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Thanks to technology, what almost anybody can do has been multiplied a
thousandfold, and our moral understanding about what we ought to do hasn’t
kept pace. ... You can lay minefields, smuggle nuclear weapons in suitcases,
make nerve gas, and drop "smart bombs" with pinpoint accuracy. Also, you
can arrange to have a hundred dollars a month automatically sent from your
bank account to provide education for ten girls in an Islamic country who other-
wise would not learn to read and write .... You can use the Internet to organize
citizen monitoring of environmental hazards, or to check the honesty and per-
formance of government officials – or to spy on your neighbors. Now, what
ought we to do?

— DANIEL DENNETT, 2006
IN: BREAKING THE SPELL.
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Gratus animus est una virtus non solum maxima, sed etiam
mater virtutum omnium reliquarum.
(A thankful heart is not only the greatest virtue, but the
parent of all the other virtues).

Marcus Tullius Cicero
In: Oratio Pro Cnæo Planci, XXXIII
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Abstract

A significant part of current Internet attacks originates from hosts that are dis-
tributed all over the Internet. However, there is evidence that most of these
hosts are, in fact, concentrated in certain parts of the Internet. This behavior
resembles the crime distribution in the real world: it occurs in most places, but
it tends to be concentrated in certain areas. In the real world, high crime areas
are usually labeled as “bad neighborhoods”.

The goal of this dissertation is to investigate Bad Neighborhoods on the In-
ternet. The idea behind the Internet Bad Neighborhood concept is that the
probability of a host in behaving badly increases if its neighboring hosts (i.e.,
hosts within the same subnetwork) also behave badly. This idea, in turn, can be
exploited to improve current Internet security solutions, since it provides an indi-
rect approach to predict new sources of attacks (neighboring hosts of malicious
ones).

In this context, the main contribution of this dissertation is to present the
first systematic and multifaceted study on the concentration of malicious hosts on
the Internet. We have organized our study according to two main research ques-
tions. In the first research question, we have focused on the intrinsic characteris-
tics of the Internet Bad Neighborhoods, whereas in the second research question
we have focused on how Bad Neighborhood blacklists can be employed to bet-
ter protect networks against attacks. The approach employed to answer both
questions consists in monitoring and analyzing network data (traces, blacklists,
etc.) obtained from various real world production networks.

One of the most important findings of this dissertation is the verification that
Internet Bad Neighborhoods are a real phenomenon, which can be observed not
only as network prefixes (e.g., /24, in CIDR notation), but also at different and
coarser aggregation levels, such as Internet Service Providers (ISPs) and even
countries. For example, we found that 20 ISPs (out of 42,201 observed in our
data sets) concentrated almost half of all spamming IP addresses. In addition,
a single ISP was found having 62% of its IP addresses involved with spam.
This suggests that ISP-based Bad Neighborhood security mechanisms can be
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employed when evaluating e-mail from unknown sources.
This dissertation also shows that Bad Neighborhoods are mostly application-

specific and that they might be located in neighborhoods one would not imme-
diately expect. For example, we found that phishing Bad Neighborhoods are
mostly located in the United States and other developed nations – since these
nations hosts the majority of data centers and cloud computing providers –
while spam comes from mostly Southern Asia. This implies that Bad Neighbor-
hood based security tools should be application-tailored.

Another finding of this dissertation is that Internet Bad Neighborhoods are
much less stealthy than individual hosts, since they are more likely to strike
again a target previously attacked. We found that, in a one-week period, nearly
50% of the individual IP addresses attack only once a particular target, while
up to 90% of the Bad Neighborhoods attacked more than once. Consequently,
this implies that historical data of Bad Neighborhoods attacks can potentially be
successfully employed to predict future attacks.

Overall, we have put the Internet Bad Neighborhoods under scrutiny from
the point of view of the network administrator. We expect that the findings pro-
vided in this dissertation can serve as a guide for the design of new algorithms
and solutions to better secure networks.



Resumo

Um parte significante dos ataques atuais na Internet são originários de hosts que
se encontram distribuídos por toda a Internet. Entretanto, existem evidências
de que a maioria desses hosts se encontram, de fato, concentrados em certas
partes. Este comportamento lembra a distribuição de crimes no mundo real:
pode ser encontrado virtualmente em todos os lugares, mas tende a ser concen-
trado em certas áreas. No mundo real, tais áreas que exibem concentrações de
crimes mais altas são comumente chamadas de Más Vizinhanças (“bad neigh-
borhoods”).

O objetivo dessa tese é investigar as Más Vizinhanças da Internet (Internet
Bad Neighborhoods). A ideia por detrás do conceito de Más Vizinhanças é que
a probabilidade um de host em executar atividades maliciosas aumenta se seus
vizinhos imediatos (i.e., hosts na mesma subrede) também se executam ativi-
dades maliciosas. Esta ideia, por sua vez, pode ser explorada para melhorar as
atuais soluções para segurança de Internet, uma vez que assume que hosts viz-
inhos de hosts maliciosos têm mais probabilidade de serem maliciosos e, desta
forma, conduzir ataques.

Nesse contexto, a principal contribuição desta tese é apresentar o primeiro
estudo sistemático e multifacetado sobre a concentração de hosts maliciosos na
Internet. Nós dividimos esse estudo em duas questões principais (research ques-
tions). Na primeira, nós nos concentramos nas características intrínsecas das
Más Vizinhanças da Internet, enquanto na segunda focamos em como as listas
de Más Vizinhanças da Internet podem ser utilizadas para melhor proteger as
redes de computadores contra ataques. A abordagem empregada para respon-
der ambas as questões consiste em monitorar e analisar dados de redes (traces,
blacklists, etc.), obtidos de várias redes de produção.

Uma dos resultados mais importantes obtidos nessa tese é a constatação de
que as Más Vizinhanças são um fenômeno real, que podem ser observadas não
somente em prefixos de rede (por exemplo, subredes /24 em notação CIDR),
mas também em níveis de agregação mais granulares, como provedores de In-
ternet e até mesmo países. Por exemplo, nós descobrimos que 20 provedores



xviii

(dos 42.201 observados em nossos dados) concentram quase metade de todos
os endereços IP envolvidos em spam. Além disso, um único provedor teve mais
de 60% de seus endereços IP associados a spam. Esse resultado que sugere
mecanismos de segurança baseados em más vizinhanças de provedores podem
ser utilizados para avaliar e-mail de origens desconhecidas.

Essa tese também mostra que as Más Vizinhanças são quase sempre específi-
cas em relação a aplicação e que elas podem se concentrar em áreas que alguém
não imaginaria inicialmente. Por exemplo, nós descobrimos que as maiorias das
Más Vizinhanças envolvidas em phishing são localizadas nos Estados Unidos e
outras nações desenvolvidas – uma vez que estas nações concentram a maioria
dos data centers e cloud computing providers – enquanto spam é originado em
sua maioria no sudeste asiático. Isso implica que mecanismos de segurança que
utilizam más vizinhanças devem ser específicos em relação as aplicações.

Um outro resultado obtido nesta tese é que as Más Vizinhanças são muito
mais furtivas que hosts individuais, uma vez que elas tendem a atacar os alvos
mais de uma vez. Nós descobrimos que, no período de uma semana, quase
metade de todos os endereços IP atacaram somente uma vez um alvo em par-
ticular, enquanto até 90% das Más Vizinhanças atacaram mais de uma vez.
Consequentemente, isso sugere que o passado histórico dos ataques das Más
Vizinhanças pode ser utilizado como uma forma de predizer ataques futuros.

No geral, nós colocamos as Más Vizinhanças em escrutínio sobre o ponto de
vista do administrador de redes. Nós esperamos que os resultados dessa tese
possam servir como guia para desenvolver algoritmos e soluções para melhor
proteger as redes de computadores.
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Cyber war skips battlefield. Systems that people rely upon,
from banks to air defense radars, are accessible from
cyberspace and can be quickly taken over or knocked out
without first defeating a country’s traditional defense.

Richard Clarke and Robert Knake, 2010
In: Cyber War: The Next Threat to National Security
and What to do About it CHAPTER 1

Introduction

NOVEMBER 22nd, 1977: in the vicinity of San Francisco, California, net-
work data was transmitted to the University of Southern California’s
Information Sciences Institute in Los Angeles, 400 miles away. To reach

the destination, however, the data had to travel more than 100,000 miles,
through three different networks: ARPANET, the Packet Radio Network, and
the Atlantic Packet Satellite [6]. On this day, the widely regarded first true In-
ternet connection was established, setting a major landmark on the history of
the Internet [7].

From the seminal three networks interconnection, the Internet has evolved
into one of the most complex systems ever built in human history [8, 9]. Currently,
it figures as “a large-scale, highly engineered system” [10] that interconnects
more than 800 million hosts, which are used by more than two billion people
worldwide [11, 12]. The influence of the Internet on society goes way beyond
the number of users and hosts. As explained by the sociologist Manuel Castells,
“core economics, social, political, and cultural activities throughout the planet
are being structured around the Internet” and “exclusion from it (the Internet) is
one of the most damaging forms of exclusion in our economy and culture” [13].

The Internet (and the infrastructure around it – servers, routers, etc.) is
currently so important for the functioning of our society that it is actually con-
sidered part of the critical infrastructure of many countries [14]. A myriad of
critical systems, such as banking, traffic, and transportation, heavily rely upon
the Internet to perform.

Such dependence has made the Internet very attractive for criminal orga-
nizations, nation states, and activists as a medium in which crimes, cyberwar,
and protests can be carried out. One example is the 2007 Estonia Denial of
Service (DDoS) attacks, in which many websites from Estonian organizations,
such as the parliament, newspapers, banks, and ministries, were flooded with
requests and became overloaded, unable to handle legitimate requests [15].

3



4 1 Introduction

Figure 1.1: Hlux2/Kelihos.B Bots Sample Geo-location

This attack caused a direct impact in the real world: Estonians could not use
their online banking, access their government online services or even read their
online newspapers [14]. Another example of malicious activity on the Internet
is spam, a misuse of electronic email. It is estimated that between 84% and 90%
of all e-mail messages are spam nowadays [16, 17], and behind it, cyber gangs
run lucrative operations by selling pharmaceuticals [18], distributing malicious
software (malware), among other illegal activities [19, 4]. As DDoS attacks,
spam also impacts the real world: it is estimated that worldwide spam causes
losses from $10 billion to $87 billion yearly [20].

Behind these attacks, we typically find a large amount of IP addresses, usu-
ally distributed all over the world. Some of these attacks are even carried out by
so-called botnets, which are essentially a large number of distributed compro-
mised machines (called bots or zombies) under control of a botmaster [21, 22].
The zombies can be seen as “hijacked” computers, located at homes, schools,
and businesses, controlled by the botmaster to carry out malicious activities.
Figure 1.1 shows the geographical location of a sample of 1,193 computers be-
longing to the botnet Hlux2/Kelihos.B [23], which we generate by processing a
trace file we have obtained from SurfNet [24]. As can be seen, the distribution
of bots extends to all populated continents.

Even though the malicious hosts are distributed all over the world, there is
evidence that malicious hosts are, in fact, concentrated in certain networks. Take
as example Figure 1.2, in which we present the distribution of spamming hosts
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Figure 1.2: Number of spam Sources per /8 netblock

per /8 netblock1 as seen by a major Dutch hosting provider. As can be seen,
there are some /8 netblocks that had much more spammers than others. Other
research works have also investigated the concentration of malicious hosts. For
example, in 2006 Ramachandran et al. [27] have shown that the majority of
spam was sent from a small fraction of the IP address space. Collins et al. [28],
on the other hand, have defined the term “spatial uncleanliness” for clusters of
compromised hosts. Chen and Ji [29] have shown that the victims of a par-
ticular worm are not evenly distributed on the Internet, and Chen et al. have
also shown that the distribution of malicious sources is non-uniform across the
IP address space over time [30]. Finally, Wanrooij and Pras [31] have intro-
duced an heuristic to tell if a message is spam or not based on uniform resource
locators (URLs) within a message and on the neighborhood of the sender’s IP
address, coining the term Internet Bad Neighborhoods.

The combination of these two factors – (i) that malicious hosts are dis-
tributed all over the world and (ii) that they are more concentrated in certain
networks – resembles the distribution of crimes in the real world. For exam-
ple, Figure 1.3, shows the distribution of motor vehicle theft in the continental

1We use the CIDR notation for network blocks/prefixes [25]. Please refer to [26] for a brief
description on the subject matter.
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Figure 1.3: Percentage of Population Affected by Motor Vehicle Thefts (2007)
Source: National Atlas [1]

United States in 2007. As can be observed, vehicle theft occurs all over the
country, but it is more concentrated in some areas than others.

This resemblance between the real world and the Internet regarding the
crime sources distribution and concentration lead us to the topic of this disser-
tation: Internet Bad Neighborhoods. In the real world, locations having higher
crime rates than the average are sometimes called bad neighborhoods. In such
places, it is statistically more likely that a crime will occur compared to other
locations. The same principle holds for Internet Bad Neighborhoods: it is more
likely that malicious activities are originated from such networks than from
other networks.

To better illustrate this analogy, consider the case of New York City. Fig-
ure 1.4 shows the homicide locations in the city from 2003 to 2011. As can
be seen, some neighborhoods have higher homicide rates than others. If the
New York Police Department (NYPD) wants to reduce crime more efficiently, a
starting point would be by improving the police coverage where the homicides
are concentrated – for example, in neighborhoods like Brooklyn or Bronx. On
the other hand, if a random person wants to be statistically safer, he/she should
also avoid neighborhoods having higher crime rates.

The same principle applies to Internet Bad Neighborhoods. If network secu-



7

Figure 1.4: New York City Homicide Map (2003-2011)
Source: New York Police Department [2]

rity engineers (analogous to the NYPD) want to reduce the incidence of attacks
on the Internet, they should start by tackling networks where attacks are more
frequently originated. If a user (in analogy to the random person in the real
world example) wants to be safer on the Internet, he/she should avoid (or at
least be much more careful) connecting to computers located in such networks.

The list of Bad Neighborhoods, both in the real world and on the Internet,
are usually compiled into what is popularly known as blacklist, which is a form
of access control mechanism to allow an entity (e.g., users) to access a particular
resource with exception of those entities listed [32]. On the Internet, blacklists
containing IP addresses of spam senders have been used for years to filter out
spam [33].

In the real world, some businesses have generated bad neighborhoods black-
lists with locations they would not operate for security reasons. For example,
the logistics company DHL has created a blacklist containing certain parts of
London, Manchester, Glasgow, and Birmingham they would not deliver pack-
ages [34]. Microsoft has recently been granted with a patent for a Global Po-
sitioning System (GPS)-based navigation system that allows drivers and pedes-
trians to avoid routes through neighborhoods having high-crime rates [35] (the
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patent is popularly known as “avoid-ghetto” patent and has generated signifi-
cant controversy [36]).

On the Internet, the main usage of the Bad Neighborhood concept is to pro-
tect network targets, by being able to statistically predict attacks from unfore-
seen IP addresses – which is covered in details in Section 2.7. With this purpose
in mind, Wanrooij and Pras [31] have introduce the Bad Neighborhood concept
for spam filtering. Whenever a new message arrives, the algorithm checks if
neighbor IP addresses of the sender (i.e., hosts within the same subnetwork)
have been previously blacklisted and uniform resources locators (URLs) in the
message. The probability of a message being spam increases if neighboring IP
addresses are also spammers.

Even though the Internet Bad Neighborhood concept was proposed and em-
ployed to filter out spam [31], the very concept was not investigated in more
details. This dissertation, however, focuses on a multifaceted investigation of the
Internet Bad Neighborhoods phenomenon, and not only as an heuristic to de-
termine the odds of a message being spam. As we shall see, we address many
different aspects of Internet Bad Neighborhoods, including the basic character-
istics and how to protect a network against attacks from Internet Bad Neighbor-
hoods.

In the following, we first present our definition of Bad Neighborhoods in
Section 1.1. Then, in Section 1.2, we present the goal, research questions, and
approach employed in this dissertation. After that, we summarize in Section 1.3
the contributions of this dissertation, and the scope and limitations in Section
1.4. Finally, the outline of the dissertation is detailed in Section 1.5.

1.1 Defining Internet Bad Neighborhoods

In this section we present the formal definition of Internet Bad Neighborhoods
used throughout this dissertation:

Definition 1. An Internet Bad Neighborhood is a set of IP addresses clustered ac-
cording to an aggregation criterion in which a number of IP addresses perform
a certain malicious activity over a specified period of time.

In this definition, aggregation criterion stands for the basic building block
used to cluster malicious IP addresses into Bad Neighborhoods. Different cri-
teria can be employed for this purpose. The main one is the IP addressing
scheme. By using this criterion, we can aggregate IP addresses according to
network prefixes (e.g, /24, /8, /18, in Classless Inter-Domain Routing (CIDR)
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notation [25]). Alternative criteria can be employed, such as geographical loca-
tion (e.g., countries, cities, as in Figure 1.1) or also according to the network’s
Autonomous System Number (ASN) [37] of the Internet Service Provider (ISP).
In this dissertation, we cover all these criteria.

The number of IP addresses, on the other hand, refers to the number of ma-
licious IP addresses that were observed carrying out attacks. It is important to
emphasize that this number might differ from the total number of IP addresses
in the neighborhood, since some IP addresses within the bad neighborhood
could actually be “good IP addresses”. For example, an IP-based /24 Bad Neigh-
borhood, such as 10.10.10.0/24, has a fixed size of 256 IP addresses. However,
it can be possible that only a fraction of those were observed carrying out ma-
licious activities, and some of those addresses are not even in use. The same
principle applies for bad neighborhoods in the real world: there are innocent
citizens living in such places.

A certain malicious activity, in turn, is related to the application that the
bad neighborhood is abusing or conducting attacks on (e.g., spam, SSH brute
force attacks, phishing). Therefore, a single host might belong to different Bad
Neighborhoods that differ in relation to the application.

Finally, period of time refers to the time frame used to define a bad neighbor-
hood (e.g, day, weeks). This is an important variable since bad neighborhoods
are expected to change over time – since machines are expected to get compro-
mised and cleaned up regularly.

1.2 Goal, Approach, and Research Questions

The goal of this dissertation is to scrutinize the Bad Neighborhood phenomenon
on the Internet to better understand its intrinsic characteristics, so we can pro-
tect networks from Bad Neighborhood attacks. The general approach employed
consists in monitoring and analyzing network data (traces, blacklists, etc.) ob-
tained from real world production networks. The idea is to analyze such data
sets and learn how Bad Neighborhoods behave on the Internet, so we can de-
velop techniques that allow network administrators to better secure networks.
To accomplish this, we propose and answer two main research questions:

• Research Question 1 (RQ 1): What are the characteristics of Internet
Bad Neighborhoods?

RQ 1 focuses on scrutinizing the Bad Neighborhood phenomenon, by provid-
ing an investigation on why it occurs on the Internet, how they can be found,
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and why it is a worth using the concept to predict attacks sources on the Inter-
net. In addition, we propose and evaluate algorithms to cluster malicious IP
addresses into Bad Neighborhoods according to the IP addressing scheme, ISPs,
countries, cities, and organizations.

After scrutinizing the Internet Bad Neighborhood phenomenon, we then as-
sume the point of view of a network administrator who wants to defend a net-
work against such bad neighborhoods. To carry out this, we employ blacklisting,
which has been employed as access control method to filter out spam sources
for many years [33]. Alternatives to that would be whitelisting – lists of IP ad-
dresses that are allowed to use a resource – and greylistings. Whitelisting is not
considered in our study since it does not provide the necessary scalability to deal
with the large number of IP addresses on the Internet. Greylisting (in which a
mail server “temporarily rejects” a source [38]) does not suit our purposes ei-
ther, since it is tailored only to spam – while the bad neighborhood definition
can be employed to various applications.

Therefore, the second research question addressed in this dissertation is:

• Research Question 2 (RQ 2): Which blacklists should a network ad-
ministrator choose to protect a network against attacks from Internet Bad
Neighborhoods?

In RQ 2 we focus in providing networks administrators with insights on how
to choose bad neighborhood blacklists obtained from different sources. More-
over, for this RQ, we evaluate how specific bad neighborhood blacklists are in
relation to an application, determining if they can be employed to protect at-
tacks to applications they were not originally intended. Finally, we also address
the temporal attack strategies employed by bad neighborhood in order to deter-
mine how often blacklists should be updated and provide insights on when to
expect attacks.

1.3 Contributions

The contribution of this dissertation is to present, to the best of our knowl-
edge, the first systematic and multifaceted study on the Bad Neighborhood phe-
nomenon on the Internet. By first acknowledging and verifying the Bad Neigh-
borhoods existence on the Internet, we then scrutinize Internet Bad Neighbor-
hoods in a multifaceted approach in order to reveal their characteristics and
provide network administrators with guidelines to protect networks from at-
tacks originated from Bad Neighborhoods.
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The main contributions of this dissertation are:

• A formal definition for Internet Bad Neighborhoods;

• A discussion on the ethical implications of the Internet Bad Neighborhood
concept;

• Two application-independent algorithms to aggregate malicious IP ad-
dresses into Bad Neighborhood of various IP prefix sizes;

• An investigation of the Bad Neighborhoods not only in the IP addresses,
but also in relation to ISPs, organizations, countries, and cities;

• A study case on spamming Bad Neighborhoods, in which the specifics of
spam are leveraged to the Bad Neighborhood concept;

• An evaluation of the efficacy of employing third-party Bad Neighborhood
blacklists to protect IP addresses on other networks;

• An evaluation on the overlap between Bad Neighborhoods associated with
different applications;

• A comprehensive analysis on the temporal attack strategies employed by
Bad Neighborhoods when attacking targets.

The contribution provided in this dissertation aims at providing network ad-
ministrators and networks security engineers with information to better develop
security tools and protect networks.

1.4 Scope and Limitations

The bad neighborhood concept is aimed at dealing with attacks that employ a
large number of distributed hosts, such as DDoS and spam campaigns. However,
as other security approaches, it does not cover all types of Internet attacks. For
example, highly sophisticated and precisely targeted cyber-weapons, such as
StuxNet, are likely to be stealthy as much as possible, and therefore, likely
not captured by Bad Neighborhood-based security systems (StuxNet is the first
confirmed cyber-weapon designed by a nation state [39], developed to subvert
industrial systems located at Iranian uranium enrichment facilities).

In addition, in this dissertation we evaluate only IPv4 Bad Neighborhoods.
Currently, IPv6 [40] traffic accounts for less than 1% of the total traffic observed
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in networks such as Internet2 [41] and the Amsterdam Internet Exchange Point
(AMS-IX) [42]. Due to that, IPv6 attacks remain relatively rare – only in 2012
the first IPv6 DDoS attacks were reported [43]. With the increasing adoption of
IPv6, we can expect more attacks from IPv6 Bad Neighborhoods. To cope with
that, we present in Appendix C an analysis on what to expect from IPv6 Bad
Neighborhoods. As we show in Appendix C, the Internet Bad Neighborhoods
approach is a requirement to help blacklist-based security systems to cope with
the vast number of valid IPv6 addresses.

1.5 Dissertation Outline

Figure 1.5 outlines the structure of this dissertation, divided in four parts, each
of them having a different emphasis on the Internet Bad Neighborhoods phe-
nomenon.

In Part I (Introduction), we present the introduction to this dissertation and
the background information. We cover the formal definition, an approach to
locate bad neighborhoods on the Internet, and we verify the Bad Neighborhoods
assumption. In addition, we cover the ethical issues and values involved in this
research.

In Part II (Characteristics), we address RQ 1 (“What are the characteristics of
Internet Bad Neighborhoods?”), by covering Bad Neighborhood aggregation as
well as their location, and a case study in which we tailor the Bad Neighborhood
definition to the spammer’s specifics.

In Part III (Defending against Bad Neighborhoods), we investigate RQ 2
(‘Which blacklists should a network administrator choose to protect a network
against attacks from Internet Bad Neighborhoods?”), by showing how a net-
work administrator can protect the network he/she maintains by employing In-
ternet Bad Neighborhoods blacklists from different sources and applications. In
addition, we investigate the temporal attack strategies employed by Bad Neigh-
borhoods.

Finally, in Part IV (Conclusion), we present the conclusions of this disserta-
tion.

Following this structure, we divide Part I into the following chapters:

• In Chapter 1 – Introduction, we present the introduction to this disser-
tation.

• In Chapter 2 – Background, we show three possible reasons that had
helped to emergence of Internet Bad Neighborhoods. Also, we propose
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Figure 1.5: Dissertation Outline

an approach to locate Internet Bad Neighborhoods and discuss the related
issues. In addition, we carry out an experiment to verify the Bad Neigh-
borhoods assumption – proving that it is an worthy idea to predict new
sources of attacks on the Internet. Last, we address the ethical issues
implicated by the Internet Bad Neighborhood concept.

In Part II, we provide three chapters that investigate the characteristics of
Internet Bad Neighborhoods:

• In Chapter 3 – Internet Bad Neighborhoods Aggregation, we propose
two approaches to aggregate Internet Bad Neighborhoods into network
prefixes and evaluate them, employing real world data sets.

• In Chapter 4 – Internet Bad Neighborhoods Location, we reveal where
are the Internet Bad Neighborhoods concentrated – in terms of countries,
cities, Autonomous Systems [37]), and organizations.

• In Chapter 5 – Case Study: spamming Bad Neighborhoods, we take
spam Bad Neighborhoods as a case study and refine our general definition
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of Internet Bad Neighborhoods.

In Part III we focus on protection against bad neighborhoods, by providing
three chapters:

• In Chapter 6 – Bad Neighborhood Blacklists from other Sources, we
determine what is the best strategy to generate Internet Bad Neighbor-
hood blacklists: (i) trust others or (ii) carry out local measurements.

• In Chapter 7 – Bad Neighborhoods Blacklists from Different Appli-
cations, we investigate if there is a significant overlap between Internet
Bad Neighborhood blacklists obtained from one application in relation to
another application.

• In Chapter 8 – Bad Neighborhoods Temporal Attack Strategies, we
scrutinize the temporal strategies employed by bad neighborhoods to carry
our their malicious activities.

In Part IV, we present Chapter 9 – Conclusion, in which we finalize this
dissertation, by providing the reader with the main contributions of this disser-
tation as well as guidelines for future work.
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Background

IN this chapter we provide background information on Internet Bad Neigh-
borhoods. We start by discussing the reasons that have led to the existence
of Bad Neighborhoods on the Internet in Section 2.1. Next, we proceed by

presenting an approach to locate Internet Bad Neighborhoods in Section 2.2 and
the issues associated with each step of the approach in Sections 2.3–2.6. Then,
in Section 2.7, we scrutinize the Bad Neighborhood assumption, and evaluate
it experimentally. Finally, in Section 2.8 we discuss the ethical implications as-
sociated to this Bad Neighborhood concept.

2.1 Why Internet Bad Neighborhoods Exist

We assume in this dissertation that the existence of Internet Bad Neighborhoods
– i.e., concentration of malicious hosts in certain networks – is due to three
possible reasons:

1. Some Internet Services Providers (ISPs) neglect malicious activities in their
networks.

2. Whenever a host is infected by a malware, it is more likely that this malware
is going to succeed in infecting neighboring hosts belonging the same badly
managed network than hosts in well managed networks.

3. Non-technical local factors may contribute, such as the rate of software
piracy, legislation, culture, economic, education level in a country.

The first reason for the existence of Bad Neighborhoods on the Internet is
that we can expect different ISPs to have security policies differing on effec-
tiveness. As discussed by Ramachandran et al. [44], there are some ISPs that

15
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“turn a blind eye” to the problem in their networks. An extreme case of it it is
when the ISPs is deliberately engaged in malicious activities, as the case of Mc-
Colo Corp.. When McColo was disconnected from the Internet by two of their
upstream providers (Global Crossing and Hurricane Electric) due to the large
amount of malware and botnets in their networks [45], several reports have
shown that the volume of worldwide spam was reduced in 2/3 [46].

In such “malware tolerant” ISPs, one can also expect also malware to be
more successful in infecting other neighboring hosts [47] (second reason). These
hosts, in turn, usually become part of botnets under control of a botmaster (a re-
view on the rise of botnets is covered in Appendix B). Ultimately, this contributes
even more the concentration of malicious hosts and occurrence of BadHoods in
such ISPs.

Finally, non-technical local factors (third reason) may also contribute to the
BadHood phenomenon. One could expect that ISPs are more likely to neglect
malicious traffic in their networks if there is no Internet crime legislation in
their countries (e.g., the United States has a specific anti-spam legislation [48],
as well as the European Union [49]). In addition, one could expect countries
having high levels of software piracy to be more likely to run outdated and
therefore more vulnerable software.

It is important also to mention that there is an economic drive behind these
assumptions. Cyber-gangs continue on carrying out malicious activities on the
Internet simply because there is a profitable business model — which is not in
the scope of this dissertation. On this topic, however, McCoy et al. [18] have an-
alyzed “leaked” business data from illegitimate online pharmaceutical affiliate
programs and shown that “online sales of counterfeit or unauthorized products
drive a robust underground advertising industry that includes email spam[...]”,
showing a profit margin of 10-20%. Since the recruitment of new customers
is heavily based on e-mail spam [18], there is a business demand for effective
spamming methods – which provides incentive for having more compromised
hosts, mostly likely to be observed in the networks of poorly managed ISPs in
more permissive countries.

We investigate these assumptions in Chapter 4.

2.2 Finding Internet Bad Neighborhoods

In the real world, crime statistics are of importance when deciding if a neigh-
borhood should be considered “bad” or not. These statistics are generated by
companies, police departments, and governments, by keeping track of mali-
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Figure 2.1: Approach to Find Internet Bad Neighborhoods

cious activities perpetrated in neighborhoods, based on the reports and charges
pressed by the victims.

We propose an analogous approach to find Internet Bad Neighborhoods
(BadHoods in the rest of this dissertation). The idea is to compile statistics per
neighborhood based on the security incidents observed by targets (analogous to
victims), which are devices connected to Internet.

Figure 2.1 summarizes the approach we propose to find Internet BadHoods.
In the first step, malicious sources on the Internet carry out attacks against a
target. After being attacked, the target feeds the attack detection system with
information related to the attack (e.g., trace files) so attacks can be detected.
These trace files are processed and the sources of the attack are identified based
on the source IP address. In addition, other data might be obtained from the IP
packets, such as timestamps, number of bytes, etc. After that, a blacklist con-
taining the IP addresses of the sources is generated (a so-called/32 blacklist)
and used as an input to the aggregation process, in which sources get aggre-
gated into BadHoods, according to an aggregation criterion (e.g., IP prefix such
as /24, or geographical information). In the end, a final BadHood blacklist is
generated (we use the term throughout this dissertation to refer to a list of
malicious Bad Neighborhoods and to differ from traditional blacklists).

In the next sections we present more details about each step involved in the
proposed approach.

2.3 Attack Sources and Attribution

Attack sources are devices connected to the Internet that are involved in the
attack to a particular target. Theoretically, any host connected to the Internet is
a potential malicious source. Traditionally, desktop/laptops have been the main
source of attacks on the Internet. However, we can expect in the near future
more attacks to be originated from mobile devices (e.g., smart phones, as in the
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Figure 2.2: Attribution Problem (adapted from Wheeler and Larsen [3])

case of the recently found Android-based botnet [50]) as well as from devices
that, in the past, were not connected to the Internet and currently are (part of
the so-called “Internet of Things”), such as TV sets, satellite receivers, Blu-ray
players, refrigerators, SIP phones, just to mention a few.

Identifying the responsible attacker for the attack is referred in the literature
as attack attribution, that is, “determining the identity or location of an attacker
or an attacker’s intermediary” [3]. As defined by Wheeler and Larsen [3], iden-
tity may be the attacker’s user name, name, alias, or related information asso-
ciated with the person orchestrating the attacks. Location, on the other hand,
refers to attacker location in terms of geographical location or virtual location
(e.g., IP address).

As in the real word, smart attackers try at any cost to make attribution more
difficult on the Internet. In this sense, attackers commonly employ intermediary
nodes between themselves and the target system. By employing such hosts,
attackers hide their identity, since IP packets perceived as attacks at the target
appear to be originated from the intermediary hosts.

Figure 2.2 illustrates the attack attribution problem. In this figure, solid lines
represent network links, and circles R1, R2, and R3 are the routers connecting
the attacker to the target. Each router is connected to a local network (square),
to which hosts (orange circles) are connected. To illustrate the attribution prob-
lem, consider that the attacker in Figure 2.2 is a botmaster controlling a botnet
(botnets are currently one of the major security threats on the Internet – see
also Appendix B for more on this matter). Consider also that the target is a
legitimate e-mail server.

Instead of attacking directly the target, the attacker uses another logical
path (dashed line in Figure 2.2) to hide his original identity. First, the attacker
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connects to a stepping stone node (St) – which is a host used to redirect the
connections from the attacker to the Co, the Command and Control center of
the botnet. Multiple St hosts can be used in this process. After connecting to
the Co, the attacker sends the commands to the command and control (Co),
which then send the orders to a zombie (or a set of zombies, as Zo), which
are the machines that actually carry out the spam campaigns, ending up at the
target. Optionally, zombies can employ reflector hosts (Re), which works like
a proxy between the target and the zombie, hiding the zombie identity. At the
end of the process, the target receives the attack (e.g., a spam message) having
the source IP address of the zombie (Zo) or the reflector host ( textttRe).

To make the attribution problem even more complex, the attacker may ben-
efit from other network features, such as network address translation (NAT),
which changes the source and destination field address of the IP packet header.
Also, the intermediary hosts may be connected to the network using dynamic
IP addresses, which may frequently change over time. Moreover, since the IP
source address of the attackers is not used in the routing process, it may be
easily forged, which is commonly known as IP spoofing [51]. Other techniques
can also be employed; for a more detailed view on the matter, please refer to
the work of Wheeler and Larsen [3].

The approach presented in this dissertation, however, focuses on the attribu-
tion of the last host in the logical path of the attacks (Zo or Re). In this sense, Bad
Neighborhoods are ultimately vulnerable networks having compromised machines,
which may or may not be intermediary hosts between the actual attacker and
the target (considering the IP address is not forged). As a consequence, hosts
flagged as malicious might not represent the behavior of the host’s owners, who
actually might be unaware that his/her computer is involved in such attacks
(we discuss the ethical implications of this in Section 2.8).

We choose to focus on the attribution of the last host because we assume
the point of view of a network administrator who wants to protect a network
from malicious sources. For the network administrator, knowing the identity of
the attacker does not help to better protect the network he/she maintains, since
blocking traffic from the attacker IP address to the network the administrator
maintains does not stop spam messages from originating from Zo or Re in Figure
2.2. In contrast, we see the attribution of the responsible attacker as a task of
cyber police forces instead. Such type of research is outside the scope of this
dissertation.
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2.4 Targets

In the scope of this dissertation, we define as a target any device connected to
the Internet that is victim of attacks carried out by malicious sources. Traditional
examples of targets are servers and desktop/laptops. However, mobile devices
(e.g., smart phones, tablets) are also potential targets, as devices such as TV
sets, refrigerators, sound systems, media players, as long they are connected to
the Internet.

