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Abstract

An industrial control system (ICS) is a computer system that controls indus-
trial processes such as power plants, water and gas distribution, food production,
etc. Since cyber-attacks on an ICS may have devastating consequences on human
lives and safety in general, the security of ICS is important. In this context, the
most valuable asset is the process that is under the control of the ICS. As a result
of attacks on the process, the behaviour of the process (i.e., the program output
in a computer program) changes due to modifications in: (i) the automation logic
(i.e., program instruction set) or (ii) the process input parameters (i.e., the program
input). The detection of process manipulations through attacks is challenging as
it requires the understanding of complex process dependencies in sensitive and
often proprietary environments. Due to these conditions, the problem of process
manipulations has not been thoroughly studied by security researchers.

This thesis tackles this challenge by performing pioneering work in explor-
ing suitable techniques for detecting process attacks in ICS. The main focus of
the thesis is the problem of malicious manipulations in process input. To decom-
pose the problem, we distinguish three attack vectors used for accomplishing an
input manipulation: (i) user application (e.g., issue legitimate but malicious user
commands to the plant automation), (ii) network (e.g., issue network messages
to divert the process by exploiting access vulnerabilities of the network infras-
tructure) or (iii) field devices (e.g., trigger inappropriate automation reaction by
sending false data from the field).

In this thesis we analyse the first two types of input manipulations (i.e., threats
carried through user application and network infrastructure) as they describe com-
mon cyber attacks (i.e., an exploitation of vulnerabilities in software through re-
mote access). The third attack vector remains out of our scope as it typically
includes hardware device tampering (e.g., on a measurement sensor). For the se-
lected attack vectors we (i) investigate the problem and (ii) present and validate
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an approach for addressing the problem. Based on this, the core contributions of
the thesis are structured into four chapters.

First, to investigate the problem of manipulations via the user application, we
adapt a common methodology for hazard analysis to systematically identify and
characterise potential threats on a real world plant.

Second, based on the obtained knowledge during the problem investigation,
we present an approach for addressing process manipulations though the user ap-
plication. The approach includes mining of event logs to detect undesirable user
activities. A real world validation shows that the approach effectively decreases
the workload of operators and highlights relevant events for the inspection.

Third, to investigate the problem of network manipulations, we perform an as-
sessment of the state-of-the art detection techniques for network content analysis.
The performed analysis presents insights into capabilities and shortcoming of the
detectors and discusses promising approaches for addressing process manipula-
tions.

Fourth, we present an approach for detecting process manipulations via net-
work traffic analysis. During the problem investigation, we identified a common
weakness of all analysed detectors: the lack of capabilities for the analysis and
interpretation of the current process condition. To tackle this, our approach cap-
tures low-level process indicators (such as process updates to the memory of a
control device) from network traces to derive patterns of normal behaviour and
detect deviations. The obtained results show that the approach manages to extract
and consistently monitor 98% of process features in a real world plant.

Summarizing, this thesis presents a thorough analysis of input process ma-
nipulations in an ICS and presents approaches for addressing two common attack
vectors of the analysed threats. Our work shows that relevant information de-
scribing process operation can be extracted and analysed from common system
traces (i.e., network traffic and system logs) to improve the awareness of the de-
tector about the process that is under the control of the ICS. By doing this, we lay
the ground for detecting critical process attacks that cannot be addressed by the
existing solutions.
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Samenvatting

Een industrial control system (ICS), is een computersysteem dat industriele
processen zoals energiecentrales, water- en gasdistributie, voedselproductie etc.
controleert. Omdat cyberaanvallen op ICS grote gevolgen kunnen hebben op
mensenlevens en algehele veiligheid, is de beveiliging van ICS erg belangrijk.
In deze context is het proces dat onder de controle van ICS valt het belangrijkste
asset. Als gevolg van cyberaanvallen op het proces verandert het gedrag van het
proces (d.w.z. de programma output in een computerprogramma) dankzij aan-
passingen in (i) de automatiseringslogica (d.w.z. het programma instructieset) of
(ii) de procesinvoer parameters (d.w.z. de programma input). De opsporing van
procesmanipulaties door cyberaanvallen is uitdagend omdat het begrip vereist van
complexe procesafhankelijkheden in een gevoelige en vaak private omgeving. Hi-
erdoor is het probleem van procesmanipulaties nog niet grondig bestudeerd door
veiligheidsonderzoekers.

Deze thesis pakt bovengenoemde uitdaging aan door het uitvoeren van verken-
nend werk in het bestuderen van passende technieken voor het opsporen van
procesaanvallen in ICS. Het hoofdthema van deze thesis is het probleem van
kwaadaardige manipulaties in de procesinput. Om het vraagstuk te ontleden, on-
derscheiden we drie aanvalsvectoren die gebruikt worden om een inputmanipu-
latie te veroorzaken. Deze drie zijn (i) gebruikerstoepassing (d.w.z. legitieme
publicatie maar slecht gezinde gebruikersopdrachten aan de fabrieksautomatiser-
ing), (ii) netwerk (d.w.z. publicatie van netwerkberichten om het proces af te
leiden door het exploiteren van toegangskwetsbaarheden in de netwerkinfrastruc-
tuur) of (iii) veldapparatuur (d.w.z. veroorzaken van een ongewenste automatiser-
ingsreactie door het versturen van verkeerde data uit het veld).

In deze thesis analyseren we de eerste twee types inputmanipulatie (d.w.z.
bedreigingen vanuit gebruikerstoepassing en netwerkinfrastructuur) omdat het hi-
erbij gaat om alledaagse cyberaanvallen (d.w.z. een exploitatie van kwetsbaarhe-
den in software door een geringe toegang). De derde aanvalsvector blijft buiten

iii



ons bereik omdat het daarbij gaat om manipulatie van de hardware (bij een meet-
sensor).

Voor de geselecteerde aanvalsvectoren gaan we (i) het probleem onderzoeken
en (ii) een benadering presenteren en valideren om het probleem te adresseren.
Hierop gebaseerd zijn de bijdragen van deze thesis gestructureerd in vier hoofd-
stukken.

Ten eerste willen we het probleem onderzoeken en passen we een veel ge-
bruikte methode voor risicoanalyse toe voor het systematisch identificeren en
karakteriseren van potentiele bedreigingen bij een bestaande fabrieksinstallatie.

Ten tweede presenteren we, gebaseerd op de verkregen kennis tijdens het on-
derzoek, een benadering voor het adresseren van procesmanipulaties door de ge-
bruikerstoepassing. De benadering bevat het inwinnen van gebeurtenislogaritmes
voor het opsporen van ongewenste gebruikersactiviteiten. Een real world ratifi-
catie laat zien dat de benadering de werklast van operatoren effectief verlaagd en
benadrukt de relevante gebeurtenissen voor de inspectie.

Ten derde onderzoeken we het probleem van netwerkmanipulaties door het
uitvoeren van een beoordeling van de allernieuwste opsporingstechnieken voor
de network content analysis. De uitgevoerde analyse geeft inzichten in de mo-
gelijkheden en tekortkomingen van de detectoren en bespreekt veelbelovende be-
naderingen voor het adresseren van procesmanipulaties.

Ten vierde presenteren we een benadering voor het opsporen van procesman-
ipulaties door een analyse van het netwerkverkeer. Tijdens het onderzoeken van
het probleem hebben we een gemeenschappelijk tekortkoming van alle geanal-
yseerde detectoren ontdekt: het gebrek aan mogelijkheden voor de analyse en
interpretatie van de huidige procestoestand. Om dit op te lossen bevat onze be-
nadering low-level procesindicatoren (zoals procesupdates in het geheugen van
een controleapparaat) van netwerksporen tot het afleiden van patronen van nor-
maal gedrag en het detecteren van afwijkingen. De verkregen resultaten laten
zien dat de benadering 98% van de procesfuncties in een bestaande installatie
extraheert en consequent bewaakt.

Samenvattend presenteert deze thesis een grondige analyse van input proces-
manipulaties in een ICS en laat het twee benaderingen zien die de twee veel-
voorkomende aanvalsvectoren van de geanalyseerde bedreigingen adresseert. Ons
werk laat zien dat relevantie informatie die procesoperaties beschrijft afgeleid en
geanalyseerd kunnen worden door veelgebruikte systeemsporen (d.w.z. netwerkver-
keer en systeemlogaritmes) om het bewustzijn van de detector van het proces dat
onder controle is van ICS te verbeteren. Hierdoor leggen we een basis voor het
opsporen van kritieke procesaanvallen die niet kunnen worden geadresseerd door
de bestaande oplossingen.
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Chapter 1
Introduction

Industrial control systems (ICS) monitor and control physical processes, of-
ten inside Critical Infrastructures like power plants and power grids, water, oil
and gas distribution systems, building monitoring (e.g., airports, railway stations),
production systems for food, cars, ships and other products.

Although failures in the security or safety of critical infrastructures could im-
pact people and produce damage to industrial facilities, recent reports state that
current critical infrastructures are not sufficiently protected against cyber threats.
For example, according to the report by the U.S. Department of Justice [89],
around 2700 organisations dealing with critical infrastructures in the U.S. de-
tected 13 million cybercrime incidents, suffered $288 million of monetary loss
and experienced around 150 000 hours of system downtime in 2005.

Security of ICS raises an additional concern since ICS failures often cause
cascading effects in other systems (due to inter-dependencies amongst systems).
For example, known failures in energy and telecommunication services had im-
mediate consequences on various services such as financial (e.g., ATM transaction
halt), transportation (e.g.,stopping of city metro service), government (failure of
the 112 emergency number) [36].

The increasing number of security incidents in ICS facilities is mainly due to
a combination of technological and organizational weaknesses[130]. In the past,
ICS facilities were separated from public networks, used proprietary software ar-
chitectures and communication protocols. Built on the “security by obscurity”
paradigm, the systems were less vulnerable to attacks leveraging ICT. Although
keeping a segment of communication proprietary, ICS vendors nowadays increas-
ingly use IP-based communication protocols and commercial off-the-shelf soft-
ware. Also, it is standard to deploy remote connection mechanisms to ease the
management during off-duty hours, and achieve nearly-unmanned operation.
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Chapter 1. Introduction

Unfortunately, the stakeholders seldom enforce strong security policies. User
credentials are often shared among users to ease day-to-day operations, seldom
updated (and not always revoked), resulting in a lack of accountability [11]. An
example of such practice is the incident in Australia when a disgruntled (former)
employee used valid credentials to cause a havoc [100].

Due to these reasons, ICS facilities have become increasingly vulnerable to
internal and external cyber attacks. Although companies reluctantly disclose in-
cidents, there are several published cases where safety and security of ICS were
seriously endangered [90].

1.1 Motivation

To begin we will present some definitions relevant for understanding the re-
mainder of the chapter (a more comprehensive summary of definitions can be
found in Chapter 2). In general terms, a threat is any intention that uses unautho-
rised access or activity to negatively impact system operation. A vulnerability is
a weakness in the system (e.g., design or implementation) that could be exploited
by a threat source. An attack is a threat that has been realised. An attack vector
is the path that is used by the threat source to obtain the goal (e.g., an attacker
uses malicious code to exploit software vulnerability in the process controller and
discrupt the process). Like a “regular” computer system, an ICS is susceptible
to threats exploiting software vulnerabilities (e.g., protocol implementation, OS,
ICS application). However, an ICS environment is also prone to process threats
which exploit weak application logic that controls the process. By process, we
here refer to an industrial process: a systematic series of mechanical or chemical
operations that produce or manufacture something [121].

In this context, a malicious, yet legitimate use of valid system commands can
disrupt the physical process. Process threats also include situations when sys-
tem users make an operational mistake, e.g., define the capacity of the tank to be
5 times higher than in reality. The most prominent real-life process attack was
performed by Stuxnet [77]. This is the first malware that, besides performing a
sophisticated exploitation of various system vulnerabilities, diverted the targeted
process to cause harm to hardware, and finally result in process failure.

As process threats are specific to the ICS environment, we focus on this type of
threat. On one hand, to the best of our knowledge, there are no available security
solutions (both in the academic and commercial community) that offer a tailored,
comprehensive protection against process threats (at best, the current network ap-
proaches monitor the performed functionalities, rather than the actual process in-
dicators.) On the other hand, the importance of addressing these threats is widely
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acknowledged. For example, a guideline document by the National Institute of
Standards and Technology presents a list of relevant threat scenarios in ICS en-
vironments. In this list, 7 out of 9 threat scenarios cause direct consequences on
the process [105]. Also, Langner [63] states that the biggest concern of plant op-
erators is in the area of threats which leverage legitimate process commands to
change critical process parameters (e.g., a setpoint of the pump speed) and thus
result in process disruption. In our opinion, the reason for this unbalance lies in
the fact that the development of suitable cybersecurity techniques requires an ex-
tensive analysis of process characteristics and behaviours which are unavailable
to IT cybersecurity experts.

We now discuss possible ways in which an industrial process can deviate from
normal behaviour.

1.1.1 How can a process deviate?

As in any deterministic computer program, the output of a process changes
due to two reasons: (i) the (automation) code and (ii) the (process) input parame-
ters. First, a change in the automation code modifies the character of the process.
For example, an update of the controller code can result in a modification of the
process speed. This action effectively changes the process behaviour (until the
next code update). Second, a change in input parameters can trigger a process
change (e.g., insert a combination of parameters that stops the pumping proce-
dure). This action causes a temporary modification in the process behaviour (until
the next parameter input or transition to the next process state). Once misused,
these actions become a threat (e.g., insert code that reverses the process or insert a
combination of parameters that stop key process controllers). A threat leveraging
a code update typically uses an administrative command (e.g., Modbus function
code 24 - write file record). By contrast, input parameter manipulation uses the
same set of commands that are used by process operators (e.g., Modbus function
codes 3, 16 - write registers). Since there is no evident difference between nor-
mal user commands and input parameter manipulation, the detection of the threats
that result from input parameter manipulation is more difficult than the detection
of genuine admin commands.

This thesis therefore focuses on detecting input parameter manipulation. We
distinguish three general attack vectors for accomplishing input parameter manip-
ulation:

• user application (e.g., issue legitimate but malicious user commands via
user application to cause process to halt),
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• network (e.g., send malicious network messages to the input interpreter to
divert the process),

• field devices (e.g., trigger inappropriate automation reaction by sending
false measurement data from the field).

Each attack vector implies specific requirements on the attacks. In particular,
the attacker needs to perform the following actions:

• via user application – (i) get access to the ICS software (typically through
legitimate/stolen credentials) and (ii) obtain knowledge which user com-
mands can endanger the process,

• via the network – (i) bypass network access control (e.g., by obtaining con-
trol over a trusted workstation that is located in the process control network)
and (ii) obtain knowledge for generating messages that will be valid for the
input interpreter (e.g., develop a client for the protocol user by the targeted
controller).

• via field devices – (i) perform hardware device tampering (e.g., on a mea-
surement sensor) or (ii) physical damage.

This thesis primarily focuses on the analysis of threats that use software as a part
of their attack vector (thus vectors: user application and network). Therefore, the
analysis of threats using field devices is out of the scope of this work.

We now analyse challenges for defending against process attacks.

1.1.2 Cyber security for process manipulations

There are several commonly accepted strategies for securing IT systems against
cyber attacks. For example, “defence in depth” is a multilayer application of se-
curity controls (authentication, network segmentation, firewalls, physical security,
etc.) to protect an IT environment against diverse cyber threats [9]. The practical
aim of a multilayer strategy is to introduce complementary defence mechanisms
and thus to decrease the probability of an attacker penetrating the system. As the
level of attack sophistication increases (think of a targeted process attack com-
pared to password guessing), the mitigation strategy requires a higher level of
threat understanding to tackle it. In the context of traditional IT, process manip-
ulations resemble the class of internal penetrations. According to Anderson [14],
internal penetrations are threats which involve the misuse of access and data rights
in the system. Since the attacker is authorised to use the system, the detection of
these attacks is hard. In addition to this, cyber security for process manipulations
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is specific due to two main reasons. First, process threats represent a type of threat
that does not exist in the IT domain (i.e., there is no physical process that can be
influenced by cyber threats). This means that, to address them, the threats need to
be analysed and decomposed to understand how they are manifest in the system.
Second, ICS environments differ from traditional IT (e.g., in architecture, mode
of operation, network protocols). This means that traditional IT cyber security
strategies (e.g., network intrusion detection) often need to be adjusted to work in
the new environment (e.g., build suitable protocol analysers for the environment).
We identified three general problems that, in our opinion, represent challenges for
addressing process threats in ICS: (i) threat characterisation, (ii) applicability of
common IT countermeasures and (iii) inclusion of process semantics. We now
describe each challenge in more detail.

Threat characterisation A key precondition for a reliable threat detection is
the identification of descriptive threat artefacts (i.e., clues that uniquely distin-
guish the threat from benign behaviour). The analysis and description of process
threats is not trivial and differs from threats in traditional IT. We explain this
challenge by highlighting the differences amongst the two environments (ICS and
traditional IT). In particular, we see two important differences. First, process
threats directly influence a physical environment. For example, an attack on a gas
distribution facility may have effects on human lives while an IT threat typically
targets information availability or integrity. The identification of potentially un-
desirable threats in a continuous physical process requires the understanding of
various process dependencies, and is thus different from the identification of for
example information theft. Second, realisations of process threats differ for each
plant setup (e.g., an attack targeting a specific water plant may not work for other
plants). In practice, this means that the characteristics of a threat are different
for each specific environment. This inevitably leads to difficulties in identifying
descriptive and common characteristics of the analysed threats.

Applicability of common countermeasures A straightforward strategy for mit-
igating cybersecurity threats in the ICS context is the application of common IT
strategies (e.g., firewalls, encryption, intrusion detection systems, password poli-
cies). Although best practices apply (e.g., enforcing access control, network seg-
mentation), many techniques face practical difficulties. For example, some ICS
sectors have real-time requirements (such as in energy, transportation), so the la-
tency and ”analysis throughput” issues may introduce unacceptable delays and
degrade or prevent acceptable system performance [9]. Also, common network-
based solutions have limited applicability in the ICS context. For example, the
most common intrusion detection systems (IDS) are misuse-based. They are con-
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venient as there is a large range of signatures for many network and host architec-
tures using modern protocols in common IT environments. However, due to a low
number of published attacks in the ICS domain, the range of available signatures
in the ICS domain is small and inadequate [9]. In addition, ICS environments of-
ten use specific protocols (e.g., MMS, Profinet) whose analysis capabilities have
not been included in current IDS (with exceptions of Modbus and DNP3 pre-
processors in SNORT [128]). On the other hand, due to mostly automated be-
haviour, some techniques suit the ICS environment better than the traditional IT
(e.g., whitelisting common functionalities [81]). We believe that standard IT mit-
igation strategies have not been studied sufficiently in the ICS context to identify
promising fields of application and acknowledge the limitations.

Inclusion of process semantics The existing literature suggests that the suc-
cess of attack detection directly depends on the level of context knowledge used
during the analysis [101]. Basically, the more we understand about the system
environment and the way an attack occurs, the better chance we have to detect
malicious behaviour. In the field of business analysis, process mining aims to
discover, monitor and improve business processes by extracting knowledge from
event logs [110]. Similarly, for monitoring industrial processes, we need to dis-
cover and analyse the semantics of the industrial process (i.e., the knowledge de-
scribing normal process behaviour and implications of a process change). The
acquisition of the process semantics differs depending on the type of data source.
We discuss two sources of process information: ICS log and network data.

ICS event logs represent interpreted process information (e.g., “tank level is
high”). Since this type of data already carries interpreted process semantics, there
is no need for an additional extraction of process semantics. However, we iden-
tify two important challenges in using this type of data, namely: (i) log integrity
(ii) compatibility issues during log extraction and (iii) incomplete process inter-
pretation.

First, logs can be corrupted by an attacker (e.g., by tampering measurements
that will trigger different log events). In general, there is no mechanism that can
detect and isolate such manipulated log entries.

Second, depending on the vendor and software version, event logs are held in
different log formats and may require different extraction methods.

Third, the logs are preconfigured to interpret user-defined process events only
(e.g., raise an alert if the tank level is high and pressure is high). In theory, such
logging should be sufficient to capture relevant process activities. However, in
practice, this type of data capturing is not comprehensive, and thus might miss
some process activity (e.g., an attack might cause an inconsistency between mea-
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surements that will not be logged as that situation was not predefined for log
generation).

We now discuss the second information source: the network data. Network
data carries process information “as is” (e.g., network traces carry raw process
measurements, instead of interpreted process activities). This is good because the
network data can provide a comprehensive view on the process (i.e., capture all
communication passed on the network). However, the extraction of the process
semantics is challenging. To illustrate the problem, we discuss the capabilities of
common network analysis techniques for the detection of process attacks. The
content of a process attack is carried in packet payload (since the payload holds
application/process data). Thus, a promising technique for detecting process at-
tacks must include network payload analysis. Generally, payload analysis is used
for detecting attacks that target applications (e.g., shell-code attacks). We dis-
tinguish two general approaches for payload analysis: (i) functional analysis and
(ii) statistical content analysis.

First, network parsers are used to decode raw network data and interpret the
information carried within the packet (i.e., identify protocol functionalities used
in the packet). For example, by decoding the received packets, information about
the frequency of specific operations (read parameter, write to file, update param-
eter) can be extracted and used to characterise the daily process operation [45].
To fully understand the process, the decoder has to parse the protocol up until the
application level of the OSI model. In practice, many decoders do not have this
ability. For example, decoders for Modbus/TCP protocol available in two widely
utilised environments (Bro [83] and Wireshark [138]) do not fully parse the ap-
plication level. Because of this, the analysis towards the interpretation of process
parameters is not possible. Provided that the full decoder is available, the main
challenge remains: understand and evaluate the semantics of the observed data
within the context of the current process state.

Second, statistical payload analysis is used as an alternative to protocol decod-
ing (i.e., when the decoder is not available). Statistical analysis works under the
assumption that the statistics of benign and malicious data packets differ signifi-
cantly (e.g., shell code vs. HTTP network trace). In the context of process ma-
nipulations, this assumption generally does not hold as the malicious behaviour
here can be represented by only one bit of difference compared to benign packets
(e.g., turn the controller off by flipping one bit in network packet). Therefore, the
detection of process manipulations using this approach can be unreliable.
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1.2 Research question

Based on the analysis of process threats in ICS, this work focuses on answer-
ing the following research question:
“How to design techniques for the detection of process attacks in ICS?”

To achieve this we perform a set of studies on real ICS plants and real data
from the plants. This work focuses on two attack vectors targeting process disrup-
tions via input parameter manipulation: user application and network (described
in Section §1.1.1).

To address the first attack vector we pose two detailed research questions.
First, to characterise the threats we try to answer the following research question:

RQ 1 What are the process threats occurring via the user application?

Second, we aim at deriving an effective technique for detecting process threats
via the user application. We identify event logs as a promising source of informa-
tion. Based on this we pose our next research question:

RQ 2 How can we automate the detection of undesirable user actions in ICS
logs?

To tackle the second attack vector, network threats, we first investigate how
current network-based techniques cope with advanced network attacks. To do this
we formulate the following research question:

RQ 3 How can network-based state-of-the art techniques detect process attacks
on ICS?

Finally, after analysing the difficulties in detecting network threats, we focus
on improving the capabilities of monitoring approaches for the ICS context. For
this we address the following research question:

RQ 4 How can we enrich network monitoring with process context data?

We now provide more details on the goals of each research question.
The objective of RQ 1 is to investigate the problem of process threats occur-

ring through user application. The problem investigation is important as it repre-
sents the first step towards the design of viable solutions for problem treatment. In
particular, an essential requirement for designing a mitigation strategy is the un-
derstanding of different types of threats that can be mounted against the system,
and how these threats may manifest themselves in the data.
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The objective of RQ 2 is to derive a technique that can perform an automated
analysis of plant operation logs and find potentially undesirable activities. This
problem is relevant since even a small plant installation generates thousands of
events per day thus the manual inspection of logs is practically infeasible.

The main goal of RQ 3 is to investigate the problem of network threats and to
understand how process threats are manifest in the network traces. While there are
several works that benchmark detection capabilities of different approaches, the
literature generally lacks works that investigate the core problems of a particular
performance (e.g., why a detector has a high false positive rate for a specific type
of threat). To address this question we perform an in-depth assessment of the
state-of-the art detection techniques for network content analysis.

The common weakness of all analysed detectors is the lack of capabilities for
the analysis and interpretation of the current process condition. The main goal
of RQ 4 is to tackle this problem and derive an approach which will be able to
evaluate the process condition. In this context, the main challenge is the extraction
and interpretation of process indicators from the network data.

1.3 Thesis overview

We start by presenting relevant background information and notation that are
necessary to understand the remainder of the thesis (Chapter 2). In Chapter 3
we present a methodology for identifying threats that aim at manipulation of ICS
process via the user application. In Chapter 4 we present MELISSA, our tool for
semi-automated detection of undesirable user actions in ICS. Chapter 5 investi-
gates the problem of network process manipulations and presents a comparative
analysis of the state-of the art techniques for network payload analysis. In Chapter
6 we present our approach, SONICS, for performing semantic network monitor-
ing in ICS networks. Finally, Chapter 7 presents conclusions and future directions.
Figure 1.1 depicts the overview of thesis contributions. We now elaborate further
the contribution of each chapter.

On the Misuse of ICS Applications via User Activity (Chapter 3) We
present a two-step approach for characterising process threats occurring via the
user activity: (i) systematic identification of user actions within the ICS applica-
tion and (ii) an analysis of user actions. We demonstrate our approach as a case
study on a real-life ICS plant controlling a water treatment plant. We start by
performing a structured analysis of internal ICS documentation to identify user
actions. We analyse the identified activities by adapting a well known method-
ology for hazard analysis (HAZOP). By using a series of focus groups sessions
with process experts, we identify and characterise process threats. Our analy-
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Figure 1.1: Thesis outline

sis identified 36 potentially undesriable actions on the engineering workstation
in the analysed plant. Finally, we discus promising approaches for detecting the
identified threats. This work has appeared as a journal article [1] and a refereed
workshop paper [6].

A Log Mining Approach for Monitoring User Activity in ICS (Chapter 4)
We present an approach for addressing process threats that occur through ICS ap-
plication. The approach includes semi-automated analysis of event logs to detect
undesirable user activities. In essence, our tool, MELISSA leverages an algorithm
for pattern mining to detect more and less frequent actions. A real world valida-
tion shows that the approach effectively decreases the workload of operators and
highlights relevant events for the inspection. This work has appeared in a refereed
conference papers [4] (as full paper) and [3] (as an extended abstract).

N−gram Against the Machine: On the Feasibility of the N−gram Net-
work Analysis for Binary Protocols (Chapter 5) We perform a comparative
assessment of four state-of-the art network- content-based detectors: PAYL [115],
Anagram [113], POSEIDON [25] and McPAD [84]. The assessment includes two
common network protocols from two environments: LAN (SMB/CIFS) and ICS
(Modbus/TCP). During the analysis we discuss the reasons why certain attack
instances are (not) detected by the chosen approaches. Also, we discuss the fea-
sibility of deploying such approaches in real-life environments, in particular w.r.t
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the false positive rate, an issue that is seldom discussed in IT research community.
This work has appeared in a refereed conference paper [5].

