each body i, and align the
frame axes with the principal inertia axes. iIi is the (constant) inertia of body i
expressed in Ψi. In addition, let Ψ0 denote an inertial (world) frame.
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Figure 5.1: Setup and labeling of the n bodies and n− 1 joints qi in a general free-floating
humanoid mechanism. Frame Ψ0 is the inertial frame, Ψ1 is attached to the torso, serving
as a (non-inertial) reference frame.

5.2.1 Locked Inertia

If we lock all joints of this mechanism, we can calculate the total inertia of the
entire mechanism in a static configuration just by summing the inertia tensors of
the composing rigid bodies (since inertia is additive); this is the locked inertia of
the mechanism. Expressing the locked inertia jItot in some arbitrary coordinate
frame Ψj, we can write

jItot =
n

∑
i=1

jIi =
n

∑
i=1

AdT
H j

i

iIi Ad
H j

i
(5.2)

where Ad
H j

i
is the adjoint of the homogeneous transformation H j

i from frame Ψi

to frame Ψj (Murray et al., 1994; Stramigioli, 2001). Similar to that of a single rigid
body, the locked inertia also possesses principal axes, and for a proper choice of
coordinate frames, can be expressed in the simple form of (5.1). Therefore, once
the joints are physically locked, the floating mechanism will obey the dynamics
of a single rigid body with inertia jItot.
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5.2.2 Dynamic Equations of a General Mechanism

Suppose that we have a general humanoid mechanism composed of an intercon-
nection of rigid bodies. If we take one of the rigid bodies (typically a foot or the
torso) as a reference with frame Ψ1 (the base frame), the internal configuration
or ‘shape’ of the humanoid is completely defined by a set of joint coordinates q.
The total configuration of the robot is thus given by the configuration H0

1 ∈ SE(3)
of the reference frame plus the internal joint angles q ∈ Rn. Similarly, a certain
kinematic state of the system can be characterized by the twist 1T0

1 ∈ se(3) of the
reference body plus the joint velocities q̇ ∈ Rn, where cTb

a ∈ se(3) ∼ R6 denotes
the twist of body a with respect to body b expressed in coordinate frame Ψc. The
reference body twist and the joint velocities can be combined in a vector of the
form

T̄ :=
(1T0

1
q̇

)
. (5.3)

For each body i we can write its twist as

iT0
i = iT0

1 + iT1
i = AdHi

1(q)

(
1T0

1 + Ji(q)q̇
)

(5.4)

with Ji(q) the geometric Jacobian mapping the internal shape speed to the twist
of body i with respect to the reference body 1 expressed in frame Ψ1. In particular,
J1(q) ≡ 0 by construction. Using these coordinates, we can write an expression
for the kinetic co-energy as

E∗(1T0
1 , q, q̇) =

1
2

T̄T M(q)T̄ (5.5)

where the mass matrix M(q), which is independent of H0
1 , has the following

structure:

M(q) :=




∑ AdT
Hi

1

iIi AdHi
1

∑ AdT
Hi

1

iIi AdHi
1

Ji

∑ JT
i AdT

Hi
1

iIi AdHi
1

∑ JT
i AdT

Hi
1

iIi AdHi
1

Ji


 . (5.6)

The top-left 6× 6 sub-matrix is seen to be exactly the locked inertia of (5.2) ex-
pressed in Ψ1. Using the Boltzmann-Hamel equations we can then obtain the
dynamics equations of the mechanism (see (Duindam and Stramigioli, 2008) for
the details):

1Ṗ = adT
(1T0

1 )
1P +

n

∑
i=1

iWi (5.7)

ṗ = γ(q, q̇, 1T0
1 ) + τ +

n

∑
i=1

JT
i

iWi (5.8)
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where jWi indicates the total external wrench applied to body i expressed in frame
Ψj, τi indicates the torque applied at joint i, iP indicates the total momentum
screw expressed in frame i, and γ is a vector of all Coriolis, centrifugal, and other
nonlinear internal forces. p is the n× 1 vector of generalized momentum coordi-
nates such that

P̄ :=
(1P

p

)
= MT̄. (5.9)

For a free-floating humanoid with locked joints, the dynamics of (5.7) are equiva-
lent to the dynamics of a single rigid body with inertia equal to the locked inertia,
and (5.8) becomes void. Thus, the structure of the presented equations clearly
separates the internal (5.8) from the external dynamics (5.7).

5.3 Impacts

When a foot of the robot touches the ground, an impact occurs. This is charac-
terized by certain velocities, i.e., the linear velocities of the impact point, instan-
taneously reducing to zero. In this section we first derive a projection matrix re-
lating the pre-impact momentum to the post-impact momentum. Then, we show
that also during impact, a locked multi-body chain behaves as a single rigid body.

5.3.1 Single Impacts on a Rigid Mechanism

Since the complete kinematic state of the robot is described using T̄, the velocity
ṡ of any point on any of the bodies in the mechanism can be expressed as

ṡ = A(q) T̄ (5.10)

where we can assume A(q) a full row rank matrix. By construction, we will have
for the velocity just after impact ṡ+ = 0, and in general the velocity just before
impact ṡ− 6= 0. The dual impulsive force on the mechanism will be of the form

(
W
τ

)
= AT(q) λ δ(t) (5.11)

where λ is the magnitude of the impulsive force and δ(t) indicates a Dirac pulse
at t = 0, which, without loss of generality, we assume to be the time of impact.
The impulsive force of (5.11) applied to the dynamics of (5.7) and (5.8) can be
written as

P̄+ − P̄− = AT(q)λ. (5.12)
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Where subscript − denotes the time just before impact, and subscript + the time
just after impact. Pre-multiplying by M−1 as defined in (5.6) we get

T̄+ − T̄− = M−1 ATλ (5.13)

which, pre-multiplied by A and using ṡ+ = 0, gives

−AT̄− = AM−1 ATλ (5.14)

and finally, since M is positive definite and A has full row rank, we obtain an
expression for λ as

λ = −(AM−1 AT)−1 AM−1P̄− (5.15)

which can be substituted into (5.12) to obtain the total momentum projection op-
eration

P̄+ = P(q)P̄− (5.16)

with projection matrix P(q) equal to

P(q) := I − AT(AM−1 AT)−1 AM−1. (5.17)

This is a projection matrix acting on the momentum vector, but we can directly
define the following projection PT(q) acting on the velocity vector T̄ = M−1P̄,
being

PT(q) := I −M−1 AT(AM−1 AT)−1 A (5.18)

such that T̄+ = PT(q)T̄−.

5.3.2 Impacts in a Locked Mechanism

When the mechanism is locked and there is an external impact, intuitively it
should behave like the single equivalent rigid body with inertia equal to the
locked inertia. To prove this, we can write the impact constraints and equations
of (5.10) as a set of two impact constraints: one is the impact from the ground
forces, and one is the impulsive joint torques required to keep the joint velocities
to zero:

(
ṡ
q̇

)
=

(
A1(q)
A2(q)

)
T̄ =

(
A11(q) A12(q)

0 I

)(
1T0

1
q̇

)
. (5.19)
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Following the same derivations as before, we obtain an equation like (5.13), being

T̄+ − T̄− = M−1

(
AT

11 0

AT
12 I

)(
λc

λi

)
(5.20)

with subscript c for contact and i for internal. We first express the required inter-
nal locking torques λi as a function of λc, and then compute the external impact
forces λc. Starting with the second constraint (internal locking), we pre-multiply
(5.20) by A2 and using the assumption that q̇− = 0 (the mechanism is locked
before ground impact) to write

0 = −q̇− =
(
0 I

)
M−1

(
AT

11 0

AT
12 I

)(
λc

λi

)
. (5.21)

If we structure the mass matrix of (5.6) as

M =

(
F G

GT H

)
(5.22)

with F the locked inertia, and use the linear systems theory of block matrix in-
verses and Schur Complements (Strang, 1988), we can write the inverse of the
mass matrix as

M−1 =

(
F−1 + F−1GS−1

F GT F−1 −F−1GS−1
F

−S−1
F GT F−1 S−1

F

)
(5.23)

with SF the Schur complement of F. Substituting this into the right-hand side of
(5.21), we obtain the relation between λc and λi as

0 = (−S−1
F GT F−1 AT

11 + S−1
F AT

12) λc + S−1
F λi. (5.24)

Continuing now with the first constraint, and again using the assumption that
q̇− = 0, we pre-multiply (5.20) by

(
A11 0

)
to find

−A11(
1T0

1 )− =
(

A11 0
)

M−1

(
AT

11 0

AT
12 I

)(
λc

λi

)
. (5.25)

Substituting M−1 from (5.23) and expressing λi as a function of λc using (5.21),
we obtain

−A11(
1T0

1 )− = A11F−1 A11λc (5.26)

which shows that, indeed, if the shape velocity q̇− before impact equals zero and
the mechanism is locked (through the impulsive joint torque λi), then the effect
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of a ground impact with magnitude λc is just (5.15) with A→ A11 and M→ F =
1Itot (the locked inertia). It follows directly that the projection matrix (5.17) is

P(q) = I − AT
11

(
A11(

1Itot)
−1 AT

11

)−1
A11(

1Itot)
−1. (5.27)

5.4 Analysis of 3D Walking Cycles

We now have all the necessary ingredients to analyze and describe the kinematics
and dynamics of 3D walking gaits of (simplified) bipedal robots with curved feet.
This section presents equations and relations that apply to the various phases of
locomotion. These relations can be used for straightforward simulation of a par-
ticular robot, but the ultimate goal is to apply them for optimal design of bipeds
with specific desired gait properties.

In what follows we make the following assumptions

1. The double stance phase is instantaneous,

2. All internal joints are locked during impact,

3. The feet are perfectly rigid with convex, curved shape,

4. The stance foot rolls over the ground without slipping,

5. The inertial effect of the swing leg is either negligible or is compensated by
proper motion of the torso or arms.

We are aware of the fact that some of these assumptions will not hold in general.
Finding ways in which these assumptions (espcecially 1 and 5) can be relaxed
without falling back to the original, complex full dynamics equations is future
work.

In the next subsection we discuss high-level kinematic properties of 3D gaits.
After that, kinematics and dynamics of the rolling stance phase are discussed.

5.4.1 High-level Kinematic Description of 3D Gait

The first aspects of a 3D walking cycle are the high-level kinematic properties.
Concepts like walking direction, step length, and foot rolling direction are triv-
ial in 2D walking and reasonably intuitive in 3D, but it is useful to describe the
relation of these quantities to kinematic states of the robot, rather than implicitly
through definition of a coordinate system with axes aligned in a specific way.
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Figure 5.2: Geometric description of a symmetric walking gait. The stance foot rolls along
a moving axis ω, with stride length described by the points p̄, and v̂ the direction of for-
ward walking.

The momentum 1P+ of a locked biped just after impact can be calculated using
(5.27) and corresponds to a twist

(
1T0

1

)
+
= (1Itot)

−1 1P+. (5.28)

Under assumptions 2–4, the motion of the locked biped right after impact will
be a rolling motion on the stance foot, following a trajectory that depends on the
shape of the foot and

(1T0
1
)
+. The rolling motions corresponding to several steps

in a symmetric gait are illustrated in figure 5.2. The k-th impact in the figure
corresponds to an impact of the right foot, and the figure shows the moving axis
ωk around which the rolling motion occurs. For a slip-less pure rolling contact,
the axis ωk must be in the ground plane, orthogonal to the trajectory of the contact
point of the foot with the ground.

For a (desirable) symmetric gait, there exists a a relation between consecutive
steps in the walking cycle (and hence between consecutive rolling axes ω) and the
global walking direction. If we denote by ez a unit vector in z-direction (pointing
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upwards) and by v̂ the unit vector in the walking direction, it can be seen that

v̂ =
(ωk × ez) + (ωk+1 × ez)

|| (ωk × ez) + (ωk+1 × ez) ||
(5.29)

where × denotes the vector product (think of ez as a vector pointing from the
ground up to some point of the robot, e.g., the hip, and note that ω × ez denotes
the linear velocity of that point).

Let us assume that the shape of the curves traced by the contact points is out-
ward, that is, during rolling, the contact points move away from the center line
and then return (as in figure 5.2). For efficiency reasons, it is clear that this is a
necessary property: through the outward bending shape, the final rolling axis of
one foot just before impact will be more or less aligned with the initial rolling axis
of the other foot just after impact. In this way, the motion continues reasonably
smoothly across impacts and little energy is lost. If the trajectory of the contact
point were to bend inward during rolling, the rolling axes just before and after
impact would be misaligned, leading to significant energy loss. Because we can
design the contact point trajectory ourselves (see section 5.5), we can design it in
such a way that the assumption holds. In that case, we can use a simpler equation
for the walking direction, being

v̂ =
ωk + (−ωk+1)

||ωk + (−ωk+1)||
. (5.30)

If the locations of the impacts are known, we can define the points pk in the figure
as the intersections of the lines defined by the twist axes of two consecutive steps
k and k + 1. For a symmetric gait, the sequence of middle points

p̄k := (pk + p(k−1))/2 (5.31)

will lie on a center line in the walking direction v̂. The distance between subse-
quent points p̄k corresponds to the longitudinal step length. The lateral distance
of a point pk describes how much the foot trajectories curve away from v̂, i.e., it
depends on 〈v̂, ωk〉.

5.4.2 Kinematics of 3D Rolling

Continuing now with the details of the rolling motion during the stance phase,
suppose we have decided on a desired walking direction v̂ and rolling twist ωk
after impact, and suppose we have chosen a desired trajectory of the contact point
on the floor, for example a spline interpolating between the impact point and
rolling direction and the release point and rolling direction.
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Under these assumptions, we can write down a relation for the kinematics of
3D rolling of the foot such that the contact point between the foot and the floor
follows the desired trajectory. If we take r to be the moving contact point, we
know from previous work (Duindam and Stramigioli, 2003) that

(
g1∗ + H1

0 g0∗ H0
1

)
ṙ1 = 1T̃1

0 g1 − H1
0 g0∗ 0T̃0

1 r0 (5.32)

with r1 the contact point in body coordinates, r0 the contact point in floor coor-
dinates, g1 the normal to the foot surface, and g0 the normal to the floor. The
tangent mappings g1∗ and g0∗ describe the local curvature of the foot and floor
surfaces at the contact point. Since the floor is assumed fully flat g0∗ ≡ 0 and the
previous equation reduces to

ġ1 = g1∗ ṙ1 = 1T̃1
0 g1 = −1T̃0

1 g1. (5.33)

This equation gives a relation between the twist 1T0
1 of the foot and the change ġ1

of the normal vector to the foot surface, which is equal to the foot curvature g1∗ ṙ1
in the direction of the trajectory of the contact point. Since ṙ1 must be along the
surface of the foot, we have an additional constraint

gT
1 ṙ1 = 0. (5.34)

Depending on the purpose of our analysis of the walking cycle, we can read these
equations in several ways. First, they give us the possible relative motions 1T0

1
for a given foot surface shape g1∗. It can be seen that these correspond to the
three rolling directions around the contact point. Second, for given foot shape g1∗
and relative motion 1T0

1 , the equations give us the motion of the contact point ṙ1.
Finally, and this is the most interesting application, (5.33) can give us design con-
straints for the foot: for given desired motions ṙ1 of the contact point and rolling
motion 1T0

1 , we can find local surface shapes g1∗ that satisfy the equation. Since
(5.33) only gives us a relation for the curvature in the direction of motion, the
curvature in the orthogonal direction can be designed separately, e.g., to increase
stability or efficiency of the rolling motion.

5.4.3 Dynamics of 3D Rolling

The next step in the analysis of the stance phase is the dynamics of the rolling
motion. Here, we use assumption 5 and neglect the inertial effect of the swing leg,
or equivalently, we assume its effect is compensated by a counter-effect through
motion of the torso or arms. These assumptions allow us to again study the biped
through its locked inertia.

Under assumption 5, the inertia of the system is constant, hence we study the dy-
namics of the locked inertia, rolling on the stance foot. In other words, we look at
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the dynamics of a rigid body with inertia equal to the locked inertia, with surface
defined by the foot surface of the stance foot, rolling on a flat floor. As discussed
before, the rolling constraint allows only motion around three rotation axes pass-
ing through the contact point, and hence we can write the allowed relative twist
1T0

1 of the body with respect to the floor as

1T0
1 = X(r)ω :=

(
Tx(r) Ty(r) Tz(r)

)



wx
wy
wz


 (5.35)

with Ti(r) the twist describing rotation around axis i located at the contact point
r and wi the angular velocity around Ti. The columns of the matrix X(r) give a
basis for the space of allowed twists. Note that this is similar but opposite to the
matrix A in (5.10) which gives a basis for the space of constrained velocities.

Theorem 4 The dynamics of a locked biped with locked inertia tensor I , external wrench
W, and rolling on a foot with allowed twists given by 1T0

1 as in (5.35) and moving contact
point r, are given as

Īẇ + Cw = XTW (5.36)

with Ī := (XTIX) and C := XTI Ẋ− XT adXw(IX).

Proof Since all the joints are locked, the behavior of the biped is the same as
the behavior of a single rigid body, and its dynamics are therefore given by the
dynamics equation for a rigid body (Stramigioli, 2001)

I d
dt

(
1T0

1

)
− ad1T0

1
(I 1T0

1 ) = W + Wc (5.37)

where 1T0
1 is the twist of the body, ad1T0

1
is its algebra representation adjoint, and

Wc are the external wrenches due to the rolling contact with the floor. Since we
can write 1T0

1 = X(r)w at all times, we can substitute this into (5.37) and write

I d
dt

(X(r)w)− adX(r)w (IX(r)w) = W + Wc. (5.38)

As the contact wrenches Wc are dual to the allowed twists Xw, we have by defi-
nition XTWc ≡ 0, and hence if we multiply the equation from the left by XT , we
obtain

XTI d
dt

(Xw)− XT adXw (IXw) = XTW (5.39)

XTIXẇ + XTI Ẋw− XT adXw (IXw) = XTW (5.40)
(

XTIX
)

ẇ + XT (I Ẋ− adXw IX
)

w = XTW (5.41)

which is the result in the theorem if we substitute the definitions of Ī and C.
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On a practical note, we can express Ẋ in terms of the kinematic states H0
1 and w

as

Ẋ =
∂X
∂r

ṙ1 (5.42)

with ṙ1 the velocity of the contact point. Using (5.33), (5.34), and the assumption
that contact between the floor and the foot occurs only at a single point (since the
foot is assumed convex), there is a unique solution ṙ1 that satisfies the following
equations

g1∗ ṙb = −1T̃0
1 g1 = −(̃Xw) g1 and (5.43)

gT
1 ṙ1 = 0. (5.44)

The theorem gives an explicit differential equation that describes the dynamics of
the locked biped (or any rigid body) with arbitrary foot shape and point contact
with the ground, as a function of the relative configuration H0

1 (which determines
r) and the velocity state w. The external wrench W may include forces such as
gravity or ankle actuation. Just as the equation for the kinematics of 3D rolling,
this equation can be used for different purposes. The most straight-forward way
is to use it as a model to predict the motion of a locked biped with a particular foot
shape. A more interesting application, however, is to use it to design a foot shape,
given a certain desired walking gait. As stated in the introduction, it is these
applications that benefit most from reduced models such as the one presented
here. The dynamics equations are relatively simple, and for a given trajectory
(given H0

1 and 1T0
1 as functions of time), it can be used in optimization routines

that adept the foot shape parameter g1∗. An example is shown in section 5.5.

For bipedal walking on a horizontal floor, the impacts of the feet with the ground
will generally reduce the kinetic energy of the system (except for very specific
motions for which the projection operator of (5.17) becomes the identity). In order
to compensate for this and obtain a cyclic motion, energy needs to be injected into
the system. One way that humans inject energy is through the use of ankle push-
off. We can mimic this behavior and use an actuator in the ankle to slightly raise
the center of mass of the biped at the beginning of each step, thus increasing the
potential energy and making a cyclic motion possible. Since the inertia of the foot
is small compared to the inertia of the rest of the biped, we can include ankle
actuation into the dynamics as part of the external wrench W.

5.5 Simulation example

In this section we give a simple example of how the theory of section 5.4 can be
applied for the design of a foot shape. We consider the design as a numerical
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Figure 5.3: Simulation model for parameter optimization.

optimization problem with two parameters.

Consider a sytem of one rigid body (or, equivalently, a locked system of multiple
bodies), having an ellipsoidal foot, as shown in figure 5.3. This system represents
the robot’s right foot, right leg and torso rigidly attached to each other.

Our target is to find a foot width (2ry) and initial angular velocity magnitude
|ωinit| that make the foot roll as shown in figure 5.2. We consider only one step
and want a step time of tstep = 1 s. As the optimization criterion we use the Eu-
clidean distance d between the foot’s contact point r0(t) at t = 1 s and a certain
chosen desired contact point location r0,des = [0.25 0 0]T (without loss of gen-
erality we choose r0(0) = [0 0 0]T). The direction of the initial angular velocity
β, the length (2rx = 0.3 m) and height (2rz = 0.05 m) of the foot, as well as the
inertial properties I and initial orientation γ of the body are kept fixed during
the experiment. In order to obtain a unique solution, we do not allow rotation
around wz (see (5.35)).

We used the simulation package 20-sim (Controllab Products B.V., 2011) to per-
form an automatic parameter optimization by first making a parameter sweep
in both parameters (figure 5.4) and then optimize the best result by a steepest-
descent method. The optimal solution was found at 2ry = 0.274 m, |ωinit| =
1.22 rad/s. The final contact point r0 was exactly our desired point r0,des (d = 0).