As shown in Figure 2.1, the generation of BadHood blacklists is coupled with
the monitoring of one or more targets. We refer to the resulting BadHood black-
lists as Target’s BadHood List (TBL), because it lists the neighborhoods attacking
that particular target. This, however, does not imply that the particular target
has observed all existing BadHoods.

To observe more Bad Neighborhoods, one idea is to monitor a large number
of targets and generate a single blacklist. However, this also does not guarantee
that all existing BadHoods are listed in the resulting BadHood blacklist.

One approach to generate a complete BadHood blacklist would be to monitor
every single target on the Internet and generate a single BadHood blacklist. This
approach, however, is unfeasible for a series of reasons, the main one being the
sheer size and complexity of the Internet. Monitoring the whole Internet and
then coordinate efforts to share the resulting BadHoods imposes challenges that
go well beyond technical problems, including legal and ethical issues.

2.5 Data Collection and Attack Detection

In order to locate BadHoods on the Internet, we have to obtain network data
(e.g., traces) and perform the attack detection. Several sources of data can be
used in the data collection process, and the data is classified according to the
monitoring point:

• Target-centric data sources: this category encompasses monitoring the
various applications and incoming traffic to the target. For example, a
network administrator might monitor all the network traffic (in PCAP for-
mat [52]) to an individual server.

• Network-centric data sources: this category covers monitoring the net-
work that the target is connected to instead of the host directly. For exam-
ple, consider the network router (such as Rn in Figure 2.3). In this case,
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a network administrator could monitor the network flows [53] exported
from the particular router in order to detect attacks.

After obtaining the data, the next step consists in detecting attacks. In the
literature, various techniques are employed to detect attacks. Intrusion De-
tection System (IDS), for example, are classified according to the technique
employed to detect attacks. Signature-based IDS compares network traffic to
pre-determined attack patterns, which are popularly know as signatures. Snort
is an example of a signature-based IDS [54]. The other type of IDS are anomaly-
based IDS, which compare incoming data to a model of normality that describes
the expected or “normal” behavior. Statistical analysis and Markov models are
used for anomaly-based IDS [55, 56].

Attacks can also be detected by application servers. For example, the mail
filter SpamAssassin analyses e-mail message contents against a set of signatures
[57]. In addition, honeypots, which are essentially systems that act as traps to
detect malicious activities, can be employed to detect attacks [58]. Finally,
attacks can also be detected by correlating various sources of information. For
example, OSSEC [59] is a host intrusion detection system (HIDS) that correlates
various log files (e.g., SSH server, Web servers) to detect attacks.

In this dissertation, we do not focus on the detection itself; rather we rely
upon other systems/techniques for this particular purpose. As a consequence, the
quality of the BadHood blacklist depends on the monitored data and techniques
employed to detect attacks. Due to that, errors might occur in identifying attacks
and, consequently, false positives and false negatives can be expected. This
ultimately impacts the correctness of the resulting /32 blacklist, which is the
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Figure 2.4: Aggregating Malicious Hosts into BadHoods

input for the aggregation process, to be described next.

2.6 Aggregating Hosts into Bad Neighborhoods

The main idea behind the Bad Neighborhood concept is the aggregation of ma-
licious hosts according to an aggregation criterion – for example, IP address
range, city, country, etc. The advantage of doing so is that it allows one to pre-
dict attacks from unforeseen sources (neighbors) before they occur (see Section
2.7 for the investigation of this assumption).

To show how the aggregation principle works, take as example Figure 2.4.
In the left part of this figure, consider that A is a target (e.g., a mail server)
while hosts on the Internet (1− 4) share the same prefix (10.10.10.x, where x
is the number of the host within each circle).

In this figure, target A is attacked by hosts 10.10.10.3 and 10.10.10.4. If
A were to generate a blacklist, these two host would be listed, as shown in the
same figure. By employing this blacklist, A could block any new attempts from
both hosts in the future.

However, if A were to generate a blacklist employing the Bad Neighborhood
concept, it would have to cluster these hosts under a common criteria. Let’s
consider, as an example, that A aggregates the malicious hosts into /24 prefix.
Since hosts (1 − 4) share the same 3 octets of the IP address (10.10.10), they
can be aggregated into a single /24 prefix (10.10.10/24), which comprises all
addresses in the range 10.10.10.0-10.10.10.255. As a consequence, the only
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/24 Netblock Number of Sources (hosts) Number of Attacks (spam)
117.242.140.0 90 198

87.252.243.0 64 133

41.254.0.0 227 814

84.36.152.0 40 103

188.50.57.0 20 30

Table 2.1: Example of a /24 BadHood Blacklist

entry in the BadHood blacklist would be 10.10.10.0/24, as shown on the right
in Figure 2.4. Associated with this neighborhood would be a numerical value
indicating the number of observed malicious hosts (2 in this case).

This information would allow a mail filter to consider 10.10.10.0/24 as
a single neighborhood, and judge equally all the 256 hosts in this netblock in
case a new message arrives. This, in turn, allows A to be protected from any
host from the same /24, or the same BadHood – which can be seen as a form
of predicting new attacking sources, and not only to reacting to observed /32
sources. However, this comes at a price: in this neighborhood, hosts 1 (not
malicious, in blue) and host 2 (malicious, but it has not attacked A yet) are
both considered malicious, even though they have not yet attacked A – and may
never attempt it.

Table 2.1 shows a sample of a /24 BadHood blacklist. It lists five randomly
chosen /24 BadHoods (out of more than 500,000). For this BadHood blacklist,
the target was the mail server of Provider A, a major hosting provider in the
Netherlands. In the first column, the bad neighborhoods are listed, while in
the second we list the number of distinct malicious sources that were observed
sending spam; the number of spam messages is shown in the third column. For
example, out of the 256 hosts listed in neighborhood 41.254.0.0, 227 have
actually sent spam to Provider A, in a total of 814 messages.

2.7 Verifying the Bad Neighborhood Assumption

As explained in Chapter 1, previous work has shown that malicious hosts tend
to be concentrated in certain networks instead of being evenly distributed over
the IPv4 address space [27, 28, 29, 30, 31]. As shown in Section 2.6, this has
lead to the Bad Neighborhoods assumption – that BadHoods can provide
an indirect approach to predict new sources of attacks, by assuming that
neighboring hosts of malicious ones are more likely to be malicious as well and,
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Figure 2.5: Simple Mail Filter Used in Evaluation of the Bad Neighborhoods Assumption

therefore, more likely to carry out attacks.

In this section, we verify the Bad Neighborhood assumption. To do so, we
carry out a case study to determine if Bad Neighborhoods are useful in predict-
ing new spam sources, by comparing spam detection rates when BadHoods are
employed in relation to non-BadHood-based solutions.

With this purpose in mind, we consider a simplistic mail filter, as shown in
Figure 2.5. To verify if a message is spam or not, the mail filter looks up the
sender IP address (IP) in the blacklist (Blacklist X, which can be one of the
three blacklists BL#1�BL#3 in the same figure). If the sender’s IP address is
found in the blacklist, the message is considered malicious (spam), otherwise is
considered legitimate (ham).

We verify the Bad Neighborhood assumption by comparing the performance
delivery by the mail filter when using three different blacklist (BL #1, BL #2 ,
BL #3), all generated based on the public spam blacklist Composite Black List
(CBL) [60]. As input data, we use the IP addresses of spammers observed
by the Electrical Engineering, Mathematics, and Computer Science Faculty of
the University of Twente (UT/EWI), for a period from November 11th to 23rd,
2011. The list of spammers was extracted from the log files of SpamAssassin
[61], the mail filter employed in the mail servers.

In Section 2.7.1 we present more details about the generated blacklists,
while in Section 2.7.2 we show the UT/EWI data set used as input. Finally,
in Section 2.7.3, we present and discuss the results.
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2.7.1 Blacklists Evaluated

In the previous section we have stated that we evaluated three blacklists to
verify our assumption. Many criteria can be used to generate blacklists, and
there are many blacklists publicly available on the Internet (a comparison of
blacklists from various sources is covered in Chapter 6).

We have chosen to employ the Composite Blacklist (CBL) [60] as the stan-
dard blacklist, that is, the blacklist that is employed as a comparison standard.
CBL was selected because (i) it has been previously investigated by academic
and Internet security communities [62, 63, 64, 65, 66], and (ii) the CBL pro-
vides bulk-access to the blacklist data, to ensure we have a complete view of the
malicious IP addresses. We call this blacklist CBL32-STD. We have downloaded
CBL once a day, and we therefore have one blacklist per day; we used the same
monitoring period for both blacklists and the incoming mail.

From the standard blacklist (CBL32-STD), we create, for each day, a /24
Bad Neighborhood list, as described in Section 2.6. We refer to this blacklist
as CBL-BadHood24. By comparing the spam detection rates of this BadHood
blacklist against CBL32-STD, we can observe the improvement on the detection
rate incurred by using the Internet Bad Neighborhood concept.

However, as also discussed in Section 2.6, by using the BadHood concept, we
are able to protect from all the addresses from the neighborhood even if we have
only observed a single host belonging to the neighborhood. In practice, it is as if
we have blacklisted all /32 (256 addresses) from each /24 prefix. Therefore, by
comparing directly the performance of CBL-BadHood24 list to the CBL32-STD list
is not a fair approach, since CBL-BadHood24 lists, equivalently, 256 times more
hosts than CBL32-STD (in the worst case scenario, of one malicious addresses
per /24). Therefore, in this case, one could expect CBL-BadHood24 to deliver a
better detection rate than CBL32-STD.

To create a fair comparison, we create a third blacklist, to which we refer
as CBL32-EQUIV24-RND. The idea behind this blacklist is create an /32 blacklist
with an equivalent number of hosts as CBL-BadHood24, and, therefore, pro-
vide a fair comparison. However, instead of using the Bad Neighborhood as-
sumption (that a host is more likely to be malicious if its neighboring hosts are
malicious), we use random hosts. If the performance delivered by employing
CBL32-EQUIV24-RND is similar to the one delivered by CBL-BadHood24, then the
BadHood assumption is false – that is, malicious hosts are randomly distributed
instead of concentrated in certain networks. Otherwise, the approach is valid.

To illustrate how the blacklist generation works, consider Table 2.2 1. On
1We do not have CBL data for November 18th due to a problem in the download script.
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Day # CBL-BadHood24 /32 Equiv # CBL32-STD # Diff
10 819,698 209,842,688 6,452,536 203,390,152
11 812,217 207,927,552 6,470,870 201,456,682
12 809,268 207,172,608 6,668,200 200,504,408
13 798,345 204,376,320 6,663,645 197,712,675
14 792,098 202,777,088 6,701,460 196,075,628
15 795,763 203,715,328 6,915,802 196,799,526
16 803,126 205,600,256 7,113,607 198,486,649
17 812,598 208,025,088 7,402,563 200,622,525
18 NA NA NA NA
19 808,819 207,057,664 7,402,770 199,654,894
20 798,169 204,331,264 7,247,960 197,083,304
21 792,489 202,877,184 7,230,438 195,646,746
22 797,062 204,047,872 7,233,956 196,813,916

Table 2.2: Blacklists Used in the Mail filter

November 10, for example, we have obtained after aggregating CBL blacklist
into /24, 819,688 Bad Neighborhoods. This, in turn, is equivalent to 209,842,688
/32 hosts (/32 Equivalent, by multiplying each BadHood by 256, which is the
number of hosts in a /24 BadHood [25]).

Therefore, to create a fair comparison, we create CBL32-EQUIV24-RND black-
list (one per day) using two steps:

• Use all inputs of CBL32-STD for the same day (to make sure that these /32
hosts are also blocked here)

• Add x new random /32 IP addresses to the list, where x is shown in the
Diff in Table 2.2 for the particular day.

In doing so, we create a blacklist that is able, in terms of /32 entries, to
block the same number of hosts as CBL-BadHood24. It is the difference between
the performance of CBL-BadHood24 and CBL32-EQUIV24-RND that tests the Bad
Neighborhoods assumption, by comparing if a BadHood-based blacklist is more
efficient than a randomly generated one, providing that both of them are able
to block the same number of hosts.

To create the random IP addresses, we have developed a simple Java pro-
gram. We have only considered valid unicast /8 prefixes in this process (e.g.,
we have not considered 127/8, multicast addresses, reserved /8, as described
by IANA [67]). We have employed the method nextInt(int) available in
the java.util.Random API, which generates “a pseudo-random, uniformly dis-
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tributed integer value between 0 (inclusive) and the specified value (exclu-
sive)” [68].

Even though we run the risk that some of addresses generated by our pro-
gram may not have been in use (e.g., not allocated by the RIRs), we expect
that they will represent less than 10% of the total2. Currently, there are 13.43
/8-equivalent IP addresses in the RIRs reserved pool. This corresponds to 8.6%
of the 155.71 /8-equivalent addresses allocated. To compensate for this, we
repeat the experiment 10 times and present the average results.

2.7.2 Incoming Mail

In order to evaluate the performance of the mail filter shown in Figure 2.5, we
need three blacklists (already described) and incoming mail. We have consid-
ered, for this case the incoming mail of the Electrical Engineering and Computer
Science Department of the University of Twente (UT/EWI), from November 11
to 23, 2011. The mail has been previously analyzed using SpamAssassin [61],
and we have obtained the IP addresses of the malicious sources.

In this data set, all IP addresses are, therefore, malicious IP addresses which
have sent at least one spam message. Table 2.3 presents more details about the
data set. As can be seen, this mail server has observed, on average, 246,072
spam messages a day, over the monitoring period.

2.7.3 Mail Filter Performance Evaluation

In this section, we compare the blacklists described in Section 2.7.1 to the
UT/EWI data set, as shown in in Table 2.3. In this comparison, we impose a
day difference between the incoming mail blacklist (UT/EWI) and the black-
lists BL1�3 (e.g., we compare November 11th UT/EWI spam addresses to the
blacklists generated based on November 10th).

Figure 2.6 shows the results of our evaluation (also shown in Table 2.4).
We can see that the performance of CBL32-STD (by using the previous day CBL
original /32 blacklist) allows us to block, on average, 54.33% of all the spam
messages observed by UT/EWI, for each day. That means that by employing a
blacklist containing individual hosts observed by CBL, we are able to filter out
roughly half of UT/EWI spam, regardless the day. These results are to be used
as a comparison standard to the other two curves.

2http://www.potaroo.net/tools/ipv4/index.html

http://www.potaroo.net/tools/ipv4/index.html
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Day # Spam Messages # of /32 Hosts
11 182,333 85,242
12 96,028 46,720
13 286,872 109,803
14 228,916 97,685
15 383,083 129,027
16 281,330 117,844
17 282,655 105,140
18 153,539 16,808
19 249,429 84,422
20 276,402 126,283
21 160,863 73,812
22 449,201 124,066
23 168,285 32,459
Average 246,072 88,409

Table 2.3: UT/EWI Data Set - November 2011
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Figure 2.6: Performance of Various Blacklists

The curve of CBL-BadHood24 shows the improvements in the spam detection
rate incurred by the use of the Internet Bad Neighborhood concept. Among all
the data sets, this is the one that performs best, delivering, on average, 92.74%
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Day RANDOM-32 CBL32-STD CBL32-EQUIV243 SDEV4 CBL-BadHood24

11 299 96,734 101,263.8 220.77 169,813
12 170 53,067 55,336.4 104.07 87,973
13 527 168,225 174,506.6 181.05 276,159
14 336 116,629 122,529.3 264.82 214,116
15 711 198,392 206,590.1 252.81 357,509
16 512 156,811 163,147.9 366.00 260,054
17 524 154,811 161,573.3 852.97 254,450
18 175 74,874 78,594.8 215.28 131,098
19 NA NA NA NA NA
20 462 146,719 153,381 185.98 263,505
21 331 87,727 91,425 279.07 147,877
22 844 261,847 271,040.5 529.64 425,085
23 287 96,113 99,814.6 327.02 160,356
AVG 431.50 134,329.08 139,933.61 314.96 228,999.58

Table 2.4: Number of Spam Messages Detected According to Input Blacklist

spam detection. That means that blocking all the individual hosts listed on CBL
and their neighboring hosts, we have been able to block most of UT/EWI spam.

However, to make it a fair comparison, we have to compare this results
to the performance of CBL32-EQUIV24-RND, as discussed in Section 2.7.1. We
have then generated the 10 random CBL32-EQUIV24-RND blacklists in order
to eliminate statistical uncertainty. In Figure 2.6, the vertical bars on each
point on CBL32-EQUIV24-RND represents the standard deviation obtaining from
running 10 times the algorithm (also shown in Table 2.4). As can be seen,
this blacklist performs far worse than CBL-BadHood24 , delivering an average
performance of 56.64% spam detection. That means that even though both
blacklists contain an equivalent number of /32 entries (CBL32-EQUIV24-RND
and CBL-BadHood24), blocking randomly chosen hosts will not significantly im-
prove spam detection (CBL32-STD to CBL32-EQUIV24-RND do yield comparable
results).

The same conclusion can be drawn from the curve RANDOM-32, which is a
/32 blacklist that has the same number of entries as CBL32-STD. The difference,
however, is that they were all randomly generated (instead of being observed
spamming CBL infrastructures). As can be seen, the effective detection rate of
randomly generated IP addresses is very low for /32 blacklist (almost 0%).

This confirms that selecting millions hosts at random does not improve spam

3Average for 10 experiments
4With relation to the 10 experiments of CBL32-EQUIV24
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detection (205 million, in average or 4.7% of the maximum theoretical in the
IPv4 address space). On the other hand, selecting neighboring hosts of malicious
ones to be blacklisted as well significantly improved the results. Therefore, we
can conclude that Bad Neighborhoods are a much better approach to predict new
sources of attack, when compared to random IP addresses – which validates the
Bad Neighborhood assumption. This, in turn, supports the rest of the work pre-
sented in this dissertation. These findings also support similar results presented
in [27, 28, 29, 30, 31], which were covered in Chapter 1.

2.8 Ethics and Internet Bad Neighborhoods

According to the University of Tennessee’s Internet Encyclopedia of Philosophy,
Ethics (or moral philosophy) is a field of philosophy that “involves systematiz-
ing, defending, and recommending concepts of right and wrong behavior” [69].
We believe that ethics should be taken into account in the development and the
actual deployment of any technology, not only to ultimately obtain a more “Eth-
ical product”, but also to provoke a reflection on the impact of the technologies
on individuals, society, and the environment.

As asserted in 1961 by the cybernetics pioneer Norbert Wiener, “individuals
developing interactive technologies have an ethical responsibility to take likely
consequences, positive and negative, of their designs into account” [70, 71].
The members of the Institute of Electrical and Electronics Engineers (IEEE) have
also a code of Ethics to be followed [72], and the first article states that members
“accept responsibility in making decisions consistent with the safety, health, and
welfare of the public, and to disclose promptly factors that might endanger the
public or the environment”.

This dissertation is no exception. Even though the focus of this dissertation
is not on the Ethical aspects associated with Bad Neighborhoods, we do provide
an introduction to the ethical issues involved in the research and deployment
of BadHood-based technologies. We recommend that before implementing the
findings obtaining in this dissertation, the responsible persons should carry a
complete ethical assessment following the guidelines presented here.

To assist us in the Ethical evaluation, we have carried out a series of inter-
views and discussions with Dr. Aimee van Wynsberghe5, the Ethical Adviser of
the Centre for Telematics and Information Technology6 (CTIT) of the University
of Twente.

5http://www.aimeevanwynsberghe.com/
6http://www.utwente.nl/ctit/

http://www.aimeevanwynsberghe.com/
http://www.utwente.nl/ctit/
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Figure 2.7: Possible Malicious Uses of a Hacked by Criminals (source: Brian Krebs7, in
The Washington Post [4], updated version from [5].)

2.8.1 Ethical Technology Design and Deployment

As discussed in Chapter 1, behind certain types of Internet attacks, we find a
large number of compromised hosts, which are typically computers at homes,
schools, and businesses that have been “hijacked” and carry out their malicious
activities in a stealthy way so the human user behind the desk would not notice
it. The investigative reporter Brian Krebs [4] published in his Washington Post
column an article showing the reasons why criminals would hack standard PCs,
summarized in Figure 2.7. As can be seen, there are many ways that a criminal
would benefit from breaking into computers of unaware users.

In order to scrutinize the Internet Bad Neighborhood research under the
ethics lenses, we follow the recommendations proposed by Nathan et al. [70],
in which the authors propose four criteria to provide ‘perspective and focus for
considering long-term system effects of current and future technologies”[70].
We present these criteria here and show a non-exhaustive list of examples on

7 c©Brian Krebs – permission to use here, but not to reproduce anywhere else.
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how our research relates to it:

1. Stakeholders: people that are directly or indirectly affected by the BadHood-
related technologies:

• ISPs that want to protect from attacks from BadHoods.
• Users that have to be protected from attacks.
• Users that have their computer hijacked but are unaware of it.
• Cyber-gangs that want to exploit users’ resources.
• Governments that want to “police” the Internet.
• Security companies that want to employ and use the technology.

2. Time: the time that BadHood-related technologies are intended to be
used; one should consider 3, 5, or 10+ years since most successfully de-
ployed technologies “remain in use in society” for such extend periods[70].

3. Values: the set of values that “a person or group consider important in
life”. We here present some of the values involved with the research (for
Internet Research Ethics in particular, please refer to [73]):

• Security: users want their computers and networks to be secure.
• Fairness: users should not be wrongly punished by actions caused by

others.
• Economic value: ISPs and users want “clean” networks so less money

and time hast to be invested to secure it.
• Privacy: “principles of research ethics dictate that researchers must

ensure there are adequate provisions to protect the privacy of sub-
jects and to maintain the confidentiality of any data collected” [73].

4. Pervasiveness: the implication in case the technology become pervasive in
the society. For example, who “controls” the one who is filtering network
data based on BadHood-based technologies?

We next present the ethical dimensions related to our research and the cri-
teria proposed by Nathan et al. [70].

2.8.2 Three Dimensions of the Ethical Issues and BadHoods

In this subsection we address three dimensions of Ethics and Internet Bad Neigh-
borhoods research. We first explain each process, the ethical issues associated,
and the proposed ethical solution.
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Labeling Malicious Hosts

We have summarized in Figure 2.1 the approach we employ to find Internet Bad
Neighborhoods. In Section 2.5, we have covered how the data collection and
attack detection is performed. This is carried out to detect individual malicious
hosts (/32) carrying out malicious activities.

Even though the detection of attacks on the Internet is somehow effective,
the process itself is not error-prone. There is not currently a technology that
is able to detect 100% of the security incidents. Moreover, false positives pose
a threat to fairness value discussed in Section 2.8.1: if a system (e.g., a net-
work intrusion detection system) wrongly classifies a certain network flow as
malicious, the IP address assigned to it (and consequently, the user that belongs
to this computer) will be taken into the blacklist, and, ultimately, into a Bad
Neighborhood.

Not only that, the information used to create the /32 blacklist is the source
IP address of the last “hop” host (Figure 2.2). However, the very IP address
might be forged, and, consequently, many IP address that are not carrying out
attacks may end up in the blacklist, which also violates the fairness value.

Finally, as shown in Figure 2.2, usually the IP address that is perceived as
malicious is the last hop in a chain of many, which hides the original identity of
the attacker. If the user is unaware his/her computer is being exploited to carry
out malicious activities, is he/she responsible? To which degree? And to which
degree software developers should be held responsible for releasing vulnerable
technologies?

Taking all these issues into account, we acknowledge that the labeling pro-
cess of individual hosts violates values such as fairness. However, blacklist based
technologies have been used to filter spam since 1997 to provide other values:
security to the users and ISPs and economic value (reducing potential dam-
age caused by attacks). It is supported by the industry community in various
products, such as SpamAssassin mail filter [57] and blacklists providers such
as SpamHaus [74, 60, 75] as well as by the research community [76], to men-
tion a few. Therefore, our answer to this ethical dimension is that this is the
“best-effort” approach, that is, provides a compromise of values (analogous to
IP routing, which provides unreliable service, by not guaranteeing the delivery
of network packets, but it does the “best it can” [77]).
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Labeling Bad Neighborhoods

We have summarized in Figure 2.4 the aggregation of malicious hosts (/32) into
Internet Bad Neighborhoods. In this process, we aggregate/cluster together
hosts that have been observed carrying out malicious activities according to
their IP addresses (or neighborhoods). As shown in the same figure, instead
of judging an individual host as malicious, we label the whole “neighborhood”
as well, considering the number of malicious hosts observed. By aggregating
individual hosts into Bad Neighborhoods, we actually loose the ability of telling
which hosts within the neighborhood are malicious, and actually judge them
“equally” bad.

As discussed in Chapter 1, “in the real world, locations having higher crime
rates than average are sometimes called bad neighborhoods. In such places, it is
statistically more likely that a crime will occur compared to other locations. The
same principle holds for Internet Bad Neighborhoods: it is more likely that ma-
licious activities are originating from such networks than from other networks”.

In this particular case, by aggregating individual hosts into BadHoods, we
actually violate some ethical principles, by introducing bias and prejudice to-
wards the other IP addresses in the cluster (which are associated to individual
computers and, ultimately, users behind the desks). Such IP addresses may have
never ever carried out an attack, but they are judged by the behavior of their
neighboring IP addresses.

As an analogy to the real world, consider the scenario in which a bank has a
list of clients that it would deny services due to previous problems in the past. If
the bank would also include in this blacklist all the immediate neighbors of the
ones previously listed, then the bank would have a Bad Neighborhood blacklist
of customers.

We also acknowledge that the labeling and the aggregation into BadHoods
is not ethically correct. However, this technique has proved to be effective
and able to provide other values: security and economic values. As we have
shown in Section 2.7.3, for IP-based BadHoods, such labeling has proven that
the neighbors of malicious hosts are more likely to carry out malicious activities
than randomly chosen neighborhoods of the same size.

The Deployment of Bad Neighborhood-based Technologies

The direct application of Bad Neighborhood-based technologies lies in providing
Internet security engineers and software with information on the reputation of
certain subnetworks (or BadHoods). Such information should be used in a way
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Figure 2.8: Envisioned BadHood-based Application Scenarios

that complements current solutions for Internet security, and it is not intended
to be the single technology for Internet filtering. In addition, the way it should
be employed depends on the application being exploited (e.g., mail, ssh), due
to the different application specifics.

One important observation is that BadHood-based technologies are intended
to be used as protective measures towards incoming traffic. For example, a com-
pany would look up blacklists before accepting e-mail to its own mail severs.
However, this does not interfere with the communications between malicious
hosts and their own Internet Service Providers: they are “free” to connect to
any other mail servers, for example.

To illustrate the envisioned use scenario, consider Figure 2.8. In this figure,
we have three Internet Service Providers (ISPs): ISP A, B, and C. Consider, also,
that each ISP provides e-mail services to its costumers. As shown in the figure,
only ISP A makes use of a BadHood blacklist to filter e-mail messages. However,
as we have mentioned, that is not the only criterion for classifying mail as spam
or not (there are various different techniques that can be employed for that –
e.g., content analysis). In fact, the BadHood blacklist can be used in the process
when deciding if a message is spam or not. Also, in Figure 2.8, consider the
neighborhood with 4 hosts (1–4), being 2 and 4 “malicious”, that is, have been
observed sending spam, while 1 and 3 are legitimate. We envision the following
possible outcomes:

• Legitimate hosts are penalized for the behavior of their neighbors: that hap-
pens in the case of ISP A, which uses a BadHood blacklists which encom-
passes all hosts of the BadHood in the figure. However, as we pointed,
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BadHoods are not intended to be the single criterion in classifying a mes-
sage. In the worst case, hosts 1-4 will not be able to send messages to
ISP A. However, that does not affect their capability to communicate with
ISP B and C, since these do not use BadHood-based systems (even if they
would, they might not have the same neighborhood blacklisted, and they
even might employ different criteria and weights when analyzing a mes-
sage).

• Malicious hosts are able to keep on spamming oblivious ISPs: if malicious
hosts are not blacklisted, they will always be able to maintain their com-
munications. For example, host 2, malicious, is able to spam ISP B.

• Malicious hosts are blocked: this is the case when BadHoods help to legit-
imately filter out spam messages, as in the case of hosts 2 and 4 being
blocked at ISP A.

Considering the fact that BadHood-based technologies are not supposed to
be the single solution for network filtering and that the filtering occurs on the
receiver side, the ethical implications are limited. In addition, BadHood-based
technologies also provide values such as security and economic value. However,
since this dissertation does not focus on the deployment of BadHood-based fil-
tering technologies, we strongly recommend that the ethical implications when
deploying the technology should be considered and evaluated.
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We are going to die, and that makes us the lucky ones.
Most people are never going to die because they are never
going to be born. The potential people who could have
been here in my place but who will in fact never see the
light of day outnumber the sand grains of Sahara.

Richard Dawkins, 1998
In: Unweaving the Rainbow CHAPTER 3

Internet Bad Neighborhoods Aggregation1

THE Bad Neighborhood concept is based on the assumption that malicious
hosts tend to be concentrated in certain networks instead of being evenly
distributed over the entire IP address space (as verified in Section 2.7

and in [27, 28, 29, 30, 31]). In Section 2.6, we have shown how to aggregate
individual hosts into /24 Bad Neighborhood (in CIDR notation [25]). However,
a question one may ask is how to aggregate malicious hosts into prefixes other
than /24 (e.g., /20, /18, /12, etc.), and what prefixes suit best to express Bad
Neighborhoods (BadHoods hereafter), given a certain data set.

To better illustrate this, let’s call upon our analogy to bad neighborhoods in
the real world. Consider Figure 3.1, in which the x axis represents addresses,
whereas the y axis shows how malicious each individual is (values close to 0
mean legitimate hosts – shown as squares – while malicious have higher values
for y – shown as circles). If the local Police Department were to release a list of
the most dangerous areas, the areas could be represented by employing a fixed
aggregation level (e.g., only boroughs, shown as dashed rectangles in Figure
3.1, having a fixed size of 4) or variable aggregation levels (e.g., blocks, streets,
boroughs, represented as dashed ellipses of different sizes in the same figure,
having sizes equal to 2, 4, etc.).

This aggregation into BadHoods, however, has to deal with two conflicting
requirements: (i) the aggregated list should be concise and (ii) the aggregation
process should minimize the error incurred.

The first requirement – a concise BadHoods list (in the Internet this means
prefixes <= /24) – allows one, in terms of Internet BadHoods, to reduce mem-
ory storage requirements and increases lookup speeds for BadHood-based secu-
rity software.

1This chapter is based on the following publication: Moura, G. C. M., Sadre, R., Sperotto, A.,
Pras, A.: Internet Bad Neighborhoods Aggregation. In: IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2012), Maui, Hawaii, USA, 16-20 April 2012.
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Figure 3.1: Aggregation into Bad Neighborhoods

The second requirement – minimize aggregation error – derives from how
legitimate hosts are mistakenly included in the aggregation process. Consider
Figure 3.1: in the case of the left most fixed-size Bad Neighborhood (BadHood):
it has a fixed size of four consecutive addresses – in which two of them (squares)
were mistakenly included in the process. This is similar to what occur in the
real word: not all residents of a bad neighborhood are necessarily malicious;
but some are, and therefore, the entire neighborhood may be labeled as bad.

In this chapter, we investigate at what aggregation levels Internet BadHoods
should be expressed, considering the aggregation requirements aforementioned.
Since the aggregation level may depend on the input data, the goal of this chap-
ter to present and evaluate data set independent algorithms to aggregate mali-
cious hosts into Internet Bad Neighborhoods of various prefixes [/24 – /8].

The contribution of this chapter consists of two BadHood aggregation algo-
rithms. The first one, fixed-prefix (dashed rectangles in 3.1), aggregates mali-
cious hosts using the same aggregation prefix, while the variable-size algorithm
aggregates hosts into different aggregation prefixes (ellipses in 3.1). Both al-
gorithms deal differently with the aggregation requirements aforementioned:
in Figure 3.1, the fixed size algorithm generates a list of 4 BadHoods (dashed
rectangles), with an aggregation error proportional to 6 legitimate individuals
mistakenly included (small squares inside dashed rectangles). The variable-size
algorithm, on the other hand, yields 5 BadHoods (ellipses), where it wrongly
aggregates only 2 legitimate individuals.
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Figure 3.2: Chapter Structure

The rest of this chapter is divided as shown in Figure 3.2: in Section 3.1, we
present the basic principles used as basis for the two aggregation algorithms.
Next, in Section 3.2, we present the fixed-prefix aggregation algorithm, in Sec-
tion 3.3 we presented the variable prefix aggregation algorithm. After that, in
Section 3.5 we evaluate those algorithms by using real world data sets, which
is done by employing the metrics defined in Section 3.4. Related work is then
presented in Section 3.6, and conclusions are discussed in Section 3.7.

3.1 Aggregation Principles

In this section, we describe the basic aggregation operation to aggregate /24
BadHoods into larger BadHoods, which is employed by both algorithms pre-
sented in this chapter. We begin by introducing in 3.1.1 the BadHood Score
employed in the basic aggregation operation. Then, in Section 3.1.2, we for-
malize the process of merging two /n BadHoods into one (/n− 1) BadHood.

3.1.1 Bad Neighborhood Score

Given a list of malicious IP addresses, a /n BadHood (in CIDR notation [25]) is
a /n netblock Bn with a score score(Bn). We define this score as the number of
malicious hosts in the block:

score(Bn) = #{malicious hosts in block Bn} (3.1)
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# /24 netblock score Pn

1 10.10.10.0 22 0.086
2 10.10.11.0 21 0.082
3 10.10.12.0 20 0.078
4 10.10.13.0 41 0.160
5 20.20.24.0 130 0.508
6 20.20.25.0 1 0.004
7 30.30.34.0 60 0.234

Table 3.1: Example of /24 BadHoods and their scores

Since /24 is “the minimum prefix routable on the Internet” [78], we use /24 as
the starting aggregation level for IP prefixes in the rest of this chapter. Table 3.1
provides a short example of a /24 BadHood list.

The score value leads to an intuitive definition of the “evilness2” of a net-
block: the higher the score, the higher the probability that a host address from
the block is a source of malicious activities. However, the score depends on the
size of the block. For the following, it is useful to have a normalized measure of
BadHood score, which represents the percentage of hosts within a netblock that
are malicious. Let Bn be a netblock of size /n with score score(Bn). We define
the normalized score of Bn as

pn(Bn) =
score(Bn)

max_hosts(Bn)
, (3.2)

where max_hosts(Bn) = 232−n is the maximum number of IP addresses in
a /n netblock (neglecting the addresses reserved for broadcast and network
identification). Pn can also be interpreted as the probability of a random host h
in the netblock B be malicious.

3.1.2 Basic Aggregation Operation

Given two /n BadHoods Bi
n and Bj

n, these BadHoods can be aggregated into
the /(n− 1) BadHood Bi

n ⊕ Bj
n if Bi

n and Bn
j have a common address prefix

of n− 1 bits. The aggregated BadHood Bi
n⊕Bj

n spans the IP addresses of Bi
n

and Bn
j . For example, in Table 3.1, blocks #1 and #2 can be aggregated from

/24 to /23, while blocks #1 and #7 can not.

