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Chapter1
Introduction

1.1 Background - problem description

In the past 10-15 years we have witnessed an enormous growth in the demand
for mobile communications ranging from speech only and simple mobile data ap-
plications in the early years to full mobile Internet with multimedia applications
via smart phones nowadays. To handle the mobile tra�c growth and meet the
increasing service requirements (higher speeds, etc.) new radio access technologies
are deployed. In addition, network operators face the challenge to use the capacity
of their installed networks as e�ciently as possible.

The third generation Universal Mobile Telecommunications System (UMTS) em-
ployes Code Division Multiple Access (CDMA) as the technique of sharing the
network capacity among users. In a CDMA system, calls share a common spec-
trum, their transmissions are separated using (pseudo) orthogonal codes. The
impact of multiple calls is an increase in the interference level, that limits the
capacity of the system. Therefore, variation of load over space and time, and
the inherit capacity restrictions due to scarce resources are fundamental issues in
the operation of a wireless CDMA system. Load variation may occur at di↵erent
time scales that require di↵erent solutions. At the operational level (time scale of
minutes), load fluctuations occur due to randomness in call generation, call loca-
tion and call lengths. At this time scale, load balancing is carried out via power
and rate assignment as well as a reconfiguration of calls over cells. Managing the
scarce resources via power and rate assignment requires an underlying algorithm
that is fast enough to adapt to variations at this time scale. This thesis develops
mathematical models for characterizing and optimizing capacity of CDMA-based
wireless network via power and rate allocation.

1



2 Introduction

1.2 Related work

The joint rate and power assignment problem for CDMA systems has received
considerable attention over the past 10-15 years. Due to the complexity of the
problem, several restrictions have been made, in order to obtain mathematic-
ally tractable models. The most common simplifications are considering a cell in
isolation, thus neglecting the interference e↵ects, or assuming some extra prop-
erties of rates/powers, like unlimited rates or powers. For a simplified model of
a single cell in isolation, downlink power assignment schemes for maximizing the
throughput (sum of rates) or minimizing the total power in the cell are proposed
in [LMS05, DNZ02, YX03]. In [DNZ02], Duan et al. present a procedure for find-
ing the power and rate allocations that minimizes the total transmit power in one
cell. For the downlink most studies are based on pole capacity [Sip02] or based
on discrete event or Monte-Carlo simulation leading to time consuming evaluation
of feasibility and/or capacity [Sta02]. Resource assignment in a multicell envir-
onment is more complex than in a single cell, due to the interference caused by
users in adjacent cells. It has been studied in the framework of cell-breathing for
fixed data rates, see e.g. the pioneering work of [Han95, Yat95] that consider the
uplink, that in the early days of CDMA was considered to be the bottle-neck. In
this thesis, we aim for developing analytically tractable models for the joint rate
and power assignment problem in the downlink of CDMA systems.

First, we review some related work of Chapter 2 where we develop a model for two
cell linear model. We consider the joint rate and power assignment problem under
the assumption that all users are using the same known rate. This leads to a model
for characterizing downlink and uplink power assignment feasibility. For this, we
will make use of the Perron Frobenius theory (see [Sen73]). A similar successful
work using Perron Frobenius theory on the uplink was presented in [EE99, Han99,
BCP00]. E↵ective interference models such as developed in [EE99] allow for a
characterization of feasibility based on the total number of users only. However,
the analysis in [EE99] requires a homogeneous distribution of the users over the
network cells. In [Han99], feasibility is characterised via the Perron-Frobenius
eigenvalue of an interference matrix of the network state. Unfortunately, for the
uplink the PF eigenvalue is not available in closed-form so that it provides only
a semi analytical evaluation of the uplink capacity. In Chapter 2, the analytical
expression of the Perron-Frobenius eigenvalue is available in closed-form. As in
[EvdBB05], we derive a condition for the existence of a feasible power allocation
for the downlink when the rates allocated to users are known. The discretized
downlink two cell model enables a characterization of downlink power feasibility
via the Perron-Frobenius eigenvalue of a suitably chosen matrix.

Next, we review some related works of Chapter 3. The model in Chapter 3 is based
on Perron-Frobenius theory. Another approach for joint optimal rate and power
allocation, based on the Perron-Frobenius theory, is proposed by Berggren [Ber01]
and by O’Neill et al. [OJB03]. Berggren [Ber01] describes a distributed algorithm
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for assigning base transmitter station (BTS) powers such that the common rate
of the users is maximized. In [OJB03], Perron-Frobenius theory is used to design
an approximation algorithm for a model with multiple rates, which permits the
use of techniques from convex optimization. Both papers assume continuous rates
for users. The models in [Ber01, OJB03, EvdBB05] have lead us into the model
extension with the rates chosen from a discrete set. The goal is to allocate rates
from a discrete and finite set R = {R

1

, ..., R
K

} to the users such that the total
utility, i.e., the sum of the utilities of all users, is maximized.

Moreover, in Chapter 3 we develop a model with cell decomposition, which leads
to a distributed algorithm for downlink rate allocation. In [LMS06], a distributed
algorithm, without considering the status of the other cells, was developed via a
dynamic pricing algorithm. In Chapter 3, we include the rate allocation of other
cells.

Next, in Chapter 4, we extend the model under a continuous rate assumption.
The goal is to assign rates to users, such that the utility of the system is maxim-
ized. For this purpose, we do a dimension reduction of the power control matrix,
as was done for the uplink (see [Han99, MH01, ZBG03]). Due to the complexity
of interference-limited systems, analytical solutions for optimal joint power and
rate assignments are scarce. In a game theoretic approach, [ST11] optimize power
allocation for a single cell. For continuous rates, for a single cell uplink model
[KO09] allows a rate dependent energy per bit to interference ratio. For a mul-
tiple cell uplink model, in [DYX09] the maximum minimum-rate under quality of
service constraints is considered via a power assignment search method. This is
a combinatorial optimization method that is similar to that used in [BSW06] for
minimizing the total power in a two cell downlink model with fixed data rates.

In Chapter 5, the last part of this thesis, we address the joint downlink rate and
power assignment for maximal total system throughput in a multi-cell CDMA
network in an analytical setting. It generalizes the results of [BEG07, LMS05,
Mus10, ZOB07] to multiple cells to obtain a full analytical characterization of the
optimal power and rate assignment in the downlink of a multi-cell CDMA network.
[MKT06] shows that in the optimal rate assignment some mobiles operate at max-
imum rate while others operate at the minimum rate, and only one mobile operates
at an intermediate rate, and [ZOB07] shows that the optimal power assignment
in the uplink can be obtained by a greedy procedure, where fairness is guaranteed
via interference constraints. Optimizing network performance requires perform-
ance measures. In this thesis, the satisfaction of a user in segment i, i 2 {1, ..., L}
is measured by means of a positive utility function u

i

(R
i

). For a presentation of
the utility functions commonly used in the literature see [TAG02]. For the up-
link, optimal rate and power assignment strategies to maximize total throughput
are considered in [HA07, ZMG11, Mus10, OW99, OZW03, VRM11, SS10] and to
maximize the minimum rate to achieve fairness in [DYX09, PJ06]. For the down-
link, [LMS05] propose a distributed algorithm for rate and power assignment that
maximizes total utility. In [Jav06], Javidi analyzes several rate assignments in the
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context of the trade-o↵ between fairness and overall throughput. The rates are
supposed to be continuous and the algorithms proposed for the rate allocation
are based on solving the Lagrangean dual. For a subset of utility functions (i.e.
either convex or concave or S-shaped or inverse S-shaped), [LK09, ZMG11] pro-
pose a near optimal algorithm for downlink resource assignment problems, where
the resource may be the power or the rate of the mobile. The non-convex power
allocation problem is solved using particle swarm optimization. Weighted fairness
is introduced by assigning weights to each user. A dynamic pricing algorithm to
obtain a power assignment that maximizes the total utility of the mobiles for two 1
dimensional cells (mobiles situated e.g. on a highway) is proposed in [ZHJ05]. An
iterative linear programming approach for joint power allocation and BTS assign-
ment is considered in [LSM09]. An exact algorithm for rate and power assignment
that maximizes total throughput in two cells is presented in [BEG07]. Although it
may lead to significant imbalance among the mobiles [SSB10], see e.g., [Tsi11] for
the trade-o↵ between fairness and throughput, it is argued in [Lit03] that maximal
throughput also results in minimal mean sojourn time (time to handle the call).

1.3 Basic models

Effective interference

CDMA is an interference limited system, therefore the capacity of the system is
directly related to the interference level. A common measure of the quality of the
transmission is the energy per bit to interference ratio, (E

b

�I
0

)
i

, that for a user
i is defined as (see e.g. [HT07])

✓

E
b

I
0

◆

i

=
W

r
i

useful signal power of user i

interference + thermal noise
, (1.1)

where W is the system chip rate, N
0

is the thermal noise and r
i

is the data rate
for a user i.

First, let us consider the numerator. The received signal power of user i depends
on the transmitted power and the user location. In this thesis, for simplification of
the mathematical model, we assume deterministic path loss propagation between
a transmitter X and a receiver in segment i of the following form

P
0

i

= P
i

l
i,X

, (1.2)

where l
i,X

depends only on the distance d
i

between a user i and BTS X, P
0

i

is the
received power of the user i and P

i

is the transmission power towards the user i.
If l

i,X

= d��

i

, where � � 0 is independent of the distance, this model performs
reasonably well in flat service areas for d

i

� 1 km (see [ARY95, Hat80]).

Next, let us consider the interference term in the denominator. In a multicell
environment, since all users are using the same frequency, interference either comes
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from users in the same cell, called the intracell interference, I
intracell

, or comes
from users in the neighboring cells, called the intercell interference, I

intercell

. For
downlink intracell interference, non-orthogonality factor ↵ represents how much
interference can be reduced by the system within the cell. The value of ↵ is between
zero and one, i.e., 0  ↵  1, where ↵ = 0 means the system is completely non-
orthogonal and ↵ = 1 means the system is completely orthogonal. The higher
the value of non-orthogonality factor ↵, the lower the intracell interference. For
uplink intracell interference, it is generally assumed (see e.g. [EE99, HT07]) that
the signals are perfectly orthogonal.

Quality of service

In order to ensure a certain quality of service, the energy per bit to interference
ratio of a user i has to be above a prespecified value ✏⇤

i

, (E
b

�I
0

)
i

> ✏⇤
i

(see
[EE99]). In the presence of perfect power control, we assume that the energy per
bit to interference ratio of a terminal in segment i equals the threshold ✏⇤

i

, i.e.,
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i

, for all users i. (1.3)

For the rest of this thesis, we develop models under the perfect power control
assumption.

Next, we discuss the downlink transmit power and the uplink received power model
separately. Although these problems are similar in nature, that is power and rate
assignment is based on maximising a utility function and is subject to energy
per bit to interference ratio constraints, the actual power and rate assignment
problems di↵er. In the downlink a few BTSs transmit to many mobiles, whereas
in the uplink many mobiles transmit to a few BTSs. The corresponding sources
(locations) for interference are di↵erent, resulting in similar but di↵erent power
and rate assignment problems. As a consequence, some insight from the uplink
power and rate assignment are of interest for the downlink problem, but a solution
for the uplink does not yield a direct solution for the downlink.

Downlink transmit power

Consider a CDMA wireless system with two BTSs, say cell X and cell Y . Assume
that the number of users in the systems is L, where I users are assigned to BTS
X and (L � I) users are assigned to BTS Y. Let l

i,X

, respectively l
i,Y

, be the
path loss of user i from BTS X, respectively from BTS Y. Let us assume that the
location of users in cell X is ordered such that l

1,X

< l
2,X

< ... < l
I,X

. Thus, the
user 1 with path loss l

1,X

is located the closest to BTS X, and the user I with
path loss l

I,X

is the furthest to BTS X. And from users in cell Y, let us assume
that the location of users is ordered such that l

I+1,Y

> l
I+2,Y

> ... > l
L,Y

. Thus,
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the user L with path loss l
L,Y

is located closest to BTS Y . Hence, the users path
loss from BTS X is l

1,X

< l
2,X

< ... < l
I,X

< l
I+1,X

< l
I+2,X

< ... < l
L,X

.

Let r
i

be the assigned downlink rate to user i that requires a transmit power P
i

from the BTS. Under the described path loss model and a constant thermal noise
N

0

, the energy per bit to interference ratio of user i assigned to BTS X is
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for i 2 {1, ..., I}, where l
i,X

the path loss from the BTS X to user i and P
i

is the
transmitted power from the BTS to the user in the cell. Similarly, the energy per
bit to interference ratio of a user i assigned to BTS Y is
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for i 2 {I + 1, ..., L}, where ↵ is the non-orthogonality factor, l
i,Y

the path loss
from the BTS Y to user i and P

i

is the transmitted power from the BTS to the
user in the cell. Next, we will derive an explicit formulation of the total transmit
power of a BTS given that the user i in the cell is assigned a downlink rate r

i.

From Eq.(1.3) and Eq.(1.4), the downlink transmit power of BTS X to the user i
in cell X, for i 2 {1, ..., I}, is

P
i

= ↵
I

X
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V (r
j

)P
j

+ l
i

L

X

j=I+1

V (r
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)P
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, (1.6)

where

V (r
i

) =
✏⇤
i

r
i

W + ↵✏⇤
i

r
i

, for i 2 {1, ..., L}, (1.7)

and

l
i

=

(

l

i,Y

l

i,X

, for i 2 {1, ..., I},
l

i,X

l

i,Y

, for i 2 {I + 1, ..., L}.
(1.8)

Similarly, from Eq.(1.3) and Eq.(1.5), we can also express the required transmit
powers of BTS Y to the user i in cell Y, for i 2 {I + 1, · · · , L},

P
i

= l
i

I

X
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V (r
j

)P
j

+ ↵
L

X

j=I+1

V (r
j

)P
j

+ V (r
i

)l�1

i,Y

N
0

. (1.9)



1.3 Basic models 7

Uplink received power

The interference model for the uplink di↵ers from that for the downlink, as a for
the uplink many terminals transmit to a few BTSs. In the uplink, the interference
is measured by the BTS, hence, it is more appropriate in the uplink to measure
the received power in the BTS. Let the received power of a user i in BTS X with
pathloss l

i,X

be PX

i

, then

PX

i

= P
i

l
i,X

. (1.10)

Moreover, the uplink transmit power of a user is limited, say P
i

 P
max

.