Although this is a simple example, it does show the application of the method.
By choosing other optimization parameters and criteria (e.g., incorporating the
final orientation of the body or the final direction of ω), we may be able to de-
sign feet that maximize aspects like disturbance rejection during a step, or good
performance over a range of gaits.
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Contact point position

x [m]

y
[m

]

0.04
0.02

0
−0.02

−0.04
−0.06

−0.08
−0.1
−0.12

0.05 0.1 0.15 0.2 0.250

Figure 5.4: Foot contact point trails for different parameter values of (2ry) ∈ [0.1, 0.3 m]
and |ωinit| ∈ [1.1, 1.6 rad/s] (dark lines) and the optimal solution as stated in the text (light
line).

5.6 Conclusions and Future Work

In this chapter we presented a systematic dynamic analysis of 3D bipedal gait.
The gait has a foot rolling phase and an instantaneous phase of foot/ground im-
pact. We showed how these phases can be analyzed separately and described
in approximation using simplified models described by the locked inertia and a
momentum projection. The resulting equations are much simpler than the full
robot dynamics and can be used as a starting point for analysis and foot shape
design.

One feature of this analysis is the use of locked inertia, which is an instantaneous
single rigid body equivalent of the full biped. Using this simplified model makes
the complex multi-joint robot dynamics more manageable for theoretical probing.
The authors believe that insight from geometric dynamics can potentially lead to
a more efficient bipedal gait that exploits natural dynamics.

Our long-term objective is to continue to develop a theoretical framework of
biped gait based on geometric dynamics. As applications of this framework,
we will address several specific topics. We would like to start from a desired
nominal locomotion pattern and compute the required shape of the rigid 3D feet.
Furthermore, practical applications require disturbance robustness of gait cycles
for which both the foot shape and a proper foot placement strategy need to be de-
vised. Finally, previous research has used concepts such as the energy ellipsoid
and momentum sphere to describe the dynamics of a rigid body, and it would be
interesting to see how these ellipsoids and spheres change under the influence of
rolling motion on a convex foot surface.
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Chapter 6

Using time-reversal symmetry for
stabilizing a simple 3D walker model

This chapter is based on the following article (van Oort and Stramigioli, 2007):

Using time-reversal symmetry for stabilizing a simple 3D walker model
Gijs van Oort and Stefano Stramigioli

Proc., IEEE International Conference on Robotics and Automation (ICRA’07)
pages 4673–4678, April 2007.

Abstract—A new method is presented for controlling the lateral foot placement
of a simple 3D compass biped model. The method is based on the fact that, for
the specific model used in this chapter, limit cycle is time-reversal symmetric
and that, after a disturbance, the degree of asymmetry in the cycle is indicated
by a single variable. This variable is used for feedback with a proportional
controller. Simulation results show that the controller works very well for a
large range of gaits, without any adaptation of the parameter values.

93



94 Chapter 6

6.1 Introduction

Dynamically walking robots (e.g., Denise (Wisse, 2004), Dribbel (Duindam, 2006)
and the Cornell Walker (Collins et al., 2001)), have the advantage over ‘fully ac-
tuated’ walkers that they consume far less energy. However, stability and robust-
ness are serious problems for them. Particularly, the robustness of 3D dynamic
walkers to lateral disturbances is still very poor. Lateral foot placement is gen-
erally seen as a promising method for increasing the robustness in the sideways
direction.

This chapter presents a new method for controlling the lateral foot placement of
a simple 3D compass biped model. It is based on the fact that, for the specific
model used in this chapter, limit cycle is time-reversal symmetric and that, af-
ter a disturbance, the degree of asymmetry in the cycle is indicated by a single
variable. This variable is used for feedback with a proportional controller.

In section 6.2 the model of the 3D compass walker is presented. The configuration
of the walker is given, the environmental assumptions are summed up and the
equations of motion as well as the impact equations are discussed. In section 6.3
the open-loop gait is analyzed. It is shown that the system has infinitely many
limit cycles. One ‘reference limit cycle’ is chosen and by linearization of the stride
function it is shown that the limit cycle is unstable. It is also shown that a few
eigenvalues are intrinsic to the model and cannot be changed. In section 6.4 we
show that each step is time-reversal symmetric when the walker is in its limit
cycle. In section 6.5 we use this knowledge and propose a controller with one
parameter K, and in section 6.6 we show by simulation that the controller can
stabilize the walker well for a large range of gaits. We give a different view of the
controller in section 6.7 and we end with conclusions and recommendations in
section 6.8.

6.2 Model description

6.2.1 General

Consider a 3D compass biped model as sketched in figure 6.1. This biped consists
of a pointmass at the hip, having mass m, and two massless legs of length `;
each with two degrees of freedom: ϕhip and ϕsplay (the hip can thus be seen as
a ball-joint). We distinguish the stance leg (subscripted st) and the swing leg
(subscripted sw). The ‘feet’ are modeled as point contacts. Ground contact is
inelastic and rigid, and since the legs are infinitely stiff, the support transfer is
instantaneous. The ground is considered to have an infinite friction coefficient:
no sliding of the feet can occur. In this chapter the following parameters were
chosen: m=1 kg; `=1 m; g=9.81 m/s2 (gravitational acceleration).
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ϕhip,st

−ϕhip,sw

ϕsplay,st ϕsplay,sw
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yz
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Figure 6.1: A sketch of the ‘very simple 3D biped’ used in this chapter. Walking direction
is the positive x-direction.

The state of the system represents the position and velocity of the hip, relatively to
the stance foot, and is denoted as follows: x = (ϕhip,st, ϕ̇hip,st, ϕsplay,st, ϕ̇splay,st)

T .
The state at the beginning of a step k, which is just after swing foot impact, when
the rear foot leaves the ground, is denoted by x+k (the + indicates ‘post-impact’).
The state at the end of the step, just before the new foot impact, is denoted by x−k
(the − indicates ‘pre-impact’). Note that the state x+k occurs well before x−k and
that x−k is immediately followed by x+k+1 after the impact.

The only means of control of this model is giving the next pose for the swing leg.
Because the legs are considered massless, the new configuration can be consid-
ered to be reached instantaneously and without any dynamic influence on the
overall motion. The input of the system is defined as u = (ϕhip,sw, ϕsplay,sw)

T .
The input at the end of step k, before and during impact, is denoted by uk.

6.2.2 Equations of motion

During a step, the hip mass plus leg acts as a spherical inverted pendulum, piv-
oting around the stance foot. The corresponding equations of motion are





ϕ̈hip =

g
` sin(ϕhip) + 2 ϕ̇hip ϕ̇splay sin(ϕsplay)

cos(ϕsplay)

ϕ̈splay=
g
` cos(ϕhip) sin(ϕsp)− ϕ̇2

hip cos(ϕsp) sin(ϕsp)

(6.1)
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padd ploss

v−k

v+k+1

Figure 6.2: A 2D representation of the impulses during foot impact.

where all angles ϕ• refer to the stance leg. These equations can be integrated
to obtain the state of the system. Because the swing leg is massless, it does not
influence the motion of the system during the step. Therefore, the input u does
not appear in the equations.

6.2.3 Impact equations and energy injection

When the swing foot hits the ground (foot impact), energy is lost and velocity of
the hip changes instantaneously. The inelastic, instantaneous collision is modeled
as the ground applying an upward impulse ploss to the walker, along the leg. The
loss of kinetic energy due to this impulse is denoted by Eloss. In order to keep the
internal energy of the walker at level, energy is added to the system by applying
an upward impulse padd along the posterior leg (which becomes the new swing
leg), as shown in figure 6.2. This impulse can be interpreted as the equivalent of
the push-off of the human ankle during a normal gait. The kinetic energy added
to the system is denoted by Eadd. In order to keep the energy level constant, we
need to find a padd such that Eadd = Eloss. Since we consider the push-off with
energy injection right before the swinging leg touches the floor, ploss is dependent
on padd. To understand this, it is sufficient to consider the extreme case in which
padd would be extremely large. In this situation the walker would be launched
and the front leg would not even touch the ground.

Given the state of the walker (x−k , uk) just before impact, the required impulse
padd can be calculated that makes Eloss = Eadd using (without proof)

padd= m`
sin u2

(
ϕ̇−sp cos ϕ−sp

)
+cos u2

(
ϕ̇−sp sin ϕ−sp cos(ϕ−hip−u1)+ ϕ̇−hip cos ϕ−sp sin(ϕ−hip−u1)

)

1− sin u2 sin ϕ−sp + cos u2 cos ϕ−sp cos(ϕ−hip − u1)
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where all ϕ−• ’s refer to the (pre-impact) stance leg (and ϕsplay was abbreviated to
ϕsp). Note that the energy injection system is actually identical to the energy loss
system: it is an impulse along the leg that adds a certain amount of velocity to
the walker, in the direction of the leg. If time would be reversed (which makes
the walker walk backward), the impulses take each others place, and the system
would still walk. In other words: the impact (including energy injection) is time-
reversal symmetric.

We can define the impact equations (including the energy injection) as a nonlin-
ear function in the following way: x+k+1 = P(x−k , uk). The input uk defines the
position of pre-impact swing leg, which becomes the post-impact stance leg. The
position of this stance leg can directly be copied from uk to two of the elements
of x+k+1. From this it follows that x+k+1 always has the form

x+k+1 =




ϕ+
hip

ϕ̇+
hip

ϕ+
splay

ϕ̇+
splay


 = P(x−k , uk) =




uk,1
P2(x−k , uk)

uk,2
P4(x−k , uk)


 , (6.2)

where the second and fourth element are non-linear functions of the input vari-
ables, and the first and third element are equal to the input itself. The equa-
tions are quite long and not included in this chapter. They can however be found
in (van Oort, 2005).

6.2.4 Stride function

We define the stride function as

x+k+1 = S(x+k , uk) (6.3)

which, given a certain initial state (x+k , uk) returns the state x+k+1 at the beginning
of the next step (if it exists). The stride function covers the equations of motion
(section 6.2.2) as well as the impact equations and energy injection system (sec-
tion 6.2.3). Similarly to (6.2), it can be found that the stride function has the form

x+k+1 =




ϕ+
hip

ϕ̇+
hip

ϕ+
splay

ϕ̇+
splay


 = S(x+k , uk) =




uk,1
S2(x+k , uk)

uk,2
S4(x+k , uk)


 . (6.4)

It should be noted that, apart from disturbances, the internal energy of the system
is always constant (Ḣ = 0, where H = Ekin + Epot). During the motion phase,
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Eigenvalue −2.26 1 0 0

Eigenvector




0
−0.05

0
−0.99







0
−0.99

0
−0.08







0
0.10
0.37
−0.92







0.46
−0.89

0
0.05




Table 6.1: The eigenvalues and eigenvectors of the uncontrolled walker, linearized around
the ‘reference gait’.

the system moves through a conservative (gravity) field, which of course does
not alter the total internal energy. During impact, the amount of (kinetic) energy
added by padd is (by construction) exactly equal to the amount that is lost by ploss.
So, if a disturbance would raise (or lower) the total internal energy of the walker,
the system has no way to restore the energy to the original level afterwards.

6.3 Analysis of the uncontrolled gait

For any fixed u within the range where the walker looks ‘human-like’, thus with
the hip above the ground, swing leg pointing forward and step length larger than
step width, this system has infinitely many limit cycles x+k+1 = x+k , which will be
denoted by x∗.

To understand this, realize that this model has its energy addition directly cou-
pled to the energy loss. For each energy level the loss and addition are in equi-
librium, which gives the possibility for a limit cycle for each energy level. This
is different from most other walker models, that inject a fixed amount of energy
into the system at each step, and can have a limit cycle only for a gait where the
impact energy loss is equal to this fixed amount of injected energy.

For analysis it is convenient to choose a ‘reference gait’. Quite arbitrarily a limit
cycle is chosen having ur = (−0.3, 0.05)T and xr = (−0.3, 1.5, 0.05,−0.0819)T .
By linearizing the stride function S around (xr, ur) and taking the eigenvalues
of the obtained Jacobian matrix Jx = ∂S

∂x , it can be shown that this gait is unsta-
ble. The other limit cycle gaits in the ‘human-like’ range are also unstable. The
eigenvalues and corresponding eigenvectors of the reference gait are shown in
table 6.1. The eigenvalues are discussed below.

From (6.4) it can be seen that the first and third element of S are independent
on x, hence the first and third row of Jx will be entirely zero. Jx thus has rank 2
(the two other rows are linearly independent), so it can only have two non-zero
eigenvalues (the other two will be zero).
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If a disturbance would alter the magnitude of the velocity of the walker, the ki-
netic energy and thus the total energy H will also change (by, say, an amount of
∆H). By construction, the walker cannot restore its original energy level, so the
deviation from the original energy level will always remain constant (equal to
∆H), which explains the eigenvalue 1.

The eigenvalue of −2.26 has to do with changes in direction of the velocity vec-
tor. This is inverted pendulum-like, unstable mode that needs to be stabilized by
means of active control.

If the walker falls, we can distinguish the following cases:

• The walker is falling backward (ϕ̇hip < 0). This happens when not enough
energy is present at the start of a step. As an indication, if for our reference
input ur the initial hip velocity a = ϕ̇hip < 0.94 rad/s, the walker will fall
backwards.

• The walker is falling to the side. This happens if the splay velocity or the
splay angle is too far off the limit cycle value.

• The walker goes so fast that the stance foot leaves the ground due to the
vertical component of the ground reaction force becoming zero. This hap-
pens when the angular velocity of the hip (rotating around the stance foot)
is so large that m`ω2(cos ϕhip cos ϕsplay) > mg. As an indication, if for our
reference input ur the initial hip velocity a = ϕ̇hip > 3.15 rad/s, the walker
will leave the ground. The walker cannot fall forwards, because it always
instantaneously puts its swing leg forward.

6.4 Using time-reversal symmetry for the design of a
controller

A special case for the impact equations (6.2) occurs when the position of the
stance leg just before impact is equal but mirrored to the (fixed) input, which
is the position of the swing leg, i.e.,

x− =




ϕ−hip,st
ϕ̇−hip,st
ϕ−splay,st
ϕ̇−splay,st


 =




−u1
a
u2
b


 =




−ϕhip,sw
a
ϕsplay,sw
b


 , (6.5)

with any positive angular velocities a and b. In this case, the plane spanned by
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Figure 6.3: A special case for the impact equations: ϕ−hip,st = −u1, ϕ−splay,st = u2. In this
case the legs span a plane that is exactly vertical.

the legs, indicated as the ZM-plane in figure 6.3, will be exactly vertical (the z-axis
will be parallel to the world’s z-axis and the m-axis will be parallel to the world’s
XY-plane. Because the two impact impulses padd and ploss are aligned with the
legs, they also lie in the ZM-plane. Both impulses are equal in magnitude, so their
z-components add up, while their m-components cancel each other out. So only
the vertical velocity of the hip will change at impact; the forward and sideways
velocities are unaffected. This makes the post-impact velocities be equal but mir-
rored (due to the splay sign change) to the pre-impact velocities, resulting in the
post-impact state

Equation (6.5) =⇒ x+ =




ϕ+
hip

ϕ̇+
hip

ϕ+
splay

ϕ̇+
splay


 =




u1
a
u2
−b


 , (6.6)
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Hip trajectory

x+k =




u1
a
u2
−b


 x−k =



−u1

a
u2
b


ϕsplay

ϕhip

a
a

b

−b

Figure 6.4: The trajectory traveled by the hip when going from the initial condition x+k to
the final condition x−k , along with an approximation of the (angular) acceleration vector
field of (6.1). Because the conditions and the vector field are symmetric around ϕhip = 0,
the trajectory is also symmetric.

which holds for any angular velocities a and b. If we can find values for a and b
such that the equations of motion, when initialized with post-impact state x+, as
defined in (6.6), will return a new pre-impact state x− obeying (6.5), we obtain a
limit cycle as schematically shown below:

x+k =




u1
a
u2
−b




(6.1)
=⇒ x−k =




−u1
a
u2
b




(6.2)
=⇒ x+k+1 =




u1
a
u2
−b




(6.1)
=⇒ . . . (6.7)

In figure 6.4 the trajectory (the solution of the differential equation (6.1) with the
given initial conditions x+k and final conditions x−k ) is sketched, along with an
approximation of the acceleration vector field of (6.1).1 Because the initial and
final conditions as well as the vector field are symmetric around ϕhip = 0, the
trajectory will also be symmetric. This symmetry implies that the sideways ve-
locity ϕ̇splay at ϕhip = 0 must be zero. At the same time, because the vector field

is symmetric around ϕhip = 0, any trajectory having ϕ̇splay

∣∣∣
(ϕhip=0)

= 0 will be

symmetric around ϕhip = 0, and, combined with the impact equations, will give

1The actual acceleration at a certain point also depends on the instantaneous velocity of the hip.
However, for the velocities used, the influence is small.
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Figure 6.5: A block diagram of the controlled walker.

a limit cycle. So, for this walker, the condition ϕ̇splay

∣∣∣
(ϕhip=0)

= 0 is a sufficient

condition for having a limit cycle. We introduce Y as a shorter notation:

Y := ϕ̇splay

∣∣∣
(ϕhip=0)

. (6.8)

6.5 Control

If the walker is walking in a limit cycle (Y = 0), a disturbance will generally lead
to a non-zero Y . We can use the value of Y at step k (denoted as Yk) to control the
input uk, such that the disturbance is suppressed (i.e., |Yk+1| < |Yk|). Note that
uk is only used at the end of step k and that Yk is already known halfway step k,
so we won’t run into problems here. A good choice for control would be to give
a setpoint offset for the splay angle ϕsplay,sw proportional to Y , i.e.,

uk =

(
ϕhip,sw
ϕsplay,sw

)
=

(
u∗1
u∗2 + K · Yk

)
, (6.9)

where K is the controller gain. A block diagram of the obtained system is shown
in figure 6.5. Analysis of the effect of a disturbance, sketched in figure 6.6, shows
that K should be positive. Because of the extensiveness of the equations of mo-
tion and the impact equations, no attempt was made to analytically prove that
the walker can indeed be stabilized with this control law. However, simulation
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ϕhip = 0 ϕhip = 0

Y > 0

step 2step 1

limit cycleleg

foot contact point

result: too
large ϕ̇splay

Figure 6.6: Analysis of the effect of a disturbance. A disturbance causing Y to be positive
(as in the figure), leads to a too large ϕ̇splay. In order to compensate for this, the swing foot
should be placed a little more outward.

results, described in the next section, have shown that it is indeed possible to
stabilize the walker.

An advantage of the controller over the conventional technique of linearization
and pole placement (e.g., (Kuo, 1999)) is that no explicit knowledge of the limit
cycle is needed in order to stabilize the walker (as x∗ does not appear in the cal-
culation of uk). Hence, the controller will work for a great range of limit cycles
without adaptation of any parameter. Furthermore, only a single controller gain
needs to be chosen, which simplifies the design and tuning.

6.6 Simulation results

In order to verify the correctness of the control strategy, simulations were done in
Matlab. The results are presented in this section.

One criterion that could be used for choosing the ‘optimal’ value of K is trying to
minimize the eigenvalues of the linearized controlled system. For a non-zero K,
the third element of the stride function S will become dependent on x+k (because
uk,2 is dependent on x+k ), so the third row of the Jacobian Jx will not be zero
anymore. This results in an increase in rank of Jx and the possibility to have three
non-zero eigenvalues. One of them is the (unchangeable) eigenvalue 1, which is
still a system property. The two other eigenvalues can be influenced by varying
K.
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Figure 6.7: Root locus plot of the controlled reference gait. For K = 0.252 . . . 0.398 all poles
are within the unit circle, so the system is stable. The smallest eigenvalue is reached at
K = 0.259.
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Figure 6.8: The eigenvalues of the controlled system for different gait velocities, with dif-
ferent values for K. It can be seen that K = 0.259 can not only stabilize our reference gait
well, but also all gaits with higher velocity.
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β
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a

−b

Figure 6.9: Representation of the velocity of the hip as (v, β).

In figure 6.7 the root-locus is drawn for our reference gait (xr, ur). As can be seen,
the system can indeed be stabilized with the controller: by choosing a proper
K, we can put both eigenvalues inside the unit circle. The system is stable for a
reasonably large range of K. The minimum eigenvalue of −0.81 is reached when
K = 0.259.

In order to see how well the controller with a fixed K can handle different limit
cycles (different values for a and b in (6.7)), figure 6.8 was made. It shows that
indeed a single value for K can stabilize a large region of limit cycles. We also see
that the K that gave the lowest eigenvalues for our reference gait does really well
in stabilizing faster gaits.

Eigenvalues only give insight in the behavior under small disturbances. For a
nonlinear system such as a walker, the behavior under large disturbances is also
very interesting. We are particularly interested in the basin of attraction (Schwab
and Wisse, 2001): how large can a disturbance be before the walker falls?

For investigation of the basin of attraction, it is useful to represent the velocity
of the hip in polar coordinates v and β (see figure 6.9). A disturbance acting
on β (affecting the direction of the velocity vector) will not affect the internal
energy of the system, therefore the system can return to its original limit cycle.
A disturbance acting on v (affecting the magnitude of the velocity vector) does
affect the internal energy and will cause the walker to converge to a different
limit cycle (if (v, β) is within the basin of attraction, that is). Note that in the limit
cycle, b is small relative to a, which makes v ≈ a.