Through the Eye of the PLC: A Network Monitoring Approach for ICS
(Chapter 6) We present an approach that reconstructs and models the process
behaviour. In particular, our tool, SONICS captures and extracts low-level pro-
cess indicators (such as process updates to the memory of a control device) from
network traces to derive patterns of normal behaviour and detect deviations. The
obtained results during the validation show that the approach manages to consis-
tently monitor 98% of process features in a real world plant. Our results confirm
the feasibility of process monitoring via network analysis and represent a step
ahead towards a viable process-aware intrusion detection system. This work has
appeared as a technical report [7] and will be submitted to a refereed conference.
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Chapter 2
Preliminary topics

In this chapter provide background information necessary to understand the
remainder of the thesis. We start the chapter by introducing definitions and con-
cepts that will be used in the following chapters. Next, we explain a typical ICS
environment, focusing on the architecture, daily operation and the differences be-
tween traditional IT systems and ICS. Finally, we give a brief overview on the
techniques for detecting intrusions in traditional IT systems.

2.1 Glossary and basic definitions

We now introduce the concepts and terms used in this thesis. We adopt (and
reproduce) the definitions presented in the Guide on Information Security by the
National Institute of Standards and Technology [42].

An industrial control system is an information system used to con-
trol industrial processes such as manufacturing, product handling,
production, and distribution.

A critical infrastructure is a system and assets, whether physical
or virtual, so vital to a nation that the incapacity or destruction of
such systems and assets would have a debilitating impact on security,
national economic security, national public health or safety, or any
combination of those matters.

A threat is any circumstance or event with the potential to adversely
impact organizational operations (including mission, functions, im-
age, or reputation), organizational assets, individuals, other organi-
zations, or a nation through an information system via unauthorized
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access, destruction, disclosure, or modification of information, and/or
denial of service.

A threat scenario is a set of discrete threat events, associated with a
specific threat source or multiple threat sources, partially ordered in
time.

A vulnerability is a weakness in a system, system security proce-
dures, internal controls, or implementation that could be exploited by
a threat source.

An attack is an attempt to gain unauthorized access to system ser-
vices, resources, or information, or an attempt to compromise system
integrity, availability, or confidentiality.

An incident is an occurrence that actually or potentially jeopardizes
the confidentiality, integrity, or availability of an information system.

Cyberspace is a global domain within the information environment
consisting of the interdependent network of information systems in-
frastructures including the Internet, telecommunications networks, com-
puter systems, and embedded processors and controllers.

A cyber attack is an attack via cyberspace, targeting an enterprise’s
use of cyberspace for the purpose of disrupting, disabling, destroying,
or maliciously controlling a computing environment/infrastructure; or
destroying the integrity of the data or stealing controlled information.

Cyber security is the ability to protect or defend the use of cyberspace
from cyber attacks.

An attack vector is a path or a means by which an attack can be made
on critical infrastructure [58].

A countermeasure is a management, operational or technical control
prescribed for an information system to protect the confidentiality,
integrity, and availability of the system and its information.

Intrusion detection is the process of monitoring the events occurring
in a computer system or network and analysing them for signs of
possible incidents.

We now describe industrial control system in more detail.

14



2.2. Industrial control systems

2.2 Industrial control systems

An industrial control system is a general term that comprises several types of
systems like: SCADA (Supervisory Control and Data Acquisition), DCS (Dis-
tributed Control system), IA (Industrial Automation), IACS (Industrial Automa-
tion and Control Systems), PCS (Process Control System). Although the literature
often disagrees in the correct usage of the terms in specific situations, we can high-
light the general differences amongst the most popular terms: SCADA, DCS and
PCS.

SCADA systems are highly distributed systems used to control geographically
dispersed assets, where centralized data acquisition and control are critical to sys-
tem operation [105]. A typical application is in water distribution and wastewater
collection systems, oil and natural gas pipelines, electrical power grids, and rail-
way transportation systems. By contrast, a DCS system is usually located in one
plant area. DCS are used to control industrial processes such as electric power
generation, oil refineries, water and wastewater treatment, and automotive pro-
duction. As a more specific term, PCS refers to the automation logic that operates
the actual process (e.g., exact controllers composing the water plant). In the re-
mainder of the thesis we do not differentiate between the specific terms but instead
use ICS as the general, superset term.

In general, an ICS consists of two main domains: the process field and a con-
trol room (Figure 2.1). Large systems may have more than one control room. The
network infrastructure binds the two domains together. The control room provides
an interface between the field and ICS operators (with a real-time overview of the
process field statuses). The process field consists of control elements that operate
the field devices (e.g., pumps, tanks, pipes, valves).

Depending on the underlying process, the systems differ from each other. For
example, a power-related installation contains power switches and transformers
while a water-related installation contains water pumps and valves. Based on the
interviews with ICS experts from different domains (described in Chapter 3), the
computer systems controlling these processes still behave in a similar way.

2.2.1 Architecture

Despite the fact that there are different vendors producing ICS equipment, the
system architectures in various ICS facilities are similar and the terminology is in-
terchangeable. Figure 2.2 shows an adapted architecture from a well known ICS
vendor. Layer 1 consists of physical field devices, PLCs (Programmable Logic
Controllers) and RTUs (Remote Terminal Units). The PLCs and RTUs are respon-
sible for controlling the industrial process, receiving signals from the field devices
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Figure 2.1: ICS overview: control room and process field

and sending notifications to upper layers. In practical terms RTU are commonly
used to support automation over large geographical areas (e.g., via telemetry and
wireless networks) while PLCs are typically used in setups using local networks.
Layer 2 consists of ICS servers responsible for processing data from Layer 1 and
presenting process changes to Layer 3. Connectivity Servers aggregate events re-
ceived by PLCs and RTUs and forward them to ICS users in the control room. The
Domain Controller in Layer 2 holds local DNS and authentication data for user
access. The Aspect Server is responsible for implementing the logic required to
automate the industrial process. For example, an Aspect Directory in the Aspect
Server holds information about working ranges of the field devices, the device
topology, user access rights, etc. Besides, the Aspect Server collects and stores
data from the Connectivity Servers into audit and event logs. The various clients
in Layer 3 represent ICS users.

We now present more details on the most important ICS component for pro-
cess automation, the automation controller. To describe the concepts of control
automation, we use PLC as an example (since it typically operates on local com-
puter networks).

2.2.2 Programmable logic controller (PLC)

A PLC is an embedded device that holds the logic to automate and control the
industrial equipment. A PLC is interesting since the operation on it directly influ-
ences the process. In typical setups, a set of PLCs might control a process safely
without human intervention for extended periods of time, sometimes for days. A
PLC consists of CPU, memory, I/O modules, and communication interfaces. The
CPU executes logical operations while program and memory hold program code
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Figure 2.2: A simplified ICS architecture

and data values. I/O modules interface to the controlled field devices as well as
other PLCs part of the same process.

The control strategy of a PLC executes a program repeatedly over time as an
“infinite” cycle of (i) reading inputs, (ii) executing logic, and (iii) writing outputs.
The read operations collect the status from connected field devices (e.g., pump
speed, tank level), the execution logic then computes updates to the process (e.g., a
new pump speed based on the current tank level). Finally, the write operations put
the changes to the process flow into effect (e.g., decrease pump speed setpoint).

Process Variables. Inside the PLC, two components determine the process
control: (i) the code, and (ii) the transient state in the form of process variables.
The code consists of logic that regulates the field devices, and drives interaction
with the external infrastructure. For example, the code defines the procedure for
filling in a tank, along with necessary preconditions that need to be satisfied (e.g.,
the water level and pressure). PLCs are typically programmed in derivatives of
languages such as Pascal and Basic.

Process variables characterize the current operation state in a PLC. Examples
of typical variables include the setpoint for a physical process, the current value
of a valve sensor, and the current position in a cycle of program steps. Process
variables serve as input to the PLC code. For example, a variable value repre-
senting a high pressure level might trigger the start of a draining stage. Likewise,
the PLC carries out operator commands by writing into corresponding variables.
For example, a command to open a valve would update a variable that the program
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code is regularly checking; once it notices the update, it outputs the corresponding
analog signal to the physical device.

2.2.3 Communication

We now describe communication in ICS. Conceptually, we commonly find
two semantic groups of network communications between ICS components: (i) pro-
cess awareness, and (ii) process control.

The awareness communication propagates status information about the con-
trolled process across devices. In particular, the ICS servers requests regular up-
dates from the PLCs to the HMI to report the current plant status to ICS users.
In addition to escalating critical updates for timely reaction, awareness also col-
lects trending data for long-term process analysis. PLCs also propagate awareness
information across themselves to ensure that each device learns sufficient infor-
mation about critical variables before entering the next process stage (e.g., PLC 1
might require information about the state of a field device connected to PLC 2
before starting a subsequent process stage).

The control communication is generally exercised in one of two ways: (i) by
PLCs (according to the embedded logic); and (ii) by user commands that override
the PLC internal logic. Note that in either case it is the PLC that carries out the
action, and hence will reflect the process change as updates to its internal state.

Protocols In an ICS architecture, the communication between different ICS
servers is typically performed via OPC [95], a communication standard for in-
dustrial automation. Depending on the vendor, the communication towards PLCs
uses legacy or open protocols. While some protocols are used in general de-
ployment (e.g., Modbus [119], Profinet [85], IEC 60870 [118]), others remain
industry-specific (e.g., BACnet [13] for building automation; DNP3 [47] for power
networks).

In general, all protocols used in ICS are binary protocols. In contrast to text-
based network protocols (such as HTTP, POP and SMTP), binary protocols are
not readable by humans. Such protocols are largely used in network services,
such as distributed file systems, databases, etc. In practical terms, the network
payload of a binary protocol is more compact when compared to text protocols,
often unreadable by a human and may resemble attack payloads (since malware
packets often consists of binary fragments too).

Network representation Within a PLC device, process variables map directly
to PLC memory cells. At the network, ICS protocols define corresponding net-
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work representations to refer to variables as part of commands, e.g., to specify
the target variable for a read operation. In this thesis we focus on analyzing one
of the most used ICS protocols, Modbus. Modbus represents process variables in
the form of a PLC-specific memory map, consisting of 16-bit registers and 1-bit
coils. Some vendors also deploy variations of the default specification, such as
combining 2 or 4 registers to hold 32-bit or 64-bit values, respectively. The lay-
out of a Modbus memory map remains specific for each device instance, and is
generally determined by a combination of device vendor, programmer, and plant
policies (see, e.g., [97] for a generic memory map, which typically act as a starting
point).

2.2.4 Users

An ICS is operated by two types of users: operators and engineers. An engi-
neer is responsible for managing access rights, setting working ranges for devices,
writing automation scripts, etc. An operator monitors the system status and reacts
to events, such as alarms, so that the process runs correctly. Typical operator ac-
tions, depending on the underlying industrial process, include commands such as:
change switch status, increase temperature, open outlet, start pump. Although
industrial processes in various domains differ in the details (or some user roles
may be assigned to external parties such as vendors), the user interaction with
an ICS is broadly similar. The process experts acknowledged that an engineer
is a more powerful system user than an operator (e.g., an engineer writes scripts
that define process automation while operators usually only run the script). Also,
operators perform actions that are predefined by engineers (e.g., an engineer de-
fines pump speed range, while an operator works within the range only). This
means that operator actions are security and safety constrained depending on the
way the engineer implemented controls. In contrast, there is no mechanism that
will ensure that engineer actions are safe for the process (e.g., an engineer can,
by mistake, assign a capacity 10 times bigger than in reality to a tank, and thus
shut tank level alarms off). Although individual operator actions are legitimate
and should be safety constrained, the stakeholders acknowledge that a sequence
of operator actions can still produce damage to the process. In our work we focus
on the activities of process engineers. They have more privileges than operators
and their activities are therefore the most dangerous.
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2.2.5 Operation

In Section §2.2.3 we explain two communication flows in ICS: control and
awareness. By using the control flow, a user can make modifications on the pro-
cess. To do this, they leverage ICS supervisory applications.

ICS supervisory application Each class of users is supported by specific soft-
ware. First, operators use an HMI interface to perform daily monitoring of the
process operation. This application is connected to (i) field sensors (to provide
current field measurements) and (ii) ICS servers (to provide information on the
current process configuration).

Second, process engineers use engineering workstations to define process con-
figurations in ICS servers. The operational environment of process engineers
varies across different vendors, but is commonly organised in a hierarchical of
structure, sometimes referred to as the Aspect directory. The directory holds
configuration settings of the whole plant (e.g., setup parameters of field devices,
user access settings, alarming parameters). In Chapter 3 we further analyse the
specifics of an ICS engineering application.

ICS event log System logs capture information about process activity. Depend-
ing on the size of the facility, an ICS records thousands of events per day. Such
events describe system status updates, configuration changes, condition changes,
user actions, etc.

ICS users actively use logs during operation. In particular, operators gather
alarms triggered in real time. An alarm represents the event that is predefined,
by experts, to be suspicious. For example, an alarm trigger is designed to go off
when a specific field value reaches the threshold (e.g., tank level less than 100L).
In a nutshell, alarms represent filtered and interpreted log information (since they
are generated based on events that occur at the same time as log entries).

User activity in event logs Generally, a user action leaves a trace in the log
in two ways: (1) as a direct action (e.g., the exact user action of performing a
reconfiguration), (2) as a consequence (e.g., an consequence of a performed action
or a sequence of actions-process script) or (3) no trace at all. The first type of trace
implies a log entry that captures the time, the location and the user name of the
person who performed the action.

The second type of trace implies an indirect action consequence or system
response. Although caused by a user action, this trace typically does not consist of
user name who performed the initial action nor the location of the failure source.
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This is because the captured trace does not represent the source but the victim of
the specific action that propagated [51, 79].

We now compare ICS environment to traditional IT systems.

2.2.6 Comparing ICS and IT systems

We compare ICS and IT with respect to two aspects: technological and op-
erational. First, technologically, ICS nowadays generally resemble standard IT
systems. This is because an ICS uses off the shelf operating systems and compo-
nents (e.g., Windows OS). Historically, this was not the case as ICS facilities used
to leverage proprietary software and specialised hardware. The change occurred
with the wide adoption of low-cost Internet Protocols which increased the con-
nectivity and access capabilities (e.g., corporate connectivity helps run business).
ICS components have a lifetime of 15-20 years, which is significantly longer than
the lifetime of the traditional IT components of 3 to 5 years. The practical differ-
ences are manifest in the set of communication protocols (e.g., ICS environments
still use a set of domain-specific protocols like Profibus, Bacnet, Modbus) and the
constraint of resources of ICS components (e.g., computational resources of PLC
devices limit the application of security solutions).

Second, there are significant differences in various aspects of operation, namely:
performance requirement, time-critical response, change management [105]. In a
traditional IT system, the most important security risks refer to data confiden-
tiality and integrity (e.g., prevent leaking or tampering the data). In an ICS, the
main concern is data availability (e.g., a continuous ICS process cannot allow
unexpected outages). An ICS is generally a time-critical system where process
information needs to be treated without delays (e.g., late valve closure can cause
equipment damage). In a traditional IT system, time is generally not an essential
requirement (e.g., a delay in the information flow will not normally cause system
failure).

Best security practices advise timely application of security patches and soft-
ware updates. Such change management is generally not a problem in traditional
IT. However, the updates in ICS need to be thoroughly tested by (i) the vendor of
the ICS application (to ensure that the control application will not be hampered)
and (ii) the end user (to ensure that the specific process will not be hampered).
As a practical consequence, the application of updates takes more time than in
traditional IT. Table 2.1 summarises the differences between ICS and traditional
IT.
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2.2.7 Cyber security in ICS

Historically, ICS long remained isolated from communication with other in-
frastructures, and Internet (i.e., operating as a communication island). Due to this
isolation (and the natural difficulty of applying changes in ICS), practitioners in

Table 2.1: A summary of differences between IT and ICS

Aspect Category Traditional IT ICS

Technology
Component
lifetime

Lifetime on the
order of 3-5 years.

Lifetime on the order of 15-20
years.

System
operation

Few operating sys-
tems.

Common and proprietary oper-
ating systems and software.

Communication Common
communication
protocols, few
proprietary
protocols.

Open and proprietary commu-
nication protocols over different
types of media (e.g., wire, wire-
less and satellite).

Resource
constraint

Systems typically
have enough
resource power to
support additional
security solutions.

Systems often have constrained
resources to support additional
functionalities.

Operation Security focus The biggest focus is
on the central server
and the information
stored there.

The biggest focus is on the pro-
cess, thus edge devices (e.g.,
controllers) that are operating
the process.

Performance
requirements

Most important re-
quirements are in-
formation integrity
and confidentiality.
A high throughput
is demanded.

Most important requirements
are information/system availa-
bility. A modest throughput is
acceptable.

Time critical
interaction

There is a
low/medium
requirement for
timely interaction.

There is a high requirement for
timely interaction.

Change
management

Software changes
and updates are
performed on a
regular basis.

Software changes must be thor-
oughly tested before deploy-
ment. Because of this, slow sys-
tem changes and updates occur.
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this field often disregarded best practices of cyber security [105]. In addition,
the design of ICS components and communication protocols is, even today, of-
ten legacy property. These conditions led to the common convention that ICS
environments are operated in the “security by obscurity” manner.

The situation has changed in the last decade. On one hand, ICS environments
have adopted corporate business connectivity and remote access capabilities to
modernize their operation. For example, plants nowadays implement business
enterprise networks which hold and communicate different types of information
to external stakeholders (i.e., regulatory information to government authorities,
trending data to management). On the other hand, the increased adoption of stan-
dard IT has revealed a number of cyber security issues. For example, various
security assessments revealed vulnerabilities in software deployed in PLCs and
smart meters [29, 86]. Also, there are several real life incidents that demonstrated
the weaknesses of ICS cyber components [77, 100, 134, 136].

We distinguish two general strategies for improving the cyber security in ICS.
The first strategy aims at a adapting best IT security practices in the ICS do-
main. For example, authors adjust common approaches for detecting intrusions
to support ICS communication protocols [66, 67, 128], implement “’defence in
depth” [9], incorporate encryption into network protocols [73], apply defensive
deception behaviour in ICS [92].

The second strategy leverages the specifics of the ICS field to perform a more
tailored monitoring of cyber activities. For example, fingerprint the details of
ICS field controllers [81, 99], analyse field measurements to perform state estima-
tion [23, 69], monitor system functionality from network protocol [45].

A field of computer security focusing on building techniques capable of de-
tecting malicious activity in computer systems is called intrusion detection. We
now present a brief overview of common approaches in intrusion detection that
apply to both ICS and traditional IT environment.

2.3 Intrusion detection

The main task of intrusion detection is to monitor events occurring in the sys-
tem and analyse them for possible incidents (i.e., violations of security and user
policies).

Based on the type of the analysis, there are two general types of detection
systems: misuse- and anomaly-based. A misuse-based system uses predefined
patterns of behaviour to identify benign or malicious activities (e.g., a pattern of
bytes in a specific network attack). An anomaly-based system first “learns” what
is normal behaviour (e.g., by extracting the statistics of network communication).
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Then, during the monitoring, the system looks for anomalies by comparing the
models of normal behaviour to the current activities.

Based on the information resource, the detection systems are categorised into
host- and network-based. A host-based system monitors the activities of a single
computer. For example, a host-based monitoring includes the analysis of sys-
tem logs, processes, application activities, file accesses, application configuration
changes. A network-based system monitors network traffic (e.g., analysis of net-
work flows, packets headers, packet content).

This thesis focuses on network-based approach. We now briefly present tech-
niques for network analysis.

Network-based detection Based on the data source, there are two types of
network-based detection techniques: (i) flow- and (ii) packet-based techniques.
Flow-based techniques use aggregated connection information to detect attacks
whose realisation causes effects on communication patterns. Packet-based tech-
niques analyse each packet on the network to detect packet segments consisting
of suspicious content. While a flow-based analysis can detect global shifts in the
patterns of communication (e.g., DDoS attack), a packet-based analysis focuses
on attacks whose malicious content can be hidden in only one packet, and thus
invisible at the flow level (e.g., a buffer overflow attack). There are two types of
packet-based detection techniques: (i) header-based and payload-based. Header-
based approach analyses TCP/IP header information in the packet to detect the
misuse of header parameters (e.g., in [71]). Payload-based techniques analyse
data payload to capture segments carrying malicious content. This thesis explores
the area of content-based network detectors. We now present the most common
technique for content analysis in anomaly-based systems, n−gram.

2.3.1 N−gram analysis

N−gram analysis is a common technique for capturing features of data con-
tent. This technique is used in various areas, such as monitoring system calls [39],
text analysis [34], packet payload analysis [114]. An n−gram is a contiguous
sequence of n items (e.g., words, bytes) from a given sequence of system calls,
text, network payload. In the context of network payload analysis, the current
approaches use the concept of n−grams in different ways. In particular, we dis-
tinguish two aspects:

1. The way an n−gram builds feature space - The extracted n−grams can be
used for building different feature spaces [37]: (a) count embedding (count
the number of different n−grams to describe the payload), (b) frequency
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embedding (use relative frequency of byte values of an n−gram to describe
the payload, e.g. [15, 25, 115]) and (c) binary embedding (use the pres-
ence/absence of specific n−grams to describe the payload, e.g., [114]).

2. The accuracy of payload representation - N−grams can represent the pay-
load in the following ways: (a) as an exact payload description (n−grams
represent continuous sequences of bytes, e.g. in [25, 114, 115]) and (b) as
an approximated payload description (n−grams represent a compression or
a reduction of the exact payload, e.g., [48, 84]).

Also, various systems employ different architectures and combinations of ap-
proaches to analyze n−grams (e.g., Markov models in [15], Self-Organizing Maps
in [25], hashing in [48]).

Detection evaluation There are four terms that are commonly used to evalu-
ate the accuracy of detection approaches, namely: true positive, true negative,
false positive and false negative. A true positive refers to the correct detection
of a malicious activity. A true negative indicates a situation in which the detec-
tor correctly identified a benign situation as benign. The false positive indicates
a situation that the system identifies a benign activity as a malicious activity. A
false negative indicates to a situation when the system fails to identify a mali-
cious activity [96]. Ideally, the number of true positives and true negatives will
be equal to the total number of malicious and benign activities, respectively (indi-
cating that the detector correctly classified all instances of malicious and benign
activity). Also, the number of false positives and false negatives will be zero (in-
dicating that no benign activities will be identified as malicious, and the detector
will not miss to report any of the malicious activities). In reality this is not the
case. The terms false positive and false negative are related to the specific type of
the detection system. More specifically, misuse-based systems more often suffer
from a higher number of false negatives (dues to the lack of signatures), while
anomaly-based systems more often suffer from a high number of false positives
(due to the inaccurate modelling of normal behaviour).

We have now explained all the main concepts needed to understand the re-
mainder of the thesis. In the next Chapter we address the first research question,
RQ1.
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Chapter 3
On the Misuse of ICS Applications via
User Activity

In this chapter we answer RQ1 by analysing the threats that occur as a result
of legitimate user activity on ICS application software. As described in Chapter 1,
this is the first attack vector we consider for analysing potential process threats.
This type of threat considers two scenarios: (i) a malicious use (e.g., an attacker
uses the engineering application to change configuration settings) or (ii) accidental
misuse, i.e., an operational mistake of users that have legitimate credentials in an
ICS application. An example of an incident is the havoc caused by a disgruntled
(former) employee in Australia who used valid application credentials to issue
commands which overflew a park and residential area with sewage water [124].
Since this attack did not create behaviour of the ICS that significantly deviated
from the normal behaviour (e.g., the attacker leveraged the same set of commands
as legitimate system users), the attack remained undetected for two months.

A common approach for mitigating the misuse of user commands is a thorough
analysis of user actions. A trace of user actions can be captured through different
types of logs (e.g., security software, operating system, application logs [60]). To
highlight interesting events from the log, and thus to detect an undesirable event,
experts analyse logs using different techniques (e.g., pattern mining, correlation
analysis [49]). The main challenge is the extraction of relevant events from a large
number of log entries. The literature suggests that the success of the log mining
approach depends on the context in which it is applied [80]. For example, episode
mining (mining of distinctive sequences of log entries within a time window) of
events in an IDS showed poor performance. In particular, due to the dynamic na-
ture of timing patterns in the analysed events, the mining algorithm raised 99% of
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events as alarms which turned to be false positives [56]. This shows that applying
a suitable techniques for the context of mining is important.

Problem Descriptive characteristics of user behaviour in ICS are, to the best of
our knowledge, not well studied. This knowledge is necessary for building reliable
models of user behaviour and identifying potential security threats. The lack of the
knowledge is mainly due to the fact that the context relates to industrial processes,
environments whose operational details are sensitive and specific to each different
ICS instance.

In this chapter we present a combined methodology for identification and anal-
ysis of threats occurring as a result of user activities in ICS applications. The
proposed approach adapts a common safety analysis methodology (Hazard and
Operability Study–HAZOP) and uses two types of resources: (i) internal ICS doc-
uments and (ii) focus group sessions.

We use the internals of an ICS application to systematically identify possi-
ble user actions within the analysed system. More specifically, we leverage an
internal structure of application software (often referred as the Aspect Directory)
that holds information about objects and operations that can be performed by ICS
users. The extracted user activities are further evaluated within the HAZOP study
which requires feedback from domain experts. We do this through focus group
sessions. A focus group consists of ICS process experts who are familiar with
the analysed environment, process operation and potentially undesirable process
consequences. During focus group sessions we identify and characterise classes
of potential process-related threats.

Contribution The main contributions of this work are:

• we present a methodology to identify and analyse process threats occurring
as a result of user activities in an ICS application,

• we perform a case study on a real-life environment to apply the proposed
methodology and present the results.

We structure the remainder of the chapter as follows. Section §3.1 presents
our methodology. In Section §3.2 we present the case study describing the ap-
plied methodology and the results obtained from a real life ICS environment.
Section §3.3 presents related work and Section §3.4 presents conclusions.
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3.1 Approach

We leverage knowledge of process experts to find potential threats in user
actions within an ICS application. More specifically, we perform a systematic
assessment of user actions through focus group sessions. A focus group consists
of experts (process engineers and operators) who are familiar with the specific
process configuration and operation. The task of the focus group is to analyse
possible user actions within an ICS application and evaluate the severity of them.
The sessions are organised as structured interviews where experts systematically
discuss possible consequences and constraints of the identified user actions. The
result is the assignment of a severity label with each user action. We now discuss
the scope and the structure of the analysis.

Scope of the analysis Although we acknowledge that the analysis of sequences
of user actions is important (e.g., an engineer issues a sequence of commands
where each command is legitimate, but the overall effect is undesirable), our focus
is on the analysis of individual user actions. This is because the understanding of
sequence consequences requires a substantial understanding of the consequences
of individual steps. Therefore, as a starting point, we constrain our analysis to
single user actions. We argue that this constraint still captures actions that may
represent undesirable behaviour. For example, a process engineer can change the
process character (e.g., by changing the scale of the pump speed) in one single
command.

Structure of the analysis We structure the analysis in two phases: (i) a system-
atic identification of possible user actions within the ICS application and (ii) an
analysis of user actions. In the first step we analyse ICS application to systemati-
cally identify the set of activities that can be performed by a signed on user (e.g.,
a user can change process configuration settings or stop process operation). For
this we use internal ICS documentation. In the second step we analyse the iden-
tified actions. We perform focus group sessions where experts discuss causes,
consequences and mitigation strategies for different user actions.