Let r
i

be the uplink rate for user i in cell X. From (1.3), the uplink energy per
bit to interference ratio for the user i assigned to BTS X is
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, (1.11)

for i 2 {1, ..., I}.

Similarly for BTS Y , the uplink energy per bit to interference ratio for the user i
assigned to BTS Y, given that the uplink rate r

i

, is
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, (1.12)

for i 2 {I + 1, ..., L}.

For a user i, i 2 {1, 2, · · · , L} , under the assumption of perfect power control, in
the uplink, the user’s terminal is required by the BTS to transmit enough power
such that (E

b

�I
0

)
i

= ✏⇤
i

, for all users i, i 2 {1, 2, · · · , L} . Moreover, under the
assumption of uplink perfect power control, each BTS requires all terminals in
the cell to transmit enough power such that the received signal is the same, i.e.,

PX

i

= dPX and PY

j

= dPY (see e.g. [EE99, HT07]). Hence, from (1.11) and (1.12),
we have
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, (1.13)
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. (1.14)
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Then, the uplink received signal, dPX , at the BTS X should satisfy

dPX = V (r
i

)

0

@IdPX +

0

@

L

X

j=I+1

l
j

1

A

dPY +N
0

1

A , (1.15)

and the uplink received signal, dPY , at the BTS Y should satisfy

dPY = V (r
i

)
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A , (1.16)

where

V (r
i

) =
✏⇤
i

r
i

W + ✏⇤
i

r
i

. (1.17)

1.4 Overview and contribution

Chapter 2

In Chapter 2, we develop a model for downlink power assignment in a CDMA-
based wireless system. We analyze feasibility of the downlink power assignment in
a linear model of two CDMA cells, under the assumption that all downlink users in
the system receive the same rate. This is done by discretizing the area between two
BTSs into small segments. The model considers the number of users and the users’
location in each segment. Then, the power requirements are characterized via a
matrix representation. We obtain a closed-form analytical expression of the so-
called Perron-Frobenius eigenvalue of that matrix. Based on the Perron-Frobenius
eigenvalue, we obtain an explicit decomposition of system and user characteristics.
Although the obtained relation is non-linear, it basically provides an e↵ective
interference characterisation of downlink feasibility for a fast evaluation of outage
and blocking probabilities, and enables a quick evaluation of feasibility. We have
numerically investigated blocking probabilities and have found for the downlink
that it is best to allocate all calls to a single cell. Moreover, this chapter has
also provided a model for determining an optimal cell border in CDMA networks.
We have combined the downlink and uplink feasibility models to determine cell
borders for which the system throughput, expressed in terms of downlink rates, is
maximized.

This chapter is based on the papers:

• [EvB03] A.I. Endrayanto, J.L. van den Berg and R.J. Boucherie. Charac-
terizing CDMA downlink feasibility via e↵ective interference, in Proceedings
1st International Working Conference on Heteregeneous Networks - Het-
NetsÕ03, pp. 62/1-62/10, Ilkley, United Kingdom, 21-23 July 2003.
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• [EvdBB05] A.I. Endrayanto, J.L van den Berg, R.J Boucherie, An analytical
model for CDMA downlink rate optimization taking into account uplink cov-
erage restrictions, Performance Evaluation 59, ISSN: 0166-5316 , February
2005.

Chapter 3

In Chapter 3, we extend the model from Chapter 2. This chapter still considers
the two cells linear model where the coverage area is divided into small segments.
Previously, we have assumed that all users in the cells are using the same rate,
regardless users’ location. In this chapter, we di↵erentiate rate allocation based
on their location. We assume users in the same segment receive the same rate.
The rates are chosen from a discrete set. The goal is to assign rates to users in
each segment, such that the utility of the system is maximized.

For each segment the transmit power requirements are characterized via a mat-
rix representation that separates user and system characteristics. Based on the
Perron-Frobenius eigenvalue of the matrix, we reduce the downlink rate allocation
problem to a set of multiple-choice knapsack problems. The solution of these prob-
lems provides an approximation of the optimal downlink rate allocation and cell
borders for which the system throughput, expressed in terms of utility functions
of the users, is maximized. We have reduced the downlink rate allocation problem
into a set of multiple-choice knapsack problems. Thus the rate allocation problem
is NP-hard. Thus it is very unlikely that polynomial time algorithms exist (unless
P=NP). In this chapter, we design an algorithm that is actually a fully polyno-
mial time approximation scheme (FPTAS) for the rate optimization problem. We
have derived a combinatorial algorithm for finding a downlink rate allocation in a
CDMA network, that, for ✏ > 0, achieves a throughput of value at least (1 � ✏)
times the optimum.

The approach in this chapter has several advantages. First, the discrete optimiz-
ation approach has eliminated the rounding errors due to continuity assumptions
of the downlink rates. Using our model, the exact rate that should be allocated
to each user can be indicated. Second, the rate allocation approximation we have
proposed guarantees that the solution obtained is close to the optimum. Moreover,
the algorithm works for very general utility functions. Furthermore, the model in
this chapter indicates that the optimal downlink rate allocation can be obtained
in a distributed way: the allocation in each cell can be optimized independently,
interference being incorporated in a single parameter t.

This chapter is based on the papers:

• [EBB04] A.I. Endrayanto, A.F. Bumb, R.J. Boucherie, A multiple-choice
knapsack based algorithm for CDMA downlink rate di↵erentiation under
uplink coverage restrictions, in Proceedings 16th ITC Specialist Seminar,
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Antwerp, Belgium, 31 August- 2 September 2004.

• [EBBW04] R.J. Boucherie, A.F. Bumb, A.I. Endrayanto, G.J. Woeginger,A
combinatorial approximation for CDMA downlink rate allocation, in Pro-
ceedings 7th INFORMS Telecommunications Conference, Boca Raton, Flor-
ida, United States, March 7-10, 2004.

• [BBEW06] R.J. Boucherie, A.F. Bumb, A.I. Endrayanto, G.J. Woeginger, A
combinatorial approximation for CDMA downlink rate allocation, in Ch.14
of Telecommunications Planning: Innovation in Pricing, Network Design
and Management, ISBN: 978-0-387-29222-5 , Springer, 2006.

Chapter 4

In Chapter 4, we propose a fast and exact joint rate and power allocation algorithm
in the downlink of a telecommunication network formed by two cells, where the
base stations transmit at limited powers. Thus, we incorporate in our model two
important aspects of a CDMA network, namely interference and limited powers.
We assume that the rates are continuous and may be chosen from a given interval.
Thus, it is a di↵erent model than that of the previous chapters. The assumption
in this chapter seems realistic, since in a CDMA system data rates may be rapidly
modified in accordance with channel conditions, resulting in an average rate that
lies in an interval.

First, we have developed a model for the joint rate and power allocation problem.
Due to the impact of the interference between users in di↵erent cells, this problem
is much more di�cult then that of the previous chapters, where the model was
analysed under unlimited powers. Despite its non-convexity, the optimal solutions
can be very well characterized. Second, we have analyzed several properties of the
optimal solutions. We proved that the optimal rate allocations are monotonic in a
function of the path loss. Based on this property, we show that in the optimal rate
allocation, only 3 rates are given to users. Finally, we propose a polynomial time
algorithm in the number of users that solves optimally the joint rate and power
allocation problem. The results can be extended to non-decreasing utility func-
tions. Moreover, the algorithm can be extended to iteratively solve the rate/power
allocation problem in a small number of cells.

This chapter is based on the following paper

• [BEG07] R.J. Boucherie, A.F. Gabor, A.I. Endrayanto, Optimal joint rate
and power assignment in CDMA networks, presented in The 3rd Interna-
tional Conference on Algorithmic Aspects in Information and Management
(AAIM’07), Portland, USA, 6-8 June 2007.
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• [BGE07] R.J. Boucherie, A.F. Gabor, A.I. Endrayanto, Optimal joint rate
and power assignment in CDMA networks, in Lecture Notes in Computer
Science , ISBN: 978-3-540-72868-9, Springer-Verlag, 2007, pages 201-210.

Chapter 5

In Chapter 5, we extend the continuous rate model to the multi cell case. We
present a full analytical characterization of the optimal joint downlink rate and
power assignment for maximal total system throughput in a multi cell CDMA
network. The cell model is a planar model, where the cell coverage has a hexagonal
shape.

Chapter 5 has three main contributions. First, we provide an explicit and ex-
act characterization of the structure of the optimal rate and power assignment.
Second, we give a characterization of the optimal rate assignment in each cell.
We prove that in a network with N base transmitter stations (BTSs) either all
mobiles have maximum rate, or in k BTSs all mobiles have maximum rate and the
other BTSs transmit at maximum power, or N � 1 stations transmit at maximum
power. In the latter case, finding the optimal power for the remaining BTS can be
reduced to a discrete problem in which only a discrete set of powers must be con-
sidered in the optimization procedure. Third, based on these results, we give an
exact algorithm for solving the rate and power assignment problem and a fast and
accurate heuristic algorithm for power and rate assignment to achieve maximal
downlink throughput in a multi cell CDMA system. Under this heuristic, for a
cell with the total transmit power less than the maximum, the intermediate rate is
neglected, i.e., the heuristic assigns maximum and minimum rates only. Moreover,
the heuristic orders the cells according to a certain criterion and assigns maximum
power and rates in this order. It is shown that the heuristic is fast and accurate
up to high load.

This chapter is based on the paper:

• [EGB12] R.J. Boucherie, A.F. Gabor, A.I. Endrayanto, Exact and Heuristic
Algorithm for Throughput Maximization in MultiCell CDMA (submitted).
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The relation between chapters is illustrated in Figure 1.1.

Figure 1.1: The relation between chapters



Chapter2
Characterizing CDMA Feasibility via
Effective Interferences

2.1 Introduction

One of the most important features of current wireless communication systems is
their support of di↵erent user data rates. As a major complicating factor, due
to their scarcity, the radio resources have to be used very e�ciently. The third
generation Universal Mobile Telecommunications System (UMTS) employees Code
Division Multiple Access (CDMA) as the technique of sharing the network capacity
among multiple users. The impact of multiple simultaneous calls is an increase in
the interference level, that limits the capacity of the system. The assignment of
transmission powers to calls is an important problem for network operation, since
the interference caused by a call is directly related to the power. In the CDMA
downlink, the transmission power is related to the downlink rates. Hence, for an
e�cient system utilization, it is necessary to adopt a rate allocation scheme in the
transmission power assignment.

The objective of this chapter is to develop an analytical model that allows a fast
evaluation of the downlink feasibility of CDMA under non-homogeneous tra�c
load. In particular, we aim for an e↵ective interference model. We derive a condi-
tion for the existence of a feasible power allocation for the downlink when the rates
allocated to users are known. By discretizing the cell into segments, we obtain an
analytical model for characterizing the transmit power feasibility for a certain rate
allocation and a certain user distribution. Furthermore, we develop a feasibility
model that will be used in the later sections for determining the optimal border
location and the optimal rate allocation. For this, we will make use of the Per-

13
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ron Frobenius theory (see [Sen73]), by analogy with the characterization of power
feasibility for the uplink in [BCP00, EE99, Han99]. E↵ective interference models
such as developed in [EE99] allow for a characterization of feasibility based on that
total number only, but they assume a homogeneous distribution of calls over the
area covered by a cell.

2.2 Discretized two cell model

We focus on modeling BTSs located along a highway to include both non homo-
geneity of the user distribution, and mobility of users. Users are located in cars
passing through the cells. Due to e.g. tra�c jams (”hot spots”) the load of the
cells will not be distributed evenly along the road. To characterize the distri-
bution of a single type of users in the cells, we propose a discretized-cell model.
Each cell is divided into small segments. Then, the non homogeneous load can
be characterized by the mean number of calls and fresh call arrival rates in the
segments. Taking into account interference between segments in neighboring cells
and between segments within the cells, we express the generated downlink inter-
ference per segment towards the other segments. This model permits, as we will
see below, to characterize analytically the transmit power feasibility for a given
rate allocation and user distribution.

We consider a linear network model. LetX and Y be the two base stations (BTSs),
situated at distance D from each other on a highway. The highway is divided into
L small segments of length �. For the description below, we fix the radii of the
cells. Let cell X contain I segments, labelled as i = 1, ..., I, and let cell Y contain
L� I segments, labelled as i = I + 1, ..., L.

i-1 i

segment i

i*

1 2 I+1I L

cell border

BTS  X BTS  Y

cell X
cell Y

Figure 2.1: Discretized Cell Model

We assume that the segments are small, so that we may approximate the location
of users in a segment to be in the middle of that segment, i.e. for segment i of cell
X, users are located at distance i⇤ = � [(i� 1) + i] /2 from X. Furthermore, we
also assume that in each segment, the users have the same data rate and power.
Denote by n

i

the number of users in segment i, for i 2 {1, ..., L}.
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2.2.1 Downlink interference model

To characterize the interference first we consider a single user type model, where
all users have the same downlink data rate r

d

r
i

= r
d

, for all i 2 {1, 2, · · · , L} . (2.1)

Recall Figure 2.1. Assume that the number of users, n
i

, for i 2 {1, ..., L} in each
segment of both BTSs is known. Under the described path loss model, with users
in the same segment having the same power and the same rate and a constant
thermal noise N

0

, the energy per bit to interference ratio in the segments assigned
to BTS X becomes
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for i 2 {1, ..., I}. And, the energy per bit to interference ratio in the segments
assigned to BTS Y ia
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for i 2 {I + 1, ..., L}, where ↵ is the non-orthogonality factor.

From Chapter 1, under the assumption of perfect power control we have
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Downlink transmit power

From Eq.(2.2) and Eq.(2.4), we express the explicit formulation of downlink trans-
mit power of BTS X to the user in segment i, for i 2 {1, ..., I} is
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(2.7)



16 Characterizing CDMA Feasibility via E↵ective Interferences

Similarly, from Eq.(2.3) and Eq.(2.4), we can also express the required transmit
powers of BTS Y to all users in segment i, for i 2 {I + 1, · · · , L}.
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2.2.2 Persistent calls model

In this section, we develop a model for persistent calls to analyze interference in
CDMA based on the cell model in Figure 2.1. The objective is to characterize
analytically the transmit power feasibility for a given rate allocation and users
distribution.

