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Abstract

Solving large systems of equations is a problem often encountered in en-
gineering disciplines. However, as such systems grow, the effort required
for finding a solution to them increases as well. In order to be able to
cope with ever larger systems of equations, some form of decomposition is
needed. By decomposing a large system into smaller subsystems, the to-
tal effort required for finding a solution may decrease. However, whether
this is really the case of course depends on the additional effort required
for obtaining the decomposition itself. In this thesis several aspects of the
difficulty of obtaining such decompositions are explored.

The first problem discussed in this thesis is that of the decomposition of
a system of non-linear equations. After describing the well-known condi-
tions for consistency in systems of equations, the decomposition problem
for under-specified systems is analyzed. This analysis, based on the exist-
ing notion of free square blocks, leads to several W [1]-hardness results. The
most important of which is the proof that finding a decomposition into
subsystems where the largest subsystem is as small as possible is W [1]-
hard. This implies that even if the size of such a largest subsystem is
bounded by a constant, the problem is still not solvable in polynomial time
under the current working hypothesis thatW [1] , FP T . As a by-product of
these results two open problems regarding crown structures for the vertex
cover problem are settled.

Having investigated the non-linear case, attention is then shifted to the
case of systems of linear equations. Such systems are commonly repre-
sented as matrices upon which pivot operations are performed. In such op-
erations preserving sparsity of the input matrix is often beneficial to limit
both storage and processing requirements. The choice of pivot elements
can strongly influence the level of sparsity that is preserved. Changing a
zero value in a matrix to a non-zero value is called fill-in. An important
role in preserving sparsity is played by bisimplicial edges in the bipartite
graph that corresponds naturally to a matrix. Such bisimplicial edges cor-
respond to pivots in the matrix that completely avoid fill-in. In this thesis
a newO (nm) algorithm for finding such bisimplicial edges for an n×nma-
trix with m non-zero values is described and analyzed on a common class
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of random matrices. It is shown that the expected running-time of the
algorithm on matrices corresponding to bipartite graphs from the Gn,n,p
model is O

(
n2

)
, which is linear in the input size.

After analyzing single pivots that avoid turning zero elements into non-
zero elements, the class of matrices that allow Gaussian elimination using
only such pivots is discussed. Such matrices correspond to prefect elimina-
tion bipartite graphs. Several algorithms are known for the recognition of
this class of graphs or matrices, but most of them are based on matrix mul-
tiplication implying sparse input matrices may still result in dense matri-
ces along the way. In this thesis two new algorithms for the recognition of
matrices allowing Gaussian elimination while completely preserving spar-
sity are described. One of them is an adaption of an existing algorithm
with a O (nm) time complexity in Θ

(
n2

)
space. The other is a completely

new algorithm designed for efficient handling of sparse instances inO
(
m2

)

time and Θ (m) space.
The final problem discussed in this thesis is a more fine-grained varia-

tion on the traditional Gaussian elimination where instead of using a single
element to clear an entire column, a new pivot element is picked for each
non-zero element in the matrix that needs to be cleared. It is shown that
this approach to pivoting allows the complete preservation of sparsity on a
larger class of graphs or matrices, called perfect partial elimination bipartite
graphs. However, it is unfortunately also shown that recognition of such
matrices is NP-hard, immediately implying that minimizing the amount
of fill-in using such pivots can most probably not be done in polynomial
time.
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Samenvatting

Bipartiete grafen en de decompositie van stelsels van vergelijkingen

Het oplossen van grote stelsels van vergelijkingen is een veel voorko-
mend probleem in technische vakgebieden. Naarmate zulke stelsels groter
worden, wordt het vinden van oplossingen meer en meer werk. Een vorm
van decompositie is dan ook noodzakelijk om met steeds grotere stelsels
om te kunnen gaan. Door grote stelsels op te splitsen in kleinere deel-
stelsels kan de totale hoeveelheid werk voor het vinden van oplossingen
afnemen. Echter, of dit echt het geval is, is uiteraard afhankelijk van de
extra moeite die het kost om de decompositie zelf te bepalen. In dit proef-
schrift worden enkele aspecten van het bepalen van zulke decomposities
verkend.

Het eerste probleem dat behandeld wordt, is de decompositie van stel-
sels van niet-lineaire vergelijkingen. Nadat de bekende voorwaarden voor
consistentie in stelsels van vergelijkingen beschreven zijn, wordt het de-
compositieprobleem voor ondergespecificeerde stelsels van vergelijkingen
geanalyseerd. Deze analyse, gebaseerd op het concept van free square blocks
leidt tot enkele W [1]-hardheidsbewijzen. De belangrijkste hiervan is het
bewijs dat het vinden van een decompositie van een stelsel vergelijkingen
waarbij het grootste deelstelsel zo klein mogelijk is, W [1]-hard is. On-
der de aanname dat W [1] , FP T impliceert dit dat dit probleem zelfs als
de grootte van het grootste deelstelsel van bovenaf begrensd is door een
constante, niet oplosbaar is in polynomiale tijd. Als bijeffect van deze re-
sultaten zijn ook twee open vragen betreffende crown structures voor het
vertex cover probleem opgelost.

Na het analyseren van het niet-lineaire geval volgt de bestudering van
stelsels van lineaire vergelijkingen. Zulke stelsels worden vaak behandeld
als matrices waarop pivot-operaties uitgevoerd worden. Bij deze operaties
is het behouden van nullen in de invoermatrix over het algemeen gewenst
om de eisen voor zowel opslag als verwerking te beperken. De keuze van
pivot-elementen kan een grote invloed hebben op de mate waarin nullen
behouden blijven. Het veranderen van een nul in een niet-nul-waarde in
een matrix wordt fill-in genoemd. Een belangrijke rol in het behouden van
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nullen is weggelegd voor bisimplicial zijden in de bipartiete graaf die op
natuurlijke wijze correspondeert met de matrix. Zulke bisimplicial zijden
corresponderen met pivots in de matrix die fill-in geheel voorkomen. In
dit proefschrift wordt een nieuw O (nm) algoritme voor het vinden van
zulke bisimplicial zijden voor een n × n matrix met m niet-nul-elementen
beschreven en geanalyseerd op een veel voorkomende klasse van random
matrices. Deze analyse toont aan dat de te verwachten looptijd van het
algoritme O

(
n2

)
is op matrices die corresponderen met bipartiete grafen

uit het Gn,n,p-model, en daarmee lineair in de grootte van de invoer.
Volgend op de analyse van individuele pivots die fill-in voorkomen,

wordt de klasse van matrices behandeld waarop Gauss-eliminatie mogelijk
is door enkel dergelijke pivots te gebruiken. Deze matrices corresponderen
met perfect elimination bipartite graphs. Enkele algoritmes voor het herken-
nen van zulke grafen of matrices waren al bekend, maar de meeste daarvan
zijn gebaseerd op matrixvermenigvuldiging, wat betekent dat ijle invoer-
matrices nog steeds onderweg kunnen leiden tot een veel vollere matrix.
In dit proefschrift worden twee nieuwe algoritmes beschreven voor het
herkennen van matrices waarop Gauss-eliminatie mogelijk is waarbij alle
fill-in voorkomen wordt. Het eerste is een aanpassing van een bestaand
algoritme met een tijdscomplexiteit van O (nm) in Θ

(
n2

)
geheugen. Het

tweede is een volledig nieuw algoritme specifiek ontworpen voor het effi-
ciënt herkennen van ijle matrices in O

(
m2

)
tijd en Θ (m) geheugen.

Het laatste probleem dat besproken wordt, is een variant van Gauss-
eliminatie waarbij in plaats van een enkel element voor het vegen van een
kolom, er voor ieder niet-nul-element dat geveegd moet worden een nieuw
pivot-element gekozen wordt. Deze aanpak voor pivoteren maakt het vol-
ledig behoud van nul-elementen mogelijk op een grotere klasse van gra-
fen of matrices, genaamd perfect partial elimination bipartite graphs. Helaas
wordt ook bewezen dat het herkennen van zulke matrices NP-hard is, wat
direct impliceert dat het minimaliseren van fill-in bij gebruik van derge-
lijke pivot-elementen waarschijnlijk niet in polynomiale tijd mogelijk is.
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Chapter 1

Introduction

In this thesis several problems concerning the structure of
systems of equations are discussed. Such problems occur nat-
urally in many fields and understanding them better may help
to improve our ways of solving large systems, for example in
industrial applications. This introductory chapter starts by de-
scribing the context and motivation for such problems. After
this a short, informal description of the concept of computa-
tional complexity is given as this forms the basis of the new
results. Subsequently, the problems considered in this the-
sis are briefly introduced as well as the main contribution of
this thesis. The sections of this first chapter have been written
with non-specialist readers in mind: The subjects are mainly
discussed in a non-formal way with a focus on explaining the
motivation behind, and a basic intuition for, the concepts in-
volved. The chapter ends by outlining the structure of the re-
mainder of the thesis.

1.1 Constraint Solving

The research of this thesis was carried out in the context of the Smart Syn-
thesis Tools (SST) project. This section describes the goals of that project
as well as how the research described in this thesis relates to them. The
problem of finding a feasible solution to a set of mathematical constraints
is one that often occurs in technical disciplines. For example, constraint
solving is often a part of mechanical engineering design problems, where
many physical requirements have to be met. However, not only industrial
problems require solutions to large constraint solving problems. Another
area where constraint solving has been getting increased attention is the
field of robotics and computer vision. An example application in this field
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1. Introduction

is the translation of one or more two-dimensional images from cameras
mounted on a robot to a three-dimensional model of its surroundings. As
such problems become both larger and more common place, automatically
finding solutions to them within a reasonable amount of time becomes ever
more important.

The use of software and computers to assist designers in finding so-
lutions to design problems is not new: Several decades ago the use of
Computer-Aided Design (CAD) programs became common practice. The
focus of these software systems however was mainly on drawing technical
designs and performing calculations on designs based on such drawings.
This meant the burden of coming up with the right values for parameters
such as distances or weights in the concrete design of a product was still
on the human engineers. More recently, automation of this task has come
into focus as a subject for academic research projects. The SST project of
which the work described in this thesis is a part, is such a research project.
The general goal of the Smart Synthesis Tools project is described as fol-
lows [1] :

The objective is a further development of syntheses based
design tools, of which several prototypes already have been
built in Twente. Synthesis is seen in this context as the process
of creating solutions from a set of (incomplete) specifications
of the required behavior. The solutions are completely defined
and optimal configured designs.

Experiences with the existing prototypes are very promis-
ing. They show that it is possible to generate optimal solutions
for engineering problems, in significantly shortened time: up
to ten times faster than with the current way of creating de-
signs.

For a designer, the biggest gain can be achieved with the se-
lection of a good concept. The research focuses on the develop-
ment and integration of synthesis tools into a multidisciplinary
design support system that can be applied at this concept level
of design.

The tools will not, like a wishing well, invent new products,
but they will assist engineers take the right decisions early in
the process. They also will generate- and evaluate many solu-
tions and help the engineer gain insight in his solution space.

From a mathematical point of view, the phrase “creating solutions from
a set of (incomplete) specifications” readily connects to solving potentially
large systems of equations and inequalities. This however still leaves us
with a large number of highly diverse mathematical subjects. The next
section will describe which of these aspects form the focus of this thesis.
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1.2. Structural Approach

1.2 Structural Approach

The approach chosen by the SST project consists of generating a great num-
ber of solutions to a design problem using some intelligence and present-
ing a suitable subset of these generated solutions to a human designer for
further evaluation and selection. The input for the system in general con-
sists of a set of degrees of freedom, or variables, that can be assigned a
value, and a set of constraints or rules that govern the relation between
the variables and as such define the allowed designs. In some cases the
rules also provide for a mechanism to add additional complexity to an in-
termediate result in the form of additional variables or constraints that
can be dynamically added during the design process. However, we will
mostly disregard such situations in this thesis and focus on sets of vari-
ables and constraints that are known beforehand. Based on such a fixed
set of constraints and variables corresponding to a design problem, the
software envisioned as ultimate goal of the SST project generates different
combinations of assignments of values to the variables that correspond to
different feasible designs for this problem.

Now let us consider generating a single design from this set of con-
straints and variables. Without going into too much technical detail, we
can state that the required effort for finding a solution grows as the set
of constraints and variables grows. To be better able to cope with large
sets of constraints and variables, from both a software engineering and a
human point of view, it is often desirable to be able to decompose a prob-
lem into subproblems that can be solved independently. However, truly
independent subproblems are often not possible. In that case we can still
look for subproblems that can be solved in a given order where the values
obtained in the first problem can be substituted into the next as constants
and so on, reducing the number of relevant variables in each step. Such
structural decomposition problems are an important part of this thesis.

In Chapter 2 we describe the mathematical foundation of our struc-
tural analysis in terms of graph theory and bipartite graphs in particular.
In that chapter we will see how this decomposition is based purely on the
structure of the set of constraints and variables and not on the exact values
of any constants that occur in them, either from the start, or as values that
have been obtained during the solving of a previous subproblem. This im-
plies that a structural analysis of a design problem is not only useful for the
process of generating a single design, but can rather be reused for every it-
eration of the generating process. Summarizing, the focus on the structural
aspects of the mathematical models underlying these design problems is
motivated by the following main reasons:

• the same sets of constraints and variables have to be solved many
times with variations only in the values of the constants that occur in

3



1. Introduction

the constraints;

• decomposition of a set of constraints and variables helps a human
designer by facilitating piece-wise analysis of a model instead of han-
dling the entire model at once;

• if in the future we want to also consider models where the sets of con-
straints and variables are augmented during the design process itself,
structural analysis and decomposition may help guide the incremen-
tal build-up of the structure as it may not be required to consider an
entire intermediate structure at once.

As in this thesis the focus is on structural rather than numerical aspects
of constraint solving and we try to consider general problems regarding
decompositions rather than specific case studies, we need some way to
compare and assess the usefulness of such decomposition techniques in
general. The notion of computational complexity described in the next
section lends itself well to exactly such a purpose.

1.3 Computational Complexity

In this section we try to motivate the concept of computational complexity
that forms the basis of much of our analysis later on. Most of the prob-
lems discussed in this thesis deal with different forms of decompositions
of systems of equations in an attempt to speed up the process of finding a
solution to such a system by subsequently solving separate (smaller) parts
instead of solving everything at once. From a practical point of view, one
of the most important aspects to consider is thus whether putting effort
into obtaining such a decomposition will actually lead to a reduction in
the overall effort required: If the preprocessing required for the decompo-
sition and the effort for solving the separate parts is bigger than the effort
required to solve the entire system at once, then putting effort into obtain-
ing a decomposition may not be worthwhile.

To determine whether computing a decomposition may pay off in prac-
tice, we could take a number of example problems and simply compare
two implementations of a solver on them; one using decomposition as a
preprocessing step and one without. However, this would only provide us
with insights limited to the combination of these specific example prob-
lems and implementations. Chances are that the differences we could mea-
sure now for currently relevant problems would no longer be relevant in
the not too distant future as faster computers become available. To over-
come this, we instead focus most of our analysis on how the required effort
grows as problems themselves become larger and larger. This section gives
a high-level introduction into the main concepts of this area of mathemat-
ics called computational complexity.
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1.3. Computational Complexity

Most descriptions here aim for an intuitive understanding of the most
important concepts and as such are not very formal in a mathematical
sense. For example: A formal definition of many of the concepts regarding
complexity is usually based on the notion of some computing model such
as a Turing machine, but this is far beyond the scope of this thesis. For a
more formal and in-depth treatment of this subject, the reader is referred
to the standard work by Garey and Johnson [2].

1.3.1 Problems, Instances and Algorithms

Before we can address the subject of complexity itself, we first need to
define some common concepts regarding problems and algorithms. In ev-
eryday speech what we call a ‘problem’ is usually a very concrete question
to which we have to find an answer. For example: Finding a route home
from some unfamiliar place. To solve this problem we may lookup our
present location on a map and then try to plot a course in the general di-
rection of our house. If we find ourselves in a different place the next day
and again have the desire to return home, we may use the same procedure
to get there, even though our starting point is different. (Better yet: the
fact that most readers will find this example both familiar and trivial tells
us that the procedure outlined here will probably also work for different
houses and persons, implying an even higher degree of generality.)

In a mathematical sense we call the generic question ‘find a route from
one given location to another’ a problem and the actual question ‘find a
route from here to my house’ an instance of that problem. A problem in
general thus consists of a description of what constitutes an instance and
a question regarding such an instance. A general procedure for solving a
problem (such as consulting a map) can then be described and later ap-
plied to any of the individual instances even if we don’t know the specific
details of the instance (the given locations) beforehand. Such a prescrip-
tion of steps that can be applied to each problem instance to obtain a solu-
tion for that instance is called an algorithm. We only consider an algorithm
as a solution to a problem, and call it an algorithm for that problem, if the
algorithm is able to solve all possible instances of the problem.

1.3.2 Complexity of Algorithms

When we talk about the complexity of an algorithm, we usually mean its
running time, the time it takes to solve instances. This is also known as
its time complexity. This complexity can roughly be described as an up-
per bound on the number of ‘elementary steps’ an algorithm for a specific
problem needs to solve an instance of that problem expressed as a function
of the size of that particular instance. Steps in an algorithm are considered
‘elementary’ if we may assume them to take some constant unit of time at
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most to complete. Formally defining what steps qualify as elementary is
out of the scope of this short introduction, but we will try to give an intu-
itive indication by means of a few examples. The following operations can
often be considered elementary:

• Simple mathematical operations, such as addition, subtraction, mul-
tiplication, division (assuming their operands are not unreasonably
large).

• Simple decisions based on a limited number of values, for example
‘compare these two numbers and skip the next step if the first num-
ber is at least as large as the second’.

• Using or updating the value of a simple variable (usually a value in
a computer’s memory).

The following operations are examples of steps that are usually not ele-
mentary, because the time they take to complete is typically strongly de-
pendent on (the size of) their operands:

• Finding the lowest number from a list of numbers.

• Sorting a list of numbers.

• Updating all of the elements in a given matrix to a specific value.

Besides the notion of elementary steps or operations, our description
of time complexity also hinges on the way we define the size of a problem
instance. Defining this concept of size of an instance is not easy in general
terms. However, nearly all the problems we discuss in this thesis are prob-
lems from combinatorial optimization and in particular from graph the-
ory. This means an instance of a problem is often represented by a graph,
so the size of the instance is usually conveniently expressed in terms of
the number of vertices or the number of edges or a combination of both.
Analogously, when considering systems of equations, reasonable parame-
ters for describing the size of a problem instance could be: The number
of equations, the number of variables and the number of ‘occurrences’ of
variables in equations.

For the sake of simplicity it is often advantageous to express the size
of an instance using a single parameter that is dominant for the size. For
example, the size of a problem instance consisting of a connected graph is
often simply taken to be equal to its number of edges.

Assuming that for a given problem we have found a suitable parameter
n to measure the size of an instance, we want to analyze the running time
of a certain algorithm for this problem. Here we encounter two more com-
plications: Firstly, it is often impractical to assess the exact number of steps
for all possible instances, even for a fixed value of n. And secondly, even if
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notation definition
f(n) = O (g(n)) ∃k > 0,n0∀n > n0 : f (n) ≤ k · g(n)
f(n) = Ω (g(n)) ∃k > 0,n0∀n > n0 : k · g(n) ≤ f (n)
f(n) = Θ (g(n)) ∃k1, k2 > 0,n0∀n > n0 : k1 · g(n) ≤ f (n) ≤ k2 · g(n)
f(n) = o (g(n)) ∀ε > 0∃n0∀n > n0 : |f (n)| ≤ ε · |g(n)|
f(n) = ω (g(n)) ∀k > 0∃n0∀n > n0 : k · |g(n)| ≤ |f (n)|

Table 1.1: Notations for asymptotic behavior.

we are able to obtain an exact formula for the required number of steps for
the ‘hardest’ instance at every given size n, such a formula is probably too
unwieldy for the purpose of comparing different algorithms. Besides, what
we are usually only interested in is what happens for really large values of
n: If we increase some n by a factor 10, what may we expect from the time
the algorithm needs to solve such a bigger instance? Is it also multiplied
by 10? or will it increase by a factor 100? By this same reasoning, constant
factors are rarely of interest: If the instances we want to solve are large
enough, an algorithm requiring 1000 · n2 steps will still be faster than an
algorithm requiring n3 steps. Such considerations motivate the use of so-
called asymptotic behavior in time complexity analysis. Roughly put, this
means we compare algorithms based on the term that dominates an upper
bound on their running time when n goes to infinity, while disregarding
constant factors. In formal notation: If f (n) denotes the time required to
run a certain algorithm on instances of size n, we write f (n) = O (g(n)) if
for n going to infinity, f (n) is bounded above by g(n) up to some constant
factor. This notation together with some other notations for asymptotic
behavior are shown with their mathematical definitions in Table 1.1. (Tak-
ing absolute values has only been added for the two notations where we
actually use it.)

Besides analyzing the amount of time required by an algorithm to solve
a problem, we may also be interested in the amount of space it requires to
store intermediate results. This is for example relevant if we want to im-
plement the algorithm in a computer program. A program can probably
be written for any computer processor, fast or slow, and the choice of pro-
cessor will only affect the amount of time we have to wait for an answer.
However, if the computer we want to use does not have enough memory to
store the algorithm’s intermediate results, no amount of additional wait-
ing will help; we will simply have to either add more memory or use a
different algorithm. The analysis of the amount of space required by an
algorithm, its space complexity, is again usually performed by investigat-
ing its asymptotic behavior and expressed using the same notations from
Table 1.1.
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1.3.3 Complexity of Problems

Analyzing the time complexity of different algorithms for a problem can
give us an impression of how hard the problem itself is in an absolute
sense. Intuitively: If we can find a fast algorithm to solve a problem, the
problem is apparently not that hard to solve in general (even though find-
ing a fast algorithm may not have been very easy). However, for many
problems no acceptably fast algorithms have been found yet and it is often
not even known whether such algorithms exist. In many cases it would
thus be nice to get an idea of how hard a problem is before investing a lot
of effort into the search for a good algorithm that may not even exist. This
motivates the analysis of the ‘inherent’ complexity of problems instead of
only analyzing the complexity of known algorithms that solve them.

Furthermore, comparing the complexity of problems where the instanc-
es or solutions have different structures is hard to do: The solution to an
instance of one problem may be a single number, whereas another prob-
lem has entire graphs as solutions to its instances. In part to facilitate the
comparison and categorization of different problems, we often analyze de-
cision problems. A decision problem is a problem for which the answer to
an instance is simply ‘yes’ or ‘no’. For example: Instead of asking for the
shortest route between two points on a map, we ask whether there exists
a route with a length of at most some value, say 25 kilometers. The in-
stances of a decision problem to which the answer is ‘yes’ are referred to as
yes-instances and the other instances are referred to as no-instances. Opti-
mization problems are at least as hard as their related decision problems;
simply finding the shortest route will tell us if it is shorter than 25 kilo-
meters. So by analyzing decision problems, we can at least obtain a lower
bound on the hardness of their non-decision relatives. In the remainder
of our discussion on complexity we will assume all problems are decision
problems.