We implement our approach as a case study on data coming from a real-world
water treatment plant. The plant serves a metropolitan area and operates on two
common vendor applications, creating us a representative case for the analysis.
We now discuss both steps in more detail.
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3.1.1 Identification of possible user actions

As the first phase of our approach we aim at systematically identifying pos-
sible user actions within an ICS application. We do this by following the idea of
HAZOP (Hazard and Operability) study [41]. HAZOP methodology is a common
approach for addressing process safety problems. The main goal of the study is an
investigation and evaluation of possible process safety deviations. Here, each de-
viation is described by a keyword and a guideword. A HAZOP keyword describes
the analysis context (e.g., for a water company: temperature, pressure, speed). A
HAZOP guideword describes a change that may occur in the context (e.g., for
pump speed: increase, decrease). Following this, a process deviation is defined as
a combination of one process keyword and one process guideword (e.g., “speed
increase”).

For our approach, we translate HAZOP deviations to possible user actions. For
us, a HAZOP guideword represents a type of action that a user can perform within
an application. We use three generic types of user action as HAZOP guidewords:
add, modify and delete. As HAZOP keywords, we use objects of the performed
user action (e.g., tank, configuration panel). To systematically identify the key-
words in the context (i.e., all process components that can be manipulated by a
user), our approach uses internals of ICS application. More specifically, we lever-
age the Aspect directory to extract possible objects for user activity. The Aspect
directory has a hierarchical structure holding clusters (subdirectories) of different
process objects that can be manipulated by the users. For example, process objects
under the path plant 1/production/cleaning/.. represent devices from the cleaning
area of the plant 1. To systematically enumerate all objects that can be manipu-
lated by the user within an application, we transform the directory structure into a
tree where higher branches represent higher subdirectories in the hierarchy (e.g.,
cleaning, ozon area) while lower branches represent process objects (e.g., field
devices). We then enumerate the leaves of the tree to identify HAZOP keywords
(e.g.,plant1/functional mode/street1/../pumps/pump3). To this end, by combining
one HAZOP keyword and one HAZOP guideword we compile a set of possible
user actions on the analysed ICS application.

3.1.2 Analysis of user actions

As the second step of our approach we analyse identified user actions through
focus group sessions. We perform the analysis in two steps: (i) threat identifica-
tion and (ii) threat mitigation.

First, to identify user actions that may represent a potential threat, we perform
two sessions with focus groups. In the first round experts discard actions that are
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(a) safety constrained (e.g., a deletion of a PLC in online mode), (b) not related
to the process directly (e.g., modification of HMI presentation) or (c) make little
sense for the environment (e.g. an item on the access list can only be added
or deleted, but not modified). In the second round, for each of the remaining
user actions, experts perform an in depth analysis of four aspects: severity, cause,
effect, and mitigation recommendation. These four aspects represent common
discussion topics across different safety methodologies such as Hierarchical Task
Analysis (HTA), Predictive Human Error Analysis (PHEA), HAZOP [41]. For
each user action, experts also discuss if the potential misuse of that action can be
mitigated with the existing ICS application. We consider a specific action as a
threat if (i) the action is evaluated as highly severe and (ii) there are no existing
mitigation measures to address the misuse of this action. The result of this is an
enumeration of potential process threats in the analysed ICS environment.

As the second step, we analyse possible threat mitigation strategies. Here
we aim at understanding the constraints of the current application and deriving a
promising strategy for the threat mitigation. We structure the discussion to address
three main questions: (i) Why the current version of the ICS application cannot
address the identified threats? (ii) What can be done to improve the resilience of
the ICS application against the threats? and (iii) How can the improvements be
deployed?

By answering the posed questions together with process experts, we gather
the information required to understanding the characteristics of a promising threat
mitigation strategy.

We now present a case study implementing the proposed approach.

3.2 Case study:
Application misuse in a water treatment plant

To demonstrate our approach, we perform an assessment of a real-life ICS
engineering application controlling a water treatment facility. We first present
details on the setup of the case study and then discuss the results of both steps of
the approach.

Environment and setup The plant serves a metropolitan area of around 700 000
residents and uses control application of a well known vendor. We perform the
analysis during two types of sessions with process experts. First, we perform a
round of interviews with operators, IT and process engineers to obtain the in-
formation about possible user actions within the application (i.e., extraction of

31



Chapter 3. On the Misuse of ICS Applications via User Activity

the Aspect directory) and common plant operations. Secondly, we perform two
rounds of focus group sessions to analyse identified user actions. The focus groups
consist of two process engineers and one operator.

We now present the results of the two step approach applied on the case study:
Identification of user actions (Section §3.2.1) and Analysis of user actions (Sec-
tion §3.2.2).

3.2.1 Identification of possible user actions within the
application

As explained earlier, we use HAZOP study as the basis of our analysis. Within
this context, we use three distinctive type of user actions (add, modify, delete) as
HAZOP guidewords. To compile possible user actions, we extract HAZOP key-
words (i.e., process objects) from the plant Aspect directory. Figure §3.1 repre-

Figure 3.1: Hierarchical task tree of the target ICS application in a water facility
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sents a part of the anonymised and simplified tree made from the custom Aspect
directory.

The complete tree produces 170 different HAZOP keywords (i.e., the leaves of
the tree). To simplify the analysis, we perform aggregation of the keywords. Here,
instead of considering each specific keyword individually (e.g., PUMP1, PUMP2,
PUMP3), we analyse a group of same keywords (pumps) on one branch. We per-
form the aggregation by taking the substring of the tree path with up to and exclud-
ing the leaves of the tree (e.g., plant1/functional mode/street1/../pumps/pump3).
This way we semantically group together devices which are on the same location
(or configuration paths) and represent similar devices (e.g., pumps). By doing this
we decrease the total number of keywords from 170 down to 36. Following the
HAZOP methodology, we generate user actions (i.e., deviations in HAZOP termi-
nology) as all possible combinations of given keywords and guidewords. Table 3.1
shows examples of deviation generation. The first column of the table consists of
all chosen keywords (paths of the HTA tree from Figure 3.1). The second column
consists of three guidewords. Each keyword from the first column is combined
with all three guidewords from the second column to build a deviation in the third
column. The character of the specific deviation depends on the position of the
keyword in the tree. Typically, one keyword can be found on several branches of
the Aspect directory tree (e.g., tanks in Figure 3.1). A deviation built on the key-
word tanks in the Plant1/Functional mode/Street2/Devices/Operational parame-
ters/../Groups of devices/tanks branch of the tree implies actions on operational
parameters of the device such as capacity, desirable tank level, etc. Therefore, the
devised deviations are: a user modifies the capacity of tank, a user modifies the
value of the desirable tank level. Deviations of the same keyword (tanks) from
a different branch of the tree imply different types of actions. For example, the
path to tank in the Plant1/Control module/Users/Profile/Access settings/Groups of
devices/Tanks branch of the tree implies access settings that relate to tanks (e.g.,
modify user access rights).

We now analyse identified user actions.

3.2.2 Analysis of user actions within the application

In the first step of the approach we identified 108 possible user actions. We
then presented these user actions to the focus groups and discussed them in two
sessions to identify potential threats.

Threat identification During the first session, the focus groups analyse identi-
fied user actions and discarded actions that are considered as uninteresting. For
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Table 3.1: Examples of deviation generation

Keyword Guideword Deviation / Potential threat
add a user adds a valve to the group

Valve modify a user modifies the name of a valve
(topology)1 delete a user deletes a valve from the group

add no
Tanks modify a user modifies the capacity of tank (e.g., the pre-

sumed capacity of tank is increased by double)
(operational
parameters)2

delete no

add a user adds action type to the allowed actions (e.g.,
a user adds ”inserting setpoint” and/or ”changing
pump status” to the list of allowed operator actions
on a pump)

Pumps modify no
(access
settings)3

delete a user deletes action type from allowed actions
(e.g., a user deletes ”inserting setpoint” and/or
”changing pump status” from operator actions on
a pump)

1 Plant1/Control module/Topology/Groups of devices/Valves
2 Plant1/Functional mode/Street2/Devices/Operational parameters/Groups of devices/Tanks
3 Plant1/Control module/Production/Cleaning/Access settings/Groups of devices/Pumps

example, depending on the context (i.e., the specific software control implementa-
tion), some combinations of keywords and guidewords do not apply (e.g., acidity
parameters cannot be deleted) or are not considered as severe (e.g., add tank). To
this end, the focus group selected 35 user actions that represent a potential threat.
In Table §3.2 we present these actions. We note the reader that the table entries
are, to avoid repetitions, aggregated over guidewords (add, modify, delete) and
process components (e.g., we use higher tree levels instead of leaves to present
action objects from Figure §3.1).

During the second session, focus group analysed the remaining user actions
to identify severity, causes, effects, and mitigation strategies. Table 3.3 presents
an example results of the detailed analysis of three user actions. The examples
exhibit various process consequences (e.g., equipment damage, product quality,
unreliable alarming).

After performing an in depth analysis of all selected user actions, the result is
a list of actions that are (i) evaluated as severe by the focus group and (ii) cannot
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be addressed by the current ICS application. We refer to these actions as process-
related threats.

We distinguish two main types of process threats: scripting errors and miscon-
figuration. Both types of threats typically originate from the activity of engineers.
The threats exploiting a scripting error imply writing (and loading) faulty process
automation scripts or leveraging scripts already developed by system engineers.
A misconfiguration implies forcing the settings of unsafe configurations. Mis-
configuration threats can have functional or control consequences. A functional
misconfiguration implies the usage of settings that modify the character of process

Table 3.2: An aggregated overview of potential process threats

Process component Action
Control module/production/ozon area/ozon parameter/ modify
Control module/production/raw water/acidity/chemical parameter/ modify
Control module/production/cleaning/Coarse particles/groups of devices/ modify
Control module/production/cleaning/Fine sand/groups of devices/ modify
Control module/production/cleaning/Tower/groups of devices/ modify
Functional module/Street1/devices/Op param/cleaning/Tower/script/ modify,

delete
Functional module/Street1/devices/Op param/cleaning/Fine sand/script/ modify,

delete
Functional module/Street1/devices/Op param/cleaning/
Coarse particles/script/

modify,
delete

Functional module/Street2/devices/Op param/cleaning/Tower/script/ modify,
delete

Functional module/Street2/devices/Op param/cleaning/Fine sand/script/ modify,
delete

Functional module/Street2/devices/Op param/cleaning/
Coarse particles/script/

modify,
delete

Functional module/Building/hardware/operation/PLC/ modify,
delete

Functional module/Building/hardware/operation/OPCserver/ modify,
delete

Control module/users/profile/access settings/groups of devices/ add,
modify,
delete

Control module/topology/application/groups of devices/ add,
modify,
delete

Functional module/main building/system/application/ modify
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Table 3.3: Understanding mitigation strategies

Guideword MODIFY - A user modifies the quantity value of chemi-
cals (e.g., input 2).

Cause
Inside/outside malicious attack
Human error

Effects
Errors in calculations
Equipment damage
Influence the product quality

Recommendations
Additional input checks
Track user behaviour

Guideword DELETE - A user deletes a device from the device topol-
ogy (e.g., pump 13)

Cause
Inside/outside malicious attack
Human error

Effects
Device becomes inaccessible
Equipment damages due to overload
Inconsistent alarms

Recommendations
Increase the number of access levels
Track user behaviour
Safety checks on engineer actions before execution

Guideword MODIFY - A user modifies a tank capacity (e.g., tank 1).
Cause Inside/outside malicious attack

Human error

Effects
Tank damage due to overload
No alarm when real maximum reached
Damage of interdependent equipment

Recommendations
Include safety checks during manual working mode
Additional configuration checks
Track user behaviour

operation (e.g., change capacity of a tank to prevent the alarming system from go-
ing off and triggering the start of the next process stage). A control misconfigura-
tion implies the usage of settings that corrupt the common plant operation in such
a way that ICS users can no longer supervise and recover the process properly
(e.g., modify access rights so a pump can no longer be stopped by an operator).
In Table 3.4 we present examples of process threats in the system context.
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Table 3.4: Examples of identified process-related threats

Type of threat Threat Example
Scripting error A user loads a script that

causes errors in the system
automation

Insert a script that calcu-
lates wrong ratio of chemi-
cal components

Misconfiguration
/functional

A user modifies a device pa-
rameter

Change capacity of a tank to
prevent the alarming system
from going off

Misconfiguration
/functional

A user modifies auditing
policy

Turn off all auditing

Misconfiguration
/control

A user modifies the range
of allowed actions for a spe-
cific device

Modify access rights so a
pump can no longer be
stopped by an operator

Misconfiguration
/control

An user modifies the system
topology

Delete devices from the
toplogy so some devices be-
come invisible, and thus in-
accessible to operators

Threat mitigation After the performed analyses, we discuss possible methods
for mitigating the identified threats. We structure the discussion with focus groups
to answer three related questions:

• Can the current version of the ICS application address identified threats?

• What can be done to improve the resilience of the ICS application against
the threats?

• How can the improvements be deployed?

First, we discuss can the current ICS application address identified threats.
More specifically, we analyse why the targeted application cannot apply threat
recommendations (Recommendations in Table 3.3). During the focus group ses-
sion we identify two weaknesses of the ICS application: (i) lack of logic controls
(e.g., no process safety checks are in place during the manual system mode, an
input is not validated before executing an engineer command ) and (ii) user au-
diting (e.g., no detail user behaviour analysis). According to the engineers, it is
hard to have a comprehensive set of logic controls on all process inputs due to
the complex character of the ICS environment. For example, the implementation
of logic controls requires intensive manual work on defining the rules for each
specific input parameter (which might change over time).
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Also, daily user auditing is not performed due to heavy manual load of the au-
diting process. For example, the analysed plant generates around 8000 log entries
every day. Without an advanced mechanisms for log transformation and manipu-
lation, the manual inspection is infeasible in the current setup.

Second, we analyse suitable approaches for addressing the identified threats.
A common approach implies shadow operation monitoring where different com-
ponents of plant operation are monitored and verified to comply to a specified be-
haviour (i.e., analogous to network- and host- based intrusion detection/prevention
systems). For this, the experts confirm that ICS environments indeed represent a
promising ground for exploration. This is mainly because system (and user) be-
haviour in ICS is repetitive and mostly automated. For example, an ICS operates
on a limited number of algorithms that repeat over time (e.g., each process phase
is one algorithm). Also, user involvement is typically seldom and scheduled (i.e.,
changes in system configuration are often periodical). This implies that the ex-
tracted patterns of common system behaviour may reveal unexpected user actions.
The challenge lies in building techniques that will include and interpret process
semantics related to user actions.

Finally, we analyse possible approaches for implementing the proposed ap-
proaches for system monitoring. In general, there are two ways in addressing
the identified system weaknesses: (1) by upgrading the proprietary ICS software
to support additional functionalities (such as an additional input check in man-
ual mode) and (2) by employing an independent tool to analyse data resources
from ICS and detect suspicious behaviour from user workstations. In theory, an
upgrade of the ICS software is more suitable for avoiding various compatibility is-
sues. However, in practice, due to the proprietary character of ICS environments,
the experts confirm that the employment of an independent tool is often a more
straightforward strategy for implementing a security addition.

Following the results of the discussion with plant experts we pursue research
in a related direction. In Chapter 4 we present an approach and an independent
tool for mining ICS event logs.

3.3 Related work

There are different approaches for identifying and analysing safety threats in
industrial control systems. Most common methodologies include FMEA (Failure
Mode and Effects Analysis), FTA (Fault Tree Analysis), HAZOP (Hazard and
Operability Study) [41]. The main goal of these methodologies is to identify
potential scenarios that may produce negative effects on the process. For example,
FTA and FMEA decompose possible process failures to identify their root causes.
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PHEA (Predictive Human Error Analysis) analyses the effects of human errors
on the underlying process. More specifically, PHEA uses a set of standard errors
in human operation (e.g., action too late, too soon, too long, too short) to discuss
the consequences of these actions on the process behaviour. In this work we take
a more generic view on possible user actions by considering three general opera-
tions (i.e., add, modify, delete). Although we do not perform an in-depth analysis
of parameter relations in the process (e.g., by considering timing conditions as in
PHEA), the usage of generic operations allows us easier analysis of general effects
on the system. Keeney et al. [59] study the characteristics of insider threats that
occur across various sectors in critical infrastructures. Here, the authors primarily
focus on identifying motivations and pre-attack behaviour, rather than identifying
different types of activities that can be performed.

Traditional methodologies for addressing safety problems in process control
systems focus on hazard analysis (i.e., a combination of factors in normal plant
work that may lead to undesirable consequences) and do not consider security
threats (i.e., threats that occur as a result of malicious activity on the system). By
introducing a special set of guidewords, Winther et al. [117] show how HAZOP
can be extended to identify security threats. Srivantakul et al. [104] combine HA-
ZOP study with UML use case diagrams to identify potential misuse scenarios in
computer systems. We take a similar approach and adapt HAZOP study to explore
ICS application and analyse user (engineer) behaviour in an ICS environment.

3.4 Conclusion

In this chapter we present an approach for the analysis of potential threats as
a result of user activity in an ICS software application. The approach leverages
internal ICS application structure to identify user actions. We use the HAZOP
methodology to analyse user actions and, together with the plant experts, identify
actions that represent potential threats. By extending the existing method (HA-
ZOP) our approach fits in best practice and is made accessible to practitioners.

There are two main assumptions for applying the presented approach: (i) an
active involvement of process experts and (ii) the availability of ICS application
structure. First, as in similar threat studies, this work requires the active involve-
ment of process experts in the evaluation process (i.e., via two rounds of focus
group sessions, each performing an in depth analysis of causes and action effects).

Second, the core ingredient for the performed analysis is the extraction of
possible actions. This is done by transforming the ICS application structure into
a hierarchical tree. The usage of the internal application structure is suitable as
it provides a comprehensive overview of possible user actions on an ICS. We ac-
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knowledge, however, that the internal structure sometimes might not be available
(e.g., due to proprietary vendor design). Also, users could be using two software
applications at the same time, thus the extraction of all possible user actions, and
their combinations, could be complex. In both cases, possible user actions would
have to be enumerated manually, which would possibly be incomplete.

Due to constraints in the availability of process experts, we validate our ap-
proach on only one use case. The performed case study confirmed the appli-
cability of the proposed approach on a real life environment and revealed a set
of potential threats. We acknowledge that the analysis on multiple case studies
would result in more complete findings. For example, we foresee that the results
from other case studies would extend the list of possible misuses on a particular
system. However, we argue that the three classes of threats identified in this work
(functional and control misconfiguration, scripting error) are applicable to other
environments as well.
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Chapter 4
A Log Mining Approach for
Monitoring User Activity in ICS

In Chapter 3 we investigated the problem of process threats as a result of user
activities in ICS application software. We performed an analysis of possible user
actions within an ICS engineering software and, together with process engineers,
identified potentially undesirable user activities (e.g., commands resulting in pro-
cess misconfigurations).

In this chapter we address RQ2 by presenting an approach to automate the
detection of the identified threats as a result of user activity in ICS application soft-
ware. In Chapter 3 we describe the challenges of analysing single user commands
and command sequences. This chapter focuses on the analysis of threats that are
performed through single user commands. We consider two threat scenarios in
which the attacks are performed by: (i) a signed-on user or (ii) on a known user
workstation.

To detect undesirable user activities, we use ICS event logs as the main data
source. ICS event logs represent a data trace that provides a complete view on the
industrial process that is continuous over time and captures information about user
activities, system changes in the field as well as system status updates [98]. By
contrast to network traces and field sensor data (e.g., current temperature), event
logs represent high-level data traces carrying interpreted process information (e.g.,
an event entry typically carries information when/where/who/what performed an
action, while this information primarily needs to be retrieved from network traces
and sensor updates). This is hard because it implies that low-level data has to be
interpreted in high-level semantics. Our starting assumption is that ICS will, with
their mostly automated character and a limited number of process procedures,
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display an overall regularity in log activity. We aim at using this regularity to
extract uncommon process operation.

Problem Even an ICS system used in a small installation generates thousands of
potentially alarming log entries per day. Thus the size (and high dimensionality)
of logs make manual inspection practically infeasible.

This is a relevant and challenging problem to tackle. It is relevant because
process threats affect the security and safety of critical infrastructures, which in
turn could endanger human life. It is challenging because in the past the analysis
of system logs has been applied to other security domains (e.g., in system logs,
IDS logs) but struggled to deliver convincing detection results [56].

A common approach for detecting user activity in a system is by filtering log
entries. In Chapter 2 we explain that user actions may leave a trace in the system
in two ways: as a direct user action and as a consequence. In principle, a direct
user activity could be detected by implementing the following filters:

• extract entries which include a signed on engineer,

• extract entries that are performed on critical workstations (e.g., main system
server),

• extract entries that are performing an action on a critical path of the Aspect
Directory (e.g., reconfiguration in access settings)

However, the extraction of action consequences is difficult. This is because the
prediction of potential consequences of a performed action and the propagation
of such consequences is not straightforward as it implies an in-depth analysis of
process dependencies. This means that detecting direct user actions solely might
not reveal the undesirable character of the user action. For example, a user might
write an erroneous (or malicious) script that produces postponed faults in the
system. The act of writing a script is not unusual (and is typically scheduled),
thus the log trace of the action is legitimate. Therefore, a rule-based approach
would either: (1) raise an alert and be cleared by the operators as legitimate or (2)
not raise an alert at all. However, the script might produce indirect consequences
(or faults) that are undesirable for the process work. Due to the fact that the
enumeration of all possible faults that a script might trigger is typically infeasible,
such fault would not be detected. Without understanding that the erroneous script
has triggered the undesirable set of actions, operators cannot identify the problem.

We propose a semi-automated approach to aggregate and simplify user mon-
itoring in ICS. Our approach uses a known algorithm to analyse ICS logs. We
validate our findings with process experts. To the best of our knowledge, there
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are no publicly available datasets of logs capturing some sort of process attacks.
Likewise, the data traces that we analysed did not consist of any known attacks.
Because of this, this work represents an exploratory study to evaluate the feasibil-
ity and usability of the proposed analysis.

Contributions The main contributions of this chapter are the following:

• we propose an approach to detect process threats occurring through the ICS
engineering software and build a tool to automate the analysis of ICS logs,
which can be used to monitor the industrial process,

• we perform experiments to validate our approach using data from a real
facility.

The rest of the chapter is organised as follows. Section §4.1 presents the ap-
proach. In Section §4.2 we present the architecture of the tool and benchmark the
tool in Section §4.3. Section §4.4 presents related work. Finally, Section §4.5
presents an extended discussion on approach usability and future work. Sec-
tion §4.6 concludes the Chapter.

4.1 Approach

We propose a new approach to detect process threats based on an automated
way of processing ICS logs. Our goal is to identify the most interesting events
from the logs, and thus allow operators to focus on a set of potentially suspi-
cious events than can be inspected manually. To this end we built a tool called
MELISSA (Mining Event Logs for Intrusion in ICS Systems).

The tool uses an approach that builds the model of common process behaviour.
The approach is heuristic because, to evaluate the usefulness and promising direc-
tions of the analysis, we use the experience of process engineers.

We argue that the content of ICS logs seldom changes over time. This is
because usually new devices are not frequently added (or removed), operators and
engineers repeat a finite set of actions, the system is semi-automated, etc. Some
events are highly frequent (e.g., one event repeated 1,115 times in 8 hours of plant
work in the log). Due to these reasons, we believe that the pattern-based analysis
of system behaviour is suitable for the ICS context.

The basic idea of our approach is that a frequent behaviour, over an extended
period of time, is likely to be normal because event messages that reflect normal
system activity are usually frequent [20, 74, 108]. Similar to Burns et al. [28], we
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found a large fraction of events that always appear with the same number of daily
occurrences (e.g., timer-triggered event). Thus, a rare event, in a semi-automated
and stabile environment as ICS, is more likely to be anomalous. For example,
an engineer operating from a machine that is usually inactive outside the working
hours is considered suspicious.

Scope of the analysis The ultimate goal of this research is to have an online
analysis system. This would imply having the knowledge which describes the
common behaviour in an ICS and capable of detecting uncommon activities. In
this Chapter we describe the process of building this knowledge. Therefore, as an
initial step, we use offline analysis to gather cumulative features describing daily
ICS operation.

By including the context information (e.e., severity of process attributes), we
limit the scope of our analysis to the ICS environment. This means that our
approach cannot seamlessly be applied in a different environment. However, the
tailored context information contributes to higher chances or providing meaning-
ful results.

Structure of the analysis Our approach consists of two main phases: (i) mining
of logs and (ii) manual inspection of uncommon events.

As the first step, we process logs to find uncommon activities. More specifi-
cally, we perform the following:

• Attribute subset selection

• Log analysis

Attribute subset selection identifies the subset of log attributes that carry relevant
process information (Section §4.1.2). Log analysis performs transformation and
mining of logs to extract uncommon activities. To do this we use a state-of the art
algorithm for mining frequent patterns (described in Section §4.2.2.1) to identify
the most and the least frequent (expected to be anomalous) patterns of system
behaviours. In essence, the patterns are used to describe the cumulative character-
istics of log entries. Figure 4.1 depicts the relation between a log entry, an itemset,
an item and a pattern. Each unique log entry, with several attributes, represents
a single itemset (Figure §4.1.A). A unique value of an attribute in the log entry
represents one item. A support count is the number of log entries that contain the
given itemset. Formally, if the support count of an itemset I exceeds a predefined
minimum support count threshold, then I is a pattern [49]. In Figure §4.1.A, log
entries 2 and 3 are the same, thus the corresponding pattern has the support count
2 (Figure §4.1.B).
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Figure 4.1: Log translation: A) mapping log entries into itemsets and items, B)
mapping itemsets into patterns

As the second phase, we perform a manual inspection of extracted patterns.
We do this by leveraging the knowledge of process engineers to manually evaluate
the character of the extracted patterns. Similar to focus group sessions described
in Chapter 3, process engineers represent experts who are aware of the seman-
tic implications of specific actions, but typically cannot provide information on
automatic extraction of log entries (since they are not experts in data analysis).

As an additional phase of our heuristic approach, we explore the usefulness
of patterns once the process knowledge is included in the mining process (i.e.,
inclusion of attribute severity in Section §4.3.3).

We now present more details on the analysed data, the ICS logs.

4.1.1 Input data for analysis

The initial, raw, dataset consists of 11 attributes. The given attributes can be
grouped in four semantic groups:

• time (Timestamp),

• type of action (Type of action, Aspect of action),
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• action details (Message description, Start value, End value),

• user (Username, User full name),

• location (Object path, Source, ICS node)

Often the raw dataset consists of features that are redundant, irrelevant or can
even misguide mining results. This is why we need to perform data preprocessing,
analyse the current feature set and select a suitable subset of attributes.

4.1.2 Attribute subset selection

The main purpose of the attribute selection is to identify the most relevant
attributes in a multidimensional data which will contribute to the mining process
(and prevent from having distorted and biased conclusions). Common approaches
for attribute selection exploit class labels to estimate information gain of spe-
cific attribute (e.g., induction of decision tree [49]). Unfortunately, our input
data does not consist of class labels (i.e., labels for normal and undesirable be-
haviour), thus we cannot perform the “traditional” attribute evaluation. However,
some approaches may evaluate attributes independently. For example, principal
component analysis (PCA) [49] searches for k n-dimensional orthogonal vectors
that can be used to represent the data. The original data is thus projected into a
much smaller space and represented through principal components. The principal
components are sorted in the order of decreasing “significance”. Finally, the
dimensionality reduction is performed by discarding weaker components, thus
those with low variance. By performing the PCA on our data, we discard two low
variance attributes (Start Value, End Value) since they only had few distinct values
in the whole dataset. Also, we identify two redundant attributes (Username and
User full name). Thus we discard one of them.