Characterization of solution

From Equation (2.5) and (2.8), the solution of downlink transmit powers for both
cells can be found by solving the following system of equations
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for i 2 I + 1, ..., L,
P
i

� 0, for i 2 1, ..., L.

(2.9)

Note that system (2.9) has L equations, besides the positivity constraint of the
power vector. We can write the system of equations into matrix form as follows

(I�T)P = c. (2.10)

where I is an identity matrix of size (L⇥L),P=
�
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is the BTSs transmit power represented in a vector column of size (L⇥ 1),
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is the vector column of
size (L ⇥ 1) related to own interference of thermal noise. Matrix T characterizes
the interference related to the number of users and their locations, which can be
written in block matrices
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where
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• 1
I⇥I

, respectively 1
(L�I)⇥(L�I)

, is a matrix of size (I ⇥ I), respectively
(L� I)⇥ (L� I), with all elements equal to one.

• 0
I⇥(L�I)

, respectively 0
(L�I)⇥�I

, is a matrix of size I⇥(L� I), respectively
(L� I)⇥ I, with all elements equal to zero.

• LY

X

is a matrix of size I ⇥ (L� I) ,represents the fraction of pathloss (see
Eq.(2.7)) of users located in I segments of BTS X to users located in (L� I)
segments of BTS Y . As each row represent a position in the ith segment,
the element for the ith row is equal to l

i

, i.e.,

LY

X

(i, j) = l
i

, for i = 1, 2, · · · , I.

LX

Y

is a matrix of size (L� I)⇥ I, that represents the fraction of pathloss of
users located in (L� I) segments of BTS Y to users located in I segments
of BTS X. Similarly to above, as each row represent a position in the ith

segment, the element for the ith row is equal to l
i

, i.e.,

LX

Y

(i, j) = l
i

, for i = I + 1, · · · , L.

• U
X

, a diagonal matrix of size (I ⇥ I) with element U
X

(i, i) = n
i

, represent
the number of users in segments of BTS X and U

Y

, a diagonal matrix of size
(L� I)⇥ (L� I) , U

Y

(i, i) = n
i

, represent the number of users in segments
of BTS Y. Thus,

U
X

= (n
1

, n
2,

. . . , n
I

)T I
I⇥I

,
U

Y

= (n
I+1

, n
I+2,

. . . , n
L

)T I
(L�I)⇥(L�I)

,
(2.12)

where I
I⇥I

, respectively I
(L�I)⇥(L�I)

, is an identity matrix of size (I ⇥ I),
respectively (L� I)⇥ (L� I) .

Thus, downlink transmit power feasibility of our cellular system is characterized
by the matrix T, where the distribution of calls over the segments appears in T.
The system and user characteristics in this matrix can be separated as in (2.11),
which can be rewritten as

T = SU, (2.13)

where S represents the system parameters

S =

✓

↵V (r
d

)1
I⇥I

V (r
d

)LY

X

V (r
d

)LX

Y

↵V (r
d

)1
(L�I)⇥(L�I)

◆

, (2.14)

and U represents the distribution of the number of calls in each segment

U =

✓

U
X

0
I⇥(L�I)

0
(L�I)⇥I

U
Y

◆

. (2.15)

Note that the entries of S are fixed for given system parameters. Thus the solution
of downlink transmit powers is determined by the distribution of calls over the
segments.
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Feasible solution

The solution of downlink transmit powers in Eq.(2.9) can be found by solving
the system of equations in Eq.(2.10). Since matrix T is a non-negative matrix,
according to the Perron-Frobenius theorem (see [Sen73]), the feasibility of (2.10)
is determined by the Perron- Frobenius (PF) eigenvalue � (T) of the matrix T.
For the sake of completeness, we present the Perron-Frobenius theorem below.

Theorem 2.2.1 [Sen73] A necessary and su�cient condition for a solution P
(P � 0, 6= 0) to the equations

(sI�T)P = c (2.16)

to exist for any c � 0, 6= 0 is that �(T) < s.
In this case there is only one solution of P, which is strictly positive and given by

P = (sI�T)�1c

For our model in this chapter we have s = 1. Thus

P � 0 exist and P = (I�T)�1c () �(T) < 1. (2.17)

Next theorem gives the explicit formulation of the Perron- Frobenius (PF) eigen-
value � (T).

Theorem 2.2.2 The Perron-Frobenius (PF ) eigenvalue of T is
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(2.18)

Proof. The PF eigenvalue of matrix T is determined from the characteristic
polynomial of matrix T, i.e., |T��I| = 0. As T= SU, we find

|T��I| =
�

�S��IU�1

�

� |U| . (2.19)

U is a diagonal matrix so that det(U) is the multiplication of the diagonal ele-
ments, i.e.,

|U| =
I

Y

i=1

n
i

L

Y

j=I+1

n
j

. (2.20)
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Hence, it remains to calculate
�

�S��U�1I
�

� . Notice that
�

�S��U�1I
�

� has a block
matrix structure,

�

�S��U�1I
�

� =

�

�

�

�

A B
C D

�

�

�

�

.

For block matrices with det(A) 6= 0, the determinant is (see [Mey00])

det
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Straight forward algebra gives
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Hence, from (2.20) and (2.21)

|T��I| =
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where
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Clearly |T��I| = 0 has (L�2) zero eigenvalues and only two non-zero eigenvalues.
These eigenvalues are determined from the solution of F (�) = 0. Thus, the Perron-
Frobenius eigenvalue of T is the largest root of F (�) = 0 as in Eq.(2.18).

The characterization of downlink feasibillity via matrix T, the feasibility solution
via Perron-Frobenius theory and the explicit formulation of �(T) in (2.18), provide
a clear motivation for the discretization into segments as we obtain a downlink
interference model.

Next, for the sake of completeness, although the uplink interference model has been
studied extensively in [BCP00, EE99, Han99], we present it briefly in our setting
of the discretized cell model. This uplink model will be used in combination with
the downlink model.
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2.2.3 Uplink interference model

In a CDMA system the uplink (mobile user to Base Transmitter Station (BTS))
and downlink (BTS to mobile) have di↵erent characteristics, and must be analyzed
separately. The uplink determines coverage, whereas the downlink determines
capacity. As the downlink has more capacity (due to e.g. a higher transmit power
of the BTSs), in many studies the uplink has been investigated in detail.

A successful analytical uplink concept is the e↵ective interference model developed
by [EE99], which enables a fast evaluation of network state feasibility. However,
the analysis in [EE99] requires a homogeneous distribution of the users over the
network cells. In [Han99], feasibility is characterized via the Perron-Frobenius
eigenvalue of an interference matrix of the network state. Unfortunately, for the
uplink the PF eigenvalue is not available in closed-form so that it provides only a
semi analytical evaluation of the uplink capacity. For the downlink most studies
are based on pole capacity [Sip02] or based on discrete event or Monte-Carlo
simulation leading to slow evaluation of feasibility and/or capacity [Sta02].

The interference model for the uplink is di↵erent than that for the downlink, as a
for the uplink many users transmit to a few BTSs. In the uplink, the interference
is measured by the BTS, hence, it is more appropriate in the uplink to measure
the received power in the BTS.

Let the received power of a user i in BTS X at path loss l
i,X

be PX

i

, then

PX

i

= P
i

l
i,X

. (2.22)

Moreover, the uplink transmit power of a user is limited, say P
i

 P
max

. As in
downlink, it is assumed that the uplink data rate is the same r

u

for all users, i.e.,

r
i

= r
u

, for all i 2 {1, 2, · · · , L} . (2.23)

From (1.1), the uplink energy per bit to interference ratio in the segments assigned
to BTS X is
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for i 2 {1, ..., I}.

Similarly for BTS Y , the uplink energy per bit to interference ratio in the segments
assigned to BTS Y is
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for i 2 {I + 1, ..., L}.

For a user in segment i, i 2 {1, 2, · · · , L} , under the assumption of perfect power
control, in the uplink, a user in segment i is required by the BTS to transmit
enough power such that (E

b

�I
0

)
i

= ✏⇤
u

, for all uplink connection of a user in
segment i, i 2 {1, 2, · · · , L} . Moreover, under the assumption of uplink perfect
power control each BTS requires all users in the cell to transmit enough power

such that the received signal is the same, i.e., PX

i

= dPX and PY

j

= dPY (see e.g.
[EE99, HT07]). Hence, from (2.24) and (2.25), we have

✏⇤
u

=
W

r
u

dPX

dPX

 

I

P

j=1

n
j

� 1

!

+dPY

L

P

j=I+1

l
j

n
j

+N
0

, (2.26)
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Then, the uplink received signal, dPX , at the BTS X should satisfy

dPX = V (r
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and the uplink received signal, dPY , at the BTS Y should satisfy
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where
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) =
✏⇤
u

r
u
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u
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u

. (2.30)

Rewriting (2.28) and (2.29) into matrix form, we have

(I� bT)bP = bc, (2.31)

where

bT=V (r
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bP =

✓

XR

Y R

◆

, bc=V (r
u

)N
0

✓

1
1

◆

.



22 Characterizing CDMA Feasibility via E↵ective Interferences

Uplink feasibility

Uplink feasibility via the PF eigenvalue of bP was investigated in [Han99], where
the condition

bP � 0 exist and bP = (I� bT)
�1

bc() b�(bT) < 1. (2.33)

was used. An explicit expression for the PF eigenvalue, however, was not provided.
Theorem below provides this expression. As the proof is straightforward, it is
omitted.

Theorem 2.2.3 The Perron-Frobenius eigenvalue of bT is
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(2.34)

2.2.4 Non-persistent calls model

In previous section, we have established downlink and uplink feasibility for persist-
ent calls via the Perron-Frobenius (PF) eigenvalues of the matrix T and bT, that is
explicitly provided in Theorem 2.2.2 and Theorem 2.2.3 considers the model with
non-persistent calls and discusses the time-dependent distribution of calls over the
segments, and corresponding blocking and outage probabilities.

Feasible region

By discretizing the cell, we obtain an explicit expression for the PF eigenvalue
of T that can be used to characterize the feasibility of the downlink connection
for a non-homogeneous distribution of calls over the segments. Using the explicit
formulation of the PF eigenvalue in Eq.(2.18), the feasibility of a user configuration
U is now readily determined by checking the inequality � (T) = � (U)< 1. The
set of all feasible user configurations is

S
D

=
�

U | � (U)< 1, U = 2 NL

 

. (2.35)

It can readily be shown that S
D

is a coordinate convex set, so that we may
invoke the theory of loss networks [Ros95] to characterize the distribution of non-
persistent calls.
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As in the downlink, we define the set of all feasible user configurations in the uplink.
Thus, by developing a discretized cell model, we are able to derive an explicit
formulation of the PF eigenvalue not only for the downlink but also for the uplink.
If we compare the downlink and uplink feasibility, we see that the expression for
b�
⇣

bT
⌘

is similar to � (T) for ↵ = 1. Thus, when there is no downlink interference

reduction, i.e., the non-orthogonality factor is equal to 1 or it is completely non-
orthogonal, the interference in the downlink is similar to the uplink:

S
U

=
n

U | b� (U)< 1, U 2 NL

o

. (2.36)

This is also a coordinate convex set.

Moving calls

Consider the discretized linear wireless network with non-persistent and moving
users. Let fresh calls arrive according to a Poisson arrival process with rate pro-
portional to the density of users along the road, and let users move along the road
according to the laws of road tra�c movement.

The prediction of the location of subscribers used in this paper requires an estimate
of the density of users. For the purpose of this paper, a simplified model as provided
in [New93] is su�cient. Let k(x, t) denote the density of users at location x at
time t. Then the tra�c mass conservation principle states that

@k(x, t)

@t
+

@k(x, t)v(x, t)

@x
= 0, (2.37)

where v(x, t) is the velocity on location x at time t.

In a mobile network the number of users making a call is typically substantially
smaller than the number of users not making a call. Therefore, it is natural to
assume that fresh calls in segment i are generated according to a Poisson process
with non-stationary arrival rate

�
i

(t) := �

Z

r

i+1

r

i

k(x, t)dx, (2.38)

proportional to the density of tra�c in segment i at time t, where � is the arrival
rate of fresh calls per unit tra�c mass, and r

i

and r
i+1

are the borders of segment i.
Let the call lengths be independent and identically distributed random variables,
with common distribution G and mean ⌧ independent of the location and tra�c
density.
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Outage and blocking probabilities

We may distinguish two ways of handling fresh calls that bring the system in
a non-feasible state: we may either block and clear the call from the system
(fresh call blocking), or accept the call in which case the system is said to be
in outage (outage probability) and (some) calls do not reach their energy per bit
to interference threshold ✏⇤, until completion of some (other) call. These ‘outage’
and ‘blocking’ cases lead to di↵erent stochastic processes recording the number of
calls in the segments.

If calls are blocked and cleared when the state is not feasible, the set of feasible
states is the finite set S as defined in (2.35). Let {X(t), t � 0} be the stochastic
process recording the number of non-persistent and moving calls over the seg-
ments, which takes values in the finite state space S. A state of the stochastic
process is a vector U = (n

1

, n
2

, · · · , n
I,

m
J,

· · · ,m
2

,m
1

), that will be labelled as
U = (u

1

, u
2

, · · · , u
I,

u
I+1,

· · · , u
I+J

). When calls are not blocked, but instead all
(or some) calls are in outage when the system state is not feasible, then all vectors
in the positive orthant

S1 =
�

U | U =(N,M) 2 NL

 

, (2.39)

are possible system states. Let {X1(t), t � 0} be the corresponding stochastic
process.

We are primarily interested in the distribution of calls over the segments
P (X1(t) = U), and P (X(t) = U). For the ‘outage case’ this distribution can be
evaluated in closed form:

P (X1(t) = U) =
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!
, (2.40)

where
⇢1
s

(t) = ⌧�
s

(t), (2.41)

is the time-dependent load o↵ered to segment s: the distribution of the number
of calls in cell s is Poisson with mean ⇢1

s

(t) proportional to the density of tra�c
and insensitive to the distribution of the call length G except through its mean
⌧ , see [MW93] for a general framework for networks with unlimited capacity, and
[UB01] for a derivation of the insensitivity result (2.40).