Figure 6.10 shows a slice of the basin of attraction of the controlled system with
K = 0.259. As can be seen, for low velocities the walker cannot be stabilized with
this controller (there exists a limit cycle for these low velocities, but it is unsta-
ble). With increasing velocity the basin of attraction increases. From this we can
conclude that fast walking more robust than slow walking. As most real walk-
ing robots have a relatively slow gait, this suggests that a bit of extra robustness
could be obtained with relative ease by just making the robot walk faster.
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Figure 6.10: The basin of attraction of the controlled system with controller gain K =

0.259. On the horizontal axis the velocity v =
√

a2 + (−b)2 is put, on the vertical axis
we have β = atan(−b

a ) (see also figure 6.9). Each dot represents a simulation run with
initial condition x+ = (ur

1, a, ur
2,−b). Thick dots indicate that the initial condition is inside

the basin of attraction. The curve in the graph shows the set of all limit cycles having
x∗ = (ur

1, •, ur
2, •). Note that for small velocities v the system is unstable and has no basin

of attraction.

6.7 Interpretation as a standard discrete nonlinear
controller

When looking at the block diagram of the system (figure 6.5), it does not look like
a standard discrete controller. However, Yk is actually only dependent on xk (via
the equations of motion). So we can write: Yk = f (xk) with f being a nonlinear
function. This gives

uk =

(
ϕhip,sw
ϕsplay,sw

)
=

(
u∗1
u∗2 + K f (xk)

)
, (6.10)

which is simply a conventional nonlinear controller. It is a special one however:
because the value of f (xk) has a clear geometrical meaning, this is much more
insightful than just a nonlinear formula.
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6.8 Conclusions and future work

A new method has been described for controlling lateral foot placement of a 3D
compass biped model, based on time-reversal symmetry of the limit cycle. If
a disturbance occurs, the step becomes asymmetric. It was shown that Y :=
ϕ̇splay

∣∣∣
(ϕhip=0)

is a good measure for the degree of asymmetry of the step, and

can be used for feedback. A proportional controller was proposed where the
splay angle offset is proportional to Y (with controller gain K).

Simulation results showed that the controller can stabilize the walker in a large
range of gaits (at different velocities) without any adjustment of the parameter,
and that the basin of attraction is large, especially for fast walking. It was shown
that the controller is actually a conventional nonlinear controller, with the ad-
ditional property that the non-linear function has a clear geometrical meaning,
which gives more insight in the actual control strategy.

The control method as described here works well with the compass model, but it
cannot directly be used for more complex models, because generally the gait of
such models is not time-reversal symmetric. This study will be continued by in-
vestigating how the method can be generalized to work with other walker models
as well. Our goal is to build a real 3D biped soon, which will, amongst others,
make use of the lateral foot placement control method.
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Chapter 7

Dynamic walking stability of the
TUlip robot by means of the
extrapolated center of mass

This chapter is a major revision of the following article (Bouwman et al., 2010):

Dynamic walking stability of the TUlip robot by means of the extrapolated center of mass
Windel M. Bouwman, Gijs van Oort, Edwin C. Dertien,

Jan F. Broenink and Raffaella Carloni
Proc., 12th Mechatronics Forum Biennial International Conference

pages 197–204, June 2010.

Abstract—The humanoid robot TUlip was created to participate in the ‘teen-
size’ league of Robocup. It is a bipedal robot intended for dynamic walking. It
has six degrees of freedom in each leg: three at the hip, one at the knee and two
at the ankle. This chapter elaborates on the algorithm for the sideways control
during gait. The algorithm uses the ‘extrapolated center of mass’ (XCOM) to
achieve limit cycle stability. The algorithm was tested in simulation using a
linear inverted pendulum and, then, experimentally applied to TUlip. The re-
sult is an adaptive behavior of the robot, promising for future application to
legged robot stability.
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Figure 7.1: TUlip in stable stance mode.

7.1 Introduction and motivation

The robot TUlip (figure 7.1) is a ‘teensize’ humanoid robot, which has been de-
signed to walk dynamically and to compete in the RoboCup soccer league. The
development of the robot is a collaboration between the three technical universi-
ties of the Netherlands: University of Twente, Eindhoven University of Technol-
ogy and Delft University of Technology.

The link structure of the robot is shown in figure 7.2a. The figure also shows
the choice for axes: the x-axis points into walking direction; y-axis points left
(as seen from the robot) and the z-axis points upward. Each leg has six degrees
of freedom: three in the hip, one in the knee and two in the ankles. The joints
relevant for this chapter are named. The sagittal joints (rotation about y-axis) are
all constructed as a series elastic actuator (SEA), (Pratt and Williamson, 1995).
This means that a compliance is intentionally put in between the motor shaft and
the joint shaft. Series elastic actuators allow for torque control and protect the
DC motors by absorbing the shocks from foot impact. The lateral ankle joints are
unactuated: passive springs pull the feet towards their default position but are
compliant enough to allow excursions of a few tens of a radian (figure 7.2b). The
feet are rectangular and flat of shape. Pressure sensors on each of the corners are
used to determine impact.

In order to make TUlip walk without falling, a controller is needed. Hof (2008)
described a simple controller, called constant offset controller. This controller is
based on the extrapolated center of mass (XCOM), (Hof et al., 2005), which is also
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a b

θLA
θRA

θRH

x
y

z

θLH

directly actuated joint
series elastic joint
passive joint

Figure 7.2: TUlip. a) The joint structure of TUlip. The joints that are important for this
chapter are named. b) The passive lateral ankle joint.

known as the instantaneous Capture Point (Pratt et al., 2006). In this chapter the
constant offset controller is first evaluated by applying it to a simple linear in-
verted pendulum. Then it is applied to TUlip in order to get lateral stability.

This chapter is organized as follows. Section 7.2 presents the extrapolated center
of mass and describes how the constant offset controller is applied to an inverted
pendulum in simulation. Section 7.3 elaborates on the modifications needed on
the controller for implementation on TUlip and section 7.4 describes some exper-
imental results that were obtained.

7.2 The XCOM and the constant offset controller ap-
plied to a linear inverted pendulum

Consider a two-dimensional ‘linear inverted pendulum’ (LIP) in the YZ plane, as
shown in figure 7.3, being a point mass m on a stick. The position of the center
of mass (COM), is denoted by C = [Cy Cz]T . The structure can be interpreted
in two ways: either as a linearization of a normal inverted pendulum by small
angle approximation (sin θ ≈ θ, cos θ ≈ 1) or as an exact model of a variable-
stick-length inverted pendulum in which the stick length r is controlled such that
the mass is always at a constant height, i.e., Cz = l. The projection of the center of
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Y

Z

C

P G

l

θ

m

r

Figure 7.3: Linear inverted pendulum model. Height l remains constant for all possible
angles of the pendulum.

mass onto the (flat) ground is denoted by G = [Gy Gz]T = [Cy 0]T . The center
of pressure (COP) of this system is denoted by point P = [Py Pz]T with Pz = 0
and is (necessarily) the point where the stick contacts the ground.

The LIP has only one degree of freedom, being the y-position of the center of
mass, Cy. The equation of motion is

d2

dt2 Cy = ω2
0(Cy − Py) (7.1)

where ω0 is the natural oscillation frequency of the pendulum, i.e., ω0 =
√

g
l .

This system is unstable (it has poles in −ω0 and +ω0). This model can be seen
as a very simple model of a walking robot. The stick represents the stance leg
and the point mass represents the robot mass; no swing leg is modeled. Support
transfer from one leg to the other is done by instantaneously moving the end
of the stick (thus, moving the center of pressure P) to another position on the
ground.

The extrapolated center of mass (XCOM), (Hof et al., 2005), denoted by ξ = [ξy ξz]T

with ξz = 0, is defined as the point on the (flat) ground that, when the COP
is placed and held there, the system would exactly come to a standstill in its
(unstable) equilibrium. The position of the XCOM is dependent on the position
and velocity of the COM and can be determined by

ξy = Cy +
1

ω0

d
dt Cy. (7.2)

This point has also independently been described by Pratt et al. (2006) under the
name instantaneous capture point. The linear inverted pendulum and all points
defined in this section (including the XCOM) can be straightforwardly extended
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Figure 7.4: Simulation of the constant offset control strategy applied to a linear inverted
pendulum. The COP changes instantaneously. Both COM and XCOM trajectories are
bounded and are limit cycle stabilized by the control strategy. For the simulation the fol-
lowing parameters were used: g = 9.81 m/s, l = 1 m, (hence ω0 = 3.13 rad/s), Ts = 0.8 s
and by = 0.03 m. At t = 3.5 s an impulsive push is given to the mass, resulting in an
instantaneous velocity increase of ∆v = 0.3 m/s.

to 3D. For example, the position of the XCOM in a three-dimensional space is
denoted as ξ = [ξx ξy ξz]T .

It was shown by Hof (2008) that the LIP can be stabilized by a ‘foot placement’ al-
gorithm, called constant offset control, which is based on the XCOM. In this chapter
the focus is on the lateral stabilization, thus rocking from side to side. At the start
of each step n a new position is calculated for the ‘foot’ (i.e., the COP), being

Pn
y,des = ξn

y + (−1)n by, (7.3)

where n is the step number, ξn
y is the y-position of the XCOM at the start of the

new step and by is a constant which offsets the COP from the XCOM (hence the
name of the controller).

The applicability of the controller was verified on a LIP model in simulation. The
results are shown in figure 7.4. The simulated steps were made at a fixed rate,
using a step time Ts = 0.8 s. Once each step the position of the COP was changed
instantaneously. It can be observed that the XCOM has a bounded trajectory and
that the COM trajectory is also bounded. Also the system recovers after a distur-
bance (at t = 3.5 s). The simulation was performed using the simulation package
20-sim (Controllab Products B.V., 2011).
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7.3 Stability by foot placement applied to TUlip

The constant offset controller has been designed with an ideal linear inverted
pendulum in mind. In order to be able to use it for controlling the robot TUlip,
some adaptations need to be made to it because TUlip differs from a LIP in the
following ways:

• TUlip has a double support phase during walking during which the COP
gradually moves from one foot to the other. The LIP has instantaneous sup-
port transfer and therefore instantaneous relocation of the COP;

• The legs of TUlip cannot be positioned arbitrarily fast, while the ‘leg’ of the
LIP can;

• The duration of each step, Tn, is unknown a priori and is a result of the
system dynamics. Therefore, the step time is influenced by disturbances.
This is in contrast to the LIP, where the step time is a control choice, i.e., a
new step can be initiated at any moment in time;

• Contrary to the LIP, the region where the foot of TUlip can be placed is
limited due to physical constraints;

• During single support, the COP P moves around within the convex hull of
the stance foot. In the sagittal plane Px can be moved actively by control. In
the lateral plane Py is a function of the stance ankle angle θ•A.

The unknown step time issue would not seem like a problem because in the con-
trol law (7.3) no notion of timing is used. However, because the legs of TUlip
cannot be moved arbitrarily fast, the step time is an important factor because
the leg should be moved to the right position within this time. In order to pro-
vide a solution, a minimum step time Tmin should be determined experimentally
(Tmin = min(Tn)) or estimated.

7.3.1 State machine of the gait

The gait cycle of TUlip consists of four states, described shortly below. After that,
in the subsequent sections, implementation details are discussed. For robot and
controller parameters, see table 7.1.

• Double stance, left push-off. At the start of the new step, the left foot
pushes off with the ankle. Because during this phase both feet are on the
ground, lateral foot movements are impossible. Exit condition for this state
is that the left heel has lost contact with the floor and t > Tpush-off.
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Description Name Value

Dist. COM – ankle joint l 0.68 m
Half width between hips a 0.09 m
Leg length r 0.57 m

Constant offset by 0.06 m
Push-off duration Tpush-off 0.2 s
Swing duration Tswing 0.65 s

Table 7.1: A few dimensions of TUlip and parameters of the controller.

• Left swing. In this state, the left leg is controlled forward (in the sagittal
plane) using a fixed motion profile with a duration of Tswing = (Tmin −
Tpush-off), while accounting for proper ground clearance by bending the
knee slightly. After this period, the leg is kept in place in the sagittal plane.
Lateral foot placement using the constant offset control is gradually turned
on from t = 1

2 Tswing according to an activation function fact. The angle of
the stance hip, θRH , is controlled to zero. Note that the constant offset con-
troller is not used for sagittal control. Transition to the next state is partial
touchdown of the swing foot.

• Double stance, right push-off is a mirrored version of double stance, left
push-off.

• Right swing is a mirrored version of Left swing.

7.3.2 Calculation of the XCOM

To be able to use the control law (7.3), the lateral position of the COM and the
XCOM of the robot need to be known. In order to minimize calculation load,
the COM is approximated using a simple linearized mass-on-a-stick model of the
robot as is shown in figure 7.5 (if needed, the position of the COM can be calcu-
lated more accurately by incorporating the full system state). In case of the left
foot being the stance foot (figure 7.5a), the sagittal location of the COM location is
approximated as

(Cy − Ay) = (θLA − δ) l (7.4)

where Ay is the lateral position of the stance ankle, θLA is the angle of the sagittal
joint of the left ankle and l is the estimated distance between the ankle and the
COM. It is assumed that the left hip angle can be kept exactly at θLH = 0 by
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Figure 7.5: Front view of the simplified model of TUlip. a) Left leg is stance leg. θLH = 0;
b) Right leg is stance leg. θRH = 0. The stance ankle is indicated with A; its lateral position
is Ay. The center of pressure P is not necessarily exactly at A.

control. δ is a small constant angle, being

δ = arcsin(
a
l
) ≈ 0.09 rad (7.5)

where a is the horizontal distance between the center line of the robot and the hip
joint. When the right foot is stance foot (figure 7.5b) the equation for Cy is

(Cy − Ay) = (θRA + δ) l. (7.6)

It should be noted that the absolute value of neither Cy nor Ay is known to the
controller, because the controller has no notion of any fixed world. Only the dif-
ference between the two, (Cy − Ay), is relevant and is stored as such in the com-
puter running the controller (in a variable called com_rel_to_stance_ankle).

Once the lateral position of the COM is determined, the lateral position of the
XCOM, ξy, is calculated by differentiating (Cy − Ay) with a second order state
variable filter (cut-off frequency of ωsvf = 60 rad/s ≈ 9.45 Hz) and using (7.2).
Every time a new step is started, a jump in the value of (Cy − Ay) occurs (see
figure 7.8 on page 120). In order to avoid spikes in the differentiated signal, the
state variable filter is re-initialized at the beginning of each new step.

7.3.3 Foot placement

Equations (7.2) and (7.3) can be combined into one equation representing the de-
sired lateral distance between the target position of the swing foot and the COM
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Figure 7.6: Activation function fact(t) for the setpoint of the lateral hip joint. This function
gradually activates the output of the XCOM controller from halfway the swing motion.

at the start of step n as

(Pn
y,des − Cn

y ) =
1

ω0

d
dt

Cn
y + (−1)n bn, (7.7)

where Cn
y and its time derivative are the lateral position and velocity of the COM

at the start of that new step. This can be converted to a desired swing hip angle
θ̄n
•H,des by the following approximations:

θ̄n
RH,des = arcsin

(Pn
y,des − Cn

y ) + a

r
= arcsin

(
1

ω0
d
dt Cn

y + (−1)n bn

)
+ a

r
(7.8)

if the right leg is the swing leg, and

θ̄n
LH,des = arcsin

(Pn
y,des − Cn

y )− a

r
= arcsin

(
1

ω0
d
dt Cn

y + (−1)n bn

)
− a

r
(7.9)

if the left leg is the swing leg. r is the leg length. Note that at the start of a new
step the stance ankle angle (θn

LA or θn
RA) is almost zero, so the approximation is

actually quite accurate.

As already stated, the step time of the robot is uncertain. Therefore, it can not
be known on beforehand when exactly a new step will start and what the actual
value of Cn

y and its derivative will be at that time. A solution to this is to assume
that the new step may start at any time t ≥ Tswing and keep θ̄•H,des up to date
constantly, i.e.,

θ̄•H,des(t) = arcsin

(
1

ω0
d
dt Cy(t) + (−1)n bn

)
± a

r
. (7.10)

For t < Tswing, we don’t need to steer the leg directly to θ̄•H,des, because there is
no chance anyway that a new step is going to be started then. Moreover, at the
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first half of the step, the XCOM is not at the right place anyway. From halfway the
step, we want to gradually move the leg towards the XCOM. In order to to this,
the output of the XCOM controller (7.10) is multiplied with an activation function
fact, being (see also figure 7.6)

fact(t) =





0 if 0 < t ≤ 1
2 Tswing,

2 (t− 1
2 Tswing) if 1

2 Tswing < t ≤ Tswing,
1 if t > Tswing,

(7.11)

to get to the real lateral hip setpoint θ•H,des which is used during the full swing
phase. Furthermore, the resulting angle is limited to a small range in order to
prevent leg collisions and over-stretching. The final desired swing leg angle is
thus calculated as

θLH,des(t) = Limit
(

fact(t) · θ̄LH,des(t), 0, 0.3
)

or

θRH,des(t) = Limit
(

fact(t) · θ̄RH,des(t), −0.3, 0
)

,
(7.12)

depending in which leg is the swing leg. Both lateral hip joints are controlled to
their respective setpoints using PD control:

τ = Kp e + Kd ė + FFgrav (7.13)

where e = θ•H,des − θ•H and FFgrav is a feed forward term to compensate for the
mass of the torso in case of the stance leg. FFgrav is increased to a value with a
constant rate when stance leg is detected and set to zero in case of the swing leg.
During the push-off states the hip setpoints θ•H,des are decreased to zero with a
constant rate.

In figure 7.7 an overview is given of the control strategy used in TUlip during
normal gait.

7.4 Experimental results

The algorithm as described was implemented and tested on TUlip. The exper-
iment done consisted of making the robot take a sequence of steps. During
these steps the robot was sustained, because total limit cycle stability is not yet
achieved. This type of walking is denoted by sustained walk.

In figure 7.8 the lateral behavior of the COM and XCOM are shown, together with
the resulting setpoint for the hip joint of the stance leg. Note that the COM and
XCOM positions are relative to the stance ankle position Ay (which changes each
step), not to some fixed-world point. For interpretation of the results this is in-
convenient, but for the controller inside the robot it makes sense: this controller
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Figure 7.7: Overview of the control strategy of TUlip for each of the four phases of the
gait.
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Figure 7.8: The logged COM (Cy − Ay), XCOM (ξy − Ay) and setpoint for the hip joint of
the swing leg θ•H,des during a sustained walk consisting of four steps. The COM and XCOM
positions are relative to the stance ankle position Ay. As the stance ankle changes each
step, Ay changes too. Therefore, the COM and XCOM make jumps at each step transition.

should be invariant for the robot’s absolute position, and therefore there is no
need to have any notion of world position in this controller1. During double sup-
port, none of the signals are plotted. The reason is that during this period there
is no unambiguous definition of the signals: as both legs are on the ground, there
are actually two stance ankle positions and no swing leg angle. Moreover, the
signals are not so meaningful during double stance because they are not used for
control anyway.

In figure 7.9 the center of mass and extrapolated center of mass are again shown,
but now relatively to the fixed world. In order to get these values, the lateral
position of the stance ankle Ay was determined manually for each step and added
to the values from figure 7.8, e.g., Cy in figure 7.9 was obtained by calculating
(Cy − Ay) + Ay.

1Of course, for other (higher-level) controllers, the robot’s should have some notion of it’s position
in the world. For example, when playing a soccer match it is important to know where you are in the
soccer field.
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Figure 7.9: Various signals of the sustained walk experiment, represented relatively to the
fixed world. P∗y is an estimate of the center of pressure, Cy and ξy are the COM and XCOM
respectively. Py,des is the desired lateral swing foot position (7.3). Ay is the lateral position
of the stance ankle.

The estimate of the center of pressure, P∗y was determined by double differen-
tiation of Cy with two second order state variable filters (ωsvf1 = 30 rad/s and
ωsvf2 = 15 rad/s respectively) and then applying the inverse of (7.1). The value
of P∗y fluctuates heavily. Especially around t = 24 s a damped oscillation can be
seen; this is due to unaccounted oscillations in the hip joint θRH. However, it can
still be observed that the COP indeed lies quite close to the stance ankle (but not
exactly on it), just as expected.

The center of mass traverses according to the same pattern as the simulated center
of mass of figure 7.4. The XCOM differs somewhat; this can be attributed to the
fact that the center of pressure can move around on the sole of the foot and to
various other unmodeled effects. The desired lateral swing foot position Py,des is
interesting: it grows exponentially near the end of the step. Although this can
be expected from the theory and simulation, it is inconvenient because it means
rapid leg movements. In future work we will address this problem. It can also
be observed that the leg positioning is quite accurate: the ankle position Ay is
always within a few centimeters of the desired position Py,des just before ground
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contact. From an investigation of figures 7.8 and 7.9, it can be seen that the swing
leg does not follow the entire trajectory of Py,des; thanks to the limitation of the
hip angle, only the last part of each step is followed.

7.5 Conclusions

Lateral stability by foot placement was implemented in our walking robot TUlip
by using a constant offset controller: a controller which is based on the extrapo-
lated center of mass (XCOM). First the control strategy as proposed by (Hof, 2008)
was verified in a computer simulation. The algorithm was then adapted to suit
TUlip. Finally an experiment was carried out that shows lateral stability and re-
semblance with the simulation. We therefore conclude that the constant offset
control is usable in the control for bipedal robots.