As expected, the attribute Timestamp showed the highest variance. We ag-
gregate this attribute in three working shifts. We describe the details of this
aggregation in Section 4.2.3.

Now we try to understand the behaviour of the remaining attributes.
Due to the fact that the highly variable attributes can produce overfitting [65,

93], we try to lower the number of distinct values in the most variable attributes
(in our context, the ones over 150 distinct values- Object path, Source, Message
description). The attribute Object path represents structured text. In Section 4.2.3
we describe the details of generalising the values of this attribute.

The attribute Source represents an ID of the field or network device and con-
sists of around 350 different values. This attribute is highly variable, but does not
contribute to the data mining process due to fact that it uniquely identifies a device.
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For example, a creditcard number almost uniquely identifies a customer and thus
does not represent a useful attribute to generalize customers behaviour thus to
be used in the data mining. To tackle this, Lim et al. [65] and Oliner et al.[80]
perform de-parameterisation of data by replacing IP addresses, memory locations
and digits by tokens. We decide to omit Source attribute from the analysis since we
observe that attribute Object path holds aggregated clusters of entries from Source
attribute.

The attribute Message description represents unstructured text and consists of
280 values. We perform an in-depth analysis of values to determine means of
aggregation. We conclude that a portion of values represents redundant data to
other attributes (e.g., information in Message description: “Action A on source
B is acknowledged by C” is repeated already in the same entry by the attributes
Type of action: A, Source: B, User: C). The rest of messages are presented in an
inconsistent way and provide information which, at this moment, we cannot parse
and aggregate in a meaningful way. An alternative approach would be unsuper-
vised clustering of messages, such as in [120]. We point out that such clustering
does not guarantee semantic similarity of messages. Due to the redundancy in
data we argue that the remaining attributes can compensate the information loss
of discarding the attribute “Message description”. In addition, we are sure that
such highly variable attribute in the current format does not contribute to the data
generalisation. Thus we do not consider this attribute during the analysis.

Our final set consists of 6 nominal attributes: Working shift, Aspect of action,
Type of action, Object path, User account and ICS node. Some attributes are
not applicable for all entries. As a result, every entry uses between 3 and 6
attributes. A ICS node represents a computer that sends event details to the log.
In our case, there are 8 different nodes. All nodes in the network have a dedicated
and predefined role that typically does not change (e.g., there are 2 engineering
workstations, 4 operator workstations and 2 connectivity servers). The attribute
Type of action takes one out of 12 nominal values. This attribute describes the
general type of action, such as: operator action, configuration change, process
simple event, network message, etc. For types of action which are performed by
users, the attribute Aspect of action is applicable. This attribute takes one out
of 6 nominal values in the log and details the character of the user action, such
as: change of workplace layout, change in workplace profile, etc. The attribute
Object path provides information about the location of the device which is the
object of the performed action (e.g., plant1/control module/users/profile/access
settings/groups of devices/tanks). The attribute User account represents the user-
name of the signed-on user. Table 4.1 represents a sample of the analysed log.

Some events in the log are more severe than others. The severity of a ICS
event depends on the combination of attribute values. Thus, a correct evaluation of
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Table 4.1: Example of a simplified ICS log

Work
shift

Aspect of action Type of action Object
path

User
account

Node

2 - Process Simple
Event

- - CS01

1 - Configuration
change

Plant1 /
../ tanks

Operator2 OP03

2 Layout change Configuration
change

Plant1
/../
layout

Engineer1 EN01

2 Function change Operator action Plant1/../
Op.
param.

Operator 1 OP04

specific attribute values can help to detect events that are undesirable for the nor-
mal process flow. For example, the value AuditEventAcknowledge of the attribute
Type of action is semantically less important than the value AspectDirectory. This
is because the first value implies an action where an operator acknowledged an
alarm while the latter value implies that a new action was performed on the main
configuration directory. Leveraging the expert knowledge about the process and
the semantics of nominal attribute values can help to distinguish critical and non
critical events in the complete log. In Section 4.3.3 we describe how we use this
knowledge to improve our detection results.

4.1.3 On the dataset validation

The process experts argue that, at the time of logging, there were no known
security incidents. We investigate the ways of validating this claim. We argue that
due to size and high dimensionality of the log, manual inspection is infeasible.
Thus a (semi)automated approach is required. Typically, common log analysis
tools imply the usage of predefined rulesets which filter events out of logs. For
example, in [91], various rulesets for analysing logs, such as syslog and ssh log,
are maintained. Unfortunately, such ruleset for analyzing ICS system logs does
not exist. Thus we cannot perform a reliable log analysis to establish the ground
truth.

An alternative approach for establishing the ground truth would imply the log
capture in a controlled environment. In reality, this means either (1) performing
the log capture in a lab setup or (2) performing the log capture in a constrained
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real environment (e.g., by reducing the number of process components to the ones
that are validated to be correctly working). We argue that neither of the cases can
compare to the actual real data.

We point out that, lacking the notion of the ground truth, we cannot perform
an extensive discussion on the percentage of events that are undesirable but have
not been alerted by our approach (i.e., false negatives). We are aware of this
shortcoming in our approach. Nevertheless, we note that the primary goal of our
approach is to help operators uncover security-related events from real data which
would be overlooked otherwise. We validate this by presenting the mining results
to a group of process experts.

4.2 Architecture

MELISSA consists of two interacting components: the Data Preparator (DP)
and the Pattern Engine (PE). Figure 4.2 depicts MELISSA and its internal com-
ponents.

Figure 4.2: MELISSA architecture

4.2.1 Data Preparator

We perform data aggregation (e.g., variance reduction) and transformation
(e.g., value coding) on the dataset to get a suitable data format for pattern mining.
We describe performed operation in Section 4.2.3.

4.2.2 Pattern Engine

The PE runs the algorithm for mining frequent patterns over log and outputs
an ordered list of patterns based on the frequency of the occurrence.

We now explain how we selected the specific implementation of the pattern
mining algorithm. Patterns can be mined for different purposes. Various al-
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gorithms, depending on the purpose of mining, deliver itemsets with different
features (e.g., complete, closed, maximal).

To select the most suitable algorithm for mining frequent patterns in our con-
text, we identified a list of required features. The requirements are as follows:

• maximal pattern mining,

• scalability,

• selection of interesting events based on the absolute support count.

Maximal pattern mining An itemset can be frequent but not (necessarily)
interesting and useful for stakeholders in a specific context. Mining large fre-
quent itemsets often generates a large number of itemsets satisfying the minimum
threshold. This is because, if an itemset is frequent, each of its subsets is frequent
as well. For example, for an itemset of length 70, such as {a1, a2, ...,a70}, there
would be (

70
1
)=70 1-itemsets: a1, a2,..., a70, (

70
2
) 2-itemsets: (a1, a2), (a1, a3),...,

(a69, a70), and so on. The total number of mined itemsets, for a data set consisting
of 70 items is 270 − 1. This value is too big to be stored and used for manual
inspection.

There are various strategies to extract a useful subset of itemsets from the
complete set. For our context, our process engineers agreed that no subset of
attributes carries enough semantics to distinguish between anomalous and normal
events. For example, it is not sufficient to describe an event with only two at-
tributes (e.g., itemset attributes {Type of action, User account}; itemset instance
{Operator action, Operator 2}). Therefore, we set a requirement that the algorithm
should deliver output patterns which consist of as many attributes as possible (take
the superset itemset that satisfies the minimum threshold). This type of mining is
in data mining terminology referred as mining maximal patterns [49]. Formally,
an itemset X is a maximal frequent itemset in set S if X is frequent and there exists
no super-itemset Y such that X⊂Y and Y is frequent in S [49].

Scalability For the cases when the same plant setup is running for years, we
might want to run the tool continuously, and receive events as they occur. Thus,
the tool needs to scale well when processing logs that may consist of years of plant
work. The tool can then leverage the knowledge of past behaviours to update the
top patterns and detect anomalies.

Also, the speed of processing is important as operators must take immediate
action in case of an alarm. There are two main types of mining algorithms: 1)
algorithms that use candidate generation [12] and 2) algorithms that do not use
candidate generation (FP-growth algorithms) [49].
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For mining a k-size itemset, an algorithm that uses candidate generation may
need up to 2k scans of the dataset. By contrast, an algorithm that does not use can-
didate generation typically requires only two scans of the dataset to mine itemsets
of arbitrary size. These algorithms are based on a recursive tree structure and are
referred in the literature as the FP-growth methods. During the data preparation,
we already scan the whole dataset several times. We expect our log size to grow
up to several million entries in a year (e.g., around 2,500,000 entries correspond
to the stakeholder’s annual system logs). Also, benchmark results on a Frequent
Itemset Mining Implementation (FIMI) workshop [44] show that the FP-growth
methods scale better for most datasets. Therefore, we choose to use an FP-growth
algorithm to comply with the scalability and speed requirements.

There are various implementations of the FP-growth method [27, 46]. These
algorithms implement different structures to improve algorithm performances
(e.g., Grahne [46] use array structures, Burdick [27] use a bitmap compression
schema). We acknowledge one general problem of the FP-growth methods. These
algorithms may scale bad with respect to memory consumption for small values of
minimum support count (i.e., the threshold for the frequency of total occurrences).
This is because a small value for the minimum support count, depending on the
dataset character, may produce a large number of unique itemsets that each need
a separate tree branch. This results in a complex FP-tree building and mining.
However, with respect to our context (a limited number of items to mine: number
of users, system nodes and a low number of different operations), we believe that
there will not be a significant growth in the total number of items in our logs. Thus
we expect the memory consumption to remain in ranges of our initial experiments
when scaling up to millions of entries.

Selection of interesting events based on absolute support count To distin-
guish between interesting and uninteresting itemsets, algorithms use the concept
of “cut off” parameter. For example, some algorithms use an absolute minimum
support count (e.g., consider an itemset frequent if it appears at least 5 times in
the dataset) while others use a relative minimum support (e.g., consider an itemset
frequent if it appears in at least 10% of total dataset entries). Some algorithms
use top k ranking of patterns (e.g., consider frequent if an itemset is in top 5
ranked patterns, and satisfies absolute minimum support). In our context, the
output produced by the algorithm is then inspected by security operators. This
implies that the number of extracted patterns directly influences usability. Thus
we believe that an absolute support count with ranking suits our context better
than a relative support count. We determine the final “cut off” parameter with
process experts (discussed in Section 4.3.1).
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An algorithm that meets most of our requirements is the FP-growth algorithm
by Grahne et al. [46].

In the next section, we describe the general concept of the FP-growth algo-
rithm.

4.2.2.1 FP-growth algorithm

The first dataset scan in an FP-growth method finds and counts all individual
items in the dataset (Figure 4.3.A). The items found are inserted into the header
table in decreasing order of their count (Figure 4.3.B). In the second scan, dataset
entries are read and inserted in the FP-tree as branches, where items represent tree
nodes. If an itemset shares some of the items with a branch previously inserted
in the tree, then this part of tree will be shared between entries. Every tree node
holds a count which represents the number of entries where the item occurs (with
considering preceding items).

After the second dataset scan, all entries are inserted in the FP-tree. The header
table holds links to tree nodes for each item. For every item in the header table a
conditional pattern base and a conditional tree are built. The conditional pattern
base represents a list of tree paths that a given item (e.g., item F) appears in. This
represents a new dataset restricted for item F (Figure 4.3.C). The main algorithm
is now repeated on the restricted dataset. As a result, a new tree of paths is built
(Figure 4.3.D ). The branches of the tree that satisfy minimum support count
represent frequent patterns (Figure 4.3.E).

4.2.3 Implementation

We have implemented a prototype of MELISSA using Java. Data aggrega-
tion operations gather and summarize data for easier analysis. We transform the
Timestamp attribute to represent usual working shifts in the company. In this way
we aggregate a timeseries attribute into a 3-value discrete format that is more
suitable for mining workload patterns. In our case, “Working shift 1” covers
all events occurring between 00:00 and 08:59hrs. “Working shift 2” includes
events occurring between 09:00 and 16:59hrs. “Working shift 3” includes events
occurring between 17:00 and 23:59hrs.

The structured text describing the attribute Object path is presented as a di-
rectory path (e.g., plant1/functional mode/street1/pumps/pump3). As described
in Chapter 3, we aggregate this attribute to 36 unique values by grouping similar
objects together (i.e., paths that differ only in the lowest level of the directory
hierarchy).
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Figure 4.3: FP growth algorithm:A) full dataset, B) building FP tree from the
dataset, C) extracted itemsets that preceed item F, D) building recursive tree from
the conditional base, E) extracted itemsets that satisfy minimum support count

Finally, for all nominal attributes in the dataset we code distinct values as our
algorithm only accepts numerical values.

In the Pattern Engine we use an algorithm for mining maximal frequent pat-
terns proposed in [46].

4.3 Benchmarks

To evaluate the effectiveness of our approach we collected a dataset of logs
generated by the ICS system of the stakeholders, which processes waste, surface
and drinking water. The 101,025 log entries were collected during a 14 day period,
and each log entry consists of at most 12 attributes. The logs were captured with
the default audit set up of the ICS system that collects events continuously through
time. In Section §4.1.2 we present attribute selection process. As a result, we use
the subset of 6 log attributes that consist of 69 unique values (i.e., items). Since
we aim at identifying the least frequent patterns, our minimal support count is
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1. This means that each unique event which occurred at least once represents a
pattern.

4.3.1 Testing MELISSA

As a proof of concept, we run our analysis in ofline mode. This means that a
user runs a “day after” analysis. For example, each day the user receives up to 20
least frequent events from the day before (normally, in the stakeholder’s facility
under analysis, a user gets approximately 7,000 unclassified events per day, so a
reduction to 20 is significant). We decide to run the analysis offline because:

• we were provided with only two weeks of system logs;

• we cannot claim that these two weeks represent a complete set of behaviours
that occur in the facility through a year;

• water-related systems are considered as slow processes (the consequences
of actions are delayed - e.g., it takes several hours to overload a tank even
while pumping at maximum speed), thus we can afford to run the analysis
with a delay.

This approach can detect silent mimicry attacks as operators have a daily overview
of events and can spot unusually infrequent user actions spread over several days
(e.g., unplanned configuration changes [18]).

4.3.2 Preliminary results

We first summarize the results of daily inspections.
MELISSA found 486 unique patterns from the 14 days long ICS log. The

number of unique patterns per day varies from 12 to 79. Also, the support count
per day per pattern varies from 1 to 1,151.

According to process experts, an acceptable level of usability is that they re-
ceive up to 20 events per day for manual inspection, with the exception that all
events with a support count of 1 should be reported. We use these requirements
to set the threshold for extracting the most interesting events. After applying
the threshold on the whole dataset, approximately 198 events (represented in 131
patterns) are labeled for inspection. During the daily inspections, the stakeholders
label 20 patterns as suspicious. After having collected additional information
about the context of the events, the stakeholders finally label 1 pattern as anoma-
lous.
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Figure 4.4: MELISSA testing, day 4 (before introducing semantic knowledge)

We now describe the context of the pattern which was labelled as anomalous.
Figure 4.4 represents the summary of results of the pattern analysis from this day.
The table consists of 7 columns. The first column represents the pattern support
count. The remaining columns represent the attributes used in the analysis. The
wavy horizontal line represents the border between interesting and uninteresting
patterns as decided by the process experts (maximum 20 events per day). On the
righthand side of the table, the stakeholders labelled each pattern as either normal
or anomalous (e.g., A1). For the anomalous pattern, circles imply why the pattern
is unusual.

Anomalous pattern A1 occurred only once (support count is 1). Node EN01
represents an engineering workstation. Shift 1 represents the night shift. For the
experts, A1 is anomalous because engineers are expected to work only during
day shifts. While inspecting the complete log we found that, except this event, all
activities performed by engineers or on engineering workstations did occur during
day shifts only. After a thorough internal inspection, the stakeholders found a soft-
ware emulator with a faulty automation script that remotely attempted to connect
to the EN01 engineering workstation. We classify this event as an example of
scripting threat (described in Chapter 3), and thus an operational mistake of an
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engineer which could have effect on system performance, as other actions could
depend on it.

4.3.3 Inclusion of process context

During the preliminary analysis of results we note a shortcoming of our ap-
proach. Currently, we assume that all events equally impact the process. In reality,
this is not true. When using the threshold of 20 events per day, our stakeholders
acknowledged that in several cases some uncritical events were within the thresh-
old while some severe (and suspicious) events were omitted due to the restriction
on the number of selected events per day. Therefore, we decide to include the
process knowledge to our algorithm and thus improve the quality of results. We
do this by implementing a loose ordering on the algorithm output. The order
is based on the process severity of specific events. By applying the new order
we perform a fine-grained tuning of results so that the semantically more severe
patterns appear within the usability threshold while less severe patterns (although
with a low frequency of occurrence) tend to appear lower on the output list (and
thus appear to be less interesting). The loose order is defined by evaluating the
semantic meaning of values of one log attribute.

To choose the suitable attribute, we perform a semi-automated preselection
of attributes. As we mentioned earlier, not all attributes are used in all entries.
Thus we assume that only attributes used in the same entries as user actions (i.e.,
performed on user workstations) are semantically important for detecting threats
identified in Chapter3.

The preselected attributes are: Type of action, ICS node and Aspect of action.
We asked the stakeholders to compile the ranking of the values for each attribute.
For example, for the attribute Type of action the stakeholders compiled the severity
ranking list:

1. AspectDirectory,

2. Network message,

3. Operation,

4. Operator action,

5. AuditEvent Acknowledge.

Here, the order of the values implies how severe that specific action for the
process is. For example, an action which includes AspectDirectory is more se-
vere than AuditEvent Acknowledge as explained in Section 4.1.1). We run several
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experiments to generate different PE outputs using the selected attributes and the
compiled lists. For each list we add weights to the attribute values. For example,
we add a negative weight to severe actions (to increase the chances that the action
is closer to the top of the pattern list) and a positive weight for noncritical actions
(to decrease the chances that the action is close to the top of the pattern list). We
then submit the results to the stakeholders. The stakeholders selected the attribute
Type of action as the one whose ranking performed the most useful results within
the extracted patterns. Thus we perform the final fine-grained re-ordering based
on the severity weights of this attribute.

Finally, we use the sum of support value and the severity weight of each pattern
entry to determine the final weighted value which is used for the final ranking of
patterns.

Figure 4.5: MELISSA testing, day 4 (after introducing process knowledge)

4.3.4 Final results

After providing the tuned results, the process experts labelled two more pat-
terns as anomalous. These patterns also appear on day 4. Figure 4.5 shows the
new ordering after introducing the process knowledge.

We now explain the context of the anomalous patterns. Anomalous patterns
A2 and A3 occur twice. Node CS01 represents the primary Connectivity Server.
Network message item typically reports problems in the network communications.
Operation item reports system responses to a user action (such as input expres-
sion error messages, condition-triggered procedures). The stakeholders evaluate
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patterns A2 and A3 as anomalous because these patterns reflect network and oper-
ational errors on the main connection backbone node (CS01). After a thorough in-
ternal inspection, the stakeholders found out that all events from these two patterns
occurred in the same minute of day 4. User Engineer 1 was logged in on CS01
during the time these errors happened. The stakeholders assume that Engineer
1 inserted a value which triggered an overflow in a device cache, which in turn
generated an error report from the system. We verify that this is the only case,
over two weeks of operations, that error messages were triggered on Connectivity
Servers. The experts classify these patterns as misconfiguration threats where the
user triggered cache overflows by inserting unexpected values. We note that this
kind of error (e.g., an error reporting the input value is out of range) could be an
indication of a masquerade attack. For example, an attacker with valid credentials
would possibly be unaware of the working ranges for specific devices. Thus he
might insert a value that would trigger a cache overflow which would be logged.

In summary, by applying our tool, the stakeholders detected and acknowl-
edged three unexpected events. All detected events relate to an undesirable engi-
neer operation on the system.

4.4 Related work

To detect anomalous behaviour in ICS systems, authors use approaches based
on inspecting network traffic [18], validating protocol specifications [21], and
analysing data readings [69]. Process-related attacks typically cannot be detected
by observing network traffic or protocol specifications in the system. We argue
that to detect such attacks one needs to analyse data passing through the system
[18, 23] and include a semantic understanding of user actions. Bigham et al. [23]
use periodical snapshots of power load readings in a power grid system to detect
if a specific load snapshot significantly varies from expected proportions. This
approach is efficient because it reflects the situation in the process in a case of an
attack. However, data readings (such as power loads) give a low-level view on the
process and do not provide user traceability data.

Salfner et al. [94] discuss the difficulties in processing logs with unstructured
format. Lim et al. [65] present an approach for failure prediction in an enterprise
telephony system. Authors propose to use context knowledge for efficient process
visualization and failure prediction.

Several researches explore pattern mining of various logs for security purposes
(e.g., alarm logs in [56, 74], system calls in [64], event logs in [50]). These authors
use pattern mining on burst of alarms to build episode rules. However, pattern
mining can sometimes produce irrelevant and redundant patterns, as shown in
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Table 4.2: MELISSA results: size of input logs, size of tool output, number of
first and second stakeholders’ inspection

Full log For inspection Suspicious Anomalous
number of
events

101,025 198 23 5

number of
patterns

450 131 20 3

[56]. We use pattern mining algorithms to extract the most and the least frequent
event patterns from ICS log.

Naedele [78] proposes to combine various log resources in a process control
environment to detect intrusions. The detection is operator-assisted. To the best
of our knowledge, only Balducelli et al. [18] analyse ICS logs to detect unusual
behaviour. There, the authors use case-base reasoning to find sequences of events
that do not match sequences of normal behaviour (from the database of known
cases). The authors analyse sequences of log events that originate from a simu-
lated testbed environment. In contrast, we analyse individual logs from a real ICS
facility.

4.5 Discussion

In this section we discuss different aspects of tool performance (such as us-
ability and timing), acknowledge limitations and present potential directions for
future work.

Usability Table 4.2 summarizes the output of the performed log analysis
through different phases. To inspect system behaviour in a currently running ICS
system, the users would have to look at individual events (a few thousand per day).
By transferring the level of analysis to patterns, instead of individual events, we
help stakeholders in aggregating log information. To discard a large number of
uninteresting patterns, we perform frequency pattern analysis. With the suggested
“cut off” threshold, our stakeholders receive for inspection 131 unique patterns
in 14 days. The number of patterns per day varies, but on average it is less than
10. Finally, after context analysis of suspicious patterns (i.e., an additional round
of analyses on suspicious patterns), we estimate that the user had to inspect in
average 11 patterns per day.
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Table 4.3: System performance results and estimation of processing annual logs

Dataset information ICS log “Accidents” Estimated
annual ICS logs

number of instances 101,025 1,000,000 2,500,000
total number of items 69 500 70
avg size of itemsets 6 45 6
Data Preparator (s) 22.7 does not apply 1,080
Pattern mining (s) 0.97 100 200
Total MELISSA
processing time (s)

23.6 does not apply 1,280

System performance Testing has been performed on a machine with an Intel
Core 2 CPU at 2.4GHz and 2Gb of memory. Table 4.3 shows runtime results of
testing. The table consists of three columns. The first column shows the results of
our testing on ICS system logs. The second column shows benchmark results of
the pattern mining algorithm by Grahne et al. [46] on the “Accidents” dataset [57].
We use these results to estimate the runtime of the expected size of system logs
over a year (shown in the third column). The complexity of the preprocessing
is O(n). Scalability of the used mining frequent patterns algorithm (in PE) is
discussed in [46]. To estimate MELISSA’s performances on an annual ICS log, we
consider benchmarks of the pattern mining algorithm of [46] on the “Accidents”
dataset. We argue that this dataset is more complex than the dataset we use, due to
the higher number of attributes. Thus, we take the results from [46] as our worst
case. Based on this, we estimate that our tool would preprocess and mine patterns
in size of approximately one year of work in the stakeholder facility in around 22
minutes.

Enhancing effectiveness and usability While performing the preliminary log
analysis, we identified two interesting and challenging directions to improve the
detection of anomalous behaviours:

1. derive an automated method to identify patterns that describe normal ICS
behaviour,

2. build a self-calibrating threshold to distinguish between regular and unex-
pected patterns.

The first direction implies that we can determine which patterns occur with
the same (or similar) frequency over a longer period of time. By knowing this, we

60



4.5. Discussion

can build a profile of normal behaviour in the ICS system over time [108]. For
example, we can determine a set of patterns that are regular in their presence
and frequency. If a pattern suddenly changes his “regularity”, this can imply
that a mimicry attack is taking place. On the other hand, if a regular pattern
becomes less frequent, this can imply that a device is malfunctioning or has been
reconfigured. Similarly, an operator can use the results of the rare pattern mining
to compile rules for alerting similar events. This way the usual alarming system
could be improves. By inferring models of normal and anomalous behaviour we
can compile rules and thus turn our tool into an online mode.

The second direction addresses the shortcoming of the manually-set output
threshold in our solution. Currently MELISSA delivers up to 20 least frequent
patterns to the security expert, by taking into account the process knowledge. We
point out that there are drawbacks in this approach. For example, during a heavy
workload day (e.g., a plant temporary increases the work flow to cover a larger
area), applying this threshold can cause that some, potentially important patterns,
are omitted. By contrast, during a low workload day, a number of semantically
uninteresting patterns might be unnecessarily reported to the expert.

Having these in mind, we performed an additional analysis of the derived
frequencies of event patterns. Our goal was to investigate if logs contain traces of
regular behaviour.

Indeed, we discovered that logs do present certain regularities. For each day
in the log, there is a “gap” which divides patterns with low and high frequency of
occurrence. For example, Figure 4.6 shows an ordered list of pattern frequencies
for day 6 of the analysed log. The first column in the table presents an ordered
list of frequency support values. At the top of the list there are patterns with low
frequency of occurrences. These patterns are then followed by patterns with a
significantly higher frequency of occurrence. Interestingly, there is a “gap” in
values between patterns with low and high frequency. We call the value that
differentiates these groups of patterns as the “natural threshold”. Together with the
stakeholders we investigate the character of patterns on the list. The stakeholders
agreed that bellow the “natural threshold” there are no events which can be in-
teresting for security purposes. We argue that these patterns represent automated
system (re)actions and periodical updates which are time-triggered and potentially
inter-dependant (one event triggers another one(s)). For example, some patterns
always occur with the same frequency over days. After analysing two weeks of
log, we found out that the pattern with the type of action Services typically occurs
420 times per one working shift (Figure 4.6). For this, we suspect that the system
is configured so that devices are sending time-triggered messages signaling the
online status.

61



Chapter 4. A Log Mining Approach for Monitoring User Activity in ICS

Salfner et al. [94] show that observed failures in logs tend to be described in
many log entries that occur consecutively forming repetitive patterns. We verified
that the patterns in our context behave differently. More specifically, the high
frequent patterns that we observed do not occur as burst of events and are spread
through the whole day.

Because of this we believe that the analysis of the log over a longer period of
time can provide interesting insights in the content of the logs. For example, we
could extract patterns that are present on every day, and occur with the same (or
similar) frequency of occurrence. These observations would define a profile of
regular ICS behaviour.