2By evilness we refer to the potential damage that can be incurred by a netblock, and not by the
the intention of the possible unaware users behind zombie computers (see Section 2.8 for more).
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# /23 netblock score Pn

1 10.10.10.0/23 43 0.084
2 10.10.12.0/23 61 0.119
3 20.20.24.0/23 131 0.256
4 30.30.34.0/23 60 0.117

Table 3.2: /Fixed Prefix Aggregation (1st iteration)

Consequently, the normalized score of the aggregated BadHood Bi
n ⊕ Bj

n

is as follows:

pn−1(Bi
n⊕Bj

n) =
score(Bi

n) + score(Bj
n)

max_hosts(Bi
n ⊕Bj

n)
=

1

2
(pn(Bi

n) + pn(Bj
n)) . (3.3)

This basic operation provides the basis for both fixed prefix and variable prefix
aggregation algorithms, described in Sections 3.2 and 3.3, respectively.

3.2 Fixed Prefix Aggregation Algorithm

The fixed prefix aggregation algorithm iteratively aggregates bad neighborhoods
into larger netblocks. In the first iteration, all /24 BadHoods are aggregated
into /23 BadHoods according to the aggregation operation described in Section
3.1.2 (provided that Bi

n and Bn
j have a common address prefix of n − 1 bits).

For example, the /24 BadHoods provided in Table 3.1 will be aggregated into
the /23 BadHoods shown in Table 3.2. In the next iteration the /23 BadHoods
are aggregated into /22 ones, and so on.

Algorithm 1 presents the pseudocode for this algorithm. The algorithm takes
as input the initial list S24 of /24 netblocks B24

i with score(B24
i ) and the largest

desired aggregation level m. In each iteration (line 1), the algorithm builds the
list Sn−1 of /(n − 1) BadHoods by merging all pairs of /n BadHoods Bn

i , B
n
j

(where possible) according to the basic aggregation operation described in Sec-
tion 3.1.2 (lines 3–5).

It is important to note that, in this algorithm, empty netblocks (score =
0) are included if no matching BadHood is found for aggregation (line 3 in
Algorithm 1). In our example, the /24 BadHood 30.30.34.0 in Table 3.1 is
aggregated with the zero-score netblock 30.30.35.0.

The fixed prefix aggregation algorithm effectively reduces the number of
BadHoods in each iteration because it progressively builds larger netblocks re-
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Algorithm 1 Fixed prefix aggregation
Require: S24 = {(B24

i , score(B24
i )), i = 1 . . . num_entries}

Require: largest aggregation level m
Ensure: Sm

1: for n = 24→ m+ 1 do
2: Sn−1 := ∅
3: for all Bn

i , B
n
j ∈ Sn, i 6= j with common n−1 prefix (use an empty netblock if no matching

Bn
j found) do

4: Sn−1 := Sn−1 ∪ {(Bn
i ⊕Bn

j , score(B
n
i ⊕Bn

j ))}
5: end for
6: end for

gardless their scores. However, this simple approach also exhibits some draw-
backs. First, aggregating two BadHoods with normalized scores a and b will
result in a BadHood with an normalized score of a+b

2 . The larger the difference
between a and b, the more information about the behavior of the individual /24
BadHoods in the aggregated BadHood is lost. Secondly, enlarging the BadHoods
can have the side effect of including also netblocks that were not initially flagged
as malicious, as already illustrated in our example by the netblock 30.30.35.0.
This effect aggravates with each iteration.

3.3 Variable Prefix Aggregation Algorithm

Differently from the fixed prefix aggregation algorithm, the variable prefix algo-
rithm does not apply the same degree of aggregation to all BadHoods. Instead,
the main idea is to merge two BadHoods only they are sufficiently similar, which
is verified by a a merging condition. Otherwise, aggregation does not occur.

Algorithm 2 presents the pseudocode for variable prefix aggregation algo-
rithm. As in the previous algorithm, the algorithm takes as input the initial list
S24 of /24 netblocks B24

i with score(B24
i ) and the largest desired aggregation

level m. Then, for each aggregation level n (line 2), the algorithm merges all
/n BadHoods Bn

i , B
n
j which would form a valid aggregated BadHood according

to the basic aggregation operation (see Section 3.1.2) that satisfy the merging
condition (line 3). BadHoods that do not fulfill those conditions are not aggre-
gated and therefore not considered further for aggregation in this or the next
iterations. The merging condition is defined as:

merge(Bn
i , B

n
j ) = pn−1(Bn

i ⊕Bn
j ) ≥ β ·max(pn(Bn

i ), pn(Bn
j )). (3.4)
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Algorithm 2 Variable prefix aggregation
Require: S24 = {(B24

i , score(B24
i )), i = 1 . . . num_entries}

Require: largest aggregation level m
Require: merging condition parameter β
Ensure: S
1: S := S24

2: for n = 24→ m+ 1 do
3: for all Bn

i , B
n
j ∈ S, i 6= j with common n− 1 prefix ∧merge( Bn

i , B
n
j ) do

4: S := S \ {(Bn
i , score(B

n
i )), (B

n
j , score(B

n
j ))} ∪ {(Bn

i ⊕Bn
j , score(B

n
i ⊕Bn

j ))}
5: end for
6: end for

The condition is such that we allow a merge only if the resulting normalized
score pn−1(Bn

i ⊕ Bn
j ) is at least equal to a fraction β of the most malicious of

the blocks to be merged. The parameter β prevents therefore the aggregation
algorithm from merging dissimilar BadHoods. This value can be tuned accord-
ing to the scenario and application. β ranges between 0.5 and 1: smaller values
make the aggregation less strict, thus allowing more BadHoods to be merged.
Values close to 1 will instead lead to a less permissive aggregation algorithm.

Finally, at line 4, the algorithm progressively builds the new BadHood set
by removing BadHoods and replacing them with the merged one. Note that, in
contrast to the fixed prefix aggregation algorithm, now BadHoods of different
sizes coexist in the result set S.

In order to illustrate the algorithm, we apply it to the example given in
Table 3.1. For β = 0.8, we obtain after one iteration the BadHoods shown in
Table 3.3. Blocks #1 and #2 are merged, because p24(B1) = 22

254 , p24(B2) = 21
254 ,

and p23(B1 ⊕ B2) = 43
510 , so p(B1 ⊕ B2) > 0.8 · max(·) ⇒ 0.086 > 0.069.

The other blocks, on the other hand, do not match the condition, so they are
not aggregated. After the first iteration, the list contains both /23 and /24
entries. In the next iterations, no further aggregation occurs, and the final
result contains entries using mixed prefixes (/23 and /24).

Comparing the results of both algorithms (Tables 3.2 and 3.3) for the first
iteration, the output of the variable prefix algorithm has more entries. How-
ever, the blocks aggregated by the variable prefix algorithm have been matched
against a stricter merging criteria. In the next section we evaluate both algo-
rithms using real world data.

Finally, we have implemented both algorithms in a Java prototype. We
have observed runtimes of less than 10 seconds even for large input files (1M
BadHoods).
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# /23 netblock score Pn

1 10.10.10.0/23 43 0.084
2 10.10.12.0/24 20 0.078
3 10.10.13.0/24 41 0.160
4 20.20.24.0/24 130 0.508
5 20.20.25.0/24 1 0.004
6 30.30.34.0/24 60 0.234

Table 3.3: BadHoods resulting from variable prefix aggregation

3.4 Evaluation Metrics

In this section we introduce the metrics used to evaluate the aggregation al-
gorithms aforementioned. As previously described, the aggregation algorithms
have to deal with two conflicting requirements – generate a concise BadHood
blacklist and minimize the aggregation error.

The evaluation metrics are derived from these requirements. The first one
is the reduction achieved by the algorithms in terms of number of entries in the
initial BadHood input list. We measure it as the difference between the number
of entries (also called “lines” in the following) in the initial /24 BadHood list and
in the resulting list generated by both fixed prefix and variable prefix algorithms.

The second metric derives from the aggregation error. In the following, we
consider an (hypothetical) application, such as a Spam filter, that relies on the
aggregated lists. Let be {X24, Y 24, . . .} a set of /24 BadHoods with normalized
scores {p24(X24), p24(Y 24), . . .}. We can interpret p24(X24) as the probability
that a particular IP address in block X24 be a source of malicious activities.
After we have aggregated the /24 BadHoods to a /n BadHood Bn

i , with n < 24,
only the normalized score pn(Bn

i ) of the aggregated BadHood is available to
the application. The “evilness” of a particular IP address in Xn can now only
be estimated by pn(Bn

i ) (Equation (3.2)). Consequently, we define the error
err(X24) introduced by the aggregation for the BadHood X24 as

err(X24) = pn(Bn
i )− p24(X24). (3.5)

A positive (negative) error indicates that the application would overestimate
(underestimate) the evilness of X24 after the aggregation. To assess the global
error for an entire blacklist, we sum up the absolute errors for each /24 BadHood
X24:

Errabs =
∑
|err(X24)| (3.6)
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Alternatively, we sum the squares of the individual errors:

Errsquare =
∑

err(X24)2 (3.7)

The difference between both errors is that Errsquare places greater weight
on individual errors that are further apart – which ultimately emphasizes the
differences between the error after aggregation (pn(Bn

i )) and before the aggre-
gation (p24(X24)).

To illustrate how they are calculated, consider block B1 in Table 3.2. Before
being aggregated into a /23 BadHood, the normalized score p(B1) was 22

256
(Table 3.1). After that, the same netblock gets the mean value 43

512 . The error
err(B1) = 22

256 −
43
512 = −0.0019. After calculating the individual errors, the

global errors, as defined in (3.6) and (3.7), can be obtained.
The interpretation of the error values depends on the application and other

definitions of the global errors are possible. For example, for an intrusion de-
tection system, large errors may cause increased False Positive or False Negative
rates. In such a scenario, calculating the global errors separately for positive
and negative err(X24) values could be of interest. In order to be independent
of a particular application and suitable for different scenarios, we have chosen
the rather flexible definitions in (3.6) and (3.7).

3.5 Evaluation

In this section we evaluate and analyze the impact of the aggregation algo-
rithms. We first present the data sets that we use for our evaluation in Sec-
tion 3.5.1. The performance of both algorithms is compared for the largest of
our datasets, the Composite Blocking List (CBL; see below), in Section 3.5.2.
In Section 3.5.3, we study the impact of the merging parameter β on the per-
formance of the variable prefix aggregation algorithm. Finally, we compare the
results for different datasets in Section 3.5.4.

3.5.1 BadHood Input Blacklists

We evaluate our aggregation algorithms on the real case of a Spam blacklist.
The considered data set is the Composite Blocking List (CBL) [60] – an online
Spam DNS blacklist. CBL maintains four large spamtrap infrastructures from
where the source IP addresses of spammers are harvested. We have obtained
the list for the April 28th, 2010. On this day, CBL listed 8,177,138 /32 IP
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addresses, which result in an initial blacklist of 960,167 /24 BadHoods. As
described in Section 3.1.1, we start with /24 since this is the minimum prefix
“routable” on the Internet.

In addition to the above list, we use the following datasets for our experi-
ments in Section 3.5.4:

• Passive Spam Block List (PSBL) [75], obtained on April 28th, 2010: the
list consists of more than 2.8M /32 distinct IP addresses;

• Passive Spam Block List (PSBL) [75], obtained on October 24th, 2011:
the list consists of more than 283K /32 distinct IP addresses;

• Mail server logs from Provider A: Provider A is a major hosting provider in
the Netherlands. We have obtained the IP addresses of spammers on April
28th, 2010. For this day, 256K distinct /32 IP addresses were observed.

3.5.2 Performance of the Aggregation Algorithms

In this section, we present the results of the aggregation algorithms applied to
the CBL data set. We first analyze the gain on the size of the blacklist as result
of the aggregation. Then, we discuss the impact of the aggregation algorithms
on the global errors.

Blacklist size

Figures 3.3(a) shows the number of entries (in thousands) in the resulting
blacklists as function of the aggregation level m for the fixed prefix aggregation
algorithm, whereas Figure 3.4(a) shows it for the variable prefix aggregation
algorithm. For the later, we have chosen a rather moderate merging parameter
of β = 0.8. The influence of the parameter is discussed in Section 3.5.3.

As expected, both algorithms are able to reduce the number of entries of the
initial input blacklist. If compared, however, we can see that their performance
in terms of the number of entries is very dissimilar. The fixed prefix algorithm
progressively aggregates listed BadHoods into larger netblocks, regardless their
scores and normalized scores. As a result, the number of entries decreases with
the aggregation level, i.e., with increasing block sizes.

The variable prefix algorithm, on the other hand, only aggregates blocks that
meet the merging condition specified in (3.4). As a result, once no more candi-
date blocks satisfy the condition, the number of entries in the blacklist stabilizes.
As can be seen in Figure 3.4(a) we observe that there is no more aggregation
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after the /15 prefix. Indeed, most of the aggregation is achieved when mov-
ing from level /24 to /23. Therefore, the variable prefix aggregation can be
seen as a “less aggressive” approach than the fixed prefix one. While the fixed
prefix algorithm reduces the blacklist, from the original 960,167 /24 BadHoods
to 162 entries for /8, the variable prefix algorithm stabilizes at around 711k
entries. However, the /8 fix prefix aggregation level is very aggressive and is
expected to generate large aggregation errors. We show next aggregation error
evaluation.

Error

Figures 3.3(a) and 3.4(a) also show the global absolute errors (see (3.6)) for
the two algorithms as function of the aggregation level. The results for the
global squared errors (see(3.7)) are shown in Figures 3.3(b) and 3.4(b).

First and foremost, we observe that the fixed prefix aggregation algorithm
results in much larger errors than the variable prefix algorithm. This is an ex-
pected result since the former aggregates blocks regardless of their normalized
score. Therefore, many dissimilar blocks (in regard to their scores in (3.1)) are
aggregated, leading to large differences between the normalized scores of the
individual /24 blocks and the normalized score of the aggregated block.

In the case of the fixed prefix aggregation algorithm, we also observe that
the errors almost linearly increase with the (decreasing) aggregation level, al-
though the achieved reduction of the number of lines is not linear at all. This
is due to the fact that the algorithm also considers empty blocks, i.e., blocks
with a score of 0. Aggregating an empty block with a non-empty block does
not reduce the number of lines, but increases the error. This effect aggravates
with the aggregation level (see Section 3.2). In fact, up to around aggregation
level /18, substantial reductions in the number of lines are achieved by the al-
gorithm. After this point, as we can see from the constant error increase, the
aggregation of two netblocks becomes more expensive in terms of errors. At
aggregation level /8, the absolute and square errors are respectively 2.36 and
2.8 time larger than at the /18 level, as expected. This leads to the conclusion
that the aggregation to larger netblocks (small prefixes) has a huge impact on
the correctness of the final blacklist and, consequently, our analysis proves that
the fixed-prefix aggregation algorithm should be stopped before prefixes larger
than /8 (e.g„ /20 for this case, depending on the input data).

In contrast, the error curves of the variable prefix aggregation algorithm
mostly mirror the achieved reduction of lines. Both the number of lines and
the global errors significantly change up to around level /18. After this point,
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there are nearly no more aggregations and the error stabilizes. As expected, the
squared error (see Figure 3.4(b)) is more sensitive to changes than the absolute
error (see Figure 3.4(a)).

Distribution of malicious hosts

As already stated, the variable prefix aggregation algorithm achieves most of the
reduction when moving from level /24 to /23. After that, only a small portion
of the BadHoods fulfill the merging condition and can be aggregated further.
The bar chart in Figure 3.5 (left y axis) shows the resulting distribution of the
BadHood sizes for aggregation level m = 8 (i.e., /8) and β = 0.8. As can be
seen, a large portion (around 580k) of the initial 960,167 /24 BadHoods are
not aggregated at all and stay at level /24. Around 109k entries are aggregated
into /23 BadHoods and only a few entries are aggregated into /22 or higher.

In the same figure, we also show the distribution of the number of /32
host addresses (right y axis). Remember, that the original data set contains
8,177,138 host addresses (see Section 3.5.1). According to the figure, around 2
million host addresses stay in /24 BadHoods after aggregation, but most of the
bad hosts can now be found in /23 through /17 BadHoods.
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Surprisingly, the distribution of the malicious hosts does not match the dis-
tribution of the BadHood sizes, even when considering that a /(n−1) BadHood
is twice as large as a /n one. For example, we have observed an average of 3.38
malicious hosts per /24 BadHood in Figure 3.5 (dividing the right y axis value
by the left y value). Intuitively, one could expect the average for /23 to be twice
the average for /24 – which is 6.76. However, the average is, in fact, 11.29, a
value is 67% above what was expected. This can be explained by the nature of
BadHoods. Since a /24 netblock with a high score indicates a badly managed
subnetwork, it is natural to expect that similar netblocks can be found in its
own neighborhood. Such netblocks are, then, preferred by the merging condi-
tion in (3.4) and, hence, are more likely aggregated. These results illustrate the
benefits of the aggregation.

3.5.3 The Impact of β on the Aggregation

In the following experiments we study the impact of the merging parameter β
on the performance of the variable prefix aggregation algorithm. Intuitively,
if β is too permissive (β close to 0.5), it might results in a blacklist in which
most of the blocks are aggregated, while a more strict value for β (β close to
1) would aggregate very few blocks. However, at the same time, a permissive
aggregation algorithm would also result in a larger aggregation error, while a
algorithm aggregating only very similar blocks would result in a small error.

Figure 3.6 shows, for varying values of β, the number of entries in the black-
list output by the aggregation algorithm, as well as the corresponding global
errors (absolute and squared). For β = 0.5, the resulting BadHood list contains
around 470k entries. For increasing values of β, the blacklist becomes progres-
sively larger, while the errors decrease almost linearly. Finally, for β = 1, the fi-
nal blacklist has almost the same number of lines as the original non-aggregated
one, since the algorithm only aggregates valid netblocks with exactly the same
normalized score. Therefore, no error is observed for β = 1.

The figure clearly shows that there is a trade-off between having a short and
efficient blacklist and having a small merging error. Therefore an appropriate
value of β should be chosen case by case, and, accordingly to the scenario, the
security manager should decide to favor a fast blacklisting process, or a precise
one.
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3.5.4 The Impact of Different Blacklists on the Aggregation

We now discuss the results provided by the variable prefix aggregation algo-
rithm for the other data sets presented in Section 3.5.1. We omit the result of
the fixed prefix aggregation algorithm due to its large errors.

In Figure 3.7, we show the number of lines of the result blacklists relative
to the original sizes of the /24 data sets, as computed by the variable prefix
aggregation for varying aggregation level and β = 0.8. We observe that our
aggregation algorithm is able to reduce the blacklist size for each of the con-
sidered data sets. For β = 0.8, the data sources experience a reduction on the
number of entries from 10% for the “Provider A” data set to 26% for the CBL.

A second observation is that the two largest lists (CBL and PSBL) from April
28th, clearly benefit more from the aggregation than the smaller lists. This is
expected because the BadHoods in the smaller lists are more sparsely distributed
over the Internet address space and, hence, are harder to aggregate. In addition,
the “Provider A” data set experiences the smallest reduction of all four traces.
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3.6 Related Work

IP aggregation has been previously investigated by the IP routing community.
Back in 1993, only classfull addresses were used (former classes A, B, and C).
This addressing scheme was causing several problems – including exhaustion
of the Class B network address space and “growth of routing tables in Internet
routers beyond the ability of current software, hardware, and people to effec-
tively manage” [25].

Therefore, in 1993 the IETF introduced the Classless Inter-domain Rout-
ing (CIDR) addressing [25], and the prefix notation used here. This new ad-
dressing scheme allowed blocks to be allocated under prefixes different than
the ones specified by classes A, B, and C. That allowed route entries with the
same prefix to be aggregated in what is called supernets [79]. By aggregating
them, the number of entries in routing tables of BGP [80] routers was reduced,
and that decreased the requirements for storing routing information on routers
and the overhead when matching routes. Current BGP routers have typically
372k entries in their routing tables [81], a small value compared to current /24
BadHoods blacklists, such as CBL (1M+ entries) .

3.7 Conclusions

In this chapter, we investigate the aggregation of individual hosts on the Internet
into IP prefixes expressed in CIDR notation. We have proposed two algorithms
and evaluated them according to conflicting requirements: – create a concise
BadHood blacklist and to minimize the aggregation error.

The first aggregation algorithm – fixed prefix – has proven to be very efficient
when it comes to reducing the number of lines in BadHood blacklists. By aggre-
gating the entries to /18, we observe a reduction of 93.85% on the /24 original
size. However, the error incurred by this algorithm is high. For the evaluated
data, the results have shown that the aggregation further than /18 corresponds
to a reduction of very few entries at the expense of a large error. The implica-
tions of a large error is that a large number of hosts end up being label as bad
(by taking part of the aggregated BadHood) even though no malicious activities
have been observed from such hosts.

The second aggregation algorithm – variable prefix – has been designed with
the goal to aggregate BadHoods if they are sufficiently similar – defined by the
merging condition. In this sense, this algorithm has shown in our evaluation
that it is able to reduce the aggregation error. However, the final blacklists it
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generates is less concise than the one generated by the fixed prefix algorithm.
The aggregation parameter β was introduced to allow one to fine tune the trade
off between a concise blacklist and aggregation error. We have shown that by
having β = 0.8, we reduced the number of entries by 10% to 26%, depending
on the blacklists source.

The answer to the question “what is the best algorithm” and “at which aggre-
gation level both algorithms should stop” depends on evaluated scenario, which
includes the application (e-mail, DDoS, etc.) and the infrastructure in question.
Therefore, we recommend network operators to carry out an evaluation using
both algorithms before deploying BadHood based security, considering the value
provided by each algorithm regarding the conflicting aggregation requirements.

In the rest of the dissertation, whenever we employ IP prefix aggregation,
we do not aggregate BadHoods any further than /24 in order to minimize the
impact that aggregation errors might incur in the results.
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Countless creatures for millions of years have had active
minds happening in their brains, but only after those
brains developed a protagonist capable of bearing witness
did consciousness begin, in the strict sense, and only after
those brains developed language did it become widely
known that minds did exist.
António Damásio, 2011
In: Self Comes to Mind: Constructing the Conscious Brain CHAPTER 4

Internet Bad Neighborhoods Location

SO far in this dissertation we have focused on IP addresses-based Bad Neigh-
borhoods. However, as discussed in Section 2.1, we assume that the ex-
istence of Internet Bad Neighborhoods is due to three possible reasons:

(i) that some Internet Service Providers (ISPs) neglect malicious activities in
their networks, (ii) that malware is more likely to spread on the networks of
such ISPs, and (iii) that non-technical local factors may play a role, such as
legislation in place, piracy software levels, economics, and education level in a
country.

The goal of this chapter is to address these assumptions. We investigate
them by assessing the total number and the ratio of malicious hosts found in
ISPs and individual countries – that is, by aggregating malicious hosts into Bad
Neighborhoods according to these aggregation criteria.

The motivation to carry out this research is to evaluate our assumptions and,
ultimately, to provide network administrators with concise information to better
protect their networks. E.g, this can be used to filter traffic not only based on IP
addresses, but also on the ISP and/or their geographical origin.

Therefore, in this chapter we address the following research questions:

• Research Question 4.1 (RQ. 4.1): How are malicious hosts distributed over
ISPs?

• Research Question 4.2 (RQ. 4.2): How are malicious hosts distributed over
geographical areas (countries and cities)?

RQ 4.1 focuses on evaluating the first two assumptions for the existence of Inter-
net Bad Neighborhoods – that some ISPs neglect malicious traffic and malware
propagation in their networks. These assumptions should hold in case we find
ISPs having a significant concentration of malicious hosts.

59
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Figure 4.1: Chapter Structure

RQ 4.2, on the other hand, covers the third assumption for Internet Bad
Neighborhoods (BadHoods): that non-technical local factors play a role. A con-
centrated distribution of malicious hosts in a limited number of countries would
support our assumption.

To answer the research questions, we have obtained real-world data sets
for two applications (spam and phishing) for a period of one week, from July
19th to 25th, 2012. After that, for each data set, we have extracted the /32 IP
addresses of the malicious sources. To answer RQ 4.1 , we have aggregated (and
ranked) malicious hosts into Autonomous Systems (AS) [37] and organizations,
while to answer RQ 4.2 we have aggregated (and ranked) the IP addresses into
countries and cities.

The rest of this chapter is divided following the structure presented in Figure
4.1: first, we review in Section 4.1 how IP addresses and ASes are allocated
on the Internet. Then, in Section 4.2, we show how to map individual /32 IP
addresses into ISPs and geographical location, while in Section 4.3 we cover the
datasets employed. After that, RQ 4.1 is covered in Section 4.4, while RQ 4.2 is
addressed in Section 4.5. Section 4.6 discusses the related work and Section 4.7
presents the conclusions.



4.1 IP Addresses and ASes Allocation 61

4.1 IP Addresses and ASes Allocation

In order to understand how it is possible to map individual IP addresses into
ISPs and geographical location, it is necessary to understand how IP addresses
and ASes are allocated on the Internet.

The best practices for IP address allocation are covered in the RFC 2050 [82],
which we briefly review in this section. The entity responsible globally for this
task is the Internet Assigned Numbers Authority (IANA) [83], which is a depart-
ment of the non-profit private organization Internet Corporation for Assigned
Names and Numbers (ICANN) [84], located in the United States.

IANA performs its tasks by delegation: it allocates entire /8 prefixes (e.g.,
120.0.0.0/8 in CIDR notation [25]) to the Regional Internet Registries (RIRs).
The IPv4 prefixes assigned by IANA to the RIRs can be found at [67], while the
assigned IPv6 global unicast prefixes can be found at [85]. Currently, there are
five RIRs, divided according to geographical regions:

• African Network Information Centre (AfriNIC) [86]: RIR for Africa.

• American Registry for Internet Numbers (ARIN) [87]: RIR for the United
States, Canada, parts of Caribbean region, and Antarctica.

• Asia-Pacific Network Information Centre (APNIC) [88]: RIR for Asia, Aus-
tralia, New Zealand, and neighboring countries.

• Latin America and Caribbean Network Information Centre (LACNIC) [89]:
RIR for Latin America and parts of Caribbean region.

• Réseaux IP Européens Network Coordination Centre (RIPE NCC) [90]: RIR
for Europe, Russia, the Middle East, and Central Asia.

Figure 4.2 shows a “snapshot” of the IPv4 allocation map in 2006. In this figure,
each of the 256 numbered blocks represents one /8 netlock (CIDR notation),
arranged according the Hilbert curve [91], while green blocks were unallocated
ones.

After obtaining these prefixes, each RIR re-allocates IP address ranges to its
customers, typically ISPs and other organizations. The allocation information
is kept in a public database, which is made available through the whois [92]
software. Listing 1 shows a partial output of the whois command, issued to
query ARIN for the IP address “208.80.152.201”. As we can observe, the prefix
208.80.152.0/22 is allocated to WIKIMEDIA (NetName).
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Figure 4.2: IPv4 Allocation Map (2006) - Source: xkcd1,2

The allocation of Autonomous System numbers (ASN) is defined in RFC
1930 [37]. According to the same RFC, an autonomous system is “a connected
group of one or more IP prefixes run by one or more network operators which
has a single and clearly defined routing policy” [37]. Each AS is identified by an
unique number (AS number) assigned by the RIRs that is employed in the core
routing decisions on the Internet, using the Border Gateway Protocol (BGP)
protocol [80].

In relation to ASes, IANA also allocates Autonomous System Numbers (ASNs)
to the regional RIRs [93], which, in turn, are allocated them to their customers,
in a similar way as IP prefixes are allocated. For example, in Listing 1, we

1http://xkcd.com/195/
2http://blog.icann.org/2007/05/mapping-the-internet-one-node-at-a-time/



4.2 Mapping Principles 63

Listing 1 Partial whois output for IP “208.80.152.201”
giovane@dennett:~/whois 208.80.152.201

NetRange: 208.80.152.0 - 208.80.155.255

CIDR: 208.80.152.0/22

OriginAS: AS14907

NetName: WIKIMEDIA

NetHandle: NET-208-80-152-0-1

Parent: NET-208-0-0-0-0

NetType: Direct Assignment

Comment: http://www.wikimediafoundation.org

RegDate: 2007-07-23

Updated: 2012-03-02

Ref: http://whois.arin.net/rest/net/NET-208-80-152-0-1

OrgName: Wikimedia Foundation Inc.

OrgId: WIKIM

Address: 149 New Montgomery Street

Address: 3rd Floor

City: San Francisco

StateProv: CA

PostalCode: 94105

Country: US

can observe that the IP address 208.80.152.201 belongs to the network pre-
fix 208.80.152.0/22 (CIDR field) and its Origin AS is AS14907, which is the
Autonomous System Number (ASN) of the Wikimedia Foundation3.

4.2 Mapping Principles

In this section we show the mapping principles of /32 IP addresses to ISPs in
Section 4.2.1 and into geographical information in Section 4.2.2.

4.2.1 Mapping IP addresses and ISPs (ASN)

In order to map malicious IP addresses into ISPs, we employ the ASN associated
to the IP address in question. By definition, an ISP is always a transit AS – that
is, an AS that provides connectivity between various networks. In addition, the
ASN is a unique number and by using ASN to identify ISPs, one can easily filter
traffic in network firewalls/IDS.

3http://bgp.he.net/AS14907

http://bgp.he.net/AS14907
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However, as defined in Section 5 of RFC 1930[37], not every AS is an ISP.
In fact, any organization could potentially apply for an ASN, but it is not neces-
sary, since organizations can employ the ISP’s ASN even if the organization has
been allocated with multiple IP prefixes by the RIR. To illustrate this, consider
Figure 4.3. In this figure, the ISP ISP, with its own ASN, provides connectivity
to three organizations (Org1, Org2, Org3) to the Internet. Org1 has been al-
located with its own ASN and network prefixes by the RIR, while Org2 has been
allocated only with network prefixes. Org3, however, has not been allocated
with prefixes or ASN by the RIR.

In this scenario, a malicious IP address x from Org1 is seen on the Internet
as part of Org1 (NetName field in Listing 1) – that is, is listed on the RIR’s public
database as allocated to Org1. In addition, x is also seen as part of the AS of
Org1, since Org1 has its own ASN (OriginAS in Listing 1. In this case, the ASN
associated to x does not represent the ISP, but Org1. An example of IP address
that fits into this category is 198.168.230.1, which is allocated to the Canadian
Law firm Stikeman Elliot4, which, has its own ASN (AS 258055) and employs
Cogent Communications (AS 174) as its ISP6.

Another case is the one in which a malicious IP address y, connected to
Org2, is seen on the Internet as part of Org2, since Org2 has been allocated
with a prefix that contains y by the RIR. However, y is seen on the Internet
as part of ISP’s ASN, since Org2 does not have its own ASN and employs the
ISP’s one. In this case, the ISP would “be blamed” as source of malicious IP
that has been, in fact, allocated to another Org2 by RIR. This is the case for the
IP 12.129.19.1, which is allocated to coffeehouse chain Starbucks7. Starbucks
employs AS17226, which belongs to AT&T 8, a major ISP in the United States.

The last case is when z is employed by Org3, an organization that has not
been allocated IP addresses by RIRs. In this case, Org3 employs IP addresses
from its own ISP, and also the ISP ASN. A small business with ADSL connection
is a good example of this case. It is important to notice that these organizations
are not registered at the local RIR, and therefore are globally seen as part of the
ISP.

To cope with the fact that not all ASN are associated to ISPs, we aggregate
malicious IP addresses into both ASes-based BadHoods and Organization-based
BadHoods. By comparing the results, we can determine whether or not the

4http://www.stikeman.com
5http://www.ris.ripe.net/dashboard/AS25805
6http://bgp.he.net/AS25805#_graph4
7This information can be obtained using the command-line whois tool.
8http://bgp.he.net/AS17226

http://www.stikeman.com
http://www.ris.ripe.net/dashboard/AS25805
http://bgp.he.net/AS25805#_graph4
http://bgp.he.net/AS17226
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Internet

ISP (own ASN)

Org1: ASN + prefix Org2: only prefix Org3: no prefix/ASN

On the Internet:

x: ASN=org1; IP src=org1
y: ASN=ISP; IP src=org1
z: ASN=ISP; IP src=ISP

x y z

Figure 4.3: IP addresses, ASN, and Routing on the Internet

malicious hosts are more concentrated in ISPs or organizations.
Several sources can be used to map individual IP addresses into ASN. For

example, Team Cymru builds a database of IP to ASN mapping based on BGP
feeds of more than 50 feeds, updated every four hours [94]. Other providers,
like MaxMind, provide as well a publicly available ASN to IP database, named
GeoLite Autonomous System Number Database [95]. Due to simplicity of use,
we have employed the MaxMind database to resolve IP addresses into ASNs.

Mapping IP addresses into Organizations

Since organizations can have their own ASN, it is necessary to also aggre-
gate malicious hosts in Organization-based BadHoods. As described in RFC
2050 [82], organizations are allowed to ask the RIR for a block of IP addresses.
If the organization fulfills the RFC 2050 requirements for having IP addresses
assigned to it, the RIR will allocated the block of IP addresses and keep this
information publicly available via whois. In Listing 1, we can observe that the
prefix 208.80.152.0/22 (in the CIDR entry) was assigned to Wikimedia Foun-
dation (OrgName entry).

Each organization can therefore choose any provider available to connect it-
self (and the assigned IP addresses) to the Internet. By aggregating IP addresses
into organization-based BadHoods, however, we are able to spot which organi-
zations are owners of the most active malicious IP addresses on the Internet,
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regardless the ISP they choose to connect to the Internet. To resolve an IP ad-
dress to the organization, one could use the RIR publicly available whois data-
bases. However, the whois output format varies – that is, some organizations
provide more information than others, and the field names may vary. Therefore,
in this chapter, we employ the standardized database built by MaxMind, which
is based on the RIR whois databases, for ease of use [96].

ASes: are they legally responsible for malicious traffic?

Due to the fact that organizations might not need an AS of their own and end
up using their ISP’s AS (e.g., such as Org2 and Org3 in Figure 4.3), one could
wonder if an AS should or should not be held legally responsible for malicious
traffic observed in the network of the clients (e.g., IPs x and y from Org1 and
Org2).

This question is very controversial, as discussed by G. Houston [97]. It deals
with the question if an ISP should or should not filter content in their network,
which might violate their customers privacy according to the country’s legisla-
tion. Therefore, we recommend that the answer should be sought in a multi-
disciplinary way, involving engineers, legislators/law experts, and ethicists (see
Section 2.8).

In the past, we have seen some ISPs disconnecting malicious ASN, as in the
case of AS26780, back in 2008. The AS26780, belonging to the San Jose based
web hosting service provider McColo Corp., was disconnected from the Internet
by two of their upstream providers (Global Crossing and Hurricane Electric),
due to the large amount of malware and botnets in their networks [45]. The
impact of this action was clear: after being disconnected, several reports have
shown that the volume of worldwide spam was reduced in 67% [46]. McColo
was owned by the Russian national Oleg Nikolaenko (named “King of Spam” by
the FBI), who is currently being held in prison in the United States.

Regardless the legal question of whether an ISP should be held responsible
for the transit traffic on their networks, in this dissertation we aggregate /32
addresses into AS-based BadHoods in order to identify which ISPs malicious IPs
are concentrated.