In the experiment, TUlip required additional energy input (a gentle push from the
human guiding the robot) to remain in limit cycle gait. In future work the push-
off phase of TUlip will be improved in order to insert more energy in the dynamic
walking system. Also an effort will be put in predicting the required lateral leg
position Py,des earlier during the step so that sudden movements during the end
of the step are not necessary anymore.
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A concept for a new energy efficient
actuator

This chapter is based on the following article (Stramigioli et al., 2008):

A concept for a new energy efficient actuator — in pursuit of the ideal actuator
Stefano Stramigioli, Gijs van Oort and Edwin Dertien

Proc., IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM’08)

pages 671–675, July 2008.

Abstract—In this chapter a novel concept of embedded robotic actuator is pre-
sented which has been named the Very Versatile Energy Efficient (V2E2) ac-
tuator. This actuator stores energy during any force profile which generates
negative work on the load and it does therefore have unprecedented potentials
for robotics applications.
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8.1 Introduction

For mobile robotics and powered prosthetics, the energy consumption is a crucial
factor for usability. A reduction of the amount of energy consumed can yield
longer operation on a mobile energy source (e.g., a battery), or can allow for use
of smaller energy storage devices.

There are a number of strategies for reducing energy consumption. One approach
is to increase the mechanical efficiency of a device. A second method is to limit
waste of energy. Normally, mechanical energy is wasted in a system when doing
negative work. Adding a buffer element for storage of mechanical energy, such
as a spring, seems a logical solution.

The development of actuators incorporating elastic elements has got a lot of at-
tention in the recent years. One of the first and well known examples is the Series
Elastic Actuator (SEA) as developed by Pratt and Williamson (1995). Also a num-
ber of compliant actuators with tunable elastic elements are under development,
such as the MACCEPA by van Ham et al. (2005) or the ‘Jack Spring’TM by Hol-
lander et al. (2005), which allow adjustment of the zero-position of a series elastic
element. Another approach is to enable adjustment of the spring constant, by
varying the pre-tension of a system using non-linear springs. This approach has
been used in for example the VSSEA (Variable Stiffness SEA) by Thorson et al.
(2007) and the AMASC by Hurst et al. (2004). An elaborate overview of the cur-
rent state of the art is given in by Ham et al. (2009).

An actuator able to intelligently store energy whenever negative work is done,
and able to reuse this energy whenever necessary would be a great breakthrough
in the robotic and active prosthetics world. In this chapter a concept of an actuator
is presented which does address the energy efficiency explicitly.

This chapter is organized as follows. Section 8.2 elaborates on actuators in gen-
eral. Then, in section 8.3, the concept of our new actuator is introduced, step
by step. Section 8.4 and 8.5 describe two specific aspects on the realization and
control and the chapter end with conclusions and discussion in section 8.6.

8.2 Reflections on actuators

Usually an actuator is considered as a ‘signal processor’ which translates a com-
mand generated by a controller to a physical quantity which is applied on the
plant, like a force or torque. More correctly, acting on a physical system, energy
is exchanged and in order to describe this properly, it is better to consider an ac-
tuator as a controlled device that converts energy from a certain domain in which
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Figure 8.1: An ideal actuator is just an energy converter from any domain in which energy
is stored to the mechanical domain and vice versa.

energy is stored (e.g., electrical, chemical battery or even mechanical storage) to
mechanical energy, as schematically shown in figure 8.1. The double lines in the
figure represent the energy flow. In an ideal situation, the energy conversion is
lossless, no energy is stored in the device, the device has no dynamic effects and
the energy flow can be in both directions.

The arrow through the actuator in figure 8.1 represents the fact that the amount
of energy converted from one domain to the other can be varied (e.g., by varying
the control input signal of the actuator).

Let us consider for example a normal DC motor, which converts electrical into
mechanical energy. The amount of energy converted depends on the load and the
input current. An external controller (such as a switching regulator) can modulate
the motor’s input current, and thereby influence the the amount of converted
energy.

In order to allow for a more formal discussion we introduce the concept of power
ports. Each block in figure 8.1 represents an entity which has one or more power
ports. In each domain the power port consists of a coupled pair of variables called
effort and flows. In the electric domain these are the voltage v (which is an effort)
and current i (which is a flow), in the mechanical domain these are a force or
torque τ (which is an effort) and a velocity or angular velocity ω (which is a flow).
In all situations, the product of the effort and the corresponding flow, which are
called power conjugate variables, gives the power P which is instantaneously
transferred through that port.

In energy converters, we distinguish two types: transformers (the output effort
is proportional to the input effort) and gyrators (the output effort is proportional
to the input flow). The DC motor (figure 8.2a) is an example of the latter one.
Mathematically, an ideal DC motor can be expressed as

[
τA
v

]
=

[
k 0
0 k

] [
i

ωA

]
. (8.1)
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Figure 8.2: Block diagrams; a) A DC motor has two ports: electrical (v, i) and mechanical
(τA, ωA); b) A gearbox has two mechanical ports: (τI , ωI) and (τL, ωL). The direction of the
half-arrow (called a bond) indicates the direction in which the energy flows if the power,
which is the product of the port variables (v · i, for example) is positive; if it is negative,
the energy flows into the other direction.

where τA and ωA are the port variables associated with the motor axis, v and i
are the applied voltage and current and k is the motor constant (in Nm/A). More
generally, for any gyrator, k is called the ‘gyration ratio’. It does not need to be
constant (however, it is constant in the case of a DC motor), and can sometimes
be used to steer the energy flow. It can be observed that τA ·ωA = v · i (even if
k would be time-varying), proving that indeed the energy conversion is lossless
and no energy is stored in the ideal actuator.

An ideal gearbox with ‘transformation ratio’ n can be modeled similarly; it is a
transformer (figure 8.2b). It has two mechanical ports (port I, which is usually
attached to a source of torque and port L which is usually attached to the inertial
load), and can be described mathematically by

[
τL
ωI

]
=

[
n 0
0 n

] [
τI
ωL

]
. (8.2)

In some sense one can regard a gearbox as an actuator: it converts energy from
some domain (which happens to be the mechanical domain) of port I to the me-
chanical domain of port L. Again, n does not need to be constant (however, it is
constant in the case of a normal gearbox).

An ideal actuator would have the following features:

1. Only energy from the energy storage is used if positive work is done on the
output port.

2. If negative work is done on the output port, energy flows back into the
energy storage. So, there is no loss of energy.

3. If the actuator is controlled in such a way that no energy transfer takes place,
the output shaft of the actuator is either perfectly stiff (ω = 0) and can
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Figure 8.3: Our new actuation concept: an intermediate mechanical energy storage device.

deliver any (static) force or perfectly free-moving and will exert no force to
the system (τ = 0). The latter situation is called ‘fully backdrivable’. In both
cases, no mechanical work is done (P = τ · ω = 0), so the energy storage
does not need to supply any energy.

An ideal actuator can of course never be made, however, we search for solutions
that approach (certain aspects) of it. For the moment, we restrict our search to
solutions in which the energy storage domain is the electrical domain (or at least,
has an electrical interface). We can think of the energy storage device as being
a battery or a (large) capacitor. The most versatile converter from electrical to
mechanical energy is the DC motor, which behaves as a non-ideal gyrator.

In many applications like legged locomotion, the actuation is approximately peri-
odic1. An example of such a periodic movement is given in figure 8.7 on page 134.
This data has been taken from the hip joint of our 2D walking robot (Dertien,
2006). The mechanical structure (the leg) has a low and continuously varying ve-
locity in which the direction of movement often changes sign. In this region of
operation, a DC motor is an inefficient device: either it needs to run slowly with
high torque (in the case of a gearbox with small gear ratio) resulting in a large and
heavy motor and bad energy efficiency, or it needs a gearbox with large gear ratio
(in case of a better-suited motor) resulting in non-negligible dynamic effects. In
the range of operation needed, a DC motor is not a good choice towards an ideal
actuator.

We introduce a new actuator concept: an actuator which uses mechanical energy
storage as an intermediate step (figure 8.3). In particular, we will focus on a con-
cept which combines a normal DC motor, a rotational spring and an Infinitely
Variable Transmission to form an actuation module which we will call the ‘V2E2
actuator’, which stands for Very Versatile Energy Efficient actuator (figure 8.4).

1If the actuation were exactly periodic, simple solutions exist, e.g., a continuously rotating shaft, ac-
tuated by a standard DC motor in its most efficient region of operation, with a mechanical mechanism
behind it that converts the rotating motion into the desired periodic motion.
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Figure 8.4: Block diagram of the V2E2 actuator.

As will be clear from the discussion below, this approach differs from the use of
the elastic element in a Series Elastic Actuator. In the following section the steps
to arrive at the new actuator concept are described separately.

8.3 The V2E2 actuator

8.3.1 Using an IVT to modulate actuation torques

The general way to approach control of mechanical systems is to use an actuator
(e.g., a DC motor) which generates a time-variant torque τA(t) = k i(t) which
will be transformed by a fixed gearbox (τI = τA) with transformation ratio n to
generate an output torque

τL = n · τI(t) = n · k i(t) (8.3)

which will be applied to an inertial load (the interconnection of the two blocks of
figure 8.2a and b).

Suppose now that instead of using a fixed gearbox, we take an Infinitely Variable
Transmission (IVT). An IVT is a variable transmission unit with the special prop-
erty that its transmission ratio n(t) can range from a negative to a positive value
(i.e., n(t) ∈ [nmin, nmax] with nmin < 0 < nmax). We assume the IVT to be ideal,
i.e., it does not have any losses and is purely kinematical. Then the output torque
τL is

τL = n(t) · τI(t) = n(t) · k i(t). (8.4)

Now we have two ways of varying the output torque: either vary the transmis-
sion ratio n(t) or vary the actuator output torque τI(t) (or both). Because n(t)
can be both positive and negative, it is possible to achieve positive and negative
output torques with a constant (non-zero) τI .

At first, this does not seem to be interesting, but it does become interesting if one
realizes that the torque τI can be provided by any system; it does not need to be
a simple actuator such as a DC motor. One of the possibilities is to attach the IVT
to a rotational spring, as explained in the next subsection.
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8.3.2 Adding a spring

An ideal spring is an energy storage element, having a mechanical power port
with torque τS and (rotational) velocity ωS. It has a state ϕS and spring stiffness
K. It can mathematically be described by the following equations:

ϕS =
∫

ωS dt, (8.5)

τS = KϕS. (8.6)

If we replace the DC motor of the previous subsection by spring, such that τI =
τS, we obtain for the torque on the load

τL = n(t) · τS = n(t) · K ϕS(t). (8.7)

Note that ϕS(t), the internal state of the spring, can not be changed instanta-
neously; only the rate of change ϕ̇S can be controlled arbitrarily. By controlling in
real time n(t) and supposing that the spring state would never be empty (ϕS 6= 0),
it would be possible to achieve any desired torque τL on the load by a proper con-
trol of n(t), namely

n(t) =
τL

K ϕS
. (8.8)

This would seem a very complicated way of achieving a desired torque on the
load, but by doing so, in case negative work is done on the load (τL ωL < 0), this
work would not be lost but instead stored in the spring! We could for example
make this actuator behave exactly as a physical (non-linear) damper, but the en-
ergy, instead of being lost, would be stored in the spring. A problem which needs
some attention is that the idea would not work in case the spring state ϕS = 0,
or in other words if the spring would be unloaded. This can be easily solved as
explained in the next section.

8.3.3 Preventing the singular situation ϕS = 0

A spring is actually a nodic element, which means that it actually has two attach-
ing points (point 1 and 2) and that its internal change of state depends on the
relative motion of these points (figure 8.5), i.e.,

ϕ̇S = ωS = ω1 −ω2, (8.9)
τ1 = τ2 = τS = K ϕS. (8.10)

We can therefore attach one side of the spring to the IVT as explained in the pre-
vious subsection, but instead of fixing the other side to a fixed body, we could
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Figure 8.5: The block diagram of an ideal spring: a nodic element with two ports. In bond
graph terms the lower block interconnecting the three bonds would be a 0-junction.

attach it to an electrical drive and control this drive in such a way that the stored
energy of the spring would not go under a certain level. In this case, the singular
situation ϕS = 0 could be avoided. Furthermore, the electrical drive will only
have to supply the extra energy which is needed for the load or which should
be used to compensate for friction. In case of a periodic motion of the load like
many robotics application in leg locomotion, the net to energy exchange between
the load and the actuator would be small or equal to zero and such a motor could
be dimensioned small. More on the use of this idea for periodic motions was
written by Stramigioli and van Dijk (2008).

8.3.4 Static load compensation

In many applications in robotics, it is also necessary to keep a certain force con-
stant. Using normal electrical drives this implies a constant loss of energy as heat
in the electrical drive. In the presented approach, a constant force will correspond
to a certain value n of the IVT and the force will be completely generated by the
elastic element and no electrical loss will be involved.

In order to allow this, the motor has to be non-backdrivable. As explained previ-
ously, the elastic element will be connected on one side to the IVT and on the other
side to an electrical drive which may in some situations be used as generator. On
this side, for efficiency purposes, it should be possible to latch this side of the
spring and keep it in place without having to generate a force with the electrical
drive. This would be necessary in most situations when the spring is working
in its nominal region. This latching can be implemented with a small electrome-
chanical clutch on the axis which should be activated only if the angular velocity
is zero. This is an interesting hybrid optimal control problem.
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8.3.5 Electrical storage

The elastic element which will be used for mechanical energy storage will in gen-
eral be nonlinear and have a maximum amount of energy it can store. This non-
linear behavior can be taken into account, but physically we would reach a prob-
lem if the storage would saturate by getting into a region where the spring simply
cannot deform elastically anymore and starts to deform plastically. This problem
can be tackled by using the electrical motor, which is used to prevent the com-
plete unloading of the elastic storage, as a generator. While it is most efficient to
do energy storage without domain conversion, it would be a waste of energy if
the surplus in mechanical storage would simply be dissipated. By releasing the
clutch between fixed world and the spring, the motor can be used as a generator,
driven by the spring. A reversible motor amplifier has to be used to boost up the
generated voltage, and charge a battery.

8.4 The IVT

The most crucial part for the realization of a V2E2 actuator, is an efficient realiza-
tion of an IVT. The IVT should have a range of continuously variable gains be-
tween a positive and a negative value, i.e., n ∈ [nmin, nmax] with nmin < 0 < nmax.
A proper design will have to be such that changing the gain n in real time would
cost very little energy. Furthermore, for the usage presented, the IVT should be
connected in such a way that the gain n would correspond to a zero torque on the
load and no motion on the spring side and not the other way around, otherwise
operation would not be possible.

A rotary IVT can be made with by a combining a planetary gear, a Continuously
Variable Transmission (CVT) (which has a gear ratio m ∈ [mmin, mmax], with 0 <
mmin < mmax) and a normal gear reduction with gear ratio N. Figure 8.6 shows
the configuration of a planetary gear system. We distinguish four parts:

1. the annulus, the outer ring, having radius ra and angular velocity ωa,

2. the sun the inner ring, having radius rs and angular velocity ωs,

3. the planets, the small gears connecting the sun to the annulus, having radius
rp and angular velocity ωp (about their own axis), and

4. the carrier, which is connected to the planets, having rotational velocity ωc
(this is the angular velocity with which the planets circle around the sun).
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Figure 8.6: Configuration of a planetary gear.

The relation between the angular velocities of the annulus, sun and carrier is

ωs =

(
ra

rs
+ 1
)

ωc −
(

ra

rs

)
ωa = (α + 1)ωc − α ωa (8.11)

where α > 1. By attaching the input axis of the gear reduction to the sun, the
output axis will have angular velocity

ωo =
1
N

ωs. (8.12)

We attach the CVT between two axes of the planetary gear, such that we get the
relation

ωc = m ωa. (8.13)

By combining (8.11), (8.12) and (8.13), we find the relation between input angular
velocity ωa and output angular velocity ωo, which is the IVT reduction ratio n,
being

n =
ωo

ωa
= (m− 1)

α

N
+ m

1
N

. (8.14)

We can achieve a desired IVT range n ∈ [nmin, nmax] with a given CVT range m ∈
[mmin, mmax] by solving the following equation for the parameters α and N:




α

N

1
N


 =

[
(mmin − 1) mmin

(mmax − 1) mmax

]−1 [nmin

nmax

]
. (8.15)
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Description parameter value

Given CVT range [mmin, mmax] [ 0.3 . . . 1.0]
Desired IVT range [n min, n max] [−0.5 . . . 0.5]

Planetary gearhead ratio α = ra
rs

1.86
Gear reduction N 2

Table 8.1: A numerical example of parameter selection for the IVT according to (8.15). The
resulting parameters, are very feasible.

In order to show that the resulting parameters are feasible, table 8.1 shows a nu-
merical example.

8.5 Control

At the moment we are working on the design of an optimal controller for the
proposed actuator. The control strategy can be divided into two separate tasks:
Recharging the spring and controlling the output torque with the IVT.

The control of the clutch causes the need for a hybrid control solution with two
states. The challenge in the design of the controller is to find the optimal point
when to switch on the motor. A large part of the gain in energy efficiency of
the proposed V2E2 system lies in the fact that the DC motor can be used in its
optimal (most efficient) point while recharging the spring. Depending on the
energy transfer at the output shaft, the motor can be periodically switched on at
its maximum efficiency. As an additional control law, it is necessary to stay away
from the state ϕS = 0 at all times. The clutch does not necessarily need to be a
controlled version. Its primary functioning can also be mechanically solved by
using a one-way clutch, in the same way as the winding mechanism of a clock or
a wind-up toy.

The IVT ratio is used for control of the output torque. Depending on the desired
actuation profile, the ratio can be set at a fixed value, or needs to be changed dur-
ing a (periodic) motion. Different control schemes apply for different actuation
profiles. Consider the control of a walking (humanoid) robot. During a normal
walking gait, the hip joint is powered using a periodic profile, requiring a large
torque to start the swing-phase of a leg, and braking this motion at the end of
the swing phase. For this profile, periodic switching of the IVT will be necessary,
from a high gear ratio for the swing-phase torque to a reverse ratio at the end,
enabling storage of braking energy in the spring. An example of this movement
is shown in figure 8.7. This data has been taken from a simulation model of our
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Figure 8.7: Simulation data of the 2D powered dynamic walker ‘Dribbel’, showing hip an-
gle, injected power by the hip motor and IVT ratio when using the proposed V2E2 actuator.

2D walking robot (Dertien, 2006). The top graph shows the hip angle during a
walking motion, the middle graph shows the power that is being injected by a
DC motor in the hip (the part that lies below the zero line is the negative work
that can be stored in the spring), the third graph shows an impression of the used
IVT ratio. The spikes in the power graph are caused by the mechanical locking of
the passive knee mechanisms.

During normal walking, the knee joint does not need to be powered (Collins et al.,
2001; Dertien, 2006), so a very low ratio (≈ [∞ : 1]) can be used, resulting in zero
torque as described in the previous section (however, adding a little power can
increment the ground-clearance and may improve robustness). When the robot
has to do other types of movement with the same joints, such as sitting down
or standing up, high gear ratio’s will be required because of the high torques
involved. In this case it is not necessary to change the IVT ratio with a very high
bandwidth.
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Figure 8.8: Conceptual sketch of the V2E2 actuator.

8.6 Conclusions and discussion

8.6.1 Proposed system

The concept for a novel embedded V2E2 actuator has been presented which is
able to store negative work and create constant forces without conceptually any
or small losses of energy. This device will have, in its final form a mechanical and
an electrical interface. The mechanical interface will be used as a usual actuator.
The electrical interface will have a power connection which will be used bidi-
rectionally to use or charge a battery and a signal control to specify the desired
torque on the axis. Internally, with a low power micro-controller, the actuator will
take care of steering the device as required, controlling the electric DC motor, the
IVT and the clutch. In figure 8.8 we have sketched the mechanical part of the new
actuator.

8.6.2 Consequences for robotics

The future will learn how efficient the IVT under study will be. Other practical
implementations and problems in the realization of the proposed actuator have
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yet to be tackled, but if this will be successful, the implications for robotics will
be substantial. In legged locomotion people either develop highly geared, fully
actuated, robust but not efficient machines or minimally actuated, not robust, but
extremely energy efficient machines. A machine which has the robustness of the
first group and the energy efficient of the second as yet to come. Such actuators
could drastically change this and this was originally the idea which brought the
author to conceive V2E2 actuators. We could make a fully V2E2 actuated machine
and control it using the most advanced nonlinear control methods without hav-
ing to worry about the efficiency since the actuators would take care of that. Such
devices would therefore bridge the gap which is still existing between advanced
but complex and inefficient nonlinear control methods and simple non-robust
minimalistic efficient approaches. In the opinion of the authors, this would be a
major achievement for robotic locomotion.

8.6.3 Ongoing work

Some practical problems have still to be solved before the proposed concept will
be applicable, first of all the realization of an efficient Infinitely Variable Transmis-
sion. A lot of progress has been made in this direction and the team of the authors
is currently working on a patent. The authors believe that if the practical prob-
lems will be overcome, such an actuator could cause a revolution in the world of
many robotic applications especially in legged locomotion and prosthetics.
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Chapter 9

Design and realization of an energy
efficient knee-locking mechanism
for a dynamically walking robot

This chapter is based on the following article (van Oort et al., 2011a):

An energy efficient knee locking mechanism for a dynamically walking robot
Gijs van Oort, Raffaella Carloni, Dian J. Borgerink and Stefano Stramigioli

Proc., IEEE International Conference on Robotics and Automation (ICRA’11)
pages 2003–2008, May 2011.