Figure 4.6: Day 6 pattern analysis

According to the stakeholders, the patterns above the “natural threshold” rep-
resent potentially interesting patterns for the inspection. These patterns are “in-
cidental”. They consist of regular (but unfrequent) user actions and potentially
suspicious events. The threshold value varies for different days in the log. Figure
4.7 shows how the “gap” between patterns of low and high frequency changes
over the second week in the log. For some days in the log (e.g., day 13 and 14) it
seems easy to determine the threshold between “incidental” and regular patterns.
However, for other days (e.g., day 11) it is hard to decide where the threshold is.
Thus we argue that the threshold value should be determined dynamically.

After inspecting the summarised ICS log, we argue that there are regularities
which are suitable for building a self-calibrating pattern output threshold. Also,
we believe that the log contains a number of patterns that describe normal plant
work. Unfortunately, at this stage we cannot confirm our intuitions in a mathe-
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Figure 4.7: Frequency of pattern occurrences over one week of ICS log

matically sound way. This is due to the fact that we only have two weeks of plant
logs, which is a short time in process life or a stabile system, such as ICS facility.

Nevertheless, we believe that these observations should be further investi-
gated. Also, we believe that the evidences found in the logs further corroborate
the paradigm that ICS facilities are stable and repetitive environments [105].

As a final observation, the mining of logs can be provided in an unstructured
manner. We remark that the ICS logs are structured better than some other types
of logs, such as telecommunication system [93], console logs [120]. However, in
Section 4.1.1 we decide to omit one attribute (Message description) from the anal-
ysis due to the redundant, unstructured and highly variable character. Although
we believe that we did not loose (significantly) on the data quality by doing so, we
acknowledge a concern that such solution in general may represent a tradeoff. A
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solution for this would be a log with structured information. Such log could easily
be parsed into various (and consistent) attributes, become computer-readable and
thus decrease the uncertainty about inferring important information.

Limitations of the approach We now describe the limitations of our approach.
Firstly, there is a threat scenario in which the ICS logs could be corrupted.

For example, attacks performed on the devices in the field can produce erroneous
input data for the ICS application and cause the generation of logs (and automated
actions) which do not reflect the real situation in the field. Also, an attacker might
manage to gain higher privileges (e.g., by exploiting a system-related vulnerabil-
ity) and then prevent recording or erase some log entries. These attacks cannot
be detected by observing ICS logs, since the log no longer represents a consistent
data resource. For detecting these kinds of attacks, a complementary analysis of
network data or field measurement is necessary.

Secondly, an important limitation of our approach is the possibility for an
attacker to evade the detection by repeating the same command a number of times.
To overcome this, we propose to enlarge the “knowledge window” and so learn
what are normal patterns of behaviour over a longer period of time, as described
in Section 4.5. Since our current log capture is limited, we could not validate
this yet. This also applies to the limitation of the currently manually-set output
threshold.

Thirdly, our approach for introducing the process knowledge highly depends
(and thus can be biased) on the experts knowledge about the specific process. We
acknowledge that we cannot do anything to overcome this fact (because attribute
values are nominal and thus human-readable only).

Finally, our approach cannot provide reasoning to the operator about the char-
acter of a suspicious event (e.g., “This event is suspicious because user A never
worked from node B”). Generally, all anomaly-based approaches have the same
limitation. This is because the model of normal (i.e., expected) behaviour is
typically described by a combination of attributes (i.e., implicitly). By inferring
rules from the model, this limitation can be partly addressed. For example, by
applying the algorithm for mining association rules to the identified patterns we
can compile rules whose interpretation is more readable to humans.

Approach generalisation In this section we discuss the possibilities and the
difficulties of applying our approach to other ICS environments. We distinguish
two different problems: (1) applying the threat analysis and (2) applying the log
processing.

First, we observe that the deviations identified during the threat analysis are
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compiled from the tailored ICS application software. Thus the set of undesirable
user actions is not universal. This is because, due to the nature of plant process,
a set of undesirable actions in one environment might only be a subset of all
undesirable actions in another environment. However, after the discussion with
the experts from four different facilities (two water treatment, one gas distribution
and one power distribution company), we conclude that all environments operate
in similar conditions (i.e., stabile number of components, operations and users,
similar communication frequency). Because of this, we believe that the proposed
approach is transferable.

Second, we believe that the log processing cannot be generalised. This is
because log content and log format may differ in applications of various vendors.
However, under the condition that the parsed log is either (1) provided by the ven-
dor or (2) inferred during the mining process, and does represent a continuous ICS
monitoring log, we hypothesize that our approach is applicable. We base this on
the knowledge that ICS typically represents a “chatty” systems whose main task is
process monitoring (and thus it continuously communicates with its components).
Therefore, we expect the logs to be continuous in other environments also.

4.6 Conclusion

We propose the MELISSA tool that extracts non-frequent patterns from the
ICS application log. These patterns are expected to be the result of an anomalous
events such a undesirable user actions. We benchmarked the tool with real logs
from a water treatment facility. Although no real security incident occurred in the
log we took into account, at least three events were labelled by the process experts
as anomalous. All detected events relate to an undesirable engineer operation on
the system. These events could not be detected by applying common log filters
targeting direct user actions. In fact, the entries were only indirectly related to
user operation (and thus represent the consequence of an action). In our context,
the actual action of activating a script that generated one anomalous event (i.e.,
A1 in Figure §4.4) occurred before of the log capture time. Similarly, other two
anomalous events (i.e., A2 and A3 in Figure §4.5) represent propagated errors on
devices caused by a legitimate user action (which was logged and initially cleared
as normal by the stakeholders).

In summary, our results show that ICS logs represent an interesting data re-
source which gives a new perspective on ICS behaviour and represents a com-
plementary view to the traditional security mitigation strategies. The obtained
results show that it is indeed possible to automate the detection of undesirable
user activities in ICS application.
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Chapter 5
N−gram Against the Machine:
On the Feasibility of the N−gram
Network Analysis for Binary Protocols

In Chapter 1 we present two attack vectors for implementing process input
manipulations (user application and network infrastructure). In Chapters 3 and 4
we analyse threats carried through user application. In this and the next chapter we
investigate network manipulations in ICS. In particular, we focus on threats that
occur through the exchange of network messages that directly influence process
operation (e.g., a network message that sends command to shut down a PLC). We
perform an analysis of process network manipulations by describing the manipu-
lations in the context of common network threats and discussing the feasibility of
suitable detection techniques.

In Chapter 2 we give a brief overview of techniques for detecting network
threats. In this context, techniques including payload-based packet analysis seem
more suitable for addressing process network manipulations in ICS. This is be-
cause an attack targeting process disruption carries the critical content in the
payload section of packets, rather than in flow statistics (since process attacks
targets application logic of the process). In fact, process manipulations represent
more covert threats than other types of content attacks, such as a data injection
attack. This is mainly because the data injection attack carries content that is
not legitimate (i.e., the injected code), while attacks targeting process disruption
only carry legitimate content (e.g., commands that will misuse legitimate process
operation). Distinguishing between malicious and benign message content is thus
harder in case of process manipulations.

Most of the current commercial detector systems use a detection model that
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leverages signatures, i.e., they recognize an attack when it matches a previously
defined signature. An anomaly-based detector raises an alert when the observed
input does not match the behaviour that was previously observed. The main dis-
advantage of anomaly-based systems is a high rate of false positive alerts [101].
In principle, however, anomaly-based detectors have one great advantage over
misuse-based ones: they can detect threats for which there exists no signatures
yet, including zero-day and targeted attacks. Targeted attacks are so complex
and evasive that by definition they cannot be detected by misuse-based systems
(false negative problem). An example of such targeted, and process, threat is
Stuxnet [77]. This malware targeted specific installations for uranium enrichment
to modify, and damage, the enrichment process.

Process threats occurring through network manipulations display a higher di-
versity of possible forms compared to other network manipulations. For example,
attack exploitations in process threats are specific for each different process envi-
ronment, while the exploitation of an operating system (OS) related to a limited
number of OS versions. Therefore, creating a comprehensive set of signatures for
process manipulations is probably infeasible. More generally, given that misuse-
based systems are ineffective against targeted and zero-day attacks and that most
likely there exists no signature yet for the great majority of the attacks that one
can buy on the black market, an effective anomaly-based detector remains the
most promising solution.

Problem Although the field of anomaly detection is well established in research,
to date there are only few actual deployments of anomaly-based detectors world-
wide. A common reason used for explaining this is that such systems show
poor performance with respect to false positive rate in real-life environments.
More generally, Sommer and Paxson [101] argue that many machine learning ap-
proaches (which are typically used in anomaly-based intrusion detection systems)
are not effective enough for real-life deployments.

To address RQ3, this chapter sheds new light on the detection capabilities
of anomaly-based detectors for payload inspection. In particular, we assess the
performance of selected engines employing a form of n−gram packet content
analysis. For performing our benchmarks we choose state-of-the art algorithms
that are conceptually different in the way the content analysis is performed. Un-
fortunately, our choice is somewhat limited by the availability of implementations
and the level of details in algorithms descriptions. As a test set, we use attacks
that are: (i) publicly available and (ii) target ICS environments. Although the
obtained attack set does not include process manipulations, we perform an in-
depth analysis of available attacks to understand the capabilities and estimate the
performance of the presented solutions against the process manipulations as well.
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The assessment focuses on binary protocols, a family of network protocols widely
utilised in automated environments such as ICS. In practical terms, the network
payload of a binary protocol is more compact when compared to text protocols,
often unreadable by a human and may resemble to attack payloads (since malware
packets often consist of binary fragments as well). Due to these reasons the
challenge of detecting attacks in binary-based data is typically greater than in
text-based data.

Contribution The main contributions of this chapter are:

• we perform thorough benchmarks using real-life data from binary-based
protocols, which have been targeted lately by high-impact cyber attacks,

• we analyze and discuss the reasons why certain attack instances are (not)
detected by the chosen approaches,

• we discuss the feasibility of deploying such approaches in real-life environ-
ments, in particular w.r.t. the false positive rate, an issue that is insufficiently
discussed by authors in their work (except in works like [62]).

5.1 Preliminaries

In this section we introduce the concepts and terminology that will be used in
the remainder of the chapter. In particular, we present (i) a survey of plausible
attacks carried out on Modbus and (ii) a description of the state-of-the art content
detectors.

5.1.1 Classification of network manipulations on Modbus TCP

To understand the specifics of different types of network attacks, we survey
plausible attacks carried out in the context of Modbus protocol from literature. We
group the attacks according to the targeted level of the OSI model [8] (presented
in the first column of Table 5.1) and gained impact (e.g., system/process integrity,
availability and confidentiality, presented in the second column of Table 5.1).

Attacks on the Transport level imply manipulations of message arrival and
error checking mechanisms. Here, an attacker needs the knowledge about a vul-
nerability of the TCP stack implementation in a particular system. In the context
of Modbus TCP, a crafted packet with different length than the defined value in
packet parameters caused a buffer overflow [137]. This attack, targeting data
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integrity, triggered a vulnerability in an implementation of Modbus server and
caused server failure.

To perform an attack on the Session level, an attacker hijacks the TCP session
and performing an arbitrary set of commands. To perform an attack, an attacker
needs the knowledge about protocol weaknesses (e.g., lack of authentication) or
implementation flaws (e.g., inconsistent protocol specification compliance). Un-
fortunately, most ICS protocols today still lack security features (e.g., such as
authentication or encryption) and robust protocol implementation (e.g., Byres et
al. [29] show that PLCs behave unreliably on various fuzzing attempts). This
makes them an easy target for the presented attacks. There are several known
attacks targeting systems through the session level in Modbus TCP. For example,
an attacker may used a man-in-the middle attack to perform an unauthorised use of
administrative commands that will restart the TCP connection and thus influence
system availability [128]. Similarly, an attacker may intercept the communication
to explore the implemented functionalities (e.g., probe various function codes and
listen for responses and exceptions [128]). This information can be used as a
reconnaissance mechanism for crafting next stages of the attack.

Attacks on the Application level commonly refer to malware activity which,
by exploiting a vulnerability in application logic, gains control over the system
(e.g., manipulations of user interaction or application programs such as Adobe,
Ms Office, etc.[125]). For an ICS, the most interesting misuse on the application
level refers to the attacks targeting process disruptions. The attacks represent an
activity that is legal at the protocol level, yet violates semantic constraints that a
process imposes, including both semantically incorrect messages (e.g., conflicting
commands) and operations that lead the site into an undesirable state (e.g., insert-
ing inverted parameters [40] or a command to open a pump when it must remain
shut). Here, the knowledge requirements for performing an attack are higher than
for any other OSI level. More specifically, an attacker needs to be able to interpret
the application semantics of a specific protocol. By knowing what kind of data
is exchanged and how it is encoded, he can craft network messages to influence
application program and thus disrupt ICS process. In the context of Modbus,
Caracano et al. [30] present a proof-of-concept malware that aims at diverting
process flow in ICS. The malware performs simple value manipulations and gen-
erates Modbus packets that constitute of legitimate commands. More specifically,
the malware tracks the status of current values and crafts packets that will invert
coil values or set registers to their maximum/minimum allowed value according to
the protocol specification. Such attacks can potentially lead to fatal consequences
on critical process variables. However, the precise effect on the process remains
specific to each environment. The most relevant example of a targeted process
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Table 5.1: Summary of attacks against Modbus implementations

OSI Level Impact Attack description Example

Transport
System integrity Corrupt integrity by

adding or removing
data to the packet.

Craft a packet that has a different
length than defined in parameters or
is longer than 260 bytes (imposed by
the spec.) [128].

System confi-
dentiality

Explore implemented
functionalities in PLC.

Probe various FC and listen for re-
sponses and exceptions [128].

System integrity Exploit lack of
specification
compliance.

Manipulate application parameters
within spec. (e.g., offset) or outside
of spec. (e.g., illegal FC) [29, 128,
137].

Session
Perform unauthorized
use of an
administrative
command.

Use FC 8-0A to clear counters and
diagnostics audit [128].

System
availability

Perform MITM to
enforce system delay.

Send exception codes 05, 06 or FC
8-04 to enforce Listen mode [128].

Perform unauthorized
use of administrative
command.

Use FC 8-01 to restart TCP commu-
nication [29, 128].

Process
confidentiality

Explore structure of
memory map.

Probe readable/writable points and
listen for exceptions to under-
stand process implementation de-
tails [128].

Application Process integrity Perform unauthorized
change of process
variable.

Write inverted read values. Write
maximal or minimal data values al-
lowed per data point [30]. Tamper
measurements to trigger undesirable
reaction [43].

FC: Function code defining the type of functionality in Modbus.
MITM: Man-in-the-middle attack.

attack is Stuxnet [77]1. By attacking PLCs, this malware crossed a boundary as
the first publicly known malware that injected semantically meaningful commands
into a highly-specific plant environment.

5.1.2 Description of analysed systems

In the remainder of the section we introduce four algorithms that we select
for testing: PAYL, POSEIDON, Anagram and McPAD. These algorithms are

1Although the attack was not implemented on Modbus (but on Profinet), the concept of the
attack is transferable.
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1) general-purpose enough to be used with multiple application-level protocols,
2) proposed by often cited papers in the IDS community or 3) claiming to improve
over the previous ones. Each algorithm requires as an input only the incoming
network traffic, and does not perform any correlation between different packets.

5.1.2.1 PAYL

Wang and Stolfo in [115] present their 1-gram-based payload anomaly de-
tector (PAYL). The system detects anomalies by combining 1-gram analysis al-
gorithm with a classification method based on clustering of packet payload data
length. The system employs a set of models: a model stores incrementally the
resulting values of the 1-gram analysis for packet payloads of length l, thus each
payload length has a different model. Each model stores two data series: mean
byte frequency (i.e., relative byte frequencies span across several payloads of
length l) and byte frequency standard deviation for each byte value (i.e., how
relative byte frequencies change across payloads). During the detection phase,
the same values are computed for incoming packets and then compared to model
values: a significant difference from the model parameters produces an alert.

When PAYL fails to detect an attack Fogla et al. [38] show that PAYL’s de-
tection can be evaded by mimicry attacks. PAYL is vulnerable to mimicry attacks
since it models only 1-gram byte distributions. By carefully crafting an attack
payload, an attacker is able to deceive the algorithm with additional bytes, which
are useless to carry on the attack, but match the statistics of normal models.

5.1.2.2 POSEIDON

Bolzoni et al. present POSEIDON [25], a system built upon a modified PAYL
architecture. PAYL uses the data length field for choosing the right model. By
contrast, POSEIDON employs a neural network to classify packets (and thus
choose the most similar model) during the preprocessing phase. The authors
use Self-Organizing Maps (SOMs) [61] to implement the unsupervised clustering.
First, the full packet payload is analyzed by the SOM, which returns the value of
the most similar neuron. That neuron model is then used for the calculation of
byte frequency and standard deviation values, as in PAYL.

When POSEIDON fails to detect an attack Differently from PAYL, POSEI-
DON is more resilient to mimicry attacks due to the combination of SOM and
PAYL. The SOM analyzes the input by taking into consideration byte value at
i-th position within the whole payload. Thus, extra bytes inserted by the attacker
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would be taken into consideration as well, resulting in a different classification
than normal traffic. However, the granularity of the classification done by the
SOM is coarse. Thus, if the attack portion of the sample payload is small enough,
then the sample could be assigned to one of the clusters containing models of reg-
ular traffic, and may go unnoticed because of a similar byte frequency distribution.

5.1.2.3 Anagram

Wang et al. [113] present Anagram. The basic idea behind Anagram is that
the usage of higher-order n−grams (i.e., n−grams where n > 1) helps to per-
form a more precise analysis. However, the memory needed to store average
and standard deviation values for each n−gram grows exponentially (256n, where
n is the n−gram order). For instance, 640GB of memory would be needed to
store 5-grams statistics. To solve this issue, the authors propose to use a binary-
based n−gram analysis and store the occurred n−grams efficiently in a Bloom
filters [24]. The binary-based approach implies a simple recording of the presence
of distinct n−grams during training. Since less information is stored in the mem-
ory, it becomes possible to effectively use higher-order n−grams for the analysis.
Authors show that this approach is more precise than the frequency-based analysis
(e.g., used in PAYL) in the context of network data analysis. This is because
higher-order n−grams are more sparse than low-order n−grams, and gathering
accurate byte-frequency statistics becomes more difficult as the n−gram order
increases. When in detection mode, the current input is ranked using the number
of previously unseen n−grams.

When Anagram fails to detect an attack There are two main reasons why
Anagram may fail to detect attack attempt. Firstly, the Bloom filter could saturate
during training. This is because the user may underestimate the number of unique
n−grams and allocates a small Bloom filter, during testing any n−gram would be
considered as normal. Secondly, Anagram will likely miss the detection if the
attack leverages a sequence of n−grams that have been observed during testing.

5.1.2.4 McPAD

Perdisci et al. present “Multiple-classifier Payload-based Anomaly Detector”
(McPAD) [84] with a specific goal of an accurate detection of shell-code attacks.
The authors use a modified version of the 2-gram analysis, combined with a group
of one-class Support Vector Machine (SVM) classifiers [111]. The 2-gram anal-
ysis is performed by calculating the frequency of bytes that are ν positions apart
from each other. By contrast, a typical 2-gram analysis measures the frequency
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of 2 consecutive bytes. By varying the parameter ν, McPAD constructs several
representation of the payload in different feature spaces. For example, for ν=0..m,
McPAD builds m different representations of the packet payload. When in testing
mode, a packet is flagged as anomalous if a combination (e.g., majority) of SVM
outputs acknowledge the payload as anomalous.

When McPAD fails to detect an attack By design, McPAD tries to give a
wide representation of the payload (i.e. add more context by constructing byte
pairs that are several positions apart). This may represent a difficulty in two
cases. First, this is an approximate representation and that may imply a poorly
described payload in case of slight differences between the training sample and
an attack [15]. This may lead to a high false positive rate and a low detection rate.
Secondly, McPAD uses different classifiers that have to come into an “agreement”
to decide if a particular packet is anomalous or not. A problem may arise when,
due to an approximate payload representation, several classifiers are misled by the
byte pair representation and result in outvoting “correct” classifiers. In such case,
the system might miss the detection.

5.2 Approach

We believe that one of the main reasons for poor performance of anomaly-
based NIDS lies in the intrinsic limitation of commonly applied algorithm for
content analysis: n−gram analysis. Since performing a comprehensive test to
verify the ability of an IDS of identifying (all) attacks and to spot its weaknesses
is unfeasible [70], we proceed to experimentally address our claim. We present a
comparative analysis and evaluate the effectiveness of anomaly-based algorithms
that analyse network payloads by using some form of n−gram analysis.

To verify the effectiveness of different algorithms we execute a number of
steps: 1) collect network and attack data, 2) obtain a working implementation of
each algorithm, 3) run the algorithms and analyse the results.

Obtaining the data In general, optimal conditions for evaluating the perfor-
mance of an IDS consist of running tests on unprocessed data from real net-
works [16]. Thus we first collect real-life data from different network environ-
ments, which are currently being operated. The past research is typically focused
on benchmarking the algorithms with the HTTP protocol, although the authors do
not explicitly restrict the scope of their algorithms to this protocol. We focus on
the analysis of binary protocols. In particular, we analyse an example of a binary
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protocol found in a typical LAN (such as a Windows-based network service) and
an example of a binary protocol typically found in an ICS.

Windows is heavily used OS in the world, and every instance runs by de-
fault certain network services that are often used within LANs. For instance,
the SMB/CIFS protocols [131] are used to exchange files between two comput-
ers, while other services (e.g. RPC) run on the top of it to provide additional
functionalities. Although Windows systems are usually secured against abuses
of such service from the Internet, corporate users take advantage of this feature
quite often. An attacker that would develop an exploit for a zero-day vulnerability
leveraging this protocol could potentially affect a large number of systems. In the
last decade several malware [77, 126] exploited SMB/CIFS to operate botnets and
carry on other malicious activities.

We collect attacks in two different datasets. Our focus is on data injection
attacks that have a high impact (see [133]).

Obtaining the implementations Secondly, to carry out the benchmarks, we
need working prototypes of all the algorithms we want to test. We could obtain
an implementation of POSEIDON and McPAD from the authors. For the other
two algorithms, we write our own implementation based on the description found
in the papers. To be sure that our implementations are correct, we verified that
our results resemble the ones shown in the benchmarks of the respective original
papers.

Analysing the results The last step of our evaluation is the analysis of results
with a focus on the identification of reasons for (un)successful detection.

5.2.1 Evaluation criteria

The effectiveness of an IDS is mainly determined by the detection and false
positive rates. The detection rate indicates the number of attack instances correctly
identified by the IDS (true positives), w.r.t. the total number of attack instances.
The false positive rate indicates the amount of samples that the IDS flags as at-
tacks when they are actually not. False positives are a major limiting factor in
this domain because, differently from other classification problems, their cost is
high [17].

Detection rate To provide a detailed overview of the detection capabilities of
each algorithm, we consider both the number of correctly detected packets in the
attack set and the number of detected attack instances. In fact, not all attacks show
malicious payload within one single packet. Although an algorithm that exhibits

75



Chapter 5. N−gram Against the Machine

a high per-packet detection rate has a higher chance of detecting attack instance,
we do not argue that a low per-packet detection rate implies an equivalently low
per-instance detection. In summary, we consider an alarm as a true positive if the
algorithm is able to trigger at least one alert packet per attack instance.

False positive rate The usual approach to document the performance of an IDS
is to relate the false positive rate with the detection rate. This is done by drawing
so called Receiver Operating Characteristic (ROC) curves. The benchmarks from
the original papers of the proposed algorithms express the false positive rate as
a percentage. However, such number has little meaning to the final users. A
better way to express the false positive rate is in terms of the number of false
positives per time unit. We establish two different thresholds: 10 false positives
per day and 1 false positive per minute. The former value is proposed in [68] as
a reasonable number for a user to maintain trust in the system. The latter is, in
our opinion, the highest rate at which a human can verify alerts generated by an
IDS. It is worth noting that anomaly-based IDSes, unlikely misuse-based ones, do
not provide information regarding the attack classification. Thus, the user might
require additional time to investigate whether the alert is a true or a false positive.
For each data set we compute these two thresholds based on the number of actual
packets included in the verification sub data set after having split the original data
set.

Since we do not make the data sets attack-free before hand, and thus some
“noise” could have been collected as well, we need a way to verify that the alerts
generated while processing the verification sub data set are actual false positives.
To do that, we use a misuse-based IDS (the popular open-source Snort), which is
automatically fed with the network stream for which an alert was triggered during
verification.

Commonly, in IDS evaluation papers the authors stop their analysis by re-
porting on the true and false positive rates. We believe that inspecting which
attacks are detected, which are not detected and why, would provide useful infor-
mation to fully understand when an algorithm could perform better than others
(and for which threats). This kind of analysis can provide insights for future im-
provements. Finally we aim at evaluating the effectiveness of combining diverse
algorithms to boost the detection rate.

5.3 Description of network data

In this section we describe in detail the background data set and attack data
sets that will be used for benchmarking the detection algorithms. The chosen data
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sets comprise network traffic taken from two environments. We use the publicly
available vulnerabilities and high impact exploits to run three rounds of tests.

First, to validate that the implemented and tuned algorithms have comparable
detection and false alert rates with the tests reported in the research papers, we
perform initial testing with common (HTTP) test data sets. Second, to assess
the detectors we use different content attacks coming from IT environment (LAN
network data with SMB-based content attacks). Third, we use ICS environment
to test known Modbus attacks. Based on the latter two analyses we discuss the
capabilities of the known detectors to capture process attacks.

We now describe the used datasets.

5.3.1 Data sets for implementation verification

DSDARPA The DARPA 1999 data set [68] is a standard data set used as ref-
erence by a number of researchers, and offers the possibility of comparing the
performance of various systems. Despite being anachronistic (and criticized in
several works [72]), three of the algorithms we test have used this data set to
compare their performance to previous works. Thus, we use the DARPA data set
to verify that our own implementations of PAYL and Anagram offer comparable
detection and false alert rates with the tests reported in the research papers of the
detection algorithms.

The DARPA 1999 data set is a synthetic set of network dumps (thus it does not
comply with our requirements). The data generated for the evaluation span over 5
weeks and can be divided in training and testing data. Training data (week 1 and
3 of traffic) is intended to be completely free of attacks, while testing data (week
4 and 5) is intended to consist entirely of attack scenarios. An additional week of
traffic (week 2) is provided with labelled attacks, i.e., attacks are clearly marked
with temporal timestamps and classified. The process used to generate training
data is not deeply presented. The data is claimed to be similar to that observed
during several months of sampling data from a number of Air Force bases (see
Lippman et al. [68]), but the data set lacks of statistics to evaluate and establish
similarities.

ASHTTP This attack set is presented by Ingham and Inoue in [54], and has
been used also by the authors of McPAD for their benchmarks. It comprises 66
diverse attacks, including 11 shellcodes, which were collected from public attack
archives. The attacks are instances of buffer overfows, input validation errors
(other than buffer overflows), signed interpretation of unsigned values and URL
decoding errors.
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5.3.2 LAN data set

DSSMB This data set includes network traces from a large University network.
Samples have been collected through a week of observations. The average data
rate of incoming and outgoing packets is ∼40Mbps.