For the ’blocking case’ the distribution P (X(t) = U) cannot be obtained in closed
form. However, for the regime of small blocking probabilities, the distribution
P (X(t) = U) can be adequately approximated using the Modified O↵ered Load
(MOL) approximation:
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The approximation is exact for a loss network in equilibrium. For networks with
time-varying rates the MOL approximation is investigated in [MW94] for the Er-
lang loss queue, and is applied to networks of Erlang loss queues in [AB02]. It
is shown that the error of the MOL approximation is decreasing with decreasing
blocking probabilities and with decreasing variability of the arrival rate.

Outage and blocking probabilities are now readily obtained. First consider the
‘outage case’. As the number of calls in the system increases, all calls su↵er a
gradual degradation of their QoS. If the energy per bit to interference ratio of a
call falls below its target value ✏⇤, then the system is said to be in outage. The
outage probability, P

out

= P (X1(t) /2 S), is defined as the probability that an
(instant) outage occurs to the system. The outage probability of a user in segment
j in a cell can be formulated as follows :

P
out

= P (✏
j

< ✏⇤ for some j) . (2.42)

The outage probability cannot be evaluated in closed form due to the complexity
of the feasible set S, and will be evaluated via Monte-Carlo simulation.

For the ’blocking case’, the fresh call blocking probability must be determined per
segment. To this end, define the blocking set of segment k as

S
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= {U 2 S | � (U+ e
k

) > s} ,

where e
k

is the unit vector with entry k equal 1, and all other entries 0. Then,
as is shown in [AB02], the blocking probability, B
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(t), of a segment k at time t is
approximated as
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The blocking probability cannot be evaluated in closed form due to the complexity
of the feasible set S, and will be valuated via Monte-Carlo simulation in the
numerical results section.

2.3 Downlink capacity allocation

The assignment of transmission powers to calls is an important problem for net-
work operation, since the interference caused by a call is directly related to the
power. In the CDMA downlink, the transmission power is related to the downlink
rate. Hence, for an e�cient system utilization, it is necessary to adopt a rate
allocation scheme in the transmission power assignment.



26 Characterizing CDMA Feasibility via E↵ective Interferences

This section presents a model for system utility optimization based on the feas-
ibility model. In particular, the objective is to find the best border location for
both downlink and uplink that maximizes the total number of uplink users and
maximizes the total downlink rate.

We model the problem of finding a maximum system utility as a discrete optim-
ization problem. We choose the system utility as the total sum of rates allocated
to users. If the rates used are assigned to a certain price, i.e., euro per bit used,
then this optimization model can be interpreted as the total revenue of the system.
Note that the algorithm we present also works for the other definition of system
utility, such as in [TAG02, DNZ03, Jav06, OJB03, XSC01].

2.3.1 Uplink and downlink feasibility

Recall the feasibility condition for downlink and uplink, in (2.17) and (2.33) re-
spectively. Feasibility of power control allocations has been investigated via PF
eigenvalues. We are interested in feasibility when the rate and the users distri-
butions are not fixed. Given (2.18) and (2.34), the feasibility conditions in (2.17)
and (2.33) can be rewritten as
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Equations (2.43) and (2.44) represent the feasibility condition for downlink and
uplink where the system parameters W , ✏⇤

d

and ✏⇤
u

are fixed. Using those expres-
sions, we investigate the relation between user distribution (n

i

, n
j

), uplink rate
r
u

and downlink rate r
d

. We observe that for ↵ = 1, the expression for downlink
feasibility and uplink feasibility are the same. Moreover, since the downlink non-
orthogonality factor has a value between 0 and 1, i.e., 0  ↵  1, for the case of
r
d

= r
u

= R we always have the following relation

�0(n
i

,m
j

, R)  b�0(n
i

,m
j

, R). (2.45)

This means that the downlink rate can be upgraded while maintaining both uplink
and downlink feasibility.

2.3.2 Border optimization

From (2.18) and (2.34), we observe that the PF eigenvalues can be related to
the border location. This is done by assigning users from a cell to other cells,
i.e., assigning I segments to cell X and (L � I) segments to cell Y, given users
distribution U = (n

1

, n
2

, · · · , n
I,

n
I+1,

· · · , n
L�1

, n
L

).

We observe that the downlink PF eigenvalue decreases as the location of the bor-
der is located further from the middle of the tra�c burst. Therefore, it seems
optimal to handle all calls in a single BTS. While in the uplink, the uplink PF ei-
genvalue decreases as the border is located closer to the middle of the tra�c burst.
So, from the uplink point of view, it is optimal to equally divide calls over two
BTSs. From those two observations, we see that there is a trade-o↵ between up-
link and downlink optimal border location. Therefore the border location should
be determined by considering both downlink and uplink properties. We formulate
an optimization problem to solve the combined downlink-uplink optimal border
location in this section.

The arguments above suggest that the optimal downlink rate assignment may be
to assign rate zero to all segments except for the segment closest to a BTS. This is
clearly not a practical solution. Therefore, in our optimization problem, we add a
practical constraint that the number of segments with non-zero rates assignment
should be maximized. This means that the rate assignment is fair in the sense
that the maximum number of calls is carried with equal rate. The combined
optimization problem is formulated as follow:

8

<

:

Find borders locations I, J and downlink rate r
d

that
maximize the system utility and number of carried calls
s.t. uplink feasible & downlink feasible.

(2.46)
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In this chapter, the coverage of a cell is equal to the number of segments covered
by the cell. Thus, the border of cell X is defined as the point located after
segment I and the border of cell Y is defined as the point located before segment
J. Using the feasibility conditions expression in (2.43) and (2.44), the problem can
be formulated as follow

max
r

d

,I,J

r
d
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) < 2W

✏

⇤
U

,

i = 1, 2, · · · , I, j = 1, 2, · · · , J,
I + J  L,

(2.47)

where L is the total number of segments. Note that the constraints are non-convex
functions in n

i

andm
j

. Hence, the optimization problem above is not easy to solve.
We propose a decomposition algorithm to solve the optimization problem. From

(2.45), we learn that
⇣

P

I

i=1

n
i

+
P

J

j=1

m
j

⌘

in the objective function is mainly

determined by the uplink. Hence to find the optimal solution (I⇤, J⇤, r⇤
d

) of the
problem above, we construct the following algorithm:

1. First, given the tra�c load, we label the number of users in each segment as
U = (u

1

, u
2

, · · · , u
k

, · · · , u
L

) , where L is the total number of segments.

2. Next, we assign users for a certain border location. For this purpose, we
define an initial border at segment k, k = 1, 2, · · · , L. By putting the initial
border at segment k, this means that we assign users in the first k segments
to cell X and the next (L� k) segments to cell Y, i.e.,

�

nk

i

,mk

j

�

=
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n
i

= u
i

i = 1, 2, · · · , k,
m

j

= u
L�(j�1)

j = (k + 1), · · · , L,

where
�
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i

,mk

j

�

denote the set of assigned users when the initial border
located at segment k, k = 1, 2, · · · , L.We denote the initial border as (I0

k

, J0

k

).

3. Next, we check the uplink feasibility given the initial border at segment k,
(I0

k

, J0

k

), and the assigned users
�

nk

i

,mk

j

�

, k = 1, 2, · · · , L. We check the
uplink feasibility given by the first constraint, i.e.,

b�00(nk

i

,mk

j

) <
2W

✏⇤
u

r
u

, (2.48)
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Thus, given the set of users
�

nk

i

,mk

j

�

and the initial border set (I0
k

, J0

k

), the
uplink feasibility is checked as follows

b�00(nk
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) =

(

if < 2W

✏

⇤
u

then the border is (I0
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, J0
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).

if � 2W

✏

⇤
u

then drop segments until feasible.

The dropped segment is the one that contributed the most to b�00(nk

i

,mk

j

).
From (2.49), we can see that the dropped segment is located close to the
cell border. If we drop the segment J

k

= J0

k

, then we set I 0
k

= k and
J 0
k

= (L� k � 1). If we drop the segment I
k

= I0
k

, then we set I 0
k

= (k � 1)
and J 0

k

= (L � k). Then, we obtain a set of border (I
k

, J
k

) with a gap of a
segment. We repeat those steps until (2.48) is satisfied. Finally, for each k,
we obtain a set of border B
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) that supports a maximum number
of users, U
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, under uplink feasibility constraints.
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or optimal carried segments (I
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) .

Denote the sets of optimal borders determined by the carried call as OU =
n

BU
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, BU
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, · · · , BU

kq

o

. Denote the sets of optimal borders determined by the

carried segment as OS =
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B
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, BS
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kr

 

.

5. Given the set border locations that support maximum number of uplink
feasible users, i.e., the set OU and OS , we determine the maximal downlink
rate
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� , (2.50)
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Thus we obtain a set from OU , i.e.,
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6. Finally, we determine the maximal value of r
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. This is

done by checking all k in the sets PU and PS .

The above algorithm is numerically illustrated in the next section.

2.4 Numerical results

In this section, we give some numerical examples demonstrating the results of
our model. First, we investigate the relation between downlink performance and
downlink border location. Second, we consider downlink border optimization un-
der uplink coverage restrictions.

The parameters that are used for this numerical results are those provided in
[HT07]: the system chip rate W = 3.84 MHz, the required energy per bit to
interference ratio ✏⇤ = 5 dB, the downlink non orthogonality factor ↵ = 0.3, and
the path loss exponent � = 4. The distance between the two BTSs X and Y is
2000 meter, divided into 40 segments of width 50 meter. We assume that all users
use the same uplink rate r

u

= 32 kbps. For the downlink, we assume that initially
all users use the same downlink rate r

d

= 32 kbps. Additional results for a system
with lower rates r

u

= r
d

= 12.2 kbps and lightly loaded non-hot spot cells are
provided in [EvdBB05].
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2.4.1 Downlink performance

This section investigates the downlink performance, i.e., the outage probability
and the blocking probability per segment, for the case of fixed border and moving
border. In the first case, we investigate the downlink performance for a moving
tra�c hot spot for fixed border location. The performance is calculated as a
function of the location of the tra�c. In the second case, we investigate the
downlink optimal border for non-moving tra�c. The performance is calculated as
a function of the border location. We will investigate results from Monte-Carlo
simulation, and a prediction based on the Perron-Frobenius eigenvalue obtained
from the o↵ered load in the segments. Su�cient samples are generated to have
95% confidence and 10% relative precision. To facilitate a graphical representation
of our results, we will depict blocking probabilities only for those time instances
at which the hot spot enters a new segment.

Location of the hot spot: tra�c types

Throughout this section, we assume that a block shaped tra�c jam of width 10
segments moves from BTS X to BTS Y at constant speed, see Figure 2.2. The
load in segments inside the hot spot is 5 Erlang. The location of the hot spot
after the (12+ i)-th segment from BTS X will be referred to as type i tra�c, i.e.,
Figure 2.2 depicts type 1 tra�c. In our numerical results we will only consider
types 1, . . . , 5, as the hot spot location in the area roughly in the middle between
the BTSs is most interesting. Notice that type 5 is the mirror image of type 1,
with 13 segments between the hot spot and BTS Y.

 

BTS X BTS Y 

40 segments of width 50m 

13  segments with load 0 17 segments with load 0 

10 segments  with load 5 

Figure 2.2: Rectangular hot spot

First case: fixed border, moving traffic

First consider the commonly studied case of a fixed border located in the middle
between the BTSs, i.e., each cell consists of 20 segments. Blocking and outage
probabilities can be obtained via Monte-Carlo simulation. Below we will numer-
ically investigate the blocking probabilities per segment for a moving hot spot.
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Figure 2.4: Blocking per segment for the first case
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Figure 2.3 depicts the outage and total blocking probabilities for tra�c types 1�5,
where the total blocking is the fraction of blocked fresh calls over the entire area
between BTSsX and Y . Both the outage and the total blocking probability do not
discriminate between segments. Clearly, type 3 tra�c with the hot spot located
in the middle between BTSs yields the largest value for the blocking probabilities,
in accordance with intuition.

Figure 2.4 depicts blocking probabilities per segment for tra�c types 1 – 5, that is
the fraction of blocked fresh calls counted for each segment separately. As can be
seen from the graph, when the hot spot is located more to the left, the blocking
probability of the segments in the right is higher (see type 1 and type 2 tra�c
load) and vice versa. The type 3 case is symmetric. This result shows that as the
tra�c jam moves closer to the border, the downlink performance gets worse. The
result suggests that it is optimal for the downlink to have all calls located in the
same cell. This motivates an investigation of the downlink performance when the
border is not fixed.

Second case: moving border, non-moving traffic

Let us now investigate the optimal location of the border between the cells for a
given tra�c pattern, i.e., the location of the border that gives the best downlink
performance. For this case, we consider the tra�c of type 1.
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Figure 2.5: Downlink PF eigenvalue for the second case
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Figure 2.5 depicts the downlink PF eigenvalue � as a function of the o↵ered load
only. The graph has a clear peak for a cell border between roughly 700 and 1100
meters from BTS X. As the feasibility criterion is � < s (recall Theorem 2.2.1
and Eq.(2.17)), from the curve it seems optimal for the cell border to be such that
the entire hot spot resides in a single cell. Monte-Carlo simulation of the blocking
probabilities per segment for type 1 tra�c and di↵erent locations of the border
at 700, 900, 1000 and meters from BTS X as depicted in Figure 2.6 support this
observation: congestion in the downlink can be reduced by allocating the entire
tra�c burst into one cell.
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Figure 2.6: Blocking per segment for the second case

The numerical results, which based on the downlink only, showed that congestion
in the downlink can be reduced by allocating the entire tra�c burst into one cell.
This in clear contrast with the well-known uplink result that indicates that the
load should be evenly divided over the cells. Thus, there is a trade-o↵ between
downlink congestion and uplink congestion: the location of the border should
be determined by considering both uplink and downlink. This problem will be
addressed in the next section.
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2.4.2 Downlink rate optimization

Next, we give some numerical examples demonstrating the results of our model.
First, we investigate the relation between downlink performance and downlink
border location. Second, we consider downlink border optimization under uplink
coverage restrictions.