An important notion in the categorization of the complexity of prob-
lems is that of polynomial running time of an algorithm: A running time
bounded above by some polynomial of the instance size. A problem that
can be solved by such an algorithm is said to be solvable in polynomial time.
The class of decision problems that can be solved in polynomial time is
simply called P. Problems in this class are often considered to be efficiently
solvable.

Another important complexity class is NP. NP contains all decision
problems with the following characteristic: For each yes-instance of the
problem there exists a so-called certificate that can be used to verify that
the instance is a yes-instance in polynomial time. Clearly, all decision
problems that are in P, are also in NP as we can determine whether an
instance is a yes-instance in polynomial time even without using a certifi-
cate. The converse question is one of the most famous open questions in
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mathematics: It is still unknown whether all problems in NP can also be
solved in polynomial time, which would imply P= NP. Also, it is important
to note that membership in NP does not automatically imply there is also
a certificate for every no-instance that can be verified in polynomial time.
(The class of problems that allow verification of no-instances using some
certificate in polynomial time is called co-NP.)

Establishing membership in the classes P and NP is usually done by
providing a polynomial time algorithm for respectively solving the prob-
lem or verifying yes-instances using a certificate. Membership in these
classes however mainly shows what we can achieve (polynomial time solu-
tions or verification of yes-instances); it does not impart a notion of hard-
ness to a problem since P ⊆ NP . In order to come to such a concept of
hardness, we first need a way to describe that one problem B is ‘at least as
hard’ as another problem A. We say a problem A reduces to a problem B, if
we can provide a polynomial time algorithm to construct an instance of B
for each instance of A in such a way that the constructed instance of B is a
yes-instance for B if and only if the original instance of A is a yes-instance
forA. This construction procedure is also known as a (Karp) reduction from
A to B [3]. Clearly, if we have an algorithm to solve B in polynomial time,
and we have a polynomial time algorithm to convert instances of A to in-
stances of B while preserving their yes/no-status, we can also solve A in
polynomial time by combining these two algorithms. This implies that if
we have a reduction from A to B and we can show B is a member of P, then
A must be a member of P as well.

In 1971, Stephen A. Cook proved that all problems in NP can be re-
duced to the problem Satisfiability [4]. In other words: if a polynomial
algorithm to solve Satisfiability is ever found, then all problems in NP can
be solved in polynomial time, effectively showing P= NP. Problems such as
Satisfiability to which all problems in NP can be reduced are called NP-
hard. NP-hard problems are not necessarily members of NP themselves,
but if they are in NP, they are called NP-complete. Since Satisfiability was
proven to be NP-complete, the same has been shown for many other prob-
lems through (indirect) reductions from Satisfiability. Even though it is
still unknown whether NP contains problems that are not in P, the work-
ing hypothesis among most mathematicians is that NP-hard problems are
not in P. Under this assumption, proving that a problem is NP-hard im-
plies searching for a polynomial time algorithm is destined to be fruitless.
Proofs of NP-hardness thus often play an important role in deciding where
to concentrate future research efforts, even though such results are not
themselves immediately useable in practical applications.
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1.3.4 Parameterized Complexity

Fortunately, not all has been lost for the application-minded once a prob-
lem has been shown to be NP-hard. It is sometimes for example still pos-
sible to impose additional constraints on the instances to achieve polyno-
mial time solvability. Another promising approach is that of parameterized
complexity [5]. Beyond considering just the size of a problem instance as
leading for the definition of complexity, it is sometimes possible to define
additional parameters of the instances or the question of the problem. The
time complexity of such problems can sometimes be split into a multipli-
cation of a part dependent only on the parameter, and a part dependent
only on the general size of the input. If we have an additional parameter k
on top of the instance size n in our problem formulation and our problem
can be solved in time O (f (k)poly(n)) (where poly(n) denotes a polynomial
of n) then by fixing the value of k the problem becomes solvable in polyno-
mial time even though this is not the case in general. The fixed parameter
value in this case only influences the constant the polynomial of the in-
put size is multiplied by, instead of, e.g., the exponent of this polynomial
which would be a lot worse for large values of n from a practical point of
view. Consider for example the Vertex Cover problem discussed in the
introductory chapter of the seminal work on parameterized complexity by
Downey and Fellows [5]: For any fixed value of k we can decide in linear
time whether a graph of size n has a vertex cover of size k, whereas the or-
dinary, non-parameterized version of this problem is NP-complete [2]. It is
also possible that more than one additional parameter is identified, but in
this thesis we restrict ourselves to a single additional parameter. Parame-
terized problems that can be solved in timeO (f (k)poly(n)) for fixed values
of k are called fixed parameter tractable and the set of all such problems is
denoted by FPT. Analogous to the contrast between P and NP-hard, there
are also complexity classes containing problems for which fixed parame-
ter tractability is considered unlikely. One of these classes is W [1]-hard.
Unfortunately, explaining how this class is defined is beyond this introduc-
tion. The working hypothesis is that FPT, W [1], so W [1]-hard problems
are strictly harder than those in FPT in the sense that they will not admit a
separation of their running time into a multiplication of a ‘general’ func-
tion of k and a polynomial of n for fixed parameter values. The concepts
of membership and hardness are also relevant for parameterized complex-
ity, although the reductions are slightly more involved as they also have
to consider possible changes in the parameter values between instances of
two problems. Once a problem has been proven to be W [1]-hard on top of
being NP-hard, there is even less hope for finding efficient algorithms for
it.

Having introduced the relevant concepts of complexity, we can now
proceed to describe the main subjects of this thesis in the next two sections.
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1.4. Equations and Decomposition

x1 x2 x3 x4

h1 h2 h3

Figure 1.1: The structure of the example system of equations.

x1 x2 x3 x4

h1 h2 h3

Figure 1.2: The remaining structure after substituting a value for x3.

x1 x2 x3 x4

h1 h2 h3

Figure 1.3: The remaining structure after substituting a value for x4.

1.4 Equations and Decomposition

In this section we give a short introduction and motivation for the research
described in Chapter 3. Based on the mathematical foundations of our
structural analysis described in Chapter 2 we analyze the general hard-
ness of decomposing a system of equations into parts that can be solved
sequentially. To illustrate this problem consider the system of three equa-
tions in four variables given by

h1(x1,x3) = 0

h2(x1,x2) = 0

h3(x2,x3,x4) = 0 .

In this system of equations, the exact form of the functions hi is not
relevant, but we assume that they are explicitly dependent on the variables
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1. Introduction

shown here. The structure of this system of equations, i.e., which equation
explicitly depends on which variables, is shown in Figure 1.1. Our example
system of equations is under-specified as it has one more variable than it
has equations. This means we could solve it by assigning a value to one of
the variables and solve the remaining equations and variables after that.
Let us consider assigning a value to variable x3 and substituting this value
into the equations. The structure of the remaining system of equations is
shown in Figure 1.2. The remaining system of equations then allows us to
proceed as follows: Equation h1 now only depends on x1, so we can use it to
obtain a value for x1. By substituting this value into h2, we can then easily
solve x2. And finally by substituting the value we find for x2 into h3 we
are left with one equation in one variable x4 which can then be solved. (Of
course all of this only holds under the assumption that the intermediate
systems of equations actually have solutions.)

To illustrate the usefulness of structural analysis, let us consider the
original system of equations again and this time start by assigning a value
to the variable x4. The structure of the remaining system after substitution
of this value into the equations is shown in Figure 1.3. From this figure it
is immediately clear that no equation in the remaining system depends on
only a single variable, so in order to solve this remaining system we are
forced to consider multiple equations and variables at once.

This simple example shows how the choices we make when solving a
system of equations can immediately influence the structure of what re-
mains and how that structure in turn can make the remainder of the solv-
ing process easier or harder by forcing us to consider larger parts at once.
In Chapter 3 we analyze the computational complexity of several aspects
of this general structural decomposition problem. The research described
in Chapter 3 is joint work with Georg Still and Walter Kern [6].

1.5 Linear Equations and Elimination

Chapters 4 and 5 describe the second part of the research results in this
thesis. These chapters discuss Gaussian elimination and more specifically
the process of picking the right pivots to avoid turning zero elements of
a matrix into non-zero elements during the elimination process. Gaussian
elimination is a classic and still very useful procedure for solving linear
equations represented by a matrix. When applying Gaussian elimination
to large but sparse matrices the selection of the pivot elements becomes
central to reducing both the required computational effort and storage.

To illustrate this, consider the matrix shown in Figure 1.4. If we want to
perform Gaussian elimination on this matrix, we have to start by picking
a non-zero element and use it to clear the other non-zero elements from
its column by subtracting appropriate multiples of its row from the other
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1 1 1 1

3 2 0 0

4 0 1 0

5 0 1 0







Figure 1.4: An example matrix for Gaussian elimination.

1 1 1 1

0 −1 −3 −3
0 −4 −3 −4
0 −5 −4 −5







Figure 1.5: The example matrix after using element (1,1) as pivot.

−3 1 0 1

3 2 0 0

4 0 1 0

1 0 0 0







Figure 1.6: The example matrix after using element (3,3) as pivot instead.

rows. For example if we pick the top-left element (1,1) from our example
matrix and use it to clear the left-most column, we end up with the ma-
trix shown in Figure 1.5. Although the matrix we have obtained has only
a single non-zero value in the left-most column, every previously zero ele-
ment in the other columns has been turned into a non-zero. Our choice of
pivot has effectively decreased the number of zero elements, reducing the
sparsity of the matrix.

In our small example matrix it may not be a big problem to lose a few
zero elements, but if we have to process a very large, sparse matrix on a
computer losing a lot of sparsity may be detrimental to the overall storage
requirements of our program. However by picking another pivot to start
with we can do substantially better. Let us consider the original matrix
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again but this time we use the element (3,3) as a pivot to clear its col-
umn. After this operation we end up with the matrix shown in Figure 1.6.
This time we have cleared the third column except for the pivot element
itself and we have not turned a single zero into a non-zero along the way.
By repeatedly picking the right pivots we can even perform the complete
Gaussian elimination procedure on our example matrix without turning a
single zero into a non-zero along the way. This example shows how picking
the right pivots can help in keeping computing time and storage require-
ments down for performing Gaussian elimination on sparse matrices.

In Chapter 4 the selection of pivots that completely avoid turning zero
elements into non-zero elements is discussed. The chapter first describes
the notion of a bisimplicial edge that is closely related to such pivots. After
that a new algorithm to find such pivots is described and analyzed on a
common class of random matrices.

In Chapter 5 our analysis is expanded from picking a single pivot to
the entire Gaussian elimination procedure. This chapter contains two new
algorithms that have been devised for the recognition of matrices that al-
low so-called perfect elimination – elimination without turning any zero
into a non-zero. After the description and analysis of these algorithms we
turn our attention to a modified version of the Gaussian elimination pro-
cedure: one with more fine-grained pivot selection where a new pivot is
chosen for every non-zero element that has to be turned into a zero. We
round off the chapter by analyzing the computational complexity of this
natural generalization of Gaussian elimination for the case where we wish
to avoid turning zero elements into non-zeros completely.

The algorithm for finding bisimplicial edges and its analysis in Chapter
4 is joint work with Bodo Manthey [7]. The analysis of the Perfect Partial
Elimination problem described in Chapter 5 is joint work with Georg Still
and Walter Kern [9].

1.6 Contribution

The main contributions of the original research described in Chapters 3, 4
and 5 of this thesis are:

• Parameterized complexity results regarding several problems related
to the decomposition of under-specified systems of equations.

• Proofs ofW [1]-completeness for two problems regarding crown struc-
tures.

• A new deterministic algorithm for finding bisimplicial edges in bi-
partite graphs.

14
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• Two algorithms for the recognition of perfect elimination bipartite
graphs. (One is an adaption of existing work of Goh and Rotem, the
other is completely new.)

• A proof of NP-completeness of the recognition of the class of perfect
partial elimination bipartite graphs related to a natural fine-grained
generalization of Gaussian elimination.

The description of these contributions in this thesis is based on the
following publications:

[6] Matthijs Bomhoff, Walter Kern, and Georg Still. On bounded block
decomposition problems for under-specified systems of equations.
Journal of Computer and System Sciences, 78(1):336–347, 2012.

[7] Matthijs Bomhoff and Bodo Manthey. Bisimplicial edges in bipartite
graphs. Discrete Applied Mathematics (CTW2010), 2011. in press,
DOI: 10.1016/j.dam.2011.03.004.

[8] Matthijs Bomhoff. Recognizing sparse perfect elimination bipartite
graphs. In Alexander Kulikov and Nikolay Vereshchagin, editors,
Computer Science – Theory and Applications, volume 6651 of Lecture
Notes in Computer Science, pages 443–455. Springer, Berlin, 2011.

[9] Matthijs Bomhoff, Walter Kern, and Georg Still. A note on perfect
partial elimination. Technical report, University of Twente, 2011.
Submitted to Discrete Mathematics.

Although Chapters 3, 4 and 5 do occasionally contain references to
other material in the thesis, effort has been put into making each of these
chapters a more or less self-contained unit while avoiding too much du-
plication. This hopefully permits the occasional reader to select and read
those parts that are of interest to him or her.

1.7 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 describes
the mathematical foundations of the structural approach to constraint solv-
ing problems. It introduces the relevant concepts from graph theory and
shows how the analysis of bipartite graphs and matchings leads to mean-
ingful results on constraint solving. Chapter 3 discusses the structural de-
composition of non-linear, under-specified systems of equations. It starts
by describing the Dulmage-Mendelsohn decomposition for bipartite graphs
which forms the basis of the analysis. The use of this decomposition for
under-specified systems is subsequently analyzed from a parameterized
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complexity point of view, leading to several hardness-results. The chap-
ter also discusses some new findings regarding crown structures, derived
from the decomposition problem analysis. In Chapter 4 the focus is shifted
to linear systems of equations and pivot operations related to Gaussian
elimination on such systems in particular. The chapter starts with an in-
troduction into structural analysis of pivot selection for avoiding fill-in
during Gaussian elimination. Following the introduction, a new algorithm
for pivot selection is presented together with a probabilistic analysis of its
performance on a class of random instances. Chapter 5 continues the in-
vestigation of linear systems of equations and expands the topic of pivot
selection to that of sequences of such pivots that lead to perfect elimina-
tion. New algorithms for determining whether a perfect elimination se-
quence exists in a sparse instance are presented. Finally, it is shown that
adapting the traditional Gaussian elimination process to a more flexible
procedure using partial pivots makes the problem NP-hard. Chapter 6
discusses the results and briefly describes their impact in the context of
constraint solving applications. It also contains suggestions for future re-
search both from a theoretical and from an applied point of view.
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Chapter 2

Mathematical Concepts

This chapter introduces many of the general mathemati-
cal concepts that form the foundation of the work in this the-
sis. The focus of the first part of the chapter is on briefly re-
freshing concepts from graph theory and establishing a consis-
tent terminology regarding them. The second part of the chap-
ter describes the theoretical groundwork behind using graph
theory as a tool for structural analysis for systems of equa-
tions. This chapter contains no new results and its contents
are not meant to be exhaustive, they merely serve to outline
the common framework of mathematics that underlies the re-
search presented in the other chapters.

2.1 Graph Theory Concepts

The structural analysis of systems of equations discussed in this thesis is
based on a graph theoretical representation of the structure of such sys-
tems. Graph theory provides simple yet powerful concepts for structural
analysis, but many of these concepts are defined slightly differently by
different authors. This section briefly defines the common concepts from
graph theory that reoccur frequently in the remainder of this thesis. For a
more in-depth treatment of these concepts, the reader is referred to intro-
ductory books on the subject (for example the classical work by Berge on
graphs and hypergraphs [10]).

A graph G is a a tuple (V ,E) consisting of a set V of objects called ver-
tices, and a set E of unordered pairs of vertices, called edges. Although in-
finite graphs are not by definition excluded, in this thesis all graphs have
a finite number of vertices and edges. The unordered pair of vertices x
and y is usually written as xy. The vertex and edge sets of a graph G are
denoted by V (G) and E (G) respectively. Alternatively, we sometimes also
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use VG and EG. As E is a set, it can contain each unordered pair of vertices
at most once, a graph with this property is sometimes called a simple graph.
In a given graph G = (V ,E), two vertices x,y are called adjacent if xy ∈ E.
The edge xy is said to join, or to be between, the vertices x and y. x and y
are called the endpoints of the edge xy. We say the endpoints are incident
to the edge. Two edges sharing an endpoint are also said to be adjacent.
The number of edges incident to a vertex x is called its degree and is often
written as δ (v). All vertices adjacent to a vertex x together are called its
neighbors. The set of neighbors of vertex x is denoted by Γ (x). The notion of
neighbors can also be extended to a set of vertices: For a subset V ′ ⊆ V we
denote by Γ (V ′) the set of vertices that are adjacent to at least one vertex
in V ′ and are not in V ′ themselves.

A graphH is called a subgraph of a graph G if V (H) ⊆ V (G) and E (H) ⊆
E (G). Note how by definition of a graph, the edge set ofH can only contain
edges between vertices of H . Subgraphs are sometimes written using set
notation: H ⊆ G. A subgraph H of a graph G is called a proper subgraph if
G contains at least one more vertex or edge than H , in set notation this is
written as H ⊂ G.

A subgraph H of a graph G is called an induced subgraph if there is no
subgraph H ′ of G such that V (H ′) = V (H) and |E (H ′)| > |E (H)|. H is said
to be induced by its vertex set V (H). A subgraph of a graph G induced by
the vertex set X is denoted by G [X]

A walk W in a graph G is a sequence of edges where it is possible to
assign an orientation to each of the edges denoting one of its endpoints
as ‘head’ and the other as ‘tail’ in such a way that for every pair of con-
secutive edges, the head of the first coincides with the tail of the second
(multiple occurrences of the same edge in the sequence may get different
orientations). The number of edges in the sequence is called the length of
the walk. For every vertex x of G, let us define δW (x) as the number of
edges of W incident to x, counting duplicates according to their multiplic-
ity. If δW (x) is even for every x, the walk is called closed, otherwise it is
called open. A closed walk is also called a tour. In an open walk, the two
vertices of G with δW (x) odd are called the endpoints of the walk. All ver-
tices with δW (x) even are said to be traversed by the walk. A walk is called
simple if δW (x) ≤ 2 for every x. A simple walk is called a path if it is open,
and a cycle if it is closed.

Two vertices x and y are said to be connected if there exists a path with
x and y as endpoints. Furthermore, we consider every vertex connected
to itself. A graph G is called connected if each pair of vertices of G is
connected. Clearly, connectivity as a relation is reflexive, symmetric and
transitive. As such, it partitions the vertices of a graph G into equivalence
classes. Each equivalence class induces a subgraph of G that is connected.
These induced subgraphs are called the (connected) components of G.

A graph G = (V ,E) is called bipartite if V can be partitioned into two
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sets X and Y such that each edge in E has one endpoint in X and one
endpoint in Y . X and Y are then called the vertex classes of G. If the par-
titioning of the vertices into vertex classes is explicit, we use the notation
G = (X,Y ,E).

A graph G = (V ,E) is called a complete graph if E contains all possible
edges between V : E = {uv | u,v ∈ V }. A complete subgraph is also called
a clique. If G = (X,Y ,E) is a bipartite graph and E contains every possible
edge between X and Y , E = {xy | x ∈ X,y ∈ Y }, then G is called a complete
bipartite graph. A complete bipartite subgraph is also known as a biclique.

A directed graph (sometimes digraph) is a tuple (V ,A) consisting of a set
of vertices V and a set of ordered pairs of vertices A, called arcs. As A is a
set, every ordered pair of vertices can occur in A at most once. An arc (x,y)
is said to be directed from x (the tail) to y (the head).

A directed walk in a directed graphG = (V ,A) is a sequence of arcs where
for every pair of consecutive arcs, the head of the first arc coincides with
the tail of the second arc. A directed walk is called closed if the tail of its
first arc is equal to the head of its last arc and open otherwise. A directed
walk is called simple if every vertex in V occurs at most once as head and
at most once as tail. Every vertex that occurs as both head and tail in a
directed path is said to be traversed. An open simple directed walk is called
a directed path, a closed simple directed walk is called a directed cycle.

Two vertices x and y of a directed graph G = (V ,A) are called strongly
connected if there is at least one directed path from x to y and one directed
path from y to x. Furthermore, we define every vertex to be strongly con-
nected to itself, so strong connectivity in a directed graph, like connectiv-
ity in an ordinary graph, partitions the vertex set into equivalence classes.
The subgraphs induced by the equivalent classes of the strong connectivity
relation are called strongly connected components.

2.2 Matchings

A key role in our graph theoretical analysis of systems of equations is
played by the concept of a matching in a graph. This section introduces
matchings and provides a couple of results that will be used later on.

A matching M ⊆ E of a graph G = (V ,E) is a set of edges such that every
vertex of G is incident to at most one edge in M. A vertex x is said to be
covered by a matching M if there is an edge e ∈ M such that x is incident
to e. A set of vertices is said to be covered by a matching if every vertex of
the set is covered by the matching. A matching M of G is called maximal
if no matching M ′ of G exists such that M ⊂ M ′ . M is called a maximum
matching of G if there is no matching M ′ of G with |M | < |M ′ |. A matching
M of G is called perfect if it covers V (G). A perfect matching is always
maximum and a maximum matching is always maximal. The converse is
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not necessarily true. Given a matching M, a path or a cycle is called M-
alternating if its edges are alternately in M and not in M. A path is called
M-augmenting if it isM-alternating and its endpoints are not identical and
both not covered by M.

Given two sets of edges, M1 and M2, we may consider the set of edges
that are a member of exactly one of both sets. We call this the symmet-
rical difference of M1 and M2 and denote it by M1∆M2. In set notation:
M1∆M2 = (M1∪M2)\(M1∩M2). The symmetrical difference of two match-
ings of a bipartite graph has a number of useful properties.

Lemma 2.1. Let G = (U,V ,E) be a bipartite graph and let M1 and M2 be two
matchings of G, then the following hold:

1. The edges of M1∆M2 together form only paths and cycles in G. In other
words: No vertex of G is incident to more than two edges of M1∆M2.

2. If M1 and M2 are both perfect matchings of G, M1∆M2 consists only of
cycles. In other words: Every vertex of G is incident to either zero or two
edges of M1∆M2.

Proof. By definition of a matching each vertex of G can be incident to at
most one vertex of M1. As the same holds for M2, each vertex of G can be
incident to at most two edges in M1 ∪M2. And as we have that M1 ∪M2 ⊇
M1∆M2, this proves property 1. Property 2 is proven by a simple extension
of this reasoning: for each vertex x of G a perfect matching M1 contains
exactly one edge incident to it. The same holds for M2. If the edges in M1
and M2 that are incident to x are equal, then this edge is not a member of
M1∆M2 and so the symmetrical difference contains no edges incident to x.
Otherwise, ifM1 contains a different edge incident to x thanM2, then both
edges must be in M1∆M2. This holds for every vertex x of G, so all vertices
of G are incident to either zero or two edges of M1∆M2. This completes
the proof.