4.2.2 Mapping IP addresses into Geographical Information

In this section we present the mapping principles of /32 IP addresses geograph-
ical location. We first focus on country-based BadHoods, and then extend the
concept to city-based BadHoods.
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IP Geolocation aims to determine the Internet users’ geographical location
based on their IP address [98, 99]. It has been used by industries and businesses
for many purposes, including targeted advertisement (e.g., a global portal can
deliver customized ads according to the user’s location), fraud detection (e.g.,
online stores can check the physical location of a client against its billing ad-
dress), media licensing (e.g., broadcasters, such as those on Hulu [100], only
stream content to IP addresses allocated to certain countries) and even spam
filtering [101].

Even though the organization’s city and country is provided by the RIR
database via whois (as shown in Listing 1), that does not mean that these are
the geographical locations of the hosts having these IP addresses: this is actu-
ally the physical address of the organization, which may have their computers
located in a data center hundreds of miles away from the physical address.

As described by Poese et al. [99, 102], there are currently two main paradigms
to map IP addresses to geographical location: active IP geolocation and database-
driven geolocation. Active IP techniques are typically based on network delay
measurements – but they do lack scalability and present a high measurement
overhead. Database-driven approach, on the other hand, consists of “a database
engine(e.g., SQL/MySQL) containing records for a range of IP addresses, which
are called blocks or prefixes” [99, 102].

Since the methodology employed by companies to create geolocation data-
bases is usually not made explicit (therefore, its precision is questionable), Poese
et al. have investigated the reliability of the databases’s geolocation informa-
tion. They have carried out an experiment comparing the results obtained from
the database with the actual results of a large European provider. They found
that the databases perform very well when geolocating IP addresses to country-
level (96% to 98% success rate, depending on the database), while for city-level,
the results were far less precise: for the Maxmind database [103], 60% of the
locations presented a 100km location error. However, the experiment carried by
the authors have only evaluated data of a single European provider, in a single
country (most likely Germany, due the authors’ affiliation and the 800km maxi-
mum distance limit in the country), which might not reflect the overall accuracy
of the database. In addition, for the case of MaxMind, the company provides a
web page with the precision of their results [104]. For example, for Germany,
the company claims that it is able to resolve 78% of the IP addresses within a
range of 40km, while 18% are wrongly resolved and 4% belong to unknown
locations.

Even though there are limitations regarding city-level geolocation, still it is
widely used by many companies. In this chapter, we have chosen to employ the
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Maxmind database. As shown by Poese et al. [99, 102], Maxmind [105] is one
of the most precise commercially available databases. In addition, simplicity of
use and availability were also considered in this choice.

4.3 Evaluated Datasets

In order to answer the research questions raised in this chapter, we have ob-
tained representative real world data sets (blacklists). Since we want to evalu-
ate if the results hold for different malicious activities, we have obtained black-
lists for spam and phishing. In addition, we have chosen these sources because
they have been employed both by research and Internet security communities.
The chosen data sets are:

• Spam: for spam blacklists, we have employed the Composite Block List
(CBL) , which is “a group of computer security, spam and virus profession-
als, dedicated to developing and maintaining an anti-spam and anti-virus
DNS blacklist (DNSBL) of the highest possible quality and reliability, that
large organizations can use with confidence” [60]. CBL maintains their
own spam trap infrastructure, and the IP source address of any message
reaching their traps is blacklisted.

• Phishing: we have obtained data from Phishtank, which is an open com-
munity web site in which anyone can “submit, verify, and track phishing
websites” [106]. It provides a blacklists of URLs that contain forged web-
sites. Since we need IP addresses instead of URL to proceed with our
analysis, we have obtained this blacklist and resolved all the URLs to IP
addresses using Google Public DNS [107].

After choosing the data sets, we have obtained data for the same monitoring
period: from July 19th to 25th, 2012. We have then generated a final blacklist
containing all /32 unique IP addresses observed in the monitoring period, for
both CBL and Phishtank data sets. In the end, we have obtained 9,320,197
unique /32 IP addresses of spam sources, and 3,016 unique /32 IP sources of
phishing sites.

Both spam and phishing /32 blacklists were then aggregated into AS-based
BadHoods, organization-Based BadHoods, country-based BadHoods, and city-
based BadHoods, using the approach described in Section 4.2, with the help of
a small program developed in Java.
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Aggregation Criteria Spam BadHoods Phishing BadHoods
Autonomous Systems 15,0789 88410

Organization 54,280 11 1,304 12

Countries 22913 9214

Cities 25,266 15 415 16

Table 4.1: Number of BadHoods according to Various Aggregation Criteria

Table 4.1 shows the results of this aggregation for both data sets. We found
15,078 ASes that were observed originating Spam: this represents 35.72% of
the currently employed Autonomous Systems (42,201 in total [108]). More-
over, 54,280 organizations were found sending spam – which means, that on
average, there are ∼ 3.6 organizations per ISP (not excluding the ISP own or-
ganization). In addition, 229 out of 250 countries in the database were found
sending Spam, from 25,266 different cities.

By comparing both applications, we can observe that there are much more
Spam BadHoods than phishing BadHoods. This was expected due to the differ-
ence in number of unique /32 IP addresses (approximately 9 million against 3
thousand). For phishing, only 884 ASes were found hosting phishing web sites
(roughly 2% of all ASN in use), from 1,304 organizations and 92 countries.

It is also important to point that some entries were not resolved, as showed
in the footnotes. The worst case was resolving spam into cities: 17% of all /32
IP addresses could not be resolved. In the next sections, we discuss in details
the BadHoods obtained for each aggregation criteria.

4.4 ISP-based Internet BadHoods

In this section, we cover RQ 4.1, by employing the approach described in Sec-
tion 4.2. We first cover the AS-based BadHoods in Section 4.4.1, and then the
organization-based BadHoods in Section 4.4.2. For both cases, we first present

925,499 out of 9,320,197 IPs were not resolved.
1017 out of 3,016 IPs were not resolved.
1125,866 out of 9,320,197 IPs were not resolved.
1265 out of 3,016 IPs were not resolved.
13227 out of 9,320,197 IPs were not resolved.
1413 out of 3,016 IPs were not resolved.
151,619,787 out of 9,320,197 IPs were not resolved.
1678 out of 3,016 IPs were not resolved.
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the results for spam, and then for the phishing data set.

4.4.1 AS-based Internet BadHoods

AS-based Spam BadHoods

Table 4.2 shows the Top 20 ASes ranked according to the total number of spam-
ming IP addresses (absolute numbers). In this table, Sources refers to the num-
ber of malicious IP addresses observed, while IPv4 Orig. refers to the num-
ber of /32 IP addresses the autonomous system announces (including its own
prefixes plus the prefixes of its customers that do have their own ASN). We
have obtained this information from the Hurricane Electric17 BGP toolkit web
site [108], which generates it based on the BGP tables. We could have also
obtained the same information from BGP routing tables from other sources; we
have chosen Hurricane Electric since it provides easier (text-based) access to
this information.

By employing the number of IPv4 addresses originated per AS, we are able to
calculate the ratio of compromised IPs within the AS in question. This is a very
important metric, since it shows the percentage of compromised IP addresses
within an AS. This is shown in Table 4.2 in the column Ratio (Ratio=100 ×
(Sources/IPv4 Originated)).

Country’s %, in the same table, refers to the percentage of malicious IP ad-
dresses the particular AS is responsible for in relation to all malicious IPs from
its country of origin (Table 4.7).

As can be seen in the table, the first AS in terms of spamming IP addresses
is AS9829, which belongs to BSNL (Bharat Sanchar Nigam Limited). BSNL
is a state-owned telecommunications company – including telephony (mobile
and landline) and broadband Internet, being the largest in India. The second
AS in terms of spamming IP addresses is AS45595, which belongs to Pakistan
Telecom Company Limited. As BSNL in India, Pakistan Telecom is the major
telecommunications company operating in Pakistan.

In Table 4.2, it is also possible to observe the number of IP addresses were
originated from the AS in relation to the all malicious IP addresses for the same
country (column Country’s %). This information can be used by government
authorities to tackle, within their own country, the ASes having most of spam-
ming IP addresses. For example, 5 out of the 20 listed ASes in Table 4.2 are

17Hurricane Electric is a major network backbone operator, being connected to 51 Internet Ex-
change Points (ranked as # 3 in the world [109]).
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Figure 4.4: Percentage of Spamming IPs per ASN - CBL

responsible for more than 90% of the malicious sources from their own coun-
tries. Even though these ASes might not be legally responsible for the activities
in their networks (as discussed in Section 4.2), this provides a clear indication
of the “health” status of their networks.

Finally, in the World’s %, we can observe the percentage of malicious IPs
the particular AS is responsible for in relation to all malicious IPs observed.
AS9829, from India, was responsible for 7.39% of all the observed malicious
IP addresses. This is a very large number for a single ISP, considering that
there were 42,201 active ASes at the moment of this analysis. Figure 4.4 shows
the percentage of spamming IP addresses for all ASes observed (x axis refers
to the AS number (ASN)). As can be noticed by the peaks, few ASes have the
highest ratio of spamming IP addresses in relation to the total observed. These
results suggests that ASes provide a very good aggregation criteria for identify-
ing Internet BadHoods. This finding supports the two first assumptions behind
BadHoods that some ISPs neglect/turn a blind eye to malicious activities in their
networks.

It is also important to take into account the percentage of spamming IP
addresses in these ASes (Ratio column). We have observed 15,078 AS having
spamming IP addresses, having, on average, 0.58% of their IP addresses sending
spam.
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Taking this into account, when analyzing Table 4.2, we can observe, the
top 20 Autonomous Systems (ASes) concentrate almost 50% of all spamming
IP addresses observed in our data sets, from a total of 42,201 active ASes in
the moment of our analysis. This finding shows how clear is the existence of
BadHoods at the ISP level.

In addition, among the top 20, the AS that has the largest ratio is SaudiNet
(27.65% of its IPv4 addresses). Once again, this finding supports our assump-
tion about ISPs that neglect malicious traffic. ChinaNet, on the other hand, is
ranked 5th in absolute number of malicious hosts. However, this AS announces
more than 110 million IP addresses – and the spamming hosts within this AS
represents only 0.23% of the total – which is below the average ratio observed
for all the observed AS. However, this should be put into perspective: even
though the ratio for Chinanet is smaller, one can not neglect the potential dam-
age it can incur due to its absolute number of malicious hosts in comparison to
SaudiNet.

Regardless the ratio exhibited by the top 20 ASes, it is important to em-
phasize that these ASes have an alarming large number of spamming hosts in
their networks, and are truly “spam havens”, from which spammers can operate
almost freely.

Since ASes can have different “sizes” (that is, the number of IP addresses
that they originated), we present in Table 4.3 the top 20 ASes ranked accord-
ing to the ratio of spamming IP addresses. AS25019, belonging to SaudiNet,
from Saudi Arabia, is the only AS that appears in this table and in Table 4.2
(the particular case of Internet censorship in Saudi Arabia will be discussed in
Section 4.5.1). In this table, the worst AS is AS37340, in which 62.55% of its
IPv4 were found spamming. However, this AS can be seen as a small one, since
it only originates 5,632 IPv4 addresses. In fact, in this table, 17 of the 20 ASes
can be seen as small ones (IPv4 Originated < 25,000). In such providers, a
representative but small (in absolute terms) number of IP addresses were found
spamming (< 7,169 per AS).

What we can conclude is that the Bad Neighborhood phenomenon is cer-
tainly existing at the AS-level: in only 10% of the 15,078 ASes have a concen-
tration of malicious IP addresses of at least to 2%.

AS-based Phishing BadHoods

Table 4.4 presents the top 20 ASes that were found hosting phishing IP ad-
dresses. The number of phishing IP addresses ranges from 22 to 140. All the 20
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ASes are involved with Internet technology, mostly hosting and cloud providers
in which malicious users set up and host their phishing websites.

Since the number of phishing IPs is small in comparison to the number of
IPv4-equivalent IP addresses announced by an AS, we do not proceed with the
calculation of ratio of phishing IPs in relation to the total observed.

4.4.2 Organizations-based Internet BadHoods

As discussed in Section 4.2.1, ISPs may connect to the Internet IP addresses
belonging to other client organizations (Org1 and Org2 in Figure 4.3). This,
consequently, implies that the ISP might be, in fact, routing malicious traffic
originated at other organizations.

In order to clarify the responsible organization for originating the malicious
traffic, in this section, we present our findings for organization-based BadHoods.
Differently from AS-based BadHood, the organization-based BadHood is done
by aggregating /32 IP address according to the organization they belong to –
that is, the organization that has been allocated with that particular IP address.

Table 4.5 presents the Top 20 Spamming Organizations in terms of Spam-
ming IP addresses. Comparing this table with Table 4.2, we can observe that
13 out of the 20 AS owners are found as the most Spamming Organizations.
In addition, 4 organizations are subsidiaries of the AS owners: VDC is a sub-
sidiary of the AS-owner VNPT, Reliance Communications has acquired the AS
owner BSES Telecom, Telemar Norte Leste S.A. is part of the AS-owner Tele-
comunicacoes da Bahia S.A., ChinaNet Guangdong Province Network is routed
using ChinaNet ASN. The new organizations in the list were FPT Telecom, from
Vietnam, Telefonica de Espana, and Deutsche Telekom, the major telecommu-
nications in Spain and Germany, respectively.

Table 4.6 shows the results for the organization-based Phishing BadHoods.
We found that 15 out of 20 organizations, 14 are the same as the AS owners
showed in Table 4.4. One organization (eToxic) is connected via SoftLayer, the
#1 AS in terms of phishing IP addresses. New organizations where the follow-
ing: the Endurance International Group, Media Temple, Jumpline, Interserver,
which have their own ISP and ASN.

From both spam and phishing results, we can observe that organizations
having more malicious IPs are correlated to the ASes having more malicious
IPs. The reasons for that is that organizations having as core business Internet-
related activities are more likely to have more IP addresses allocated, which
increases the chances of having more malicious IP addresses. To illustrate this,
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# # of Sources Organization CC
1 662,224 BSNL IN
2 468,895 SaudiNet, Saudi Telecom Company SA
3 376,307 PTLC PK
4 228,806 VDC VN
5 167,167 Telefonica del Peru PE
6 153,366 Pakistan Telecommuication company limited PK
7 147,112 Reliance Communications IN
8 146,533 Airtel IN
9 135,875 Vietnam Posts and Telecommunications(VNPT) VN

10 113,802 Mahanagar Telephone Nigam Ltd. IN
11 112,838 Telefonica de Argentina AR
12 102,838 RABAT3G Maroc Telecom MA
13 100,050 Telemar Norte Leste S.A. BR
14 99,343 Viettel Corporation VN
15 94,524 Maroc Telecom MA
16 94,415 ChinaNet Guangdong Province Network CN
17 85,368 Telefonica de Espana ES
18 85,145 FPT Telecom Company VN
19 84,790 Tata Indicom IN
20 82,563 Deutsche Telekom AG DE

Table 4.5: Top 20 Spamming Organizations (absolute)
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# # of Sources Organization CC
1 87 Bluehost US
2 65 OVH SAS FR
3 47 WebsiteWelcome US
3 47 Main Hosting Servers US
5 44 Universo Online S.A. BR
6 42 eToxic US
7 39 GoDaddy.com, LLC US
8 35 Amazon.com US
9 32 HostDime.com US
9 32 Hetzner Online AG DE
11 29 Landis Holdings US
12 27 New Dream Network, LLC US
13 23 Website Welcome US
14 22 CloudFlare US
15 20 Network Operations Center US
16 19 SingleHop US
17 16 The Endurance International Group US
18 15 Media Temple US
19 14 Jumpline US
19 14 Interserver UK

Table 4.6: Top 20 Phishing Organizations (absolute)

consider two organizations: the American brewing company Anheuser-Busch
(which produces Budweiser beer) and the Dutch Telecommunications Company
KPN. Even though these companies have a comparable number of employees
(∼ 30,000) and revenue (∼ e13 Billion), KPN’s AS286 announces 3.4 million
IP addresses, while Anheuser-Busch’s AS15117 announces only 69.6 thousand
IP addresses (a factor of 50).

Therefore, these findings also support the findings of previous sections, in
which we have shown that the first two assumption behind BadHoods are valid.

4.5 Geographical Internet BadHoods

In this section we present which countries (Section 4.5.1) and cities (Section
4.5.2) having the highest concentrations of malicious IP addresses.
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4.5.1 Country-based Internet Bad Neighborhoods

Country-based Spamming BadHoods

We start by showing graphically the distribution of malicious IP addresses per
country in Figure 4.5. In this figure, the color assigned to each country cor-
responds to the number of spamming IP addresses found in each country, as
shown in the legend. Analyzing the figure, we can observe that:

• Spamming hosts are distributed all over the world. In total, the top 20 coun-
tries were responsible for 76,31% of all the spamming IP addresses – which
confirms the concentration of BadHoods on country-level. Moreover, the
countries having more malicious hosts are concentrated in Asia, followed
by South America.

• The BRIC countries (Brazil, Russia, India, and China) are among the coun-
tries with most malicious hosts. These countries currently experience a sig-
nificant economy growth, and, in comparison to the advanced economies
countries, stills have a significant part of their population without Inter-
net access (The Internet penetration ratios are: Brazil - 40.6%. Russia -
43.0%, India - 7.5%, China - 34.3%, World Average - 35% [110]). Ac-
cording to a Boston Group report [111], the Internet penetration should
increase between 9% to 15% per year until 2015 in the BRIC countries.
Combining a growing economy with a large demand for Internet access,
we can expect the number of malicious hosts in these countries to increase
as more users obtain Internet access, in case measures are not taken to im-
prove the security in the networks in these countries. To illustrate a bad
scenario, if India would have the same Internet penetration rate of a com-
parable large country – the United States (79%) – while keeping the same
ratio of malicious hosts, it would have, alone, almost 20 million spam-
mings hosts, which is more than twice the current number of spamming
IP addresses we have observed in our datasets for the whole world.

Table 4.7 presents the top 20 countries having most spamming hosts. In this
table, CC stands for Country Code (please refer to Appendix D for the list of
countries codes). Pop refers to the country population, in millions (obtained
from the United Nations website [112]), while SRCs refers to the number of
malicious hosts observed per country. Finally, Ratio as the number of malicious
IP addresses per million inhabitants (Ratio=SRCs/(Pop×10−6)).



80 4 Internet Bad Neighborhoods Location

Figure 4.5: Spamming Hosts World Distribution (absolute number of spamming IP
addresses per country)

Figure 4.6: Phishing Hosts World Distribution (absolute number of phishing IP
addresses per country)

Therefore, SRCs gives an indication of the potential damage that can be in-
curred by a country, whereas Ratio provides a normalized value for the number
of malicious hosts in the country.
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Absolute Proportional
# CC Pop(106) SRCs # CC Pop(106) SRCs Ratio
1 IN 1,189.17 1,834,215 1 SA 26.13 520,979 19936.66
2 VN 90.54 657,611 2 BY 9.57 136,764 14279.64
3 BR 194.03 645,160 3 RS 7.31 89,483 12240.24
4 PK 187.34 567,029 4 MK 2.07 22,585 10872.13
5 SA 26.13 520,979 5 UY 3.30 35,427 10707.76
6 CN 1,336.718 427,984 6 KZ 15.52 140,514 9052.35
7 RU 138.73 345,594 7 CL 16.88 128,903 7632.47
8 IR 1.64 339,684 8 VN 90.54 657,611 7262.45
9 AR 41.76 214,869 9 KW 2.59 18,666 7191.32

10 MA 31.96 200,011 10 RO 21.90 139,665 6376.07
11 DE 81.47 192,322 11 AW 0.10 672 6332.87
12 ES 46.75 181,334 12 MA 31.96 200,011 6256.52
13 PE 29.24 172,767 13 QA 0.848 5,145 6067.10
14 KZ 15.52 140,514 14 MU 1.30 7,906 6064.19
15 RO 21.90 139,665 15 PE 29.24 172,767 5906.77
16 CO 44.72 137,162 16 TN 10.62 59,452 5593.27
17 BY 9.57 136,764 17 PS 2.56 13,241 5155.03
18 US 313.23 130,136 18 AR 41.76 214,869 5144.13
19 CL 16.88 128,903 19 DO 9.95 50,592 5081.22
20 TR 78.78 128,310 20 MP 0.04605 212 4603.69

Table 4.7: Top 20 Spamming Countries (Absolute and Proportional to the Population)

Analyzing the left part of Table 4.7 (Absolute), we can observe the countries
that can, potentially incur more “damage”, measured by the absolute number
of hosts (SRCs). In this table, India is the number one country, followed by
Vietnam and Brazil. Out of the 20 countries, 17 are classified as developing
countries, whereas Germany, Spain, and the United States are the only devel-
oped nations (or advanced economies, in the CIA terminology [113]) in the list
of top 20 countries in absolute number of malicious spamming hosts.

On the right side of Table 4.7 (Proportional), we present the top 20 coun-
tries having most spamming hosts per million inhabitants, which provides an
overview of the networks of these countries. Countries codes in bold font ap-
pear in both absolute and proportional lists. We can observe that India, the
country having the highest absolute number of malicious IP addresses, does not
even appear in the top 20 in proportional terms. In fact, none of the BRIC
countries are among the top 20 most proportionally spamming countries. Fur-
thermore, all the countries in the proportional list are classified as developing
nations.
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Internet Censorship Countries

An ironic (to the government) and very unfortunate fact (to their citizens) is
that 6 countries among the top 20 just presented implement Internet censorship
measures, by restricting their citizens’ freedom of information and curtailing
their access to the Internet. These countries are:

• Saudi Arabia (SA): According to the OpenNet Initiative (a joint project by
Harvard and Oxford universities – among others – that has as mission “to
identify and document Internet filtering and surveillance” [114]), Saudi
Arabia uses a proxy farm in King Abdulaziz City for Science & Technology
to “filter sites related to opposition political groups, human rights issues,
and religious content deemed offensive to Muslims. Pornographic sites
are pervasively filtered, as well as circumvention and online privacy tools.
Bloggers have been arrested, and blogs and sites run by online activists
have been blocked.” [115]. Saudi Arabia is listed in the “Enemies of the
Internet” list by Reporters sans Frontières (RSF), which is a Paris-based
non-governmental organization that advocates in favor of freedom of the
press [116].

• China (CN): China is responsible for maintaining the “Great Firewall Of
China”, which can be seen as “one of the most pervasive and sophisti-
cated regimes of Internet filtering and information control in the world"
[117]. The government performs pervasive filtering on political and con-
flict/security content, and substantial filtering on social content and In-
ternet tools. China is classified as an “Enemy of the Internet” nation by
RSF.

• Belarus (BY): Also part of “Enemies of the Internet” list of RSF, Belarus
performs selective filtering on political, social, conflict/security and Inter-
net tools areas, according to tests carried out by OpenNet [118].

• Kazakhstan (KZ): Kazakhstan is listed in the “Countries Under Surveil-
lance” list of RSF. According to OpenNet, Kazakhstan preforms selective
filtering on political and social content [119]

• Vietnam (VN): Vietnam is classified as an “Enemies of the Internet” by
RSF. It performs pervasive filtering on political content, and selective fil-
tering in social content according to OpenNet [120].

• Tunisia (TN): Tunisia is classified as a “Country Under Surveillance” by
RSF, but it was considered an “Enemy of the Internet” before the Arab
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Spring when President Ben Ali was removed from power. Under Ben Ali’s
regime, there was pervasive filtering on political, and social, according to
OpenNet [121]. After the fall of Ben Ali, the new government has lifted
the ban on social networks sites – Facebook and Youtube included.

One of the reasons why the 6 countries that implement Internet censorship and
surveillance are among top 20 of countries having more malicious hosts is while
trying to circumvent censorship, users might end up getting their computers
infected, by accessing open proxies, malicious websites, or installing malicious
tools. By becoming infected, such computers may take part in botnets, which
are the source of most of current spam on the Internet [122, 123]. In addition,
one could assume that censorship in ISPs of these countries is regarded as more
important than the number of spammers in their networks.

Country-based Phishing BadHoods

Figure 4.6 shows the countries of the world where phishing hosts are concen-
trated. Analyzing this figure, we can observe that:

• Different from Spam, phishing is not distributed in the whole world. In
fact, lest than 40% of the countries in the world were found having phish-
ing hosts (92 out of 250, as in Table 4.1).

• Phishing hosts are mostly concentrated in advanced economy nations, be-
ing the United States the number one in phishing hosts. In addition, the
four BRIC countries are listed as well among the top 20 phishing countries.

• There is a correlation between the number of datacenters a country has
with having phishing hosts in a country18: all are top 20 countries in
number of data centers in their territories.

The reasons for this difference between Spam and Phishing distribution over
countries lies in the nature of the application/attack: spammers typically em-
ploy a large number of bots to carry out spam campaigns, while phishing has
to rely on stable and reliable hosts that should be online whenever a user is
redirected to it so they can steal their personal information.

Table 4.8 presents the top 20 countries in terms of number of phishing IPs.
The left side of the table, the countries are ranked according to the absolute

18The map of data centers per country can be found at http://www.datacentermap.com.

http://www.datacentermap.com
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number of phishing IPs, while on the right side, they are ranked according to
the number of phishing IPs per million inhabitants (Ratio=SRCs/(Pop×10−6)).

When analyzing the right side of Table 4.8, we can notice that 13 countries
listed have less than 20 phishing hosts, which are mostly classified because of
their small population. The other 7 countries have observed at least 56 hosts
and have a population of at least 16 million inhabitants.

Absolute Proportional
# CC Pop(106) SRCs # CC Pop(106) SRCs Ratio
1 US 313.23 1344 1 VG 0.025 10 393.96
2 DE 81.47 153 2 KY 0.051 1 19.46
3 FR 65.10 140 3 IS 0.311058 2 6.42
4 BR 194.03 94 4 NL 16.84 73 4.30
5 CA 34.03 91 5 US 313.23 1,344 4.29
6 RU 138.73 88 6 SG 4.74 16 3.37
7 NL 16.84 73 7 BN 0.31 1 3.13
8 IT 61.01 60 8 DK 5.52 15 2.71
9 TR 78.78 56 9 CY 1.12 3 2.67

10 AU 21.76 56 10 CA 34.03 91 2.67
11 CN 1336.71 54 11 AU 21.76 56 2.57
12 PL 38.44 52 12 FR 65.10 140 2.15
13 KR 48,75 36 13 BG 7.09 15 2.11
14 TH 66.72 35 14 HK 7.12 15 2.10
15 ES 46.75 33 15 IE 4.67 9 1.92
16 RO 21.90 26 16 DE 81.47 153 1.87
17 VN 90.54 25 17 PT 10.76 19 1.76
18 UA 45.13 22 18 CZ 10.19 17 1.66
19 IN 1189.17 22 19 SE 9.08 15 1.65
20 MY 28.72 20 20 SI 2.00 3 1.49

Table 4.8: Top 20 Phishing Countries (Absolute and Proportional to the Population)

4.5.2 City-based Internet Bad Neighborhoods

In this section we present the results of aggregating malicious hosts into city-
based Internet Bad Neighborhoods. We have also investigated this topic in a
previous research work [124]. However, in that work, we have employed a
smaller data set from honeypots obtained from Quarantainenet [125], a Dutch
Internet security firm, for a different monitoring period. We have focused on
the cities and countries having more malicious hosts.
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In the following, we first cover the cities having spamming hosts and then
cities having phishing hosts.

City-based Spam BadHoods

We start by showing the distribution of the top 400 cities in terms of spamming
hosts, as can be seen in Figure 4.7. In this figure, the size of each circle is
proportional to the number of malicious hosts19. As shown in Table 4.1, 1.6
million /32 IP addresses (out of 9.3 million) could not be mapped into cities for
spam, which were disregarded in this analysis. We should remind that 400 is
only a tiny fraction of the 25,266 spamming cities we have observed.

Analyzing in Figure 4.7 we can observe that the majority of the top 400 cities
are located in India (88, to be more precise), followed by Brazil with 46, then
34 in Russia, and 19 in China. Table 4.9 shows the number of spamming host
for the top 20 cities. As can be seen, among the top 20, 6 cities are located in
India, 2 in Saudi Arabia, 2 in Pakistan, and 2 in Brazil.

Comparing the results of this table to Table 4.7 (country-level BadHoods),
we can observe that all the cities belong to countries that were found being the
most malicious ones. Therefore, we can conclude that the cities having most
of spamming hosts are located in the countries that have the largest number of
spamming hosts as well.

Table 4.10 shows the cities that have most spamming hosts per million in-
habitants. To obtain the population per city, we have used Maxmind’s World
Cities database [127], due to easy of use. Except for cities #1, #5, and #10,
the cities presented a high ratio due to the small population (< 31, 000) and
small number of sources (< 3, 766). Cities 1,5, and 10 are located in India
and Pakistan, countries #1 and # 4 in terms of spamming hosts, as shown in
Table 4.7.

City-based Phishing BadHoods

The results for cities having more phishing hosts are shown in Figure 4.8. In this
figure, we show the geographical location of the top 400 cities having phishing
hosts, out of a total of 437 (as shown in Table 4.1). Table 4.11 lists the top 20
cities having more phishing hosts in absolute numbers.

As can be seen, there is a concentration in American cities; the top four
cities in terms of phishing hosts are Dallas (TX), Chicago (IL), Provo (UT), and

19This maps were generated using Google Geochart, which has a limitation of 400 entries [126].



86 4 Internet Bad Neighborhoods Location

Figure 4.7: Top 400 Spamming City-Based BadHoods

Figure 4.8: Top 400 Phishing City-Based BadHoods
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# CC City Sources Population Ratio
1 IN New Delhi 297,638 10,928,270 27,235.60
2 PK Islamabad 252,576 756,105 334,048.84
3 IN Bangalore 224,213 4,931,603 45,464.53
4 SA Riyadh 220,926 3,469,290 63,680.46
5 SA Jiddah 163,443 2,545,728 64,202.85
6 PE Lima 122,033 7,646,786 15,958.73
7 IN Madras 91,308 4,328,416 21,095.01
8 CL Santiago 90,493 4,837,248 18,707.54
9 IN Pune 78,053 2,935,968 26,585.10
10 CO Bogotá 70,211 7,102,602 9,885.25
11 IN Hyderabad 69,144 3,598,199 19,216.28
12 PK Karachi 67,563 11,627,378 5,810.68
13 PK Lahore 65,154 6,312,576 10,321.30
14 BR São Paulo 62,964 10,021,437 6,282.93
15 CN Guangzhou 62,654 3,152,825 19,872.34
16 TH Bangkok 55,047 5,104,475 10,784.07
17 CN Shenzhen 53,091 1,002,592 52,953.74
18 IN Calcutta 49,666 4,631,819 10,722.79
19 BR Rio De Janeiro 46,432 6,023,742 7,708.17
20 TR Istanbul 42,448 9,797,536 4,332.52

Table 4.9: Top 20 Spamming Cities (Absolute)

Houston (TX), all in the United States (in red). These cities all have data centers
within their borders.

Table 4.12 presents the cities having most phishing hosts per million inhabi-
tants. Cities in bold can also be found in Table 4.11. As can be seen, the majority
of cities are still in the United States. One surprise was the city number 1, Road
Town, located at British Virgin Islands, a small island in the Caribbean area.

4.6 Related Work

The work presented in this chapter was inspired in a previous work conducted in
our research group [124]. In this work, we have carried out a study on the most
“evil” cities on the Internet – that is, cities that originated most of the observed
attacks. For that work, we have employed information obtained from Quar-
antainenet [125], a Dutch company that develops network management and
security tools and provides admission control and malware detection for their
customers, including more than 50% of the Dutch universities. Quarantainenet



88 4 Internet Bad Neighborhoods Location

# CC City Sources Population Ratio
1 IN Nagari 31,618 25,936 1,219,077.72
2 PH Bagumbayan 3,639 2,990 1,217,056.85
3 RU Ural 1,218 2,057 592,124.45
4 IN Kannur 3,547 7,625 465,180.32
5 PK Islamabad 252,576 756,105 334,048.84
6 RU Volga 928 3,469 267,512.25
7 RS Guca 483 2,014 239,821.25
8 RO Moacsa 491 2,274 215,919,80
9 RU Kushnarënkovo 1,762 10,650 165,446.00
10 IN Gurgaon 32,551 197,353 164,937.95
11 IN Palampur 680 4,131 164,609.50
12 RO Balotesti 1,000 6,795 147,167.03
13 PH Liberty 335 2,323 144,210.07
14 AM Armavir 374 2,752 135,901.16
15 RU Spassk 210 1,556 134,961.43
16 CO Cogua 593 4,755 124,710.83
17 IN Udaipur 3,766 30,266 124,430.05
18 RO Polovragi 351 2,911 120,577.12
19 BM Hamilton 107 902 118,625.27
20 LU Baschleiden 21 185 113,513.51

Table 4.10: Top 20 Spamming Cities (Proportional)

has a honeypot infrastructure which is distributed mostly over the Netherlands.
In total, 125 machines are used for this purpose. In this chapter, however, we
use different data sets for a different monitoring period. In addition, we have
not only aggregated hosts according to their geographical location, but also ac-
cording to their AS and organization.

Another research work that relates to the one presented in this chapter was
carried out by Shin et al. [47]. In that paper, the authors analyze infection data
for three botnets (Conficker, MegaD, and Srizbi), and carry out a comparative
analysis from each of them. They have shown how the botnets are distributed
over the IP address space and also the countries in which most of the bots are
located. In our work, we determine the number of malicious hosts per country
according to its population, while in [47] the authors employ the number of IP
addresses allocated to each country.

Most of the current research works focus on geographical location at the
country level. For example, Jiang et al. [128] propose a spam filtering technique
that uses country-level geographical information, which leads to a reduction of
13.9% in their experiments. Even though they were able to reduce the number
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# CC City Sources Population Ratio (%)
1 US Dallas 107 1,211,704 88.31
2 US Chicago 89 2,841,952 31.32
3 US Provo 88 105,764 832.04
4 US Houston 87 2,027,712 42.91
5 CA Montreal 50 3,268,513 15.30
6 US Scottsdale 40 225,796 177.15
7 US Orlando 32 207,970 153.87
8 US Brea 26 39,542 657.53
9 US Atlanta 23 422,908 54.39
10 FR Paris 19 2,110,694 9.00
11 US Scranton 18 73,206 245.88
12 US Lansing 18 117,691 152.94
13 TH Bangkok 18 5,104,475 3.53
14 US San Francisco 17 732,072 23.22
15 US Atlanta 17 422,908 40.20
16 RU Moscow 17 10,381,288 1.64
17 US Burlington 16 22,739 703.64
18 US Culver City 15 40,129 373.79
19 CL Santiago 15 4,837,248 3.10
20 US Columbus 14 736,836 19.00

Table 4.11: Top 20 Phishing cities (Absolute)

of spam messages, the authors do not describe what could happen if city-level
information would be used instead of country level for filtering spam.

Sobel et al. [101], on the other hand, hold a U.S. patent for use of geolo-
cation data for spam detection. It is stated in the patent that “the geolocation
data may be any type of geographical information such as city, country, state or
presence within a pre-selected radius of a geographical point”. As a patent, the
method is only described while its effectiveness is not addressed.