Optimal border

This section investigates the optimal border location based on the optimization
problem of Eq.(2.47). In the first case, we fix the tra�c load to be of type 1 as
in Figure 2.2. This algorithm (in step 1-3) first investigates the possible border
locations that give the optimal number of carried calls or carried segments.
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Figure 2.7: Optimal border location

Figure 2.7 depicts the optimal border locations, B
k

= (I⇤
k

, J⇤
k

) , as a function of
the initial border location placed at segment k. Thus, the optimal cell borders
(step 4) are OU = OS = {(U

15

, B
15

) , (U
16

, B
16

) , · · · , (U
22

, B
22

)} obtained for k
between 15 and 22, as indicated by the vertical lines in Figure 2.7. Notice that
there is coverage gap in the middle between BTS X and Y.
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Given the optimal set of carried segments OS , step 5 of the algorithm determines
the possible upgrade of downlink rate r

d

using Eq.(2.50). Figure 2.8 depicts the

utility function r
d
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Figure 2.8: Perron-Frobenius eigenvalue

The maximal utility value is denoted as star in Figure 2.8. Thus, the border
location that gives maximal utility is at k = 22. The optimal border location for
cell X is at I = 21 (950m from BTS X) and the optimal border location for cell
Y is at J = 18 (950m from BTS Y ). The maximum is obtained with the border
located further from the center of the hot spot/tra�c burst: maximal system
utility is obtained by putting the borders such that most of the tra�c is covered
in a single cell.

Notice from Figure 2.8 that the system utility can be increased when we let the
system support less carried calls, in this case the per call downlink rate is higher,
but the number of carried calls is lower. This shows the fairness trade-o↵ between
number of carried calls and the system utility: by serving less calls the remaining
calls would be able to achieve higher total utility. A similar result is found in
[Sir02], where the uplink is investigated, only.

Next, we investigate the optimal border location for the case of moving tra�c.
The objective is to understand the optimal border location and its optimal system
utility. For this purpose, we let the hot spot of type 1 (see Figure 2.2) moves
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from BTS X to BTS Y . In this example, we consider only 5 steps. For each step,
we investigate the optimal border location that gives maximal utility. Figure 2.9
depicts the optimal border locations in each step that gives the maximum system
utility and illustrates that in this numerical example there is no distinction made
in our algorithm using the optimal number of carried calls and the optimal number
of carried segments.
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Figure 2.9: Optimal border location

Figure 2.10 depicts that the maximum system utility based on carried calls and the
the maximum system utility based on carried segments. As the tra�c burst moves
closer to the middle of the cell, the optimal total revenue decreases. Furthermore,
Figure 2.10 indicates that it is optimal to choose the border location such that
most of the tra�c burst is covered by a single cell.

Non-persistent calls

Now, we investigate the optimal border location for the case of non-persistent calls
by Monte-Carlo simulation for tra�c type 1 (see Figure 2.2). For each realization,
we perform the algorithm in Section 2.3.2

Figure 2.11 depicts the probability that we obtain a location of the border in a
particular place. The figure shows that there are two peaks for the border of cell
X, i.e., at 650m and at 1000m, and by symmetry also two peaks for the border
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Figure 2.10: Optimal system utility

of cell Y , i.e., at 800m and at 1150m. The peak at 650m for cell X is dominant.
This is in contrast with the result for persistent calls. The discrepancy is due to
the algorithm, that starts including calls in cell X from the left. In the case of a
tie in revenue, it chooses the left border thus favouring the left border location.
These results show that also in the case of non-persistent calls the optimal border
location includes most of the tra�c burst in a single cell, i.e., either in cell X or
in cell Y.

This is more clearly visible in Figure 2.12 that depicts the optimal border location
for symmetric tra�c (Type 3), i.e., in the setting of non-persistent calls when two
boundary locations around 750m and 1250m yield the same revenue, the algorithm
selects the boundary at 750m.

From those two examples, we can conclude that the optimal system revenue, i.e.,
with maximal number of uplink users and maximal downlink rate, is obtained by
covering most of the tra�c in a single cell.

Thus, by taking the uplink that determines coverage into account, we have de-
veloped a downlink rate optimization algorithm and have investigated the optimal
cell border based on both uplink and downlink interference. The results indicate
that the optimal border location that maximizes the system utility (downlink rate)
can be obtained by including most of the carried tra�c into a single cell.
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Figure 2.11: Simulated border location for left-skewed tra�c
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2.5 Conclusions

This chapter has provided a model for characterizing downlink and uplink power
assignment feasibility. We have obtained an explicit decomposition of system and
user characteristics, and have provided an explicit analytical expression for the
Perron-Frobenius eigenvalue that determines feasibility and blocking probabilities.
Based on this result we have numerically investigated blocking probabilities and
found for the downlink that it is best to allocate all calls to a single cell.

Moreover this chapter has also provided a model for determining an optimal cell
border in CDMA networks. We have formulated a joint uplink and downlink
optimization problem for the downlink and uplink power assignment feasibility.
Based on the Perron-Frobenius eigenvalue of the power assignment matrix, we
have reduced the downlink rate allocation problem to a set of multiple-choice
knapsack problems, yielding an approximation of the downlink rate allocation.
We used our combined downlink and uplink feasibility model to determine cell
borders for which the system throughput, expressed in terms of downlink rates, is
maximized.

This approach proves to have several advantages. First, the discrete optimization
approach has eliminated the rounding errors due to continuity assumptions of
the downlink rates. Using our model, the exact rate that should be allocated
to each user can be indicated. Second, the rate allocation approximation we have
proposed guarantees that the solution obtained is close to the optimum. Moreover,
we have control on the error of the approximation and the running time of the
algorithm. Last, the result of our method confirms the intuitive rate allocation
in CDMA systems, i.e., users with lower interference obtain maximum rate. The
numerical results have shown that the system utility is maximized when other-cell
interferences are minimized. Therefore, users close to the border may receive 0
rate. Such a rate allocation may seem unfair. In the next chapter, we discuss more
general situation of downlink rate allocation.



Chapter3
A Combinatorial Approximation of
Two-Cell Downlink Rate Allocation

3.1 Introduction

The assignment of transmission powers to calls is an important problem for net-
work operation, since the interference caused by a call is directly related to the
power. In the CDMA downlink, the transmission power is related to the downlink
rates. Hence, for an e�cient system utilization, it is necessary to adopt a rate
allocation scheme in the transmission powers assignment.

In this chapter we propose a rate and power allocation scheme for obtaining a close
to optimum throughput for the downlink in a Universal Mobile Telecommunication
System (UMTS) located on a highway. In accordance with the UMTS standard,
the rates are chosen from a discrete set. Our goal is to assign rates to users, such
that the utility of the system is maximized. We measure the satisfaction of a user
in segment i, i 2 {1, ..., L} by means of a positive utility function u

i

(R
i

). For a
presentation of the utility functions commonly used in the literature see [TAG02].
The utility functions describing the satisfaction of the users have a very general
form and do not have to satisfy any convexity requirement. Thus, our goal is
to allocate rates from a discrete and finite set R={R

1

, ..., R
K

} to the users such
that the total utility, i.e., the sum of the utilities of all users, is maximized under
the condition that the prescribed quality of service is met for all users and that a
feasible power assignment exists.

For modeling the network, we use the model proposed in [EvdBB05], which en-
ables a characterization of downlink power feasibility via the Perron-Frobenius

41
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(PF) eigenvalue of a suitably chosen matrix. Moreover, based on the explicit ana-
lytical expression of the PF eigenvalue reduces the rate optimization problem to
a series of multiple choice knapsack problems, that can be solved e�ciently by
standard combinatorial optimization techniques. Thus the rate allocation prob-
lem is NP-hard, so it is very unlikely that polynomial time algorithms exist (unless
P=NP). The algorithm we design is actually a Fully Polynomial Time Approxim-
ation Scheme (FPTAS) for the rate optimization problem. The main advantages
of this approach are that, by considering discrete rates, we avoid the rounding
errors due to continuity assumptions and that, given an error bound ✏, we can
find a solution of value at least (1 � ✏) times the optimum in polynomial time in
the size of the input data and (1/✏). Moreover, the algorithm can be applied for
a very large family of utility functions. Furthermore, our results indicate that the
optimization problems for di↵erent cells are loosely coupled by a single interference
parameter. If this parameter were known, the optimization problems for each cell
could be independently solved.

In particular, we develop a joint uplink and downlink optimization model with
downlink rate di↵erentiation. There are two objectives of our model. The first ob-
jective is to find a set of possible border location that maximizes the total number
of uplink users. Then, given the set of border locations, we find an approxima-
tion of downlink rates allocation that maximizes the total sum of downlink rates
allocated

3.2 Downlink rate differentiation

The downlink rate assignment problem has been extensively studied in the lit-
erature [Ber01, DNZ02, Jav06, OJB03, Sir02]. In [DNZ02], Duan et al. present
a procedure for finding the power and rate allocations that minimizes the total
transmit power in one cell. In [Jav06], Javidi analyzes several rate assignments in
the context of the trade-o↵ between fairness and overall throughput. The rates
are supposed to be continuous and the algorithms proposed for the rate allocation
are based on solving the Lagrangean dual. Another approach for joint optimal
rates and powers allocation, based on Perron-Frobenius theory, is proposed by
Berggren [Ber01] and by O’Neill et al. [OJB03]. Berggren [Ber01] describes a
distributed algorithm for assigning base station transmitter (BTSs) powers such
that the common rate of the users is maximized, while in [OJB03] multiple rates
are considered. Again, both algorithms assume continuous rates. In [EvdBB05],
Endrayanto et al. present a model for characterizing downlink and uplink power
assignment feasibility, for a single data rate. Boucherie et al. [BBEW06] extended
this model to two cells. They propose a downlink rate allocation scheme which
approximates very close the maximum of a generally chosen utility function. We
generalize the single rate model assumption in Chapter 2 into di↵erent rates per
segment where r

i

is one of the rates from a given finite set by the system (as in
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[HT07]). Then Eq.(2.6) becomes

V (r
i

) =
✏⇤
d

r
i

W + ↵✏⇤
d

r
i

, for i 2 {1, ..., L}. (3.1)

Thus, the system (2.9) will change into

8
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>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

P
i

= ↵V (r
i

)
I

P

j=1

P
j

n
j

+ V (r
i

)l
i

L

P

j=I+1

P
j

n
j

+ V (r
i

)l�1

i,X

N
0

,

for i 2 1, ..., I,

P
i

= V (r
i

)l
i

I

P

j=1

P
j

n
j

+ ↵V (r
i

)
L

P

j=I+1

P
j

n
j

+ V (r
i

)l�1

i,Y

N
0

,

for i 2 I + 1, ..., L,
P
i

� 0, for i 2 1, ..., L.

(3.2)

Without loss of generality, in this chapter we assume that all users in the same
segment have the same rate r

i

chosen from a finite set of possible transmission
rates r

i

2 {R
1

, ..., R
K

}. Note that, if in a segment the maximum rate r
K

is not
requested, then r

i

2 {R
1

, ..., R
K�1

} . This assumption leads to a better use of the
resources. Let R

X

= (r
1

, r
2

, · · · , r
I

) , respectively R
Y

=
�

r
1

, r
2

, · · · , r
(L�I)

�

, be
the rates assigned to users in cell X, respectively cell Y.

3.2.1 Dimension reduction

Next we show that the feasibility of (3.2) is equivalent to the feasibility of a system
with 2 equations (each of them characterizing one cell) and a positivity constraint.

Lemma 3.2.1 System (3.2) is feasible if and only if the following system is feas-
ible:
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V (r
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)n
j

l
j

y =
I

P

j=1

V (r
j

)n
j

l�1

j,X

N
0

,

�
L

P

j=I+1

V (r
j

)n
j

l
j

x+

 

1�
L

P

j=I+1

V (r
j

)n
j

!

y =
L

P

j=I+1

V (r
j

)n
j

l�1

j,Y

N
0

,

x � 0, y � .0

(3.3)

Proof. (=))Let P be a positive solution of (3.2). In system (3.2) multiply each
equation with the number of users in the corresponding segment and then add the
first I equations and then the other (L� I). It follows that

(x, y) = (
I

P

i=1

n
i

P
i

,
L

P

i=I+1

n
i

P
i

) verifies (3.3).
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((=)Let (x, y) be a solution of (3.3). Define:

P
i

=

(

↵V (r
i

)x+ V (r
i

)l
i

y + V (r
i

)l�1

i,X

N
0

, for i 2 {1, ..., I},
V (r

i

)l
i

x+ ↵V (r
i

)y + V (r
i

)l�1

i,Y

N
0

, for i 2 {I + 1, ..., L}.
(3.4)

By simple substitution in (3.2) it can be shown that P is a solution of (3.2).

Lemma 3.2.1 reduces the number of calculations involved in characterizing the
power feasibility, since it is straightforward to verify that a system with 2 equa-
tions in 2 positive variables is feasible.

System (3.3) can be rewritten in the following form:

(I�T)

✓

x
y

◆

= c, (3.5)

where

T =

0

B

B

@

↵
I

P

i=1

V (r
i

)n
i

I

P

i=1

V (r
i

)n
i

l
i

L

P
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P
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P
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i
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i

l�1

i,X

L

P

i=I+1
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i

)n
i

l�1

i,Y

1

C

C

A

.

Hence, as it is a system of two by two, the explicit expression of the PF eigenvalue
of T with rate di↵erentiation can be calculated easily:

�(T) =
1

2
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X

i=1

↵V (r
i
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i
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L
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i
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i

!
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✓
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�
L
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i

◆
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+ 4

✓

I
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V (r
i

)n
i

l
i

◆✓

L

P

i=I+1

V (r
i

)n
i

l
i

◆

.

(3.6)

3.2.2 Cell decomposition

The next theorem gives another motivation for discretization.
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Theorem 3.2.1 For a given rate allocation r, a feasible power allocation exists,
i.e., system (3.2) is feasible, if and only if
8
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i

< 1,

(1�
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)(1�
L
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)n
i
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✓

I
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i=1

V (r
i

)n
i

l
i

◆✓

L

P
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V
i

n
i

l
i

◆

.