Another useful application of the symmetrical difference is the sym-
metrical difference between a matching M and an M-augmenting path
or M-alternating cycle: The symmetrical difference in this case always
leads to a new matching. In the case of an M-augmenting path, the new
matching contains exactly one more edge than M, hence the name M-
augmenting.

We end this section by introducing two famous theorems regarding
matchings in bipartite graphs. The reader is referred to [11] and [12] for a
more in-depth treatment of these theorems, as well as their proofs.

The first of the two theorems, Kőnig’s Minimax Theorem, relates vertex
covers to matchings in bipartite graphs. A vertex cover V ′ of a graph G =
(V ,E) is a subset of V such that every edge in E is incident to at least one
vertex in V ′ .
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Theorem 2.2 (Kőnig’s Minimax Theorem). (see e.g. [12]) In a bipartite graph,
the cardinality of a maximum matching is equal to the cardinality of a mini-
mum vertex cover.

The second, P. Hall’s Theorem, gives a condition that is both necessary
and sufficient for the existence of a matching covering all the vertices in
one of the vertex classes in a bipartite graph.

Theorem 2.3 (P. Hall’s Theorem [13]). Let G = (U,V ,E) be a bipartite graph.
Then G has a matching covering V if and only if |Γ (X)| ≥ |X | for all X ⊆ V .

2.3 Systems of Equations and Bipartite Graphs

In this thesis, we model the structure of a system of equations by a bipar-
tite graph. This section explains this representation as well as the struc-
tural implications we can derive from it regarding the original system of
equations. This usage of bipartite graphs for the analysis of systems of
equations is not new and has been described before by many authors in
different contexts in both papers (e.g. [14, 15, 16]) and books (e.g. [17, 18])
on this subject. The description in this section is an adapted version of that
in a paper by Still et al. on the meaning of the concept of consistency [19].

We consider a system of m equations in n unknowns of the form

hi(x) = 0, i ∈ I := {1, . . . ,m} ,x = (x1, . . . ,xn) . (2.1)

Instead of the actual form of the equations hi(x), we are interested in the
structure of this system of equations, i.e., which equations depend explic-
itly on which variables. This structure can be represented by a bipartite
graph with one vertex class representing the equations, the other vertex
class representing the variables and the edges between the two classes rep-
resenting the explicit occurrence of the variables in the equations. This
bipartite graph G and its edge set E are thus constructed as

E :=
{
(i, j) ∈ I × J | hi(x) depends explicitly on xj

}
(2.2)

G := (I, J,E) . (2.3)

Here the index sets I and J of respectively the equations and the variables
are used as their vertex sets in the graph G. We will illustrate this con-
struction by an example.
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x1 x2 x3 x4 x5

h1 h2 h3 h4

(a)

x1 x2 x3 x4 x5

h1 h2 h3 h4

(b)

Figure 2.1: Bipartite graphs corresponding to example systems.

Consider the following system of 4 equations in 5 unknowns:

h1(x) = x1 − x2 = 0

h2(x) = x1 + x2 − 4 = 0

h3(x) = x2
1 − x3 = 0

h4(x) = x1 + x3 + x4 + x5 = 0

The corresponding bipartite graph of the structure of this system is shown
in Figure 2.1(a). To solve this system, we first obtain x1 = x2 = 2 from
equations h1 and h2. h3 then leads to x3 = 4 and we can finally use h4 and
either freely choose a value for x4 and solve x5 or choose a value for x5 and
solve x4. This freedom is directly attributable to the fact that we have more
variables than equations.

Now let us consider a slightly adapted version of our example system
of equations where h3 no longer depends on x3 but depends on x2 instead.
This leads to the following system of equations:

h1(x) = x1 − x2 = 0

h2(x) = x1 + x2 − 4 = 0

h3(x) = x2
1 − x2 = 0

h4(x) = x1 + x3 + x4 + x5 = 0

The adapted bipartite graph corresponding to this system is shown in Fig-
ure 2.1(b). Again, we may start solving the system by obtaining x1 = x2 = 2
from equations h1 and h2. However substituting these values into h3 now
leads to a contradiction. Clearly, there is no valid solution to this example
system.

The problem in this example is that the value of a variable can be ob-
tained simultaneously through solving different parts of the system lead-
ing to conflicting results. To avoid such structural inconsistency, we can
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impose a structural constraint. A moment of reflection shows that the
following condition should hold assuming there are no redundant con-
straints: For any subset of the equations I0 ⊆ I the number of variables
appearing in these equations, should not be smaller than the number of
equations in the subset, i.e., the cardinality |I0| of I0. (Example 2.11 at the
end of this chapter illustrates how redundant constraints can complicate
matters.) In the bipartite graph G this condition translates to

|Γ (I0)| ≥ |I0| ∀I0 ⊆ I .
By Theorem 2.3 this implies we can avoid structural inconsistency in a
system of equations by requiring that the associated bipartite graph G has
a (maximum) matching covering I . Note how this condition immediately
implies that the number of variables nmust be at least as large as the num-
ber of equations m. In what follows, we will call a system of equations
(structurally) consistent, if its associated bipartite graph G has a matching
covering all of the vertices corresponding to the equations of the system.

In a given consistent system of equations hi(x) = 0 with associated bi-
partite graph G = (I, J,E), a matching M covering I naturally induces a
partition of the variables xj . If we denote by B = {j ∈ J | j is covered by M}
the set of vertices corresponding to variables that are covered by M, then
xB =

{
xj | j ∈ B

}
and xF =

{
xj | j < B

}
together form a partition of the vari-

ables xj . The n −m variables in xF are called free variables for the system
with respect to the particular matching M. According to the consistency
concept the values for these variables can be chosen so that for any choice
of xF we are left with a structurally consistent system h̃i = 0 with an equal
number of equations and variables:

h̃i(xB) := hi(xB,xF) = 0, i = 1, . . . ,m .

If the general system hi(x) = 0 has a solution (which may of course not even
be the case) it is important to note that not all possible choices for values
of xF may lead to a system h̃i = 0 that actually has a solution (consider for
example the system h(x) = ex1 − x2 = 0 with xF = {x2} and x2 = 0). Further-
more, the set of possible maximum matchings of G dictates the possible
partitions of xj : partitions of xj for which no suitable maximum matching
exists can not lead to structural consistency.

From the preceding discussion, we know that the bipartite graph G =
(I, J,E) associated with a system of equations must have a maximum match-
ing covering I in order for the system to be structurally consistent. Al-
though different choices for this matching may result in different parti-
tions of xj into free and non-free variables, the free variables must all be
assigned a value before we can meaningfully determine values for all of
the non-free variables. Motivated by this, we restrict the remainder of our
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analysis of the concept of consistency to the case where the number of
equations is equal to the number of variables, i.e., m = n.

Formally, this means we consider a system of n equations in n un-
knowns,

hi(x) = 0, i ∈ I := {1, . . . ,n} , x = (x1, . . . ,xn) ∈Rn (2.4)

with a structure given by a bipartite graph G = (I, J,E) with |I | = |J |.
Definition 2.4. Let the structure of (2.4) be given by the bipartite graph
G = (I, J,E). We then call the system (2.4) consistent if G has a perfect
matching.

Remark 2.5. Sometimes, instead of consistency the notion structural solv-
ability is used. We again point out that our notion of consistency does not
imply solvability. For example the following system is structurally consis-
tent, but does not have a solution:

h1(x) = x1 + x2 − 1 = 0

h2(x) = x1 + x2 − 2 = 0

Furthermore, consistency as defined in terms of the bipartite graph G does
not say something about a concrete instance of a system of equations, but
rather has a meaning for the whole class of systems characterized by the
structure of G.

In the next section we further analyze this concept of consistency for
linear systems of equations.

2.4 Consistency for Linear Equations

For the case of linear equations we restrict ourselves to systems of equa-
tions of the form

Ax − b = 0, A ∈Rn×n,b ∈Rn (2.5)

and consider the structure of the corresponding bipartite graphG = (I, J,E).
This bipartite graph allows us to define an entire class of systems of equa-
tions.

Definition 2.6. Given a bipartite graph G = (I, J,E) we introduce the cor-
responding class of structured matrices

MG =
{
A ∈Rn×n | aij = 0 for (i, j) < E

}
�R|E| .
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This bipartite graph and associated class of matrices also lead to a problem
class PG regarding systems of equations of the form (2.5),

PG : solve Ax = b with A ∈MG,b ∈Rn .
We call the problem class PG consistent if G allows a perfect matching (a
matching covering I) and inconsistent otherwise.

For the special case of linear systems of equations, the concept of con-
sistency is closely related to that of the non-singularity of the matrix A ∈
MG. Non-singularity of A implies that the system Ax = b has a unique
solution. In particular, in what follows we will show that for almost all
A ∈MG the matrix A is non-singular if and only if PG is consistent.

The basic implication of the notion of consistency for linear systems of
equations is given by

Theorem 2.7. The set MG contains a non-singular matrix A0 if and only if G
allows a perfect matching.

Proof. LetM be a perfect matching in the bipartite graphG = (I, J,E). Then
the matrix A0 ∈MG given by

A0 = (aij ), aij =


1 if (ij)∈M
0 otherwise

is a permutation matrix with detA0 = ±1, i.e., A0 is a non-singular matrix.
For the proof in the other direction, assume that G does not allow a

perfect matching and let A ∈ MG be an arbitrary matrix of the class MG.
Then by Theorem 2.3 there exists a subset I0 ⊂ I with |Γ (I0)| < |I0|. Let
J0 = Γ (I0), r = |I0| and k = |J0|. The r rows of A corresponding to I0 must
have all zero values in at least n − k > n − r columns, implying that these
rows are linearly dependent, which in turn implies Amust be singular.

The following lemma will be useful to us in refining the meaning of
consistency for the classes PG. We have not been able to find a proper proof
of this lemma in the available literature, even though the result itself seems
rather intuitive. The proof below is an adapted version of a proof by Caron
and Traynor found in a seemingly unpublished note [20].

Lemma 2.8. Let p :RK →R be a polynomial mapping, p , 0 and denote by λK
the K-dimensional Lebesgue measure. Then the subset of RK mapped to zero by
p has Lebesgue measure zero, i.e., λK

{
x ∈RK | p(x) = 0

}
= 0.

Proof. The proof proceeds by induction on K , the dimension of the vector
x of variables. If K = 1 and p(x) : R→ R is a non-zero polynomial, then
clearly p(x) has a finite set of roots with zero measure: λ1 {x ∈R | p(x) = 0} =
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0. Now suppose the result is true for polynomials in K − 1 variables and
let p(x) = p(x1,x2, . . . ,xK ) be a non-zero polynomial of K variables with
maximum degree M. For indices i1, i2, . . . , iK ∈ {0, . . . ,M} and constants
αi1,i2,...,iK ∈R we may write p(x) as

p(x) = p(x1,x2, . . . ,xK ) =
∑

i1,i2,...,iK

αi1,i2,...,iK · x
i1
1 x

i2
2 . . .x

iK
K .

Now let qi2,...,iK (x1) =
∑
i1
ai1,i2,...,iK · x

i1
1 then we may also write p(x) as

p(x) = p(x1,x2, . . . ,xK ) =
∑

i2,...,iK

qi2,...,iK (x1) · xi22 . . .xiKK .

Since p is not the zero polynomial, there is a set of indices (i2, . . . , iK ) for
which qi2,...,iK (x1) , 0. As each non-zero qi2,...,iK (x1) is a polynomial of only
a single variable, the set of its roots is finite. Let us denote by N the set of
all values x1 ∈R such that p(x) is zero for all values of (x2, . . . ,xK ). I.e., N :=
{x1 ∈R | p(x1,x2, . . . ,xK ) = 0, for all x2, . . . ,xK }. If for some value x1 ∈ N we
have that p(x) = 0 for all values of (x2, . . . ,xK ) then we must have that each
qi2,...,iK (x1) = 0. SoN is the intersection over all indices (i2, . . . , iK ) of the sets
of roots of qi2,...,iK . Clearly, N is finite and thus

λ1(N ) = 0 . (2.6)

Now denote by N c := R \N the complement of N and consider a fixed
x1 ∈N c. For such a value of x1, we know by our induction hypothesis

λK−1

{
(x2, . . . ,xK ) ∈RK−1 | p(x1,x2, . . . ,xK ) = 0

}
= 0 . (2.7)

Combining the two, we obtain

λK {x ∈R | p(x) = 0} =
∫
λK−1 {(x2, . . . ,xK ) | p(x1,x2, . . . ,xK ) = 0}dx1

=
∫

N
λK−1 {(x2, . . . ,xK ) | p(x1,x2, . . . ,xK ) = 0}dx1

+
∫

N c
λK−1 {(x2, . . . ,xK ) | p(x1,x2, . . . ,xK ) = 0}dx1

= 0 .

Let us consider the polynomial mapping p on MG �R
|E| given by

p :MG→R, p(A) = detA .

According to Theorem 2.7 we have p , 0 if and only if G allows a perfect
matching. Together with Lemma 2.8 this leads to the following corollary.
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Corollary 2.9. The subsetM0
G = {A ∈MG | detA = 0} ⊆MG of singular matri-

ces has (Lebesgue) measure zero if and only if G allows a perfect matching.

Now let us consider the set Mr
G = MG \M0

G of regular matrices. By
Corollary 2.9 this set has full Lebesgue measure ifG allows a perfect match-
ing and by Theorem 2.7 it is empty otherwise. For a given G this means
that for almost all A ∈ MG the system Ax = b is uniquely solvable if and
only if G allows a perfect matching. If G has a perfect matching and
A0 ∈ MG is an arbitrary matrix with p(A0) = detA0 , 0, then by the con-
tinuity of p(A) clearly there exists some ε-neighborhood of A0 in which
p(A) , 0. This shows Mr

G is an open subset of MG if G has a perfect match-
ing. Furthermore, ifG has a perfect matching andA0 ∈MG is a matrix such
that p(A0) = 0, then by an ε-perturbation of A0 we obtain a matrix Ã0 with
p(Ã0) , 0, showing Mr

G is also dense in MG. These results are summarized
in the main theorem of this section.

Theorem 2.10. The set Mr
G is open and dense in MG if and only if G allows a

perfect matching.

Simply put, Theorem 2.10 states that consistency as defined as the ex-
istence of a perfect matching in G corresponds exactly to the systems of
equations Ax = b with A ∈MG for which we may expect to find a (unique)
solution due to the regularity of the matrix A.

For the case of non-linear equations a similar, albeit significantly more
involved, analysis of the concept of consistency can be performed. Such
an analysis is however too far from the main subject of this thesis. We
will restrict ourselves here to mentioning that also in the non-linear case
a perfect matching of the bipartite graph representing the structure of the
system of equations corresponds to the analogous concept of consistency.
The interested reader is referred to the paper of Still et al. [19] for further
details.

We round off this chapter with an example to illustrate the limitations
of structural analysis for the concept of consistency.

Example 2.11. Consider the following system of three linear equations in
two variables x1,x2 where α ∈R and β ∈R \ {0} are fixed parameters:

x1 + x2 = 1 (2.8)

x1 + x2 = 1 +α (2.9)

x1 + βx2 = 1 . (2.10)

As β , 0, the bipartite graph corresponding to the structure of this system
of equations is shown in Figure 2.2.

Structurally, this system is clearly over-specified, as the number of equa-
tions is larger than the number of variables. However, if we look beyond
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x1 x2

h1 h2 h3

Figure 2.2: Example over-specified system of linear equations.

the structure, we see three significantly different cases can arise based on
the values of the parameters α and β.

• If α , 0, then equations 2.8 and 2.9 are contradictory and the system
has no solution.

• If α = 0 and β , 1, then equations 2.8 and 2.9 are identical and equa-
tion 2.10 is different so the system has a unique solution.

• If α = 0 and β = 1, then equations 2.8, 2.9 and 2.10 are identical and
the system has an infinite number of solutions.

Example 2.11 shows the limitations of our notion of (structural) consis-
tency, even for the relatively simple case of linear equations: Even though
structural analysis tells us the system is over-specified, depending on the
actual values of α and β it can still have zero, one or an infinite number of
solutions.
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Chapter 3

Bipartite Graphs and
Decompositions

When faced with a large problem (more formally: a large
instance) that requires a solution, a sensible approach is often
to consider breaking up the problem into smaller subproblems
that can be solved separately and subsequently be combined
into a single solution of the overall problem. In this chapter
we analyze the viability of such an approach to solving general
systems of non-linear equations. The chapter first describes the
Dulmage-Mendelsohn decomposition, a well-known decompo-
sition for bipartite graphs that naturally corresponds to a de-
composition of a system of equations. This part of the chap-
ter contains no new results, it merely provides the foundation
for what follows. Subsequently we show that decomposing an
under-specified system of equations into subsystems that are as
small as possible is W [1]-hard. Based on these new results we
can also answer a couple of hitherto open questions regarding
crown structures for the parameterized vertex cover problem.

3.1 The Decomposition of Bipartite Graphs

The previous chapter discussed bipartite graphs as a representation of the
structure of systems of equations. It was shown how, based on the bipar-
tite graph, consistency or structural solvability can be determined using
matchings. The structural information in the bipartite graph can, how-
ever, not only be used to determine consistency; it can also be used to find
possible decompositions of a system into subsystems that can be solved
separately.
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The decomposition of bipartite graphs that allows us to find such sub-
systems was first described by Dulmage and Mendelsohn and called the
canonical decomposition [14]. This decomposition is sometimes also sim-
ply called the Dulmage-Mendelsohn decomposition, the name we will also
use. The first description by Dulmage and Mendelsohn of their decom-
position was not based on matchings, but rather on the related concept
of (external) covers and focused mainly on applications in matrices [21].
Later, the decomposition has also been described in terms of matchings
(see e.g. [22, 11]), which is also the route we take below. We present a
proof constructed from scratch mainly to focus on structural properties of
the decomposition, rather than its construction. However, our proof has of
course been influenced by previous work on the subject.

The canonical decomposition as described by Dulmage and Mendel-
sohn actually consists of two decompositions: A coarse and a fine de-
composition. The coarse decomposition decomposes an arbitrary bipartite
graph into three (possibly empty) parts. The fine decomposition further
decomposes one of these parts into a number of irreducible blocks. Both
decompositions are discussed in detail below together with several of their
properties that will be of use to us in describing the relation to systems of
equations.

3.2 The Coarse Dulmage-Mendelsohn Decomposition

Let G = (U,V ,E) be a connected bipartite graph and let M be the set of
maximum matchings of G. The coarse Dulmage-Mendelsohn decomposition
of G is defined using a partition of the vertices of G over three sets: D is
the set of vertices v for which there is at least one maximum matching of G
not covering v. A is the set of their neighbors and C is the set of remaining
vertices. Formally:

D := {x ∈U ∪V |∃M ∈M : x is not covered by M}
A := Γ (D) \D
C := (U ∪V ) \ (D ∪A)

An example of this partition is shown in Figure 3.1. For notational
convenience, let DU = D ∩U , etc. Using the sets D,A and C, we define
the following subgraphs of G that form its coarse Dulmage-Mendelsohn
decomposition:

G1 := G [C]

G2 := G [DU ∪AV ]

G3 := G [DV ∪AU ]

An example of this decomposition is shown in Figure 3.2. We proceed
by proving some useful properties of the coarse decomposition.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

A

D A

DC

Figure 3.1: Example sets A,D and C for the coarse Dulmage-Mendelsohn
decomposition.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

G1G2 G3

Figure 3.2: Example coarse Dulmage-Mendelsohn decomposition.

Lemma 3.1. There is no edge in E connecting two vertices x,y ∈D.

Proof. As G is bipartite, we only have to consider the case where x and
y are in different vertex classes. Assume without loss of generality that
x ∈ DU and y ∈ DV . To prove our claim, we show there exists a maximum
matching M∗ that covers neither x nor y, thus contradicting the existence
of an edge xy.

Let M be a maximum matching which does not cover x and let M ′ be
a maximum matching which does not cover y. If either M or M ′ does
not cover x and y, we have found M∗, so let’s assume this is not the case.
In M∆M ′ , y must be the endpoint of some M-alternating path P of even
length. As x also has degree one in M∆M ′ , we know P neither traverses
nor ends in x. M∆P can be used as the required matching M∗.

Lemma 3.2. In any maximum matching M, every vertex x ∈ A is matched to
a vertex y ∈D.

Proof. Assume there exists a maximum matching M and a vertex x ∈ A
such that x is matched to y′ ∈ A ∪ C. We will derive a contradiction. By
construction of the decomposition, x has a neighbor y ∈ D. If y is not
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3. Bipartite Graphs and Decompositions

covered in M, M∆{yx,xy′} is a maximum matching that does not cover y′ ,
leading to a contradiction. So assume y is covered by M and let M ′ be
a maximum matching in which y is not covered. M∆M ′ contains an M-
alternating path P of even length from a vertex y′′ which is not covered in
M to y. If P contains xy′ , let P ′ be the first part of P from y′′ to y′ . As y,
y′ and y′′ are all in the same vertex class, P ′ must be of even length and
its last edge must be xy′ , so M∆P ′ is a maximum matching that does not
cover y′ , leading to a contradiction. Finally, if P does not contain xy′ ,M∆P
is again a maximum matching containing the edge xy′ and in which y is
not covered, leading to a contradiction.

Lemmata 3.1 and 3.2 together trivially lead to the following corollary
describing the structure of every maximum matching of G.

Corollary 3.3. Any maximum matching consists only of edges between A and
D and edges connecting vertices of C to other vertices of C.

A possible maximum matching for our example bipartite graph is shown
using vertical, thick lines in Figure 3.2.

3.3 The Fine Dulmage-Mendelsohn Decomposition

Part G1 of the coarse Dulmage-Mendelsohn decomposition can be decom-
posed further using the so-called fine Dulmage-Mendelsohn decomposition.
Before we describe the fine decomposition itself, we first define the concept
of irreducible bipartite graphs.

Definition 3.4. A bipartite graph G = (U,V ,E) is called irreducible if it is
connected and for each of its edges e ∈ E there exists a perfect matching M
of G such that e ∈M.

The following lemma describes a useful property of irreducible bipar-
tite graphs.

Lemma 3.5. Let G = (U,V ,E) be an irreducible bipartite graph and let M
be an arbitrary perfect matching of G. For each u ∈ U,v ∈ V there exists an
M-alternating path between u and v starting and ending with an edge in M.

Proof. Let u ∈U and let S ⊆U∪V be the set consisting of u and all vertices
reachable from u by an M-alternating path starting with an edge in M. As
M is a perfect matching, |S ∩U | = |S ∩V | and each vertex in S is matched
to another vertex in S. Now assume S is a proper subset of U ∪ V . As
G is connected, there must be an edge xy with x ∈ S and y ∈ (U ∪ V ) \ S.
Edge xy cannot be in M, so x < V as that would imply there was an M-
alternating path from u to y, contradicting y ∈ (U ∪V ) \S. Hence we must
have x ∈U ∩S and y ∈ V \S. Now let M ′ be a perfect matching containing
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Figure 3.3: Example fine Dulmage-Mendelsohn decomposition.

xy. By a simple counting argument, M ′ must also contain at least one edge
u′v′ with u′ ∈U \ S and v′ ∈ V ∩ S. However, that would in turn imply the
existence of an M-alternating path from u to u′ contradicting u′ ∈ U \ S.
We conclude that S cannot be a proper subset of U ∪ V , so S = U ∪ V ,
proving our lemma.