Other reports on the number of attacks per country also exist. For example,
the Internet hosting company Akamai provides a quartely report named ‘The
State of the Internet’ [129], which is obtained from the analysis of users that
access Akamai servers (many sites, such as Hulu, BBC iPlayer and the White
House use the Akamai content distribution network). In their latest report, they
have observed attacks from 209 countries/regions, with the U.S. being the pre-
mier one, in terms of traffic (12%). However, only 10 countries are mentioned
in the report, and they do not provide an analysis at city level. Quarantainenet
also provides a daily map of the countries that have attacked their honeypot
infrastructure [130].
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# CC City Sources Population Ratio
1 VG Road Town 9 8,449 1065.21
2 US Provo 88 105,764 832.04
3 US Secaucus 12 15,534 772.49
4 US Burlington 16 22,739 703.63
5 US Brea 26 39,542 657.52
6 US Culver City 15 40,129 373.79
7 RO Dobroesti 2 6,599 303.07
8 US Redmond 12 47,264 253.89
9 CA Golden 1 4,038 247.64

10 US Scranton 18 73,206 245.88
11 US Garden City 5 21,887 228.44
12 CZ Hluboka Nad Vltavou 1 4,514 221.53
13 US Walnut 7 31,720 220.68
14 US Mountain View 13 68,268 190.42
15 US Scottsdale 40 225,796 177.15
16 US Orlando 32 207,970 153.86
17 US Lansing 18 117,691 152.94
18 US Herndon 3 21,499 139.54
19 US Phoenixville 2 14,660 136.42
20 US Arlington Heights 9 74,995 120.00

Table 4.12: Top 20 Phishing cities (Proportional)

Finally, Koike et al. [131] perform data visualization on the origin of attacks
at IP block level or country level. And Muir et al. [98] present a survey on the
current Internet geolocation methods.

4.7 Conclusions

In this chapter we have evaluated the three possible underlying assumptions
behind the Internet Bad Neighborhood concept. We have employed real world
data sets for spam and phishing in our analysis.

To investigate the assumptions, we proposed two research questions. In RQ
4.1, we have asked how malicious hosts are distributed over ISPs? To answer that,
we have aggregated individual addresses into both ASes and organizations and
compared the results. We found that the top 20 ASes concentrate almost 50%
of all spamming IP addresses observed in our data sets, from a total of 42,201
active ASes at the moment of our analysis.

To make sure the malicious IPs announced by the ASes were not from other
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organizations, we also investigated organization-based BadHoods, and found
a strong correlation between the AS-based BadHoods and organization-based
BadHoods. Therefore, the main contribution of this chapter is that AS-based
aggregation is an efficient approach for Bad Neighborhoods. This information can
be used by network engineers to develop tools to filter traffic based on the ASes
BadHoods. In addition, this finding also confirms the two first assumptions
behind the BadHood concept – that some ISPs neglect malicious traffic and
malware propagation in their networks.

In RQ 4.2 we wondered how malicious hosts are distributed over geographical
areas (countries and cities). We found that the results depend on the applica-
tion: spam IP addresses are located in countries and cities distributed all over
the world (concentrated in Asia), while phishing BadHoods are concentrated in
few of countries and cities (mostly in developed nations). This shows that one
can not generalize assumptions for BadHoods, and the application in question
should be considered (we provide a detailed comparison of BadHoods and the
different applications in Chapter 7). The reason for that is that phishing re-
quires a reliable available web server in which forged websites can be hosted;
therefore, malicious users choose to host them in data centers – which are con-
centrated in very few countries/cities. In addition, for spam, we found that the
top 20 countries were responsible for concentrating more than 75% of all spam-
ming IP addresses, which shows how evident is the existence of BadHoods at
country-level.

In addition, we found that the BRIC countries are among the countries with
the highest number of spamming IP addresses. Given their current economic
growth, we can expect a significant increase in the number of malicious hosts
in these countries if measures are not taken to improve the security in such net-
works. For example, if India would have the same Internet penetration rate
as the United States (79%), it would have, alone, 20 million spamming IPs –
twice as much of as what is observed today for the entire world. One might
wonder if this is not the case of a silent ticking bomb. Moreover, we have found
that 6 countries among the top 20 in terms of spamming hosts employ Internet
censorship measures.

Therefore, the results from RQ 4.2 confirms our last assumption about the
existence of Internet BadHoods: that non-technical local factors play a role in
the BadHoods: phishing IP addresses are located in advanced economies, while
spamming IP addresses are distributed all over the world but concentrated in
Asia.
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Only a free and unrestrained press can effectively
expose deception in government.

Justice Hugo Black, 1979
In: Journal of Politics, Vol 41, Issue 4. CHAPTER 5

Case Study: Spamming Bad
Neighborhoods1

AFTER presenting general characteristics of Bad Neighborhoods in previous
chapters, in this chapter we present a specific case focusing on spam-
ming Bad Neighborhoods.

We focus on Spamming Bad Neighborhoods (BadHoods) due to the impact
caused by worldwide spam. Spam comprises approximately 90 to 95 percent of
all e-mail traffic on the Internet nowadays [132, 133]. To deal with all this unso-
licited e-mail, companies have to spend computer and network resources, and
human labor hours, which cause economic losses. It is estimated that world-
widespam causes losses from $10 billion to $87 billion [20] yearly, and are
used by cyber gangs to advertise illegal and counterfeit pharmaceutical opera-
tions [18].

In this chapter, we therefore raise the following research questions (RQ) to
reveal the specifics of Spamming BadHoods:

• RQ 5.1: What are the worst protected netblocks (or prefixes) on the Inter-
net? – that is, netblocks containing a significant number of spamming
hosts.

• RQ 5.2: What are the most “spam-friendly” providers?, i.e., providers that
“turn a blind eye” [27] to massive spammers in their networks.

• RQ 5.3: Do Spamming BadHoods with many spammers also send many
spam messages?

• RQ 5.4: How much data do we need to identify Spamming BadHoods?
1This chapter is based on the following publication: Moura, G. C. M., Sadre, R., Pras, A.:

Internet Bad Neighborhoods: the Spam Case. In: 7th International Conference on Network and
Services Management (CNSM 2011), Paris, France, 24-28 October 2011.
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These research questions have led us to four refined definitions for Spam-
ming BadHoods. The first two take into account the two types of spammers ob-
served on the Internet: Low-Volume Spammers (LVS) and High-Volume Spam-
mers (HVS) [122]. The first type describes hosts “working under a central provi-
sion, each typically spamming with a low volume", while the second one consists
of “dedicated spam sources, which are brute force spammers, each spamming
in an enormous number every day". Since most of the LVS tend to be part of
botnets [122, 123], concentrations of LVS reveal what are the “most infected
networks” in the Internet – and, consequently, the worst protected ones. There-
fore, this first definition addresses RQ 5.1 by identifying LVS BadHoods, i.e.,
netblocks containing low-volume spammers.

To answer RQ 5.2, we introduce a second definition: HVS BadHoods. This
type of BadHood allows us to identify providers that ignore or tolerate ded-
icated spammers that spam at high volume in their networks and, therefore,
can be considered as “spam-friendly”. RQ 5.3, on the other hand, leads to our
next definition – Spamming BadHoods Firepower – which considers the total
number of spam messages sent by each netblock. By comparing the number of
spam messages and spammers per BadHood, we can determine if there is any
correlation between those two. Finally, RQ 5.4 leads to our last definition –
All Spamming BadHoods –, in which we compare the BadHoods obtained from
different data sources.

The rest of this chapter is structured as follows. Section 5.1 details the four
definitions of Spamming BadHoods. Next, Section 5.2 presents the datasets
employed in our analysis. Following that, Section 5.3 shows the experimental
results. Related work is discussed in Section 5.4. Finally, Section 5.5 contains
our conclusions and proposes future work.

5.1 Four definitions for Spamming Bad Neighbor-
hoods

In this section, we propose four definitions that allow us to gain more insight
into the behavior of spammers and the networks hosting them. We begin with
a brief discussion of the possible data sources to evaluate Spamming BadHoods
in Section 5.1.1. Then we present the four definitions of Spamming BadHoods
from Sections 5.1.2 to 5.1.5.
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5.1.1 Possible Data Sources for BadHood Analysis

In order to identify and analyze Spamming BadHoods, we need to obtain the
IP addresses of the spamming hosts. Several data sources can be employed for
that. Next we present an overview of those sources.

DNS Blacklists

One approach to identify IP addresses of spammers is to set up spamtraps, which
are specialized honeypots to collect spam. By definition, every message that
reaches a trap is considered spam, since it was unsolicited in the first place.
Their source IP addresses can be used to build blacklists, usually in real time.
The term “DNS Blacklist” comes from the fact that many blacklist maintainers
allow queries to be made to their blacklists in a similar way DNS queries are per-
formed. A comparison of blacklists can be found at [134] and [135]. Blacklists
do not necessarily list the full IP address of every single spammer. In fact, some
lists only provide aggregated information on whole subnetworks. Even though
DNS blacklists list many IPs, they do not provide the information on how many
spam messages a spammer has sent – they only tell that a certain IP has sent
spam.

Mail Server Logs

Most of the spam is currently detected on mail servers, where incoming mes-
sages are processed and filtered. Mail filters, such as SpamAssassin [61], are
configured to perform a series of checks on every e-mail message. These tests
can include header and text analysis, Bayesian filtering, and even take input
from DNS blacklists. Depending on the outcome of the tests, each message is
classified as “spam" or “ham”. Differently from DNS blacklists, it is possible to
determine how many spam messages were sent by each IP address using mail
server logs.

Mail Client Logs

Spam mails can also be detected by the mail client itself. This is usually the last
resort against spam because it does not avoid the increased bandwidth usage
caused by unsolicited mails. Similar to the mail filters used by mail servers, the
mail client, such as Thunderbird [136], can perform a series of tests in order to
classify the mails.
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Network Flows

According to the IETF, a network flow is defined as a “set of IP packets passing
an observation point in the network during a certain time interval that share
the same properties” [53]. Typically, these properties include the source and
destination port and address of the packets, as well as other IP header fields,
like the protocol number. Flow probes monitor the packets in a network and
export so-called flow records, which contain summarized information on the
identified flows, such as the number of exchanged packets.

Flow monitoring can be used to detect spam [137, 138, 139]. However,
since flow records only provide an aggregated view to the network traffic, the
validation of the detection results is much harder and has to be based on statis-
tical arguments. Hence, we do not employ this data source in our analysis.

5.1.2 First Definition: LVS BadHoods

Low-Volume Spammers (LVS) are hosts that spam at a low volume to avoid be-
ing blacklisted. Typically, they are operated under a central provision, usually
as part of a botnet [122]. The latter obviously requires that the host has to be
firstly infected. Hence, a concentration of a high number of LVS in a subnet-
work indicates that the particular subnetwork is poorly protected or managed,
and that the responsible ISP migth neglect the malware propagation in their
networks. The goal of this definition for Spamming BadHoods is to detect the
worse protected (or infected) subnetworks by identifying the netblocks with
many LVS. We refer to such BadHoods as LVS BadHoods.

The first step is to classify spammers according to the number of messages
each of them has sent during the observation period. Note that this information
is not provided by blacklists, so we have to rely on the other data sources. Since
spammers can behave differently across different domains, we combine the data
obtained from several observation points. After that, we need to establish a
threshold θ that we apply to the number of sent messages in order to separate
LVS from other spammers. We define

θ = d× s×m (5.1)

where d is the length of the analyzed data trace in days, s is the number of
different domains being monitored, andm is the maximum number of messages
that a spammer can send to a single domain per day in order to be considered
a LVS. As described in [122, 123], a LVS usually contacts the same mail server
once or twice a day. Hosts spamming under this threshold are classified as LVS.
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After classifying each host, we count the number of LVS per /24 netblock.
For example, if the following set of /32 IP addresses were listed 1.1.1.5,

1.1.1.4, 1.1.1.64, the block 1.1.1.0/24 would have a count of three. The
blocks are then ranked by their count (score). The maximum possible score per
each /24 block is 254, since usually the addresses with .0 and .255 suffix are
reserved for network identification and broadcasting, respectively. Aggregating
data on /24 level is preferable because this is the smallest prefix length that can
be delegated on the Internet [31].

5.1.3 Second Definition: HVS BadHoods

Complementary to LVS, High-Volume Spammers (HVS) are those hosts that
spam in high volumes, i.e., that send more messages during the observation
period than specified by the threshold θ in Equation 5.1. As for LVS, blacklists
cannot be used to identify HVS.

HVS are usually dedicated spamming hosts operated by professional spam-
mers. Therefore, a high concentration of HVS in a particular subnetwork in-
dicates that the ISP tolerates them. To identify HVS BadHoods, we follow the
same approach employed in the first definition, that is, we count how many
spam messages each spammer has sent during the observation period. Spam-
mers above the threshold θ are considered HVS. After classifying each host, we
count the number of HVS per /24 netblock and rank them according to that
number. As in the first definition, the maximum score for a netblock is 254.

5.1.4 Third Definition: Spamming BadHood Firepower

The third definition for Spamming BadHoods focuses on evaluating the “fire-
power” of each netblock. Therefore, we identify the most spamming BadHoods
on the Internet in terms of the number of sent spam messages — not on the
number of spamming hosts. As for the two previous definitions, we have to rely
only on mail server and clients logs as data sources, since DNS blacklists do
not provide all needed information. The first step is to count how many spam
messages each spammer has sent. Next, for each /24 netblock, we calculate the
total number of spam messages sent by all the spammers located in the block.
The final step is to rank the blocks according to that number.
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Blacklist Aggregation Level # of entries (04/21/2010)
CBL /32 8,334,895
PSBL /32 2,445,270

UCEPROTECT-1 /32 3,350,417
UCEPROTECT-2 Various 30,143
UCEPROTECT-3 ASN 867

SBL Various 10,535

Table 5.1: DNS blacklists obtained

5.1.5 Fourth Definition: All Spamming BadHoods

The goal of the last definition for Spamming BadHoods is to identify all spam-
ming netblocks, independently of the spammers’ behavior. Therefore, we need
only the IP addresses of spammers, which allow us to include the information
provided by DNS blacklists into our analysis. From each data source, we extract
the IP addresses of the spammers. Then, all these IP are combined and dupli-
cate entries are removed. Next, we count the number of spammers in each /24
block and rank the blocks according to the count.

5.2 Evaluated Datasets

In this section we present the data we have used in our experiments. We have
obtained data from DNS blacklists, mail server logs, and mail client logs from
various sources over a period of one week (April 19-26th, 2010). Next we
describe in more detail the collected data.

5.2.1 DNS Blacklists (DNSBL)

Table 5.1 shows the DNS blacklists we have obtained. We have chosen these
since they have been previously investigated by academic communities and
they are employed in production mail filters. The first one, Composite Blocking
List (CBL) [60], maintains four large spamtrap infrastructures from where the
source IP addresses of spammers are harvested. To give an idea of the size of
their spamtraps, one of the four traps they maintain has received, on average,
2831 spams per second over a period of one year [140]. As shown in Table 5.1,
on April 21st more than 8 million unique IP addresses were listed on CBL.
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Another blacklist we have obtained is the Passive Spam Block List (PSBL) [75].
PSBL is built using their own spamtraps, which capture around 500 thousands
spam messages per day [141]. More than 2 million unique IP addresses were
listed by PSBL on April 21st, 2010, as shown in Table 5.1.

The next blacklists are from UCEPROTECT-Network [142]. They have three
blacklists: The Level 1 blacklist lists only single IP addresses (/32) of spam-
mers that have contacted their spamtraps. For example, on April 21st, 2010,
more than 3 million unique IP addresses were listed on the Level 1 blacklist.
The Level 2 blacklist, on the other hand, is automatically generated based on
Level 1. In that list, netblocks are entirely blacklisted according to a scoring
procedure. The following entry is present on April 21st, 2010 on the Level
2 blacklist: “86.99.128.0/17 is UCEPROTECT-Level2 listed because 267 abusers
are hosted by EMIRATES-INTERNET Emirates Internet/AS5384 there.". Finally,
the Level 3 blacklist lists all IP addresses from an autonomous system (except
those whitelisted at ips.whitelisted.org) if “more than 100 IPs, but also a mini-
mum of 0.2% of all IPs allocated to this ASN got Level 1 listed within the last 7
days" [142]..

Finally, the Spamhaus Block List (SBL) [143] lists IP addresses at different
aggregation levels “from which Spamhaus does not recommend the acceptance
of electronic mail" [143]. SBL contains single IP addresses as well as entire
network blocks. As can be seen in Table 5.1, more than 10 thousand entries are
present on SBL on April 21st, 2010.

Since blacklists are usually built using a large number of honeypots, they
have higher probability to be reached by many different spammers than a single
mail server. For example, UT/EWI mail servers have been spammed by 71,754
different IP addresses on April 21st, 2010, while CBL spamtraps lists more than
8 million unique IP addresses. However, DNS blacklists list only the IP addresses
of spammers, while mail server logs list every single spam message – which
allows to compute how many spam each spammer has sent.

5.2.2 Mail Servers Logs

Table 5.2 shows the mail servers from which we have obtained data. Provider
A is a large hosting provider located in the Netherlands. Almost 7 million mes-
sages from more than 1.5 million different IP addresses were tagged as spam
for the monitoring period (1 week).

Next, we have analyzed data from the mail server of the Electrical Engineer-
ing, Mathematics, and Computer Science Faculty at the University of Twente
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Domain Country # of Spam Msgs # of distinct IPs
Provider A The Netherlands 6,981,415 1,668,205
UT/EWI The Netherlands 1,707,367 458,495

CAIS/RNP Brazil 84,295 36,938
Provider B France 1,160 975

Total – 8,774,237 1,847,874

Table 5.2: Mail servers log files analyzed

(UT/EWI)2. In total, more than 1.7 million messages were logged.
Since we did not want to limit this research to data from mail servers from

the Netherlands, we have also obtained data from the mail servers of the Secu-
rity Incident Response Team [144] of the Brazilian Research Network (CAIS/RNP).
More than 80 thousand spam messages were obtained for the monitoring pe-
riod. Finally, we have obtained data from a small mail server hosted in France,
denoted as Provider B, from which we got 1,160 spam messages from 975 dis-
tinct senders. In total, we have obtained more than 8.7 million messages from
more than 1.8 million different IP addresses from mail servers.

5.2.3 Mail Client Logs

Finally, the last type of data collected was mail client spam logs. For this work
we have obtained 1,321 spam messages from 15 mail accounts from various
countries. These messages, in turn, came from 763 different senders. Since this
dataset is not as representative in comparison to the previous ones, we did not
further employ it in our analysis.

5.3 Experimental results

In Section 5.1 we have introduced four definitions for Spamming BadHoods.
In this section we apply the different definitions to the datasets presented in
Section 5.2 and discuss the results.

2UT/EWI has, in fact, a primary and a secondary mail server. We have combined the data from
both as a single source. However, we should point out that spammers have targeted much more the
secondary one. We assume that spammers believe that secondary servers are not as well secured as
primary ones, which is not the case for UT/EWI servers.



5.3 Experimental results 101

# of IPs # of Spam Spam/IP
x = 1 867,422 (46.94%) 867,422 (9.80%) 1
1 < x ≤ 10 821,472 (44.46%) 3,189,391 (36.35%) 3.88
10 < x ≤ 56 145,648 (7.80%) 30,53,351 (34.80%) 20.96
x > 56 13,081 (0.70%) 1,662,913 (18.95%) 127.12

Table 5.3: Distribution of Spam Messages from Mail Server Logs (1 week)

5.3.1 LVS BadHoods

For this definition, we have combined mail server logs from four different do-
mains (s = 4): Provider A, UT/EWI, CAIS/RNP, and Provider B. By combining
those log files, we increase the chances of observing the same spammer on dif-
ferent mail servers which allows us to better classify it. The logs cover a period
of seven days (d = 7).

Table 5.3 shows the distribution of the number of spam messages per spam-
ming hosts for the combined mail server logs. For a given number x of spam
messages sent by a single spammer, the table gives the number of spammers
(second column) that match it, followed by the total number of spams sent by
those spammers (third column) and the average number of spams per spammer
(fourth column). The numbers in parentheses give the percentages of the total
number of spammers and spam, respectively, found in the dataset.

We choose m = 2 as the maximum number of mails sent by a LVS to a
domain per day, as described in Section 5.1.2. Hence, Equation 5.1 leads to
a threshold θ of 56 spam messages, meaning that spamming hosts sending at
most 56 messages are classified as LVS while the others are HVS. By employing
θ = 56, one can observe that most of the spammers (99.3%) are classified as LVS
(first to third rows in Table 5.3) and that they are responsible for around 80%
of all spam our mail servers have received. Since most of LVS are believed to
be bots [122, 123], we can conclude from our results that probably most of the
spam nowadays comes from botnets. In addition, we observe that nearly 50% of
all spammers have only sent one message (first row), which confirms the tactic
adopted by LVS to spam at very low volume to avoid being detected [122].

Figure 5.1 shows the distribution of LVS BadHoods over the IP address space.
The x-axis gives the /8 prefix of the IP address; the y-axis gives the number of
spamming LVS hosts per /24 block. Each point in the plot stands for one /24
block. The horizontal line shows the maximum possible number of hosts in a
block, that is 254. We observe that there is a high concentration of spamming
hosts on certain ranges, such as between 60-100, 110-125, and finally 180-200.
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Figure 5.1: LVS BadHoods – Number of Spamming Hosts per /24 prefix

There are also IP ranges where we did not observe a single spammer. This
includes the following ranges: 28-31, 44-49, 101-107. The reasons vary: some
blocks were not allocated by IANA when we collected the data [67] (31,49,101-
106). Others were legacy blocks (28-30, 45-47, 49), which were blocks usually
assigned by the central Internet Registry (IR) prior to the Regional Internet
Registries (RIRs). However, these blocks are managed by individual RIRs. Fi-
nally, the 46 block was allocated in September 2009, while 107 was allocated
in February 2010.

For the blocks with the highest number of LVS spammers, we have identified
the corresponding ISP. In the middle column of Table 5.4, we show the top
20 providers that manage the /24 most malicious LVS BadHoods i.e., the high
scores in Figure 5.1. Analyzing this table, we observe that some LVS BadHoods
are made up almost exclusively of spamming hosts; by evaluating only four
different mail server domains, we were still able to find networks such as the
case of Libyan Telecom having 235 spamming hosts in a single /24 netblock.
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Rank LVS BadHoods HVS BadHoods
1 Libyan Telecom (235) PTK Serbia (27)
2 Omantel Tech (233) Digitel Venezuela (16)
3 Omantel Tech (224) Maroc Telecom (13)
4 Digitel Philippines(221) Smart Indonesia (13)
5 Libyan Telecom (220) Vodafone Romenia (11)
6 Excelcomindo Philippines (218) Smart Indonesia (11)
7 Smart Telecom Indonesia (217) Digitel Venezuela (11)
8 Smart Telecom Indonesia (193) Yahoo! Europe (10)
9 Libyan Telecom (180) Telefonica Chile (10)

10 CAT Wireless Bangkok (173) Maroc Telecom (8)
11 Maroc Telecom (170) BSNLNET India (8)
12 Smart Telecom Indonesia (161) Korea Telecom (8)
13 TATTELECOM Russia (158) Chinanet (8)
14 CAT Wireless Bangkok (147) Orange Romenia (8)
15 Digitel Philippines(140) Orange Romenia (8)
16 Digitel Philippines (138) OJSC MegaFon Russia (7)
17 OJSC MegaFon Russia (137) Kazan Russia (7)
18 OJSC MegaFon Russia (137) KORNET Korea (7)
19 Libyan Telecom (131) KPN Netherlands (7)
20 OJSC MegaFon Russia (129) CODETEL-Dominican Rep (7)

Table 5.4: Providers of the Top 20 Most Malicious /24 Networks (number of hosts
between parentheses)

Since most of LVS are believed to be bots, these results show how some ISPs
neglect the propagation of bots and malicious activities that the hosts in their
networks carry. This also confirms the facts that some DNS blacklists block
entirely /24 netblocks, as SBL [143].

As explained in Section 5.1.2, we can assume that the most malicious LVS
BadHoods are also the worst protected and, consequently, the most infected
ones. The presented results can be used by providers to raise awareness about
the security of their networks and to improve it. In addition, LVS Bad Neighbor-
hoods can also be employed to track and detect botnets [123].

5.3.2 HVS BadHoods

HVS BadHoods are determined in a similar way as the LVS BadHoods. We
have employed the same datasets, period of time and threshold. As shown in
Table 5.3, only 13,081 (0.70%) IP addresses have been classified as HVS. The
distribution of the HVS over the IP address space is visualized in Figure 5.2.
Each point gives the number of HVS in one /24 block. We observe that most
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Figure 5.2: HVS BadHoods – Number of Spamming Hosts per /24 prefix

BadHoods host less than three HVS. Remarkably, some blocks contain up to 27
HVS – which is far less than for LVS cases, as shown in Table 5.4.

In the most right column of Table 5.4, we show the top 20 “spam-friendly”
providers. Differently from LVS BadHoods, we can find providers for HVS from
Europe, Africa, Asia, Russia, and South America among the top 20. Even though
the European Union has a directive that regulates spam [49], each member state
is responsible for “taking appropriate measures to ensure that [...] unsolicited
communications for purposes of direct marketing [...] are not allowed either with-
out the consent of the subscribers”. Our results show that 5 of the top 20 HVS
BadHoods are located within the EU borders, which raises doubts on the effec-
tiveness of such directive.

Another interesting fact to observe is that Yahoo! Europe ranks number 8 in
the Top HVS list. Checking manually the 10 IPs, we found out they are, in fact,
mail servers from Yahoo! Mail located in the UK. This might be due to account
hijack, in which spammers hijack legitimate accounts to send spam [145, 146].

To conclude, HVS BadHoods show in which blocks HVS are located, thus
allowing us to identify “spam-friendly” providers. However, a complete analysis
on that is provided in Chapter 4. These results can be used to raise awareness
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Figure 5.3: Spamming BadHoods Firepower

about those providers and, in some cases, alert to the number of hijacked mail
accounts. This could be used by mail filters to appropriately rank mail from
such netblocks and by ISPs.

5.3.3 Spamming BadHood Firepower

So far, we have analyzed BadHoods based on the number of spamming hosts per
netblock. In this section we evaluate neighborhoods in terms of their firepower,
i.e., their impact measured in number of spam messages they have sent. Again,
we rely on the mail server logs to calculate the total number of spams sent per
/24 netblock. The result is shown in Figure 5.3. Each point represents one /24
block. Note the logarithmic scale of the y-axis.

In the beginning of this chapter, we have raised the question whether the
Spamming BadHoods with most spammers are also responsible for most of the
spam. In Figure 5.4, we show the number of spams sent by a /24 block as func-
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Figure 5.4: Number of Spam Messages versus Number of Spamming Hosts per /24
block

tion of the number of spamming hosts in that block. Each point represents one
/24 block. The diagonal line in the plot visualizes the minimum number of spam
messages that a netblock can send (which is equal to the number of spammers).
We notice a large variation in the number of spam messages per netblock. The
figure also shows that a higher number of spammers does not necessarily im-
plies that a BadHood also sends more spams. Especially for blocks with up to
ten spammers, there seems to be even a reverse relationship. Consequently,
the Pearson correlation [147] between the number of spamming hosts and the
number of spam messages per netblock is quite weak with a coefficient of only
0.32.

Our analysis also reveals how spam is distributed according to the Spam-
ming BadHoods. Figure 5.5 presents the cumulative distribution function for
the spam messages, where the BadHoods were ordered according to their fire-
power. As one can see, the majority of spam comes from a small fraction of
all BadHoods. In fact, 10 % of the BadHoods were responsible for 54.87% of
all spam. This suggests that, just by fighting a small subset of the malicious
BadHoods, we should be able to block the majority of spam.
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Figure 5.5: Spam CDF

As a matter of fact, these results show the strength of the Bad Neighborhood
concept. In Table 5.3, we observed that 46.94% of spammers (/32 hosts) gener-
ate only 9.8% of the total amount of spam – which poses a major challenge for
DNS blacklists-based spam detection. However, by employing the Bad Neigh-
borhood concept (/24 netblocks), we are able to invert this situation: we found
that 10% of Spamming BadHoods were responsible for 54.87% of all spam.

Given the threshold of θ = 56 spam messages, when ranking badhoods ac-
cording to their firepower, many of them that have a small number of spam-
mers must, therefore, contain HVS. In fact, among the top 10 worse Spamming
BadHoods, six have only one spamming host, two have two spamming hosts,
one has nine, and the last one has 32 spamming hosts.

This is also shown in Figure 5.4. We can see that the most severe Spamming
BadHoods are, in terms of number of spam messages sent (or firepower), HVS
BadHoods. However, most of BadHoods are classified as LVS. Even though the
HVS BadHoods are a minority, what we can learn from these results is to not
underestimate the HVS BadHoods firepower and the damage that they can in-
cur. On the other hand, the average firepower of the individual LVS BadHoods
is far lower. LVS BadHoods become powerful through their sheer number.
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Figure 5.6: All Spamming BadHoods

5.3.4 All Spamming BadHoods

As explained in Section 5.1.5, the goal of the fourth definition for Spamming
BadHoods is to identify all spamming netblocks, independently of the spam-
mers’ behavior. For our analysis, we used the data from the /32 blacklists (CBL,
PSBL, UCEPROTECT-1) and the mail server logs (Provider A, UT, CAIS/RNP,
Provider B) covering the period of April 19-26, 2010. This resulted in a list of
more than 124 million entries with 15 million unique IP addresses. We aggre-
gated the data by counting the number of spammers for each /24 block. By
doing this, we found 1,205,888 /24 netblocks with at least one spammer. Fig-
ure 5.6 shows the distribution of the spammers over the IP addressing space.
Each point gives the number of spammers of one /24 block. The x-axis specifies
the /8 prefix of the blocks.

Our main motivation for this definition is the question, how much data is
actually needed to identify all Spamming BadHoods. Comparing Figure 5.6 with
Figure 5.1, which has been generated only using mail server logs, we observe a
similarity between the results. In both figures, we can identify the same regions
with high, respectively low, activity. In total, mail server logs have allowed us to
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identify 571,389 Spamming BadHoods, while DNS blacklists combined together
with mail server logs allowed us to detect 1,205,932 Spamming BadHoods. The
difference of 634,543 between the two shows how much extra BadHoods have
been identified by using the additional information from DNS blacklists.

However, we should put this into perspective: the blacklists we have used in
our analysis have provided more than 115 million entries, while the mail servers
have provided us only 8.7 million ( a factor of 13). But, by using the blacklists,
we were able to identify only 2.11 times more BadHoods. We can conclude that
even though blacklist provide much more data, mail server logs perform quite
well when finding Spamming BadHoods.

5.4 Related Work

Several research works have suggested that malicious hosts are concentrated
on some subnetworks on the Internet. The network level behavior of spammers
was analyzed in [27]. The authors have collected spam from a spam sinkhole
for more than one year. They have shown that most of spam comes from a
few concentrated parts of IP address space. In our work, however, we have
obtained spam from mail servers from production networks – which have been
running legitimate mail servers for years – and DNS blacklists [33]. DNS black-
lists, such as [60, 75, 143], list malicious IP addresses at different aggregation
levels, suggesting concentration on some sub-networks. In [28], the authors
have defined the concept of uncleanliness, that “works as an indicator for how
likely the network is to contain compromised hosts".

In another work [122], the authors have set up an open relay for e-mail and
proposed a classifcation for spammers we have employed in this work: low-
volume spammers (LVS) and high-volume spammer (HVS). We have extended
this concept to BadHoods and employed it in our analysis. In [148], the authors
have conducted an experiment by becoming part of a spamming botnet. They
were able to observe a spam campaign over a period of week, in which 400
million spam messages were sent.

Late in November 2012, Pitsillidis et al. have scrutinized more than one bil-
lion spam messages [149]. They have extracted the malicious uniform resource
locators (URLs) presented in the messages and analyzed the spamming domains
listed in the messages (e.g., pharma-cheap.biz). Our work differs from theirs
since ours considers the IP addresses of the spam senders instead of the URLs
of the spamming hosts.

The Bad Neighborhood concept was introduced in [31]. In that study, the

pharma-cheap.biz
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authors collected data from several DNS blacklists and counted the number of
spamming hosts per /24 prefix. The resulting count was then transformed into
a score for the /24 netblock. Together with other data, they employed this score
to determine whether an e-mail would be spam or not, based on its sender’s IP.
If the message originated from a “bad neighborhood”, i.e., from a /24 netblock
with a high score, it was rated as spam, even if the particular sender IP was
never observed as spammer before. Our work goes beyond this work, by defin-
ing and analyzing four types of Spamming BadHoods. The results provided in
our work can be used to further develop current detection algorithms.

5.5 Conclusions

In this chapter we have refined the Internet Bad Neighborhood definition pre-
sented in Chapter 1, using as a case study Spamming BadHoods. We have raised
four research questions that led us to four definitions for Spamming BadHoods.

The RQ 5.1 was “What are the worst protected netblocks”. We have defined
and evaluated LVS BadHoods to answer this question. The results have shown
that some ISPs seem to completely neglect the malware propagation in their
networks. We can use these results to raise awareness on the most infected
networks and to improve security levels on those networks. Such BadHoods
can also be employed to characterize botnets.

RQ 5.2 focused on “what are the most spam-friendly providers”. We have
defined HVS BadHoods to answer this question, and identified such friendly
providers. The presented results can be used to raise awareness about those ISPs
and to question the effectiveness of Spam legislation, such as the EU directive
2002/58 [49]. The HVS information could be used by mail filters to block, or
at least appropriately rank, mails from such BadHoods.

RQ 5.3 question was whether “Spamming BadHoods with many spammers
also send many spam messages?”. Our analysis revealed that this is not the case.
In fact, the top 10 Spamming BadHoods had no more than 32 spamming hosts
(and 6 of them had only one, including the most active BadHood). In addition,
we have shown that most spam comes from a fraction of all BadHoods. The
lesson we can learn is that we should not underestimate HVS BadHood fire-
power. And that the list of HVS providers should be used to raise awareness
and improve security of such providers.

Finally, RQ 5.4 addressed “how much data do we need to find Spamming
BadHoods”. We have shown that DNS blacklists help to obtain twice as much
BadHoods than when only relying on our mail server logs. However, they have
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listed 13 times more IPs. We can conclude that even though blacklists pro-
vide more data, mail server logs perform quite well when finding Spamming
BadHoods.

For more than 15 years, the Internet community has been fighting spam, and
the problem is still far from being solved. In this chapter, we have provided an
insight on Spamming BadHoods, taking into account spammers behavior and
firepower. The definitions and results presented can be used to refine current
solutions to fight spam.



112 5 Case Study: Spamming Bad Neighborhoods



Part III

Defending Against Bad
Neighborhoods





The most effective way to restrict democracy is to transfer
decision-making from the public arena to unaccountable
institutions: kings and princes, priestly castes, military
juntas, party dictatorships, or modern corporations.

Noam Chomsky, 1998
In: Z Magazine CHAPTER 6

Bad Neighborhood Blacklists from other
Sources1

INTERNET blacklists (lists of malicious /32 IP addresses) can be obtained from
public sources and peer sources. Public sources are those that generate black-
lists based on the incoming traffic observed by their honeypots/traps and

make them publicly available on the Internet. For example, the Passive Spam
Block List (PSBL) [75] is a public spam blacklist, among many available on the
Internet. Peer sources, on the other hand, are sources that generate blacklists
and make them available only to few and by means of private agreements. When
a blacklist (/32) is aggregate into a bad neighborhood, we refer to that as Bad
Neigbhorhood blacklist (BadHood blacklist).