Proof. (=))From Equation (2.17), we know that the system is feasible if and
only if �(T) < 1. Given Equation (3.6), the expression �(T) < 1 is equivalent with
the following system:
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>

>

:

I

P

i=1

↵V (r
i

)n
i

+
L

P

i=I+1

↵V (r
i

)n
i

< 2,

(1�
I

P

i=1

↵V (r
i

)n
i

)(1�
L

P

i=I+1

↵V (r
i

)n
i

) >

✓

I

P

i=1

V (r
i

)n
i

l
i

◆✓

L

P

i=I+1

V (r
i

)n
i

l
i

◆

.

(3.7)

Since
P

I

i=1

↵V (r
i

)n
i

and
P

L

i=I+1

↵V (r
i

)n
i

cannot be both larger than 1 without
violating the first inequality of (3.7), it follows that the system (3.7) verifies (3.2.1).

((=) From the first two equations of (3.2.1), we have

I

X

i=1

↵V (r
i

)n
i

< 1, (3.8)

and
L

X

i=I+1

↵V (r
i

)n
i

< 1. (3.9)

Then, it follows directly

I

X

i=1

↵V (r
i

)n
i

+
L

X

i=I+1

↵V (r
i

)n
i

< 2. (3.10)

Then the system in Theorem (3.2.1) follows directly from the system (3.7).

Theorem 3.2.1 provides a clear motivation for discretizing the cells into segments,
since it facilitates obtaining an analytical model for characterizing the transmit
power feasibility for a certain rate allocation and a certain user distribution.
Moreover, we observe that the first two conditions we obtained characterize the
two cells separately and the third contains products of factors depending only of
one cell.
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3.3 The rate optimization problem

Let R = {R
1

, R
2

, ..., R
K

} be the set of admissible rates, where R
1

< R
2

< ... <
R

K

. The decision of dropping the users of a segment is equivalent with assigning
zero rate to the respective segment. Thus, we assume that the minimum rate is
R

1

= 0.
The problem of allocating rates from the set R to users such that the total utility
of the users is maximized, under the condition of ensuring the required Quality of
Service and a feasible power assignment, can be formulated as follows:

max
L

X

i=1

u
i

(r
i

)

(P ) s.t.

✓

E
b

I
0

◆

i

(r, p) = ✏⇤
D

, for each user in segment i,

r
i

2 {R
1

, ..., R
K

}, for each i 2 {1, ..., L},
p
i

� 0 for each i 2 {1, ..., L},

where r
i

, respectively p
i

represent the rate, respectively the power allocated to
segment i and ✏⇤

D

is the threshold for the the energy per bit to interference ratio.

We are interested in designing an algorithm for assigning rates to segments in such
a way that a throughput of at least (1 � ✏) times the optimum is obtained, in a
time polynomial in the size of an instance and 1

✏

. Such an algorithm would be a
fully polynomial approximation scheme (FPTAS) for problem (P). We distinguish
three main steps in the design of the algorithm:

1. First we show that finding an optimal solution of (P) can be reduced to
solving a set of optimization problems {P

1

(t), P
2

(t)|t 2 [t
min

, t
max

]}, where
P
1

(t) characterize the first cell, P
2

(t) characterize the second cell and the
interval [t

min

, t
max

] is an interval depending on the system and the user
distribution.

2. Then we show that P
1

(t), respectively P
2

(t) are multiple choice knapsack
problems, for which e�cient algorithms are known.

3. Finally, we will prove that to find a solution of value at least (1 � ✏) times
the optimum, for an ✏ > 0, we only have to solve P

1

(t) and P
2

(t) for O( 1
✏

),
t 2 [t

min

, t
max

]. Since to solve P
1

(t), respectively P
2

(t) we can apply known
FPTAS (see e.g. [CHW76]) for the multiple choice knapsack problem, the
algorithm we propose is a FPTAS for (P ).
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Multiple-choice knapsack formulation

We proceed with the first step of the analysis. Theorem 3.2.1 implies that the
optimization problem (P ) is equivalent with the following problem:

(P 0)

max
L

P

i=1

u
i

(r
i

),

s.t.
I

P

i=1

↵V (r
i

)n
i

< 1,

L

P

i=I+1

↵V (r
i

)n
i
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✓

1�
I

P

i=1

↵V (r
i
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i

◆✓

1�
L

P

i=I+1

↵V (r
i

)n
i

)

◆

> H
X

H
Y

,

r
i

2 {R
1

, ..., R
K

}, i 2 {1, ..., L}.

where H
X

=

✓

I

P

i=1

V (r
i

)n
i

l
i

◆

and H
Y

=

✓

L

P

i=I+1

V
i

(r
i

)n
i

l
i

◆

.

Note that if the rate assignment in one of the cells is known, the problem of assign-
ing rates to the segments of the other cell reduces to a multiple choice knapsack
problem. The multiple choice knapsack problem is a NP-hard problem, for which a
FPTAS based on dynamical programming is proposed in [CHW76]. In a multiple
choice knapsack problem the following data are given: the sizes and the profits
of a set of objects, which are divided into disjoint classes, and the volume of a
knapsack. The goal is to choose the set of objects with maximum profit among
the sets of objects that fit into the knapsack and contain one object from each
class. If, for example, the rates in the cell assigned to BTS Y were known, then,
based on (P 0), the problem of allocating rates to the segments in the cell assigned
to BTS X becomes:

max
L

X

i=1

u
i

(r
i

)

s.t.
I

X

i=1

V (r
i

)n
i

(↵+ l
i

L
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↵V (r
i

)n
i

l
i

1�
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↵V (r
i

)n
i

) < 1,

r
i

2 {R
1

, ..., R
K

}, for each i 2 {1, ..., I}.

This is a multiple choice knapsack problem with the following data: the objects
are the pairs {(i, s), i 2 {1, ..., I}, s 2 {1, ...,K}}, a class consists of the objects
corresponding to the same segment, the profit of an object (i, s) is u

i

(R
s

) and its

size is V (R
s

)n
i

(↵+ l
i

L

P

i=I+1

↵V (r

i

)n

i

l

i

1�
L

P

i=I+1

↵V (r

i

)n

i

). The volume of the knapsack is 1.
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Hence, if we knew the rate allocation in one of the cells, we could find a rate
allocation for the segments in the other cell by applying an algorithm for the
multiple choice knapsack problem. Since this also holds for the case where all the
segments in one cell receive zero rate, in the following we may assume that in cell
X there is at least one segment which receives non-zero rate.

Under these assumptions, problem (P 0) can be rewritten as:

max
L

X

i=1

u
i

(r
i

)

s.t.
I

X
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↵V (r
i

)n
i

< 1, (3.11)
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◆ , (3.12)

I

X

i=1

r
i

> 0, (3.13)

r
i

2 {R
1

, ..., R
K

}, for each i 2 {1, ..., L}.

Constraint (3.13) ensures that at least one segment in cell X will receive non zero
rate. Remark that the variables and parameters characterizing the two cells are
well separated in (P 0). This suggests a decomposition of (P 0) into a set of problems
corresponding to the first cell and one corresponding to the second cell. Denote

t
min

= min
r2R

L

L
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l
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.

From (3.11)-(3.13) follows that (P 0) is feasible if and only if
↵V (R

1

) min
i2{I+1,...,L}

n
i

l
i

< 1 and t
min

 t
max

. In what follows, we suppose that

these two conditions are always satisfied.
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For each t 2 [t
min

, t
max

] consider the following problems, (P
1

(t)) , (P
2

(t)):

max
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u
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)
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i
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K

}, for each i 2 {1, ..., I},

and

max
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X
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u
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)
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r
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, ..., R
K

}, for each i 2 {I + 1, ..., L}.

Let OPT denote the optimal value of the optimization problem (P 0) and OPT
1

(t),
respectively OPT

2

(t), be the optimal values of (P
1

(t)), respectively (P
2

(t)). In the
following lemma we prove that we can find OPT by solving (P

1

(t)) and (P
2

(t))
for all t 2 [t

min

, t
max

].

Lemma 3.3.1 OPT = max
t2[t

min

,t

max

]

OPT
1

(t) +OPT
2

(t).

Proof. Consider a t 2 [t
min

, t
max

]. Let (r̄
1

, ..., r̄
I

), respectively (r̃
I+1

, ..., r̃
L

), be
optimal solutions of (P

1

(t)), respectively (P
2

(t)). Clearly, (r̄
1

, ..., r̄
I

, r̃
I+1

, ..., r̃
L

)
is a feasible solution of (P 0), and therefore OPT

1

(t) + OPT
2

(t)  OPT . We
proved that max

t2[t

min

,t
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]

OPT
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(t) +OPT
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(t)  OPT . In order to prove the reverse

inequality, consider an optimal solution r⇤ of (P ). Let
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Since (r⇤
1

, ..., r⇤
I

) is feasible for (P
1

(t)) and (r⇤
I+1

, ..., r⇤
L

) is feasible for (P
2

(t)),
OPT  OPT

1

(t) +OPT
2

(t).

Lemma 3.3.1 implies that an optimal rate allocation can be found by solving inde-
pendently the set of optimization problems {P

1

(t)|t 2 [t
min

, t
max

]} and {P
2

(t)|t 2
[t
min

, t
max

]} where each set characterizes only one cell, the cells interacting only
through the parameter t.

Solving the multiple-choice knapsack problem

Next we show that (P
1

(t)) and (P
2

(t))) are multiple choice knapsack problems,
which can be e�ciently solved. For this, we rewrite (P

1

(t)) and (P
2

(t))) in the
following form:

max
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)
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}, for each i 2 {1, ..., I},

and
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u
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)
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)n
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(↵t+ l
i

) < t,

r
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2 {R
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K

}, for each i 2 {I + 1, ..., L}.

The input to the multiple choice knapsack problems (P
1

(t)), respectively (P
2

(t))
is: the objects are the pairs {(i, s), i 2 {1, ..., I}, s 2 {1, ...,K}}, respectively
{(i, s), i 2 {I + 1, ..., L}, s 2 {1, ...,K}}; a class consists of the objects corres-
ponding to the same segment; the profit of an object (i, s) is u

i

(R
s

) and its size is
V (R

s

)n
i

(↵+l
i

t) for i 2 {1, ..., I}, respectively V (R
s

)n
i

(↵t+l
i

) for i 2 {I+1, ..., L}.
The volumes of the knapsacks are 1, respectively t. In (P

1

(t)) an extra condition
is imposed, namely that the zero rate cannot be allocated to all users in cell X.
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Since (P
1

(t)) and (P
2

(t)) are multiple choice knapsack problems, close to optimal
solutions can be found by applying for example the FPTAS described in [CHW76].
For an ✏ > 0 and t 2 [t

min

, t
max

], let K
1

(t, ✏) and K
2

(t, ✏), be the value of the
solution given by a FPTAS for P

1

(t), respectively P
2

(t). Hence,

K
1

(t, ✏) � (1� ✏)OPT
1

(t),

and
K

2

(t, ✏) � (1� ✏)OPT
2

(t).

Let t⇤ be the value for which OPT
1

(t⇤) +OPT
2

(t⇤) = OPT .

In the next lemma we will prove that a feasible solution of (P 0) of value at least
(1 � ✏)OPT can be found using only the values K

1

(t, ✏) and K
2

(t, ✏), for t 2
[t
min

, t
max

].

Lemma 3.3.2 For each ✏ > 0, the following relation holds

max
t2[t

min

,t

max

]

{K
1

(t, ✏) +K
2

(t, ✏)} � (1� ✏)OPT.

Proof. From Lemma 3.3.1 follows

max
t2[t

min

,t

max

]

{K
1

(t, ✏) +K
2

(t, ✏)} � K
1

(t⇤, ✏) +K
2

(t⇤, ✏),

� (1� ✏)OPT
1

(t⇤) + (1� ✏)OPT
2

(t⇤),

� (1� ✏)OPT,

where for the second inequality we have used that K
1

(t⇤, ✏), respectively K
2

(t⇤, ✏)
are values returned by a FPTAS for (P

1

(t⇤)), respectively (P
2

(t⇤)).

However, if ✏ � 1

2

, in order to find a solution of value (1 � ✏)OPT it is not
necessary to calculate max

t2[t

min

,t

max

]

{K
1

(t, ✏) + K
2

(t, ✏)}. Let r = {r
1

, ..., r
I

} and

r0 = {r
I+1

, ..., r
L

} be two rate allocations that give a total utility for cell 1, re-
spectively cell 2, of value at least 1

2

OPT
1

(t
min

), respectively 1

2

OPT
2

(t
max

). Since
OPT

1

(t) is a decreasing function and OPT
2

(t) is an increasing function, it follows
that the rate allocation r00 = (r

1

, ..., r
I

, r
I+1

, ..., r
L

) gives a total utility of value at
least 1

2

OPT . The rate allocations r and r0 with the above mentioned properties
can be found by applying standard methods (see [CHW76]).

In the sequel, we suppose that ✏ < 1

2

.

The only bottleneck in finding a solution of (P 0) of value at least (1 � ✏)OPT is
that we have to calculate K

1

(t, ✏) and K
2

(t, ✏) for all t 2 [t
min

, t
max

]. However,
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as we will see below, we can still obtain a solution close to optimum by analysing
only a polynomial number of values of t.

For ✏ > 0, let t
app

be the value of t for which

K
1

(t
app

, ✏) +K
2

(t
app

, ✏) = max
t2[t

min

,t

max

]

{K
1

(t, ✏) +K
2

(t, ✏)}. (3.14)

Note that OPT
1

(t), respectively OPT
2

(t) are step functions and have at most 2KI ,
respectively 2KJ jump points, the number of the possible rate assignments in each
cell. Therefore, for finding t

app

, it would su�ce to check only the jump points of
the two functions.

Next lemma further reduce the set of t’s that must be considered for obtaining a
solution of value at least (1� ✏)OPT .

Lemma 3.3.3 For each ✏ < 1

2

, the following holds

t
app

2 [t
min

, t
max

] \ {t|K
1

(t
app

, ✏) < ✏K
1

(t
min

, ✏) and K
2

(t
app

, ✏) < ✏K
2

(t
max

, ✏)}.