In particular, we focus on the SMB/CIFS protocol, and even more on
SMB/CIFS messages which encapsulate RPC messages (see Section 5.4.2). The
average packet rate for this traffic is ∼22/sec. Based on this we calculate the false
positive rate threshold for obtaining 10 alerts per day as 0.0005% and the one for
obtaining 1 alert per minute as 0.073%.

ASSMB This attack data set is made of seven attack instances which exploit four
different vulnerabilities in the Microsoft SMB/CIFS protocol: ms04-011, ms06-
040, ms08-067 and ms10-061 [127].

ms04-011 is a vulnerability of certain Active Directory service functions in
LSASRV.DLL of the Local Security Authority Subsystem Service (LSASS) of
several Microsoft Windows versions. We select this vulnerability because it is
used by the worm Sasser [135]. We collect two different attack instances for
this vulnerability. One trace is downloaded from a public repository of network
traces [129] where the attack payload is split in three fragments and contains a
shellcode of 3320 bytes. The shellcode is made of a number of NOP instructions
(byte value 0x90), followed by valid x86 instructions and a sequence of the
ASCII character ‘1’. The second instance is generated through the Metasploit
framework [132]. The attack payload is split into three fragments and contains a
shellcode of 8204 bytes to remotely launch a command shell in the victim host.

m06-040 is a vulnerability of the Microsoft Server RPC service. In particular,
the vulnerability allows a stack overflow during the canonicalization of a network
resource path. The specified path can be crafted to execute arbitrary code after the
exploitation. We collect the attack instance from a public repository of network
traces [129].

ms08-067 is a vulnerability of the Microsoft Server RPC service which ex-
ploits a similar weakness as the one described in m06-040, with the same effects.
We select this vulnerability because it is used by Conficker [126] and Stuxnet,
two high-impact pieces of malware. We collect two different attack instances for
this vulnerability. One instance was downloaded from a public repository [129],
while the other one was generated by us using the metasploit framework. In the
first instance the payload contains a shellcode of 684 bytes, while in the second
instance the shellcode is 305 bytes long only.

ms10-061 is a vulnerability of the PrintSpooler RPC service. When printer
sharing is enabled, the PrintSpooler service does not properly validate spooler
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access permissions. Remote attackers can create files in a system directory, and
consequently execute arbitrary code, by sending a crafted print request over RPC.
We select this vulnerability because it was used by Stuxnet to successfully propa-
gate in both regular backoffice LANs as well as in industrial control system envi-
ronments. We collect two different attack instances for this vulnerability, both of
them are generated through the metasploit framework. In one instance the attack
payload is a binary file (the meterpreter executable), which accounts for 69832
bytes spanned over 18 fragments, while in the other instance the payload consists
of a DLL file, which accounts for 1735 bytes spanned over three fragments.

5.3.3 ICS data set

DSModbus To test the anomaly detection algorithms on ICS networks we collect
a data set of traces from the industrial control network of a real-world plant over
30 days of observation. The average throughput on this network is ∼800Kbps.

This data set includes network traces of one of the most common protocols
used in such environments, Modbus/TCP [119]. Modbus was developed more
than 30 years ago initially as a protocol used in serial channels, while the TCP/IP
variant was introduced approximately 15 years ago to allow the serial protocol
to be used in TCP/IP networks. Modbus/TCP features basic instructions and
functions. Its structure is relatively simple, and operators of critical infrastruc-
tures usually repeat a limited set of operations, thus reducing the variability of
the transmitted data. In fact, the maximum size of a Modbus/TCP message is
256 bytes. Thus, a Modbus/TCP message is always contained in one single TCP
segment. Observations on DSModbus reveal that the average size of Modbus/TCP
messages is 12.02 bytes (in DSSMB it is 535.5 bytes). In the observed DSModbus,
the number of duplicated TCP segment payloads is high (96.08%), in contrast
to the other data set (e.g., DSSMB has 31.37%). In other words, more than 9
TCP segments out of 10 carry a Modbus/TCP message that is a perfect duplicate
of some other message already observed. The average packet rate for Modbus
incoming traffic is ∼96/sec. Based on this observation, we calculate the false pos-
itive rate threshold for generating 10 alerts per day as 0.00012% and the threshold
for generating 1 alert per minute as 0.017%.

ASModbus The attack data set is made of 163 attack instances, which exploit
diverse vulnerabilities of the Modbus/TCP implementations. There are fewer
publicly known attacks against Modbus/TCP devices than SMB/CIFS attacks.
Network traces for a good deal of these attacks can be downloaded from the web-
site of an ICS security firm [128]. The exploited vulnerabilities can be categorised
in two large families: unauthorised use and protocol errors.
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Unauthorized use consist of two attack types: (a) “weird” clients talking to
the Modbus server and (b) messages used only for diagnostics and special mainte-
nance, which are thus seldom seen in the network traffic. By issuing these special
messages, the attacker is often able to achieve a complete take over of the device.

Protocol errors are mainly fuzzing attempts against a device. For instance,
these attacks are carried out by sending data not compliant with the protocol
specifications (e.g. a too short protocol data unit). The outcome of such attacks
can range from the unavailability of the device up to the control of the execution
flow (see Cui and Stolfo [33] for a more detailed discussion).

5.4 Benchmarks

In this section we show the results of our benchmarks and compare the perfor-
mances of the algorithms for each data set.

Setting up and tuning the algorithms For each dataset we split the background
traffic into two sets, one for training and one for verification. The splitting is
performed randomly, by processing the network streams. Each split sub data set
accounts for nearly 50% of the original data. The training sub data set is used to
build the detection profiles for each algorithm, while the verification one is used
to evaluate the number of false positives raised by the algorithm. Finally, we run
the algorithms on the attack data set.

For performing the benchmarks we need to set up several starting parameters
for each algorithm.

PAYL As introduced in the original paper, the size of the PAYL model can
be reduced by merging profiles when their number becomes too large. For each
data set we perform several runs using different values of the merging parameter.
Finally, for the DSDARPA data set we set the parameter value to 0.12. For the
remaining data sets we do not merge profiles, as the total number of profiles
remains low (up to 150, compared to 480 in DSDARPA). As the “smoothing
factor”, we use the same value (0.001) suggested by Ingham and Inoue in [54].
We apply the algorithm to individual TCP segment payloads.

Anagram For each data set we run tests with different n−gram sizes (n size of
3, 5, 7, 9 and 12). Since we obtain the best results with the 3-grams, we set this as
the standard n−gram size. As in the original paper, we set the size of the Bloom
filter to 2MB. We do not use the “bad content model” proposed by the authors
because it would be ineffective as they build it with virus samples, and our attack
data sets do not include viruses.
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POSEIDON For all tests we use a SOM with fixed number of neurones (96).
Also, we set the number of instances for training the SOM at 10000.

McPAD For all tests we use the best performing parameters as proposed
in [84]. Those are: number of clusters k = 160, desired false positive rate for
each SVM classifier set to 1% and maximum probability as combination rule for
the output of the SVM classifiers.

For each algorithm we vary the value of the threshold to observe how the false
positive and detection rates change.

5.4.1 Implementation verification

We use this test to verify that the re-implemented algorithms behave as ex-
pected in terms of detection and false positive rates (as described in research
papers). To verify the correctness of our implementations we run initial tests using
publicly available test sets (i.e., DSDARPA data set for training and ASHTTP for
testing).

For training we choose DSDARPA as that was the only common data set used
in 3 original algorithm benchmarks. Instead of using DARPA attack dataset,
we use the ASHTTP for testing because: (1) the original attack instances of the
DARPA data set do not reflect at all modern attacks, and (2) not all the algorithms
have been benchmarked against the DARPA attack set (Anagram is the exception).
Thus, it would be impossible to faithfully reproduce the previous experiments. In
Table 5.2 we summarize the results of this first round of benchmarks: for each
algorithm we report the highest detection rate we achieve, and the corresponding
false positive rate.

Table 5.2: Test results on DSDARPA and testing with ASHTTP

FPR DR
(packet-based) (packet-based)

PAYL 0.00% 90.73%
POSEIDON 0.004% 92.00%
Anagram 0.00% 100.00%
McPAD 0.33% 87.80%

All the algorithms show high detection and low false positive rates. When
compared to the original papers, these results match our expectations, thus we can
be reasonably sure that our re-implementations are not (too) dissimilar from the
original ones in terms of completeness and accuracy.
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5.4.2 Tests with LAN data set

We first perform the test on DSSMB by using all the SMB/CIFS packets di-
rected to the TCP ports 139 or 445. However, none of the algorithm can perform
well enough under these conditions. For example, the Bloom filter used by Ana-
gram saturates with 3-grams during the training phase. Consequently, no attack
instance is further detected, even with the lowest threshold. Increasing either the
size of n−grams or the size of the Bloom filter cannot solve the issue of undetected
attacks. In the former case, the Bloom filter saturates even with fewer training
packets. In the latter case, even with a filter size of 20MB (10 times bigger than
the size suggested by the authors) which does not cause full saturation, no attack
is detected with false positives rates lower than 4%. Other algorithms exhibit
similar detection problems, with at least one attack instance detected only with
false positive rates higher than 1%.

This result alone would imply a complete failure for this protocol. We believe
the reason why the algorithms poorly perform on SMB/CIFS is because of the
high variability of the analyzed payload. In fact, SMB/CIFS is mainly used to
transfer files between Windows computers. Such files are contained in the request
messages processed by the algorithms and can be of any type, from simple text
files to compressed binary archives or even encrypted data.

We observe that all attack instances publicly available exploit vulnerabilities
of the Windows RPC service by leveraging SMB/CIFS, which can encapsulate
RPC messages. Thus, we re-run the test on a filtered data set. In particular,
we extract only SMB/CIFS messages that carry RPC data (∼1% of the original
SMB/CIFS traffic). By doing this, we are implicitly providing a semantical hint
to the algorithms. We expect this to improve both the detection and false positive
rates.

The results of this round of tests are summarized on Table 5.3. Anagram
achieves a 0.00% false positive rate while still being able to detect 3 attack in-
stances. Anagram also achieves the lowest false positive rate among the tested
algorithms when detecting all of the attack instances, a rate lower than the ad-
justed false positive of 1 alert per minute. McPAD generates the highest false
positive rate, and it is impossible to lower that no matter which combination of
parameters we choose. We believe that the main reason for this lies in the fact
that McPAD implements the approximate payload representation, that, in such
variable conditions, provides poor payload description.

There is no need to evaluate how a combined approach, i.e., using all the al-
gorithms simultaneously, would perform since Anagram is already outperforming
the other algorithms.
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Finally, we process all false positives with SNORT to verify that none of them
is actually a true positive.

Table 5.3: Test results on DSSMB and testing with ASSMB

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.004% 1.43% 2/7
0.007% 3.35% 3/7
0.01% 6.65% 4/7
0.05% 23.92% 5/7
4.41% 66.51% 6/7
11.05% 85.02% 7/7

POSEIDON

0.007% 6.22% 2/7
0.007% 10.04% 3/7
1.27% 37.32% 4/7
2.28% 50.23% 6/7
3.32% 58.37% 6/7
5.39% 66.98% 7/7

Anagram

0.00% 0.95% 2/7
0.00% 22.48% 3/7
0.02% 37.32% 7/7
2.34% 55.50% 7/7
8.39% 63.64% 7/7

McPAD

19.02% 60.38% 7/7
20.62% 60.86% 7/7
22.31% 61.35% 7/7
27.61% 65.21% 7/7
97.39% 90.00% 7/7

Analysis of detected and undetected attacks By considering which attack in-
stance is detected the most, we observe that all the algorithms can detect an attack
instance exploiting the ms04-011 vulnerability. In particular, of the three segments
composing the attack payload, only one is always identified as anomalous. Here
we report a fragment of it:

0230 59 35 1c 59 ec 60 c8 cb cf ca 66 4b c3 c0 32 7b Y5.Y.‘....fK..2{
0240 77 aa 59 5a 71 76 67 66 66 de fc ed c9 eb f6 fa w.YZqvgff.......
0250 d8 fd fd eb fc ea ea 99 da eb fc f8 ed fc c9 eb ................
0260 f6 fa fc ea ea d8 99 dc e1 f0 ed cd f1 eb fc f8 ................
0270 fd 99 d5 f6 f8 fd d5 f0 fb eb f8 eb e0 d8 99 ee ................
0280 ea ab c6 aa ab 99 ce ca d8 ca f6 fa f2 fc ed d8 ................
0290 99 fb f0 f7 fd 99 f5 f0 ea ed fc f7 99 f8 fa fa ................
02a0 fc e9 ed 99 fa f5 f6 ea fc ea f6 fa f2 fc ed 99 ................
02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
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02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
...
0580 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
0590 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
05a0 90 90 90 90 90 90 90 90 ........

We verify that this particular segment is flagged as anomalous by all the algo-
rithms because of the long sequence of the byte value 0x90, which corresponds
to the NOP instruction of the shellcode. Although there are individual bytes with
value 0x90 in the training set, we verify that there is never a sequence of three
bytes with this value. This explains why Anagram can identify as anomalous
a vast majority of the 3-grams in the aforementioned payload. Also PAYL and
POSEIDON will identify an anomalous byte frequency distribution, in which the
byte value 0x90 peaks above all the others. Similarly, the fact that the payload
consists of continuous 0x90 bytes implies that McPAD classifiers will be able to
recognize the peak in the frequency of these 2-grams.

We also observe that both PAYL and POSEIDON fail to detect one attack
instance exploiting the ms06-040 vulnerability, when the false positive rate is
below 2%. A fragment of the payload of such attack instance is reported below:
0170 52 df 47 2c 0c 86 de fe fe b9 f6 68 ae 23 4f a5 R.G,.......h.#O.
0180 81 53 79 43 fc fc 31 58 af ad 6e 30 29 f7 50 8a .SyC..1X..n0).P.
0190 4a e1 78 43 30 6a 55 75 58 72 6e 4f 42 48 4c 42 J.xC0jUuXrnOBHLB
01a0 36 34 33 4a 51 38 69 42 52 37 39 46 59 49 79 71 643JQ8iBR79FYIyq
01b0 7a 62 38 48 4e 47 68 48 7a 52 59 6e 38 76 55 78 zb8HNGhHzRYn8vUx
01c0 41 4d 57 61 57 66 68 30 48 4c 30 61 76 73 61 6b AMWaWfh0HL0avsak
01d0 7a 56 65 4d 32 42 76 64 64 43 64 41 45 75 75 53 zVeM2BvddCdAEuuS
01e0 4f 7a 41 4f 70 6b 30 37 4c 45 70 66 73 44 73 49 OzAOpk07LEpfsDsI
01f0 66 57 39 65 31 59 45 6e 43 38 52 62 76 57 65 50 fW9e1YEnC8RbvWeP
0200 59 63 54 77 7a 63 32 4f 50 4f 52 6b 71 4c 33 4b YcTwzc2OPORkqL3K
0210 65 7a 69 62 72 57 4e 6d 58 33 4b 56 70 50 6c 45 ezibrWNmX3KVpPlE

This fragment contains a large majority of printable characters, thus one would
expect that, since RPC over SMB/CIFS messages are mostly binary, a detection
algorithm based on byte frequency distribution would be able to detect such pay-
load. However, RPC over SMB/CIFS is also used to feed remote print spoolers
with files to print. For example, in the filtered data set used for training we can
identify the following fragment which is part of a PDF file sent to the spooler:
0200 09 2f 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 ./@opStackLevel
0210 40 6f 70 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 @opStackLevel 1
0220 61 64 64 20 64 65 66 0d 0a 09 09 63 6f 75 6e 74 add def....count
0230 64 69 63 74 73 74 61 63 6b 20 31 20 73 75 62 0d dictstack 1 sub.
0240 0a 09 09 40 64 69 63 74 53 74 61 63 6b 43 6f 75 ...@dictStackCou
0250 6e 74 42 79 4c 65 76 65 6c 20 65 78 63 68 20 40 ntByLevel exch @
0260 64 69 63 74 53 74 61 63 6b 4c 65 76 65 6c 20 65 dictStackLevel e
0270 78 63 68 20 70 75 74 0d 0a 09 09 2f 40 64 69 63 xch put..../@dic
0280 74 53 74 61 63 6b 4c 65 76 65 6c 20 40 64 69 63 tStackLevel @dic
0290 74 53 74 61 63 6b 4c 65 76 65 6c 20 31 20 61 64 tStackLevel 1 ad

Similar to the previous fragment, this fragment also contains a vast majority
of printable characters. Due to the high variability of data, the threshold for
detecting such fragment had to be set in such a way that many normal samples
were classified as anomalous.
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5.4.3 Tests with ICS data set

The results of this round of tests are summarized on Table 5.4. We report
obtained combinations of false and true positives for each detector with respect
to different tuning parameters. Anagram shows outstanding results in this test,
and this does not come unexpected. The messages in this data set are rather short
and the number of duplicates is also high (more than 95%). This is a perfect
combination for Anagram and its binary-based approach. Anagram detects most
of attack instances with a false positive rate that is lower than the adjusted false
positive rate of 10 alerts per day. When detecting all of the attack instances, the
false positive rate is still one order of magnitude lower than the adjusted false
positive rate of 1 alert per minute.

McPAD also performs well with respect to the false positive. This is expected
because the analysed Modbus traffic is expressed in messages of fixed length
structure and with a limited range of values in used bytes. This results in McPAD
accurately modeling relationships in the message structure.

PAYL seems to have a better packet-rate detection rate than POSEIDON.
However, POSEIDON always performs better with respect to the instance-based
detection rate as well as lower false positive. When the two algorithms are tuned
to detect all of the attack instances, they both generate an overwhelming number
of false positives, triggering on almost every packet.

With respect to the false positives generated during the verification phase, no
raised alert turned out to be a true positive when processed with Snort. This
is largely expected due to 1) the small number of available signatures for the
Modbus protocol, and 2) the fact that the industrial control network from which
we collected traffic from is highly isolated from other networks, with only a fixed
number of hosts communicating. Thus, the chance of “noise” is substantially low.

Similarly to the previous test, there is no reason to test how a combination of
algorithms would perform, because Anagram outperforms all the other algorithms
in terms of detection and false positive rates.

Analysis of detected and undetected attacks To understand why Anagram
works so well with Modbus traffic consider the following two Modbus messages.
The first one is a valid read request (identified by the 8th byte with value 0x03
which corresponds to the request “function code”):

35 ae 00 00 00 06 00 03 0c 7f 00 64

The following fragment is an attack instance attempting to corrupt the PLC
memory by invoking a vulnerable diagnostic function (byte value 0x08) with
invalid data (bytes 0x00 0x04 0x00 0x00 ):
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Table 5.4: Test results on DSModbus and testing with ASModbus

FPR DR DR
(packet-based) (packet-based) (instance-based)

PAYL

0.00% 62.57% 101/163
0.00% 92.63% 150/163
9.25% 95.70% 155/163
95.00% 100.00% 163/163

POSEIDON

0.04% 3.07% 4/163
0.07% 77.30% 125/163
0.37% 95.09% 154/163
7.65% 97.54% 158/163
97.81% 100.00% 163/163

Anagram

0.00% 3.68% 5/163
0.00005% 10.42% 16/163
0.00007% 18.40% 29/163
0.00007% 96.93% 157/163

0.002% 100.00% 163/163

McPAD

0.041 6.31% 10/163
0.044 96.93% 157/163
0.045 96.93% 157/163
0.046 96.93% 157/163

00 00 00 00 00 06 0a 08 00 04 00 00

We first observe that the anomalous value in this payload are the byte value of
the function code, and the subsequent four bytes (never observed in the training set
on that same positions). There are 6 3-grams over 10 (60%) which are not present
in the valid request. The number of distinct 3-grams observed during training is
not much bigger than the one observable in the aforementioned request, due to the
large number of duplicated payloads. Thus, with such a small packet size, even a
few bytes with unusual value can make a big difference.

On the other hand, from the results in Table 5.4 we see that for all the algo-
rithms there is always a significant increase in the amount of false positives raised
when the threshold is adjusted to detect all attack instances. We observe that the
attack instances that do not get detected before the threshold is adjusted are similar
to the one in the following example:

00 00 00 00 00 02 0a 11

This 8 bytes long message is the smallest possible Modbus message allowed
by the protocol specification. We point out that this request is not unusual only
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because of its size, but also because the function code value 0x02 (corresponding
to the request “report slave ID”) was never observed during training. We have
verified that the only 3-gram in this payload not observed during the training is
the last one 0x02 0x0a 0x11. Thus, in spite of the small size of this payload,
the threshold has to be lowered in order to detect it. Detecting such anomalous
packet (with only one anomalous n−gram) in a bigger message would be much
more difficult.

5.5 Related work

To the best of our knowledge, Ingham and Inoue describe the most recent
framework for testing the performance of IDS algorithms [54]. The authors focus
on the HTTP traffic. The framework is based on the general principle that testing
different IDS algorithms on the same network environment and with the same net-
work and attack data allows a better comparison of the algorithms’ performance,
which would be impossible by re-using the results of the unrelated, individual
tests run by the algorithm developers. They collect background web traffic from
four different websites and create a publicly available set of network traces. The
traces contain instances of web attacks generated by running exploitation tools
downloaded from popular vulnerability repositories (e.g., BugTraq, SecurityFocus
and the Open Source Vulnerability Database).

Other IDS evaluation frameworks, as reported in [55], were developed by
Puketza et al. [87, 88], Wan and Yang [112] and by IBM Zurich [35], but are
all quite dated.

Song et al. [102] show that polymorphic behaviour in shellcodes is too greatly
spread to model effectively.

5.6 Discussion

We now highlight interesting observations from the obtained results.
Despite the fact that the attack instances on the SMB/CIFS protocols are

correctly detected, all studied algorithms incur a high penalty in terms of false
positives they raise. Concretely, it would be expensive to deploy them indepen-
dently in a real environment. On the other hand, if we restrict the field to the
Modbus protocol alone, Anagram detects almost every attack instance with a rate
of false positives lower than the 10 alerts per day threshold. We believe that such
performance of the algorithm would not be too distracting for the operators when
deployed in a real environment. When looking into details of detection results,
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we see a limited performance in the detection of process threats. For example,
Anagram successfully detects Level 2 attacks (FC 8-04, illegal FC, see Table
in Chapter 3). This is mainly because the presented attacks use message types
that were not seen during training (e.g., FC 8 message has different format than
usual FC 3). Since the detection is based on the score that enumerates “known”
against “unknown” n−grams in a particular network message, the system has good
chances in detecting these threats. However, in case of process threat (e.g., an
implementation of application level attack by Carcano [30]), where the attack uses
the same message type as common traffic, the threat instance would carry content
that differs in only few consecutive bytes from the training trace. In this case, due
to the fact that most n−grams in the message are already seen, the detector has
small chances in capturing the malicious message.

We observe that all studied algorithms trigger on the exploitation payload. We
can observe this by selecting two different attack instances that exploit the same
vulnerability, but using two different attack payloads. In several cases, while one
instance is detected even with a low threshold, to detect both attacks one needs
to increase the threshold significantly. The previously missed attack instance
usually contains a small-size attack payload, and thus “blends” more easily with
the normal payload data, thereby avoiding detection.

5.7 Conclusion

In this chapter we present a thorough analysis of several n−gram-based al-
gorithms for network-based anomaly detection. We investigate the performance
of state-of-the-art detection algorithms when analyzing network traffic from two
binary protocols. Our analysis shows that the detectors can unlikely capture the
semantics required for detecting process attacks.

In general, there is no absolute best algorithm among the ones we stud-
ied. Anagram performs slightly better than the rest when analyzing the filtered
SMB/CIFS and the Modbus protocols, but it is also the one performing worst
when the filter is not applied. Technically, this is due to the fact that the unfiltered
SMB/CIFS traffic contains several n−grams that are also present in the attack
payloads. This supports the intuition that the variability of the network traffic has
an impact on the performance of these systems. Indeed, every studied algorithm
is affected by this, allowing us to conclude that, rather than the single implemen-
tation, it is the underlying principle of capturing regularity in the packet payload
that is unsuitable for unrestricted application.

In particular, this applies to the indiscriminate application of n−gram analysis
on network streams: our results show such n−gram analysis quickly becomes
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incapable of capturing relevant content features when analysing moderately vari-
able traffic. This problem could be partly alleviated by deploying the detection
system in combination with some other sensor that will verify the correctness of
alerts [113].

We believe that a more promising approach is the one focusing on identifying
chunks of payload (that represent some kind of semantic unit) and applying the
n−gram analysis in them. For example, several authors propose to exploit the
syntactical knowledge of the HTTP protocol to improve the overall performance
of anomaly-based systems, e.g. in [103]. We foresee that a similar approach could
be applied to binary protocols as well.
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Chapter 6
Through the Eye of the PLC: A
Network Approach for Monitoring
PLC Communication

In Chapter 5 we showed that the common techniques for network intrusion
detection cannot effectively address attacks carried over packet content. In partic-
ular, the common underlying approach for analysing packet payloads, n-gram, has
limited performance against different classes of network manipulations. In case
of process threats, we showed that the current approaches cannot capture process
information required for distinguishing between benign and malicious content.

This chapter addresses RQ4. In particular, we present an approach that uses
process context information to address network manipulations in ICS. We focus
on detecting network attacks representing process threats: malicious actions that
drive an ICS into an unsafe state (e.g., process halt) without exhibiting any obvious
network-level red flag (e.g., exploitation of a protocol vulnerability). We focus our
analysis on the attacks that, for a successful execution, need to deviate at least one
variable controlled by a PLCs whose information is exchanged in the network
communication. Generally, by performing a process attack, an attacker can do
the following damage to the process: (i) impact operator awareness and (ii) di-
vert the process. Attacks on operator awareness typically involve sending forged
alarms/events, or incorrect measurements (e.g., corrupt the flow and content of
commands sent towards HMI to prevent the normal reaction). Attacks targeting
process divert may involve actions such as sending a “stop” command to a PLC,
or changing control variables (e.g., change critical parameters that will deviate the
process).

A reliable detection of these network attacks requires addressing the key chal-

91



Chapter 6. Through the Eye of the PLC

lenge: an interpretation of analysed network messages within the context of the
current process state. The process state refers to a set of characteristics (i.e.,
field measurements and process parameters), that describe the current process
condition. Our hypothesis is that, due to a narrow focus, a relatively small and
homogeneous set of actors, and mostly automated activity in ICS, process char-
acteristics display an overall regularity that we can exploit for finding a stable
baseline separating common activity from attacks.

Problem The extraction of process characteristics describing the process state
from a network trace is difficult. More specifically, there are two problems. First,
the current format of the payload in network packets does not allow a direct
analysis of process parameters and measurements (since the content is encoded
within a binary network protocol). Second, a real life environment inevitably
carries noise due to different environmental reasons (e.g., communication drops,
sensor problems). This leads to difficulties in generation of reliable ICS models
that can be used to evaluate the character of the analysed messages. In addition,
other practical challenges include the need for gaining access to tapping points
that provide broad coverage, technical ambiguities with interpreting protocols,
and semantic context required for interpreting observations.

We propose an approach to monitor the network traffic of programmable logic
controllers (PLCs), by extracting updates of process variables from their com-
munication with other devices. We choose this communication because PLCs
represent the interface between a plant’s operators and the field devices (e.g.,
a pump), thus any state changes—including malicious commands—go through
them to take effect. Their network traffic hence provides an ideal vantage point
for monitoring. At a high-level, our approach derives behavioural models of a
plant’s state from past activity over the network, which then facilitates monitoring
of future changes for unexpected deviations in the process.