The fine decomposition splits a connected bipartite graph with a per-
fect matching into irreducible components. It is defined as follows: Let
G = (U,V ,E) be a connected bipartite graph with a perfect matching. Con-
struct the subgraph H = (U,V ,E′) consisting of those edges of G that are
contained in some perfect matching. In other words, ifM denotes the set
of all perfect matchings of G, E′ = {e ∈ E | ∃M ∈M : e ∈M}. The fine de-
composition of G now consists of the components Hi of H . An example of
the fine decomposition of G1 from our course decomposition example is
shown in Figure 3.3.

Clearly, the fine decomposition is well-defined and unique. We pro-
ceed by proving some properties of the fine decomposition that help us in
decomposing systems of equations into smaller subsystems.

Lemma 3.6. Let G = (U,V ,E) be a connected bipartite graph with a perfect
matching and let H = (U,V ,E′) with components Hi be its fine decomposition.
For each edge uv ∈ E \E′ with u ∈Hi ,v ∈Hj we have i , j.

Proof. Assume to the contrary that there exists some edge uv ∈ E \E′ with
u,v ∈ Hi for some i. From Lemma 3.5 we know that for every maximum
matching M of G, there exists an M-alternating path from u to v starting
and ending with an edge in M. Together with uv this path forms an M-
alternating cycle C, so M∆C forms another perfect matching of G with
uv ∈ M∆C, contradicting uv ∈ E \ E′ . Ergo, each edge uv ∈ E \ E′ must
connect two different components Hi and Hj .
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3. Bipartite Graphs and Decompositions

Theorem 3.7. Let G = (U,V ,E) be a connected bipartite graph with a perfect
matching and let H = (U,V ,E′) with irreducible components Hi be its fine de-
composition. Then there is no sequence of irreducible componentsH1,H2, . . . ,Hc
such that there exists a set of edges {u1v2,u2v3, . . . ,ucv1} ⊆ E \ E′ with ui ,vi ∈
Hi .

Proof. Assume to the contrary that a sequence of irreducible components
and corresponding edges exists. Let M be a perfect matching of G. From
Lemma 3.5 we know that for each i there is an M-alternating path in
Hi from ui to vi starting and ending with an edge in M. These paths
combined with the edges {u1v2,u2v3, . . . ,ucv1} form an M-alternating cy-
cle C. So M∆C is a perfect matching of G contradicting that the edges of
{u1v2,u2v3, . . . ,ucv1} ⊆ E \E′ are not in any perfect matching of G.

3.4 Constructing the Dulmage-Mendelsohn
Decomposition

The preceding discussion of the Dulmage-Mendelsohn decomposition fo-
cused on structural properties. In this section we approach the decompo-
sition from a more constructive point of view and describe how it can be
determined for arbitrary bipartite graphs in polynomial time.

From the definition of the coarse decomposition in Section 3.2 it is clear
that once we know which vertices are in the set D, determining the rest
of the decomposition is easy. Fortunately, our structural analysis of the
decomposition leads to a practical way to determine the vertices in this
set.

Theorem 3.8. Let M be a maximum matching of G, D consists of exactly
those vertices of G that are either not covered by M or can be reached by M-
alternating paths of even length starting from the vertices not covered by M.

Proof. It is clear that all vertices not covered byM, are in D. Now consider
any M-alternating path P of even length starting at a vertex not covered
by M. We know from Lemma 3.1 that the first edge of P (not in M) leads
to a vertex in A, and from Corollary 3.3 that the second edge (in M) leads
back to D and so on. So the other endpoint of P must also be in D. For
the converse, it is clear that all vertices not covered by M are in D, so
consider a vertex x in D which is covered by M. By definition, there exists
a maximum matching M ′ which does not cover x. M∆M ′ thus contains an
M-alternating path of even length from a vertex not covered byM to x.

Theorem 3.8 provides us with an easy way to obtain the coarse Dulmage-
Mendelsohn decomposition for a given bipartite graph G: starting from a
maximum matching M of G, we first determine D using M-alternating
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Figure 3.4: Example fine Dulmage-Mendelsohn decomposition.

paths of even length from vertices not covered by M. A and C then imme-
diately follow from the definition of the decomposition. Finding a max-
imum matching of G can be done in time O

(
|E|√|U |+ |V |

)
using the al-

gorithm of Hopcroft and Karp [23] . Determining which vertices can be
reached by M-alternating paths of even length starting from the vertices
not covered by M can also be done in polynomial time, for example using
a breadth-first search from each of these vertices.

In what follows, we will show that the fine decomposition can sub-
sequently also be obtained in polynomial time using a directed bipartite
graph constructed from the part G1 of the coarse decomposition.

Theorem 3.9. Let G = (U,V ,E) be a connected bipartite graph graph with a
perfect matching M. Construct the directed graph G′ from G by orienting all
edges of G from V to U . Also add to G′ additional edges corresponding to the
edges in M directed from U to V . The irreducible components of G correspond
to the strongly connected components of G′ .

Proof. Let u ∈ Hi and v ∈ Hj with i , j. By Theorem 3.7 we know there is
no directed cycle connecting two or more irreducible components, so if u
and v are in different components of the fine decomposition of G, they are
not strongly connected in G′ .

For the converse, let u,v ∈ Hi . If u is matched to v in M, they are
clearly strongly connected. So assume this is not the case and u and v are
matched to v′ and u′ respectively in M. By Lemma 3.6 there exists an M-
alternating path from u to v in G that corresponds to a directed path in
G′ . Furthermore, such a path also exists from u′ to v′ . Together with the
directed edges from v′ to u and from v to u′ , these paths form a directed
cycle, showing that u and v are strongly connected.

An example of the directed graph G′ constructed from part G1 of our
example decomposition is shown in Figure 3.4. Finding a perfect match-
ing inG (for example by the algorithm of Hopcroft and Karp), constructing
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Figure 3.5: Possible decomposition of G3.

the corresponding directed graph G′ as described in Theorem 3.9 and de-
termining its strongly connected components (for example using Tarjan’s
algorithm [24] ) can be done in polynomial time.

For a more in-depth description of the algorithmic and complexity as-
pects of the Dulmage-Mendelsohn decomposition the reader is referred to
existing literature on the matter, for example work by Ait-Aoudia et al.
discussing the application of the Dulmage-Mendelsohn decomposition in
the reduction of constraint systems for geometric modeling [15].

3.5 The Dulmage-Mendelsohn Decomposition and
Systems of Equations

The Dulmage-Mendelsohn decomposition of a bipartite graphG = (U,V ,E)
corresponding to a system of equations has a natural interpretation: If U
represents the equations and V represents the variables, G2 corresponds
to the over-constrained part of the system, G1 corresponds to the well-
constrained part, and G3 corresponds to the under-constrained part. In
the remainder, we will assume G2 to be empty, such that the system of
equations is consistent and lacks an over-constrained part.

The fine decomposition of G1 corresponds to a decomposition of the
corresponding part of the system of equations into subsystems that can be
solved successively in an order determined by the connections between the
components. These connections represent the dependency of equations
in one component on variables in another component and thus logically
dictate the order of solving of the components.

Solving a large system of equations at once is often harder than solving
its subsystems separately, so obtaining a decomposition into subsystems
that can be solved in order can be beneficial. For the well-constrained
part G1, the fine Dulmage-Mendelsohn decomposition corresponds to the
unique decomposition ofG1 into irreducible subsystems that can be solved
separately. For the under-constraint part G3 however, this decomposition
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Figure 3.6: Alternative decomposition of G3.

is no longer unique. Each maximum matching of G3 leaves one or more
vertices corresponding to variables uncovered. By assigning a value to
these variables, the remainder of the system corresponding to G3 becomes
well-constrained and gets a perfect matching. It can then be decomposed
using the fine decomposition and subsequently solved. However, different
maximum matchings and their resulting uncovered variables can lead to
different decompositions as can be seen in Figures 3.5 and 3.6.

The remainder of this chapter describes our research [6] on the com-
plexity of finding an optimal decomposition, i.e., one in which the largest
subsystem is as small as possible. This problem is not new: It has been
studied before for example by Bliek et al. [25]. However, as far as we
know, no investigation of its parameterized complexity has been under-
taken before. Even though this problem is only relevant for the decom-
position of G3, we will usually simply consider the more general case of
a bipartite graph G = (U,V ,E) with a maximum matching covering U . In
the remainder of this chapter, G1, G2 and G3 will be used to denote other
(sub)graphs of G and no longer necessarily correspond to the parts of the
coarse Dulmage-Mendelsohn decomposition. The decision problem cor-
responding to finding a decomposition where the largest subsystem is as
small as possible can be stated as follows.

Bounded Block Decomposition

Instance: A bipartite graph G = (U,V ,E), an integer k
Question: Is there a partition of U =U1∪U2 · · ·∪Un and V = V1∪V2 · · ·∪

Vn ∪ Vn+1 such that for each 1 ≤ i ≤ n, Gi = G [Ui ,Vi] is a bipartite
graph with a perfect matching, Γ (Vi) ⊆

⋃i
j=1Uj and |Ui | = |Vi | ≤ k?

Note that for any yes-instance of this decision problem, we must have
|U | ≤ |V | and G contains a matching covering all of U . Furthermore, if G
is not connected then we may analyze its components separately, so with-
out loss of generality we will assume G is connected. For bipartite graphs
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Figure 3.7: An example of a free square block.

G = (U,V ,E) with |U | = |V | containing a perfect matching, a partition as de-
scribed in the definition of the Bounded Block Decomposition problem is
equal to the fine Dulmage-Mendelsohn decomposition, so Bounded Block

Decomposition on such graphs is decidable in polynomial time. Unfortu-
nately, for |U | < |V | we will see that Bounded Block Decomposition is in
general a harder problem.

We proceed by discussing some special properties of the part G1, as
well as the relation between this part, the entire decomposition and how it
can be used to solve the corresponding system of equations.

3.6 The Free Square Block Problem

Before analyzing the difficulty of the Bounded BlockDecomposition prob-
lem itself, we first turn our attention to the problem of finding a single
small subsystem that can be solved after solving the remainder of a system
of equations. We first introduce the concept of a free square block [25]
and show some of its useful mathematical properties. Then we describe
the decision problem related to finding the smallest free square block in
a given bipartite graph as well as alternative mathematical interpretations
of this problem. This forms the basis for the complexity analysis of the
entire decomposition problem.

Definition 3.10. Let G = (U,V ,E) be a bipartite graph. A free square block
A of G is a non-empty induced subgraph of G such that |UA| = |VA|, and
ΓG (VA) ⊆UA.

Translated back to the application of systems of equations, the last re-
quirement states that no variable in A may occur in an equation which is
not part of A, so A can be solved after solving the remainder of the system.
Figure 3.7 shows an example of a free square block.

We proceed by proving several useful properties of free square blocks.

Theorem 3.11. Let G = (U,V ,E) be a connected bipartite graph with 1 ≤
|U | ≤ |V |. There exists a non-empty induced subgraph A ⊆ G with a perfect
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matching, such that ΓG (VA) ⊆ UA, i.e., G contains a free square block with a
perfect matching.

Proof. Consider a minimum vertex cover C of G with UC , ∅ (the connect-
edness combined with |U | ≤ |V | guarantees such a vertex cover to exist)
and a maximum matching M (of equal cardinality by König’s theorem,
Theorem 2.2). Let UA = UC and assume UA is matched to VA ⊆ V . Now
construct the induced subgraph A = G [UA ∪VA]. By construction, A has
a perfect matching. Furthermore, as C is a vertex cover, we must have
ΓG (VA) ⊆UA.

It is convenient to introduce the concepts of minimal and minimum
free square blocks. A minimal free square block A ⊆ G is a free square block
of G that contains no smaller free square block. Similarly, a minimum free
square block A of G is a free square block of minimum size among the free
square blocks of G.

Corollary 3.12. A minimal free square block has a perfect matching.

Proof. Assume to the contrary that A is a minimal free square block of
G = (U,V ,E) that contains no perfect matching. Then by Hall’s theorem
(Theorem 2.3) there is a strict subset V ′ ⊂ VA such that |Γ (V ′)| < |V ′ |. How-
ever, in that case we know from Theorem 3.11 that G [Γ (V ′)∪V ′] contains
a smaller free square block that is necessarily also a free square block of G,
contradicting the minimality of A.

Minimal free square blocks are of interest for solving systems of equa-
tions: They correspond to subsystems that cannot be decomposed further,
can be solved after solving the rest of the system, and are consistent due
to the existence of a perfect matching. Bliek et al. [25] have described an
algorithm called OpenPlan to decompose systems of equations using free
square blocks. This algorithm finds a smallest (w.r.t. the number of ver-
tices) free square block in the bipartite graph representation of a system
of equations and marks it as a subsystem that can be solved last. By iter-
atively applying this procedure until only variables are left, the algorithm
comes up with an optimal decomposition, i.e., one in which the size of
the largest subsystem is as small as possible. As finding the smallest free
square block in a graph forms the core of this algorithm, we decided to
further investigate the tractability of this problem, as well as that of the
decomposition problem itself. In the analysis of the following sections, we
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consider the following natural parameterization of the decision problem
regarding the existence of free square blocks of a given size.

k-Free Square Block
Instance: A bipartite graph G = (U,V ,E), a positive integer k
Parameter: k
Question: Does G contain a free square block of size k?

Although our analysis is based on graph theory, this problem can also
naturally be expressed in terms of hypergraphs or systems of distinct rep-
resentatives. The following problem regarding hypergraphs (see e.g. [10])
is equivalent to the k-Free Square Block problem:

Instance: A hypergraph H = (V ,E), a positive integer k
Parameter: k
Question: Is there a subgraph H ′ ⊆H with |V (H ′)| = |E (H ′)| = k?

Another formulation uses the notion of a system of distinct representa-
tives (see e.g. [13, 26]). Let F = (S1, . . . ,Sn) be a family of subsets of a finite
set S, a sequence F = (f1, . . . , fn) is called a system of distinct representatives,
or SDR, if all elements of F are distinct, and fi ∈ Si for i = 1,2, . . . ,n. In this
context, the k-Free Square Block problem is equivalent to the following
decision problem:

Instance: A set S, a family F of subsets of S, a positive integer k
Parameter: k
Question: Is there a subset S ′ ⊆ S and a subset F ′ ⊆ F , such that |S ′ | =
|F ′ | = k and

⋃
F∈F ′ F = S ′ and F ′ has an SDR with respect to S ′?

3.7 k-Free Square Block is W [1]-complete

We proceed by studying the k-Free Square Block problem to establish
its parameterized complexity. The main results are two proofs by reduc-
tion that together establish the W [1]-completeness of the problem. The
Dulmage-Mendelsohn decomposition and related problems have been stud-
ied before from a parameterized complexity point of view, for example in
the context of variations on vertex cover problems (see e.g. [27, 28]), but
the parameterized approach to the specific problems we study seems to be
new.

Bliek et al. note that the smallest free block problem is expected to be NP-
hard [25]. Later, the problem is stated to be NP-hard [29] as being the ‘dual’
of the minimum dense problem which asks for a minimum subgraph with
at least a certain ratio between edges and vertices (see e.g. [30]), however,
this duality is not immediately obvious. Furthermore, NP-completeness

40



3.7. k-Free Square Block is W [1]-complete

is not always the end of the line, as parameterized versions of (decision)
problems can sometimes be solved efficiently even though their non-para-
meterized versions are NP-hard. A nice example of this is given in the
introductory chapter of [5] that discusses the (minimum) Vertex Cover

problem which is known to be NP-complete and its parameterized version
k-Vertex Cover that asks if a vertex cover of size k exists. The latter ver-
sion is fixed parameter tractable, i.e., can be solved in time O(f (k)poly(n))
(where n denotes the number of vertices). So the question in our case is:
Is there an efficient parameterized algorithm to find a small minimal free
square block of parameterized (maximum) size? In this section, we show
the k-Free Square Block problem is complete for the W [1]-class of deci-
sion problems. The proof ofW [1]-hardness also shows NP-hardness and is
based on a reduction from the W [1]-hard problem k-Clique (see e.g. [31]):

k-Clique
Instance: A graph G = (V ,E), a positive integer k
Parameter: k
Question: Is there a set of k vertices V ′ ⊆ V that forms a complete sub-

graph of G (that is, a clique of size k)?

This result, formalized in Theorem 3.13, intuitively means that even
for a small fixed value of k (the size of the free square block), the problem
is not tractable, i.e., solvable in time polynomial in the size of the graph.

Theorem 3.13. k-Free Square Block is W [1]-hard.

Proof. The proof of W [1]-hardness is accomplished by showing how an
arbitrary instance (G,k) of k-Clique can be converted in polynomial time
into an instance (G′ , k′) of k-Free Square Block in such a way that the
latter is a yes-instance of k-Free Square Block if and only if the former is
a yes-instance of k-Clique (a uniform reduction in the sense of [32]). We
only prove this for odd values of k; any instance of k-Clique with k even
can easily be converted into an equivalent instance of (k + 1)-Clique by
simply adding one extra vertex and connecting it to all the other vertices.

Let (G,k) with G = (V ,E) be an instance of k-Clique with k odd and
construct a bipartite graph G′ = (U ′ ,V ′ ,E′) as follows: Let V ′ contain one
vertex for each of the edges in E. Let U ′ contain k−1

2 copies of each of the
vertices in V . And let E′ contain an edge between u′ ∈ U ′ and v′ ∈ V ′
if and only if the edge of G corresponding to v′ is incident to the vertex
corresponding to u′ . (As each of the vertices of G is duplicated k−1

2 times,
this means every v′ ∈ V ′ has degree k − 1.)

Free square blocks ofG′ correspond to (dense) subgraphs ofG that con-
tain k−1

2 times as many edges as vertices. The smallest (in terms of vertices)
possible subgraph of G with this ratio is a k-clique, so G′ contains a free
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Figure 3.8: Example graph containing a 5-clique.

v1 v′1 v2 v′2 v3 v′3 v4 v′4 v5 v′5 v6 v′6

Figure 3.9: Free square block of size 10 corresponding to a 5-clique.

square block of size k′ = k(k−1)
2 if and only if G contains a clique of size k;

smaller free square blocks ofG′ can never exist asG cannot contain smaller
subgraphs with this ratio.

We have thus created an instance (G′ , k′) of k-Free Square Block that
is a yes-instance if and only if the original (G,k) formed a yes-instance of
k-Clique, proving k-Free Square Block to be W [1]-hard.

As a free square block of size k′ in the constructed instance of the k-
Free Square Block problem has to be minimum if it exists, this also shows
that the k-Minimum Free Square Block problem determining whether a
bipartite graph contains a minimum free square block of size k is W [1]-
hard.

As an example of the construction of G′ in this proof, consider the
graph G shown in Figure 3.8. Clearly G contains a 5-clique. We now con-
struct the corresponding bipartite graph G′ according to the procedure
outlined in the proof of Theorem 3.13 as shown in Figure 3.9 (every vertex
in the original graph is duplicated). The free square block corresponding
to the 5-clique is clearly recognizable in the bipartite graph G′ .
Remark 3.14. By Corollary 3.12 we know any free square block of size k′ in
G′ has a perfect matching. This can also be seen by observing the follow-
ing: Consider an Euler walk v1e1v2e2 . . .v1 in a k-clique on an odd number
of vertices. Such a tour contains every ei exactly once and every vi exactly
k−1

2 times. The edges in G′ corresponding to v1e1, v2e2 etc. together lead
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to a perfect matching in the free square block of G′ corresponding to the
k-clique.

After establishing theW [1]-hardness of the k-Free Square Block prob-
lem, in essence providing a lower bound on its difficulty, we now proceed
to show also membership in W [1]. For the proof, we will use a reduction
to the parameterized decision problem t-Threshold Stable Set known to
be W [1]-complete [5].

t-Threshold Stable Set

Instance: A directed graph G = (V ,A), a positive integer k
Parameter: k
Question: Does G have a t-threshold stable set (cf. below) of size k?

A t-threshold stable set is a set of vertices S ⊆ V such that, with some
fixed t, for every vertex v of V \S, there are fewer than t vertices u ∈ S with
uv ∈ A.

For our purpose we will only use t = 1, effectively reducing the problem
to the following:

1-Threshold Stable Set

Instance: A directed graph G = (V ,A), a positive integer k
Parameter: k
Question: Is there a subset S ⊆ V of size k such that Γ (S) ⊆ S

A useful property of a 1-Threshold Stable Set S is that for a strongly
connected component C ⊆ G we have either C ⊆ G [S] or C ∩ S = ∅. Using
this, we can prove the following theorem:

Theorem 3.15. k-Free Square Block is W [1]-complete.

Proof. We construct a uniform reduction from k-Free Square Block to 1-
Threshold Stable Set. Let p and q be two distinct prime numbers each
greater than k. Given an instance G = (U,V ,E) of k-Free Square Block,
we construct a directed graphG′ that is an instance of 1-Threshold Stable

Set (with parameter value k′) as follows: First direct all edges from V to
U . Then replace each vertex of U by a strongly connected component on
p vertices, for example a p-cycle. Replace each vertex of V by a strongly
connected component on q vertices (e.g., a q-cycle). The directed graph
G′ that is obtained contains a 1-threshold stable set of size k′ = kp + kq if
and only if G contains a free square block of size k. This can be verified as
follows: A free square block A = (U ′ ,V ′ ,E′) ⊆ G of size k has |U ′ | = |V ′ | = k.
The union of U ′ , V ′ and all of the vertices in their strongly connected
components form a 1-threshold stable set of size kp + kq as there are no
outgoing arcs from this set to the rest of G′ . Conversely, if we can find
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3. Bipartite Graphs and Decompositions

Figure 3.10: 1-Threshold stable set instance, stable set denoted by square
vertices (k = 2 ; p = 3, q = 5, k′ = 16).

a 1-threshold stable set S of size kp + kq in G′ , then |S ∩U | = |S ∩V | = k
and there are no outgoing arcs from S ∩ V to U \ (S ∩U ), showing that
G [S ∩ (U ∪V )] is in effect a free square block of size k.

Figure 3.10 shows an example of this construction for a bipartite graph
with a free square block of size k = 2.

Finally, we show that requiring G to have a (maximum) matching cov-
ering U , as is likely the case in consistent systems of equations, does not
make the problem easier. To this end, construct a bipartite graph G′ =
(U ∪U ′ ,V ∪V ′ ,E ∪E′) where V ′ contains |U | + 1 additional vertices, U ′
contains a single new vertex, and E′ = {uv | u ∈U ∪U ′ ,v ∈ V ′}, i.e., we add
|U | + 1 vertices to V and connect each of them to all vertices in U as well
as to a single new vertex. By this construction, G′ contains K|U |+1,|U |+1 (a
complete bipartite graph with |U |+1 vertices in each of its classes) as a sub-
graph, so G′ also contains a perfect matching covering U ∪U ′ . However,
this construction does not add any new free square blocks of size smaller
than |U |+ 1. Passing from G to G′ if necessary shows that the above deci-
sion problem remains W [1]-complete if restricted to instances where U is
covered by a maximum matching.