Proof. Suppose that K
1

(t
app

, ✏) < ✏K
1

(t
min

, ✏) and K
2

(t
app

, ✏) < ✏K
2

(t
max

, ✏).
Hence,

K
1

(t
app

, ✏) +K
2

(t
app

, ✏) < ✏ (K
1

(t
min

, ✏) +K
2

(t
max

, ✏)) ,

which, since ✏ < 1

2

, leads to a contradiction with

K
1

(t
app

, ✏) +K
2

(t
app

, ✏) � 1

2

(K
1

(t
min

, ✏) +K
2

(t
min

, ✏)
+K

1

(t
max

, ✏) +K
2

(t
max

, ✏)) .

Consider the sets A
l

(✏) and A
l

(✏), for l 2 {0, 1, ..., b 1

✏

ln 1

✏

c+ 1} defined as

A
0

(✏) = {t|K
1

(t
min

, ✏) < K
1

(t, ✏)},
A

0

(✏) = {t|K
2

(t
max

, ✏) < K
2

(t, ✏)},
A

l

(✏) = {t|(1� ✏)lK
1

(t
min

, ✏) < K
1

(t, ✏) < (1� ✏)l�1K
1

(t
min

, ✏)}, for l � 1,

A
l

(✏) = {t|(1� ✏)lK
2

(t
max

, ✏) < K
2

(t, ✏) < (1� ✏)l�1K
2

(t
max

, ✏)}, for l � 1.

Remark 3.3.1 From the fact that (1� ✏)
1

✏

ln

1

✏ < ✏, and from Lemma 3.3.3 follows

that t
app

2
b 1

✏

ln

1

✏

c+1

[
l=0

(A
l

(✏) [A
l

(✏))

Further we will prove that by choosing only one element from each set A
l

, respect-
ively A

l

, we will not deviate significantly from the optimum. This will reduce the
number of t’s to consider to at most b 2

✏

ln 1

✏

c+ 2.
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Lemma 3.3.4 Recall t
app

defined in 3.14 and the sets A
l

(✏) and A
l

(✏), then
a) If t

app

2 A
l

(✏), then for each t 2 A
l

(✏),(1� ✏)K
1

(t
app

, ✏)  K
1

(t, ✏).
b) If t

app

2 A
l

(✏), then for each t 2 A
l

(✏), (1� ✏)K
2

(t
app

, ✏)  K
2

(t, ✏).

Proof. a) For l = 0,

K
1

(t
min

, ✏) � (1� ✏)OPT
1

(t
min

) � (1� ✏)OPT
1

(t
app

) � (1� ✏)K
1

(t
app

, ✏),

where for the second inequality we used the monotonicity of OPT
1

. For l 2
{1, ..., b 1

✏

ln 1

✏

c+ 1} the proof follows immediately from the definition of A
l

.

Let J
1

(✏) be the set containing the maximal element from each nonempty set A
l

(✏)
and J

2

(✏) the set containing the minimal element from each nonempty set A
l

(✏).

The following lemma shows that in order to find a feasible solution of (P ) of
value at least (1� ✏)OPT it is enough to calculate K

1

(t, ✏0) and K
2

(t, ✏0) only for
t 2 J

1

(✏0) [ J
2

(✏0), for a well chosen ✏0.

Lemma 3.3.5 For ✏0 = 1� 3

p
1� ✏ the following relation holds

max
t2J

1

(✏

0
)[J

2

(✏

0
)

{K
1

(t, ✏0) +K
2

(t, ✏0)} � (1� ✏)OPT.

Proof. We have seen in Remark 3.3.1 that

t
app

2
b 1

✏

0 ln
1

✏

0 c+1

[
l=0

(A
l

(✏0) [A
l

(✏0)).

Suppose that t
app

2 A
k

(✏0) \A
l

(✏0).
Let t

k

= J
1

(✏0) \A
k

(✏0) and t
l

= J
2

(✏0) \A
l

(✏0).

From Lemma 3.3.4 follows that

K
1

(t
k

, ✏0) � (1� ✏0)K
1

(t
app

, ✏0) (3.15)

and
K

2

(t
l

, ✏0) � (1� ✏0)K
2

(t
app

, ✏0). (3.16)

Suppose that t
k

� t
l

. Since OPT
2

(t) is an increasing function, the following
relations hold:

K
2

(t
k

, ✏0) � (1� ✏0)OPT
2

(t
k

) � (1� ✏0)OPT
2

(t
l

)

� (1� ✏0)K
2

(t
l

, ✏0). (3.17)

Combining (3.15), (3.16), (3.17) and Lemma 3.3.2, we obtain

K
1

(t
k

, ✏0) +K
2

(t
k

, ✏0) � (1� ✏0)(K
1

(t
k

, ✏0) +K
2

(t
l

, ✏0)),

� (1� ✏02 (K
1

(t
app

, ✏0) +K
2

(t
app

, ✏0)) ,

� (1� ✏03OPT ),
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where the first inequality follows from (3.15), the second from (3.16) and (3.17),
and the third from Lemma 3.3.2. Substituting ✏0 = 1� 3

p
1� ✏ in the last relation,

we get
max

t2J

1

(✏

0
)[J

2

(✏

0
)

{K
1

(t, ✏0) +K
2

(t, ✏0)} � (1� ✏)OPT.

A similar analysis can be done if t
k

 t
l

, but based on the monotonicity ofOPT
1

(t).

Hence, the number of points we are looking at in order to find a solution close to the
optimum is reduced to |J

1

(✏)|+ |J
2

(✏)| = 2

✏

0 ln
1

✏

0 + 2 = O( 1

✏

0 ln
1

✏

0 ) = O( 1
✏

ln 1

✏

). Note
that the points in J

1

(✏0)[J
2

(✏0) can be found while running the FPTAS presented
in [CHW76] for obtaining K

1

(t
min

, ✏0), respectively for K
2

(t
max

, ✏0). This implies
that the following procedure is a FPTAS for problem (P):

Algorithm 1

1. Let ✏0 = 1� 3

p
1� ✏.

2. Find the sets J
1

(✏0) and J
2

(✏0).
3. For all t 2 J

1

(✏0) [ J
2

(✏0), calculate K
1

(t, ✏0) and K
2

(t, ✏0),
by using a FPTAS for the multiple choice knapsack problem.

4. Choose the t 2 J
1

(✏0) [ J
2

(✏0)
for which max

t2J

1

[J

2

{K
1

(t, ✏0) +K
2

(t, ✏0)} is attained.

5. Return the rate allocation obtained
by solving K

1

(t
app

, ✏0) and K
2

(t
app

, ✏0).

If, for solving the multiple choice knapsack problems, one uses the FPTAS de-
scribed in [CHW75], which, for a given ✏, runs in time O(K

3

L

✏

), then the running

time of the algorithm presented above is O(K
3

L

✏

2

ln 1

✏

).

We conclude this section with several remarks on the algorithm.

Remark 3.3.2 The rate allocation provided in this chapter should be seen as an
almost optimal allocation (with respect to the utility functions) in an ideal setting.
Most notably, it requires the base stations to have perfect and complete informa-
tion on location and path loss of the mobile users. This information is clearly not
available at the base station. Implementation of rate allocation in a UMTS system
will most likely be based on heuristics that use an approximation of location and
path loss. For example, from the required power the base station can approximate
the location and path loss. In order to characterize the performance of such a
heuristic and of a rate allocation, one can use as a benchmark the ideal solution
proposed in this chapter.
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Remark 3.3.3 The aim of this chapter is to demonstrate that the rate allocation
problem reduces to solving coupled multiple choice knapsack problems. For solv-
ing such knapsack problems, various approaches are available in the literature. If
one is not interested in obtaining a FPTAS for the rate allocation problem, one
can use other approximations or exact algorithms described in the literature (see
e.g. [DRW95] for a fast branch and bound algorithm). Clearly, any algorithm for
the multiple choice knapsack problem, should take into account the specific choice
for the utility function. An extensive treatment of the influence of the utility func-
tion on the e�ciency of the algorithms for solving the multiple choice knapsack
problem is beyond the scope of this thesis.

Remark 3.3.4 Note that the rate allocation algorithm proposed above can be
easily adapted to the case where, for each segment, a di↵erent set of rates are
required by users. The only change will be in the definition of the classes in the
underlying multiple choice knapsack problems. More precisely, if, for a segment i,
only the rates in the set {R

k

1

, ..., R
k

2

}, with k
1

, k
2

2 {1, ...,K} are required, the
class of objects corresponding to segment i will become {(i, s), s 2 {k

1

, ..., k
2

}}.

Remark 3.3.5 The algorithm presented considers di↵erentiated rate allocation
in a two cell UMTS system, which goes beyond results described in the literat-
ure that usually consider the single cell case (see [DNZ02] and [Lit03]). For a
UMTS network that covers a road, which is the main application intended in this
chapter, interference among cells will be most likely restricted to neighbouring
cells. The main bottleneck in applying our results for general networks, taking
into account interference among more than two cells, is the explicit formula for
the Perron-Frobenius eigenvalue that is underlying our decomposition among cells.
Developing heuristics for more general networks, based on our results, seems pos-
sible.
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3.4 Numerical examples

In the numerical examples, we use the following system parameters of theWideband-
CDMA system [HT07]: the system chip rate W = 3.84 MHz, thermal noise
N

0

= �169 dBm/Hz, path loss exponent � = 4, downlink non-orthogonality
↵ = 0.3, QoS required E

b

I

0

, ✏⇤ = 5 dB, uplink transmission rate r
U

= 14 kbps,
downlink transmission rate r

i

2 {14, 32, 64, 144} kbps.

We first consider two BTSs with a non-homogeneous tra�c load as shown in Figure
3.1. The distance between the two BTSs X and Y is 2000 meter. We divide the
cells into 40 segments of width 50 meters. There is a block-shaped tra�c jam,
called as a hot spot, located at 650m from BTS X. The hot spot, i.e., the block-
shaped tra�c jam, has 10 segments, where the load in each segment is at most
⇢
s

= 10 Erlang. The load of a segment outside the hot spot is at most ⇢
s

= 1
Erlang. The system is overloaded, i.e., not all calls can be assigned a positive
rate. For this typical tra�c load, we investigate the optimal border location and
downlink rate allocation obtained from (2.47) using Algorithm 1.

 

         13  users  

BTS X BTS Y 

                 2000m 

                 650m                  850m 

                17 users 

           100 users  

Figure 3.1: Rectangular hot spot

We solve the first stage problem using the algorithm for uplink optimal border
location presented in [EvdBB05]. Figure 3.2 depicts the optimal border locations.
From the figure we conclude that the optimal uplink cell borders are obtained if
the uplink cell borders are located between the vertical lines in Figure 3.2. Thus,
the optimal border for cell X is at 850m from BTS X and for cell Y is at 1000m
from BTS Y .

Figure 3.3 depicts the optimal number of uplink users in cell X and cell Y. Notice
that there is a coverage gap between BTS X and Y, which means that in order to
maintain uplink feasibility some users have to be dropped.
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Figure 3.2: Optimal border location

 

                 850m 

        48  users  
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                47 users 
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Figure 3.3: Optimal number of uplink users
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Next, we investigate the FPTAS for the downlink rate allocation problem. Given
the optimal uplink border from the first stage, we determine a downlink rate alloc-
ation which is close to the optimum. For finding a feasible solution of (P1(t)) and
(P2(t)), we use Algorithm 1. For finding a feasible solution of the multiple-choice
knapsack problems involved, we use a FPTAS based on dynamic programming
as described in [CHW76, MT90]. We choose ✏ = 0.1, i.e., we are interested in
obtaining a solution of value at least 90% ⇤OPT .

We consider two cases of the rate allocation according to the required transmission
rates per segment. Firstly, we will consider the case where all segment in the
cells can choose rate r

i

from the same set of possible transmission rates R
i

✓
{14 kbps, 32 kbps, 64 kbps, 144 kbps} . Secondly, we will consider the case where
each segment only request some rates, i.e., each segment has di↵erent set of possible
transmission rates R

i

⇢ {14 kbps, 32 kbps, 64 kbps, 144 kbps} .

Case I:

In case I, all segment in the cells can choose rate r
i

from the same set of possible
transmission rates R

i

✓ {14 kbps, 32 kbps, 64 kbps, 144 kbps}.

First, we find the sets J
1

(✏) and J
2

(✏). We use the optimal uplink users as in
Figure 3.3), i.e., the border of cell X is at 850m from BTS X and border of cell Y
is at 1000m from BTS Y . Figure 3.4 and Figure 3.5 depict the numerical results
of the sets J

1

(✏) and J
2

(✏).

The next step is to find the maximum value of the total system utility, i.e.,
max

t2J

1

(✏

0
)[J

2

(✏

0
)

{K
1

(t, ✏0)+K
2

(t, ✏0)}. The maximum utility is attained at t = 0.0628

with value of 4784 units. The related rate allocation is shown in Figure 3.6, i.e.,
for cell X: 1 user with rate 32 kbps, 2 users with rate 64 kbps and 29 users with
rate 144 kbps, and 16 users are dropped (receive 0 rate); and for cell Y : 2 users
with 144 kbps, 5 users with rate 32 kbps and 40 users are dropped (receive 0 rate).

It can be seen that the maximum utility is attained by allocating maximum rate to
most of the users in cell X which are close to BTS X and only few users in cell Y
have a non zero rate. This confirms the intuitive rate allocation in the interference
limited system, i.e., as the main interference sources are users from the other cell,
it is optimal to allocate rate only to one of the cells at a time. Note that this
numerical example describes an extreme situation, when cell X is heavily loaded.
Therefore, after allocating rates to cell X, few resources remain available for cell
Y , resulting in a small number of users in cell Y with a non-zero rate. In the case
of less loaded cells, the number of users with non-zero rate in cell Y increases.
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Figure 3.4: K1(t, ✏) and K2(t, ✏) for ✏ = 0.1 and t 2 J1
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Figure 3.5: K2(t, ✏) and K1(t, ✏) for ✏ = 0.1 and t 2 J2
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Case II:

In the second case, we consider the case where each segment has di↵erent set of
possible transmission rates R

i

⇢ {14 kbps, 32 kbps, 64 kbps, 144 kbps}.

Suppose users in cell X require a service with the following rates: users in segment
i = 1, · · · , 13 require service with rate either 14 kbps or 32 kbps; users in segment
i = 14, · · · , 33 require a service with rate either 32 kbps or 64 kbps; users in
segment i = 34, · · · , 43 require a service with 144 kbps and users in segment
i = 44, · · · , 48 require a service with either 64 kbps or 144 kbps. In cell Y all users
require a service with rate either 32 kbps or 64 kbps. The maximum system utility
is again approximated by max

t2J

1

(✏

0
)[J

2

(✏

0
)

{K
1

(t, ✏0) +K
2

(t, ✏0)}.