We present a prototype implementation of our approach that focuses on Mod-
bus TCP. In Modbus, each PLC defines a memory map representing an inter-
nal table of process variables (typically a few thousand). The data model of
Modbus proves particularly challenging due to its flat structure and the frequent
programmer practice of misusing its simple structure (e.g., arbitrary addressing of
variables), which makes it harder to characterize process variables accurately.

Our approach differs from previous analysis techniques in two ways. First,
compared to usual content analysis techniques (which consider the statistical fea-
tures of byte sequences), our approach captures and performs the interpretation of
specific byte sequences in the packet payload. The interpretation refers to a con-
sistent reconstruction of actual process values (current measurements and process
parameters) from the network trace which can then be analysed in the context of
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previous process behaviour. Second, compared to other techniques focusing on
PLC analysis (e.g., McLaughlin [76] uses PLC code to generate process malware,
Liu [69] use process measurements to detect false process data), we use a passive,
non-intrusive, approach to extract, reconstruct and analyse communicated process
variables.

Contribution The main contributions of this chapter are:

• we propose a new approach for extracting and analysing process informa-
tion from ICS network messages,

• we perform experiments on a testbed to validate and discuss detector capa-
bilities,

• we perform experiments on network traces coming from real-life process
environments to validate and discuss approach limitations.

We structure the remainder of this chapter as follows. In §6.1 we present our
approach along with a testbed scenario (§6.1.1) that we use for demonstrating the
capabilities of the presented techniques. §6.2 summarizes implementation details,
and in §6.3 we present our results. Finally, in §6.5 we discuss our findings, and
in §6.4 we present related work. Section §6.6 concludes the chapter.

6.1 Approach

We now present our approach for detecting attacks that aim at manipulating
process variables in ICS. The core of our work is based on the assumption that one
can infer process semantics from ICS network traffic. We support this assumption
based on the characteristics of usual ICS communication. In particular, PLCs
exchange comprehensive status information with the ICS server (that updates
HMI) on a regular basis, and in turn the HMI issues control commands to the
PLCs to initiate process changes. We find both activities reflected at the network
level in the form of requests and replies that report and manipulate PLC process
variables, encoded in their corresponding network representation. Hence, a net-
work monitor following this communication can derive an understanding of the
controlled process that, in principle, is a superset of the information available in
the HMI’s perspective. For example, except exchanging values of relevant process
parameters from the field, HMI and PLCs exchange a set of internal variables that
are critical for process infrastructure but are not explicit part of the field process
(e.g., program counters, timers, process stages). By contrast to the process field
parameters, these variables are not directly monitored by operators. Crucially,
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malicious commands have to traverse the network. This implies that typically
either their cause or their consequences will likewise be reflected as changes to
process variables. As a trace of the attack cause, we will see the attack stage when
a command modifies variables that control the process. As a trace of the attack
consequence, variables tracking the current process state will begin reflecting the
malicious update.

Our approach consists of the three main phases: (i) extraction distills current
variable values out of network traffic; (ii) characterization divides the observed
process variables into three categories that we examine separately; and (iii) mod-
elling and detection derives behavioural models for each variable and reports
when new observations deviate from what they predict. We discuss these phases
individually in 6.1.2–6.1.4, after first introducing a small testbed setup in §6.1.1
that we use for illustration.

6.1.1 Testbed Scenario

To illustrate our approach, we set up a small testbed environment consisting
of one PLC and one HMI workstation. We base the design on a demonstration kit
from a known ICS vendor that models a simple water tank setup. The controlled
process comprises six plant components (see Figure 6.1): a tank, a heater, two
valves, a level sensor and a temperature sensor. The process consists of three
operations which are repeated continuously: tank filling, water heating, and tank
draining.

Although in a real-world environment an ICS server would collect data from
the PLC and the HMI would use the process data collected by the ICS server,
to simplify our architecture we configure the HMI to request process updates
directly from the PLC once per second. The HMI collects nine variables: two for
measurements (i.e., tank level and water temperature), five for control (i.e., valve
1 and 2 status, heater status, tank level setpoint and water temperature setpoint),
and two for reporting (i.e., tank level and water temperature high/low alarms).

Table 6.1 shows the relevant parts of the PLC’s memory map. The PLC’s code
implements the following logic:

while ( true )
V1On := ( TankLevel < TankLevelSP && !V2On);
HeaterOn := ( Temp < TempSP && !V1On && !V2On);
V2On := ( Temp >= TempSP && TankLevel > 0 && !V1On );
TankLevelAl := 0;
if ( TankLevel > hthreshold) -> TankLevelAl := 1;
if ( TankLevel > hhthreshold ) -> TankLevelAl := 2;
if ( TankLevel > hhhthreshold ) -> TankLevelAl := 3;
TempAl := 0;
if ( Temp > hthreshold ) -> TempAl := 1;
if ( Temp > hhthreshold ) -> TempAl := 2;
if ( Temp > hhhthreshold ) -> TempAl := 3;
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Figure 6.1: Process setup of the testbed environment

For the sake of simplicity we did not include safety constraints in our process
logic, except for the alarming system. This also simplifies the illustration of
our two attack scenarios: (i) changing the level setpoint to overflow the tank;
and (ii) sending tampered measurements information to PLC to trigger process
changes.

6.1.2 Data extraction

The data extraction phase is a preprocessing step that distills the values of pro-
cess variables out of the ICS network traffic. It consists of two subparts: (i) parsing
the application-layer network protocol to extract the relevant commands, includ-
ing all their parameters; and (ii) constructing shadow memory maps inside the
analysis system that track the current state of all observed process variables, pro-
viding us with an external mirror of the PLCs’ internal memory.

For this work we focus on parsing Modbus, in which each command comes
with a set of parameters as well as a data section. Basic parameters include
function/sub-function codes that define the operation, an address reference spec-
ifying a memory location to operate on, and a word size giving the number of
memory cells affected. The data section includes the actual values transmitted,
i.e., the current value for a read operation and the intended update value for a
write. We maintain shadow memory maps by interpreting each command ac-
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Table 6.1: Testbed PLC memory map

Register Name Type Description
HR0010 V1On bool Status of valve 1
HR0011 V2On bool Status of valve 2
HR0012 HeaterOn bool Status of the heater
HR0020 TankLevelSP fixpoint SP tank level (L)
HR0021 TankLevel fixpoint Level of the tank (L)
HR0022 TempSP fixpoint SP water temp.
HR0023 Temp fixpoint Water temp (celsius)
HR0030 TankLevelAl enum Alarms tank level
HR0031 TempAl enum Alarms water temp.

SP: setpoint

cording to its semantics, updating our current understanding of a PLC’s variables
accordingly.

The following (simplified) commands from our testbed setup (see §6.1.1) il-
lustrate the extraction step.

Time 1: PLC 1, UID: 255, read variable 10, value: 1
Time 1: PLC 1, UID: 255, read variable 11, value: 0
Time 1: PLC 1, UID: 255, read variable 12, value: 0
Time 1: PLC 1, UID: 255, read variable 20, value: 500
Time 1: PLC 1, UID: 255, read variable 21, value: 10
Time 1: PLC 1, UID: 255, read variable 22, value: 800
Time 1: PLC 1, UID: 255, read variable 23, value: 150
Time 1: PLC 1, UID: 255, read variable 30, value: 0
Time 1: PLC 1, UID: 255, read variable 31, value: 0

Time 2: PLC 1, UID: 255, read variable 10, value: 1
Time 2: PLC 1, UID: 255, read variable 11, value: 0
Time 2: PLC 1, UID: 255, read variable 12, value: 0
Time 2: PLC 1, UID: 255, read variable 20, value: 500
Time 2: PLC 1, UID: 255, read variable 21, value: 12
Time 2: PLC 1, UID: 255, read variable 22, value: 800
Time 2: PLC 1, UID: 255, read variable 23, value: 150
Time 2: PLC 1, UID: 255, read variable 30, value: 0
Time 2: PLC 1, UID: 255, read variable 31, value: 0

Time 3: PLC 1, UID: 255, read variable 10, value: 1
Time 3: PLC 1, UID: 255, read variable 11, value: 0
Time 3: PLC 1, UID: 255, read variable 12, value: 0
Time 3: PLC 1, UID: 255, read variable 20, value: 500
Time 3: PLC 1, UID: 255, read variable 21, value: 14
Time 3: PLC 1, UID: 255, read variable 22, value: 800
Time 3: PLC 1, UID: 255, read variable 23, value: 150
Time 3: PLC 1, UID: 255, read variable 30, value: 0
Time 3: PLC 1, UID: 255, read variable 31, value: 0

After processing the commands, the shadow memory map will report 18 as
the current value for variable 21. Looking more closely at variable 21, we know
from the testbed configuration that it corresponds to the tank level and, hence,
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will reflect three distinct types of behaviour: an increasing trend during filling, a
constant value during heating, and a decreasing trend during the draining phase.
Indeed, our extraction step confirms this expectation: The following list represents
a small excerpt from variable 21’s values, as extracted from actual network traffic
in the testbed:

...490,492,494,496,498,500,500,500,500,500,500,

...496,492,488,484,480,476,472,468,464,460,456, ...

By using an independent PLC simulator, we have confirmed that these ex-
tracted values indeed match what the PLC stores internally over time.

6.1.3 Data characterization

Next, we perform a characterization phase that separates variables into differ-
ent categories based on the knowledge obtained during focus groups sessions with
plant engineers. In general, PLC process variables fall into four groups: (i) con-
trol: variables for configuring plant operation (e.g., device setpoints, configuration
matrix); (ii) reporting: variables for reporting alarms and events to operators
through HMI or other PLCs (e.g., pump load is too high); (iii) measurement: vari-
ables reflecting readings from field devices and sensors (e.g., current tank level,
current water flow), (iv) program state: variables holding internal PLC state such
as program counters, clocks, and timeouts. While the character of variables varies
significantly with their groups, we observe three cases that suggest specific models
for predicting future behaviour: most variables either (i) change continuously, and
gradually, over time; (ii) reflect attribute data that draws from a discrete set of
possible values; or (iii) almost never change. The first is typical, e.g., for sensor
measurements, program state and reporting tend to use the second, while the third
is typical for process settings (e.g., setpoints). Unfortunately there is no definite
resource to directly tell what type of data a variable reflects—recall from Chapter 2
that memory maps are specific to each PLC instance. Thus, we apply heuristics to
categorize process variables according to the behaviour we observe. In our testbed
we can directly cross-check if the results indeed match the configuration. In the
actual environment we examine later in §6.3, we compare our results with labels
extracted from PLC project files.

During discussions with engineers, we learned that reporting variables are
encoded in bitmaps which, depending on the number of distinct reporting events,
appear as a discrete set of 2k values. We use this information to build heuristics
that allows us to distinguish between attribute, continuous and constant series. For
us, a series that consists of only 2k, where k = 0..8 discrete values in the whole
training set is considered as an attribute series. A special case of an attribute
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series with k = 0 represents constant series (i.e., the whole dataset consists of
only one distinct value). A series that consists of more than 2k distinct values is
considered as a continuous series. To characterize different types of parameters
in our testbed environment, we set the parameter k = 3 (i.e., series with up to
8 values are considered as attribute). In practice, a high value of k leads to too
specific characterisation while a low value of k leads to too coarse classification.
We run the characterization on the network traffic of over 2h of operation and
classify the 9 variables as 4 constant, 3 attribute and 2 continuous series.

6.1.4 Data modeling and detection

Once we distinguish between constant, attribute and continuous time series,
we can proceed with building behavioural models.

Modeling. To model constant and attribute data, we derive a set of expected
values (e.g., enumeration set for attribute data, one observed value for constant
series). To model continuous data, we leverage two complementary techniques,
(autoregression modelling and control limits, to capture the behaviour of a series
and understand operational limits. An autoregressive model is a common tech-
nique to capture the behaviour of correlated series, such as successive observations
of an industrial process [116]. An autoregressive model of order p states that xi
is the linear function of the previous p values of the series plus a prediction error
term [26]:

xi = φ0 + φ1xi−1 + φ2xi−2 + ... + φpxi−p + εi

Here φ1, ..., φp are suitably determined coefficients and εi is a normally dis-
tributed error term with zero mean and non zero variance σ2. There are several
techniques for estimating autoreregressive coefficients (e.g., least squares, Yule
Walker, Burg). We choose to use Burg’s method, as it has proven as a reliable
choice in control engineering, a field closely related to ICS processes [52]. To
estimate the order of the model, we use the common Akaike information crite-
rion [106]. Using the autoregressive model, we can make one step estimation for
future values of the process variable underlying the time series. This way, the
model can be used to detect stream deviations. However, as for any regression,
a set of small changes can take the stream outside of operational limits without
exhibiting regression deviations [116]. To address this, we use a complementary
strategy, namely Shewart control limits [116]. This is a common technique used
for controlling mean level and preventing the system shift from normal opera-
tion. The control limits represent a pair of values {Lmin, Lmax} that define the
upper and lower operation limit of the process variable. Typically, the limits are
calculated as values that are three standard deviations from the estimated mean.

Detection. For constant and attribute series we raise an alert if a value in a
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series reaches outside of the enumeration set. To detect deviation in continuous
series, we raise an alert if the value (i) reaches outside of the control limits or
(ii) produces a deviation in the prediction of the autoregressive model. More
specifically, for estimating the deviation in the autoregressive model, we compare
the residual variance with the prediction error variance. The residual variance
describes the deviation of the real stream from the stream predicted by the model
during training. The prediction error variance describes the deviation of the real
stream from the stream predicted by the model during testing. A prediction error
variance that is significantly higher than the residual variance implies that the
real stream has significantly deviated from the estimated model, thus we raise an
alert. We apply this techniques since it is commonly used for the detection of
anomalies during instrument operation in control engineering [52]. To estimate
the “significance” of deviation we use hypothesis testing (see §6.2).

To illustrate the detection capabilities we test our approach on two semantic
attacks crafted for the process operating in our testbed. The first attack effec-
tively consists of a command that changes the tank level setpoint (HR0020 in
Figure 6.2). As a result, the tank filling phase (HR0021 in Figure 6.2) con-
tinues until the water level overflows the tank capacity. Results show that this
attack is detected as (i) a deviation in setpoint variable and (ii) a value reaching
maximal control limit Lmax. The second attack consists of a set of commands
that set tampered information about the temperature level measurement (HR0023
in Figure 6.3). As a result, the tank filling phase is terminated early, the heating
process starts and then immediately stops and the draining process starts. As a
consequence, both the heater and the boiler may get damaged. In this second
scenario no alarm is generated by the PLC and thus presented to operators. Our
results show that this attack is detected as a deviation in autoregressive model.

Limitations. The obtained results demonstrate known capabilities of both
approaches [116]. In particular, an autoregressive model is effective for detecting
sudden changes (e.g., detection of the second attack). However, a sufficiently
slow deviation (i.e., slower than the model order p), can still take the system
beyond specification limits without triggering an alarm (e.g., the first attack was
not detected by the autoregressive model). On the other hand, control limits
are generally a good strategy for maintaining the process mean level (thus, can
detect the process drift in the first attack). However, control limits cannot detect
a deviation that is within the defined limits of operation (e.g., cannot detect the
second attack).
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Figure 6.2: Illustration of the configuration change

Figure 6.3: Illustration of measurement tampering
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6.2 Implementation

We implement a prototype of our approach using a combination of Bro [83]
and custom C++ code. We name our prototype as Sonics (Semantic Network
Monitoring in ICS). Bro performs the initial data extraction step. We develop a
Modbus analyser for Bro that extracts the main protocol commands from network
traffic and makes them available to scripts written in Bro’s custom policy lan-
guage. We leverage Bro’s BinPAC [82] parser generator to automatically generate
much of the Modbus-specific code from a corresponding grammar. Our Modbus
analyser is fully integrated into Bro, and is now part of the recently released
version Bro 2.2. We also add a custom analysis script to Bro that records each
Modbus command into an ASCII-based log file that we then process with exter-
nal code implementing the subsequent characterization, modelling, and detection
phases.

For the data characterization we test different values for k in the range [2..8]
to distinguish between attribute and continuous series. For our tests with real
environments we choose k = 3 since for this value our preliminary analysis
showed the least number of mismatches for attribute series. For the data mod-
elling of continuous series, we build the autoregressive model and derive process
control limits. We leverage an open source implementation of the autoregressive
model1. To derive control limits, we implement Shewart control limits following
the description in [116]. For each continuous series we derive an estimate of the
behaviour on both the autoregressive and control limit model. Finally, for the
detection of deviations in continuous series by using the autoregressive model, we
use two variance hypothesis tests (commonly known as F-test). For both tests we
set p = 0.05% as significance level.

6.3 Evaluation

Our work represents a first step towards accurately modelling ICS processes
from a network vantage point. As such, we are primarily interested in understand-
ing properties of the setting that impact security monitoring at the semantic level,
and less in specific true/false positives rates. With that perspective, we evaluate
our memory map modelling with two overarching objectives: (i) understand the
degree to which our approach can successfully predict typical process behaviour;
and (ii) gain insight into the underlying activity that improves, or weakens, accu-
racy. In the following we first present the two real-world environments in §6.3.1
that we use for the evaluation. We evaluate the characterization and modelling

1Available at https://github.com/RhysU/ar.git
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phases independently and describe the corresponding methodology and results
in §6.3.2 and §6.3.3 respectively. We do not analyse in depth the data extraction
here as it constitutes primarily a pre-processing step which proved to work without
problems also with the real-world traffic.

6.3.1 Environments and data sets

Our data comes from two real-life water treatment plants that serve a total of
about one million people in two urban areas. They are part of a larger system of
over 30 sites controlled by one company. The two plants are of comparable size,
and they perform semantically similar tasks (e.g., water pumping, purification,
ozone treatment). However, their setups still look quite distinct. They deploy dif-
ferent numbers of PLCs (3 vs. 7), and chose different strategies to divide processes
among them. The PLC memory maps differ both between the two environments,
and also among PLCs of the same site. While both plants use equipment from the
same (well-known) vendor, they deploy different software versions.2

We have access to (i) 3 day long packet trace from plant A and (ii) 14 day
long packet trace from plant B. Both traces contain the complete network traffic
captured from the mirroring port of the switches that connect the different PLCs
and the ICS servers. The traces include 64GB and 101GB of network traffic,
respectively, with bandwidths varying between 9 and 360 packets/sec during the
recorded periods. We find two ICS protocols and six non strictly ICS protocols in
use. The ICS protocols are Modbus, which is used for communication between
PLCs and from PLCs with ICS servers and a vendor proprietary protocol which
is used for communication between ICS server and HMI. The non ICS protocols
are VNC, SSL, FTP, HTTP SMB and DCOM and are used by the servers and
workstations in the network. The non ICS traffic is an negligible fraction of the
overall network trace. Of the 20 and 28 hosts active in the two traces, 7 and 11
receive or send Modbus messages. While we see the vendor proprietary protocol
in use among hosts that are part of the supervisory infrastructure, we observe only
Modbus for all communication involving PLCs. We see three types of Modbus
messages in the traces: read multiple registers (function code 3), write multiple
registers (16), and parallel reading and writing on multiple registers (23). In the
following, we focus our discussion on the Modbus traffic. According to the plant
operators, there were no security or operational incidents during out measurement
periods. To present our test results, we select 5 PLCs taken from both plants,
namely: all 3 PLCs from the first plant, and 2 PLCs from the second plant. The
second plant operates with 7 PLC in total, of differing complexity: The number
of process variables goes as low as 135 for three of them and as high as 3500

2Due to legal constraints, we cannot name the equipment vendor.
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in one; the remaining four PLCs operate on approximately 2200 variables. We
select two PLCs that representative the most complex and the most simple PLC
setup, respectively. We base our choice on the fact that 5 PLCs in the second plant
exhibit very regular behaviour, implying that the overall results of modelling per
PLC would, in case of including all available PLCs, be unfairly optimistic.

In addition to the traces, the plant operators provided us with project files
that describe each PLC’s memory map layout, exported by PLC programming
environments in the form of CSV files holding information on addressing, data
type, and process role for each process variable defined by a PLC. In practice,
such project files closely resemble the information shown by the example memory
map in Table 6.1.

6.3.2 Evaluation of data characterization

Recall that the goal of variable characterization is to apply to each variable
(register) the most appropriate technique in the modelling step based on the vari-
able semantics. For example, we want to use a set of values for setpoints and
alarms, while we want to use autoregressive model and control limits for mea-
surements and counters. In §6.1.3 we propose a characterization heuristic that
separates registers into constant, attribute and continuous time series based on the
value of the variables over time. Another approach to data characterization lever-
ages the semantic information contained in the project files. In fact, project files
contain as human readable text the semantics of a specific process variable (e.g.,
variable X is the “throughput rate of pipe Y”). Under the assumption that project
files are available, this approach would in theory achieve the characterization goal
without the need to process the network traffic. In this section we aim to evaluate
the practical applicability and quality of results of our heuristic-based approach
compared to the extraction of the same information from project files. To this end,
we translate the semantic information of project files into labels that define what
we expect the characterization phase to return. As the manual analysis is infeasible
(since each PLC in the plant comprises of several thousand of addresses), we
assign the labels semi-automatically. We construct a table that maps keywords
commonly found in the descriptions into the three categories. For example, we
consider descriptions including “measurement”, “counter”, or “usage” to indicate
variables holding continuous values. On the other hand, words like “command” or
“alarm” suggest attribute data, and “configuration” indicates a process variable of
generally constant value. In total, we identify 24 keywords, which allow us to clas-
sify all PLC variables defined in the project files. We then run our heuristic-based
algorithm on the network traffic exchanged by three PLCs from the first plant
during three days and we calculate an average percentage of variables belonging
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to the specific series across three PLCs. Our results show that the characterization
phase classifies 95,5% of all variables as constant series, 1,4% of variables as
attribute, and 3,1% as continuous series. Further analysis with different batches
shows that these results remain consistent over time for intervals longer of one day.
Table 6.2 shows the comparison with the classification we derive independently
from the PLC project files. Our analysis shows that the retrieved information
from project files covers only 35% of all observed variables in all three PLCs. As
we found out, the main reason for such small coverage are implicit definitions of
multiple variables (e.g., PLC programmers use tailored data structures to define a
range of variables by only defining the starting variable in project files). We now
analyse the results of the comparison. We see an excellent match for constant
variables. However, only about half of the continuous variables match, and even
less in the attribute category. Closer inspection reveals two main reasons for
the discrepancy. First, ambiguities in the project file mislead the keyword-based
heuristic. Generally, the descriptions are not standardized but depend on the PLC
programmer, and hence keywords sometimes overlap. For example, one PLC has
several fields that include the description “ControlForAlarm”. Yet, we consider
the keyword “control” to indicate a constant variable, and “alarm” to suggest an
attribute series. While this example could be addressed easily, similar ambiguities
would remain. This difficulty shows that in practice it is not so easy to extract
meaningful semantic information from project files, as initially assumed.

Table 6.2: Comparison of obtained characterizations against the labels from
project files

Type of data stream Matched process variables (in %)
PLC1a PLC1b PLC1c

Constant 96.2 95.0 97.0
Attribute 33.3 20.0 40.1
Continuous 44.3 56.7 68.3

The second cause of mismatches is that variables that, according to the PLC
configuration, contain attribute or measurement data, in practice exhibits a con-
stant behavior. For example, in PLC1b a variable describing the measurement
level of a specific tank always remains constant, and hence the characterization
step classifies it as such.

Although both approaches (heuristic and configuration-based) show advan-
tages and pitfalls, our heuristic-based approach is the only one that allows us to
characterize all the variables. In general, we would be in favour of combining the
two approaches, providing our heuristics additional context information. How-
ever, for this initial work, we chose not to do so in order to (i) understand the
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step’s capabilities on its own, and (ii) use the PLC information as a cross-check.
Furthermore, as our analysis shows, integration would raise a different challenge
due to the inherent ambiguities.

6.3.3 Evaluation of data modeling

To evaluate our modelling approach, we examine how well its predictions
capture common plant behaviour. In the first step, we measure the number of
deviations that the models report on network traffic representing typical plant
operations. In the second, more interesting step, we then dig deeper into these
results and focus on understanding the underlying reasons and situations in which
our approach (i) indeed models process activity correctly; and (ii) fails to capture
the plant’s behaviour, flagging benign deviations as alarms. Our objective here
is to gain insight into the capabilities and limitations of our approach, as well
more generally into potential and challenges of modelling process activity at the
semantic level.

We point out that we do not evaluate the detection rate (i.e., true positives),
due to the inherent difficulty of achieving meaningful results in a realistic setting.
As actual attacks are rare, we cannot expect our traces to contain any malicious
activity (and as far as we know, they do not). However, it also remains unrealistic
to inject crafted attacks into the traces; we would be limited to trivial cases like
those already demonstrated in §6.1.4 (which our detector would find for the same
reasons as discussed there). On the other hand, we cannot inject more complex
attack data sets, like from simulations carried out elsewhere, as any ICS activity
has little meaning outside of its original environment (e.g., recall how Stuxnet
tailored its steps to its specific target setup; interpreting that activity inside a
different setting would make little sense). Hence, we see more value in our
semantic analysis of capabilities and limitations than measuring detection rates
on unrealistic input.

We now start with measuring the number of deviations that the models report.
Generally, we consider our approach to generate an “alert” on a process variable
when, at any time during testing a batch of data, an observation deviates from the
prediction—i.e., when observing an unexpected value for constants and attributes,
or a value outside the autoregressive/control limit models for a continuous time
series. We perform 3-fold cross validation using the rolling forecasting proce-
dure [53] on a set of 3-day batches of data extracted from the two plant’s network
traces. The rolling forecasting procedure is a common technique for performing
cross validation in time series and implies two key modifications compared to the
traditional cross validation procedure: (i) the training length is increasing through
different folds and (ii) the training set never includes data occurring after test
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set (i.e., the model should not train on the data that is later than test data). The
first two batches of data come from the first plant, each representing a randomly
chosen continuous range from the first and the second weeks, respectively. The
third batch represents the complete trace from the second plant (recall that we
only have 3 days of network trace available from that plant). At a technical level,
a 3-day batch size gives us a reasonable volume of data suitable for processing
repeatedly with our implementation. At an operational level, operators confirm to
us that one day matches a typical PLC work cycle.

In Table 6.3 we summarize the results of the testing across different behaviour
models. For each pair of category and PLC, we compute the percentage of vari-
ables deviating, showing mean and standard deviation over the batches.

In the following sections, we discuss the three categories separately.

Table 6.3: Testing model capabilities

Deviating variables across different types of series
(mean %/ st.dev)

Constant Attribute Continuous
PLC 1a 0.5 / 0.29 19.05/0.2 57.49/5.78
PLC 1b 0.31 / 0.04 19.80/1.4 44.64/5.41
PLC 1c 0.14 / 0.02 19.55/4.0 37.58/2.98
PLC 2a 0.64 / 0.0 26.92/0.0 63.63/0.0
PLC 2b 0.0 / 0.0 0.0/0.0 0.0/0.0

6.3.3.1 Constant series

Our results show that by far the most variables that we classify as constant
indeed stay stable over time. Examining the small number of deviating variables
in this category, we observe two main causes for false positives: (i) configuration
changes, and (ii) misclassifications of the variable type. The former typically
relates to a previously unobserved status change of specific field device. For
example, in PLC1 we find a pump device that is enabled only after about 40
hours of normal operation. In another similar, but more extreme case, we observe
a burst of alarms: 60 variables all trigger at the same time even when the training
was longer than two days. Upon closer inspection we find them all to belong to
a “configuration matrix”, a large data structure that defines an operation mode in
terms of a set of values controlling multiple devices simultaneously. As it turns
out, it is a single packet from the HMI that performs a “multiple register write”,
triggering the deviation for all of them. We verified that this occurrence represents
the only time that the operators change the matrix over the two weeks interval that
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our traces cover. As such, it is a significant yet rare change that one could either
whitelist or decide to keep reporting as a notification.