Abstract—In this work, we present the design and the implementation of an
innovative knee locking mechanism for a dynamically walking robot. The
mechanism consists of a four-bar linkage that realizes a mechanical singularity
for locking the knee when the leg is in the extended position. Once extended,
the knee remains locked without energy consumption, while unlocking it only
costs a small amount of energy. Tests showed that the robot walks robustly and
that the energy consumption of the new system is low.

139
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Figure 9.1: The dynamically walking robot Dribbel.

9.1 Introduction

The energy efficient bipedal walking robot Dribbel (figure 9.1), developed at the
Control Engineering group of the University of Twente, has been built in order to
demonstrate the potential dynamic walking (Dertien, 2005). Dribbel has a mass
of 16.1 kg and its leg length is 0.95 m. Instead of using heavily geared motors, the
knees of Dribbel have no motor at all. Nevertheless, the robot is able to produce a
stable dynamic gait. In order to keep the legs extended during stance phase, the
knees of Dribbel are equipped with a locking system.
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Figure 9.2: The old knee locking mechanism of Dribbel: An electomagnet pulling an iron
disk (top right) towards itself. The magnet had to be turned on permanently in order to
keep the knee locked.

The original knee lock design (figure 9.2) used electromagnets to keep the leg
stretched. With these knee locks Dribbel was able to walk, but sometimes it stum-
bled, due to the fact that the mechanism failed to fix the leg. When, for example,
the lower leg swung too fast, the electromagnets could not absorb all kinetic en-
ergy, resulting in a rebound of the leg.

Another problem of the knee locking mechanism was that the locking force was
limited. The ankle push-off mechanism made by Franken (2007) (a bi-articular
one, i.e., the force runs over the knee and the ankle) produces large knee torques,
sometimes resulting in a spontaneous unlocking of the knee.

A third disadvantage of the previous knee lock was that the mechanism con-
sumed a significant amount (55 %) of the total energy of the robot (the electro-
magnets were switched on for 77 % of the time and consumed 17 of the total
31 W used by Dribbel).

We have conducted a study on different knee locking mechanisms (Reinink, 2009).
Based on that, an innovative design was made, which uses a mechanical singu-
larity to lock the knee — effortless. The advantages of the new mechanism over
the previous electromagnet version are:

• Chances of rebound of the lower leg are much smaller,

• The mechanism uses only a small amount of energy to keep locked,
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• The locking force is independent on the energy consumption of the mecha-
nism; it is only dependent on the mechanical strength of the mechanism.

A prototype of the new knee mechanism has been built and tested (Borgerink,
2008). The results of these tests show that indeed the new knee mechanism
is more reliable, stronger and more efficient than the electromagnet precursor.
Based on these tests, a final design was made and implemented on Dribbel, which
can now walk safer and more energy efficiently than before.

All dynamically walking robots with knees suffer from the problem of needing
a knee mechanism. The first kneed walker, by McGeer (1993), did not have any
locking mechanism at all; it only had a de-bouncing mechanism and an endstop.
The 2D biped Mike, byWisse and van Frankenhuyzen (2003), used a mechanical
latch and a solenoid for unlocking. The 3D walker by Collins and Ruina (2005)
has an electromagnetic release system for a movable latch. At MIT, Baines devel-
oped a knee mechanism with a DC motor for actuation and an electromagnetic
clutch for uncoupling the actuator from the knee (Baines, 2005). This mecha-
nism was later improved by Reynolds (2006) by using bevel gears. Trifonov and
Hashimoto (2007) tried a totally passive locking system with permanent magnets,
but this could not be tuned well enough. Later they developed a mechanism with
a locking hook.

In the world of prosthetics there are many patents on knee mechanisms. Many
describe four-bar linkages that create a virtual rotation point outside the mecha-
nism, or a virtual rotation point that moves during the flexion of the knee (Mar-
low, 1990; Townsend, 1994; Kramer, 1998). Generally, these systems are con-
structed such that exerting a pressure on the knee (i.e., leaning on the extended
leg) helps locking the system. Another four-bar mechanism is found in (Radcliffe,
1992), where the mechanism is constructed such that it acts as a pivot lock. A knee
system with a dedicated locking hook is described by Townsend (2002). A lock-
ing system using a mechanical singularity is described by Hieronymus (2003),
although it has noting to do with prostheses or robots (it is used for printing or
varnishing machines).

This chapter is organized as follows. In section 9.2 we state the design require-
ments for our new knee lock. Then, in section 9.3 we present the new knee locking
system and discuss some of the features. A few tests and measurements done on
the new actuator itself and on Dribbel are described in section 9.4. Finally, before
concluding, we show in section 9.5 how mechanical play (backlash) appears to be
advantageous.
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9.2 Design requirements

In this chapter, the knee angle, ϕ, is defined as the angle between upper and lower
leg, where ϕ = 0 corresponds to a fully extended (i.e., straight, not bent) leg, and
a bent knee will give a positive value for ϕ.

In order to be suitable for our research on dynamically walking robots, the new
knee locking mechanism has to meet the following requirements:

• The knee locking mechanism should be able to lock the knee when the leg
becomes fully extended, preventing it from flexing again,

• When the knee is flexed (during swing phase), the mechanism’s influence
on the dynamics of the leg should be minimal,

• The mechanism should be energy efficient, lightweight and robust against
falling.

The maximum amount of flexing torque expected is due to the push-off. From
measurements on Dribbel, it is deduced the maximum flexing torque is in the
range of 3–5 Nm. The lock mechanism should be able to withstand this. As no
movement at all is needed during this torque, it would be logical to use a high
transmission ratio n between the actuator used and the knee. Clearly, this is only
needed when the leg is straight (ϕ = 0).

Dribbel has been designed to have a passive-dynamic walking gait, which means
that the passive dynamics of the system dominate the movements (as opposed to
actuators dominating the movement). Hence, the influence of the new knee lock
on the dynamics should be minimized. Minimizing the mass of the mechanism
is therefore important, as well as minimizing the added moment of inertia. It is
desirable to have only a small transmission ratio n between the actuator and the
knee, since a large transmission ratio would increase the apparent inertia of the
actuator by n2. This is important especially during the swing phase, when there
is most movement of the leg and the leg is bent (ϕ > 0).

It is clear that we have contradicting requirements: on one hand the transmission
ratio between the actuator and knee should be high in order to achieve a large
locking torque with a small actuator, on the other hand it should be low in order
to minimize the added inertia. Fortunately, these two requirements are needed
in two different regions of the knee angle: large transmission ratio when the leg
is extended (ϕ = 0), and small transmission ratio when the leg is flexed (ϕ > 0).
Therefore, a system that links the transmission ratio and the knee angle may give
us the best of both worlds.
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Figure 9.3: The new knee locking mechanism.

9.3 The new knee locking mechanism: The ‘Beugel’

Figures 9.3 and 9.4 show the new knee locking mechanism. The mechanism
(which is basically a four-linkages mechanism) consists of two rods, called the
motor arm and the connection rod, connecting the upper and lower leg through
rotational joints Ju (on upper leg), Jl (on lower leg) and Jm (on motor arm). The
fourth joint is the knee joint Jk itself. The dimensions of the mechanism are shown
in table 9.1. A voice coil actuator (VCA) (Buttolo et al., 1994) from a hard disk can
exert a torque τVCA around Ju onto the motor arm. The angle of the motor arm is
called α. At the end of the motor arm a suction cup with a small hole is mounted
that can contact the end stop on the upper leg. There are also end stops on the
lower leg which limit its range to 0 ≤ ϕ ≤ π/2 rad.
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Figure 9.4: The new knee locking mechanism. a) Leg in flexed position; b) System in
singularity (joints Jm, Ju and Jk lie on one line).

Description Dimension Length

Horizontal offset of Ju and Jl h 45 mm
Vertical offset of Ju du 25 mm
Vertical offset of Jl dl 5 mm
Motor arm length lm 55 mm
Connection rod length lc 75 mm

Table 9.1: Dimensions of the mechanism (see also figure 9.4).
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9.3.1 Four-linkages mechanism

There is a fixed relation between the motor arm angle and the lower leg angle, as
shown in figure 9.5. This relation is dependent on the exact geometry of the mech-
anism and was found using numerical optimization by Reinink (2009). The trans-
mission ratio n(ϕ) between motor arm angle (on which the actuator is mounted)
and knee angle is the slope n = dα/dϕ and is shown in figure 9.6. Indeed, we
have the best of both worlds: a very large (even infinity) transmission ratio near
ϕ = 0 and a small transmission ratio for a bent knee. The torque on the lower leg
(around Jk) that the system can generate is τl = n(ϕ) · τVCA.

Figure 9.4a shows the leg in a flexed state. When the lower leg rotates, the mo-
tor arm (and thus the actuator) rotates with it at relatively low angular velocity
(α̇ ≈ ϕ̇). This does not influence the motion of the lower leg very much. When
the knee is almost extended (ϕ is small), the motor arm will be almost vertical.
A small angular displacement of the knee will now result in a large angular dis-
placement of the motor arm (large transmission ratio, i.e., α̇� ϕ̇), and conversely,
the actuator can exert a high torque on the lower leg.

Figure 9.4b shows the system in its mechanical singularity. The transmission ratio
is infinity, implying that the lower leg cannot rotate at all and, irrespective of the
(external) torque on the knee, the motor arm can be kept in place with minimum
energy consumption. This is an unstable equilibrium.

The motor arm can go through the singularity, such that α < 0. This way, the
suction cup on the motor arm can contact the end stop on the upper leg. The
lower leg is then flexed a minimal small amount. If an (external) flexing force
acts on the knee, it will cause the motor arm to be pressed harder against the end
stop. Hence the knee cannot be flexed any further, i.e., the knee is locked.

The apparent inertia of a body, for example the leg, can be expressed as Iapp = τ
ϕ̈

(where τ is the torque exerted on the joint), or, in words, the amount of torque
needed for one unit acceleration. The apparent inertia of the lower leg (includ-
ing the foot) consists of two parts: the inertia of the lower leg itself (including
the foot) and the inertia added by the knee mechanism with actuator: Iapp =

Ileg + Iknee-mech. The former is fixed and was measured to be Ileg = 0.095 kgm2.
The latter is heavily dependent on the transmission ratio n(ϕ) and can be ap-
proximated by Iknee-mech = n2(ϕ) · Imotor-arm, for which we measured Imotor-arm =
4.5 · 10−5 kgm2. In figure 9.7 the apparent inertia as a function of the leg angle
is shown. Indeed, the influence of the mechanism in negligible for almost the
whole range of motion of the lower leg, which is exactly what we desired. For
very small leg angles (the leg almost extended), the inertia becomes large, which
is not a problem because the leg does not need to swing freely anyway around
those angles. Over the whole stroke of the system, the connection rod keeps more
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Figure 9.6: The transmission ratio between motor arm angle (where the actuator is situ-
ated) and leg angle. For very small leg angles (near leg extension) the transmission ratio
is high — a large torque can be exerted. When the leg is flexed, the transmission ratio
quickly decreases, allowing free leg swing. After the motor arm has past its singularity,
the transmission ratio becomes negative. This is out of the the scale of the graph.
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Figure 9.7: The apparent inertia Iapp of the lower leg as a function of the leg angle. The
dash-dotted line indicates the inertia of the lower leg Ileg = 0.095 kgm2 itself. When the
leg is flexed, the knee locking mechanism barely increases the inertia, so its influence to the
dynamics are negligible. When the leg is almost extended, the apparent inertia increases
rapidly.

or less the same orientation; it only translates. This does not add much to the in-
ertia at all and was therefore neglected.

The impedance of the knee actuator, as seen from the leg, can be expressed as
Zknee-mech(jω) = τ(jω)

ϕ̇(jω)
= jωIknee-mech. As Iknee-mech is variable, the impedance is

also variable. So, with right, we can say that we have a variable impedance actu-
ator. However, instead of being able to vary the impedance separately (which is
normally the case for a variable impedance actuator (Tonietti, 2005)), it is cleverly
coupled to the leg angle, such that for each angle an appropriate impedance is
obtained.

Although using the mechanical singularity of a four-bar linkage has, to our best
knowledge, never been used to make passive knee locking systems for robots or
prostheses, the idea to use mechanical singularities to lock things is not new, and
it is frequently used. Our direct inspiration came from our local beer brewery
Grolsch, that ships their beer in so-called ‘swing top bottles1’ (Grolsch Beugels in
Dutch, hence the name for our device). Another example is the mechanism used
to open and close small windows. These two examples are shown in figure 9.8.
For comparison, we put the names used in this chapter on the equivalent parts in
the mechanisms.

1The swing top bottle was invented in 1875 by De Quillfeldt (1875).
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Figure 9.8: Examples of other four-bar mechanisms using the mechanical singularity for
locking. a) The Grolsch swing top bottle. The equivalent of Jk is absent; the mechanism
only keeps Jl pulled towards Ju. b) A window opener.

9.3.2 Suction cup

Consider the event of locking the knee. When, during the end of the swing phase,
the leg extends with velocity ϕ̇, the motor arm will have an angular velocity α̇ =
n ϕ̇. With the leg almost extended, n is very large and so will α̇ be. Because
of its own inertia (which is small but not zero), the motor arm will still have a
substantial angular momentum when hitting the end stop. It is essential that
the motor arm does not bounce back too far, otherwise the system may become
unlocked again. This is where the suction cup comes into play. A suction cup
with a small hole in it is known to be able to absorb a lot of kinetic energy during
collision, while having a minimum effect during non-collision. They were first
used in McGeer’s planar walking model with knees (McGeer, 1993). The working
principle is as follows. At collision, the suction cup is pressed firmly against the
end stop, squeezing out all air between the suction cup and end stop, generating
a vacuum. The environmental air pressure then presses the suction cup against
the end stop. A conventional (and ideal) suction cup would stick to the end stop
forever, preventing the lock from opening during the next step. The small hole
in our suction cups however, allows air to slowly leak into the space between
the suction cup and end stop again, and after a while (typically a few tens of a
second) the suction cup can be moved around freely again.
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9.3.3 Actuator

The stroke of a typical voice coil motor from a hard disk is quite small (the one
we used was 45◦); from figure 9.5 it can be seen that the stroke of the VCA should
be at least 155◦ (as it it fixed to the motor arm, it should be capable of rotating
through the full range of α). Therefore, one of the end stops of the actuator was
removed so that the voice coil can leave the magnet housing of the VCA when
the lower leg flexes. Outside the magnet housing, the VCA cannot generate any
torque. However, this is not a problem, because the knee should not be actu-
ated when the leg is flexed anyway. In the range (α < 31◦) the VCA can exert
torques, such that the system can be actuated. This is described in more detail in
section 9.4.2.

9.3.4 Mechanical integration

Dribbel has been designed with modularity in mind. Mechanically, each joint is a
separate unit which can be fit onto the robot with just eight (knee) or four (ankle)
bolts. The new knee lock continues on this modularity. It was designed such that
it does not require major adaptations on the robot itself. It forms an add-on that
can easily be mounted using the eight bolts that fix the knee joint in the upper
and lower leg.

9.3.5 Electronics

Dribbel’s electronics are also modular. It has one master module, the main con-
troller board, containing an ATMega128 microcontroller and 13 slave boards: a
hip actuator module, four ankle actuator modules, four knee joint modules and
four ankle sensor modules. Each slave module is equipped with an ATMega8
microcontroller to perform local tasks such as interfacing with sensors, doing el-
ementary calculations and passing its status or other data to the main controller.
Communication is done using a TWI field bus.

The original knee joint modules were designed to simply turn on or off the elec-
tromagnet through a power transistor. The modules were adapted to the new
knee lock by adding a full H-bridge. This allows both positive and negative ac-
tuation of the VCA’s, as well as PWM regulation.

9.3.6 Sensors

In order to properly control the knee mechanism, the angle of the motor arm
needs to be known. An encoder was already available on Dribbel to measure
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State Motor arm region Actuator action

Unlocked, out of VCA range None
Lock Unlocked, within VCA range Negative direction

Locked None

Unlocked, out of VCA range None
Unlock Unlocked, within VCA range Positive direction

Locked Positive direction

Table 9.2: Control strategy for the mechanism. For each of the two states the system can
be in, the actuator action is shown for the different regions of the motor arm.

the knee angle, but this cannot be used to calculate the angle of the motor arm
because the relation ϕ = ϕ(α) is non-injective (i.e., for some knee angles ϕ there
are multiple possible values for α). It would be possible to move the encoder from
the knee to the motor arm and then calculate the knee angle from the motor arm
angle, but in that position it is more vulnerable when the robot falls.

Therefore, a new, simple sensor was added to get information about the angle
of the motor arm. A small study showed that for the type of control conducted
at this moment, it sufficed to divide the total stroke of the motor arm into three
regions and only know in which region the motor arm is. The regions are:

• Unlocked, out of actuation range: α ≥ 31◦,

• Unlocked, within actuation range: 0◦ ≤ α < 31◦,

• Locked: α < 0◦.

A custom sensor was made using two simple optical sensors. Two small non-
transparent plates connected to the motor arm move through these sensors to
indicate in which region the motor arm is. The plates can easily be adjusted to
fine-tune the system. It is also possible to save energy by turning the optical
switches off when it is not important to know in which region the motor arm is
(e.g., during swing phase when is it certain that the knee is unlocked).

The control that is currently implemented in the new knee mechanism is straight-
forward. The knee locking system has two states: lock (try to lock the knee and
keep it locked) and unlock (similarly defined). The main controller determines
which state each knee should be in and sends the appropriate signals to the knee
modules.

When the main controller sends the signal to lock, the VCA is actuated at full
power in negative direction whenever the motor arm is not in the ‘locked’ region.
In the ‘locked’ region, the VCA is turned off; as long as the motor arm is past
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the singularity there is no chance for the leg to flex, thus no reason to actuate the
mechanism. Also, the VCA is not powered if the motor arm is in the ‘unlocked,
out of actuation range’-region.

When the main controller sends the signal to unlock, the VCA is actuated at full
power in positive direction until the motor arm is in the ‘unlocked, out of actu-
ation range’-region. In that region, the VCA is not actuated at all. Note that the
controller always steers the system towards a low/no power region. Therefore,
the current consumption is only large during the state transitions, not when in a
state for a longer time. Table 9.2 gives an overview of the control strategy.

9.4 Tests and measurements on Dribbel

9.4.1 Locking strength

One of the problems of the old, magnetic knee lock was the limited locking
strength. Theoretically, it should have been able to withstand a flexing force
of 10 Nm (Dertien, 2005), but due to elasticity of the materials, the magnet and
iron disk would un-align under the flexing force, thereby reducing the locking
strength to only 3.5 Nm.

As stated earlier, the locking strength of the new system is independent on the
actuator strength; it only depends on the mechanical strength of the parts, in
particular the connection rod and the knee axis Jk. It is hard to measure how
strong a system really is without irreversibly damaging it, so we only did a non-
destructive test to determine a minimum strength. Therefore, we clamped the
upper leg in a horizontal position and exerted a downward force on the foot (at
a distance of 0.43 m from the knee joint). The maximum force we applied was
60 N, i.e., 26.1 Nm. The mechanism could withstand this force with ease. Hence,
at this aspect the new knee mechanism is at least seven times as good as the old
one.

9.4.2 Torque of the actuator

As stated earlier, the voice coil actuator cannot exert torques over the whole
stroke. An experiment was done to investigate this. A positive voltage of 12 V
was put on the VCA and the resulting torque τVCA was measured for a range of
angles, see figure 9.9. There is a negative torque range around α = 0◦ and a less
powerful positive torque range (around α = 60◦). At α = 31◦ the actuator pro-
vides no torque. In figure 9.10 it is shown how this torque translates to a torque
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Figure 9.9: The torque of the VCA τVCA as a function of the motor arm angle α for a voltage
of 12 V.
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Figure 9.10: The torque on the knee joint τknee that the knee mechanism can generate.

around the knee joint, by using τknee = n(ϕ) · τVCA. We chose to only use the
range α < 31◦ (thus ϕ < 3◦) for actuation, since the torque for larger angles is
very small. Of course, within the region α < 31◦, positive torques can be exerted
by applying a negative voltage.
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9.4.3 Power consumption of the knee mechanisms during nor-
mal gait

When fully powered (U = 12 V), the VCA of the knee mechanism takes approxi-
mately I = 0.39 A, which results in a power consumption of PVCA = U · I = 4.7 W
for each actuator. This is a significant amount, but it should be remembered that
most of the time the actuators don’t have to work at full power. During a normal
walk, we measured the average actuation time for each actuator to be approx-
imately 10 % of the gait cycle, which implies that the four knee locks together
consume approximately 1.9 W.

9.4.4 Total power consumption, specific cost of transport

The specific cost of transport Cet is a non-dimensional indicator of the energy-
efficiency of transportation. It equals the amount of (electrical) energy needed to
transport a unit weight over a unit distance:

cet =
E

m · g · d =
Pavg

m · g · vavg
(9.1)

where E is the energy used, m the mass of the system, g the earth’s gravitational
acceleration, d the distance traveled, Pavg the average power consumed and vavg
the average velocity.