3.8 Bounded Block Decomposition is W [1]-hard

After analyzing the complexity of the k-Free Square Block problem we
turn our attention to the complexity of finding an entire decomposition of
a bipartite graph. We consider the natural parameterization of the Bounded
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k−1
2 copies of G

Figure 3.11: Construction of Ḡ (only edges incident to v(1) are shown).

Block Decomposition problem:

Bounded Block Decomposition

Instance: A bipartite graph G = (U,V ,E), an integer k
Parameter: k
Question: Is there a partition of U =U1∪U2 · · ·∪Un and V = V1∪V2 · · ·∪

Vn ∪ Vn+1 such that for each 1 ≤ i ≤ n, Gi = G [Vi ∪Ui] is a bipartite
graph with a perfect matching, Γ (Vi) ⊆

⋃i
j=1Uj and |Ui | = |Vi | ≤ k?

The main result of this chapter is the next theorem.

Theorem 3.16. Bounded Block Decomposition is W [1]-hard.

For the proof of this theorem, we first require a construction proce-
dure. Given a graph G = (V ,E) and an odd k with k > 1 consider the graph

Ḡ =
(
V̄ , Ē

)
consisting of k−1

2 copies (G(1),G(2), . . . ,G( k−1
2 )) ofGwith edges be-

tween all pairs of vertices u(i) and v(j) iff uv ∈ E. So a vertex v(i) is adjacent
to its neighbors in G(i) as well as to all the copies of its neighbors (see also
Figure 3.11). Clearly Γ

(
v(i)

)
= Γ

(
v(j)

)
holds for any two copies v(i) and v(j)

of the same vertex v ∈ V . Using this construction we can prove Theorem
3.16.
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3. Bipartite Graphs and Decompositions

Proof of Theorem 3.16. The proof consists of a reduction from k-Clique.
Let G = (V ,E) and k be an instance of k-Clique. To avoid a few corner-
cases in the reduction, we assume G is connected, |E| ≥ |V |, k > 1 and k is
odd. We start by constructing the graph Ḡ = (V̄ , Ē) using G and k. This
construction can clearly be performed in polynomial time. First, we claim
that Ḡ contains a clique of size k iff G contains a clique of size k. Clearly,
any clique of G has k−1

2 corresponding copies in Ḡ. Conversely, if S̄ ⊂ V̄
induces a clique in Ḡ, then at most a single copy of any vertex v ∈ V can be
in S̄. Replacing every vertex v(i) ∈ S̄ by v(1) (its copy in G(1)), we obtain a
clique inG(1), which corresponds to a clique inG. We have thus shown that
(Ḡ,k) and (G,k) are equivalent as instances of k-Clique. Using Ḡ we now
construct a bipartite graphG′ = (U ′ ,V ′ ,E′) as in the proof of Theorem 3.13:
U ′ contains k−1

2 copies of each vertex in V̄ , V ′ is equal to Ē, and E′ contains
an edge between u′ ∈U ′ and v′ ∈ V ′ iff the edge corresponding to v′ in Ḡ is
incident to the vertex in Ḡ that u′ corresponds to. Free square blocks of G′
correspond to subgraphs of Ḡ that contain k−1

2 times more edges than ver-
tices. The smallest (in terms of vertices) possible subgraph of G with this
ratio is a k-Clique, so G′ contains a free square block of size

(k
2
)

if and only
if Ḡ contains a clique of size k; smaller free square blocks of G′ can never
exist as Ḡ cannot contain smaller subgraphs with this ratio. So if G′ has a
Bounded Block Decomposition with block size bounded by

(k
2
)
, then the

first free square block in this decomposition must correspond to a k-clique
in Ḡ and thus to a k-clique in G. For the converse, assume G, and thus
Ḡ, contains a k-clique; pick one such clique. By construction, G′ contains
k−1

2 disjoint free square blocks of size
(k
2
)

corresponding to this clique in G.
After removing these blocks from G′ , the remainder of G′ can be decom-
posed into free square blocks of size k−1

2 as follows: Pick a vertex v(1) ∈ V̄
that is not yet part of the decomposition and has a neighbor w(1) ∈ V̄ that is
already part of the decomposition. The k−1

2 copies of v(1) inU ′ and the ver-
tices in V ′ corresponding to the k−1

2 edges connecting v(1) to the copies w(i)

of w(1) in Ḡ together form a free square block of size k−1
2 in the remainder

of G′ . Remove this free square block from G′ and repeat this operation for

v(2) . . .v( k−1
2 ) in Ḡ. Keep constructing free square blocks in this way until

all vertices in U ′ are part of a decomposition. Due to the connectedness of
Ḡ, we can keep picking vertices to induce the next block until the decom-
position is complete. All blocks in this decomposition have a size bounded
by

(k
2
)
. By transforming an instance (G,k) of k-Clique to a corresponding

instance (G′ ,
(k
2
)
) of Bounded Block Decomposition, we have shown a uni-

form reduction from k-Clique to Bounded Block Decomposition, proving
that Bounded Block Decomposition is W [1]-hard.

Theorem 3.16 shows that obtaining an optimal decomposition – one
where the largest block is as small as possible – is a hard problem even if we
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3.9. Relation to Crowns

I

H

Rest of Graph. . .

Figure 3.12: An example crown structure.

parameterize the size of the largest block. Before discussing the practical
implications of this, we will first digress slightly by describing how our
results on free square blocks have enabled us to settle two open questions
regarding another problem in parameterized complexity.

3.9 Relation to Crowns

It was pointed out to us by a reviewer of the first draft of our paper on free
square block problems [6] that they seem closely related to a special case
of crown structures, a reduction mechanism for kernelization of the param-
eterized Vertex Cover problem [33, 34]. In this section we briefly discuss
crown structures and their relation to the free square block problems we
have considered in the preceding sections. After showing the relation be-
tween the two, we use our results on free square blocks to settle two open
questions regarding crowns.

We start by giving a few definitions, adapted from [35]: A crown is an
ordered pair (I,H) of subsets of vertices from a graph G that satisfies the
following criteria: (1) I , ∅ is an independent set of G, (2) H = Γ (I), and
(3) there exists a matching M on the edges connecting I and H such that
all vertices of H are covered. This implies |I | ≥ |H |. H is called the head of
the crown. An example of a crown is shown in Figure 3.12. A crown (I,H)
is called a straight crown if it satisfies the condition |I | = |H |, otherwise it
is called a flared crown. A crown that is contained in another crown is
called a subcrown. The size or order of a crown is the number of vertices in
I ∪H . (Note how this definition of the size of a crown is different from our
previous definition of the size of a square block!)
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3. Bipartite Graphs and Decompositions

Crowns are used to reduce the size of a problem instance of the Vertex

Cover problem by exploiting the fact that if G is a graph with a crown
(I,H), then there is a vertex cover of G of minimum size that contains all
the vertices in H and none of the vertices in I [35]. By applying this reduc-
tion rule, a smaller instance of Vertex Cover can be solved instead of the
original instance. It has been shown that finding a non-trivial crown in a
graph G can be done in polynomial time. Finding a crown of maximum
order is also polynomially solvable [35].

The remainder of this section is dedicated to establishing the W [1]-
hardness of two parameterized decision problems related to crowns. The
first problem we consider is the natural parameterization of the Sized

Crown problem previously proven to be NP-complete by Sloper [36]. This
decision problem involves determining if a graph contains a crown of a
certain size.

Sized Crown

Instance: A graph G = (V ,E), a positive integer k
Parameter: k
Question: Does G contain a crown (I,H) with |I ∪H | = k?

The second problem we consider is the parameterized decision problem
Minimum Crown, regarding the identification of a crown of minimum or-
der [35].

Minimum Crown

Instance: A graph G = (V ,E), a positive integer k
Parameter: k
Question: Does G contain a minimum crown (I,H) with |I ∪H | = k?

The parameterized complexity of these problems is mentioned as an open
problem by respectively Sloper [36] and Abu-Khzam et al. [35] and to our
knowledge these problems have not been solved before.

To facilitate our discussion, we define a few more terms: We call a
crown a minimal crown if it contains no smaller subcrown. A crown with
the minimum number of vertices over all crowns is called a minimum
crown. The following useful lemma enables us to consider only straight
crowns if we search for crowns of minimum order as it implies that mini-
mal crowns have to be straight [35].

Lemma 3.17 ([35]). If (I,H) is a flared crown then there is another crown
(I ′ ,H) that is straight and I ′ ⊂ I .

We start our analysis by establishing a few additional characteristics of
crowns in bipartite graphs and their relationship to free square blocks.
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3.9. Relation to Crowns

Lemma 3.18. If (I,H) is a minimal crown of a bipartite graph G = (U,V ,E)
then either H ⊆U or H ⊆ V .

Proof. Assume to the contrary that H contains vertices from both U and
V . Due to the existence of a perfect matching between I and H , we know
that I also contains vertices from both U and V . Now let HU = H ∩ U
and IV = I ∩ V . Clearly, IV is an independent set of G, HU = Γ (IV ), and
there exists a perfect matching between HU and IV . So (IV ,HU ) is a strict
subcrown of (I,H) contradicting the minimality of (I,H).

Lemma 3.19. The following properties define the relation between minimal
crowns and free square blocks in a bipartite graph G = (U,V ,E):

(i) A minimal free square block A corresponds to a straight crown (VA,UA).

(ii) A minimal straight crown (VA,UA) induces a free square block A of G.

(iii) The number of vertices in a minimum free square block is equal to the
number of vertices of the smallest straight crown (I,H) with H ⊆U .

Proof. (i) AsG is a bipartite graph, (1) VA is an independent set. (2)UA =
Γ (VA) and as a minimal free square block has a perfect matching, we
have that (3) there exists a matching M on the edges connecting VA
and UA such that all vertices of UA are covered.

(ii) A straight crown by definition has |VA| = |UA| and UA = Γ (VA), so
A = G [VA ∪UA] is a free square block of G.

(iii) Immediate from (i) and (ii).

We now come to our main result on crowns.

Theorem 3.20. Minimum Crown is W [1]-hard.

Proof. LetG = (U,V ,E) and k be an instance of the k-Minimum Free Square

Block problem and construct a new bipartite graph G′ as follows: Let
Kk+1,k+1 = (U ∗,V ∗,E∗) be a complete bipartite graph with k + 1 vertices
in each of its vertex classes. Construct G′ = (U ′ ,V ′ ,E′) as U ′ = U ∪U ∗,
V ′ = V ∪V ∗ and E′ = E ∪ E∗ ∪ {uv | u ∈U,v ∈ V ∗}. In other words, G′ con-
sists of G and Kk+1,k+1 and an edge between every pair (u,v) with u ∈ U
and v ∈ V ∗.

Clearly, any crown (I,H) of G′ with I ∩ (U ∗ ∪V ∗) , ∅ must have |Γ (I)| =
|H | ≥ k+ 1. Furthermore, due to its construction, any minimal crown (I,H)
inG′ withH ⊆U ′ must have V ∗ ⊆ I and thus |I | ≥ k+1. So this construction
introduces no new crowns of size k or less in G′ .
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3. Bipartite Graphs and Decompositions

G′ contains a minimum crown of size k if and only if G contains a min-
imum crown of size 2k with its head in U . Such crowns correspond ex-
actly to minimum free square blocks of G. As the k-Minimum Free Square

Block problem is W [1]-hard, and the above construction is a uniform re-
duction in the sense of [32], Minimum Crown is also W [1]-hard.

As an immediate consequence Sized Crown is W [1]-hard as well.

3.10 Concluding Remarks

In this chapter we have described how the bipartite graph representation
of a system of (non-linear) equations can be used to decompose such a sys-
tem. Using the Dulmage-Mendelsohn decomposition of a bipartite graph
we can determine the under-, well- and over-constrained parts of the sys-
tem as well as split the well-constrained part into irreducible subsystems
in a canonical way. Based on this, Bliek et al. have shown how free square
blocks can be used to decompose the under-specified part of a system
into irreducible blocks as well, however, this decomposition is no longer
unique. They have also shown how finding an optimal decomposition, i.e.,
one in which the largest remaining block is as small as possible, can be
achieved by iteratively finding a free square block of minimum size.

Although it has been shown before that the problem of finding mini-
mum free square blocks was NP-hard, our analysis also establishes its pa-
rameterized complexity as W [1]-complete. This implies that under the
working hypothesis that FP T , W [1] (see [37]), it is even intractable to
determine whether a free square block exists bounded by some fixed size.

Furthermore, we have also shown that the entire decomposition prob-
lem Bounded Block Decomposition is also W [1]-hard. This shows that
the hardness of the free square block problem can most likely not simply
be mitigated by resorting to another approach for obtaining an optimal
decomposition.
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Chapter 4

Pivoting and Bisimplicial Edges

Gaussian pivoting is a common operation on matrices and
in particular on matrices representing systems of linear equa-
tions. In processes involving pivots we often have a set of can-
didate elements, of which we can select one to use as pivot.
Common selection criteria are the likeliness of preserving nu-
merical stability during the remainder of the process (in case
of Gaussian elimination) or rate of progress towards a goal (in
case of the Simplex method). In this chapter we focus on an-
other criterion: preserving sparsity of the matrix. The chap-
ter starts with an introduction into Gaussian pivots that pre-
serve sparsity and their relation to bisimplicial edges in bipar-
tite graphs. After describing previously known algorithms for
finding bisimplicial edges in bipartite graphs, we introduce a
new, simple algorithm based on counting arguments. We sub-
sequently show that our new algorithm has the same time com-
plexity for sparse matrices as the best known algorithm. Fur-
thermore, it also has a significantly smaller expected running
time on a natural class of random dense matrices.

4.1 Gaussian Pivots

Gaussian elimination is the classic algorithm for solving systems of linear
equations. It has been known for centuries, but is still in use today. The
core of the algorithm consists of using elementary row operations to reduce
a matrix to triangular form. To simplify both notation and discussion in
this chapter we only consider square matrices. We denote by n the number
of rows or columns of these matrices and by m the number of non-zero el-
ements. Furthermore, we assume each row or column contains at least one
non-zero element. During each round of the elimination process, a non-
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4. Pivoting and Bisimplicial Edges

zero element of the remaining matrix, the pivot, is picked. The row and
column of the pivot element are called the pivot row and pivot column re-
spectively. Using elementary row operations, all other non-zero elements
of the pivot column are cleared by subtracting a multiple of the pivot row
from their rows.

More formally: If M is a real-valued matrix and Mk,l , 0 is used as a
Gaussian pivot, the elements of the matrix M ′ we obtain after pivoting on
(k, l) are given by (4.1).

M ′i,j =



Mi,j − Mi,l
Mk,l

Mk,j if i , k and Mi,l , 0
Mi,j

Mk,l
if i = k

Mi,j otherwise

(4.1)

All elements of M with i , k and j = l are turned into zeroes in M ′ . Unfor-
tunately, other elements of M that are zero may be turned into non-zeroes
in M ′ in columns other than the pivot column. This phenomenon is called
fill-in. When working with sparse matrices, avoiding fill-in can be very
beneficial to preserve the reduced space requirements of most sparse ma-
trix representations. The remainder of this chapter focuses on the selection
of Gaussian pivots that preserve sparsity.

As our focus in this thesis is on structural rather than numerical analy-
sis, we assume that subtracting a multiple of the pivot row k from another
row i with a non-zero value in the pivot column l only turns the element
in the pivot column into a zero. In other words: Only the elements of the
pivot column that we want to clear are turned into zeroes and no ‘acciden-
tal cancelations’ take place in other columns. Clearly, this holds for almost
all real-valued matrices. Under this regularity-assumption the actual val-
ues in the matrix are no longer of importance; only the structure of the
matrix with respect to zero and non-zero values is relevant to our analysis.

To represent the sparsity structure of the matrix, we pass from a real-
valued matrix to a {0,1}-matrix containing a 1 for exactly those elements
that have a non-zero value in the original matrix. Under our assumption
changes to the sparsity structure of the original matrix due to Gaussian
pivots can now be simply modeled using zeroes and ones. Formally, if we
have a {0,1}-matrix M representing the structure of a real-valued matrix
and we pivot on the non-zero element (k, l), the elements of the matrix M ′
we obtain after pivoting are given by (4.2).

M ′i,j =



0 if j = l and i , k and Mi,l = 1
max

(
Mi,j ,Mk,j

)
if j , l and i , k and Mi,l = 1

Mi,j otherwise

(4.2)
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r1 r2 r3 r4 r5

(b)

Figure 4.1: An example of a {0,1}-matrix M and its bipartite graph G[M].

Note how in the {0,1}-matrix representation the subtraction operation
has been replaced by taking the maximum of two matrix elements. In par-
ticular the row operation turns a zero in a non-pivot row into a non-zero
(causing fill-in) if the element of the pivot row in the corresponding col-
umn is a non-zero. Let us introduce the ≤ relation on matrix rows. We
write Mk,∗ ≤Mi,∗ to indicate that, for any column j of M, Mk,j = 1 implies
Mi,j = 1. If Mk,∗ ≤Mi,∗ then row Mi,∗ is said to majorize row Mk,∗. Clearly
every row majorizes itself. In order to avoid fill-in completely when pivot-
ing on an element (k, l), we must have that Mk,∗ ≤Mi,∗ for every row i with
Mi,l = 1.

We may consider the {0,1}-matrix M as the biadjacency matrix of a bi-
partite graph G[M] where the rows and columns of the matrix form the
two vertex classes of the graph and the non-zero elements correspond to
the edges between them. An example of a {0,1}-matrix and its correspond-
ing bipartite graph is shown in Figure 4.1.

In this chapter we will analyze this graph representation G[M] to find
pivots inM that avoid fill-in. The next section describes how a bisimplicial
edge in G[M] between i and j corresponds to a pivot Mi,j that avoids fill-
in and vice versa. This correspondence was first discussed in detail by
Golumbic and Goss [16]. Finding bisimplicial edges in G[M] can therefore
be useful when we are asked to find pivots avoiding fill-in in M.

After introducing bisimplicial edges, we will derive some additional
characteristics that lead to a new algorithm for finding a bisimplicial edge
in a bipartite graph. This algorithm is subsequently extended to a new
algorithm for finding all bisimplicial edges in the bipartite graph. Find-
ing all bisimplicial edges, instead of just one, can be beneficial in practice
where pivot selection may be subject to a number of additional criteria
besides preserving sparsity. Not every pivot might for example preserve
numerical stability.
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Figure 4.2: Bisimplicial edges inM and its bipartite graph G[M] (bisimpli-
cial edges are bold, the corresponding matrix entries are dashed).

4.2 Bisimplicial Edges

In this section we describe the concept of bisimplicial edges, derive some
characteristics of these edges and discuss two existing as well as our new
algorithm for finding them.

Definition 4.1. An edge uv of a bipartite graph G = (U,V ,E) is called
bisimplicial, if the subgraph induced by the neighbors of its endpoints
G [Γ (u)∪ Γ (v)] is a complete bipartite graph.

Clearly, we can determine in O (m) time if an edge (u,v) is bisimplicial:
If |Γ (u)| · |Γ (v)| > m, then (u,v) cannot be bisimplicial. Else, we check the
presence of all edges in Γ (u) × Γ (v). So a naive algorithm to find a bisim-
plicial edge in a bipartite graph G, if one exists, takes O

(
m2

)
time. The

bisimplicial edges in our example matrix M and associated graph G[M]
are shown in Figure 4.2.

Goh and Rotem [38] have presented a faster method for finding bisim-
plicial edges based on the following theorem.

Theorem 4.2 (Goh, Rotem [38]). LetM be an n×n {0,1}-matrix and letG[M]
be its corresponding bipartite graph. Let `i be the number of rows in M that
majorize row i and let sj be the sum of the entries in column j of M. Then
Mi,j = 1 and `i = sj iff the corresponding edge of G[M] is bisimplicial.

The values `i can be easily determined using the matrix Q = MMT : `i
is equal to the number of elements in the rowQi,∗ that are equal toQi,i (in-
cluding Qi,i itself). Once the matrix Q is computed, finding a bisimplicial
edge can be done in O

(
n2

)
operations. Computation of the matrix Q can

be performed in eitherO (nm) orO (nω) depending on the algorithm that is
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used (where ω ≤ 2.376 is the matrix multiplication exponent [39]). How-
ever, fast matrix multiplication, e.g., using the algorithm of Coppersmith
and Winograd, has huge hidden constants, which makes it impractical for
applications.

The remaining sections of this chapter describe our research [7] on a
different approach that has been published recently. Our approach first
selects a set of candidate edges. The candidate edges are not necessar-
ily bisimplicial and not all bisimplicial edges are marked as candidates.
However, knowing which candidates, if any, are bisimplicial allows us to
quickly find all other bisimplicial edges as well. By bounding the num-
ber of candidates, we achieve an improved expected running-time. The
following observation is the basis of our candidate selection procedure.

Lemma 4.3. If an edge uv of a bipartite graph G = (U,V ,E) is bisimplicial, we
must have δ (u) = minu′∈Γ (v) δ (u′) and δ (v) = minv′∈Γ (u) δ (v′).

Proof. Let uv ∈ E be a bisimplicial edge, and let A = G [Γ (u)∪ Γ (v)] be the
complete bipartite graph it induces. Now assume that there is a vertex u′ ∈
UA with δ (u′) < δ (u). Then there must be a v′ ∈ VA with u′v′ < EA. But this
would meanA is not a complete bipartite graph, leading to a contradiction.

Translated to the matrix M, this means that if Mi,j = 1, it can only
correspond to a bisimplicial edge if row i has a minimal number of 1s over
all the rows that have a 1 in column j and column j has a minimal number
of 1s over all the columns having a 1 in row i. In what follows, we will
call the row (column) in M with the minimal number of 1s over all the
rows (columns) in M the smallest row (column). Using this observation,
we construct the following algorithm to pick candidate edges that may be
bisimplicial.

Algorithm 4.4. Perform the following steps:

1. Determine the row and column sums for each row i and column j of M.

2. Determine for each row i the index ci of the smallest column among those
with Mi,ci = 1 (breaking ties by favoring the lowest index); or let ci = 0 if
row i has no 1.

3. Determine for each column j the index rj of the smallest row among those
with Mrj ,j = 1 (breaking ties by favoring the lowest index); or let rj = 0 if
column j has no 1.

4. Mark Mi,j as a candidate edge if ci = j and rj = i.
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1 1 1 0 0

1 1 1 0 0

0 1 0 1 0

0 0 0 1 1

0 1 0 1 0







(a)

c1 c2 c3 c4 c5

r1 r2 r3 r4 r5

(b)

Figure 4.3: Selected candidate edges in M (shaded) and its bipartite graph
G[M] (bold).

Clearly, all steps in Algorithm 4.4 can be performed in O
(
n2

)
time.