In this chapter, however, the goal is to determine how much a network man-
ager can rely on others’ BadHood blacklists to secure a host that he/she maintains
(we refer to this host as target in the rest of this chapter). Others, in this context,
refers to external sources from which we can obtain blacklists.

The motivation to undertake this study is the following: if most of the
BadHoods attacking the (to be secured) target are also listed on BadHood
blacklists from other sources, the network administrator could then effectively
employ such blacklists to feed BadHood-based defense mechanisms – such as
network/application firewall and IDS – in order to protect the target. More-
over, that eliminates the need to carry out local measurements to generate the
target’s own blacklist (target worst offender list (TWOL)), since blacklists ob-
tained from other sources could be employed. Since attackers may check the
IP addresses under their control against publicly available blacklists – and re-

1This chapter is based on the following publication: Moura, G. C. M., Sperotto, A., Sadre, R.,
Pras, A.: Evaluating Third-Party Bad Neighborhood Blacklists for Spam Detection. In: IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013), Ghent, Belgium, 27-31
May 2013 (to appear).
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frain from using such blacklists addresses – we are interested in finding whether
locally generated blacklists improved detection rates. In the context of this dis-
sertation, we focus on blacklist-based defense mechanisms, such as spam filter
rules employed by van Wanrooij and Pras [31].

Therefore, the main research question investigated in this chapter is the
following: how much can a network administrator rely on BadHood blacklists
obtained from other sources to protect a target?

One of the advantages of public blacklists is that they are usually gener-
ated using a large number of honeypots/traps distributed over many networks,
which increases the probability of blacklisting more sources. Peer sources black-
lists, on the other hand, are usually generated based on the incoming traffic to
one or few targets. However, there are some disadvantages of employing black-
lists from public sources. The main one is the fact that the dependability of the
security solution designed to protect the target is put at stake, since it relies
on the availability of third-party no-warranty freely distributed blacklists. Such
blacklist sources might fail for various reasons – a disruption in the service can
occur (e.g, PSBL users experienced a 4 day period outage in November 2011
due to bad weather conditions [75]), the public source might become victim of
DDoS attacks, or change their business model and charge for access, or even
stop providing blacklists overnight. Therefore, in this chapter we also evalu-
ate blacklists from peer sources, supposedly more trustworthy, since they are
endorsed by a private agreement.

Taking into account the source of the blacklists, we divide the previously
raised research question into two sub-questions:

1. RQ. 6.1: How much can a network administrator rely on public BadHood
blacklists to protect a target?

2. RQ. 6.2: How much can a network administrator rely on peer BadHood
blacklists to protect a target?

Figure 6.1 presents a summary on the usage of both public and peer sources
for protection of a target. In this figure, the target is protected from the Internet
by a BadHood-based firewall, which employs public or peer sources as input.

To answers the sub research questions, we first identify both public and peer
sources from which we can obtain blacklists. Next, for each source, we obtain
daily blacklists for the same monitoring period (1 week). Then, we compare the
public and peer BadHood blacklists to the target worst offender list (TWOL), as
shown in Figure 6.1. The idea is to determine if the attacks occurred in a similar
way – meaning the same number of attacking BadHoods, the same instances of
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Public Sources

Internet
TWOL

Target 

Peer Sources

Figure 6.1: Blacklist Sources for Target Protection

these BadHoods, and the same intensity. This, ultimately, allow us to answer
the main research question.

The rest of this chapter is organized as follows: in Section 6.1, we present
the public and peer sources from which we have obtained blacklists. After that,
we introduce in Section 6.2 the methods employed to compare the BadHood
blacklists. Next, we address RQ. 6.1 in Section 6.3, in which our results and
analysis are detailed. Later, RQ. 6.2 is investigated in Section 6.4. Finally, the
concluding remarks are presented in Section 6.5.

6.1 Blacklist Sources

In Section 6.1.1 we present the public sources from which we have obtained
blacklists. After that, in Section 6.1.2, we present our blacklist peers sources,
while in Section 6.1.3 we present the targets we aim to protect, by comparing
the target TWOL to both public and peer BadHood blacklists. Finally, in Section
6.1.4, we describe the measurement period and how we preprocess the data
before carry out the analysis.

6.1.1 Public Blacklist Sources

There are many blacklists available on the Internet. Some web-sites, like Unified
eMail [150], for example, even provide an interface that allows one to query a
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single IP address against more than two hundred different spam blacklists at
once.

We have therefore to choose what blacklists to evaluate. To do it so, we have
employed the following criteria:

1. Monitored application: the most popular type of blacklists are the spam
ones, but we also wanted to observe results for other applications, such as
SSH, so we can determine if the same results hold.

2. Prior usage on both academic and/or Internet security communities:
in order to filter out blacklists of questionable reputation, we only consider
blacklists that have been employed by Internet security systems and/or
previously investigated by the research community.

3. Method of access: we only evaluated blacklists that could be obtained as
a bulk single file. The method of access to blacklist varies, but mostly it
is provided in a DNS-like fashion [33], in which one queries the blacklist
server if a certain IP is blacklisted or not. In our case, blacklist that only
provide DNS-like access are disregarded, because, by this mean, we are
not able to effectively obtain all the blacklisted IP addresses.

Taking these criteria into account, we have obtained the following blacklists:

• Composite Block List (CBL) : CBL is operated by “a group of computer
security, spam and virus professionals, dedicated to developing and main-
taining an anti-spam and anti-virus DNSBL (DNS blacklist) of the highest
possible quality and reliability, that large organizations can use with con-
fidence” [60]. It lists /32 IP addresses that have reached their spamtraps.
The number of traps and their location is not disclosed, but it is distributed
over different networks and countries. CBL has been employed in a num-
ber of studies, including [62, 63, 64, 65, 66].

• The Passive Spam Block List (PSBL) [75]: as CBL, PSBL also maintains a
blacklist of /32 IP addresses that have spammed PSBL distributed traps.
They do not provide more details about their infrastructure and the orga-
nization behind it. PSBL has been also investigated by our research group
in two papers [65, 66].

• DShield.org (Dshield) [151]: DShield is a community shared firewall log
system. Volunteers submit their firewall logs from more than 600 contrib-
utors, which encompasses more than “500,000 IP addresses (firewalls) in
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over 50 countries” [152]. It is maintained by the SANS Institute [153],
and contains security logs from many applications. As for Spam blacklists,
the blacklists IP addresses are aggregated from many different sources.
The DShield dataset has been investigated by the research community in
papers including [154, 76, 155].

• SSH Blacklist (SSHBL): SSHBL maintains “19 hosts distributed over Eu-
rope, US, Australia, and China, and receives an average of 90 SSH brute-
force attacks per day” [156]. As the other public sources, SSHBL also does
not provide more information about its infrastructure.

6.1.2 Peer Blacklist Sources

Differently from the public sources, the peer sources for blacklists are those
that one might have private agreements to share data with. We have obtained
blacklists from the following sources:

• Provider A: Provider A is a major hosting provider in the Netherlands. We
have obtained spam blacklists generated after processing their mail filter
log files. As specified in the private agreement, we are not allowed to
reveal the real name of the provider or disclose more information.

• University of Twente/EWI (UT/EWI) [157]: As for provider A, we have
obtained the IP addresses of spammers that have reached the mail server
of the Electrical Engineering, Mathematics, and Computer Science Faculty
of the University of Twente, in the Netherlands.

• Security Incident Response Team of the Brazilian Research Network [144]
(CAIS/RNP): Differently from the previous sources, this one is located in
Brazil. We have obtained the malicious IP addresses from their mail server
log files.

• QuarantaineNet (QNET) [125]: QuarantaineNet is a Dutch company that
develops network security and management tools and provides admission
control and malware control to their customers. They maintain a honey-
pot infrastructure with 125 traps distributed mostly over the Netherlands.
In this data set, each individual trap is seen as a single blacklist source.
The monitored types of attack include SSH, MySQL, and Windows vulner-
abilities.



120 6 Bad Neighborhood Blacklists from other Sources

6.1.3 Target Blacklist Sources

As shown in Figure 6.1, to answer the research questions raised in this chapter,
we need as input (i) public and peer BadHood blacklists, and (ii) targets to be
protected. These targets should be, preferably, real world production servers,
to reflect what is observed on the Internet. In addition, such targets should be
application servers or honeypots for at least one of the applications we have
obtained blacklists.

In this chapter, we have considered situations in which the network manager
of Provider A, UT/EWI, and CAIS/RNP tries to protect his/hers targets. For
Provider A, UT/EWI, and CAIS/RNP, the targets are the mail servers behind
each source, while for QNET, the targets are the individual honeypots in their
honeypot infrastructure.

For each target, we generated a TWOL blacklist based on the history of in-
coming traffic (in the case of honeypot) or in the application server log files
(for the mail servers). Then, we compare it with the public sources and the
peer sources, excluding the cases in which both target and peer blacklists are
generated from the same host.

6.1.4 Blacklists Collection and Pre-processing

For all blacklists sources, we have chosen a common monitoring period. This
is necessary to create the same comparison conditions for the different sources.
For all sources, we have collected data for a period of one week, which is long
enough to observe a significant number of events. In addition, in this chapter we
only compare blacklists that belong to a same application (we compare blacklists
from multiple applications on Chapter 7).

For the Spam experiments, the monitoring period was from April 19th to
April 26th, 2010. For the SSH experiments, the monitoring period was also
one week, but from November 11th to 18th, 2011. Even though we have two
different monitoring periods, this does not impact our results, since we only
compare blacklists belonging to the same time frame.

After obtaining the blacklists, we have to parse them (using customized Java
software and Linux shell tools) and convert them to a common BadHood black-
list format, expressed by the tuple: 〈/24netblock,#ofHosts〉. In this format, a
/24 netblock refers to /24 IP address of the BadHood and # of Hosts refers to
the number of observed malicious host for that particular BadHood (0 < # of
Hosts < 256)2.

2In [158] and in Appendix E, we show how this can employed as a criteria in filtering spam.
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Figure 6.2: BadHoods Attacking Blacklists Sources

In Chapter 3, we have addressed the issue of the BadHood granularity –
and how to aggregate BadHoods to smaller prefixes. As we have presented,
the aggregation to prefixes smaller than /24 incurs error on the odds of a host
belonging to a certain netblock be malicious or not. We have chose therefore
/24 in this chapter in order to minimize such errors.

After aggregating the original blacklists to /24 BadHood blacklists, we can
proceed with the BadHood blacklists analysis, employing the comparison meth-
ods described in Section 6.2.

6.2 BadHood Blacklist Comparison Methods

The idea behind comparing BadHood blacklists is to tell how similar attacks on
the Internet are perceived by distinct blacklists sources. Consider as an example
the case of Figure 6.2. In this figure, four blacklists sources (1-4) are attacked
by different BadHoods (outer circles), being the attacks represented by a line
connecting a BadHood to a blacklist source. As can be observed, not all the
BadHoods attack the same sources, and some BadHoods attack only one or two
targets.

In order to answer RQ. 6.1 and RQ. 6.2, we therefore compare how two
different blacklists sources experience the attacks, by answering the following
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questions:

1. Are two different blacklists sources attacked by the same number of BadHoods
(that is, the same number of outer circles in Figure 6.2)?

2. Are two different blacklists sources attacked by the same BadHoods (that
is, exactly the same outer circles in Figure 6.2)?

3. If a BadHood is found attacking two different blacklists sources, is this
attack conducted with the same intensity, that is, the same number of
hosts?

We propose three comparison methods to investigate these questions. We
cover each them in the following.

6.2.1 First Method: BadHoods Distribution

The first comparison method focuses on analyzing the BadHoods distribution on
each BadHood blacklist. By employing this method to two different blacklists,
we can tell if they are attacked by the same number of BadHoods. We therefore
compute the following metrics:

• number of source BadHoods (# of distinct /24)

• minimum number of malicious hosts per BadHood (min)

• maximum number of malicious hosts per BadHood (max)

• mean number of malicious hosts per BadHood (mean)

• standard deviation of the number of malicious hosts per BadHood (sdev)

To calculate these metrics, we have employed the software environment for
statistical computing R [159].

6.2.2 Second Method: Intersecting BadHoods

The second method focuses on telling if two different blacklists sources are
attacked by the same BadHoods. To answer this question, we perform an inter-
section operation between the BadHood set of each source, as shown in Figure
6.3 for two sources (S1 ∩ S2).
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S1 S2

Figure 6.3: Intersecting BadHoods between two Blacklist Sources

The intersection is performed by comparing the each /24 netblock from the
BadHood tuple 〈/24netblock,#ofHosts〉 from each blacklist source. If there is
a match, we then store this information in what we call BadHood intersection
tuple: 〈/24netblock,#ofHostsD1,#ofHostsD2〉.

In the literature, the total number of resulting matching entries is also re-
ferred to as hit count [76, 160], which we use in the rest of this chapter. We refer
to as “irrelevant entries” to the blacklist source 1, in Figure 6.3, to the BadHoods
that attacked exclusively source 2 and are not observed by source 1, therefore
being irrelevant to source 1. In set notation, this is equal to S2− (S2 ∩ S1).

To single out the matching BadHoods, we have developed a small program
using the Java programming language.

6.2.3 Third Method: Correlation

The final comparison method focuses on the following: if a BadHood is found
attacking two blacklists sources, does it employ the same number of hosts (in-
tensity)? We answer this question in two different ways:

• Scatter plot: we plot in a point for each BadHood that matches the two
compared data sets. The coordinates (x, y) from each point is given by the
#ofHostsD1, #ofHostsD2 from the BadHood intersecting tuple. The
scatter plot allows us to observe, visually, if there is a relationship between
the number of hosts from each data set.

• ∆ analysis: for each intersecting BadHood (n), we calculate:

∆n = #ofHostsD1 −#ofHostsD2 (6.1)

Each ∆n represents the difference between the number of hosts a par-
ticular BadHood employed to attack two different targets. We calculate
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∆n for every matching BadHood between to sources and, after that, we
analyze the distribution of delta values.

If most of ∆ values are equal to zero, we can conclude that most of match-
ing BadHoods attack both targets using the same number of hosts. If most of
∆ values are larger than zero, than the BadHoods attack the first target (D1)
using more hosts than when attacking D2 (the same analogy applies to negative
values).

To calculate the ∆ values, we have employed a small program using the Java
programming language.

6.3 Public BadHood Blacklists Evaluation

In this section we investigate RQ. 6.1 : “How much can a network administrator
rely on public BadHood blacklists to protect a target?”. As described in Section
6.1.4, we have obtained various blacklists and then aggregated then into /24
BadHoods. After that, we have employed the comparison criteria to answer our
research questions. In Section 6.3.1, we presents the results and analysis for the
first comparison method (BadHoods Distribution), whereas in Section 6.3.2 we
show the results for the second comparison method (BadHoods Intersection),
and, finally, in Section 6.3.3 we show the results for the BadHoods correlation.

6.3.1 Method #1: BadHoods Distribution

In this section we present the results of the BadHood distributions. We first
present results for Spam and then for SSH blacklists.

Spam BadHoods

When comparing BadHood blacklists from public sources to targets, one could
expect that public sources are likely to have a significantly higher number of
BadHoods than individual targets, since public sources, typically, aggregate data
from multiple hosts to generate a single blacklist. The intuition is that more
monitoring hosts increase the chances of observing attacks from different hosts,
ultimately increasing the total number of observed BadHoods. Thus, public
sources should be able to capture a significantly higher number BadHoods than
individual targets.
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Public Sources Targets
Metric CBL PSBL DShield-Spam Prov. A UT/EWI CAIS/RNP
# of BadHoods 1,140,005 732,731 37,051 548,866 248,947 34,096
Min(hosts) 1 1 1 1 1 1
Max(hosts) 256 248 110 227 101 28
Mean(hosts) 12.58 4.81 1.23 3.03 1.72 1.08
Sdev 29.32 9.44 1.36 4.81 1.77 0.44

Table 6.1: Spamming BadHoods Distribution

Table 6.1 shows the results for Spam BadHoods. In each column, we have
the BadHood blacklists obtained from the public sources and the targets, and in
each line we have the results for the metrics described in Section 6.2.1.

Analyzing the number of BadHoods in the table, we see that, with the ex-
ception of DShield-Spam3, the difference between public BadHood blacklists and
Targets blacklists is relatively not so big. For example, the ratio between CBL
and Provider A – data sets that have more entries in each category – is roughly
2. Comparing CBL to the second target in terms of entries (UT/EWI), this ratio
is 4.5. The difference is more significant when comparing CAIS/RNP, a small
target, to the public sources.

In the case of DShield-Spam, which is a public source, we can observe that
it was attacked by a smaller number of BadHoods in comparison to the targets
Provider A and UT/EWI. The reason for that might be due to the fact that, for
Provider A and UT/EWI, the blacklists are generated based on the mail server
logs, while DShield blacklists, on the other hand, are generated based on fire-
walls/IDS logs [161], which are not specifically designed to detect spam.

We can observe that the ratio between the number of BadHoods observed
by public sources and individual targets is only between 2 and 4 (excluding
DShield-Spam and CAIS/RNP). An interesting observation is that large data
sets, like CBL, have observed 1,140,005 /24 BadHoods out of the roughly 16
million theoretical maximum. This is a revealing number: it means that at least
6.79% of all /24 neighborhoods on the Internet are involved in Spam. Provider
A, on the other hand, as a single target, has been attacked by 3.2% of all neigh-
borhoods on the Internet.

In addition, we can observe in Table 6.1 that there is a correlation between
the number of BadHoods and the mean number of hosts per neighborhood:
the more BadHoods a source observes, the more hosts per neighborhood, in
average, the source observes (Pearson correlation coefficient [147] of ρ = 0.92).

3DShield-Spam is a subset of DShield – only attacks on TCP ports 25 and 465.
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Public Sources Targets
Metric SSH-BL DShield-SSH QNET-1 QNET-2 QNET-3 QNET-4 QNET-5
# of BadHoods 17,637 3,740 110 85 56 31 24
Min(nHost) 1 1 1 1 1 1 1
Max(nHost) 4 113 2 1 1 1 1
Mean(nHost) 1.02 1.09 1.02 1 1 1 1
Sdev 0.19 1.87 0.16 0 0 0 0

Table 6.2: SSH BadHoods Distribution

From the point of view of the network administrator, however, the main
concern is that public sources observe more BadHoods than the target itself.

SSH BadHoods

Table 6.2 shows the results for SSH BadHoods. For this application, we have
used SSH-BL and DShield-SSH (a subset of DShield dataset, listing IP addresses
that have attacked port 22). The targets, on the other hand, were obtained
from QNET blacklists. For the monitoring period, 16 of their 125 honeypots
have observed SSH attacks. Out of those, we have chosen the top five in terms
of number of attacks (QNET-1 – QNET-5) and performed our analysis.

As for Spamming BadHoods, we can observe that for SSH, public sources
also observe more BadHoods than targets themselves. However, the difference
between public sources and targets, in this case, is quite significant: a ratio
of 160.3 when dividing the number of BadHoods of SSH-BL by the number of
BadHoods of QNET-1.

In addition, the total number of BadHoods observed for SSH is also very low
compared to those observed for Spam. The reason for that is that SSH attacks
are far less common than Spam. Therefore, within the same monitoring period
of one week, individual targets observe only very few attacks, usually from a
single host per /24 BadHood. As expected, public sources detect much more
BadHoods than targets. We compare BadHoods from different applications in
more details in Chapter 7.

For both Spam and SSH BadHoods, we can conclude that public sources are
more likely to observe more BadHoods than targets due to the larger number and
distribution of their monitoring probes. This behavior, in turn, strengthens the
idea that public BadHood blacklists can be employed to protect targets on the
Internet.
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Targets Public Sources
CBL PSBL DShield-Spam

Provider A 98.74% (541,967) 88.03% (483,179) 2.79% (15,336)
UT/EWI 97.95% (243,855) 93.13% (231,856) 4.49% (11,189)

CAIS/RNP 99.12% (33,799) 96.88% (33,034) 6.78% (2,315)

Table 6.3: Spam BadHoods Intersection (% related to the target’s BadHoods)

6.3.2 Method # 2: BadHoods Intersection

In Section 6.3.1, we have shown that public sources are likely to observe more
BadHoods than the targets. However, we wonder if this implies that the target
BadHood blacklists are, consequently, a subset of the public sources BadHood
blacklists. This leads us to our second comparison method. First we present the
results for Spam BadHoods and then for SSH BadHoods.

Spam BadHoods

For Spam BadHoods, as observed in Table 6.1, CBL BadHood Blacklist comprises
6.79% of the maximum theoretical /24 prefixes, while provider A covers 3.2% of
this value. We might expect a significant intersection between these two sources
(and the others as well). Otherwise, the implications would be alarming: if both
sources are attacked by distinct BadHood sets, that would mean that at least
10% of all /24 neighborhoods on the Internet are involved in malicious activity.
Not only that, if the same behavior holds for other blacklist sources, we could
end up having the majority of the Internet Neighborhoods (/24) being classified
as “bad”.

The results the intersection between the Spam Blacklist sources are shown in
Table 6.3. In this table, we show the percentage of BadHoods from each target
(in rows) captured by the public sources (columns) – (targets∩ public) and the
absolute number in parenthesis. With exception of DShield-Spam, the public
sources, indeed, capture most of the BadHoods that attack individual targets
(from 88.03% to 98.74%). From the point of view of the network administrator,
this is a very satisfactory result, since it confirms that one can rely upon public
spam blacklist sources to protect the network.
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Targets CBL PSBL DShield-Spam
Provider A 108.95% (598,038) 45.46% (249,552) 3.95% (21,715)

UT/EWI 359.97% (896,150) 201.19% (500,875) 10.38% (25,862)
CAIS/RNP 3,244.38% (1,106,206) 2052.13% (699,697) 101.87% (34,376)

Table 6.4: Non-Intersecting Spamming BadHoods (% w.r.t. lines)

Irrelevant Entries

Even though public BadHood blacklists can be used to protect a specific target,
there is a drawback: even though CBL captures 98.74% of Provider A BadHoods
(Table 6.3), CBL has still 598,038 BadHoods that did not spam Provider A mail
servers – which is twice the size of Provider A BadHood blacklist, as shown in
Table 6.4. Such BadHoods are actually irrelevant to the targets – they represent
BadHoods that have not attacked the target in the monitoring period.

This existence of a significant number of irrelevant entries has been sug-
gested by Zhang et al., in which they say that GWOL lists such as PSBL and
CBL “have the potential to exhaust the subscribers’ firewall filter sets with ad-
dresses that will simply never be encountered” [154] This may incur a problem
if such BadHood blacklist is employed in memory constrained devices – such as
switches and routers (CBL non-matching list in relation to Provider A requires
12MB of storage in plain-text format, but also lookup time plays a role). The
same reasoning can be applied for SSH-Badhoods. To address this issue, one
could aggregate the BadHood blacklists into smaller prefixes (e.g., /23, /22), as
proposed and evaluated in Chapter 3.

Understanding the Intersection

Figure 6.4 shows the intersection between CBL and Provider A. As can be seen,
Provider A is almost a subset of CBL (CBL ∩ A, as shown in Table 6.3). How-
ever, as shown in Table 6.4, CBL was attacked by 598,038 BadHoods that did
not attack Provider A (CBL-(CBL∩ A)). This number represents 52.45% of all
BadHoods attacking CBL.

In this subsection, we compare the distribution of the number of hosts of
these two subsets (we have carried out the same analysis for UT/EWI and PSBL,
and the same conclusions hold). Intuitively, one could think that there would
be no particular reasons for this distribution to differ from one another.

As shown in Section 6.2.2, each intersecting BadHood is stored in the follow-
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CBL-(CBL∩ A) CBL ∩ A

Figure 6.4: CBL and Provider A Intersecting BadHoods

Metric CBL - Intersection CBL - Complement
# of BadHoods (/24) 541,967 598,038

Min(nHost) 1 1
Max(nHost) 256 256

Mean(nHost) 22.43 3.66
Sdev 39.17 9.11

Table 6.5: Distribution of malicious hosts

ing tuple: 〈/24netblock,#ofHostsD1,#ofHostsD2〉, in wich HostsDn refers
to the number of hosts observed for the compared data sets. For this case, D1

is the CBL data set, while D2 is Provider A. Table 6.5 presents the results of the
distribution of hosts. In the second column, we present the distribution of the
number of hosts per BadHood for CBL (D1), while in the third column we show
the results for complement part of CBL (CBL -(CBL ∩ Provider A)).

Intuitively, one would expect that the BadHoods having more malicious
hosts are more likely to attack different targets (CBL and Provider A, in this
case), since more malicious hosts would increase the capacity of attack of the
BadHood. And this is exaclty what we observe. Analyzing Table 6.5, we can
observe that the CBL part that intersects with Provider A has a bigger number
of average hosts.

This confirms our intuition: BadHoods having more malicious hosts attacking
a public source are more likely to attack a target. Figures 6.5 and 6.6 show these
results graphically, by showing the distribution of number of hosts per BadHood
from both sets.

We believe that the reason why public sources capture, on average, more
malicious hosts per BadHood than individual targets is that they employ multi-
ple targets and aggregate data from those, increasing the probability to observe
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Figure 6.7: Distributed Targets Versus Single Target

Targets Public Sources
SSH-BL DShield-SSH

QNET-1 22.72 % (25) 94.54 % (104)
QNET-2 19.58 % (9) 98.82 % (84)
QNET-3 64.28 % (36) 89.28 % (50)
QNET-4 45.16 % (14) 96.77 % (30)
QNET-5 41.66 % (10) 94.83 % (23)

Table 6.6: SSH BadHoods Intersection (% w.r.t. target)

attacks. To illustrate this, consider Figure 6.7. In this figure, target A is attacked
by only one host (4) belonging to the particular BadHood, while CBL sources
(x, y, and z) are attacked by hosts 1, 2, and 4.

SSH BadHoods

Table 6.6 shows the results for SSH BadHoods. Even though SSH-BL lists much
more BadHoods than DShield (17,637 against 3,740, as shown in Table 6.2),
surprisingly, more DShield BadHoods intersect with QNET individual targets.
This reflects an interesting observation: BadHood blacklists having more entries
do not necessarily lead to more matching BadHoods to a particular target. Since
we do not know exactly the details of the infrastructure behind each data source,
we can only speculate the reasons for this behavior – for example, it might be
the case that SSH attackers prefer to choose their targets more strategically than
spammers [29].

For both Spam and SSH BadHoods, we can conclude from this comparison
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Figure 6.8: Scatter Plot - Provider A - CBL

method that some public sources are likely to capture most of the BadHoods
that attack individual targets. The choice of which public source provides the
best results cannot always be answered easily. Therefore, we recommend that
organizations carry out experiments to assess the quality of the BadHood black-
lists they consider to employ in relation to what is observed by the targets.

6.3.3 Method # 3: Correlation

The last comparison method allows us to tell if BadHoods attack different tar-
gets with the same intensity, that is, the same number of hosts. To answer this,
we first generate a scatter plot using as coordinates the number of malicious
hosts from the intersecting BadHoods, as described in Section 6.2.3.

Figure 6.8 shows for all BadHoods in the intersection ICBL∩ProviderA the
number of spamming hosts monitored by CBL (x-axis) and monitored by Provider
A (y-axis). As expected, the much larger CBL blacklist sees more hosts for the
same BadHood than Provider A. We believe the reasons for that are the same
discussed in Section 6.3.2 and shown in Figure 6.7: public sources are more
likely to observe more hosts per BadHood due to the large number of monitor-
ing hosts they employ.

To quantify this difference, we calculate the ∆ values between the number
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Figure 6.9: Difference Between The Number of Spamming Hosts - CBL and Provider A

of hosts attacking CBL and Provider A from each BadHood. Then, we analyze
the distribution of the ∆ values, as shown in Figure 6.9. In this figure, on the y
axis we show the number of occurrences – that, the number of ∆ values, in log
scale, while on the x axis we show the values for ∆.

As can be seen, the majority of ∆ are positive – meaning that CBL was at-
tacked by more hosts than Provider A (only in few cases Provider A observed
more BadHoods – ∆ < 0). In addition, we can observe that most of ∆ values are
located within the interval [0–25] – that is, most of the BadHoods employed be-
tween [0–25] more hosts to attack CBL. We have also carried the same analysis
PSBL and UT/EWI, and the former results holds.

We have executed the same analysis for SSH BadHoods. However, since the
number of intersecting BadHoods is very small in relation to spam (e.g., SSH-
QNET1 has 104 BadHoods intersecting with DShield-SSH) we do not present
the graphical analysis. Out of the 104 intersecting BadHoods between SSH-
QNET1 and DShield-SSH, 95 attacked both with only one host, 2 attacked both
with 2 hosts, 6 attacked DShield-SSH with 2 hosts while only one to SSH-QNET,
and 1 BadHood attacked DShield with 3 hosts and 2 hosts to SSH-QNET.

Therefore, what we can learn from both Spam and SSH cases is that the
way a particular BadHood attacks different targets (or set of) depends on the
application. For Spam, it is more likely that BadHoods always attack public
sources with more hosts since public sources employ more monitoring hosts
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than targets typically. This information can be employed, for example, in mail
filters, when estimating the probability of a message being spam or not: if the
source IP address has been found in a BadHood blacklist generated from public
sources, the higher the probability of this message being spam. In the case of
SSH, there were few attacks to draw similar conclusions.

6.4 Peer BadHood Blacklists Evaluation

In this section we address RQ. 6.2: “How much can a network administrator
rely on peer BadHood blacklists to protect a target?”. As described in Section
6.1.3, we assume the point of view of a network administrator from Provider A,
UT/EWI, CAIS/RNP, and QuarantaineNet.

In this section, we present our analysis for both Spam and SSH BadHoods.
In Section 6.4.1, we show the results for the first comparison method, while in
Section 6.4.2 and 6.4.3 we show the results for both second and third methods.

6.4.1 Method # 1: BadHoods Distribution

In this section, we show the results for the distribution of Bad Neighborhoods.
First we cover the Spam BadHoods and then SSH BadHoods.

Spam BadHoods

When comparing peer BadHood blacklists to targets, one could think that the
number of BadHoods would be similar – since, in our case, peer sources and
targets are individual hosts. Table 6.7 shows the results for the Spam BadHood
blacklists. Analyzing this table, we can observe that there is a significant differ-
ence in the number of BadHoods that attack each peer/target (# of BadHoods
(/24)): Provider A has observed 2.2 times more BadHoods than UT/EWI, and
16.09 times more than CAIS/RNP.

These result shed some light on the modus operandi of spammers: they spam
more targets with more users. Even though we do not know the precise number
of users per source, we know that Provider A has more e-mail users, followed
by UT/EWI, while CAIS/RNP has the smallest number.
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Peer Sources/Targets
Metric Provider A UT/EWI CAIS/RNP
# of BadHoods (/24) 548,866 248,947 34,096
Min(nHost) 1 1 1
Max(nHost) 227 101 28
Mean(nHost) 3.03 1.72 1.08
Sdev 4.81 1.77 0.44

Table 6.7: Distribution of Malicious Hosts - Peer Sources and Targets

Peer Sources/Targets
Metric QNET-1 QNET-2 QNET-3 QNET-4 QNET-5
# of BadHoods 110 85 56 31 24
Min(nHost) 1 1 1 1 1
Max(nHost) 2 1 1 1 1
Mean(nHost) 1.02 1 1 1 1
Sdev 0.16 0 0 0 0

Table 6.8: SSH Peer BadHoods Distribution

SSH BadHoods

In Section 6.3.2, we have shown that public SSH BadHood blacklists observe
list much more BadHoods than individual targets. Since SSH attack are not that
frequent as Spam, one could expect that peer sources and targets consisting of
one monitoring host would observe a small but similar number of BadHoods.

This intuition is confirmed by the results shown in Table 6.8. In this ta-
ble, each Target/Source is an individual honeypot of QuarantaineNet honeynet.
Each target (QNET-1 – QNET-5) is located in a different network. As can be
seen, the number of attacking BadHoods is small (24–110) and, as shown by
the mean value, only one host per BadHood was observing attacking these tar-
gets.

6.4.2 Method # 2: BadHoods Intersection

In Section 6.4.1, we have shown that the number of observed BadHoods varies
according to the target/peer source. Even though these numbers vary, we still
want to know how many (if any) BadHoods were observed by both targets
and peer sources (peer ∩ targets). To answer this question, we determine the
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Targets Peer Sources
Provider A UT/EWI CAIS/RNP

Provider A – 41.68% (228,777) 5.8% (32,347)
UT/EWI 91.89% (228,777) – 9.3% (23,316)

CAIS/RNP 94.8% (32,347) 68.3% (23,316) –

Table 6.9: Peer Spam BadHoods Intersection – % in relation to the target’s BadHood
blacklist

intersection between the BadHoods observed by the two data sets. First we
present the results for Spam BadHoods, and then for SSH BadHoods.

Spam BadHoods

Table 6.9 shows the results for the Spam BadHoods. In this table, we show
the percentage of the target’s BadHoods (rows) that were captured by the peer
sources (columns), while the absolute number is shown between parentheses.
For example, if Provider A were to employ BadHood blacklist from UT/EWI,
that would be enough to detect only 41.68% of the Spamming BadHoods it
observes.

Analyzing Table 6.9, we can observe that the best results are obtained only
when UT/EWI and CAIS/RNP employ Provider A’s BadHood blacklist. The rea-
son for that is also related to the number of entries each peer source observes:
as shown in Table 6.7, Provider A has observed 2.2 and 16.09 times more
BadHoods than UT/EWI and CAIS/RNP, respectively.

Irrelevant Entries

Table 6.10 presents the number of BadHoods that are irrelevant to the targets
– that is, they have not been observed attacking the targets, but only the peer
sources. If the target UT/EWI were to use Provider A’s BadHood blacklist, it
would be able to match 91.89% of the BadHoods (as shown in Table 6.9), but
UT/EWI would not observe 319,889 BadHoods that only attacked Provider A,
as shown in Table 6.10, which is equal to 128,49% of Provider A’s own observed
blacklist. The same reasoning applies to the other targets.
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Target/Peer Source Provider A UT/EWI CAIS/RNP
Provider A – 20,710 (3.77%) 1,749 (0.31%)

UT/EWI 319,889 (128,49%) – 10,780 (4.33%)
CAIS/RNP 516,519 (1,514.89%) 225,631 (661,75%) –

Table 6.10: Non-Intersecting Spamming BadHoods - Peer Sources – % in relation to the
target’s BadHood blacklist

Peer Sources
Target QNET-1 QNET-2 QNET-3 QNET-4 QNET-5
QNET-1 – 0 3 1 1
QNET-2 – 0 0 0
QNET-3 0 0 – 0 0
QNET-4 0 0 0 – 0
QNET-5 0 0 0 0 –

Table 6.11: Peer SSH Peer BadHoods Intersection

SSH BadHoods

Table 6.11 shows the results for the peer sources for SSH applications. For the
monitored sources, the number of matching BadHoods is very small if not zero.
For those SSH peer sources, we can conclude that it is not worth to employ
other peer’s blacklists.