In order to obtain the average power consumption, we made Dribbel walk and
recorded the power consumption as a function of time. Over four typical, con-
secutive steps, we measured an average power consumption of 27.7 W. The hip
actuator was controlled by a simple PD controller that instantaneously switches
the setpoint for the inter-leg angle when the front foot touches the ground (simi-
lar to Wisse et al. (2005), but with the difference that we used very low controller
gains such that the swing phase more or less resembles natural swinging motion).

Dribbel’s velocity was measured by making it walk 14 consecutive steps, cover-
ing a distance of 4.0 m. This took 14.0 s, giving an average velocity of vavg =
0.29 m/s. Together with the mass of Dribbel being 16.1 kg, we find a specific
cost of transport of cet = 0.60. Table 9.3 shows some important specifications of
Dribbel.

9.5 How mechanical play is —for once— our friend

When we first implemented the new knee mechanisms on Dribbel, the system did
not work entirely as expected. Often, the motor arm did not pass its singularity
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Description Value

Average step length 0.29 m
Average step time 1.0 s
Average velocity 0.29 m/s
Power consumption 27.7 W
Specific cost of transport 0.60 –

Table 9.3: Specifications of the gait of Dribbel.

during knee-strike, and when it did, it did not go to the end stop but was pushed
back towards the singularity (which is unwanted because a small disturbance
on the motor arm could cause it to move into the unlocked region again). The
behavior was also heavily non-reproducible: one day it could work very well;
the other day it could fail all the time. We identified the source of the problems:
the singularity itself.

For the motor arm not passing the singularity during knee-strike, we found two
opposing causes. The system was designed such that it could be fine-tuned eas-
ily (the positions of Jl and Ju can be changed a few mm by loosening and re-
tightening the eight construction bolts, resulting in a slight change of the relation
between the lower leg angle and motor angle (the curve of figure 9.5 would be
shifted a little). However, it was very hard to tune it such that the curve would ex-
actly go through the point (α, ϕ) = (0, 0). Moreover, temperature changes, shocks
or falls of the robot could de-tune the system easily. The actual relation could be
such that when α = 0 then ϕ < 0, i.e., the curve is shifted somewhat to the left.
The end stop in the knee would not allow the lower leg to have a negative an-
gle, implying that the motor arm could never pass the singularity. Oppositely,
the relation could be such that when α = 0 then ϕ > 0, i.e., the curve is shifted
somewhat to the right. In this case, the motor arm can move through its whole
stroke. Near the singularity, the lower leg exerts a large force on the motor arm,
perpendicularly to its moving direction. This force creates a lot (theoretically: in-
finity) of friction in the rotational joints. Because of this friction, the motor arm
would stop moving, again not passing its singularity.

From figure 9.5 it can be seen that when some external torque on the lower leg
would force it to be fully extended, the motor arm will be pushed towards the
singularity, diminishing the robustness of the lock (the motor arm could easily
go past the singularity, thereby unlocking). The VCA could of course be used to
counteract this movement, but this consumes power, which is unwanted.

In order to solve all these problems, we deliberately created play into the system:
we made the hole on joint Jl approximately half a millimeter larger than the axis.
The result is that the motor arm and lower leg are now able to move a little,
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Figure 9.11: Measurement of the relation between the motor arm angle and lower leg
angle. Due to the mechanical play, there is no exact coupling between the two. The black
line indicates the theoretical no-play situation. Point A: self-locking point when there is a
bending moment on the lower leg. Line B1B2: The range of motor arm angles ‘compatible’
with a fully extended leg.

independently from each other. Figure 9.11 shows all possible combinations of
motor arm and lower leg angles. From the figure, a few interesting observations
can be made. There is still a single point (point A) where the bending moment
of the knee self-locks. Due to the play it has moved a little bit (the leg is more
flexed), but practically this cannot be noticed. The real benefit is in the line B1B2.
This line shows that, when the leg is fully extended (ϕ = 0, against the leg’s end
stop), the motor arm can move freely all the way from its end-stop (B1) to a point
past the singularity (B2): as long as ϕ = 0, the motor arm movement is fully
uncoupled from the leg for a quite large stroke.

Fine-tuning (or accidental de-tuning), may still shift the curve (which is now ac-
tually a region) of figure 9.11, but now there is a tuning margin for which the
point (α, ϕ) = (0, 0) is within the region. Hence, the motor arm is always able
to pass the singularity when the leg is fully extended. Moreover, when the leg is
fully extended by an external torque, all torque is counteracted by the leg’s end
stop; the leg does not exert any force on the motor arm anymore. This way, we
have got rid of the friction issues and the motor arm will not be pushed back to-
wards the singularity. The motor arm can be held against its end stop easily by
a small amount of power on the VCA, greatly reducing the chances of accidental
unlocking.

This means that by creating play in the system, we made it more robust and far
less sensitive to tuning. A super-simple solution with great benefit!
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9.6 Conclusions and future work

We have designed, implemented and tested a new knee locking mechanism for
the energy efficiently walking robot Dribbel. It uses a four-bar mechanism and a
mechanical singularity for locking the knee in extended position. Once extended,
the knee remains locked without energy consumption, while un-locking only
costs a small amount of energy. We used suction cups for passive de-bouncing
of the system, which has been proven to be an effective method. A simple con-
troller was implemented that is locally executed by the knee-module. The tests
showed that the knee locks function well, that the energy consumption indeed
has decreased and the robot walks robustly.

Future work will focus on improving the control algorithm. Firstly, the energy
consumption could be further decreased by actively monitoring the exact move-
ment of the motor arm, and only activate the VCA if strictly necessary. For exam-
ple, when locking, if the motor arm is already moving towards the end stop with
enough velocity, it is not necessary to help it by turning on the VCA. Secondly,
the VCA could be used for active de-bouncing. If, when locking, the motor arm
goes really fast, the VCA could be used to decelerate it, reducing the chance of a
rebound. Both enhancements require more accurate measurement of the motor
arm angle α, which will be provided by a more accurate sensor.
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Chapter 10

New ankle actuation mechanism for
a humanoid robot

This chapter is based on the following article (van Oort et al., 2011b):

New Ankle Actuation Mechanism for a Humanoid Robot
Gijs van Oort, Roelof Reinink and Stefano Stramigioli

Proc., 18th IFAC World Congress (IFAC’11)
August 2011.

Abstract—In this chapter we discuss the design of a new ankle actuation mech-
anism for the humanoid robot TUlip. The new mechanism consists of two
coupled series-elastic systems. We discuss the choice of actuators according
to calculations for maximum achievable walking speed. Some control issues,
MIMO and non-linearities are also discussed.
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Figure 10.1: a) The humanoid robot TUlip; b) Overview of the degrees of freedom of TUlip,
the definition of the x-, y- and z-axis and indication of the ankle joints θx and θy.

10.1 Introduction

The field of humanoid robots gets more and more attention nowadays. As batter-
ies, actuators and computers have become better, it has been increasingly more
easy to build nice-looking well-working robots from off-the-shelf components.

In a collaboration project, the three Technical Universities of the Netherlands
(University of Twente, University of Delft and University of Eindhoven) are de-
veloping a humanoid robot called TUlip (figure 10.1a). The robot was designed to
compete in the RoboCup robotic soccer competition. Contrary to most other hu-
manoid robot projects, where the focus lies on developing advanced controllers
for a mechanical system based on very simple principles1, we try to follow the

1Although these robots are, from a mechanical point of view, amazingly nicely designed, the un-
derlying principle is old-fashioned: just heavily geared motors on each of the joints. This is in contrast
to humans, which have a great level of compliancy in their muscles.
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Figure 10.2: The series-elastic joint for the hip motion. Inside the upper leg a DC motor
is situated (with its output axis pointing downward). On the output axis there is a pulley
that actuates the cables with springs. The large pulley is fixed to the torso.

more mechatronic approach: solve each problem in the domain where it can be
solved best. As an example, the hips and knees of TUlip are actuated by a series
elastic actuator (SEA) (Williamson, 1995). Amongst others, this makes the system
less vulnerable for shocks, for example on foot impact. Hence, at the control we
don’t have to cope with avoiding shocks anymore.

The main research goal for TUlip is research on ‘limit cycle walking’ (Hobbelen,
2008). In limit cycle walking, the goal is not to be stable at each time instant, but
just have a stable cycle; during the cycle the robot can be unstable, i.e., ‘falling’ for
some time. This is in contrast to the so-called ZMP-type of walking, where tight
control makes sure that the robot is always fully supported by the floor.

TUlip is 1.37 m in height and has a mass of 19 kg. It has 17 degrees of freedom: six
in each leg, one in each arm and three in the neck (figure 10.1b). The sagittal (fore-
aft) motion of the hip and the knee are equipped with a series elastic actuator as
shown in figure 10.2.

The original ankle mechanism on the robot had one active degree of freedom
(sagittal, rotation around the y-axis, called ‘ankle-y’) and one passive degree of
freedom(lateral; rotation around the x-axis; ‘ankle-x’). Due to the passive degree
of freedom, the robot could not balance on one leg; it would fall sideways. Also
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Figure 10.3: Schematic view of the old ankle mechanism. The rotation joints for sagittal
movement (θy) and lateral movement (θx) are decoupled. There is no actuation for lateral
movement; instead the foot is kept more or less in its default position by two stiff springs.

the actuation principle for ankle-y was far from satisfactory. In order to improve
the performance of TUlip, a new ankle mechanism was designed and built, which
is the topic of this chapter.

This chapter is organized as follows. In section 10.2 the previous design of the
ankle is described. We show what was wrong with it and how it could be solved.
Then, in section 10.3 we will investigate in more detail what the new ankle actu-
ation mechanism should be capable of. The design is discussed in 10.4. Before
concluding we dive into control issues of the system in section 10.5.

10.2 Old ankle design

A schematic view of the old ankle design is shown in figure 10.3. There are two
rotation axes involved: ‘ankle-x’ (for sideways movement) and ‘ankle-y’ (for fore-
aft movement). As shown in the figure, these are not coupled. The two joints are
discussed one by one here.

10.2.1 Lateral joint (ankle-x)

There is no actuator for lateral (sideways) movement; instead the foot is kept
more or less in its default position by two springs (K ≈ 15 kN/m). The springs
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are not strong enough to stabilize the robot passively when standing on one leg;
neither were they intended to. The idea behind this set-up was to allow the robot
to rock from one foot to the other (instead of going to a stable equilibrium on one
leg); a prerequisite for dynamic walking. The rocking frequency can be tuned by
changing the equilibrium position of the springs.

However, standing on one foot during a kick is really hard. Using Acrobot-like
control (Hauser and Murray, 1990) was considered nearly impossible, due to the
limited actuation range in the hip and the need to do other tasks simultaneously,
such as ball kicking. Moreover, severe torso motions make it impractical or even
dangerous to catch the robot when it is falling. Therefore, we decided not to try
this and improve the mechanics instead.

10.2.2 Sagittal joint (ankle-y)

The sagittal (fore-aft) motion is unilaterally actuated, i.e., the foot can be rotated
actively in one direction but not in the other. A DC motor placed in the torso is
connected to a bowden cable with series-elastic spring, which in turn is connected
to the rear of the foot. Pulling the bowden cable makes the foot plantarflex (i.e.,
toes down). A return spring on the front of the foot makes the foot dorsiflex (i.e.,
toes up) again when the cable is loosened again.

The main reason why this design choice was made was to keep the weight of the
lower leg and foot as low as possible. By putting the motor in the torso, the lower
leg and foot only had to be some structural pieces of aluminum, without any
heavy structures for actuation. The system however did not work as expected. In
order to be able to dorsiflex the foot with a large enough torque, the return spring
had to be quite stiff. This implied that the actuator had to deliver a large torque
just to keep the foot still (in order to obtain a zero resultant torque). The induced
tension in the bowden cable in its turn caused an enormous amount of friction,
which made it virtually impossible to do precise control.

10.3 Requirements for new design

For the new actuator mechanism we had a few qualitative as well as quantitative
requirements. Qualitatively, the system should not suffer from the problems de-
scribed in the previous section, so unilateral actuation, bowden cables and under-
actuation were not an option. Furthermore, the system should be robust and as
lightweight as possible. If mounted on the lower leg, its position should be as
high as possible in order not to disturb the passive-dynamic swing properties of
the leg too much (Franken, 2007). One of the demands is that the actuation is
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Figure 10.4: Simple 2D model of our robot: a compass walker with feet.

done in a series-elastic way. This reduces shock loads on the motors and gives us
the possibility to mimic zero-torque control.

Quantitatively, the most demanding task for the system is supplying enough en-
ergy during push-off in order to compensate for the energy lost during impact.
This is not only a matter of much torque, but also of speed: the foot must plan-
tarflex fast enough in order to stay in contact with the ground during push-off.
For the determination of these requirements, we look at the system as if it were a
‘simplest walker’ (Garcia et al., 1998) with flat feet: a 2D, bipedal walker with leg
length l, a point mass m at the hip and negligible foot mass (figure 10.4). The inter-
leg angle is denoted by 2α, the angle between the rear foot and leg by (π

2 − ϕ).
The distance from ankle to toe is dfoot and the velocity of the hip is denoted by
v. We assume post-impact push-off, which is the first strategy that we want to
implement using the new ankle mechanism2. The model used implies an instan-
taneous inelastic swing foot collision. Contrary to the simplest walker without
feet, the double support phase of this model is not instantaneous: the toe of the
new swing foot keeps in touch with the ground for a short period Tp. During
this period, the ankle actuator can exert a torque which results in an acceleration
of the hip. The quantitative requirements regarding acceleration and velocity of
the actuator are derived in the following two subsections. As the objective the
maximum walking velocity is taken. A few important parameters of the actual
robot (that are used in the compass model as well) are listed in table 10.1.

2Pre-impact push-off has been shown to be more energy efficient than post-impact push-off (Kuo,
2002), so if the new mechanism can achieve post-impact push-off, it is also able to do pre-impact
push-off.
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Parameter Name Value

Leg length l 0.55 m
Step length dstep 0.40 m
Mass m 19 kg
Foot length dfoot 0.145 m
Foot rotation limit −0.37 < ϕ < 0.18 rad
Foot rotation stroke ∆ϕ 0.55 rad

Table 10.1: Robot parameters for the compass walker model.

10.3.1 Acceleration dependency

In this subsection the relation between rotational acceleration of the foot (during
push-off) and achievable walking velocity is derived. Denote the velocity of the
hip by v and its acceleration by a. Assume that just before foot impact the velocity
of the walker is vpre. Because of impact loss, the velocity just after impact (but
before push-off) is vpost = vpre cos(2α) (Garcia et al., 1998). So the kinetic energy
loss is

Eimpact-loss =
1
2 m(v2

pre − v2
post) =

1
2 m(1− cos2(2α)) v2

pre. (10.1)

By applying a push-off torque on the ankle, the ankle actuator can inject energy
into the system, being the product of the exerted torque and the stroke. If we use
a constant push-off torque τ, we obain

Einjected = τ · ∆ϕ = J ϕ̈ · ∆ϕ (10.2)

where J is the apparent moment of inertia, i.e., the amount of torque required for
one unit rotational acceleration, which can be calculated as follows. The relation
between hip velocity v and foot rotational velocity ϕ̇ and between acceleration a
and ϕ̈ are approximately

v ≈ − dfoot
sin 2α

ϕ̇⇒ a ≈ − dfoot
sin 2α

ϕ̈. (10.3)

Because we assume the only mass is in the hip, all power delivered by the ankle
actuator will flow into acceleration of the mass, i.e.,

P = τ ϕ̇ = Fv v⇒ J ϕ̈ ϕ̇ = ma v (10.4)

where Fv is the component along the velocity vector v of the resulting force on
the hip. Filling in (10.3) yields

J ≈
(

dfoot
sin 2α

)2
m. (10.5)
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Figure 10.5: The maximum achievable walking velocity as a function of the maximum
actuator angular acceleration and angular velocity, as described in section 10.3. The three
thick lines correspond to a single Maxon RE25 motor, two RE25’s (differential setup) and
a single Maxon RE30 motor, with varying gear reduction ratios (section 10.4.3). The best
walking velocity (v = 1.62 m/s) is obtained for the differential setup of two RE25 motors
with (twice) a gearbox reduction of 1:117.

In order to obtain a limit cycle, it is necessary that the kinetic energy of each step
is the same. This implies that the amount of injected energy should equal the
amount of lost energy, i.e., Eimpact-loss = Einjected. Combining (10.1) and (10.2), we
can calculate the achievable walking velocity vpre for any foot acceleration ϕ̈:

vpre,achievable,acc =

√
2J∆ϕ

m(1− cos2(2α))
ϕ̈ ≈ dfoot

√
2 ∆ϕ

sin2(2α)

√
ϕ̈. (10.6)

10.3.2 Velocity dependency

At the end of the push-off phase, the foot must rotate fast in order to keep the toe
on the floor (otherwise, it is not able anymore to push-off). Equation (10.3) tells
us that, when we have a certain maximum rotational velocity ϕ̇, the walker can
walk at a certain maximum velocity, being

vpre,achievable,acc ≈ −
dfoot

sin 2α
ϕ̇. (10.7)

In order to walk at a desired velocity v, we need both a minimum acceleration
(equation (10.6)) and a minimum velocity (equation (10.7)), i.e.,

vachievable = min(vpre,achievable,acc, vpre,achievable,vel). (10.8)
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Figure 10.6: The new ankle actuation system of TUlip.

In figure 10.5 the maximum achievable velocity for our walker is shown as a
function of the maximum acceleration and velocity that an actuator can gener-
ate. Now, for any choice of actuator, we can calculate the maximum velocity and
acceleration and, from the graph, read out the maximum achievable walking ve-
locity. This will be done in section 10.4.3.

10.4 New design

In this section we describe the innovative design of the new ankle actuation mech-
anism. Firstly we give an overview of the system, then we discuss some of the
properties in more detail.

Figure 10.6 shows our new system. Two Maxon RE25 DC motors (A and B) are
connected to the foot through cables with series-elastic springs. The motors are
mounted in a differential set-up: both motors act on both the x-axis and y-axis
simultaneously. The cables are guided along ‘wings’, mounted on the sides of the
leg, so that the lower leg can flex without the wings touch the upper leg.
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Figure 10.7: Ankle actuation concepts. (a) In an uncoupled setup, one motor drives the
ankle-x and another the ankle-y joint. (b) In a differential setup the sum of the actuator
motions drives the ankle-y and the difference the ankle-x.

10.4.1 Series elastics

Series elastic actuation can be implemented in different ways. For the new ankle
actuation design, the same implementation is used as on the other SEA joints
on TUlip: a system consisting of pulleys and cables with springs. It has proved
to function well, and routing of the cables gives freedom in the placing of the
actuator at a convenient place.

10.4.2 Differential setup

Conventionally, one would simply use one motor for actuation of the x-axis and
the other motor for actuation of the y-axis (figure 10.7a). We chose however to
merge the two axes in a so-called differential setup, where both motors act on both
axes (figure 10.7b). When the motors turn in the same direction, the foot rotates
about the y-axis; when they turn in different directions, the foot rotates about the
x-axis.

The advantage of the differential setup is that both motors can work together
in the joint direction that has the largest demand on the torque. Therefore the
required maximum torque per motor is lower and lighter motors can be used for
the same performance. A consequence is that the maximum torque in diagonal
direction decreases to the torque of a single one of the actuators. Also, a more
complex (MIMO) controller has to be designed because the motions of the x-axis
and y-axis are coupled.
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10.4.3 Actuator choice

For TUlip the RE line-up of motors by Maxon is used. They have a good perfor-
mance versus weight ratio and there is good experience with them at the depart-
ment. We considered two motors: the RE25 (a 20 W motor) and the RE30 (a 60 W
motor). Smaller motors are unlikely to be powerful enough and stronger models
are unlikely to be needed, and would certainly be too heavy.

The amount of acceleration that a motor can produce is not only dependent on the
amount of torque it can generate, but also on the actuator’s own inertia (this is the
reason that we expressed the actuator demands in acceleration instead of torque
in section 10.3.1). The angular acceleration that can be achieved by a DC motor
with maximum motor torque τmot,max, gearbox ratio n and gearbox efficiency
η = 0.7 is

ϕ̈max =
n τmot,max η

J + n2 Jmot
, (10.9)

where J is the moment of inertia of the load and Jmot is the moment of inertia of
the motor and gearbox. The maximum angular velocity of an actuator is simply

ϕ̇max =
1
n

ωmot,max, (10.10)

where we assume that the friction in the joint is negligible relative to the motor
friction (this is a valid assumption because the joint velocity is small relatively
to the motor velocity and we use ball bearings in the joint axes). With these two
equations and the motor parameters (table 10.2), we can plot a point in figure 10.5
and read, for the specific actuator, the maximum achievable walking velocity. In
the figure we have plot three lines, representing a single Maxon RE25, a Maxon
RE25-pair in differential setup and a single Maxon RE30 motor, all with varying
gearbox ratio.

It seems that we can get approximately the same performance for a single RE30
and two RE25s in differential setup. The difference is that, in the case of one RE30
driving ankle-y we need another motor (an RE25) for ankle-x, while in the differ-
ential setup, two smaller motors suffice for both axes. Hence, the total system is
lighter without giving in on performance.