The second cause for false alarms represents shortcomings of our data clas-
sification phase. For example, during one of the folds in PLC2a we find that
the tool misclassifies 9 out of 15 measurement variables representing aggregated
flow information as constant due to a lack of activity during the training period.
Similarly, in the same fold we find that 7 out of 18 device statuses (thus assumed
attribute data) are misclassified as constants. This is because in both cases the
values remain constant for more than 20 hours, yet then change during the testing
period. Interestingly, we see several such situations that first trigger an alert for
a configuration change (e.g., the status of a filter in PLC1b changes for 15mins
after it has spent 21 hours in a previous state), followed by a burst of further
ones reflecting the change being in effect now (i.e., variables representing activ-
ity linked to that filter start to deviate from constant behaviour: status, volume,
throughput/hour, total throughput). In this case, the two main causes of errors are
hence related.

Discussions with the plant operators confirmed that daily cleaning activities
on that PLC might cause such sudden changes for a short amount of time. The
misclassification in this case was avoided in the next fold with a longer training
interval, confirming that when training spans the corresponding work cycle, the
modeling of constants indeed works as expected.

6.3.3.2 Attribute data series

Our test show a stable, but reasonably high number of deviating attribute se-
ries across all tested folds. By sampling a subset of deviating variables, we find
that the main cause for mismatches in this model concerns continuous variables
misclassified in the data characterization phase: due to slow process character
some of them exhibit only a limited number of distinct values during a training
interval, and are thus wrongly labelled as attribute data (e.g., variables describing
time information in the form of date and hour). Apart from this scenario, the
targeted variables (thus commands and alarms) are captured correctly for train-
ing longer than one day. However, we note that a blind spot for our current
attribute models are alarm/command sequences. With attribute data, sequences
carry important semantic information as such variables often encode the current
process state within a series of steps (e.g., alarm type X raised to operator, operator
acknowledged, alarm cleared, state normal). Since some alarms require operator
acknowledgement, a sequence that, e.g., omits that feedback would be suspicious.
For such variables, we attempted to apply the continuous models as an alternative,
but they only further reduced the accuracy. That however is not surprising: for
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attribute data ordering matters, yet typically not the actual timing (e.g., an operator
may acknowledge an alarm at any time). Hence, we consider a sequence-based
analysis of process states as a promising extension of our current attribute model.

When examining the variables that describe attribute data in detail, we dis-
cover further structure that our modelling does not currently key on, yet which
we consider a promising venue for exploiting in the future. During focus group
sessions with plant engineers, we learnt that alarms and commands are typically
encoded in bitmaps, and we indeed find this reflected in the network traffic. For
example, for a variable that the PLC project file refers to as “various status noti-
fications from PLC3 to server” , we observe a series of what, at first, appears like
an arbitrary set of values: 40960, 36864, 34816. However, when aligned in binary
format, the values map to:

1010 0000 0000 0000
1001 0000 0000 0000
1000 1000 0000 0000

This representation reveals patterns of bits that are constant (e.g., the first bit
indicates that PLC1c is active). If we integrated this structure into the character-
ization step, we would be able to refine the attribute modelling significantly. In
other words, some variables require a different granularity than just their numeri-
cal value for capturing their semantics.

6.3.3.3 Continuous data series

We now summarize results from the two models considering continuous time
series: control limits and autoregression. We observe that autoregressive model
generally alerts more frequently than control limits. In fact, the control limits
contribute to only 28% of all deviations in continuous series.

Control Limits model Our results show that, apart from the overlap with au-
toregressive model, control limits report additional 3% series as deviating. Our
inspection reveals that these variables represent series that are increasing trends
during the whole available trace. For such variables, approaches in statistical
process control commonly accept that the series should be modelled according to
their regression nature only, and not on the control limits. This means that these
variables should be whitelisted in this model. An alternative approach would be
to obtain absolute process limits (e.g., from process engineers) and enforce those
limits for series control.
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Autoregressive model Our results show that the autoregressive model has no
difficulty in modelling internal process stage and counter variables. Differently
from alarms and commands, which occur in relation to human interaction, these
variables are connected to the automatic process behaviour with highly correlated
and regular sequences of values which are straight-forward to capture. Of all
the deviations, we only find one related to a counter variable (which delayed
an increment for 2 seconds): since the behaviour of this counter was extremely
regular in the training data, the model detector was not tolerant against the delay.

The remaining deviations refer to measurement variables. By inspecting them
more closely, we distinguish three groups. A first group of deviations refers to
variables that autoregression fails to model well, independently of the training
interval. This group accounts for ∼ 80% of the deviations. We believe the au-
toregression model fails to model the behaviour of these variables because we
observe the same variables reported consistently across all folds and batches. By
sampling deviating variables, we find out that 70% of them have a presumably
random behaviour with high oscillations. The remaining 30% behave as series
that are nearly constant (or slow trends) whose deviation is captured when a sud-
den peak occurs. To understand the semantics of this behaviour, we look into
project files. It turns out that, according to the project files, all these variables
correspond to floating point measurement values of the same set of field devices
(e.g., measurement from devices concerning purification in PLC2a). In Modbus,
floating point values are represented by a set of registers. The vendor specification
for our PLCs states that a single precision floating point is encoded according
to the IEEE 754 standard [10] in two registers, which represent the actual value
as a product of sign, exponent and mantissa. In Figure 6.4 we show how these
three components are projected onto a pair of registers. To understand how this
specification relates to our series, we find a pair of registers in project files that
are labelled as a higher and lower register of the same floating point value. When
reconstructed, the resulting value represents a value with an increment in range
of 10−4. Independently, the two variables describing the behaviour of the two
registers look quite different. In particular, while one variable looks pseudo ran-
dom (this illustrates the noisy fraction behaviour of RegisterB from Figure 6.4),
the second variable looks nearly constant (this illustrates the exponent part of
the RegisterA in Figure 6.4). We point out that, depending on the measurement
noise, some registers containing (half of a) floating point variable are not suitable
to be modelled raw. Our current tests show that, in the analysed environments,
this refers to approximately %50 of all measurements (since the same variables
are consistently alerted over all batches). To address this problem, we would
need to reconstruct the floating-point values as part of the data extraction phase.
Unfortunately, it is technically challenging to find a unique approach to identify
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the two halves of a floating point variable. Vendors use different approaches and
even within the same vendors, programmers might follow different conventions.
For example, in the analysed PLC project files we observe the use of at least three
different conventions: use consecutive pairs of registers with (i) the register with
even address as the upper register, (ii) the register with the odd address as the
upper register, or (iii) for a set of variables, put all upper registers first and then all
the lower registers.

By observing the peaks in the percentage of deviating variables across dif-
ferent folds, we find the second group of deviations. In more detail, we wanted
to understand if the deviating variables refer to multiple field devices (e.g. one
variable per field device) or to a few field devices (e.g. multiple variables per field
device). We find out that in all analysed cases, all the deviating variables corre-
spond to a limited set of devices (e.g., a peak of 9 deviating variables in PLC 2a
semantically describe different aspects of only one field device, a pump). We also
find several situations in which multiple variables are linked together and hence
exhibit similar (even identical) behaviour. For example, we see 10 ozone filters
whose flow is described by the same autoregressive model, and whose deviation
occurred at the same time and thus resulted in a peak of deviations in one PLC.

In either case, a more sophisticated model could aggregate variables by in-
corporating more process context information into the detection approach, for
example by extracting information from project files or performing a vertical anal-
ysis of variables, scanning for patterns of similar behaviour or grouping together
variables that refer to the same device.

Finally, the third group of deviations is related to variables that behave differ-
ently over time. For example, the value remains nearly constant for 20 hours, then
it fluctuates for 15 minutes and then it reverts to a constant value. We validate that
this group of variables is the same group which was mischaracterised as constant
series, as we described in §6.3.3.1. The data series of these variables is not sta-
tionary in a wide sense, and thus it is generally not well suited for autoregressive
modelling. To address this, we envision the adoption of multivariate modelling
approaches.

6.4 Related work

Statistical process control is a well established field which focuses on mod-
elling and monitoring parameters in industrial processes. Researchers use various
techniques (e.g., time series analysis, outlier detection, control limits, feedback
adjustments) to model and validate safety of industrial processes [26, 116]. Car-
denas [31] analyses process measurements and evaluates the process tolerance
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Figure 6.4: Representation of single precision floating point in Modbus

towards attacker efforts. Liu [69] analyses how false data from the field influences
controllers. Different from these approaches, we aim at reconstructing process
behaviour from network trace.

In computer science, a set of prior work focuses on understanding ICS commu-
nication patterns, showing that communication flows indeed reflect the regular and
(semi-)automated character of process control systems [19]. Other efforts focus
on analyzing security threats in ICS. For example, some authors analyze protocol
vulnerabilities [11, 21, 122], explore the lack of compliance to protocol specifica-
tions in different PLCs [29, 107] and the feasibility of device fingerprinting [2]. To
address security threats some efforts exploit communication patterns for anomaly-
detection [109, 67] However, the effects that one can find at the flow-level remain
limited; detecting semantic process changes requires inspection of the applica-
tion layer. Consequently, some authors propose to parse network protocols for
extracting information that can highlight changes to the process environment. For
example, authors perform partial protocol parsing to enumerate functionality that
Modbus clients use, aiming to detect unexpected deviations in requests sent to
PLCs [32] and interpret events on a higher level [45], fingerprint and monitor
current device configuration remotely [81, 99]. Düssel et al. [37] propose using
application syntax (not semantics) for network-based anomaly detection; they use
Bro to parse RPC, SMB, NetBIOS services inside process control networks, but
do not further examine ICS-specific protocols. In terms of classic IDS signa-
tures, DigitalBond provides Snort preprocessors that add support for matching on
Modbus/DNP3/EtherNetIP protocol fields [128]. McLaughlin in [75] proposes a
host-based approach for analyzing PLC behavior; they use a set of methods to
reconstruct PLC configuration and process safety interlocks from PLC program
code to build semantically harmful malware.

To the best of our knowledge there are only two prior efforts that extract and
analyze process data values from network traffic. First, Fovino et al. [40] track
current values of selected critical process parameters and thereby maintain a vir-
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tual image of the process plant that they then use to detect predefined undesirable
system states. Their method of annotating critical parameters and states requires
manual, intensive involvement of plant experts and thus remains expensive and
likely incomplete. Second, Gao et al.[43] use neural networks to classify between
normal and tampered process variables that are under injection attacks. Both
works validate their approaches in controlled testbed environments. By contrast,
we perform an unsupervised modelling on real world environment. We analyse
all available process variables and provide in depth discussion of semantics that
influence our results.

6.5 Discussion

In this section we discuss the evaluation results as well as other aspects that
relate to the applicability of our approach, namely the threat model and general-
ization to the domain and other industrial control protocols.

At a higher level, our findings provide a perspective on ICS environments
that may be unintuitive to security researchers. We find a common assumption
that ICS activity follows regular patterns that should be straight-forward to model
with approaches like the one we deploy in this work. However, we show that
when looking at the core of the process control, inevitably, the real world is
more complex than one might assume, exhibiting plenty of irregularities, semantic
mismatches, and corner-cases that need care to get right. This is a well known
challenge in the process control community: operational safety typically requires
intensive manual work on understanding and estimating the process behaviour
before enforcing any controls.

In relation to our threat model, we acknowledge that our approach does not
explicitly detect PLC code updates. However, a PLC code update is an unusual
event which involves issuing special commands to the PLC (function codes in
Modbus). It is therefore trivial to detect such events by extracting the command
from application layer messages and whitelisting the ones that are used. We also
note that some process manipulation attacks remain outside of what our approach
can conceptually find. By gaining control of a PLC, Stuxnet recorded the value of
measurement variables during normal operation and replayed the recorded values
after triggering the process variation to hide its traces. If the replayed values
emulate the normal pattern over time perfectly, it will not be possible to detect the
anomaly by any of our models. However, in case that the tampered measurement
is not accurate over a long period of time (e.g., because the period of sampling
was too short), our approach would still have a chance to detect the attack.

We argue that more extensive tests could be conducted with data coming from
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other environments, and in particular from other industrial domains. We are confi-
dent that our approach is applicable to other environments since we do not use any
assumptions that are specific to the water treatment only. The choice of focusing
on the Modbus specification for designing our approach is beneficial for extending
its use to other (more recent) industrial control protocols. In fact, the data model
of Modbus is generic and only defines two types of process variables (registers
and coils). This makes decoding Modbus messages easy, yet renders it hard to
extract meaningful semantics (see the problem with floating point values dis-
cussed before). Other industrial control protocols (e.g. DNP3, MMS and IEC104)
define a much more structured data model, with a complete set of variable types
(booleans, integers, floating points, etc.) and more fine grained variable semantics
(e.g. measurements, setpoints, alarms, etc.). With more information extracted
from protocol messages the impact of errors in the characterization step would
decrease, and in some cases it might not be needed at all.

6.6 Conclusion

In this Chapter we propose an approach for monitoring ICS process by ex-
tracting and modelling the behaviour of process parameters from network traffic.
We evaluate our approach as a tool, SONICS, and evaluate the performance of
the tool on a small testbed and using real world data from a water plant. Putting
our findings into perspective, we show that we can reliably monitor 98% of the
process control variables used in two real-world plants. 95% of these variables are
configuration settings, and according to plant operators changes in configurations
indeed represent one of the most direct threats for plant control. In fact, our
tests confirmed that we can detect a (although legitimate) configuration change
happening at one of the plants during the monitoring period. The remaining 2% of
the variables are still challenging to model with the presented approaches. When
analysing the causes, we can isolate a number of reasons for the deviations, rooted
not only in the models themselves but sometimes also in the data characteriza-
tion and extraction phases. Specifically, we see mismatches between (i) training
periods and activity cycles; (ii) data representation and process semantics; and
(iii) chaining and cluster effects that cause individual deviations to propagate to a
large number of variables.

Summarizing, our approach lays the ground for detecting critical attacks on
industrial control systems that current approaches can fundamentally not find.
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Chapter 7
Concluding remarks

We now summarize the contributions of the thesis, in relation to the main
Research Question discussed in Chapter 1. We also put our findings in a broader
perspective and highlight future research directions in the area of ICS cyber secu-
rity.

7.1 Summary

The security of industrial control systems has gained an increasing attention
in recent years. This was mainly due to (i) the public release of vulnerabilities in
current ICS (e.g., via Basecamp [122] and individual activists [123]) and (ii) real-
world incidents (e.g., Stuxnet [77]). Most efforts in the cyber security literature
focus on adapting best practices from traditional IT to the ICS environment. These
works often consider information as the main security asset (e.g., improve security
of ICS by segmenting network, improving access control). By contrast, this thesis
focuses on the process as the main security asset. In the introductory chapter we
formulate the following research question:
“How to design techniques for the detection of process attacks in ICS?”

We argue that the main requirement for building an effective cyber security
technology in the ICS domain is the inclusion of process knowledge. This is
because the lack of process context information is the main limitation for evalu-
ating if the observed activity (e.g., in log, network, sensor data) is going to affect
the underlying process. For example, an observation about a change in one of
the input parameters, captured over the network, does not mean much for the
monitoring device if we cannot interpret the observed value (i.e., by knowing
what that parameter does for the process and what is the normal value range).
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Figure 7.1: The outline of thesis results

The ultimate goal of our work is to improve detection techniques for address-
ing process attacks. This is challenging as the concept of process threats was
unknown in the context of IT security so far. As a consequence, IT experts
generally lack the necessary knowledge for building suitable techniques for the
ICS domain.

To tackle the challenge, we perform two types of studies. First, in Chapters 3
and 5 we perform problem investigation. In particular, we extensively analyse
and characterise how different attack vectors (i.e., attacks via user application
and network) become manifest in the system (i.e., identify discriminative clues
in the data that can be used to distinguish between benign and malicious activ-
ities). Second, in Chapters 4 and 6, we develop two approaches for addressing
process threats (MELISSA and SONICS). More specifically, MELISSA is designed
to analyse event logs and highlight unusual user activities. SONICS monitors
process indicators to detect deviations in daily operations. Figure §7.1 highlights
the results of the thesis per chapter. In particular:

• We identify and analyse different classes of process threats occurring via
misuse of ICS application software. We validate the findings during focus
groups sessions with ICS experts (Chapter 3)
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• We present the MELISSA approach which analyses ICS logs to highlight
suspicious user activities. During validation, we identified two configura-
tion problems in a real-life ICS plant that were previously unknown (Chap-
ter 4).

• We assess the capabilities of the state-of-the art network-based detectors and
perform an in depth analysis of results to understand why different attacks
can(not) be addressed by the proposed approaches (Chapter 5).

• We develop the SONICS method to monitor process behaviour by analysing
network traces. We demonstrate that 98% of process parameters can be
consistently monitored by using our approach. In addition, we discuss why
the remaining 2% of process parameters stay as a challenge for our approach
(Chapter 6).

In relation to the main research question, the work in the thesis can be sub-
sumed in four main steps. First, we decompose the problem of process attacks.
More specifically, we analyse how a malicious activity can affect an industrial pro-
cess and what are potential attack scenarios for accomplishing this. We identify
two general scenarios that may cause a process change: the use of an input param-
eter or PLC code update (depicted in Figure §7.1). By considering the location
of the input, we further distinguish three subscenarios for accomplishing an input
process manipulation: an attack via software application, network or field device.
Second, to characterise the targeted scenarios, we perform problem investigation
aiming to understand how process attacks are manifest in the system behaviour.
Here we empirically show that process attacks cannot be addressed by the state-of-
the art approaches for network content analysis. The main cause of this is the lack
of understanding of process context. Third, we derive two approaches, as a proof
of existence, to demonstrate how process attacks can be detected. In particular,
we show that it is feasible to infer the process context information from network
communication in ICS. Also, we identify patterns in user behaviour that can be
leveraged to detect undesirable activities. Finally, we analyse the performance
of the proposed approaches to identify limitations and gather insights that can be
valuable for future works. For example, we find that (i) an unified modelling of the
behaviour of process parameters is challenging (since the parameter behaviour ori-
gins from different causes such as: field measurement, program counter, sporadic
event sequences), (ii) the extraction of process information might be inconsistent
(since vendor implementations might differ in the way how the data is encoded)
and (iii) the success of the data interpretation depends on human factor (e.g., we
find three different policies of addressing process variables in one PLC).

From an engineering perspetive, the thesis explores the use of independent
tool suites. The choice of designing an independent tool, against an integrated
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ICS software, has two practical advantages. First, an independent monitoring
can provide an orthogonal view to the existing safety monitoring mechanisms
and thus improve the overall situational awareness. Safety mechanisms protect
the system against hazards (potential process problems during normal operation).
These methods do not consider malicious activities over the IT equipment, and
thus cannot solely be used to protect an ICS against malicious activity. Although
safety monitoring represents an excellent starting point for performing the security
analysis as well, we argue that the safety monitoring should, to some extent, be
decoupled from the security monitoring. Such design, as a result, also lowers the
possibility of manipulating the process by compromising both safety and security
protection mechanisms at the same time. Second, the deployment of independent
tools is more suitable in the ICS context. This is because process components
seldom change and have a life cycle of 10-20 years. In this setup, any upgrades
from the vendor side (such as improving monitoring mechanisms) are hard to
implement. As a practical result, the thesis implements two proof-of concept
tools that can be deployed in ICS environments. The current implementations
are indeed suitable for only specific vendors (i.e., that support the used log for-
mat) and a protocol (i.e., Modbus TCP). However, we argue that both approaches
can be translated to other ICS protocols (e.g., by implementing PLC data model
representation) and vendor environments (e.g., by adjusting the log format and
keywords for evaluating the event severity). We also acknowledge a potential
concern regarding the choice of building independent techniques for process anal-
ysis. Basically, any additional processing in the sensitive ICS environment can
potentially interfere with normal ICS communication and operation. To avoid
this, our approaches use passive, non-intrusive techniques for data gathering and
analysis.

Summarizing, this thesis performs pioneering work in exploring suitable tech-
niques for detecting process attacks in ICS. Various challenges from the areas of
IT security and process monitoring play an important role in designing a suitable
approach that is capable of detecting process attacks. We present approaches that
tackle these challenges and, more importantly, provide insights into problems,
opportunities and pitfalls that are relevant for the area and can be leveraged as
valuable knowledge in future works.
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7.2 Future research questions

We see several interesting research directions that relate to the topics discussed
in this thesis:

Relationships amongst process parameters In Chapter 6 we show that process
parameters can consistently be extracted from network. The challenge we identify
here relates to the further analysis of parameter semantics (e.g., what is the relation
between two extracted parameters). We see two possible research directions.

First, the information about the relationship amongst different process param-
eters can be found in PLC code (since this code holds the logic responsible for
operating different process parameters). By feeding the information on relation-
ships between different parameters into a network monitoring tool, we can derive
models that will be capable of monitoring (i) if the process parameters behave
over time as expected and (ii) if the PLC code has changed (by checking if the ex-
tracted parameter relationships still hold in the current parameter measurements).
A possible drawback of this approach is the need for extracting and interpreting
the PLC code into usable knowledge (i.e., the code might not be accessible).

Second, the relationships amongst process parameters can be learnt by a
“code-agnostic” manner. The current analysis in Chapter 6 models the behaviour
of each process parameter over time. We call this analysis as “horizontal”. By
performing a “vertical” alignment of process parameters (i.e., comparing values of
two parameters at the same point in time), we can infer the relationships amongst
different variables. The drawback of this approach is the fact that the derived mod-
els may consist of false relations (e.g., relationships which accidentally appeared
in data, but do not represent true process semantics).

Analysis of sequences In Chapter 4 we analyse user activity. In this initial work
we focus on detecting single undesirable user actions. As the next step, we see
the analysis of sequences in user behaviour as a promising research direction.
The sequence analysis is particularly suitable for the ICS domain since the user
behaviour is constrained by the nature of the process: strictly defined, repetitive
procedures. As a result, we foresee a set of patterns that represent usual user
activity on a particular system. In practice, we see two potential challenges for
performing sequence analysis of user activity. First, the logging system might
be configured in such a way that some some user actions are not recorded. This
would influence the completeness of the results. Second, the practical policies in
some plants might allow operators to use a shared user credentials (as we saw it in
several plants we had access to). This means that the analysed behaviour consists
of the activity of several users, which could be misleading for sequences analysis.
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Safety in security Intrusion detection is an established area of traditional IT
security. However, the number of works that extend the intrusion detection to
the ICS domain, by fully taking into considerations the specifics of the ICS field,
is low. As a practical consequence, the deployment of techniques that address
process attacks in the real world is at an early stage. On the other hand, pro-
cess control safety has been researched for over 50 years in the field of control
engineering [22]. These works ultimately aim at designing a safe and reliable
system that is capable of maintaining optimal working conditions and recover-
ing from failures (e.g., hazards due to equipment failures, human error, natural
catastrophes). However, the safety domain does not explicitly cover threats that
include malicious activity. This means that the designed safety models are not
necessarily capable of addressing process threats with malicious intent. For ex-
ample, a knowledgeable attacker can take the system into an undesirable state by
performing actions that will make different process component fail at the same
time, a situation that is highly unlikely to occur in normal working conditions
(e.g., considering only the likelihoods of component failures under normal work-
ing conditions, as used in safety).

We argue that the experience from the safety domain can be exploited for
securing ICS since safety models carry valuable semantic knowledge about the
process. In a broad perspective, this thesis does pioneering work on including
process monitoring into ICS security analysis. We believe that future efforts in this
direction can bring useful results. For example, models used for safety monitoring
(e.g., mathematical models describing the behaviour of process parameters) can
enrich the context of information extracted in Chapter 6 and thus improve the
evaluation of the parameter behaviour.

Anomaly-based intrusion detection in the ICS domain In general, an ICS
environment is more suitable for the deployment of anomaly-based approaches
than a traditional IT environment. For example, due to the limited number of
functionalities in ICS, the behaviour of the system can easier be modelled.

To the best of our knowledge, there are no studies that comprehensively anal-
yse and evaluate the usability of anomaly-based solutions in the ICS domain. To
some extent, this thesis considers different aspects of usability. For example, we
analyse implications of operator time required to analyse the results (through
the concept of false positives in Chapters 4–6). Also, we consider the level of
knowledge required for interpreting the results. We acknowledge that the current
outputs of SONICS still does not provide actionable information to the operators
(e.g., SONICS alerts a parameter behaviour without translating the parameter ID
to an actual process component).

Nevertheless, we argue that a more comprehensive analysis of usability as-
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pects is needed as it can highlight operational requirements in an ICS and repre-
sent a guideline for future works in this area.

Alongside with research directions that relate to the topics of this thesis, we
see several, in our opinion important, open issues in the ICS domain.

7.2.1 Common open issues in ICS cyber security

We point out that one of the main limitations of the work presented in this
thesis is the lack of comprehensive validation for the proposed techniques (i.e.,
the performed experiments used only benign data traces from real life plants). We
see two issues that, in our opinion, limit the current cyber security research in the
ICS domain:

Public dataset There are only few public datasets for testing security solutions
in ICS. The most used attack dataset by Digital Bond [128] comprises attacks
exploiting vulnerabilities in protocol implementations. However, this dataset does
not consist of process attacks. In fact, even if such attack would exist, it would
unlikely be applicable for any other environment (since processes differ in each
environment).

To the best of our knowledge, there are no public datasets capturing ICS opera-
tion longer than few minutes. We acknowledge a similar problem in traditional IT
(e.g., a lack of public datasets due to privacy concerns in enterprise systems). This
is a problem as it limits the possibilities to compare results of different approaches
and have measurable improvements in the field.

As a potential solution to the lack of attack datasets, we see a framework that
can translate different threats to specific plant instances. For example, a generic
attack (e.g., an override of a user command) via the framework could be translated
to a tailored process attack (e.g., an overflow or an explosion).

Classification of ICS We acknowledge that there are no widely accepted clas-
sifications of ICS environments and components.

The most intuitive classification we found relates to the domain of applica-
tion (e.g., water, energy, oil, building). Although this classification highlights
similarities in components and general features in one domain (e.g., processes in
water domain are generally less dynamic than processes in energy domain), the
character of processes often differ in one domain (e.g., water treatment compared
to water distribution).

Another classification relates to different types of ICS with respect to sys-
tem architecture (e.g., SCADA, DCS, PCS). We describe the differences amongst
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these terms in Chapter 2. This characterisation is too general and thus inadequate
because: (i) the architecture of each ICS type evolutes over time resulting in a
number of mixed solutions, (ii) different vendors design own versions of common
architectures and (iii) plant operators adjust default vendor architectures creating
hybrid types.

We argue that a comprehensive classification is necessary for performing
(i) interpretation and evaluation of proposed solutions (e.g., a high false positive
rate of a detector can be manageable in water treatment, but not in smartgrid) and
(ii) generalisation of knowledge across different domains (e.g., it is hard to reason
if an approach can effectively be applied to another environment).
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