Furthermore, the last step will mark at most n candidate edges and at least
1. The reason that we have at least one candidate edge is as follows: Let i
be the smallest row with the smallest index. Row i will select a column j.
Due to the tie-breaking mechanism, column j will also select row i, which
leads to a candidate. The candidate edges marked by this algorithm in our
example matrix M are shown in Figure 4.3.

The following lemmata establish a few more characteristics of the can-
didate edges.

Lemma 4.5. Let i, j, j ′ be such that the following properties hold:

1. Mi,j = 1 and Mi,j ′ = 1 and

2. columns j and j ′ contain an equal number of 1s and

3. (i, j) is bisimplicial.

Then (i, j ′) is also bisimplicial and columns j and j ′ are identical. Due to sym-
metry, the same holds if we exchange the roles of rows and columns.

Proof. If columns j and j ′ are not identical, but contain an equal number
of 1s, then there is some row i′ such that Mi′ ,j = 1 and Mi′ ,j ′ = 0. In that
case (i, j) cannot be bisimplicial, so columns j and j ′ have to be identical.
But then (i, j) and (i, j ′) both have to be bisimplicial due to symmetry.

Remark 4.6. Lemma 4.5 can be applied repeatedly across rows and columns:
If (i, j) is bisimplicial and Mi,j ′ = 1 and Mi′ ,j = 1 and rows i and i′ contain
an equal number of 1s and columns j and j ′ contain an equal number of
1s, then (i, j ′), (i′ , j) and (i′ , j ′) are all bisimplicial.
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Lemma 4.7. If (i′ , j ′) is bisimplicial, then there are i ≤ i′ and j ≤ j ′ such that
rows i and i′ are identical, columns j and j ′ are identical, and (i, j) is bisimpli-
cial and selected as a candidate by Algorithm 4.4.

Proof. Let j ≤ j ′ be the column with (1) the lowest index, (2) Mi′ ,j = 1,
and (3) an equal number of 1s to column j ′ . As (i′ , j ′) is bisimplicial, we
know three things from Lemma 4.3 and Lemma 4.5: First, (i′ , j) is also
bisimplicial. Second, columns j and j ′ are identical. Third, columns j and
j ′ are smallest columns in row i′ . Due to symmetry, there is also such a row
i ≤ i′ equal to row i′ with the lowest index and (i, j ′) bisimplicial. As (i′ , j)
and (i, j ′) are bisimplicial, rows i and i′ are identical and columns j and j ′
are identical, also (i, j) must be bisimplicial. Furthermore, by construction,
column j must be the smallest column in row i with the lowest index, and
row i must be the smallest row in column j with the lowest index. Thus,
(i, j) is selected as a candidate.

Using Algorithm 4.4 as a subroutine, we can construct Algorithm 4.8
below to find all bisimplicial edges of G[M].

Algorithm 4.8. Perform the following steps:

1. Determine candidates using Algorithm 4.4.

2. Test each candidate for bisimpliciality.

3. For each candidate (i, j) marked as bisimplicial, mark also each (i′ , j ′) as
bisimplicial for each row i′ with an equal number of non-zeroes as row
i and Mi′ ,j = 1 and column j ′ with an equal number of non-zeroes as
column j and Mi,j ′ = 1.

Theorem 4.9. Algorithm 4.8 finds all bisimplicial edges in time O
(
n3

)
.

Proof. Step 1 marks up to n candidates in time O
(
n2

)
. Each of these can-

didates can be checked for bisimpliciality in time O
(
n2

)
, so step 2 can be

completed in time O
(
n3

)
. Finally, step 3 marks all non-candidate bisim-

plicial edges as can be seen from Lemma 4.5 and Lemma 4.7. For a sin-
gle candidate (i, j) that is found to be bisimplicial, all relevant rows i′ and
columns j ′ can be found in timeO (n) using the row and column sums com-
puted in the first step of Algorithm 4.4. A total of O

(
n2

)
additional edges

can be marked as bisimplicial during this step and every non-candidate
edge is considered at most once. Thus, this step can also be completed in
time O

(
n2

)
.
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1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


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
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(a)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1


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1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1
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(c)

1 1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1 1

0 0 0 1 0 1 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1
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(d)

Figure 4.4: Several example matrices with bisimplicial (dashed) and can-
didate (shaded) elements.

To give a bit more insight into the working of Algorithm 4.8, Figure
4.4 shows several example matrices with their bisimplicial and candidate
edges: Figures 4.4(a) and 4.4(c) show situations in which candidates and
bisimplicial edges are the same. Figure 4.4(b) illustrates how a single can-
didate can be used to identify all edges as bisimplicial. Figure 4.4(d) shows
how an arbitrarily large matrix can be constructed with n/3 candidates and
no bisimplicial edges at all.

The running-time of Algorithm 4.8 is dominated by step 2 in which
we have to check all candidates in O

(
n2

)
time each. As we can find up

to n candidates, this leads to a worst-case running-time of O
(
n3

)
. In the

next section, we present an improved running-time analysis for sparse in-
stances. After that, we show that our algorithm performs significantly bet-
ter on a common class of random bipartite graphs. The reason for this is
that our algorithm will usually select only a few candidate edges.
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4.3 Sparse Matrices

Algorithm 4.8 can be implemented such that it makes use of any sparsity
in the matrix M. This section describes how a running-time of O (Cm) can
be obtained, where C denotes the number of candidates found in the first
phase of the algorithm. As C ≤ n, the running-time is bounded by O (nm).
We assume the input matrix M is provided in the form of adjacency lists
of the corresponding graph G[M]: For every row (column) we have a list
of columns (rows) where non-zero elements occur.

The first step of Algorithm 4.8 consists of running Algorithm 4.4, which
selects the candidates. Algorithm 4.4 itself consists of three steps. The first
step, determining the row and column sums, can be completed in time
O (m) by simply traversing the lists. The same holds for the second step:
by traversing the adjacency lists the values of ci and rj can be determined in
timeO (m). Constructing the actual set of candidates from these values can
subsequently be done in time O (n). In total, Algorithm 4.4 determines the
set of candidates in timeO (m). After this time, the numberC of candidates
is known.

Checking a single candidate can be done in time O (m). Thus, the sec-
ond step of Algorithm 4.8, which consists of checking all candidates for
bisimpliciality, can be performed in time O (Cm).

Finally, we analyze the third step of Algorithm 4.8, marking the re-
mainder of the bisimplicial edges. For each bisimplicial candidate (i, j),
we have to find all rows i′ identical to row i and columns j ′ identical to
column j. Due to Lemma 4.5, we can simply traverse the adjacency lists
for row i and column j and check the column and row sums. As every row
and every column contains at most one candidate, all adjacency lists are
traversed at most once. Thus, this takes at most time O (m) for all candi-
dates together. For each candidate, once all relevant rows i′ and columns
j ′ have been determined, we have to mark all combinations (i′ , j ′) as bisim-
plicial. As every edge is considered at most once during this process, this
can also be completed in time O (m).

Summarizing, the total running-time of Algorithm 4.8 is O (Cm) where
C is bounded from above by n and known in timeO (m) after the first phase
of the algorithm has been completed.

4.4 A First Bound on the Number of Candidate Edges

In the previous sections we have analyzed the worst-case performance of
Algorithm 4.8. However the time required to find all bisimplicial edges in
an instance largely depends on the number of candidates that are found
during the first phase of the algorithm. We now proceed by showing that
for a common model of random bipartite graphs, the Gn,n,p model, the
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4. Pivoting and Bisimplicial Edges

number of candidates is significantly lower than n, both with high prob-
ability and in expectation. In this section we derive a logarithmic bound
on the expected number of candidates for a fixed value of p in the Gn,n,p
model. The two subsequent sections further improve this bound on the
number of candidates to a constant. This leads to an improved expected
running time for our algorithm on such instances.

An instance of theGn,n,p model consists of a bipartite graphG = (U,V ,E)
with n vertices in each of its the vertex classes U and V . Edges between U
and V are drawn independently with probability p from the set of all n2

possible edges. The corresponding stochastic biadjacency matrix is a {0,1}-
matrix of n×n elements where each element Mi,j is a one with probability
p and a zero with probability 1− p, independent of other elements. In this
section we consider random bipartite graphs in the Gn,n,p model for a fixed
value of p ∈ (0,1).

LetXi be the (random) i-th row ofM and let |Xi | be the (random) sum of
its elements. If we order the Xi vectors according to the number of 1s they
contain (favoring the lower index i in case of a tie), we denote by X(1) the
row with the least number of 1s, by X(2) the row with the second-to-least
number of 1s, and so on.

Lemma 4.10. Let ε = 2 ·
√

logn
pn . Then

P

[∣∣∣X(1)

∣∣∣ < (1− ε)pn
]
≤ 1
n
.

Proof. For each i ∈ {1, . . . ,n} we have by Chernoff’s bound [40]

P [|Xi | < (1− ε)pn] < e−npε
2/2 = e−2logn =

1
n2 .

By a union bound over all rows, we get

P

[∣∣∣X(1)

∣∣∣ < (1− ε)pn
]
≤ nP [Xi < (1− ε)pn] ≤ 1

n
.

Lemma 4.11. For k = o
(√
n/ logn

)
, we have

P [C > k] ≤ (1 + o (1)) ·n(1− p)k +
1
n
.

Proof. Choose ε = 2
√

logn
pn as in Lemma 4.10. We have for each column j

P

[
Column j has no 1 in rows X(1), . . . ,X(k) |

∣∣∣X(1)

∣∣∣ ≥ (1− ε)pn
]

≤ (1− (1− ε)p)k = (1− p+ εp)k .
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So by again using a union bound, the probability that in this case, any
column does not have a 1 in the k smallest rows is bounded from above by

P

[
∃j : Column j has no 1 in rows X(1), . . . ,X(k) |

∣∣∣X(1)

∣∣∣ ≥ (1− ε)pn
]

≤ n(1− p+ εp)k .

If all columns have at least one 1 in rows X(1), . . . ,X(k), all candidates se-
lected by Algorithm 4.4 must be among these k rows, as they contain
the smallest number of 1s over all the rows in M. Since each row from
X(1), . . . ,X(k) contributes at most 1 candidate, Algorithm 4.4 selects at most
k candidates in this case.

By Lemma 4.10, the probability that
∣∣∣X(1)

∣∣∣ < (1 − ε)pn, i.e., the small-
est row contains too few 1s so the case outlined above does not hold, is
bounded from above by 1/n. Combining these two cases, we get

P [C > k] ≤ n(1− p+ εp)k +
1
n

≤ n

(1− p)k +

k∑

i=1

(
k

i

)
(εp)i(1− p)k−i


+

1
n

≤ n

(1− p)k + (1− p)k ·

k∑

i=1

(
kεp

1− p
)i+

1
n

≤ n(1− p)k

1 +

k∑

i=1

(
kεp

1− p
)i+

1
n
.

By our choice of ε and k, we have that ε = o (1) and k = o (1). The lemma

now follows because kεp
1−p = o (1) and thus

∑k
i=1

(
kεp
1−p

)i
= o (1).

From Lemma 4.11 we know that with high probability at mostO (logn)
candidates are selected: If k is not O (logn), then the term n(1− p)k domi-
nates the first part of the expression above and diminishes the probability
that C > k. This bound also holds in expectation: We use k = 2log(1−p)

1
n =

2log1/(1−p)n. If the number of candidate edges exceeds k, then we use the
worst-case bound of n. This gives us

E [C] ≤ k +nP [C > k]

≤ k +n2(1 + o (1))(1− p)k + 1

≤ k + 2 + o (1)

≤ (2 + o (1)) log1/(1−p)n

and also leads to the following theorem and corollary.
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Theorem 4.12. Fix p ∈ (0,1) and consider random instances in the Gn,n,p
model. With a probability of 1−O

(
1
n

)
and in expectation, Algorithm 4.4 selects

at most (2 + o (1)) log1−p
1
n candidates.

Corollary 4.13. For any fixed p ∈ (0,1), Algorithm 4.8 has an expected running-
time of O

(
n2 log1/(1−p)n

)
on instances drawn according to Gn,n,p.

4.5 Isolating Lemma for Binomial Distributions

The previous section has shown that the expected running-time for our
new algorithm is far better than the worst case ofO

(
n3

)
. In this section we

further improve the expected running-time.
The tie-breaking of Algorithm 4.4 always chooses the row or column

with the lowest index. Thus, the probability of the event that a nonzero
element (i, j) of M becomes a candidate edge depends also on the number
of rows (or columns) that actually have the minimum number of 1s among
the rows in column j (or row i).

In this section we analyze the number of rows (or columns) that attain
the minimum number of 1s. At first glance, one might argue as follows:
The number of 1s per row are independent random variables with bino-
mial distribution. Thus, according to Chernoff’s bound, the number of 1s
in each row is np ±O(

√
n) with high probability (see also Lemma 4.10).

Hence, we have roughly np random variables that assume values in an
interval of size roughly O

(√
n
)
. From this, we would expect that the mini-

mum is assumed by roughly O
(√
n
)

random variables.
This bound is not very helpful to us, but fortunately it is also far too

pessimistic. It turns out that, although relatively many random variables
fall into a relatively small interval, the minimum itself is usually unique:
Below we will show that the probability that the minimum is unique is
1 − o (1). This resembles the famous isolating lemma [41]. On top of that
we also show that the expected number of random variables that assume
the minimum value is 1+o (1). The following lemma forms the basis of our
proof and captures most of the intuition.

Lemma 4.14. Let k ∈ N, and let X1, . . . ,Xk be independent and identically
distributed random variables with values inZ. Let Y = min{X1, . . . ,Xk}, and let
Z = |{i | Xi = Y }| be the number of random variables that assume the minimum
value. Let t ∈Z, q ∈ (0,1), and c ∈ (0,1) such that the following properties hold:

1. P [Xi ≤ t] ≤ q for any i ∈ {1, . . . , k}.
2. For every s > t, we have P [Xi = s | Xi ≤ s] ≤ c.
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4.5. Isolating Lemma for Binomial Distributions

Then

E [Z] ≤ 1
1− c + k2q .

Proof. By a union bound over the k events Xi ≤ t, we have

P [Y ≤ t] ≤ kq .
If indeed Y ≤ t then we use the trivial upper bound of Z ≤ k. This con-
tributes the term k2q. Otherwise, we consider X1,X2, . . . ,Xk one after the
other. Let Yi = min{X1, . . . ,Xi}. Let Y0 =∞ for consistency. Clearly, we have
Yk = Y . For every i ∈ {1, . . . , k}, we let an adversary decide whether Xi ≤ Yi−1
or Xi > Yi−1.

Fix any ` ∈N, and let j0, j1, . . . , j` be the last `+1 positions for which the
adversary has chosen Xji ≤ Yji−1. By our choice of ji , we have Yji−1 = Yji−1

,
because between ji − 1 and ji−1 our adversary has only chosen Xi > Yi−1.
The crucial observation is that Z ≥ ` + 1 if and only if Xji = Yji−1

for all
i ∈ {1, . . . , `}. By independence and assumption, the probability of this is
bounded from above by c`. Overall, we obtain

E [Z] ≤
∞∑

i=1

(
i(ci−1 − ci)

)
+ k2q

=
∞∑

i=0

ci + k2q

=
1

1− c + k2q

as claimed.

To actually get the result we require for the specific case of binomial
random variables, we show that the value for c from Lemma 4.14 can be
chosen arbitrarily small. Intuitively, this is because for binomial distribu-
tions with large values of n, adjacent values not too far from the mean have
approximately the same probability.

Lemma 4.15. Fix any p ∈ (0,1). Let X1, . . . ,Xk ∼ Binom(n,p) be indepen-
dent random variables distributed according to a binomial distribution with
parameters n and p, and assume k = O (n). Let Y = min {X1, . . . ,Xk}, and let
Z = |{i | Xi = Y }|. Then

E [Z] ≤ 1 + o(1) .

Proof. We show that the value for c in Lemma 4.14 can be chosen as c =
o(1), provided that n is sufficiently large.
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Let t = np − a for a =
√
n logn. Now by applying Chernoff’s bound [40]

using ε =
√
n logn
np we get for any i:

P [|Xi | < (1− ε)np] = P
[
|Xi | < np −

√
n logn

]
= P [|Xi | < t]

< e−npε
2/2 = e

−np n log2 n
n2p2 /2

= e
− log2 n

2p =
(
e− logn

) logn
2p

=
(1
n

) logn
2p

= o
( 1
k2

)
.

Thus, we can choose q = o(1/k2) for the application of Lemma 4.14.
Now we choose a slowly growing, integer valued x = x(n) = ω (1) with

x = o (a). We will give further constraints for the function x later on. Our
goal is to show that it is possible to choose c = 2/x = o(1). This together
with our choice of q yields

E [Z] ≤ 1
1− 2/x

+ qk2 = 1 +
2/x

1− 2/x
+ qk2 = 1 + o(1)

as claimed.
Now fix any s > t and let n be sufficiently large such that p > 2a

n =
2logn√

n
> a+x

n . We have

P [Xi = s | Xi ≤ s] ≤ P [Xi = s]
P [Xi ∈ {s, s − 1, . . . , s − x+ 1}]

=
(n
s

)
ps(1− p)n−s

∑s
`=s−x+1

(n
`

)
p`(1− p)n−`

=
n! · ps(1− p)n−s

s! · (n− s)! ·∑s
`=s−x+1

n!
`!·(n−`)!p

`(1− p)n−`

=
1

∑s
`=s−x+1

(1−p)s−`
ps−` ·

∏s
i=`+1

i
n−i

. (4.3)

Let us estimate the product within the summation in the denominator:

s∏

i=`+1

i

n− i ≥
( s − x
n− s+ x

)s−`
≥

( t − x
n− t + x

)s−`
=

(
p − a+xn

1− p+ a+x
n

)s−`
.
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We now bound the base of the exponentiation in the right-hand side by
(1−ε) p

1−p for some ε > 0. We start by deriving a bound on this ε as follows:

p − a+xn
1− p+ a+x

n

≥ (1− ε)
p

1− p
⇔ p − a+ x

n
− p2 + p

a+ x
n
≥ (1− ε)

(
p − p2 + p

a+ x
n

)

⇔−a+ x
n
≥ −ε

(
p − p2 + p

a+ x
n

)

⇔ ε ≥
a+x
n

p − p2 + p a+xn
.

So in particular, if we let ε =
a+x
n

p−p2 = a+x
n

(
1

1−p + 1
p

)
, we obtain

(
p − a+xn

1− p+ a+x
n

)s−`
≥

(
(1− ε)

p

1− p
)s−`

.

Plugging this into (4.3) and observing that s − ` ≤ x then yields

P [Xi = s | Xi ≤ s] ≤ 1∑s
`=s−x+1(1− ε)s−`

≤ 1
x · (1− ε)x

.

As we want to have c = 2/x, we have to bound this right-hand side by
2/x.

1
x · (1− ε)x

≤ 2
x

⇔ 1
(1− ε)x

≤ 2

By making use of the inequality (1 +α) ≤ eα which holds for any α ∈R, we
can instead consider the following sufficient condition:

(e−ε)−x = eεx ≤ 2 .

Now by expanding ε we rewrite this as:

e
x· a+xn · 1

(1−p)p ≤ 2 .

Let us assume that we can find an x with x = o (a) (we shall soon see this is
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the case) then we can simplify this to

e
x· a+xn · 1

(1−p)p ≤ ex· 2an · 1
(1−p)p

= ex·
2
√
n logn
n · 1

(1−p)p

= e
x 2logn√

n(1−p)p ≤ 2

⇔ x
2logn√
n(1− p)p

≤ log2

⇔ x ≤ log2
√
n(1− p)p

2logn

So in particular we can use x =
⌊

log2
√
n(1−p)p

2logn

⌋
which has the desired prop-

erties x = o (a) and x =ω (1). This completes the proof.

4.6 Constant Bound for the Number of Candidates

Theorem 4.16. Fix any p ∈ (0,1), and let C be the (random) number of candi-
dates if we draw instances according to Gn,n,p. Then

E [C] ≤ 1 + o (1)
p

.

Proof. Similar to Lemma 4.10, for p′ = (1 − ε)p and ε = logn√
n

, the probabil-

ity that some row or column in M contains less than np′ 1s is o (1/n) by
Chernoff’s bound [40]. If some row or column of M does have fewer 1s, we
simply assume that we have n candidates. This adds only o (1) to our final
expected value, which is negligible. For the remainder of the proof we may
thus assume all rows and columns contain at least np′ 1s.

We proceed by bounding the probability that a row i contains a can-
didate. To establish an upper bound on this probability, we introduce a
game on an unknown matrix M in which our adversary aims to increase
the probability of row i containing a candidate as much as possible. For
any fixed i, let us consider an unknown n× n matrix M and let our adver-
sary pick a column j. We setMi,j = 1 and let our adversary place additional
1s in column j so that it contains at least np′ 1s. The other elements of M
(i.e., those not in column j) are subsequently each assigned a 1 with prob-
ability p. Based on our assumption, every row and column now contains
at least np′ 1s. We now determine an upper bound on the maximum prob-
ability our adversary can achieve of row i containing a candidate.

The number and placement of 1s in column j is the only element of
the game our adversary can influence to maximize the probability of row
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i containing a candidate. Thus, the optimal strategy is to maximize the
probability of (i, j) becoming a candidate. In order to do this, the number
of 1s in column j has to be as small as possible (to force row i to select
column j), so we may assume our adversary places no more than np′ − 1
additional 1s for a total of np′ . We assume row i thus selects column j.

Now let Z again be a random variable denoting the number of rows
containing the smallest number of 1s among all rows having a 1 in column
j. Recall that E [Z] ≤ 1 + o (1) by Lemma 4.15. The probability of column j
selecting row i in our algorithm is now bounded from above by E [Z] /np′ ,
which implies the probability of (i, j) becoming a candidate is also bounded
by this probability. Plugging this in, we get

E [C] ≤
∑

i

P [row i contains a candidate] + o (1)

=
∑

i

E [Z]
np′

+ o (1) =
∑
iE [Z]
np′

+ o (1) =
nE [Z]
np′

+ o (1)

=
E [Z] + o (1)(

1− logn√
n

)
p

=
1
p
· 1 + o (1)(

1− logn√
n

)

=
1
p
·

1− logn√
n

+ logn√
n

+ o (1)
(
1− logn√

n

) =
1
p
·



1 +

logn√
n(

1− logn√
n

) + o (1)




=
1
p
·
(
1 +

logn√
n− logn

+ o (1)
)

=
1 + o (1)

p
.

For any fixed p ∈ (0,1), we have a constant bound on the expected num-
ber of candidates. This implies the expected running-time of Algorithm
4.8 on random instances of Gn,n,p is O

(
n2

)
. This expected running-time is

linear in the input size.

4.7 Concluding Remarks

Avoiding fill-in while performing Gaussian elimination is related to find-
ing bisimplicial edges in bipartite graphs. Existing algorithms to find
bisimplicial edges are based on matrix multiplication. Their running-time
is dominated by the matrix multiplication exponent (ω ≤ 2.376). We have
presented a new algorithm to find such pivots that is not based on matrix
multiplication. Instead, our algorithm selects a limited number of candi-
date edges, checks them for bisimpliciality, and finds all other bisimpli-
cial edges based on that. The worst-case running-time of our algorithm is
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4. Pivoting and Bisimplicial Edges

O
(
n3

)
, but the expected running-time for randomGn,n,p instances for fixed

values of p is O
(
n2

)
, which is linear in the input size. The main reason for

this difference is that the expected number of candidates is only 1+o(1)
p .