The ideal transmission ratio of 1:117 should be the total ratio between revolutions
of the DC motor axis and the foot. On top of the gearbox, there is also a small
pulley-system involved, of which the transfer ratio can be freely chosen (up to
some limits). The total ratio is then the product of the gearbox ratio and the
pulley system ratio.
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Parameter Name RE25 RE30 Unit

Rotor inertia Jmot 10.7 33.3 gcm2

Nominal speed ωmot,max 875 842 rad/s
Maximum torque∗ τmot,max 129 259 mNm
Mass mmot 130 238 g
∗ For the RE25 we took half the stall torque as the max-
imum torque (this is already much more than the al-
lowable continuous torque). For the RE30 we took the
torque at I = 10 A as maximum torque, as that is the
maximum that our motor amplifiers can deliver.

Table 10.2: Parameters of the Maxon RE25 and Maxon RE30 motors.

10.5 Control

Control of ‘normal’ series elastic actuation systems, such as in the hips and knees
of TUlip (figure 10.2) has been studied intensively (Williamson, 1995; Robinson,
2000). Our new ankle actuation system differs from the ‘normal’ series elastics in
two ways:

• The system consists of two coupled series elastics, i.e., it is a multiple-input-
multiple-output (MIMO) system,

• The system is nonlinear with respect to ankle position.

We will address these issues one by one: firstly we will consider the coupled
system assuming that it is linear, after that we will introduce the non-linearities.

10.5.1 Linear control of the coupled Series Elastic Actuator

Firstly, we look at the system linearized around its ‘home’ position: (θx, θy) = 0.
Therefore we use the small angle approximation sin θ• ≈ θ• and cos θ• ≈ 1. In
that case, the following equations hold:

Jm ϕ̈A = τA + r (FAF − FAR),
Jm ϕ̈B = τB + r (FBF − FBR),

(10.11)

and

τx = rx ((FAR − FAF)− (FBR − FBF)) ,
τy = ry ((FAR − FAF) + (FBR − FBF)) ,

(10.12)
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Figure 10.8: Sketch of the new ankle mechanism.

where Jm is the apparent inertia of each actuator, τA/B is the actuator torque of
motor A/B (on the output shaft of the gearbox), τx/y is the resulting torque on
the x- and y-axis of the foot, r the radius of the pulley on each actuator, rx/y the
arm about which the cables exert their force on the foot and F•F and F•R represent
the contracting force of the front and rear springs in cables A and B respectively.
Note that we ignore motor friction throughout this chapter. The elongation of
each of the springs, ∆l•, can be determined by

∆lBF = −rϕB + (dBF − dBF,0), (10.13)

and similarly for the other springs (with care for the minus-sign in front of r).
Here, dBF is the euclidean distance between the attachment point of the spring on
the foot and the top pulley, as indicated in figure 10.8 and dBF,0 = h is the initial
distance (at θx = θy = 0). In order to make sure that there is always a positive
tension on each of the cables, we use springs having a pre-tension Fpre. So the
contracting force of the each spring is equal to

F• = k ∆l• + Fpre (10.14)
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where k is the spring constant of each of the springs. In the case of a linear ap-
proximation, we have, explicitly

FAF = k (−rϕA + rxθx + ryθy) + Fpre,

FAR = k ( rϕA − rxθx − ryθy) + Fpre,

FBF = k (−rϕB − rxθx + ryθy) + Fpre,

FBR = k ( rϕB + rxθx − ryθy) + Fpre.

(10.15)

By manipulating these equations we find

Tx =
2krx

(
rTA − rTb − 2JmrxΘxs2)

2kr2 + Jms2 ,

Ty =
2kry

(
rTa + rTb − 2JmryΘys2)

2kr2 + Jms2 ,

(10.16)

where T• and Θ• are the Laplace transforms of τ• and θ• respectively. If we
look at the static case, i.e., lims→0, we find for the input sensitivity S, i.e., the ratio
between input torque τA/B and output torque τx/y:

SxA =
∂τx

∂τA
=

rx

r
, SyA =

∂τy

∂τA
=

ry

r
,

SxB =
∂τx

∂τB
= − rx

r
, SyB =

∂τy

∂τB
=

ry

r
.

(10.17)

The linearized model of the plant is shown in figure 10.9. For controlling the sys-
tem it is relatively straightforward to invert the transfer functions and take them
as a feed-forward term, such as in (Williamson, 1995). Then, by linear feedback,
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disturbances and model mismatch can be suppressed. However, as we will see
in the following subsection, the non-linear effects are so large that it is wise to
compensate for them with a decent non-linear feed-forward controller.

10.5.2 Nonlinearity

In the system we recognize two main sources of non-linearity:

1. The cable attachment points on the foot describe a sphere under variation
of θx and θy, i.e., the small angle approximation for these variables does not
hold exactly,

2. The rotation axes of the foot are not in the same plane as the cable attach-
ment points, which also gives rise to non-linearities.

The goal of the following subsections is to investigate how bad the non-linearities
are and (thus) how much effort should be put in compensating for these non-
linearities (especially because we don’t want to use too much computational pow-
er or look-up tables, if unnecessary). It should be noted that the ‘top’ part of the
system (the motors with pulleys) does show linear behavior and we consider
the springs as having a linear force-elongation relationship. Therefore, (10.11),
(10.13) and (10.14) still hold during the non-linear analysis. The other equations
of section 10.5.1 are linear approximations and will be replaced by non-linear
equivalents.

10.5.3 Nonlinearity — releasing the small-angle approximation

The effect of releasing the small angle approximation can be investigated by re-
placing (10.12) by

τx = (rx cos θx) (FAR + FBF − FAF − FBR),
τy = (ry cos θy − rx sin θx sin θy) (FAR+FBR−FAF−FBF)

(10.18)

and replacing rxθx and ryθy in (10.15) by (rx sin θx cos θy) and (ry sin θy) respec-
tively. We assume here that the cables still pull exactly vertically (which can be
assumed valid if h� rxθx, ryθy). By doing the math we find

τx =
rx

r
cos θx(τA − τB),

τy =
ry

r
cos θy(τA + τB)−

rx

r
sin θx sin θy(τA − τB)

(10.19)
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Parameter Name Value

Arm x-rotation rx 5.5 cm
Arm y-rotation ry 6.0 cm
Motor pulley radius r 1.65 cm
Mechanism height h 22.5 cm
x-axis height Hx 0.5 cm
y-axis height Hy 1.6 cm
Spring pretension Fpre 500 N
Spring stiffness k 50 kN/m
Rotation range x θx [−23◦ . . . 20◦]
Rotation range y θy [−32◦ . . . 35◦]

Table 10.3: Some important dimensions of the ankle mechanism.

and the input sensitivity S for the static case with nonlinearity, being

SxA =
∂τx

∂τA
=

rx

r
cos θx, SyA =

∂τy

∂τA
=

ry

r
cos θy −

rx

r
sin θx sin θy,

SxB =
∂τx

∂τB
= − rx

r
cos θx, SyB =

∂τy

∂τB
=

ry

r
cos θy +

rx

r
sin θx sin θy.

(10.20)

Due to this non-linearity, the input sensitivity of the system has become depen-
dent on de foot angle. Note however, that the system is still linear in τA/B (i.e.,
the system can be written as

τx = SxA(θx) τA + SxB(θx) τB,
τy = SyA(θx, θy) τA + SyB(θx, θy) τB.

(10.21)

For the dimensions of our system, as stated in table 10.3, the input sensitivity
SyA is shown in figure 10.10. The maximum deviation from the linear case is
approximately 32%, which is substantial.

10.5.4 Nonlinearity — off-plane rotation axes

Figure 10.8 shows that the rotation axes of the ankle are not exactly in the plane
of the cable attachment points; they are a little higher (also indicated by Hy in fig-
ure 10.11). The reason that we designed it like this is that we wanted to foot to be
as light as possible, thus make it not too high. The rotation axes need some clear-
ance from the ground however, otherwise the encoders would touch the ground.
This gives rise to extra non-linearities, and as we will see in this section, even
instability.
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FF are not equal, resulting in an acceleration of the motor (unless a counteracting torque
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Figure 10.12: The total potential energy Etot of the four springs together as a function of θy
and ϕA/B. for a system where the rotation axis lies in (Hy = 0 cm) and outside (Hy = 1.6
cm) the plane with the spring attachment points. The other parameters used are the actual
parameters of our robot.

In order to be able to visualize everything, we will limit ourselves here to rotation
about the y-axis, thus throughout this section we assume that θx = 0 and that (by
proper control) ϕA = ϕB (which we will denote as ϕA/B) and τA = τB (ditto).
Both springs AF and BF act identically; the same holds for springs AR and BR.
We will denote them here as •F and •R. Furthermore, again we only consider the
static case.

Assume that the foot is at some angle θy and we want to keep it there by mak-
ing sure that τy = 0 (see figure 10.11). From the figure it immediately becomes
clear that F•F 6= F•R because the arms for the front and rear springs are different.
From (10.11) it follows that, in order to get no motor acceleration (Jm ϕ̈A/B = 0),
we need a static torque τA/B to compensate for the force mismatch in the springs.
Apparently, due to this non-linearity, the system is not linear in torque anymore:
for a zero torque τy we need a non-zero τA/B. We will investigate this phe-
nomenon in more detail. Instead of approaching ∆l linearly, we now look at
the fully nonlinear function ∆l = f (θx, θy, ϕA, ϕB), which in our 2D case reduces
to ∆l = f (θy, ϕA/B). Analytically, this function is quite long, but numerically it
can easily be calculated. The potential energy of one pre-tensioned spring can be
written as

E(θy, ϕA/B) =
1
2 k ∆l2 + Fpre ∆l (10.22)

and the total potential energy contained in the four springs together as

Etot(θy, ϕA/B) = EAF + EBF + EAR + EBR. (10.23)
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Figure 10.13: The torque τA = ∂E
∂ϕA

‘generated’ by the non-linearity in the system. The
torque τB has a similar profile but is mirrored around θx = 0.

Figure 10.12 shows the total potential energy Etot as a function of its variables for
the case where the rotation axis is on (Hy = 0 cm) and off (Hy = 1.6 cm) the plane
of the spring attachment points. We discuss both cases separately, starting with
Hy = 0 cm. As the system naturally strives towards minimum energy, it will flow
towards the valley and stay there; the system has reached a neutral equilibrium
(this is actually a way to control the angle θy: control the motors to an angle ϕA/B
for which (θy, ϕA/B) is a minimum of the energy function. The system then will
converge to the desired foot angle). For Hy = 1.6 cm, there is only one (even
unstable) equilibrium point: (θy, ϕA/B) = (0, 0). For any non-zero foot angle, the
system is unstable; it will diverge towards one of the end stops. The force with
which this occurs is linearly dependent on the pretension in the springs. The
partial derivative

∂Etot

∂ϕA
= τA (10.24)

tells us the amount of torque on the motor axis that is ‘generated’ by the non-
linearity. This torque is shown in figure 10.13, as a function of both foot angles.
In order to not let the motor axis accelerate by this torque, we can make our
controller counteract it with an opposite (feed forward) torque. As can be seen
in the figure, the torques are substantial (and render the system unstable), up to
2 Nm. Therefore it is important to indeed compensate for it.
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10.6 Conclusions

In this chapter we discussed the design and control of a new ankle mechanism
for the humanoid robot TUlip. It has been shown that the problems of the pre-
vious design could be eliminated by using a differential motor setup, resulting
in a coupled MIMO system. Calculations were done to determine the best motor
and gearbox ratio, where achievable walking speed was chosen as optimization
criterion. Some issues on controlling the system were discussed, mainly the non-
linearities induced by the system.

We have not yet been able to do intensive testing with the new ankle system,
therefore, we cannot tell yet how well the system behaves. Mechanically, we
think the new system will easily outperform its predecessor. From a control point
of view, the non-linearities can be compensated in software, but we will probably
also try to reduce the amount of non-linearity in the system by moving the cable
attachment points such that the rotation axes are in the same plane.
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Conclusions

In this chapter the main conclusions from this thesis are recapitulated. After that,
the work is discussed and recommendations for future work are given.

11.1 Conclusions

In section 1.4.1 five research goals for this thesis were formulated, being:

1. How can we analyze the behavior of a 2D passive dynamic walker that is
walking on rough terrain?

2. By looking at the robot from a different ‘perspective’, can we gain more
insight in its dynamics?

3. How can we control a walking robot in order to stabilize it in the lateral
(sideways) direction?

4. How can we improve the actuators in order to get minimum energy con-
sumption?

5. How can we design parts of a walking robot optimally?

In this section each research goal will be reviewed and evaluated separately. For
more detailed conclusions about a specific subject, please look at the conclusion
sections at the end of each chapter. At the end of this section some overall con-
clusions will be stated.

179



180 Chapter 11

Analyze behavior of 2D passive dynamic walker on rough terrain

In chapter 2 it was shown that the commonly used post-impact Poincaré section
for walking robots can not be used directly in the case of irregular terrain because
on an irregular floor the post-impact states of all steps do not lie on one Poincaré
section. A solution was provided that extends the applicability of the post-impact
Poincaré section to rough terrain by means of the Integration mapping ΠI, which
maps any post-impact state to a state on the post-impact Poincaré section associ-
ated with a flat floor.

Furthermore, a method was introduced to relate disturbances of different magni-
tude to curves on the Poincaré section. This gives more insight in the effect of the
disturbance on the gait and it gives hints on where to extend the Poincaré section
in order to increase the robustness for the specific disturbance.

The methods presented open new possibilities for disturbance analysis using the
Poincaré section and its derivative tools such as the stride function and the basin
of attraction.

Gaining more insight by looking from different ‘perspective’

In chapter 3 it was shown that a proper coordinate transformation makes the
equations of motion and analysis easier. Ready-to-use equations were provided
to do the coordinate transformation. The method has successfully been used in
the programming of our limit cycle walker TUlip.

In chapter 4 it was shown that the concept of screws and wrenches gives us tools
to geometrically establish the relation between the ground reaction wrench and
the Zero-Moment Point. The coordinate-free nature of the method has the advan-
tage of preventing implicit (and possibly wrong) coordinate-related assumptions
in the analysis.

In chapter 5 a systematic dynamic analysis was presented of the 3D bipedal gait.
The analysis was done using simplified models in which the robot is described as
a single rigid body, called the ‘locked inertia’. The phases of the gait (foot rolling
phase and impact phase) were discussed separately and explicit equations for
both were given. Because of the simplified models the equations became man-
ageable and a good starting point for theoretical probing.

The three chapters introduced different ways of looking at the dynamics of walk-
ing robots. Indeed, the presented methods give more insight in the dynamics:
by application of them, the analysis of the walker’s gait becomes easier and the
results are better understandable.
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Control for lateral stabilization

In this thesis two ways were investigated to stabilize a walking robot laterally
(sideways). The methods differ in control type and application, but they share
the fact that lateral foot placement is used to stabilize the robot.

Chapter 6 described a very simple model of a 3D walker (a point mass in the hip,
two massless legs and impulsive push-off) which has the special feature that,
in the limit cycle, the gait is time-symmetric. If a disturbance occurs, the gait
becomes asymmetric. The sideways velocity of the hip at mid-stance was shown
to be a good indicator of the amount of asymmetry. A proportional controller
was proposed that relates the sideways offset of the foot position directly to the
sideways velocity of the hip. Through parameter analysis it was shown that the
proposed controller could stabilize the walker for a wide range of velocities an
disturbances.

Chapter 7 described the application of the extrapolated center of mass (XCOM),
also known as instantaneous capture point, on our 3D robot TUlip. By means of
simulations on an inverted pendulum and measurements on the real robot it was
shown that the method, called constant offset control can indeed stabilize a real
walking robot in the lateral direction.

Improve actuators for minimum energy consumption

An electric DC motor can be very efficient, if it is working at its optimum angular
velocity. However, for walking robot applications, the motors work at very low
velocity (often even zero velocity); a range in which a DC motor is inefficient.

In chapter 8 a concept for a new actuator was introduced that has the potential
to be energy efficient. Negative work is stored mechanically and can be re-used
later. An infinitely variable transmission (IVT) transforms the spring force to the
desired output torque. The actuator is able to deliver a static torque at zero cost;
something which a DC motor can not do at all. Transferring energy from the
battery into the spring (which is done with a normal DC motor) can be done
quickly and efficiently.

On paper, the concept indeed has the potential to be energy efficient. The big
challenge is to build an IVT that transfers the energy without too much loss and
allows fast and efficient transmission ratio changes. A first prototype of such
an IVT has been designed (Ansink, 2008) and built at the group (figure 11.1).
Although it does not have the desired efficiency yet, the principle behind the
system (which is being patented) is promising.
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Figure 11.1: The Infinitely Variable Transmission (IVT), designed at the Control Engineer-
ing Group. The length of the device is approximately 20 cm. Part of the picture has been
blurred in order not to reveal the internals which are being patented.

Design of parts of walking robot

Chapters 9 and 10 presented an innovative knee locking mechanism and an inte-
grated 2-dof ankle mechanism respectively. Both are a good example of a design
that is optimized for a specific task in walking.

The knee locking mechanism is based on a mechanical singularity: a four-bar
mechanism that locks in a certain configuration. Some extra features of the mech-
anism were discussed in the chapter: a suction cup to prevent re-bouncing of the
mechanism when it locks, a voice coil actuator to help the system lock and unlock,
a discrete-state controller that minimizes energy consumption and deliberately
added mechanical play that makes the system actually work. The mechanism
was implemented on our 2D robot Dribbel and functioned well.

The ankle mechanism, which allows the foot to rotate around the x-axis (inver-
sion/eversion) and y-axis (plantar-/dorsiflexion), is designed as a coupled Series
Elastic Actuated system. The differential set-up of two small DC motors allows
both motors to work together to deliver maximum push-off force. The Series Elas-
tics absorb the impact shocks and make accurate torque control possible. The con-
trol of the system was discussed and it was shown that different non-linearities
are present in the mechanics.
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11.2 Recommendations for future work

After five years of research, resulting in this thesis, many questions have an-
swered. The answers have however led to many new questions and ideas for
future research. Some of them are discussed below, organized by topic.

Analysis

• Research on the Poincaré section and its derivative tools should be contin-
ued. An example is the applicability of the post-impact Basin of Attraction
(BOA) to walkers with feedback control. Often, it is assumed that the robust-
ness against disturbances and the size of the BOA are correlated. In chapter 2
it was already shown that this does not have to be the case. For an actuated
walker however, there is another reason to question this assumption. A
walker is robust against a disturbance if the disturbance leads the walker to
a state on the post-impact Poincaré section which is inside the BOA. From
this it follows that there are actually two ways to increase robustness: either
enlarging the BOA by making a controller that can handle large deviations
from the fixed point on the Poincaré section, or making sure that deviations
from the fixed point as a result of the disturbance are not too large by mak-
ing a controller that immediately reacts on the disturbance. The latter may
work best because the controller reacts earlier, thereby preventing that the
deviation from the limit cycle grows too much. It would be interesting to
see if there is a BOA-like property that can successfully compare the robust-
ness of a walker for both situations.

• For many-dof robots it is convenient to reduce the control problems to a
‘state space’ with less dimensions than the number of degrees of freedom.
Therefore research should be continued on (bijective) coordinate transfor-
mations, focusing on transformations that split the state into a relevant part
and a non-relevant part (analogous to the ‘null space’) for the specific con-
trol task.

• The approximation of a many-dof walker by a locked inertia (chapter 5) is
somewhat crude. Firstly, the foot of a robot would not be rigidly attached to
the leg, and secondly the torso would be approximately upright and not ro-
tate with the leg. A logical extension to the model presented in the chapter
would therefore be to approximate the robot by two or three locked inertias
instead of one. It should be investigated how well such a model can repre-
sent the real behavior of the walker and if analytical conclusions still can be
drawn from the simplified model.
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• Even after years of research in this field, measures for ‘performance’ of a
walking robot are still vague. On one hand this is no wonder because judg-
ing the performance is highly subjective and dependent on the specific task
(which often is also vague). On the other hand it is strange because hav-
ing a good performance criterion is essential when doing optimization or
comparison between walkers. It is therefore suggested that more research
should be dedicated to finding meaningful performance measures. Some
ideas about this will be discussed now.

A performance measure, or metric, should be homeomorphic to R (or a sub-
set of it) so that two walkers can unambiguously be compared: the one
with the higher score is is the best. If multiple of criteria are considered,
they should be scaled in some way to get to one single metric. This scaling
is an important design choice and should be chosen with care.

The meaningfulness of a metric is a point which is often paid only little
attention to. Assumptions are often made that some measurable property
(e.g., the largest eigenvalue) of the walker is correlated to a less measur-
able property like robustness or efficiency — without proof, and without
elaborating on what exactly is meant with robustness or efficiency. Some
commonly used performance measures said to be related to robustness are
the area of basin of attraction (which is, mathematically speaking, not even
defined), maximum allowable relative deviation from the limit cycle (which
is highly dependent on the arbitrary choice of coordinates) and maximum
eigenvalue. The specific resistance, the energy consumption per distance
traveled per kilogram mass per gravity (Wisse et al., 2004) (also known as
the specific cost of transport) is a good example of an unfortunate choice as an
efficiency metric when used for a passive dynamic walker: when used as an
optimization criterion it will come up with a walker walking at an infinitely
low speed (Garcia et al., 2000; Chatterjee and Garcia, 2000).

For metrics indicating robustness against a disturbance, the author thinks
the only good solution is to really test the walker against the disturbance
and record the maximum magnitude of the disturbance for which the walk-
er does not fall. The ‘maximum step-down’ seems therefore a good metric,
although it should be noticed that the metric only tells us something about
the robustness against drops in floor height and not against other distur-
bances such as pushes.