Taking these results in consideration, we can conclude that for some cases it
might be worth to employ peer sources to generate BadHood blacklists, taking
into account the number of observed BadHoods per target and application.

6.4.3 Method # 3: Correlation

This comparison method allows us to tell whether a peer source and a target are
attacked with the same intensity – that is, the same number of malicious hosts
per matching BadHood. To perform this, we first generate a scatter plot using
as coordinates the number of malicious hosts from the intersecting BadHoods,
as described in Section 6.2.3.

The scatter plot for Spam BadHoods is shown in Figure 6.10. Each point rep-
resents an intersecting BadHood, where the tuple (x, y) represents the number
of hosts used by then BadHood to attack Provide A and UT/EWI, respectively.
The green line (Ratio=1) shows where the number of hosts is equal for both
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Figure 6.10: Scatter Plot - Provider A - UT/EWI

datasets. As can be seen, most of the BadHoods have attacked Provider A using
more hosts than when they attacked UT/EWI (all points below the green line).
This shows that not only more BadHoods attack targets having more valid mail
users (as shown in Section 6.4.3), but that they use more hosts to carry out the
attacks.

Figure 6.11 shows the distribution of the difference values (∆) between
the number of hosts attacking Provider A and UT/EWI, for the intersecting
BadHoods. As can be see, most of difference values are located within the inter-
val [0–25] – that is, most of the BadHoods employed at most 25 more hosts to
attack Provider A than UT/EWI, and the number of occurrences decreases as ∆
values increase. There are some few cases in which UT/EWI has observed more
attacking hosts than Provider A, but they represent a minority of the cases.

In the case of SSH BadHoods for peer sources, the number of intersecting
BadHoods is very small, therefore we have not proceeded with the analysis.

Taking the results from both Spam and SSH, we can conclude that, de-
pending on the application, peer sources observe different number of attack-
ing BadHoods, as we have observed when comparing Public source Blacklists
BadHoods to individual targets.
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6.5 Conclusions

In this chapter we have investigated the following research question: “how
much a network administrator can rely on BadHood blacklists obtained from other
sources to protect a target?”. The answer to this question is that, indeed, network
administrators can rely upon public or peer sources to protect a target and have
a high BadHood hit count rate. However, not all BadHood blacklists sources
can be relied upon. Therefore, we recommend network administrators to carry
out an evaluation (as presented in this chapter) comparing to public and peer
BadHood blacklists.

In RQ. 6.1, we asked “how much a network administrator can rely on BadHood
blacklists obtained from public sources to protect a target?”. We have evaluated
both Spam and SSH BadHoods, and the results were the following:

• Spam: We observe a significant overlap between the public BadHood
blacklists. This is particularly true for large, public blacklists such as CBL
and PSBL, which cover up to 99% of the BadHoods spamming the targets.
Our research also shows that this intersection captures the most aggres-
sive BadHoods (in terms of number of malicious hosts). However, we
also found that large blacklists also contain a large number of “irrelevant”
entries, which are BadHoods not observed by the target itself. Such ex-



140 6 Bad Neighborhood Blacklists from other Sources

tra entries might impose a burden if used in resource-restricted security
mechanisms, such as firewalls. These results were presented in Section
6.3.

• SSH: public SSH blacklist sources are more likely to observe much more
BadHoods than individual targets (up to 734.8 times more), and one of
the public sources we have evaluated was able to capture up to 98.82% of
BadHoods observed by targets (as shown in Section 6.3).

In RQ 6.2, we investigated “how much a network administrator can rely on
BadHood blacklists obtained from peer sources to protect a target?’. We have also
evaluated Spam and SSH BadHood blacklists. We found:

• Spam: not all peer sources observe more BadHoods than individual tar-
gets – which is condition required to employ BadHood blacklist from other
sources. For the cases in which the peer source observes more BadHoods,
we found that peer sources we able to capture up to 94.8% of BadHoods
observed by individual targets, as shown In Section 6.4.

• SSH: the monitored targets have observed a small number of BadHoods,
and only in 3 cases (out of 16) there were BadHood matches, as we cov-
ered in Section 6.4.

Comparing the results obtained from above question, we can conclude that
public sources can be relied upon to protect individual targets, for both Spam
and SSH. Peer sources, on the other hand, can be used for Spam only if the
peer source observes more attacks than the target itself, whereas for SSH we
found that it is not worthy using peer sources to protect targets. For both cases
(public and peer sources), we recommend network administrators to evaluate
the Blacklist sources before using them.



It has certainly been true in the past that what we call
intelligence and scientific discovery have conveyed a
survival advantage. It is not so clear that this is still the
case: our scientific discoveries may well destroy us all [...].

Stephen Hawking , 1988
In: A Brief History of Time CHAPTER 7

Bad Neighborhood Blacklists from
Different Applications

IN this chapter, our goal is to determine if different types of Internet attacks
are originated by the same set of Internet BadHoods. The motivation for
conducting this study is similar to the motivation of Chapter 6: to avoid

carrying out unnecessary network measurements. If we find that the same set of
Internet BadHoods are responsible for different type of attacks (e.g, spam, SSH
scans, etc), a network administrator could avoid having to generate application-
tailored BadHood blacklists, and employ the currently available ones to protect
targets running different applications. For example, one could employ a Spam
BadHood blacklists to also protect from SSH or Windows Shares attacks.

We have seen in Chapter 4 and in Chapter 6 that the size of BadHood black-
lists varies according to the application (e.g., spam blacklist have usually more
entries than SSH and phishing counterparts). However, whether we can find a
significant number of BadHoods in different blacklists is still unclear – which is
the object of study in this chapter.

Taking this into account, we raise the following research question: “Are the
same BadHoods responsible for carrying out attacks to different applications on the
Internet?”.

To answer this research question, we have first chosen data sets containing
IP addresses found carrying out attacks employing different applications. After
choosing the data sets, we have carried out the measurements, and obtained
a daily snapshot of each data source for a week period. Next, we have gen-
erated individual blacklists containing the IP addresses of the attackers, and
aggregated it into /24 BadHoods. We have chosen /24 because this is the pre-
fix that incurs less aggregation error (as discussed in Chapter 3), and it is also
the smallest prefix that can be “routed” on the Internet [78]. After that, we
will compare the generated BadHood Blacklists employing the same method-

141
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ology we have used in Chapter 6 when we compared BadHood blacklist from
different sources.

This chapter is further organized as follows. In Section 7.1, we present the
application-specific data sets we have used to generate the BadHood blacklists
for the various evaluated applications. In Section 7.2, we evaluate the data sets
employing the comparison methods described in Section 6.2. Finally, in Section
7.3, we present our conclusions for this chapter.

7.1 Blacklist Sources

In this section, we present the data sets that are specific for spam (CBL: Sec-
tion 7.1.1), phishing (Phishtank, Section 7.1.2), and firewalls logs having mul-
tiple applications (DShield, in Section 7.1.3).

For the three data sets, we have collected data for a one week period (Novem-
ber 11th to 18th, 2011). Then, we have generated a single list of /32 IP ad-
dresses for each data set. Subsequently, each blacklist was aggregated into a
/24 BadHood blacklists.

For choosing what data sets to evaluate, we have employed the same criteria
as for Chapter 6, as described in Section 6.1.1: (i) monitored applications, (ii)
prior usage in both academic or Internet security communities, and (iii) method
of access. We have focused on data sets that would provide lists for different
applications, that have been used in different research works, and that can be
obtained in bulk. Next we provide more detail about each data set.

7.1.1 Composite Block List (CBL)

As described in Chapter 6, Composite Block List (CBL) is spam blacklist, which
is operated by “a group of computer security, spam and virus professionals,
dedicated to developing and maintaining an anti-spam and anti-virus DNSBL of
the highest possible quality and reliability, that large organizations can use with
confidence” [60]. It lists /32 IP addresses that have reached their spamtraps.
The number of traps and their location is not disclosed, but it is distributed over
different networks and countries. CBL has been employed in a number studies,
including [62, 63, 64, 65, 66].
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Listing 2 Sample of DShield Log Files

Source IP Port Proto Occur. Targets First Seen Last Seen

062.004.071.237 8080 6 78261 78230 02:48:30 22:59:01

063.076.053.141 8080 6 77402 76985 06:37:10 18:31:29

221.011.023.124 3306 6 66622 66604 01:09:31 19:46:32

074.082.166.196 135 6 65307 64923 04:56:15 23:54:11

061.147.088.223 1433 6 64802 64798 06:30:18 07:20:51

121.008.251.046 22 6 126766 64532 00:27:09 00:32:36

7.1.2 Phishtank

As shown in Chapter 4, we have obtained data from Phishtank, which is an
open community web site in which anyone can “submit, verify, and track phish-
ing websites” [106]. It provides a blacklist of URLs that contain forged websites.
Since we need IP addresses instead of URLs to proceed with our analysis, we
have obtained this blacklist and resolved all the URLs to IP addresses using
Google Public DNS [107]. In case of a URL was resolved to multiple IP ad-
dresses, we have considered all of them.

7.1.3 DShield

As described in Chapter 6, DShield [151] is a community shared firewall log
system. Volunteers submit their firewall logs from more than 600 contributors,
which encompass more than “500,000 IP addresses (firewalls) in over 50 coun-
tries” [152]. It is maintained by the SANS Institute [153], and contains security
logs from many applications. The DShield dataset has been investigated by the
research community in several research works, including [76, 154, 155].

An additional advantage of using the DShield dataset is that it provides log
files for attacks belonging to many applications — differently, for example, from
blacklists like CBL [60], that only list spamming IP addresses.

Listing 2 shows a sample of a DShield log file (field names were changed to
fit in the page). As can be seen, the file is aggregated over the source IP address
of the attacker (Source IP) and destination port (Port). For example, the first
IP address in the list (62.4.71.237) has employed TCP (Proto = 6, from IANA
Internet protocol numbers [162] to attack port 8080 for 78,261 times (Occur.),
on 78,230 distinct targets (Targets). The time information is also included, in
GMT. The date can be inferred from the file’s name (DShield provides one file
per day).
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Metric Number
# of distinct /32 IPs/Proto/Port 4,978,729
# of distinct /32 IPs 2,888,099
# of distinct /24 BadHoods/Proto/Port 2,915,394
# of distinct /24 BadHoods 1,259,916
# of distinct Applications (Proto/Port) 125,383

Table 7.1: D-Shield Data Set – Breaking Down

We have then filtered the Dshield files to keep only the information we
needed (Source IP, Port, Proto). After that, we have filtered out repeated
entries and generated unique entries (Source IP, Port Number, Protocol).
For the monitoring period, we found 4,978,729 different entries.

Table 7.1 provides an overview of the DShield dataset. As can be seen, we
have found more than 2.8M single /32 IP addresses carrying out attacks. On
average, these individual IP addresses have misused 1.72 different applications
( row1

row2
). On the other hand, /24 BadHoods were found misusing 2.31 applica-

tions, in average, while having 2.29 malicious ( row2

row4
) IP addresses per /24.

Figure 7.1(a) shows the distribution of the number of distinct BadHood-
s/Proto/Port, while Figure 7.1(b) shows its respective CDF. As can be seen, the
vast majority of /24 BadHoods (2,620,153, or 89%) have been observed at-
tacking using a single application only. These results from DShield suggest that
the majority of BadHood are application-specific; however, in the next section,
we will investigate if these findings still hold when comparing BadHoods from
different data sources.

Since DShield provides data for more than 100 K types of applications, we
chose a subset of these for our analysis. We have ranked the most frequently
attacked applications (Port and Proto fields) in terms of number of attacking
IP addresses. Table 7.2 shows the top 20 applications in this list, including their
description. As can be seen, most of the attacking IP addresses target Microsoft-
DS active directory (Port 445).

In addition, many entries did no list any protocol and others used high port
numbers (unassigned). Therefore, we have focused only on attacks on the
“well-know ports” (port number < 1024, according to IANA terminology and
list [163]) that have the protocol field (Proto) different from NULL. By filtering
out such entries, we filter out potential false positive entries found in DShield
data set, and focus on the most repeated ones. Table 7.3 shows the Top 10 ports
according to these criteria.
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# of /32 IPs Dst Port TCP/UDP Description
553,139 445 TCP Microsoft-DS AD, Windows/Samba shares
153,535 5559 UDP unassigned
144,701 6987 TCP unassigned, Bittorrent (likely)
122,401 445 NULL –
114,626 50266 UDP unassigned
102,261 80 NULL –
101,454 6881 NULL unassigned, Bittorrent (likely)
94,345 3389 TCP Microsoft Terminal Server
86,447 30211 UDP unassigned
85,042 35512 NULL unassigned
66,946 7827 UDP unassigned
55,434 5644 UDP unassigned
44,946 12253 UDP unassigned
40,498 25 TCP Simple Mail Transfer Protocol (SMTP)
35,584 28984 TCP unassigned
32,043 35691 NULL –
31,255 30806 NULL –
31,076 51413 NULL –
29,779 11941 TCP unassigned
28,293 443 TCP https

Table 7.2: Top 20 Ports - DShield

From the top 10 ports shown in Table 7.3, we have chosen the top 5 ports
to carry out our experiments (excluding Telnet1), plus a high port having most
of the attacks (5559) from Table 7.2. Therefore, six ports from DShield were
chosen: TCP 445 (T-445), UDP 5559 (U-5559), TCP 25 (T-25), TCP 443 (T-443),
TCP 80 (T-80), and UDP 53 (U-53).

7.2 Experimental Evaluation

In this section we present the results of our evaluation, using the methods de-
scribed in Chapter 6. In Section 7.2.1, we evaluate the BadHood blacklists
according to their distribution, as described in Section 6.2.1. Then, in Section
7.2.2, we show the BadHoods Intersection, as covered in Section 6.2.2, and

1We have deliberately excluded Telnet since this application should have already been phased
out and replaced by SSH. In addition, it does not make much sense protecting an application that
is intrinsically vulnerable, since no encryption is employed and credentials are transmitted in clear.
See more in http://www.networkworld.com/news/2011/012711-hackers-turn-back-the-clock.html

http://www.networkworld.com/news/2011/012711-hackers-turn-back-the-clock.html
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# of /32 IPs Dst Port TCP/UDP Description
553,139 445 TCP Microsoft-DS AD, Windows/Samba shares
40,498 25 TCP Simple Mail Transfer Protocol (SMTP)
28,293 443 TCP https
16,624 80 TCP Hypertext Transfer Protocol (http)
11,164 23 TCP Telnet
8,979 53 UDP Domain Name System (DNS)
4,517 161 UDP Simple network management protocol (SNMP)
4,469 137 UDP NetBIOS Session Service
3,722 22 TCP Secure Shell (SSH)
3,401 80 UDP unassigned

Table 7.3: Top 10 Ports < 1024, Protocol “Not Null”

spam SMB – – https http DNS phishing
Metric CBL T-445 U-5559 T-25 T-443 T-80 U-53 Phishtank

BadHoods 969,581 240,085 43,233 33,340 24,880 14,484 4,442 1,762
Min(nHost) 1 1 1 1 1 1 1 1

Mean(nHost) 10.84 2.30 3.55 1.21 1.13 1.14 2.02 1.25
Max(nHost) 256 102 113 110 58 121 245 16

Sdev 26.38 2.77 6.67 1.32 1.14 2.31 7.29 1.13

Table 7.4: BadHoods Statistics for Different Applications

finally, in Section 7.2.3, we show the results and analysis for BadHoods correla-
tion, covered in Section 6.2.3.

7.2.1 BadHoods Distribution

Similar to Section 6.3.1, we start by comparing the number and distribution of
malicious hosts over the IP address space for different BadHood blacklists.

Table 7.4 presents the results. In this table, we show, for each application,
the number of observed BadHoods and the statistics on the number of hosts
per BadHood. Analyzing this table, we can see that the number of observed
BadHoods changes considerably according to the application considered. For
example, CBL (a spam dataset) has exhibited 550 times more BadHoods than
Phishthank (phishing dataset). In addition, even when comparing BadHoods
from the same source (DShield), we can observe port 445 BadHoods (T-445,
Windows Shares) were 16.57 times more frequent than http BadHoods (T-80).

In addition, for all the evaluated applications, we observe a correlation be-
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tween the number of BadHoods and the mean number of hosts per neighbor-
hood: the more BadHoods a source observes, the more hosts per neighbor-
hood, in average, it observes. We found a Pearson correlation coefficient of
ρ = 0.95 [147]) for the eight applications.

From these results, we conclude that the number of attacking BadHoods
varies according to the application being exploited. In the next section we will
investigate if there is an overlap between the various BadHoods blacklists.

7.2.2 BadHoods Intersection

This subsection focuses on revealing the percentage of intersecting BadHoods
between two BadHood blacklists.

Table 7.5 shows the results. Note that, for two blacklists, we only compare
the one which has observed less hosts to the one which has observed more
hosts, since we want to compare what is the intersection of a smaller BadHood
blacklists to a bigger one. In Table 7.5, we show the number of BadHoods
that were found intersecting between two applications BadHoods blacklists; the
percentage values refer to the total number of matching BadHoods divided by
the number of entries observed by the line source. As an example, consider
the second row and second column. It is to be interpreted as follows: of all
BadHoods that have attacked using UDP Port 5559 (U-5559), 29.8% were also
found attacking TCP 445 application (T-445).

Analyzing this table, we can observe that, for only two cases (U-5559 and
T-25, both against CBL) we have an intersection rate above 90% (in relation to
U-5559 and T-25 data sets sizes). That means that more than 90% BadHoods
that carry out attacks on port 5559 and on port 25 also carry out spam attacks
(we would expect such a high rate for T-25, since it monitors the default SMTP
port), however, port UDP 5559 is not assigned by IANA, which means no official
application is supposed to run in this port.

However, for the rest of the applications, we can see the matching rate be-
tween any two data sets is below 51 %, being the majority below 30%. These
are very low values if one intends to use BadHood blacklists from one appli-
cation to secure another application. These numbers also confirm our expecta-
tions from what we have found in Section 7.1.3, in which we have broken down
the DShield data set according to the application, and found that most of the
BadHoods (89.8%) have carried out attacks employing only a single application.

Therefore, what we can conclude is that, for most of the cases, the BadHoods
attacking two different applications differ, and therefore it is necessary to carry
out measurements for distinct applications.
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7.2.3 Correlation

In this last subsection we compare the number of attacking hosts per intersect-
ing BadHood blacklists. To do this, we have chosen a subset of application
blacklists which have presented a intersecting rate of at least 90%, as shown in
Table 7.5.

Figure 7.2(a) shows the scatter between CBL and U-5559. In this figure,
each point (x, y) represents an intersecting BadHood, while the x coordinate
refers to the number of hosts that the particular BadHood has used to attack
CBL, while y refers to the number of hosts employed to attack U-5559. As can
be seen the majority of points are below the green line (which would indicate
that they employ a similar number of hosts). That means that most of the
BadHoods observed in the intersection have attacked CBL using more hosts in
comparison to U-5559 – which is confirmed by the ∆ values (see Section 6.2.3)
analysis shown in Figure 7.2(b). In this figure, we can observe the frequency
of the number of hosts of intersecting BadHoods between CBL and U-5559.
Figure 7.2(c) shows that the majority of intersecting BadHoods have attacked
CBL using a larger number of hosts than U-5559 (∆ > 0).

These results may also be influenced by the number of monitored IP ad-
dresses each data set source has, since increasing the number of monitored IPs
may increase the odds of being attacked by more hosts. However, this informa-
tion is not provided by those datasets: CBL does not disclose the number of IP
addresses they monitor, and DShield provide aggregated information in relation
to the source IP addresses (attacking IPs).

The same conclusions can be obtained from analyzing the case of CBL and
T-25 – as can be seen in Figures 7.3(a), 7.3(b), and 7.3(c).

7.3 Conclusions

In this chapter we have compared BadHood blacklists obtained from various
applications. The goal was to determine if different types of Internet attacks
(i.e., using different applications) were carried out by the same set of BadHoods.

To answer this question, we have obtained representative data sets contain-
ing offending IP addresses from various applications, for the same monitoring
period. After that, we have generated BadHood blacklists (/24 prefixes) and
compared them using the methodology describe in Chapter 6.

In our analysis, we found that the number of offending BadHoods varies sig-
nificantly according to the application (by a factor of up to 550). The explana-
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tion for this variation lies with the specifics of the application being exploited for
the attack and its underlying business model. As shown by McCoy et al. [18],
online sales of counterfeit/illegal pharmaceutical products is heavily based on
spam, and it is a market far from being saturated. By analyzing leaked data
from two pharmaceutical operations, they have shown that, on average, 1,500
and 3,500 new clients are attracted by spam campaigns every week – which
makes spam profitable, and therefore, we can expect it to continue. In contrast,
phishing attacks have a different business model that does not rely upon a mas-
sive number of individual IP addresses as spam. The difference between the
application’s business model is therefore reflected in their respective BadHoods.

Moreover, our results have shown that for only two cases (out of 49), we
found two BadHood blacklists having an intersecting rate above 90% (w.r.t. the
smallest blacklist). The cases were when we compared CBL (a Spam blacklist)
to DShield’s TCP Port 25 attacks (T-25) and DShield’s UDP Port 5559 (U-5559)
attacks. For the first case,this could be explained, since both are related to
Spam. Since UDP port 5559 is not registered, we cannot tell if there is any rela-
tion between this port and spam activity. Regardless, the number of BadHoods
(excluding CBL) were below 241,000 – which is equal to 1.4% of the maximum
theoretical /24 BadHoods of the IPv4 addressing space. For these two particular
cases, we also found that CBL has been attacked more much often by a larger
number of hosts than DShield’s counterparts, when BadHoods attacking both
sources were compared.

The implications of our results is that Internet BadHoods should be applica-
tion tailored – which supports the BadHood definition we have introduced in
Chapter 1 and the findings in Chapter 4. Therefore, we can conclude that a
network administrator should employ application-specific BadHood blacklists.
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Forgotten were the elementary rules of logic, that
extraordinary claims require extraordinary evidence and
that what can be asserted without evidence can also be
dismissed without evidence.
Christopher Hitchens , 2003
In: “Mommie Dearest”, Slate Magazine

CHAPTER 8

Bad Neighborhoods Temporal Attack
Strategies

THE definition of Bad Neighborhood shown in Chapter 1 defines Bad Neigh-
borhoods (BadHoods) according to the number of observed malicious
hosts, application exploited, and period of time they are active. In this

chapter, we focus on the last of these three parts of the definition. The goal
of this chapter is to reveal the temporal attack strategies employed by Internet
Bad Neighborhoods. By temporal attack strategies we refer to when BadHoods
attacks a target, how many attack, and wether hey strike again, and if so, when.

The motivation for carrying out this analysis is twofold: by scrutinizing tem-
poral attacking strategies employed by BadHoods, a network administrator can
determine how often BadHoods blacklists should be updated in order to better
protect targets. Most important, any observed temporal pattern can be employed
in the design of models and methods to counterattack attacks (or avoid damage
from the attacks).

Therefore, in this chapter we investigate three research questions, as fol-
lows:

• RQ 8.1: What is the daily variation in the number of observed BadHoods?
The answer to this question allows us to observe how dynamic BadHoods
are with relation to a particular data set.

• RQ 8.2: Given a certain monitoring period, in how many days a BadHood
is observed carrying out attacks? And on what days do these attacks oc-
cur? The answer to this question will show if a network administrator can
expect BadHoods to attack again and when that is expected to happen.

• RQ 8.3: Given a single monitoring day, how many BadHoods that carried
out attacks in this day can be traced back to previous days (recurrent)?

155
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And how long does it take for most of them to strike again? The answer
can be used to develop models that predict attacks from BadHoods, based
on historical past.

The rest of this chapter is divided as follows. In Section 8.1, we cover the
data sets used in this chapter. Next, in Section 8.2, we address RQ 8.1, while
in Section 8.3 we address RQ 8.2. After that, we address RQ 8.3 in Section 8.4
and the conclusions are presented in Section 8.5.

8.1 Evaluated Datasets

In order to have fair comparison conditions, we have considered datasets ob-
tained for the same monitoring periods, as in the previous chapters. We have
therefore considered two monitoring periods:

• April 2010: from 19th to the 26th (8 days)

• November 2011: from November 11th to the 17th (7 days).

For the monitoring period, we have collected data from three data sources. We
summarize the data sets here, while more details were previously addressed
and can be found in Sections 5.2 and 6.1:

• CBL Spam blacklist (CBL) [60] (See also in Section 3.5.1).

• UT/EWI (UT/EWI): obtained from analyzing the spam filter logs from
the mail servers of the Computer Science department of the University of
Twente.

• DShield data set [151]: DShield is a community shared firewall log system
(See more in Section 7.1.3). We have chosen to focus on two of the most
commonly attacked applications:

– TCP 445 (T-445): Microsoft-DS Active Directory and/or Windows
shares [164].

– TCP 3339 (T-3389): Microsoft Terminal Server (RDP) [165].

After obtained the data sets, we have, for each day and data set, generated
a /24 BadHood blacklist. These BadHood blacklists were then employed to
answer the research questions presented in the introduction.
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Figure 8.1: Daily Variations (/32 Hosts)

8.2 Daily Number of Bad Neighborhoods

In this section we investigate whether the number of Internet Bad Neighbor-
hoods that a target observes changes for different days (RQ 8.1).

We have several reasons to expect that the BadHoods distribution over dif-
ferent days is far from being static. The main one is a consequence of the
behavior that individual hosts (/32) exhibit, trying to be as stealthy as possi-
ble (e.g., spamming only once a server and not coming back, – as discussed
in Appendix B). For example, Figure 8.1(a) shows the daily number of unique
spammers (/32 hosts) for UT/EWI throughout November 2011. As can be seen
the values range from less than 20K to more than 120K individual hosts per day,
over a period of 24 days. Figure 8.1(b) shows the daily variations for the CBL
[60] blacklist, which also exhibits a variation for the monitored days (please
notice the difference between the y axis scale of both figures).

Another reason for expecting that the BadHood distribution changes over
time is that DNS Blacklists [33], such as CBL [60] and PSBL [75], which contain
many malicious /32 IP addresses, have to be constantly updated in order to keep
up with the dynamics of individual hosts and be effective in the mail filtering.

Taking these into account, we then proceed to the analysis of the datasets
employed in this chapter. Table 8.1 presents the daily number of BadHoods,
for each individual dataset. As we expected, for all data sets, the number of
BadHoods changes on a daily basis. In addition to that, we observe that:
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April 2010
Day/Dataset CBL UT/EWI T-445 T-3389
1st Day 955,036 66,759 141,527 752
2nd Day 958,258 58,344 146,051 817
3rd Day 954,019 61,804 143,379 731
4th Day 954,522 60,045 142,531 759
5th Day 949,167 46,892 142,105 834
6th Day 957,583 48,828 142,422 832
7th Day 961,573 45,351 138,426 773
8th Day 956,410 59,739 141,512 895
Max. Variation: ∼ 1% ∼ 47% ∼5% ∼22%

November 2011
Day/Dataset CBL UT/EWI T-445 T-3389
1st Day 812,217 56,030 79,258 818
2nd Day 809,268 32,612 77,286 25,228
3rd Day 798,345 62,769 76,210 25,331
4th Day 792,098 64,452 77,003 33,319
5th Day 795,763 73,615 78,004 31,065
6th Day 803,126 69,760 79,259 19,742
7th Day 812,598 62,903 77,033 21,331
Max. Variation: ∼ 2% ∼125% ∼4% ∼4,000%

Table 8.1: Number of BadHoods/day

• The variation on the number of daily BadHoods is more significant for
UT/EWI and DShield data sets (T-445 and T-3389) than for CBL (Max
Variation row, which is the ratio between the day having most entries
divided by the day having the least entries, or 100×Max/Min.

• Abrupt variations can occur, as can be seen between 1st and 2nd days of
T-3389 (November 2011).

We address these observations in details in the next two subsections.

8.2.1 Variation between the Datasets

A reason for the fact that variations were proportionally more significant for
UT/EWI and DShield datasets than CBL has to do with the way each original
blacklist is generated. UT/EWI and DShield datasets are generated based only
on attacks observed on a single day, that is, all /32 entries they list correspond
to, at least, one attack observed on the very day.
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CBL, on the other hand, may list entries on a random day that were not
observed in the very day. CBL and other public spam blacklist sources employ
large spam traps infrastructures and after blacklisting a certain IP address, they
may keep it on the list for many forthcoming days, even though no more spam
has been observed from that particular IP. In fact, the CBL’s de-list policy is
“manual” – that is, the responsible network administrator for the blacklisted
IP should go to CBL web site and manually remove the address from the list
[166], otherwise it might remain blacklisted for many days, as can be seen for
the IP address 221.0.141.106, as shown in Listing 8.1, which was obtained
on CBL’s website on October 2nd, 2012. As can be seen, this IP address has
been kept in CBL for more than 12 days since it was last observing attacking
CBL traps. This, in turn, confirms the fact that entries are expected to remain
blacklisted over multiple days even if there was no malicious activity (spam, in
this case) observed from its originating sources. Since CBL’s aim is to provide
better protection against spam in relation to future attacks, keeping it on the
blacklists makes sense in case recurrent spammers are frequent.

The combination of both factors (large infrastructure and manual de-listing
policy) explains the smaller variation in CBL in comparison to UT/EWI (Table
8.1).

1 IP Address 221.0.141.106 i s l i s t e d in the CBL . I t appears to be i n f e c t e d with a
spam sending t r o j a n or proxy .

3 I t was l a s t detec ted at 2012−09−20 08:00 GMT (+/− 30 minutes ) , approximately 12
days , 7 hours , 30 minutes ago .

5 This IP i s i n f e c t e d ( or NATting f o r a computer tha t i s i n f e c t e d ) with a spambot we
have not yet been able to i d e n t i f y . For the time being we r e f e r to i t as the
unknown66 spambot .

7 This IP i s i n f e c t e d ( or NATting f o r a computer tha t i s i n f e c t e d ) with a spam−
sending i n f e c t i o n . In other words , i t ’ s p a r t i c i p a t i n g in a botnet . I f you
simply remove the l i s t i n g without ensur ing tha t the i n f e c t i o n i s removed ( or
the NAT secured ) , i t w i l l probably r e l i s t again .

Listing 8.1: CBL Lookup Result – October 2nd, 2012

8.2.2 Abrupt Variation in the Number of BadHoods

As shown in Table 8.1, the number of active BadHoods changed significantly
over a single day for November 2011 Dshield T-3389 data sets (from 818 to
25,228, as shown in Table 8.1). Since we do not have the full traces, it is
not easy to point the exact causes. However, we assume that it relates to the
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Figure 8.2: Number of BadHoods - UT/EWI

existence of new exploits or seasonal attack behaviors for the particular TCP
port.

Such behavior is not exclusive for the Dshield data set. Figure 8.2 shows the
number of BadHoods for the UT/EWI dataset, for an extended period of time
(November 1st -24th, 2011). As can be seen, also for Spam BadHoods, we can
observe significant variations from one day to the next (from less than 10K to
more than 50K, between November 6th and November 7th).

Taking into account the results presented in this section, we can conclude
that the number of active BadHoods a target observes varies on a daily basis.
The degree of variation, however, varies according to the dataset. For CBL,
however, the variation is smaller compared to the others also because of its de-
listing policy. This differentiation between data sets should, therefore, play a
major role when designing prediction models.

8.3 Bad Neighborhoods Attack Strategy

In this section, we address RQ 8.2 and investigate the temporal attack strategy
employed by BadHoods, as perceived by the targets.

We start by observing how many days BadHoods are active, for the two
monitoring periods. Figure 8.3 and 8.4 show the distribution of the BadHoods
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Figure 8.3: Number of Days Active - April 2010

taking into account the number of days they are active (not necessarily consec-
utive days), that is, carrying out attacks. As can be observed in these figures, a
significant part of the BadHoods are likely to attack again (for CBL, this is most
prominent due to its de-listing policy). This provide good news, implying that
using historical data is feasible to predict attacks for a new day.

On the other hand, some datasets have presented a significant percentage
of BadHoods that attack a single day out of monitored days (almost 50% for
T-3389 data sets). BadHoods that are active for only one day pose a challenge
for BadHoods-based security systems, since such BadHoods attack on a single
day and are not further observed within a short term period.
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Figure 8.4: Number of Days Active - November 2011

8.3.1 The Bad Neighborhood Occurrence Score

The results presented in the previous section show the number of days a BadHood
is active for the monitoring data sets. However, it does not show which days of
the monitoring period are chosen by the BadHoods. For example, 2 days could
be a combination of any 2 random days within the monitoring period.

In order to be able to tell what days (or combination of) the BadHoods are
active, we propose in this section the occurrence score. For a given data set
having n days of data, we define, for each /24 BadHood (B24), an occurrence
score as follows:
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occurrence(B24) =

n∑
i=1

2i (8.1)

In this equation, i refers to the day that the particular BadHood (B24) is active.
i may vary from 1 (first day of the monitoring day, not necessarily the day of
the month) until n, the last day in the observed data set. The final occurrence
score is the sum of 2i for each n day B24 is active. In the end, the final number
is a single integer number that can be decomposed to reveal which days from
the n days a certain BadHoods carried out attacks.

To better illustrate how the occurrence score is calculated and decomposed,
consider the April 2010 data set from UT/EWI. Table 8.2 shows an excerpt
of the final BadHood score file that was generated after scoring BadHoods for
the monitoring period. For each BadHood, an occurrence score is provided,
calculated using 8.1. As shown in this table, a score of 96 can be decomposed
into two terms. The power of each of them (5 and 6) represents the days the
BadHood was active: 5th and 6th of the monitoring period. These, in turn,
represent April 23rd and 24th.

BadHood Score Decomposed Terms Days Active
93.105.233/24 96 25 + 26 5th and 6th
94.66.155/24 16 24 4th
94.66.154/24 12 22 + 23 2nd and 3rd
93.105.231/24 228 22 + 25 + 26 + 27 2nd, 5th, 6th, and 7th
71.223.131/24 8 23 3rd
94.66.153/24 80 24 + 26 4th and 6th

Table 8.2: Occurrence Scores for UT/EWI BadHoods (April 2010)

An important property of the occurrence score is that any score 2i < x <
2i+1 implies that the BadHood is active on the i-th day plus any previous day(s)
(i′ < i), but never on any days > i. For example, a score of 32 means that a
BadHood is active on the 5th day. However, there is no other combination of
days that would yield to a score > 32 and < 64 that would not include the 5th
day. For example, if a BadHood is active on days 1–4, it’s final score is 30, which
is smaller than the occurrence of a single day alone (5th day = 32).
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Occurrence Scores Distribution and CDF

Figures 8.5 and 8.6 show both the distribution and the cumulative distribution
function (CDF) of the occurrence scores (left and right columns, respectively),
for the April 2010 datasets, while Figures 8.7 and 8.8 show the results for the
November 2011 data sets.

Analyzing the figures, we can observe that, with the exception of CBL, no
occurrence score is significantly more prominently than the others. In fact, with
the exception of CBL, all the other data sets observe small spikes on scores equal
to 2i, which are BadHoods that have only attacked on a single day. CBL, on the
other hand, presents a significant spike on score 510 (a score that represents
all previous days), as expected from Figure 8.3(a) and 8.4(a), which is due the
de-listing policy and the size of their infrastructure.