Besides improving on the expected running-time on random instances,
our new algorithm is also very easy to implement in an efficient way. The
running-time can be brought down easily to O (Cm), where the number of
candidates C is known after time O (m) and is bounded from above by n.
Thus, we have a worst-case running-time of O (nm). The combination of
ease of efficient implementation and a linear bound on the average-case
running-time makes our algorithm very practical.
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Chapter 5

Perfect Elimination

In the previous chapter the problem of finding pivots that
avoid fill-in has been discussed. A natural extension of this
problem is to ask for matrices that allow the entire Gaussian
elimination procedure to be performed without fill-in. The
class of such matrices is closely related to the class of perfect
elimination bipartite graphs. In this chapter we discuss the
recognition of these classes of graphs and matrices. Besides
existing algorithms for this problem, we present two new al-
gorithms aimed at recognizing sparse instances. In the second
part of this chapter a related problem is investigated: In or-
der to allow perfect elimination on more matrices a more fine-
grained elimination procedure is proposed and it is shown that
this procedure allows the avoidance of fill-in on more matrices.
Unfortunately this comes at a price as we also show recognition
of graphs and matrices that allow perfect elimination using this
more fine-grained procedure is NP-hard.

5.1 Perfect Elimination

Performing Gaussian elimination on sparse matrices may have the unfor-
tunate side effect of turning zeros into nonzero values, possibly even lead-
ing to a dense matrix along the way. Clearly, this can be undesirable, for
example when working with very large sparse matrices. A natural ques-
tion therefore is to ask when we can avoid fill-in during the elimination
process. Recognizing matrices where fill-in can be avoided and selecting
appropriate pivots can decrease the required effort and space for Gaussian
elimination. For several special cases, such as symmetric (positive definite)
matrices or pivots chosen along the main diagonal, this problem has been
treated extensively in literature (see e.g. [42, 43, 44, 45, 46]).
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1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0






×

1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0







=

4 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







Figure 5.1: Sparse M may lead to dense Q =MMT .

The general case of avoiding fill-in on square nonsingular matrices was
first treated in detail by Golumbic and Goss [16]. They describe the cor-
respondence between matrices that allow Gaussian elimination without
fill-in and the class of perfect elimination bipartite graphs which will be de-
scribed in more detail in the next section. This class of bipartite graphs is
characterized by an elimination scheme based on the notion of bisimplicial
edges as discussed in the previous chapter.

The correspondence between perfect elimination bipartite graphs and
matrices is mainly of practical value for sparse instances: the original mo-
tivation for investigating this class of graphs is preserving sparsity during
Gaussian elimination on their associated matrices by avoiding fill-in. For
the specific case of pivots chosen on the diagonal, Rose and Tarjan [46]
have described two algorithms for finding perfect elimination orderings.
Their algorithms represent the common trade-off between time and space.
One is faster but needs more space, the other is slower but requires storage
proportional to the number of nonzero elements. However, for the general
case it appears that efficient algorithms for the recognition of sparse in-
stances have not yet been investigated. The focus in literature so far seems
to be only on time complexity for dense instances. The best known algo-
rithms for the general case are based on a matrix multiplication which may
well result in a dense matrix, see e.g. Figure 5.1.

The first part of this chapter describes two algorithms for the recogni-
tion of perfect elimination bipartite graphs that we have constructed with
special focus on sparse instances and have published recently [8]. The
second part describes a more fine-grained variant of Gaussian elimination
that has been analyzed by us [9].

In this chapter we again work under the assumption that subtracting a
multiple of a row from another will always turn at most one element from
nonzero to zero. We also use the same {0,1}-matrix representation ofM for
our instances as in the previous chapter. Furthermore, we also assume each
row and column contains at least one non-zero element, as this is quite a
natural requirement and it somewhat simplifies our discussion. Again, we
denote by n the number of rows (or columns) of our input matrix and by
m the number of non-zero elements in it.
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5.2. Perfect Elimination Bipartite Graphs

5.2 Perfect Elimination Bipartite Graphs

Recall from the previous chapter that an edge uv of a bipartite graph is
called bisimplicial if the neighbors of its endpoints Γ (u) ∪ Γ (v) induce a
complete bipartite graph. Bisimplicial edges in G[M] correspond to pivots
that avoid fill-in in M. Using this notion Golumbic and Goss [16] first
defined the class of perfect elimination bipartite graphs which corresponds
to the class of matrices that allow elimination without any fill-in as follows:

Definition 5.1. A bipartite graph G = (U,V ,E) is called perfect elimination
bipartite, if there exists a sequence of pairwise nonadjacent edges [u1v1, . . . ,
unvn] such that uivi is a bisimplicial edge of G − {u1,v1, . . . ,ui−1,vi−1} for
each i and G−{u1,v1, . . . ,un,vn} is empty. Such a sequence of edges is called
a (perfect elimination) scheme.

This definition is based on the following theorem:

Theorem 5.2 ([16]). If uv is a bisimplicial edge of a perfect elimination bipar-
tite graph G = (U,V ,E), then G − {u,v} is also a perfect elimination bipartite
graph.

This theorem immediately implies a simple O
(
n5

)
algorithm for the

recognition of perfect elimination bipartite graphs that also leads to an
elimination scheme in case the graph is perfect elimination bipartite. We
will proceed by describing this algorithm more formally as we will subse-
quently improve on it.

Let us introduce the notion of row and column sets Ri and Cj defined
as follows:

Ri =
{
j ∈ {1 . . .n} |Mi,j , 0

}

Cj =
{
i ∈ {1 . . .n} |Mi,j , 0

}

In other words: Ri contains the column numbers of elements in row
i that have a nonzero value in M. Using these, we can describe the al-
gorithm by Golumbic and Goss, shown in Algorithm 1. The algorithm
basically performs n iterations, during each of which all remaining edges
are completely checked for bisimpliciality.

Goh and Rotem [38] have presented a faster recognition algorithm based
on the notion of majorizing rows. (This has also been described in Chap-
ter 4, Theorem 4.2, it is repeated here to keep this chapter self-contained.)
A row Ma,∗ is said to majorize a row Mb,∗ if for each 1 ≤ j ≤ n we have
Ma,j ≥Mb,j . Note how according to this definition, every row majorizes it-
self. Using this, they came up with the following theorem regarding bisim-
plicial edges:
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5. Perfect Elimination

Algorithm 1 Original recognition algorithm by Golumbic and Goss.
1: I ← {1 . . .n}
2: J← {1 . . .n}
3: while I , ∅ do
4: f ← false
5: for all (i, j) ∈ I × J do
6: if Mi,j = 1 then
7: g← true
8: for all (k, l) ∈ (Cj ∩ I)× (Ri ∩ J) do
9: if Mk,l = 0 then

10: g← false
11: end if
12: end for
13: if g = true then
14: f = true,x← i,y← j
15: end if
16: end if
17: end for
18: if f = false then
19: return false {G[M] is not perfect elimination bipartite}
20: end if
21: I ← I \ x
22: J ← J \ y
23: end while
24: return true {G[M] is perfect elimination bipartite}

Theorem 5.3. [38] Let M be an n × n {0,1}-matrix representing a bipartite
graph G = (U,V ,E). Let `i be the number of rows inM that majorize row i and
let sj be the sum of the entries in column j of M. Then Mi,j = 1 and `i = sj iff
the edge uivj is a bisimplicial edge of G.

The values `i can be easily determined using the matrix Q = MMT : `i
is equal to the number of elements in the row Qi,∗ that are equal to Qi,i
(including Qi,i itself). Once the matrix Q has been computed (this can of
course be done in time O

(
n3

)
), finding a bisimplicial edge can be done in

O
(
n2

)
operations. If a bisimplicial edge uv is found, Q can be updated in

O
(
n2

)
operations to the matrix Q′ associated with G′ = G − {u,v} for the

next iteration. After at most n iterations the algorithm terminates. The
total time complexity of the algorithm is O

(
n3

)
, a significant improve-

ment over the O
(
n5

)
naive implementation. This algorithm is shown in

Algorithm 2 (The notation M ij is used to denote the (i, j) minor of M, i.e.,
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5.3. Goh-Rotem on Sparse Instances

the matrix obtained after removing row i and column j). As it needs to
compute and store the matrix Q, the space complexity of this algorithm is
Ω

(
n2

)
.

Algorithm 2 Recognition algorithm by Goh and Rotem.
1: simplicial_found← true
2: compute the matrix Q = (Qi,j ) where Q =MMT

3: ∀j ∈ {1 . . .n} : sj ←
∑n
i=1Mi,j

4: while there exists an sj , 0 and simplicial_found do
5: ∀i ∈ {1 . . .n} : let `i be the number of entries in row i of Q that are

equal to Qi,i
6: if there exists a nonzero entry Mi,j in M where sj = `i then
7: Compute the matrix D = (dk,l) where dk,l =Mk,j ·Ml,j

8: Q← (Q −D)ii {Q is now equal to (M ij )(M ij )
T

}
9: ∀k ∈ {1 . . .n} : sk ← sk −Mi,k

10: sj ← 0
11: else
12: simplicial_found← false
13: end if
14: end while
15: return simplicial_found

More recently, Spinrad [47] obtained an improved algorithm with time
complexityO

(
n3/ logn

)
using a notion of edges that may soon become suit-

able pivots during subsequent iterations as well as the faster matrix mul-
tiplication algorithm by Coppersmith and Winograd [39].

5.3 Goh-Rotem on Sparse Instances

By adapting the way calculations are performed, as well as the data struc-
tures, we have obtained a new implementation [8] of Algorithm 2 with
time complexityO (nm): an improvement for sparse graphs. Using the row
and column sets we determine the matrix Q =MMT as

Qi,j =
∣∣∣Ri ∩Rj

∣∣∣ . (5.1)

Based on this new formulation, we arrive at the following lemma that
will be used below to analyze the time complexity of our new algorithm:

Lemma 5.4. An upper bound on the sum of the elements in Q is given by
∑

i,j

Qi,j ≤ nm . (5.2)
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Proof. ∑

i,j

Qi,j =
∑

i,j

∣∣∣Ri ∩Rj
∣∣∣ ≤

∑

i

∑

j

∣∣∣Rj
∣∣∣ = nm (5.3)

Besides the matrix Q, we require an additional n× (n+ 1) matrix B. To
simplify notation, we number the columns of B starting at 0 instead of at
1. The values of B are defined by

Bi,k :=
∣∣∣∣
{
j | j ∈ {1 . . .n} ,Qi,j = k

}∣∣∣∣ . (5.4)

I.e., Bi,k contains the number of elements in row i of Q that have the
value k. After computation of Q, the matrix B can be computed in time
O

(
n2

)
. Furthermore, without increasing the time complexity of the new

algorithm, we can keep B up to date if we perform any updates to elements
of Q. Using B, we can easily determine the value of `i as

`i = Bi,Qi,i . (5.5)

Using our set-based calculation of Q and the new matrix B, we can
adapt the original algorithm by Goh and Rotem and arrive at our new ver-
sion shown in Algorithm 3. Apart from our use of the sets I and J to denote
the rows and columns that are still part of M during the current iteration
instead of taking minors of the involved matrices, the working of the al-
gorithm is still basically identical to Algorithm 2. However, the additional
bookkeeping of B and the upper bound on the sum of the elements in Q
enable us to achieve an improved time complexity for sparse instances.

Theorem 5.5. The time complexity of Algorithm 3 is O (nm).

Proof. From Lemma 5.4 we know that the sum of the elements of Q is
bounded by O (nm). This implies the initialization of the matrices Q and B
in the loop on line 3 can be completed within time O (nm). This leaves us
with the task of establishing the same bound on the main loop from line 8
on down. Clearly, the main loop is executed up to n times, either finding
and processing a pivot, or returning false during each iteration. Within
the main loop, the first loop on line 10 processes each of the O (m) edges
in constant time. If a suitable pivot is found, we first update the Ri and Cj
sets in lines 20 and 21. This can be done in time O (m).

After that, we have to update the matrices Q and B in the loop on line
27. Every iteration of this inner loop decreases some element of Q by one.
As none of the elements are decreased below zero, Lemma 5.4 again gives
us a bound of O (nm) on the number of iterations of this inner loop over
the course of the entire algorithm.
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5.3. Goh-Rotem on Sparse Instances

Algorithm 3 Adapted Goh-Rotem algorithm.
Require: Q = 0 {Q is an n×n-matrix}
Require: B = 0 {B is an n× (n+ 1)-matrix}

1: I ← {1 . . .n}
2: J ← {1 . . .n}
3: for all (i, j) ∈ I × J do
4: Qi,j ←

∣∣∣Ri ∩Rj
∣∣∣

5: Bi,Qi,j ← Bi,Qi,j + 1
6: end for
7: ∀j ∈ J : sj ←

∣∣∣Cj
∣∣∣

8: while I , ∅ do
9: f ← false

10: for all i ∈ I do
11: for all j ∈ Ri do
12: if Bi,Qi,i = sj then
13: f ← true,x← i,y← j
14: end if
15: end for
16: end for
17: if f = false then
18: return false {G[M] is not perfect elimination bipartite}
19: end if
20: ∀i ∈ I : Ri ← Ri \ y
21: for all j ∈ J do
22: if x ∈ Cj then
23: sj ← sj − 1
24: end if
25: Cj ← Cj \ x
26: end for
27: for all (i, j) ∈ Cy ×Cy do
28: Bi,Qi,j ← Bi,Qi,j − 1
29: Qi,j ←Qi,j − 1
30: Bi,Qi,j ← Bi,Qi,j + 1
31: end for
32: ∀i ∈ I : Bi,Qi,x ← Bi,Qi,x − 1
33: I ← I \ x
34: J← J \ y
35: end while
36: return true {G[M] is perfect elimination bipartite}
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Finally, the loop on line 32 decreasesO (n) values of B after which I and
J are updated to reflect the removal of the pivot row and column; all of this
can be done in time O (n).

So for both the initialization and the iteration phase of the algorithm
we obtain a bound of O (nm) on the time complexity.

The space complexity of Algorithm 3 is Θ
(
n2

)
as we need to compute

and store the matrices Q and B.

5.4 Avoiding Matrix Multiplication

A possible disadvantage of recognition algorithms based on matrix multi-
plication is the amount of space required to store the result of the matrix
multiplication. Even if an original sparse matrix M is stored efficiently us-
ing Θ (m) space, the result of the multiplication may be a dense matrix re-
quiring Ω

(
n2

)
space (see Figure 5.1). Avoiding matrix multiplication thus

seems to be required in order to improve the space complexity. To do this,
we started over from the algorithm originally presented by Golumbic and
Goss for the recognition of perfect elimination bipartite graphs. Algorithm
1 proceeds in up to n iterations. In every iteration, every edge is checked
against possibly all other edges to determine if it is bisimplicial. To check
an edge uv for bisimplicity, we need to verify that G[M] contains all edges
u′v′ with u′ ∈ Γ (v) and v′ ∈ Γ (u). By performing this every iteration, we
obtain a time complexity of O

(
n5

)
.

The idea behind our new algorithm is as follows: in Algorithm 1 we
check every remaining edge uv against possibly all other edges during ev-
ery iteration. However, we can shave a factor n from the time complexity if
we are checking uv and find an edge u′v′ as present in G[M] during some
iteration, we avoid checking it for uv again in subsequent iterations. A
naive algorithm based on this notion is described in Algorithm 4. Assum-
ing the use of suitable data structures, the time complexity of this algo-
rithm is O

(
n2m

)
. Unfortunately, by precomputing for every edge e the set

of possible edges Ee that need to be checked, we require a lot more space,
instead of less.

Observing the usage of the sets Ee we see they are all constructed at
the beginning and processed one element at a time in arbitrary order. The
element under consideration is either removed from the set and followed
by another element, or it leads to the conclusion that e is not bisimplicial in
the matrix that remains in the current iteration and it will be considered
again later. If we impose a specific order on the processing of the edges
e′ ∈ Ee we can do away with precomputing and storing the entire sets Ee
and only store the element e′ currently under consideration for each edge
e.
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Algorithm 4 A O
(
n2m

)
recognition algorithm.

1: I ← {1 . . .n}
2: J ← {1 . . .n}
3: ∀e = (i, j) ∈ E : Ee = Cj ×Ri
4: while I , ∅ do
5: f ← false
6: for all e = (i, j) ∈ E do
7: g← true
8: if i < I ∨ j < J then
9: g← false

10: end if
11: while (Ee , ∅)∧ (g = true) do
12: e′ = (i′ , j ′)← arbitrary_element(Ee)
13: if i′ < I ∨ j ′ < J then
14: Ee← Ee \ e′
15: else if Mi′ ,j ′ = 1 then
16: Ee← Ee \ e′
17: else
18: g← false
19: end if
20: end while
21: if g = true then
22: f ← true,x← i,y← j
23: end if
24: end for
25: if f = false then
26: return false {G[M] is not perfect elimination bipartite}
27: end if
28: I ← I \ x
29: J ← J \ y
30: end while
31: return true {G[M] is perfect elimination bipartite}

To implement this, we again represent M using the sets Ri and Cj , but
this time we store them as sorted lists, as shown in Figure 5.2(a). To per-
form a pivot and remove the associated row and column, we simply adjust
the links in the row and column lists to skip over the removed row and col-
umn, as shown in Figure 5.2(b) for a pivot on (3,4). Clearly, such a pivot
operation can be implemented in time O (m), as we can simply pass over
all the elements in each of the lists and adjust the links as we pass them.
This representation requires Θ (m) space.

To check if an element Mi,j corresponds to a bisimplicial edge in G[M],

77



5. Perfect Elimination

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

C1 C2 C3 C4

R1

R2

R3

R4

(a) original lists

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

C1 C2 C3 C4

R1

R2

R3

R4

(b) . . . after pivot (3,4)

Figure 5.2: Row and column lists for example matrixM from Figure 4.1(a).
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3
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}

step

block

Figure 5.3: Steps and blocks.

we have to test if all edges between the neighbors of its endpoints exist. In
terms of the column sets of the matrixM, this means that for every column
k ∈ Ri , we must have that Cj ⊆ Ck . If we use the sorted list representation,
the number of comparisons for each edge e is bounded by O (m). Every
comparison has one of three possible outcomes (see Figure 5.3):

1. Cj and Ck both contain the row number: the required edge is present,
we can continue checking the next row number

2. Ck contains a number not present inCj : an additional edge is present,
we can continue checking the next row number

3. Cj contains a number not present in Ck : a required edge is missing:
e is not bisimplicial in the current matrix

We call the first two cases steps (as they can be repeated during a single
iteration) and call the third case a block (as it ends the checks for e during
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5.4. Avoiding Matrix Multiplication

this iteration). For a single edge e, steps can occur O (m) times during
the algorithm, whereas blocks are limited by O (n) as they can occur only
once per iteration. If there are no more comparisons left for any edge e
that still remains in M at some point during the algorithm, we have found
a suitable pivot. After removing the pivot row and column from M, we
simply proceed checking the remaining edges starting at the point where
they blocked during the previous iteration. We continue this process until
either we have found a complete elimination scheme or we cannot find a
bisimplicial edge anymore. This procedure is described in Algorithm 5.

Theorem 5.6. The time complexity of Algorithm 5 is O
(
m2

)
.

Proof. It is possible to construct our sorted list representation in timeO
(
n2

)
.

Other initialization, such as the state of the comparisons for every edge e,
can easily be done within the same time. Following the initialization, we
perform up to n iterations, during each of which we perform a pivot on
our rows and columns lists in time O (m) for a total of O (nm). During the
entire algorithm we perform O (m) steps and O (n) blocks for each of the m
edges, leading to an overall time complexity of O

(
m2

)
.

Theorem 5.7. The space complexity of Algorithm 5 is Θ (m).

Proof. Our sorted lists representation of M contains m edges. For each
edge we need Θ (1) space to store its progress with respect to its compar-
isons against its required neighbors for a total of Θ (m). Finally, we have to
store the sets I and J to keep track of the rows and columns that still re-
main, both require Θ (n) space. In total, we thus obtain a space complexity
of Θ (m).

After establishing its running time and space requirements, we end
this section by adapting our new algorithm to the special case of finding
a perfect elimination ordering allowing only pivots on the diagonal of the
matrix. Rose and Tarjan have studied this problem and have presented
two algorithms for it also focusing on the trade-off between time and space
requirements [46]. One of their algorithms has a time complexity ofO (nm)
and uses Θ (nm) space, the other one has a time complexity of O

(
n2m

)
but

uses only Θ (m) space.
It is not hard to see that our algorithm can be adapted to consider only

a subset of all the edges as pivots: this simply means we only process steps
and blocks for these edges while ignoring the other edges. If we test only
c edges as allowed pivots in this way, the running time of our algorithm is
O (cm+nm) while the space complexity remains Θ (m). By only allowing
pivots on the diagonal (c = n) instead of anywhere (c = m), we get a time
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Algorithm 5 A new O
(
m2

)
recognition algorithm using Θ (m) space.

1: I ← {1 . . .n}
2: J← {1 . . .n}
3: Construct Ri and Cj representation
4: while I , ∅ do
5: f ← false
6: for all e = (i, j) ∈ E do
7: g← true
8: if i < I ∨ j < J then
9: g← false

10: end if
11: while g = true and we are not done checking edges do
12: e′ = (i′ , j ′)← the current edge to check
13: if i′ < I ∨ j ′ < J then
14: Proceed to the next edge to check (if any) {This can only hap-

pen during the first iteration of this inner loop}
15: else if e′ blocks then
16: g← false
17: else
18: Proceed to the next edge to check (if any)
19: end if
20: end while
21: if g = true then
22: f ← true,x← i,y← j
23: end if
24: end for
25: if f = false then
26: return false {G[M] is not perfect elimination bipartite}
27: end if
28: Update Ri and Cj links to perform pivot round (x,y)
29: I ← I \ x
30: J ← J \ y
31: end while
32: return true {G[M] is perfect elimination bipartite}

complexity of O (nm) for this restricted case. We thus obtain a single al-
gorithm that combines the best time complexity of Rose and Tarjan with
their best space complexity for this restricted problem.
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(b)

Figure 5.4: Two matrices, both without a perfect elimination scheme, but
(a) has a perfect partial elimination scheme whereas (b) does not.

5.5 Perfect Partial Elimination

The previous sections focused on the recognition of graphs and matrices
that allowed complete avoidance of fill-in under Gaussian elimination. It
is characteristic for the Gaussian elimination algorithm that in each iter-
ation a pivot element is picked and used to clear its entire column. If we
want to avoid fill-in completely, this limits the set of matrices we can apply
this method to. In order to achieve perfect elimination for a broader set of
matrices, we can use a more fine-grained elimination process in which we
eliminate single nonzero values instead of entire columns at a time. Rose
and Tarjan already mentioned such partial elimination as an alternative to
ordinary Gaussian elimination for this reason [46]. In the subsequent sec-
tions we describe our analysis [9] of the complexity of this alternative pro-
cess for perfect elimination.