Some commonly used metrics (such as the specific resistance) are scaled by
mass and/or length of the walker, such that walkers of different size (in the
case of the specific resistance even walkers on different planets; the metric
is scaled by gravity too) can be compared to each other. For simple systems
such as models of 3-dof limit cycle walkers, this is okay, but in the opinion of
the author, this method should be abandoned for more sophisticated walk-
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Figure 11.2: Non-linear relation between a performance criterion and its associated per-
formance metric. The metric saturates when the performance of a human is approached.

ers. The reason is that, in such cases, it is possible to alter the measured per-
formance of the walker (e.g., by putting on a hat to make the walker taller)
while practically the walker performs still the same. Therefore, the author
thinks that it would be good if, for more sophisticated walkers, the perfor-
mance measures are not dependent on the walker’s properties, only on the
environment. As an example, if two walkers, both designed to walk around
in an office environment, are capable of handling a door step of maximum
2 cm, they should have the same performance rating for that, even if one
robot is twice as tall as the other.

Coming up with a good overall performance metric for a walker, thus in-
corporating robustness, efficiency as well as speed, is a difficult task: which
property should be preferred above the other? The author tends to think,
qualitatively, of the questions ‘Which robot would you buy? And why?’.
Although there are no unique answers to these questions, the answers seem
to be dependent on the relation to human performance. If a choice should
be made between a robot that has human-like velocity and energy con-
sumption and one that is four times as efficient but also twice as slow1,
probably the first would be favorable. However, a robot that walks twice
as fast as a human but also uses four times as much energy would be less
attractive because of its extraordinary energy consumption. Indeed, when
striving for a human-like walking robot, it makes sense to use performance
criteria that saturate when the human performance is approached. Further-
more, if the performance for a specific criterion is very poor, it should be
penalized strongly so that it can not be compensated by exorbitant other
performance criteria. Therefore, a non-linear relation between the perfor-
mance criterion (e.g., walking velocity) and the metric (how is the walking
velocity rated), as shown in figure 11.2, seems to be a good idea. The over-

1Energy consumption per second required for walking Ewalk (in [W]) and walking speed v (in
[m/s]) in humans are related in a square fashion, Ewalk ∝ v2; Etot = E0 + Ewalk, where E0 is the
human energy consumption while walking as slowly as possible (Ralston, 1958).
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all performance can then be taken as the sum of all individual performance
metrics. More research is needed on this topic in order to find the best per-
formance metrics.

Control and actuation

• The two foot placement controllers described in this thesis are both a lit-
tle limited. The XCOM-controller only controls lateral foot placement; not
sagittal. The time-reversal controller does control both, but is based on an
over-simplified model of a 3D robot. Combining control of both planes,
including coupling, rotation about the vertical axis and push-off could im-
prove the gait and make it more robust.

• Most humanoid walking robots use only their legs and (counterswinging)
arms for stabilizing the gait; the upper body remains vertical all the time.
For rejection of large disturbances however, the upper body may be of great
help. Thanks to its large moment of inertia, rotational acceleration of the up-
per body can — momentarily — shift the Center of Pressure towards a con-
venient place, thereby preventing a fall. The Reaction Mass Pendulum (Lee
and Goswami, 2007) theory will be useful in designing such controllers.

• The idea behind limit cycle walking is to let the passive dynamics do most
of the work and not to influence it too much by control. However, in or-
der to stabilize a walker, control is needed. In order to benefit from the
passive dynamics, the precise position control for stabilization should be
abandoned and replaced by some new form of control that at the same time
is functional but respects the passive dynamics as much as possible. This
field of controllers needs to be explored further.

• For high-magnitude disturbances, people use different strategies to recover.
Examples are taking extra steps within a short period of time and landing
with a bent knee. Both strategies allow for fast dissipation of excess kinetic
energy. Walking robots often have difficulty with taking many steps per
second because of their limited actuation power. Therefore it would be nice
to investigate the ability of walking robots to land with a bent knee in order
to recover from high-magnitude disturbances.

• In this thesis a conceptual study was presented on the the Very Versatile En-
ergy Efficient (V2E2) actuator. In order for such an actuator to meet our re-
quirements (especially, efficiency of all the sub-parts), firstly the IVT needs
to be optimized. Furthermore, a prototype of the whole actuator should be
built and tested, especially to find out how to control the unit in an energy
efficient way.
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• It is the author’s belief that DC motors are not the type of actuators that
are suitable for driving humanoid robots. The two main problems is that
they are highly inefficient at low angular velocities and that, in the case of
large gear reduction, they are not backdrivable. In order to bring humanoid
robots to the next level, new types of actuators should be used, which are
more muscle-like.

Pneumatic muscles (Daerden and Lefeber, 2002) have been around for quite
a long time. Some walking robots have successfully been constructed with
them, but the disadvantages, such as weight of the valves and air tank,
inefficiency and non-linearity of the stiffness make them unsuitable for ad-
vanced control (Wisse, 2004, chap. 9).

Research is being conducted on different types of artificial muscles based
on deformation of materials.

– Shape Memory Alloys (SMAs) are wires that change length when heated
(Kratz et al., 2007; Sangbae et al., 2009), but the contraction speed is not
very good (Ishikawa and Nakada, 2010).

– Electroactive Polymers (EAPs) react on an electrical stimulation. Two
types exist: electronic (driven by Coulomb forces) and ionic (driven
by the transport of ions). The first can generate a static displacement
without consuming energy, but needs a huge voltage to work on (in
the order of kV). The second only requires a few Volts to operate but
suffer from low electromechanical coupling (Bar-Cohen et al., 2007).
Examples of EAP’s are Dielectric elastomers (DE) (Chuc et al., 2009), and
Carbon nanotubes (Mirfakhrai et al., 2007).

– Experiments have also been done with using living muscle in robotics
(Herr and Dennis, 2004; Dennis and Herr, 2005).

The current state of the art in artificial muscles is not good enough yet to
reliably use them in walking robots; additional research in this field is es-
sential for the progression in walking robot research.

Design

• Specifically for the ankle mechanism described in chapter 10 a recommen-
dation is to try to reduce the amount of non-linearity, especially the sources
that render the system unstable. A few extra mechanical parts on the foot
should be sufficient for that.

• When working on TUlip, one of the things the author noticed was that at-
tempts to do precise control not always resulted in the desired movements.
This was partly due to the control in which some simplifications were made,
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but also partly due to non-optimal design. For example, at some places in
the robot sliding bearings were used instead of ball bearings. In order to
make a well-working robot, it is important to make everything as good as
can be; any concessions done in the mechanical design will be directly no-
ticed in degradation of performance.

• The two designs presented in this thesis were both inspired by mechanical
possibilities, not by looking at nature. Although we can learn a great deal
from nature, the author thinks that this is more useful for general princi-
ples (such as walking or flying), not so much for mechanical solutions of a
specific problem. There are several reasons for this thought.

1. During evolution most body parts have been optimized. Most body
parts have multiple functions however, and as long as we’re not ex-
actly replicating human beings, it is likely that not all functions are
needed in the robot, so the optimization criteria differ from nature’s
criteria.

2. The building materials are different for nature and robots. Therefore
the optimal constructions are too.

3. Nature has no ball bearings. And it does not have the possibility to cre-
ate rotating parts (if it did, ducks probably would have had the equiv-
alent of a propeller and some land animals would certainly have had
a set of wheels). In that sense, mechanics offers more possibilities than
nature does.

It is suggested to always look at nature to see how it solves complex design
problems. However, a clever mechanical solution may outperform nature’s
solution on a very specific task; therefore it is encouraged to always be cre-
ative and explore all the possibilities that mechanics offers.
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M. Vukobratović and B. Borovac. Zero-Moment Point — thirty five years of its
life. International journal of humanoid robotics, 1(1):157–173, 2004.
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M. Vukobratović and D. Juričić. Contribution to the synthesis of biped gait.
Biomedical Engineering, IEEE Transactions on, 16(1):1–6, Jan. 1969. ISSN 0018-
9294.

http://www.viactors.org


200 Bibliography

M. W. Walker and D. Orin. Efficient dynamic computer simulation of robotic
mechanisms. ASME Journal of Dynamic Systems, Measurement, and Control, 104:
205–211, Sept. 1982.

Q. Wang, Y. Huang, and L. Wang. Passive dynamic walking with flat feet and
ankle compliance. Robotica, 28(03):413–425, 2010.

Q. Wang, Y. Huang, L. Wang, and L. Dongjiao. Stability and adaptability of
passivity-based bipedal locomotion with flat feet and ankle compliance. In
North American Congress of Biomechanics, Aug. 2008.

B. J. Whipp and K. Wasserman. Efficiency of muscular work. Journal of Applied
Physiology, 26(5):644–648, May 1969.

M. M. Williamson. Series elastic actuators. Master’s thesis, Massachusetts Insti-
tute of Technology, June 1995.

M. Wisse. Essentials of dynamic walking; Analysis and design of two-legged robots.
PhD thesis, TU Delft, 2004.

M. Wisse and A. L. Schwab. A 3D passive dynamic biped with roll and yaw
compensation. Robotica, 19:275–284, 2001.

M. Wisse, A. L. Schwab, and F. C. T. van der Helm. Passive dynamic walking
model with upper body. Robotica, 22:681–688, 2004.

M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. T. van der Helm. How
to keep from falling forward: elementary swing leg action for passive dynamic
walkers. IEEE Transactions on Robotics, 21(3):393–401, June 2005. ISSN 1552-
3098.

M. Wisse and J. van Frankenhuyzen. Design and construction of MIKE; a 2D
autonomous biped based on passive dynamic walking. In Proc., International
Symposium of Adaptive Motion and Animals and Machines (AMAM’03), 2003.



Dankwoord

Een van de doelen van promoveren is laten zien dat je op eigen houtje een gede-
gen onderzoek kan uitvoeren. Nou heb ik inderdaad veel zelf zitten doen, maar
gelukkig had ik al die tijd een boel mensen om me heen — op mijn werk en in de
privésfeer — die op een of andere manier hebben geholpen om van de afgelopen
vijf jaar vijf fijne jaren te maken. Enkele van hen wil ik graag specifiek bedanken.

Allereerst een woord van dank aan mijn promotor, Prof. dr. ir. Stramigioli. Ste-
fano, enorm bedankt voor alles wat je voor me gedaan en geregeld hebt afge-
lopen jaren. Tijdens mijn jaren als promovendus heb ik heel veel met je kunnen
kletsen over interessante wiskunde en geometrische dynamica. Ik heb ontzettend
veel van je geleerd! Jouw onuitputtelijke en aanstekelijke enthousiasme, enorme
betrokkenheid (zowel zakelijk als privé) en aangename persoonlijkheid hebben
ervoor gezorgd dat ik me als promovendus onder jouw hoede helemaal op mijn
plek voelde. Een fijnere ‘baas’ en collega had ik niet kunnen wensen! Ook heb
ik erg genoten van de momenten dat we samen muziek maakten. De repetities
van onze vakgroepband ‘Out of Control’ waren soms wat ongestructureerd, maar
altijd erg leuk. Stefano, bedankt!

Dan mijn beste vriend en collega, Edwin. Wat hebben we samen een boel gedaan!
Meer dan tien jaar samen in Drienerlalala gezongen (met vanaf ons afstuderen
iedere dinsdagavond pannenkoeken met wijn in de vakgroepkeuken), vijf jaar
Gonnagles en nog steeds af en toe samen achtergrondmuziek. Ook in de tech-
niek blijven we elkaar tegenkomen: als collega’s op de vakgroep waar we samen
tientallen studenten begeleid hebben en aan Dribbel en TUlip sleutelden, ‘voor de
hobby’ (muziekdoosjes), en sinds juni ook bij Kunst- en Techniekwerk. Hopelijk
kan ik daar na het schrijven van mijn boekje wat vaker komen werken. Edwin,
bedankt voor je steun in goede en in slechte tijden. Ik weet zeker dat we in de
toekomst nog veel meer leuks gaan beleven!

I would also like to thank all co-authors of the articles we have produced. It has
been a pleasure to work with you! Andy, Martijn, Job, Bart Koopman and Pieter
Jonker, thank you very much for taking place in my graduation committee. I
hope you enjoyed reading my thesis and I look forward to see you in real life

201



202 Dankwoord

and answer all the difficult questions you undoubtedly will have for me. Para-
nimfen Wietse en Edwin, fijn dat jullie me bij willen staan tijdens de verdediging
tegenover de hierboven genoemde Professoren.

Raffaella, thanks for helping me with a lot of things and taking over much work
when I didn’t have time for it. Ludo, buurman die altijd een luisterend oor had
en mee wilde denken als ik er weer eens niet uitkwam, ik heb veel aan je gehad!
Michel, dank voor alle informatie die je me verstrekt hebt over het regelen van de
promotie. I also want to thank all colleagues of the group, Controllab and Dutch
Robotics (also TUD and TU/e) for all the fun; it was a pleasure working with you
all.

Enkele bachelor- en masterstudenten die ik begeleid heb wil ik speciaal bedan-
ken. Eddy, als een van de eerste studenten die ik (samen met Edwin) begeleidde,
heb jij óns uitstekend begeleid in het leren om begeleider te zijn. Windel, Roe-
lof en Bart, de gezamenlijke hackavondjes als voorbereiding op ons RoboCup-
avontuur in Graz (en Graz zelf ook) waren super.

Vincent, ondanks dat we maar zo kort samen hebben gewerkt, heb je een on-
uitwisbare indruk op mij achtergelaten. Het gemak waarmee jij de moeilijkste
wiskunde begrijpelijk op papier weet te zetten en vooral je altijd ontspannen in-
druk maakten jou als een soort voorbeeldpromovendus voor mij. Bedankt ook
voor het mogen gebruiken van je mooie LATEX-template voor dit proefschrift.

Parkweggers & uitpandige inboedel, Gonnagles en Bragi-vrienden (hoewel ik
niet eens bij Bragi gezeten heb. . . ), met veel plezier denk ik terug aan alle Maan-
dagavondjes, feestjes, zeilweekenden, optredens, reisjes, repetities, concertjes,
trouwpartijen, oud-en-nieuw’en en andere activiteiten met jullie!

Misschien is het wat raar om dingen te bedanken, maar voor de Sagitta, de boot
van Opa Jan en Oma Keetje, maak ik graag een uitzondering. Boot, bedankt
voor de weekjes ‘extended thuiswerken’. Midden in de Biesbosch op mijn laptop
aan een paper schrijven terwijl Marlies in de voorkajuit aan haar harprepertoire
werkt; idyllischer kan toch niet?

Papa en mama, jullie onvoorwaardelijke steun betekent heel veel voor me; wat ik
ook doe, ik weet dat jullie altijd achter me staan, met raad en daad. Bart & Cox,
Marleen & Peter & kinderen, Opa Boerdijk en Oma Keetje, wat fijn dat jullie mijn
familie zijn! Bedankt voor jullie support, interesse en gezellige afleiding!

Tot slot, Marlies, niets is zo fijn als na een lange dag werken weer thuiskomen.
Dat komt door jou, jij bent mijn thuis. Ook al die dagen dat ik op de studeer-
kamer zat te werken en jij me kopjes koffie, thee en paaseitjes kwam brengen en
beneden pedaalharp speelde waren heerlijk. Jouw motivatie, betrokkenheid en
goede zorgen hebben me enorm gesteund en zullen me altijd steunen. Wat een
genot om altijd bij je te mogen zijn! Marlies, dank je wel dat je er bent.



About the author

Gijs van Oort was born on November 29th, 1978 in Nijme-
gen. In 1985 he and his family moved to Eindhoven. Dur-
ing secondary school at the Eckart College in Eindhoven,
he spent most of his free time making music (flute and sax-
ophone) and building ‘technical things’ at De Jonge Onder-
zoekers Eindhoven. He participated in some national and in-
ternational Contests for Young Scientists. In 1997 he won
the Dutch Physics Olympiad and participated in the Interna-
tional Physics Olympiad in Canada.

In 1997 he started his studies Electrical Engineering at the
University of Twente. He completed the first year cum laude. During his studies
he participated in the technical design contest Createch, in the local qualification
rounds as well as the national finals (three times). He founded the a cappella
group Drienerlalala and sang in various choirs. For two years he was a member
of the board of the Drienerloos Vocaal Ensemble.

During his internship in 2004 at the Deutsches Zentrum für Luft- und Raumfahrt
(DLR) in Munich, he worked on the localization of a mobile platform using a
SICK laser scanner. In 2005 he obtained his M.Sc. degree Electrical Engineering,
with specialization in mechatronics, at the Control Engineering group of the Uni-
versity of Twente, under supervision of Stefano Stramigioli.

After working as an employee at the University for nine months (modeling a po-
sitioning system for a marine vessel), he started his Ph.D. on walking robots at the
Control Engineering group in June 2006. His supervisor was Stefano Stramigioli.
Meanwhile he continued building ‘technical things’ (this time muziekdoosjes)
and became sound engineer of the folk band the Gonnagles.

After his Ph.D. contract ended in June 2011, he worked at the Control Engineering
group on the walking robot TUlip, until October 2011. He will continue his career
at the Biomechanical Engineering group of the UT, where he will work on the
development of LOPES, an exoskeleton device for gait rehabilitation.

203


	Samenvatting
	Summary
	Contents
	Introduction
	The field of walking robots
	Walking robots
	Research on walking robots
	Different types of walking

	The viactors project
	Main topics of the thesis
	Analysis
	Control and actuation
	Design

	Thesis outline
	Research goals
	Contents of each chapter


	I Analysis
	The Poincare section and basin of attraction of a 2D passive dynamic walker on an irregular floor
	Introduction
	Test models
	Irregular floor

	Dynamic equations
	The Poincaré section
	Poincaré section and irregular terrain
	Dimension of the Poincaré section

	The basin of attraction
	Definition of the basin of attraction
	Comparison of basins of attraction

	Relation between BOA and disturbances
	Experiments
	Conclusions and future work

	Coordinate transformation as a help for analysis, simulation and controller design in walking robots
	Introduction
	Coordinate transformation of the robot's dynamic equations
	Dynamic equations of a floating rigid-body system
	The coordinate transformation
	Interpretation of the coordinate transformation
	The double support phase

	Applications
	Static analysis: joint torques and stability
	Rigid foot contact
	Mass matrix and P(I)D control

	Conclusions and future work
	List of mathematical notations and identities
	Analytical expression for E-dot

	Geometric interpretation of the Zero-Moment Point
	Introduction
	The Zero-Moment Point
	Wrench — a 6D force
	Decomposition of a wrench
	Construction of the zmp using the ground reaction wrench
	Explicit expression for the zmp position, given the ground reaction wrench
	Expression for the zmp
	Obtaining the ground reaction wrench

	Conclusions
	A more mathematical proof of theorem 2

	Compact analysis of 3D bipedal gait using geometric dynamics of simplified models
	Introduction
	Dynamics of a Humanoid
	Locked Inertia
	Dynamic Equations of a General Mechanism

	Impacts
	Single Impacts on a Rigid Mechanism
	Impacts in a Locked Mechanism

	Analysis of 3D Walking Cycles
	High-level Kinematic Description of 3D Gait
	Kinematics of 3D Rolling
	Dynamics of 3D Rolling

	Simulation example
	Conclusions and Future Work

	II Control and actuation
	Using time-reversal symmetry for stabilizing a simple 3D walker model
	Introduction
	Model description
	General
	Equations of motion
	Impact equations and energy injection
	Stride function

	Analysis of the uncontrolled gait
	Using time-reversal symmetry for the design of a controller
	Control
	Simulation results
	Interpretation as a standard discrete nonlinear controller
	Conclusions and future work

	Dynamic walking stability of the TUlip robot by means of the extrapolated center of mass
	Introduction and motivation
	The xcom and the constant offset controller applied to a linear inverted pendulum
	Stability by foot placement applied to TUlip
	State machine of the gait
	Calculation of the XCOM
	Foot placement

	Experimental results
	Conclusions

	A concept for a new energy efficient actuator
	Introduction
	Reflections on actuators
	The V2E2 actuator
	Using an IVT to modulate actuation torques
	Adding a spring
	Preventing the singular situation Phi_S=0
	Static load compensation
	Electrical storage

	The ivt
	Control
	Conclusions and discussion
	Proposed system
	Consequences for robotics
	Ongoing work

	Acknowledgments

	III Design
	Design and realization of an energy efficient knee-locking mechanism for a dynamically walking robot
	Introduction
	Design requirements
	The new knee locking mechanism: The `Beugel'
	Four-linkages mechanism
	Suction cup
	Actuator
	Mechanical integration
	Electronics
	Sensors

	Tests and measurements on Dribbel
	Locking strength
	Torque of the actuator
	Power consumption of the knee mechanisms during normal gait
	Total power consumption, specific cost of transport

	How mechanical play is —for once— our friend
	Conclusions and future work

	New ankle actuation mechanism for a humanoid robot
	Introduction
	Old ankle design
	Lateral joint (ankle-x)
	Sagittal joint (ankle-y)

	Requirements for new design
	Acceleration dependency
	Velocity dependency

	New design
	Series elastics
	Differential setup
	Actuator choice

	Control
	Linear control of the coupled Series Elastic Actuator
	Nonlinearity
	Nonlinearity — releasing the small-angle approximation
	Nonlinearity — off-plane rotation axes

	Conclusions

	Conclusions
	Conclusions
	Recommendations for future work

	Bibliography
	Dankwoord
	About the author