What we can conclude from our analysis is that, except for CBL, there is
no day or a combination of days that is significantly more recurrent than others.
Therefore, our results show that a network administrator should not expect any
pattern or regularity in terms of which days BadHood chose to attack – which
makes the task of predicting attacks more complex.

8.4 Tracing Back BadHoods: Time Since Last At-
tack

From the previous results, we observe that there is no particular combination
of days that emerges from the days BadHoods choose to carry out their attacks.
Therefore, in this section, we focus on a single day of the monitoring period
instead of all the monitored days. We single out the last day and scrutinize each
observed BadHood, in order to determine if they can be traced back to any
previous days. After that, we determine how many days have passed since the
last attack.

To do that, we have carried out a three-step approach. First, we obtain all
the /24 BadHoods of the last day of each data set (as covered in Section 8.2).
Then, for each of them, look it up on the final occurrence score file generated for
the whole monitoring period (as shown in Section 8.3.1). Those BadHoods that
have been observed carrying out attacks in the last day in combination with any
of the other previous days (in any combination) are filtered. Mathematically,
this means that we have only considered BadHoods having an occurrence score
larger than the threshold ε > 2i, in which i is the number of monitoring days for
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Figure 8.5: Occurrence Scores – April 2010

each data set. For the April data sets, ε is equal to 256 and 128 for November
datasets.

In our case, we are interested in the last i′ day that a BadHood X24 has
been active (the day before the singled out day). To illustrate this, consider
that a certain BadHood from UT/EWI (April data set) has a score of 262. By
decomposing this number into powers of two, it reveals that this BadHood has
been active in days 8, 2, and 1 (262 = 28 +22 +21). From the days it was active,
we compute the difference between the last day (8) and the day right before it (2),
which result in 6 days between attacks.

Table 8.3 shows the number of BadHoods on each data set, and the percent-
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Figure 8.6: Occurrence Scores – April 2010

age of the recurrent ones (OcurrenceScore > ε). We can observe that for all the
data sets (we have disregarded CBL, due to its removal policy), the majority of
BadHoods that attack a target have also been observed in at least one of the previ-
ous days. For the April 2010 data sets, that means that 65-89% of all BadHoods
observed in the last day are likely to have been observed on all previous days
(7 days), while for the November 2011 datasets, 73-80% of BadHoods observed
on the last day are likely to also have been active on all previous days (6 days).

Then, the next step was to determine when each of the recurrent BadHoods
was last observed. Figure 8.9 shows these results as a cumulative distribution
function (CDF). As can be seen, for all the data sets, the majority of the recurrent
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Figure 8.7: Occurrence Scores – November 2011

BadHoods return within 5 days (>85%).

Another interesting fact that can be observed from these results is that, for
all the data sets, at least 85% of the recurrent BadHoods are observed within
the last five days, which is valuable information to determine how many days
should be considered to build BadHood attack prediction models.
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Figure 8.8: Occurrence Scores – November 2011

8.5 Conclusions

In this chapter we have investigated the behavior of Bad Neighborhoods re-
garding their temporal attack strategy. In this sense, we have proposed three
research questions and evaluated different real world data sets.

In RQ 8.1, we asked “what is the daily variation in the number of observed
BadHoods?”. We found that, for all the evaluated datasets, a variation in the
number of active BadHoods on a daily basis. In addition, we also found that
the Spam Blacklist CBL shows a much smaller proportional variation than the
other data sets, mainly because CBL keeps malicious hosts in their blacklists for
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April 2010
UT/EWI DShield-T445 DShield-T3389

BadHoods (Last Day) 59,739 141,512 895
Recurrent 39,237 (65.68%) 126,057 (89.07%) 602 (67.26%)

November 2011
UT/EWI DShield-T445 DShield-T3389

BadHoods (Last Day) 62,903 77,033 21,331
Recurrent 51,745 (80.97%) 61,159 (79.39%) 15,732 (73.75%)

Table 8.3: Total and Recurrent BadHoods in Relation to the Last Day

multiple days even though they might not have been active for those days, in
order to allow mail filters to protect from such hosts in future attacks. Also,
we have shown that the daily variation can be very drastic, which confirms that
targets are likely to be attacked by a varying number of BadHoods on a daily
basis.

In RQ 8.2, (“Given a certain monitoring period, in how many days a BadHood
is observed carrying out attacks? And on what days do those attacks occur?”), a
significant part of BadHoods (between 40% and 95%, depending on the data
set) are likely to attack a same target on multiple days (recurrent BadHoods).
This confirms that it is useful to use historical past of BadHoods to predict new
attacks. We have also found that there is no particular combination of days that
BadHoods chose to attack a target.

Finally, in RQ 8.3 we asked “Given a single monitoring day, how many BadHoods
that carried out attacks in day can be traced back to previous days? And how long
does it take for most of them to strike again?”. We found that the majority of the
current BadHoods (85%) that attack a particular target are likely to attack it
again within a 5 day period.

The findings presented in this chapter provide information that can be used
to predict BadHood attacks. We have learned from RQ 8.1 that the daily number
of BadHoods attacking a target depends on the data source and application;
therefore a prediction model should leverage this and one could not expect an
“one-size-fits-all” temporal prediction model. Moreover, the usefulness of the
recent historical past has been proved in RQ 8.2, since up to 95% of BadHoods
are likely to attack more than one day, which justifies its use to predict future
attacks.
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Now this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.

Winston Churchill, 1942 CHAPTER 9

Conclusion

BAD neighborhoods can be found in the real world but also on the Internet.
Ultimately, these areas are labeled as “bad” due to higher rates of ma-
licious activities (e.g., robbery in the real world, spam on the Internet)

they exhibit compared to the observed average. This dissertation has focused
on the Internet counterpart.

In this concluding chapter, we summarize in Section 9.1 the contributions
provided in this dissertation. Then, in Section 9.2, we present the main findings
along with a discussion on their implications. Next, in Section 9.3, we present
some possible steps forward based on the findings and contributions provided
in this dissertation. Section 9.4 concludes this dissertation.

9.1 Summary of Contributions

Previous works have addressed the notion that attack sources tend to be con-
centrated in certain portions of the IP address space [27, 28, 29, 30, 31]. This
dissertation, however, presents the first systematic and multifaceted study on the
concentration of malicious hosts, at various aggregation levels – which is the main
contribution of this dissertation.

By first framing such concentration of malicious hosts as Internet Bad Neigh-
borhoods, we have put the Bad Neighborhoods (BadHoods) under scrutiny, in a
multifaceted way. Figure shows 9.1 shows the BadHoods facets that were inves-
tigated in this dissertation, divided according to two main research questions
(RQ), raised in Section 1.2.

For RQ 1 (“what are the characteristics of Internet Bad Neighborhoods?”),
we have proposed, in Chapter 1, a definition for what a Bad Neighborhood is.
Next, in Chapter 2, we have presented three assumptions for the occurrence of
BadHoods (“why” in Figure 9.1). Following that, we have investigated in Chap-

173
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a

Internet Bad Neighborhoods

1. What?

2. Why?

3. How?

4. Where?

5.Case St.

6. Sources

7. App.

8. Temp. Str.

RQ 1: Characteristics

RQ 2: BadHood Blacklists for Protection

Figure 9.1: Multifaceted Study on Bad Neighborhoods – Research Questions and
Chapters

ter 3 how malicious IP addresses can be aggregated into network prefixes (/24–
/8, in CIDR notation [25]). Later, in Chapter 4, we have then evaluated our
assumptions for the existence of BadHoods proposed in Chapter 2 and shown
in which Internet Service Providers, countries, and cities BadHoods are located.
Then, in Chapter 5, we have carried out a case study on spamming badHoods,
due to the economic impact caused by e-mail spam, estimated to incur losses
from $10 billion to $87 billion yearly [20].

In RQ 2 (“Which blacklists should a network administrator choose to protect
a network against attacks from Internet Bad Neighborhoods”), in turn, we have
assumed the point of view of a network administrator who employs BadHood
blacklists to secure networks. We have then investigated, in Chapter 6, what
blacklists sources a network administrator should use – public, peers, or local
measurements. In Chapter 7, we have addressed the question whether a net-
work administrator can employ BadHood blacklist obtained for one application
(e.g., mail) to protect against attacks to other applications (e.g., ssh). Finally,
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in Chapter 8, we have investigated the temporal attack strategies employed by
BadHoods to determine how often blacklists should be updated.

9.2 Main Findings and Implications

In this section we present the main findings of this dissertation, and also a
discussion on their respective implications.

9.2.1 Bad Neighborhoods found at several aggregation lev-
els: ISPs, Countries, Prefixes

One of the most important findings of this dissertation is the verification that
Internet BadHoods is a real phenomenon, which can be observed not only as
network prefixes (e.g., /24), but also at different and coarser aggregation levels,
such as Internet Service Providers (ISPs) and countries.

As shown in Chapter 4, the top 20 Autonomous Systems (ASes), which are
somehow comparable to ISPs, concentrate almost 50% of all spamming IP ad-
dresses observed in our data sets, from a total of 42,201 active ASes in our
analysis. In the worst case, a single ISP from India (BNSL, AS number 9829)
concentrated 7.39% of all the spamming addresses observed for the entire world
in our datasets. Moreover, when considering the ratio of malicious IP addresses
in an ISP (number of spamming addresses divided by the number of announced
addresses), we found that some ISPs have an alarming ratio of up to 62.55%
of their announced IPs sending spam (SpectraNet, AS Number 37340, an ISP
from Nigeria). These results confirm the existence of Bad Neighborhoods at the
ISP level.

Also, we found that BadHoods are concentrated in certain countries. For
the case of spam, even though we found spamming hosts all over the world,
but the BadHoods are more likely in certain countries. Out of 229 countries
found having spamming hosts, a single one (India) was found concentrating
almost 20% of worldwide spamming IP addresses, followed by Vietnam and
Brazil (∼7% each). In total, the top 20 countries were responsible for 76,31% of
all the spamming IP addresses. These results also confirm that certain countries
concentrate most of malicious spamming IP addresses.

These findings advance the state of the art by showing that malicious hosts
are concentrated not only in certain portions of the IP address space [27, 28,
29, 30, 31], but more clearly at higher aggregation levels, such as ISPs and
countries.
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The implications of these findings are twofold: first and foremost, our find-
ings supports that AS-based and country-based BadHoods blacklists can be em-
ployed as an auxiliary approach to evaluate traffic from unknown sources. Our
results do no support, however, that a country or AS should be entirely black-
listed; instead, BadHood blacklists at such coarse levels should be employed
to aid existing solutions when scoring unknown traffic. For example, in a mail
filter, such as SpamAssassin [57], AS-based and Country-based BadHood black-
lists can be used to complement current filter rules when scoring the likelihood
a message being spam, or even consider network prefixes smaller than /24, us-
ing the algorithms proposed in Chapter 3. The main advantage of BadHood-
based solutions is that we can avoid looking into the contents of an e-mail
message, which is typically employed in Bayesian spam filtering techniques
[167, 168, 169]. Such techniques are more CPU intensive than simple IP/ASN
lookups.

Another implication of these findings is that it makes it “easier” to tackle the
problem of malicious IP addresses on the Internet, by “nipping the problem in
the bud”. Instead of traditionally blacklisting individual /32 hosts, our results
support that a “clean up” on networks in ISPs and countries having higher con-
centration of malicious IP addresses would be more effective. Such measures
can be also supported through specific legislation – similar to the United States’
CAN SPAM act [48] and European Union’s Directive on Privacy and Electronic
Communications (2002/58) [49], even though we have shown in Section 5.5
that legislation alone may be not sufficient (five out of the top twenty high
volume spamming BadHoods are located in the European Union).

9.2.2 Bad Neighborhoods May Vary According to the Applica-
tion Exploited

In the real world, one could intuitively expect that a dangerous area in a city
is more likely to have higher concentration/incidence of various crimes, such as
robbery, car theft, etc. On the Internet, however, that is not the case: BadHoods
are mostly application-specific and may be located in neighborhoods one would
not expect.

In Chapter 4, we have shown that while spam is distributed all over the
world (but concentrated in Southern Asia), phishing Bad Neighborhoods, on the
other hand, are mostly concentrated in the United States and other developed
nations. This counterintuitive finding is due to the context – in this case the
specifics of spam and phishing. Most of spamming hosts are part of an army
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of “hijacked” malicious hosts (part of botnets), typically at home, schools and
businesses with no availability guaranteed. Phishing hosts, on the other hand,
are “required” by criminals to have a much higher availability than spam bots:
the phishing site should be accessible most of the time, so more people can be
deceived. If the website is down, the criminal misses the “business opportunity”.
The outage of a single spam bot, on the other hand, has a minimal impact
on the overall spam capacity of the botnet. Therefore, phishing websites are
more likely to be hosted on reliable infrastructures, typically data centers/cloud
providers, which, in turn, are mostly located in developed nations, mainly in
the United States.

In addition, in Chapter 7, we found that the number of attacks varies signifi-
cantly according to the application in question, and for most of the applications,
the set of attacking BadHoods were almost disjoints. The conclusion is that Bad
Neighborhoods are application-specific.

The implications of these findings is that security systems employing BadHood-
based techniques should employ application-specific BadHood blacklists. In ad-
dition, research work aiming at predicting attack sources, such as the work by
Soldo et al. [76], can be optimized by taking into account the application em-
ployed in the attack (instead of disregarding it).

9.2.3 Bad Neighborhoods are Likely to Attack Again

In Chapter 8, we found that the number of /24 BadHoods (in CIDR nota-
tion [25]) that attack individual targets varies daily. After being attacked by
a particular BadHood, however, a network administrator might wonder if the
same BadHood will return to attack the same target again, and if it will, when
can it be expected. We found in Chapter 8 that 40–95% of all BadHoods are
likely to strike a target more than once, depending on the application/dataset,
within a week period. However, there were no particular combinations of days
that /24 BadHoods choose to carry out attacks .

This finding highlights the benefits provided by employing the Bad Neigh-
borhood concept. For example, in Chapter 5, we found that, in a one week
period, 46.94% of the individual IP addresses attack only once, part of their
stealth tactic (“flying under the radar”, as discussed in Appendix B).

We also found in Chapter 8 that, by singling out all /24 BadHoods that
attacked a target in a particular day, 65–89% of these /24 BadHoods have also
carried out attacks in at least one day of the seven previous days, depending on
the target/application in question.
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The implications of these results are that network administrators have to
constantly update their BadHood blacklists in order to keep up with their dy-
namics. In addition, our research confirms that historical data of BadHoods
attacks should be employed to predict future attacks.

9.2.4 Public Blacklist Sources Allow Better Detection Results

When employing BadHood-based techniques to secure a network, a network
administrator can employ blacklists from third-parties or carry out local mea-
surements to generated local blacklists. In Chapter 6, our results have shown
that it is better to employ blacklists obtained from public third-party sources,
instead of carrying out local measurements.

This is due to fact that specialized public sources typically employ a large
number of distributed monitoring points. Consequently, these sources are able
to capture more malicious hosts – which typically try to employ a stealth “under
the radar” attack strategy – as discussed in Appendix B. Therefore, a network
administrator can protect a network by “anticipating” BadHoods blacklisted by
public sources. However, it is necessary to carry out an assessment of individual
public blacklists in order to verify their quality before applying it.

9.2.5 “Silent Ticking Spam Bomb” in BRIC countries

Another finding in this dissertation is that there might be a “silent ticking spam
bomb” in the BRIC countries (Brazil, Russia,India, and China). Currently, these
countries have a moderate Internet penetration (Brazil - 40.6%. Russia - 43.0%,
India - 7.5%, China - 34.3%, World Average - 35% [110]) that is expected to
grow between 9% to 15% yearly, according to a Boston Consulting Group report
[111], driven because of their economic growth. The growth, per se, is a positive
achievement for the countries and their population, since “exclusion from it (the
Internet) is one of the most damaging forms of exclusion in our economy and
culture” [13], as stated by the sociologist Manuel Castells.

However, a problem might emerge if the ratio of malicious IP addresses in
these countries remains stable while the number of Internet users increases. In
that case, we can expect a significant increase on the overall number of spam
sources. To illustrate this, consider India, a country that ranks first in number of
spamming IP addresses. If India would have the same Internet penetration rate
as the United States (a developed country comparable in size) while keeping its
current ratio of malicious IP addresses, that would cause an increase of 200%
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in the total number of malicious spamming addresses observed currently for the
whole world.

9.3 Moving Forward from Findings

As described in Section 1.2, the goal of this dissertation was to scrutinize the
Bad Neighborhood phenomenon on the Internet to better understand its in-
trinsic characteristics. The motivation for doing so was to set the theoretical
foundations in which BadHood-based security solutions can be build upon.

Therefore, the next natural step is to employ the knowledge provided in this
dissertation in security solutions. Traditional /32 IP addresses blacklists try to
protect a target from attack sources based on historical pasts. BadHood-based
solutions can be seen as a step further in this process, by both protecting from
previous sources but also by predicting new sources (neighbors) of attacks, as we
have shown in Section 2.7.

In Appendix E1, we evaluate a BadHood-based mail filter based on the find-
ings obtained in Chapter 6. We implement an algorithm that uses as parameter
the number malicious addresses per BadHood to tell if a message is spam.

However, the major direction we envision for BadHood-based research is to
develop algorithms that combine not only findings from a single chapter, but
algorithms that build upon the findings presented in the entire dissertation. To
mention a few, we have seen in Chapter 6 that employing BadHood blacklists
of third-party sources leads to better detection results, while in Chapter 7 we
have seen that BadHood blacklists should be application-specific. In addition,
we have provided two aggregation algorithms in Chapter 3 and seen that the
coarser the aggregation criteria, the larger aggregation errors. Moreover, in
Chapter 8, we have seen 40–95% of BadHoods are likely to strike more than
once, depending on the application/dataset, within a week period. Also, in
Chapter 4, AS-based and country-based BadHood blacklists should be employed
in the process.

The next step is therefore to combine all the findings and evaluate the re-
sults, in a similar way to what is presented in Appendix E.

In addition, as discussed in Section 1.4, this dissertation has covered IPv4-
based BadHoods. With the increasing adoption of IPv6, we can expect more
attacks from IPv6 Bad Neighborhoods (currently IPv6 traffic accounts for less

1We have not included in Chapter 6 because it addresses contents beyond the scope of the
chapter.
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than 2% of networks such as Internet2 [41]). As we have covered in Appendix
C, an aggregation-style approach like the Internet Bad Neighborhoods approach
is a necessity (for scalability purposes) when dealing with IPv6 attacks, due to
the way that IPv6 addresses are allocated. However, further investigation will
be necessary to confirm if the findings provided in this dissertation hold for IPv6
Bad Neighborhoods.

9.4 Concluding Remarks

This dissertation has provided the first multifaceted investigation on the Bad
Neighborhood phenomenon in the Internet. We have shown that Internet Bad
Neighborhoods can not only be found at certain /24 networks, but that they can
also be observed in coarser aggregation levels, such as ISPs and countries.

We have then assumed the point of view of a network administrator whose
goal is to protect a network. By putting Bad Neighborhoods under scrutiny, we
have investigated how specific they are in relation to the application used in the
attacks and the targets they have chosen. Our expectation is that the findings
provided in here can serve as a guide for the design of new algorithms and
solutions to better secure networks.
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APPENDIX B

The Rise of Botnets

In recent years we have seen a shift in the way malicious activities such as
Spam are performed on the Internet. While in the past most of the attacks
originated from single compromised servers [170, 171], a significant part of
current attacks comes from distributed compromised machines, part of the so-
called botnets [21, 22].

In the beginning of the last decade, most spam was sent from dedicated
server farms, open relays, or compromised servers [171]. In fact, back then
spamming was not even a crime: only in 2003 the CAN-SPAM Act made spam-
ming illegal in the United States [48]. To fight spam, several techniques were
developed, and the advent of real-time blacklists containing the IP addresses of
those spam sources became effective [19].

Meanwhile, also in the first years of the last decade, broadband technologies
such as ADSL increased home broadband adoption all over the world [172]. As
a consequence, home computers were left online for more time, while having
increased bandwidth in comparsion to the old dial-up access.

In this context, spam gangs realized that they could improve their strate-
gies to carry out spam campaigns. Instead of relying on their spam farms and
servers that increasingly became less effective due to the advent of real-time IP
blacklists, spammers could “relay their messages through untainted third-party
hosts” [19]. Third-party hosts, in this case, were computers with broadband
connections at homes, schools, businesses and governments, running vulnera-
ble operation systems [22]. Even though the processing and networking capa-
bilities of each host was not enough to conduct major spam campaigns or Dis-
tributed Denial-of-Service (DDoS) attacks, the combined capability of a large
set of hosts was, which drove to the creation of modern large-scale botnets.
Current botnets, such as BredoLab, were estimated to have a spam capacity
of 3.6 billion messages per day, by compromising more than 30 million hosts
worldwide [173].
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It is important, in the context of this dissertation, to clarify the relation be-
tween botnets and bad neighborhoods. Even though hosts belonging to a botnet
are likely to cause the network to be labeled as a BadHood, this does not im-
ply that all BadHoods are product of a botnet activity. As shown in Chapter
5, for example, we found some Yahoo! Mail servers, located in the UK, send-
ing spam messages. However, this is mostly likely due to account hijack, in
which spammers hijack legitimate accounts from users and employ it to send
spam [145, 146], benefiting from Yahoo’s reputation. However, since most of
Spam and DDoS are nowadays carried out by botnets, it is likely to expect that
a significant part of BadHoods are labeled as such due to bot activity.

“Fly Under The Radar” Attack Strategy

Botnets can actually be seen as “virtual armies” of compromised hosts [21] dis-
tributed all over the world. Figure 1.1 showed the geo-location of a sample
of 1,193 zombies belonging to the botnet Hlux2/Kelihos.B [23] (this botnet
was later found having more than 100,000 bots). By doing such attacks using
zombies, attackers can hide their real identity and amplify the power of the
attacks [22], as described in Section 2.3.

As explained by Bailey et al., one of the main problems for botnet herders
is to spread their worms into other computers, increasing the size of the botnet
army [22]. Many propagation techniques can be employed for this purpose, and
current botnets combine many of them to maximize infection. For example, the
“SDBot exploits Windows vulnerabilities, P2P networks, and backdoors left by
previous worms” [22].

To cope with the fact that bots are distributed all over the world, real-time IP
blacklists were developed. These lists contain IP addresses that originated mali-
cious activity and are constantly updated in order to keep up with the dynamism
of the sources of attacks. Such blacklists are popular and are used to fight spam,
and mail servers are configured to query such blacklists, in real-time, any time
a new message arrives [44].

In this cat-and-mouse game, Internet criminals also have developed methods
to try to circumvent blacklist-based solutions. Since blacklist-based detection is
reactive – that is, as soon as an attack is detected, the source is blacklisted and
future messages are blocked – spammers found that they could still carry out
their spam campaigns by “flying under the radar” – that is, by spamming a mail
server using a large number of bots, but sending only one spam per bot.

As shown in Chapter 5 (Table 5.3), we found from mail server logs that
46.94% of the spammers have sent only 1 spam message over a period of one
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week. This, in fact, configures a major problem for source IP blacklist-based
detection systems, since the server keeps getting spam while blacklisting sources
that will never return.
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APPENDIX C

IPv6 Bad Neighborhoods

Standardized by the Internet Engineering Task Force (IETF), The Internet Pro-
tocol version 6 (IPv6) [40] is a revision of the IP protocol aimed to succeed
the standard version 4 (IPv4). One of the main design requirements for IPv6
was to cope with the well known problem of lack of IPv4 addresses for the cur-
rent number of devices connected to the Internet. In fact, the last two /8 IPv4
netblocks were allocated by Internet Assigned Numbers Authority (IANA) on
February 3rd, 2011 [174] .

Currently, IPv4 still dominates the volume of traffic on the Internet, and
IPv6 represents no more than 1% [41] in backbones such as Internet2 or at
the Amsterdam Internet Exchange point (AMS-IX)(the weekly average incoming
traffic in AMS-IX is 926.845 Gbps, while IPv6 accounts for 2.5 Gbps, or 0.2% of
the total [42]). However, we can expect an increase in the volume of IPv6 traffic
as more IPv6 addresses are assigned. For example, at the University of Twente,
in which we have a fully operational IPv6 network, IPv6 represents 3.2% of the
traffic volume.

With the increase adoption of IPv6, we can expect more attacks from IPv6
sources, as the first reported IPv6 DDoS attacks in 2012 [43]. Therefore, in the
context of this dissertation, it is important to address what we can expect from
IPv6 BadHoods.

As shown in Appendix B, to cope with blacklist-based defense software, at-
tackers started to use more and more intermediary hosts to carry out attacks,
so they can relay their attacks through “untainted third-party hosts” [19]. In
the IPv4 standard, the IP source address field has a length of 32 bits – which
means that theoretically, attackers could use 232 different IP addresses for their
attack, or approximately 4.2× 109 addresses. On IPv6, the source address field
was extended to 128 bits, which means that, theoretically, 2128 IPv6 are avail-
able, or approximately 3.4 × 1038 addresses (or 6.67 × 1027 IPv6 addresses per
square meter on Earth). This massive number of IPv6 addresses present a major
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Global Routing Prefix subnetID interfaceID

n bits 64 -n bits 64 bits

Figure C.1: Aggregation into Bad Neighborhoods

challenge for blacklist-based IPv6 security mechanisms.

C.1 IPv6 Addressing Architecture

The IPv6 addressing architecture is defined in the RFC 4291 [175]. As covered
in the RFC, there are three types of IPv6 addresses:

• Unicast: An identifier for a single network interface (equivalent to IPv4
unicast)

• Anycast: An identifier to a set of network interfaces. A packet sent to an
anycast addres is delivered to the “nearest” interface of the set, as defined
by the “routing protocols’ measure distance” [175].

• Multicast: Similar to anycast, but a packet sent to a multicast address is
delivered to all interfaces in the set.

In this section, we focus on unicast addresses (a similar analysis can be
conducted for anycast and multicast addresses). Figure C.1 shows the format of
a IPv6 global unicast address (that is, “routable” on the Internet). In this figure,
the 128 bits of the field are divided into three parts. The first two parts (global
routing prefix and subnet ID) are used for routing, while interface ID is used to
identify the host interface.

Taking this into account, it is likely that providers will assign end sites (e.g.,
home users) with an /48 IPv6 address (64 bits for global routing prefix, 16 for
subnet, and 48 for interface), as described in RFC 6177 [176].

That implies that home users will have at their disposition 248 (∼ 2.41×1014)
IPv6 addresses to choose from, which is larger than the total IPv4 capacity (232).
As a consequence, a single malicious host can actually carry out attacks (e.g.,
send a spam message) using a valid IPv6 address and never have to use it twice,
since he/she has at least 248 addresses to choose from.
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To illustrate this, consider that an IPv6-enable host is part of a botnet and
has received an order to spam a single particular mail server. If this spammer
is able to send 1 million messages per second to the same mail sever (which
is already an absurd number), it will take almost nine years to exhaust all ad-
dresses available within the /48 netblock. And that is only one spammer. In this
context, standard IPv6 /128 blacklists cannot cope with the massive number of
addresses available for attackers to use.

In this sense, the Bad Neighborhood approach to malicious networks is fun-
damental to cope with the vast number of valid IPv6 addresses available. We
propose the following for IPv6 blacklists:

1. Employ /48 as the smallest BadHood aggregation netblock for IP-addressing
based BadHoods;

2. Analyze real world traces from IPv6 attacks, and investigate if larger pre-
fixes are necessary to cope with it (e.g., /64)

We believe that some collateral damage may occur. For example, if a single
/64 gets blacklisted, maybe a legitimate host within the /64 also has to pay the
price. Other approaches might be necessary to avoid this, but blocking individ-
ual /128 hosts will not be efficient.
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APPENDIX D

Country Codes Employed in Chapter 4

Code Country
AR ARGENTINA
AM ARMENIA
AU AUSTRALIA
BY BELARUS
BM BERMUDA
BR BRAZIL
CL CHILE
CN CHINA
CO COLOMBIA
CZ CZECH REPUBLIC
FR FRANCE
DE GERMANY
HK HONG KONG
IN INDIA
IR IRAN
IE IRELAND
IT ITALY
KZ KAZAKHSTAN
KR SOUTH KOREA
LT LITHUANIA
LU LUXEMBOURG
MY MALAYSIA
MU MAURITIUS
MA MOROCCO
NL NETHERLANDS
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NG NIGERIA
PK PAKISTAN
PS PALESTINIAN TERRITORY
PE PERU
PH PHILIPPINES
PR PUERTO RICO
RO ROMANIA
RU RUSSIAN FEDERATION
SA SAUDI ARABIA
RS SERBIA
SI SLOVENIA
ES SPAIN
TH THAILAND
TR TURKEY
UA UKRAINE
US UNITED STATES
UY URUGUAY
UZ UZBEKISTAN
VN VIETNAM
VG VIRGIN ISLANDS

Table D.1: Country Codes



APPENDIX E

Third-Party Bad Neighborhood Blacklists
for Spam Detection

This appendix contains an excerpt of the following paper, accepted for publi-
cation at the moment of writing. The publication is based on the results and
datasets presented in Chapter 6:

• Moura, G. C. M., Sperotto, A., Sadre, R., Pras, A.: Evaluating Third-Party
Bad Neighborhood Blacklists for Spam Detection. In: IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM 2013), Ghent,
Belgium, 27-31 May 2013 (to appear)
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E.1 Effectiveness on Detecting Spam

In Chapter 6, we have focused on how specific a BadHood blacklist is to its mea-
surement points. The presented analysis allowed to verify if BadHood Blacklists
collected from different sources share the same observation span, i.e., if they
observe the same BadHoods.

In this section, we analyze the effectiveness of the third-party BadHood
blacklists by measuring the ratio of detected Spam messages. In addition, we
investigate whether we can interchangeably use different blacklists to protect a
target from Spam.

We begin with a description of the used methodology and the considered
scenario in Section E.1.1, followed by a discussion of the achieved results in
Section E.1.2.

E.1.1 Methodology and Considered Scenario

In [31], the authors present an approach for Spam filtering which relies on
analyzing the origin of e-mail messages as well as the links within the messages
to malicious websites. One of the criteria used in their approach is whether the
number of malicious hosts in the origin BadHood of the e-mail is above a certain
threshold. Similar to our work, the authors used publicly available blacklists to
build the list of BadHoods.

With this Spam detection scenario in mind, we investigate here the effective-
ness of employing different BadHood blacklists to detect Spam messages. For
our experiments, we propose a simple Spam detection system that implements
the threshold-based criterion described above.

Consider LS as the BadHood blacklist to be used for Spam detection. When-
ever a new message M arrives, the mail filter extracts the source /24 netblock
address of the sender (M/24) and checks it against the list LS . IfM/24 is found in
LS , then the mail filter will declare the message as Spam if nHosts(M/24) > θ,
where θ (0 ≤ θ < 256) can be considered a threshold on how malicious a
BadHood is. This procedure is summarized in Algorithm 3.

To evaluate the effectiveness of the different BadHood blacklists, we follow
the same scenario as described in Figure 6.1: We regard the mail servers of
Provider A, UT/EWI, and CAIS/RNP as targets to be protected from Spam. We
apply Algorithm 3 to each target T for different values of θ and for the different
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Algorithm 3 Spam detection procedure used in the experiments
Require: LS = {〈Bi, nHostsS(Bi)〉 , i = 1 . . . nS}
Require: θ
Require: M/24

Ensure: true, if spam detected; false, otherwise
1: if M/24 ∈ LS and nHostsS(M/24) > θ then
2: return true
3: else
4: return false
5: end if

blacklists LS and calculate the achieved Spam detection hitcount hS,T (θ) by

hS,T (θ) =
number of Spam mails detected

total number of Spam mails received by T
(E.1)

Again, we will only use a blacklist to protect a target if the blacklist is larger
than the target’s blacklist, i.e., we will not apply the UT/EWI blacklist to the
Provider A mail server.

E.1.2 Experimental Results

Figures E.1(a), E.1(b), and E.1(c) show the obtained hitcounts (in percent) for
filtering the Spam directed to Provider A, UT/EWI, and CAIS/RNP, respectively,
as function of the threshold θ, using the different blacklists. The figures indi-
cate that it is possible to effectively detect Spam messages based on different
BadHood blacklists. This is especially true for large blacklists, like CBL, which
always provides the highest hitcount. The figures also show that the hitcount
decreases fast with increasing values of θ, a fact that most likely is due to the
presence of high-volume spammers in the data sets.

A second insight provided by these results is that the value of θ should be
adjusted to the considered BadHood blacklist. For the same θ, the hitcount val-
ues change considerably among BadHood blacklists. At first sight, this seems to
suggest that the best choice for an administrator is the largest BadHood black-
list, just due to the fact that it has observed a higher number of spamming hosts.
However, large BadHood Blacklists might suffers of drawbacks like a high num-
ber of irrelevant entries, as indicated in Section 6.3.2.

We investigate therefore if smaller BadHoods can still potentially provide
similar hitcounts for appropriately chosen values of the threshold θ. Let θU
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Figure E.1: Spam hitcount for varying values of the threshold θ in Fig. (a)-(c) and the
scaled threshold in Fig.(d)-(f)
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be the threshold that we have used to calculate the hitcount for the BadHood
blacklist LU . We choose the threshold θV for the list LV as

θV = θU ·
∑

Bi∈IU∩V
nHostsV (Bi)∑

Bi∈IU∩V
nHostsU (Bi)

(E.2)

In Figures E.1(d), E.1(e), and E.1(f), we present the hitcounts obtained for the
different targets using the rescaled θ defined in Eq. (E.2). For the LCBL list, the
threshold as indicated on the x-axis is used. For the other lists, we compute the
rescaled theta according to Eq. (E.2), choosing LU = LCBL.

The figures show that, once the size factor is removed by using Eq. (E.2),
all the considered BadHood blacklists can detect Spam with comparable per-
formance. These results therefore indicate that Eq. (E.2) offers an operational
way for choosing values of θ for different blacklists such that the blacklists are
similarly effective in identifying Spam. In fact, one may be tempted to conclude
from these results that all blacklists perform similarly independently of their
size.

However, a different picture is obtained when calculating the number of
legitimate mail traffic erroneously flagged as Spam, i.e., the number of false
positives. Figure E.2 shows the percentage of legitimate mail messages received
by the mail server of UT/EWI1 that are labeled as Spam for varying values of the
scaled threshold θ. While for CBL and PSBL the percentages of blocked Ham is
less than 10% and rapidly falls to zero, for UT/EWI and Provider A we observe
that up to 60% of legitimate mail would be labeled as Spam if a very low value
of θ is chosen. On the other hand, also in the case of Provider A and UT/EWI,
the percentage of blocked Ham is decreasing rapidly for increasing values of θ.

Our results highlight therefore a trade-off between (i) the size of the black-
list, (ii) the Spam hitcount and (iii) the percentage of blocked Ham. Very large
lists, such as CBL and PSBL, achieve a high Spam hitcount with a low percentage
of blocked Ham but contain a large number of irrelevant entries. In contrast,
small and mid-sized lists, that is, Provider A and UT/EWI, contain much less
irrelevant entries and can achieve Spam hitcounts comparable to those of the
larger lists. However, for θCBL < 100, a relatively high number of false positives
can be expected.

1Only the UT/EWI data set provides information on Ham messages.
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