In the remainder of this chapter we consider partial pivots, i.e., select-
ing a new pivot element for every single nonzero element that we zero. For
example, the matrix in Figure 5.4(a) can be reduced to diagonal form by
partial pivots without fill-in – although no perfect elimination scheme ex-
ists. Clearly, there are also matrices like the one in Figure 5.4(b) for which
even partial pivoting cannot avoid fill-in. It is thus natural to ask ourselves
which matrices allow perfect elimination using such partial pivots.

To answer this question, reconsider the elimination of edges in the cor-
responding bipartite graph. As the partial elimination steps involve only
row operations zeroing single nonzero elements in our matrix, we first look
at elements that can be zeroed this way. Recall that U denotes the vertex
class corresponding to the rows of the matrix and V denotes the vertex
class corresponding to the columns of the matrix.

Definition 5.8. An edge uv of a bipartite graph G = (U,V ,E) is called
disposable if there exists another edge u′v such that Γ (u′) ⊆ Γ (u).
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Figure 5.5: The disposable elements (indicated by squares) of our example
matrix.
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Figure 5.6: An example perfect partial elimination scheme.

Before defining the analogous concept for a {0,1}-matrix M, we reiter-
ate the ≤ relation on matrix rows. We write Mi′ ,∗ ≤Mi,∗ to denote that for
any column j of M, Mi′ ,j = 1 implies Mi,j = 1. Note how this captures the
same notion expressed by Γ (u′) ⊆ Γ (u) in the bipartite graph case. Defining
disposable elements in the {0,1}-matrix M is now rather straight-forward:
a nonzero element Mi,j of a row Mi,∗ is called disposable if there is another
row Mi′ ,∗ ≤Mi,∗ such that Mi′ ,j is also nonzero. (Element Mi′ ,j can be used
as a partial pivot to clear element Mi,j .) Figure 5.5 shows the disposable
elements of our example matrix. Clearly, disposable elements play an im-
portant role in the characterization of the matrices that allow perfect par-
tial elimination schemes. We now come to the definition of the class of
bipartite graphs associated to these matrices:

Definition 5.9. A bipartite graph G = (U,V ,E) with |U | ≥ |V | = n and |E| =
m is called perfect partial elimination bipartite if there exists an ordering
of the edges denoted by E = {e1, . . . , em} such that {em−n+1, . . . , em} together
form a maximum matching of G covering V and for each i ∈ {1, . . . ,m−n},
ei is a disposable edge of Gi :=

(
U,V ,

{
ej ∈ E | j ≥ i

})
. We call this ordering

a perfect partial elimination scheme.

An example of a perfect partial elimination scheme for the {0,1}-matrix
of Figure 5.4(a) is shown in Figure 5.6.
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As our partial pivots only involve single edge operations, it is no longer
required for the two vertex classes to be of equal size. Clearly, the notion
of a perfect partial elimination scheme for G carries over readily to the
corresponding {0,1}-matrix, which also no longer has to be square.

Having defined the class of matrices and bipartite graphs that allow
perfect partial elimination, the logical next question to ask is how hard it
is to recognize members of this class. The corresponding decision problem
can be stated as follows:

Perfect Partial Elimination

Instance: A {0,1}-matrix M
Question: Does M have a perfect partial elimination scheme?

5.6 Perfect Partial Elimination is NP-hard

The proof is by reduction from Satisfiability [4]. We start by briefly defin-
ing this problem, using the terminology and notation from Garey and
Johnson [2]. An instance S of Satisfiability consists of a set U of boolean
variables and a set C of clauses defined over U . For every variable ui ∈ U ,
ui and ūi are called literals over U . A truth assignment (T ,F) is a partition
of the variables U . Under a given truth assignment, the literal ui is true
if and only if ui ∈ T , otherwise it is false. Similarly, the literal ūi is true
if and only if ui ∈ F. The clauses in C are disjunctions of the literals over
U . A given truth assignment is called satisfying for C if every clause in C
contains at least one literal that is true under the truth assignment. The
decision problem is now stated as follows:

Satisfiability

Instance: Set U of variables, collection C of clauses over U .
Question: Is there a satisfying truth assignment for C?

Using this we prove the NP-hardness of Perfect Partial Elimination.

Theorem 5.10. Perfect Partial Elimination is NP-complete.

Proof. As a given elimination sequence for perfect partial elimination can
clearly be verified in polynomial time, we only show NP-hardness using a
reduction from Satisfiability. For a given instance S = (U,C) of Satisfia-
bility, we construct a corresponding {0,1}-matrix MS such that MS has a
perfect partial elimination scheme if and only if S has a truth assignment
for U that is satisfying for C. To simplify the reduction, we will assume
w.l.o.g. that the instance S has at least two clauses, all clauses contain at
least one literal, and C contains no tautologies, i.e., there is no i such that
some clause contains both ui and ūi .
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The matrix MS has 4 |U | + |C| + 1 rows and 2 |U | + |C| + 2 columns. For
the description of the construction procedure, it is convenient to label the
rows and columns.

For every variable ui inU we have two columns labeled ui and ūi . These
columns are used to represent the variables, their truth assignments and
their occurrences in the clauses. For every clause ci ∈ C, we have a column
labeled ci . These columns are used to keep the individual clauses sepa-
rated while linking them together in the overall satisfiability requirement.
We also have two auxiliary columns labeled a and b, which are used to
limit the possible subtractions between rows.

The rows of MS are partitioned into five sets: the first two sets each
contain one row per variable and are denoted V and W . Subtractions be-
tween rows of these sets are used to represent possible truth assignments
for U . The third set D is used mainly to clear matrix elements that are no
longer required for the elimination process themselves. The fourth set of
rows, K , represents the clauses of S and links them to their literals. The
final set R contains only a single row and encodes the requirement that all
clauses must be satisfied by the truth assignment.

Having introduced the rows and columns that together form the con-
structed matrix MS , we will now describe the values of the elements of
MS . The row set V contains a single row vi for every variable ui . Each
such row contains two ones in the columns corresponding to ui and ūi and
zeros everywhere else. The rows wi in W are identical to the rows vi , ex-
cept for an additional 1-entry in column a. The set D contains two rows
for each variable ui : one for each of the two corresponding literals ui and
ūi . Each row in D has a one in the corresponding literal column and a
one in column b and zeros everywhere else. The rows in K each corre-
spond to a clause in C. Row ki has a one in every column corresponding
to a literal occurring in ci , as well as a one in the column corresponding
to ci itself. All rows in K also have a one in the columns a and b and ze-
ros elsewhere. Finally, the set R contains only a single row r with ones
in all columns ci as well as in the b column, and zeros everywhere else.
An example of this construction for S = (U,C) with U = {u1,u2,u3,u4} and
C = {{u1,u2} , {u1, ū2,u3, ū4} , {u1, ū3,u4}} is shown in Figure 5.7 where the
nonzero entries have been numbered according to the elimination scheme
that will be described next. To complete the reduction, we have to show
that MS has a perfect partial elimination scheme if and only if S is satis-
fiable. We first show how a satisfying truth assignment for S leads to a
perfect partial elimination scheme for MS .

Let (T ,F) be a satisfying truth assignment for S. For every ui ∈ T , we
use the corresponding row in V to clear the element in the ūi column of
the corresponding row in W . Similarly, for every ui ∈ F, we use the corre-
sponding row in V to clear the element in the ui column of the correspond-
ing row inW . The modified rows inW now represent the truth assignment
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31 32 0 0 0 0 0 0 0 0 0 0 0

0 0 33 34 0 0 0 0 0 0 0 0 0

0 0 0 0 35 36 0 0 0 0 0 0 0

0 0 0 0 0 0 37 38 0 0 0 0 0

39 1 0 0 0 0 0 0 43 0 0 0 0

0 0 2 40 0 0 0 0 44 0 0 0 0

0 0 0 0 3 41 0 0 45 0 0 0 0

0 0 0 0 0 0 42 4 50 0 0 0 0

58 0 0 0 0 0 0 0 0 30 0 0 0

0 57 0 0 0 0 0 0 0 29 0 0 0

0 0 56 0 0 0 0 0 0 28 0 0 0

0 0 0 55 0 0 0 0 0 27 0 0 0

0 0 0 0 54 0 0 0 0 26 0 0 0

0 0 0 0 0 53 0 0 0 25 0 0 0

0 0 0 0 0 0 52 0 0 24 0 0 0

0 0 0 0 0 0 0 51 0 23 0 0 0

8 0 9 0 0 0 0 0 5 22 48 0 0

10 0 0 11 12 0 0 13 6 21 0 47 0

14 0 0 0 0 15 16 0 7 20 0 0 46

0 0 0 0 0 0 0 0 0 49 19 18 17
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



{

V

W

D

K

R

u1 ū1 u2 ū2 u3 ū3 u4 ū4 a b c1 c2 c3

}

}

}

c1 : u1 ∨u2
c2 : u1 ∨ ū2 ∨u3 ∨ ū4
c3 : u1 ∨ ū3 ∨u4

Figure 5.7: An example perfect partial elimination scheme for the con-
struction used in the NP-hardness proof of Perfect Partial Elimination

(nonzero entries emphasized by squares).

(T ,F). As (T ,F) is a satisfying truth assignment for S, we can find a row
wj for each clause row kl such that wj ≤ kl . We use these rows to clear all
elements in the a column of K . Next, the rows from D are used to clear
all the elements in the ui and ūi columns of K . The only nonzero elements
remaining in K are now the column b and the diagonal in the ci columns.
For every clause ci we now have that ki ≤ r. The rows of K are now used
to clear all ci columns of r, so that the only nonzero element of r that re-
mains is in column b. The remainder of the elimination scheme is rather
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straightforward: The current row r can be used to clear column b in row
setsD and K . The resulting rows inD can then zero all of the literal entries
in other rows, leading to a matrix in which for each column there is a row
with only a single 1-entry in exactly that column. After that, completion
of the elimination scheme is a trivial task. Figure 5.7 shows an example of
such an elimination scheme where the numbers in the figure represent the
ordering from Definition 5.9.

It remains to show that no perfect partial elimination scheme exists if S
is not satisfiable. The construction of MS guarantees that a perfect partial
elimination scheme, if one exists, must proceed over three distinct phases
that can be characterized as follows:

I During the first phase, only rows from the row sets V , W and D can
be used as pivots.

II During the second phase, rows from the row sets R and K can also be
used as pivots, but only on other rows from R and K .

III During the final phase, rows from the row sets R and K can also be
used as pivots on other rows of MS .

We proceed by showing why during each phase at least one pivot must
be performed before the next phase is reached and why each perfect partial
elimination scheme contains pivots in each phase.

Due to the structure of the ci columns and the assumption that there
are at least two clauses, the row sets R and K cannot immediately be used
as a pivot on MS , so initially we can use only rows from the row sets V , W
and D as pivots. This is phase I. Using only these rows as pivots, no row
with a single 1-entry can be obtained.

Rows of R and K each contain at least a single 1-entry in one of the ci
columns. This means that before they can be used as pivots on rows from
V , W or D, at least one row of R and K must be used as a pivot on another
row of R and K . When such pivots have become possible, we have reached
phase II.

To ultimately clear all but a single 1-entry in each of the rows of V , W
and D as required for a perfect partial elimination scheme, at least one of
the rows of R and K must be used as a pivot on the rows of V , W and D.
When such pivots become possible, we have reached phase III.

Before a row from K can be used as a pivot on either another row of K
or R, all of its 1-entries in the columns a, ui and ūi must be cleared. The
1-entries in the ui and ūi columns can be cleared using rows from D as
pivots. The 1-entry in the a column can only be cleared by using a row
from W after clearing a 1-entry in either the ui or ūi column of that row.
This means that for each row ki of K that we want to use as a pivot, we
have to pick some row from W that, after clearing one of its own 1-entries,
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can be used to clear the 1-entry in the a column of ki . If there is some way
to do this for every row of K , the modified rows from W again represent a
satisfying truth assignment, so we have to assume that for every possible
usage of the rows from W to clear the a column of the rows of K , there is
at least one row for which we can not clear the 1-entry in the a column. If
there is more than one row for which this holds, we can never reach phase
III, as none of the rows of K can be applied as pivots to other rows of K
and after using the other rows as pivots, row r will always have at least
two different 1-entries left in the ci columns, so it can also never be used
as a pivot. So let us assume there is exactly one row of K for which we can
not clear the 1-entry in the a column. We refer to this row as z. In this case
we can use all the other rows of K to clear all but a single 1-entry in the ci
columns of row r. Row r can subsequently be used to clear the last 1-entry
in the ci columns of z. (Row r could also be used to clear the 1 entry in
column b instead, but that would clearly block row z from being used as
a pivot.) The a column of row z still contains a 1-entry, so in order to use
it as a pivot on a row from V , W or D and reach phase III, we will have to
subtract it from another row with a 1-entry in the a column. The only rows
eligible as operand for such a subtraction are the rows of W . Note that up
to this point no row with only a single 1-entry could have been created.

By our assumption, none of the rows of W could be subtracted from z,
as this would have enabled us to clear the 1-entry in the a column. This
implies that in order to subtract z from any row of W , we have to clear all
but a single 1-entry from row z first. This is true as z must contain fewer 1-
entries than any row ofW we want to subtract it from, because if z contains
the same 1-entries, then the subtraction could have been performed the
other way around which is impossible by our assumption. Now assume we
have been able to clear all 1-entries of z except for the 1-entry in column
a and one other 1-entry. To clear any of these two remaining 1-entries, we
require another row with either a single 1-entry, none of which have been
created yet, or a row with exactly the same two 1-entries as z, which again
contradicts our assumption, as this row must be a row of W . It is therefore
impossible to reach phase III if S is not satisfiable and therefore a perfect
partial elimination scheme only exists if S is satisfiable.

Remark 5.11. The problem does not become easier if we restrict ourselves
to square matrices. Indeed, we can augment the matrixMS with additional
‘all ones’ columns. A moment of reflection shows that these additional
columns neither prevent a perfect partial elimination scheme if S has a
satisfying truth assignment, nor do they allow such a scheme if S does not
have a satisfying truth assignment.
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5.7 Concluding Remarks

In this chapter we have analyzed two problems related to avoiding fill-
in during Gaussian elimination: Recognition of sparse perfect elimination
bipartite graphs and perfect partial elimination bipartite graphs.

In current literature, the fastest known algorithm for the recognition
of general perfect elimination bipartite graphs is the algorithm by Spin-
rad [47] with a time complexity of O

(
n3/ logn

)
. We have presented two

new algorithms focused specifically on sparse instances. Our first algo-
rithm is an adaption of the algorithm by Goh and Rotem with a time
complexity of O (nm), leading to an improvement for instances with m =
o
(
n2/ logn

)
(all but the densest instances). The second algorithm we have

presented is not based on some form of matrix multiplication and is as
such able to do away with the Ω

(
n2

)
space complexity associated with it.

This algorithm has a time complexity of O
(
m2

)
and a space complexity of

just Θ (m). For instances withm = o
(
n
√
n logn

)
this algorithm is faster than

the algorithm by Spinrad while requiring less space. We have also shown
how the restricted problem where only pivots on the diagonal are allowed
can be solved in time O (nm) using an adapted version of our algorithm.

When performing Gaussian elimination on sparse matrices, the choice
of pivots is critical to preserving sparsity. Ideally, during elimination not a
single zero element is turned into a nonzero. However, by being restricted
to a single pivot per column, some possibilities for preserving sparsity may
be missed. By clearing single elements at a time instead of performing
pivots on entire columns at once, a more fine-grained variant on Gaussian
elimination can achieve perfect elimination on a larger class of matrices
and their associated bipartite graphs. However, we have shown that deter-
mining whether a matrix allows such a perfect partial elimination scheme
is NP-hard. Intuitively, perfect partial elimination is harder than ordinary
perfect elimination because clearing the wrong element can lead to a dead
end in the elimination process, whereas with ordinary perfect elimination
we can not go wrong by pivoting on any bisimplicial edge (cf. Theorem
5.2).
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Chapter 6

Conclusions & Recommendations

In this chapter we briefly summarize the most important
results from the previous chapters and outline their practical
implications. For each of the main problems described in this
thesis we also try to outline meaningful directions for further
research.

While reading the conclusions and recommendations be-
low, bear in mind that the results have been obtained while
considering only the structural consistency of systems of equa-
tions. As discussed in Chapter 2 these results may not readily
translate to individual problems, but they do offer more insight
into the consistency of the classes of problems sharing the same
structure (as defined by the bipartite graphs we use).

6.1 Decomposition

Conclusion The main result of Chapter 3 is theW [1]-hardness of finding
a decomposition into small blocks. This leads to a negative outlook on a
divide and conquer approach for constraint solving in the general case.

However, there are two important points to bear in mind regarding
these results: First of all, in the application described in Chapter 1 lots of
alternative solutions are generated for a given system of equations. If the
structure of the system remains the same, we may analyze it once up front
and reuse the decomposition we obtain in each iteration. If some compu-
tationally feasible way is found to determine a decomposition that is not
necessarily optimal but rather ‘good enough’, a lot can still be gained by
using it. And secondly, although the W [1]-hardness does provide us with
an indication that a polynomial time algorithm may very well not exist
even for the parameterized case, non-polynomial algorithms with passable
complexities may still lead to usable exact algorithms.
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6. Conclusions & Recommendations

Recommendations As already briefly touched upon in the conclusions,
our first recommendation for further research lies in the development of
exact algorithms for the decomposition problems described in Chapter 3.

Furthermore, the generality of our results may leave some room for
improvements in more specific cases. The parameterization of our general
case only involves the size of the largest blocks in the decomposition. Alter-
native or more extensive parameterizations of the decomposition problem
might lead to further improvements: It may for example be interesting
to also include the difference d between the number of equations and the
number of variables of the entire system as a parameter and see whether
that could be used to achieve polynomial solvability when we also fix the
value of d. This will however not always be enough. For example a paper
on the application of systems of equations in 3D scene reconstruction [48]
mentions a system that contains 251 equations and 427 variables, a con-
siderable difference. Another approach might be bounding the degree of
the vertices by an additional parameter and trying to improve tractability
that way. Further research in both directions is clearly required.

From a more application-oriented point of view, an interesting subject
for further investigation would be heuristics to find small minimal free
square blocks. Bliek et al. discuss one possible heuristic approach [25],
however the performance of this approach has to our knowledge not been
analyzed satisfactorily.

Another line of further investigation might lay in additional conditions
on the system of equations. It might be possible to construct a good de-
composition efficiently if more structural constraints can be placed on the
system of equations, for example by restricting the problem instances to
certain classes of bipartite graphs. Investigating such conditions and the
corresponding algorithms for their decomposition definitely warrants ad-
ditional research.

6.2 Bisimplicial Edges

Conclusion In Chapter 4 a new algorithm to find bisimplicial edges in
bipartite graphs has been described. While this algorithm itself has the
same worst case performance as existing algorithms, we have shown the
expected performance on at least one class of random instances is signifi-
cantly better. Furthermore, the basis of our algorithm is formed by several
characteristics of bisimplicial edges that have been derived using a count-
ing argument. It seems that these characteristics, while simple to deduce,
have not been used previously in existing algorithms for finding either sin-
gle bisimplicial edges or complete elimination schemes.

90



6.3. Perfect Elimination

Recommendations Further research into possible applications might lead
to improved algorithms for these problems. In particular we ask whether
it would be possible to extend our algorithm for finding bisimplicial edges
into a new algorithm for the recognition of perfect elimination bipartite
graphs without simply running the entire algorithm for every single bisim-
plicial edge in a perfect elimination scheme.

6.3 Perfect Elimination

Conclusion In the first part of Chapter 5 we have presented two new al-
gorithms for the recognition of perfect elimination bipartite graphs. Both
are aimed at the efficient recognition of sparse instances, the trade-off be-
tween the two is in the amount of space required, respectively Θ

(
n2

)
and

Θ (m).

Recommendations Besides improving time and space complexity, an-
other interesting aspect of algorithmic performance is the possibility of
parallelization. From the algorithm of Goh and Rotem, it is not too hard
to see that finding a single bisimplicial edge can be done in polylog time
given a polynomial number of processors: matrix multiplication can be
performed in polylog time [49] as well as the post-processing to determine
the values of `i and check the individual matrix elements for bisimplicial-
ity. Our new algorithm can be parallelized on O

(
m2

)
processors to find

a bisimplicial edge in polylog time as all checks for all edges can be per-
formed in parallel and subsequently combined in polylog time to find a
bisimplicial edge if one exists. It is however unclear if it is also possible
to use a polynomial number of processors to run the entire recognition
process in polylog time: all currently known recognition algorithms are
based on finding an elimination sequence of n bisimplicial edges and this
appears to be an inherently sequential process. A fundamentally differ-
ent approach might be necessary in order to achieve more parallelism and
obtain a polylog time approach for the entire recognition process.

Another subject for further investigation is that of minimizing fill-in
when it cannot be avoided completely. For symmetric positive definite
matrices with pivots chosen along the main diagonal, minimizing the fill-
in in the associated chordal graphs has been shown to be NP-hard [50].
Furthermore, for fill-in in chordal graphs an approximation algorithm has
been developed [51]. As far as we know, the complexity of minimizing
fill-in for general matrices and bipartite graphs is unknown. Considering
the practical applications of minimum elimination orderings, obtaining
results on the complexity in the general case, as well as either a polynomial
time algorithm or an approximation algorithm for minimizing fill-in seem
to be good topics for further research.
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6. Conclusions & Recommendations

6.4 Perfect Partial Elimination

Conclusion In the second part of Chapter 5 we have analyzed a variation
on Gaussian elimination where we no longer pick a single pivot element
for clearing an entire column, but rather pick a separate pivot element for
each individual element of the matrix we want to turn into a zero. We
have shown that this more fine-grained approach to elimination allows us
to avoid fill-in during reduction to triangular form for a larger class of
matrices than ordinary Gaussian elimination, however, there is still a set
of matrices left that can not be completely reduced while avoiding fill-in
using this approach.

Unfortunately, even determining whether avoiding fill-in completely is
possible for a given matrix using partial elimination pivots turned out to
be NP-hard. As this implies that minimizing fill-in is also NP-hard, our
new approach is not immediately suited to practical applications.

Recommendations However, as our analysis only treats the general case,
it may be interesting to also investigate whether more restricted classes
of matrices do admit a polynomial time algorithm for partial elimination.
Another subject for further research could be parameterized versions of
the Perfect Partial Elimination decision problem, for example bounding
the degree of vertices in the bipartite graph.

Furthermore, it might be possible that a more fine-grained heuristic
elimination procedure may prove to be worthwhile. In the context of this
thesis we have not investigated any heuristic methods but rather elected
to focus on the complexity of the problems in the general case. However,
heuristic methods for reduction to triangular form while preserving spar-
sity has received attention in literature before and further research in this
area for example based on our fine-grained approach would definitely be
interesting from the point of view of practical applications.
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