The maximum utility is attained at t = 0.0020 with value of 7424 units. The
related rate allocation is shown in Figure 3.7, i.e., for cell X: 13 users with rate 32
kbps, 49 users with rate 64 kbps and 26 users with rate 144 kbps; and for cell Y :
2 users with 64 kbps, 6 users with rate 32 kbps and 39 users are dropped (receive
0 rate).
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Figure 3.6: Rate allocation for case 1
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Notice that by restricting the set of available rates in a segment to the set of
requested rates, a higher system utility is obtained (4784 in case I versus 7424 in
case II) and less users are dropped (56 users in case I versus 39 users in case II).
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Figure 3.7: Rate allocation for case 2

3.5 Conclusions

This chapter has provided a combinatorial algorithm for finding a downlink rate
allocation in a CDMA network, that, for an ✏ > 0, achieves a throughput of value
at least (1 � ✏) times the optimum. Based on the Perron-Frobenius eigenvalue of
the power assignment matrix, we have reduced the downlink rate allocation prob-
lem to a set of multiple-choice knapsack problems, for which e�cient algorithms
are known. This approach proves to have several advantages. First, the discrete
optimization approach has eliminated the rounding errors due to continuity as-
sumptions of the downlink rates. Using our model, the exact rate that should be
allocated to each user can be indicated. Second, the rate allocation approxima-
tion we proposed guarantees that the solution obtained is close to the optimum.
Moreover, the algorithm works for very general utility functions. Furthermore,
our results indicate that the optimal downlink rate allocation can be obtained
in a distributed way: the allocation in each cell can be optimized independently,
interference being incorporated in a single parameter t.





Chapter4
Two-Cell: Exact Algorithm for
Optimal Joint Rate and Power
Allocation

This chapter addresses, in an analytical setting, the joint power and rate assign-
ment in two cell in a CDMA network. The assumption made in this chapter is
that users’ data rates can be assigned from the continuous interval [r

min

, R
max

],
with r

min

> 0.

4.1 Model

We consider a system with mobile users served by two base transmitter stations
(BTS), X and Y , as in the previous chapter. Rather than discretizing the cells
into small segments, we allow the users’ location to take continuous values in the
cell. Moreover, we allow the rates to take continuous values in the interval. Denote
by U

X

, respectively U
Y

, the set of mobiles served by BTS X, respectively BTS Y .
Let l

i,X

denote the path loss from BTS X to mobile i. We assume that mobiles
are served by a single BTS.

Let ✏
i

denote the energy per bit to interference ratio requirement for mobile i.
Let P

iX

denote the transmission power of BTS X to mobile i. A configuration of
mobiles is feasible when for each mobile i served by BTS X, say, the energy per bit
to interference ratio exceeds the threshold ✏

i

. If a configuration is feasible, then

under perfect power control the energy per bit to interference ratio
⇣

E

b

I

0

⌘

i

equals
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this threshold. Thus, assuming perfect power control, feasibility for a configuration
in which mobile i is served by BTS X is characterized by,

✓

E
b

I
0

◆

i

:=
W

r
i

P
iX

l
i,X

↵l
i,X

(
P

j2U

X

P
jX

� P
iX

) + l
i,Y

P

j2U

Y

P
jY

+N
i

= ✏
i

, (4.1)

where U
X

is the set of mobiles served by BTS X, W is the system chip rate, ↵ is
the downlink orthogonality factor, and r

i

is the data rate for mobile i, and N
i

be
the thermal noise at the location of mobile i,

Data rates can be assigned from the continuous interval [r
min

, R
max

], with r
min

> 0.
The optimization problem is to determine an assignment of rates and powers to
mobiles that maximizes the total rate.

For each fixed number of mobile calls placed in the coverage area, the rate assign-
ment problem can be formulated as the following optimization problem:

(P ) max
X

i2U

X

[U

Y

r
i

s.t.

✓
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, i 2 U
X
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,
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i2U

X

P
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 Pmax

X

,
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i2U

Y

P
iY

 Pmax

Y

,

r
i

2 [r
min

, R
max

], i 2 U
X

[ U
Y

,

P
iX

� 0, 8i 2 U
X

[ U
Y

.

Next, we derive the characterisation of the optimal rate assignment.
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4.2 Characterization of an optimal rate assignment

Let x =
P

i2U

X

P
iX

and y =
P

i2U

Y

P
iY

. And let V (r
i

) = ✏r
i

/(W + ↵✏r
i

). From 4.1,

the optimization problem (P ) can be rewritten as:

(P ) max
X

i2U

r
i

s.t.

 

1� ↵
X

i2U

X

V (r
i

)

!

x�
X

i2U

X

V (r
i

)l
i

y �
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(4.2)
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V (r
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= 0,

(4.3)

Pmax

X

� x � 0, (4.4)

Pmax

Y

� y � 0, (4.5)

x � 0, (4.6)

y � 0, (4.7)

R
max

� r
i

� 0, for i 2 U
X

[ U
Y

, (4.8)

r
i

� r
min

� 0, for i 2 U
X

[ U
Y

. (4.9)

Notice that this is neither a linear programming nor a convex programming prob-
lem. We assume that the rate assignment problem above has at least one feasible
solution, or, in other words, that there exist powers x, y, such that assigning min-
imum rate to all users is feasible. Moreover, observe that in an optimal solution
(x⇤, y⇤, r⇤) of the optimization problem (P ),

 

1� ↵
X

i2U

X

V (r⇤
i

)

!

> 0 and

 

1� ↵
X

i2U

Y

V (r⇤
i

)

!

> 0.

For later reference, we also provide the Lagrangian. Let � 2 R6, µ, ⌫ 2 R|U | be
the Lagrangian multipliers corresponding to equations (4.2)-(4.9).

Denote by r = (r
i

)
i2U

X

[U

Y

the vector of the rates allocated to users.
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The Lagrangian corresponding to the optimization problem (P ) is

L(x, y, r,�, µ, ⌫) =
X

i2U

r
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).

Next we give a monotonicity property of the rates.

Theorem 4.2.1 If (x⇤, y⇤, r⇤) is an optimal solution of the problem (P ), then for
any two calls i and j, say, in cell X,

y⇤l
i

+ l�1

i,X

N
i

 y⇤l
j

+ l�1

j,X

N
j

) r⇤
i

� r⇤
j

. (4.10)

A similar statement holds for cell Y.

Proof. Suppose there exist two calls i, j 2 U
X

such that

l
i

y⇤ + l�1

i,X

N
i

 l
j

y⇤ + l�1

j,X

N
j

(4.11)

and
r⇤
i

< r⇤
j

. (4.12)

Define the following rate vector r̂ 2 R|U
X

|+|U
Y

|:
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<

>

:

r⇤
k

, for k 2 U
X

[ U
Y

\ {i, j}
r⇤
j

, for k = i,

r⇤
i

, for k = j,

i.e., with rate assignment to calls i and j interchanged. As the total rate is
unchanged, the throughput of the rate assignments r and r̂ is the same. Let

x̂ =

P

i2U

X

V (r̂
i

)(l
i

y⇤ + l�1

i,X

N
i

)

1� ↵
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V (r̂
i

)
. (4.13)

It can be easily seen that x̂ < x⇤.
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Note that (x̂, y⇤, r̂) is not necessarily a feasible solution of P , since it may not
satisfy constraints (4.2) and (4.3). However, we can obtain a feasible solution by
increasing the rates r̂ for users in U

X

\ {j}, until power x⇤ is reached in (4.13) or
all rates in U

X

\ {j} are maximal.

Denote by (r̃)
U

X

the rate assignment obtained in this way. Suppose that

(r̃
k

)
k2U

X

\{j} = (R
max

)
U

X

\{j}. (4.14)

By decreasing y⇤ to a value ŷ such that (x̂, ŷ, (r̃
k

)
k2U

X

\{j}, (r̂k)k2U

Y

) such that
(4.3) is satisfied, while the rates for users in U

Y

remain the same, we obtain a
feasible power/rate allocation with a higher throughput than r⇤.

If x⇤ was reached in (4.13), then

(x⇤, y⇤, (r̂
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)
k2U

X

, (r⇤
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)
k2U

Y

) (4.15)

is a feasible solution of P which gives a higher throughput than

(x⇤, y⇤, (r⇤
k

)
k2U

X

, (r⇤
k

)
k2U

Y

). (4.16)

This contradicts the fact that (x⇤, y⇤, r⇤) is an optimal solution. Hence, it must
be that r⇤

i

� r⇤
j

.

From theorem above, we have derived a monotonicity property of the optimal rate
assignment. The next theorem described the optimal rate assignment in two cells.

Theorem 4.2.2 If (x⇤, y⇤, r⇤) is an optimal solution of the problem (P ), then
there exists an optimal power and rate assignment such that at most one mobile i
in cell X has intermediate rate r⇤

i

, r
min

< r⇤
i

< R
max

. A similar statement holds
for cell Y.

Proof. Suppose that there exist two mobiles i and j with intermediate rate r⇤
i

,
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j

such that r
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.

According to Theorem 4.2.2, if a
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, then we have r⇤
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.

Now, suppose that r⇤
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Since V is continuous and increasing, there exist a �, 0 < � < ↵, such that

V (R
max

)a
i

+ V (r⇤
j

� �)a
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= V (r
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)a
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+ V (r
i

)a
i

.

One can easily verify that the rate assignment given by r̂ defined as
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, for k 2 U
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(4.17)

is feasible and it has a higher total rate than r⇤, since � < ↵.

Similarly, if ↵ = r⇤
j

�r
min

, one can show that there exists a � such that r⇤
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�r
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<
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� r⇤
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with the property that

r̂
k

=

8

>

<

>

:

r⇤
k

, for k 2 U
X
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r
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, for k = j,

(4.18)

is feasible and it has a higher total rate than than r⇤. Hence, we can conclude
that there exists at most one mobile with intermediate rate in one cell.

Next, we will derive the optimal rate assignment. First, we will simplify some
notations of the optimization (P ). Denote the functions in the left hand side of
constraints (4.2)-(4.7) of the optimization problem (P ), by

h
1

(x, y, r), ..., h
6

(x, y, r), (4.19)

and denote the functions in the left hand side of constraints (4.8)-(4.9) of the
optimization problem (P ) by

g
1

(x, y, r), ..., g
2|U

X

|+2|U
Y

|(x, y, r). (4.20)

Next, we will review some optimization terminology (see [BNO03]).

• Active Constraint

If an inequality constraint of (P ) is satisfied with equality in a feasible vector
(x, y, r) 2 R|U

X

|+|U
Y

|+2 of (P ), the constraint is active in (x, y, r). Denote
by A(x, y, r) the set of active inequalities in the point (x, y, r).

• Regular Point:

A feasible vector (x, y, r) is regular if the gradients rh
1

(x, y, r), rh
2

(x, y, r)
and rh

i

(x, y, r), rg
j

(x, y, r) for

i 2 A(x, y, r)
\

{3, 4, 5, 6}, (4.21)

and j 2 A(x, y, r) are linearly independent.

Notice thatrh
1

(x, y, r),rh
2

(x, y, r) are linearly independent for any feasible
(x, y, r) , so that all points with A(x, y, r) = ; are regular.
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• Further, note that since r
min

> 0, x 6= 0 and y 6= 0 in the optimal solution.
Moreover, since the objective function is linear, each optimum must be a
global optimum.

Next, we will start by characterizing the rate assignment for regular points. In the
proofs that follow, we will make use of the Karush-Kuhn-Tucker (KKT) necessary
conditions for a regular point to be an optimal solution (see [BNO03]). They
state that for a regular point (x⇤, y⇤, r⇤) that is an optimum of (P ) there exists an
unique multiplier vector (�⇤, µ⇤, ⌫⇤) such that:

(K1) 5
(x

⇤
,y

⇤
,r

⇤
)

L(x⇤, y⇤, r⇤
i

,�⇤, µ⇤, ⌫⇤) = 0,where L denotes the Lagrangian func-
tion corresponding to the optimization problem (P ) ,

(K2) �⇤
k

� 0, for k 2 {3, 4, 5, 6}, µ⇤ � 0 and ⌫⇤ � 0,

(K3) The Lagrangian multipliers corresponding to non active constraints are
equal to 0.

Theorem 4.2.3 If (x⇤, y⇤, r⇤) is a regular optimal solution of the problem (P )
then x⇤ = Pmax

X

or y⇤ = Pmax

Y

or r⇤
i

= R
max

, for each call i 2 U
X

[ U
Y

.

Proof. Note that since the minimum rate can be ensured to all accepted users,
constraints (4.2) and (4.3) imply that x⇤ > 0 and y⇤ > 0. Thus, based on condition
(K3), we conclude that �⇤

5

= �⇤
6

= 0. Suppose that x⇤ < Pmax

X

, y < Pmax

Y

and
r
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 r
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for a call i 2 U
X

.

From (K3), follows that �⇤
3
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4

= 0 and that µ⇤
i

= 0.

Moreover, (K1) implies that
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Observe that the first two equations in �⇤
1

,�⇤
2

are linearly independent (recall con-
straints (4.2)-(4.3) and the assumption that a minimal rate assignment is feasible),
so the only solution is �⇤

1

= �⇤
2

= 0.

Further, since µ⇤
i

= 0, from the third equation in (5.11) follows that ⌫
i

= �1,
which contradicts condition (K2), that ⌫⇤

i

� 0.

Hence, in an optimal solution, either the rates of all users are maximal, or the
power in one of the cells is maximal.

Corollary 4.2.4 Let (x⇤, y⇤, r⇤) be regular and an optimal solution of problem
(P ). Suppose that calls in cell X, respectively in cell Y are ordered in increasing
order of their l

i

y⇤ + l�1

i,X

N
i

, respectively l
j

x⇤ + l�1

j,Y

N
j

values. Then:

• there exists a positive number A(y⇤), such that

for each i 2 U
X

with l
i

y⇤ + l�1

i,X

N
i

< A(y⇤), r⇤
i

= R
max

and

for each i 2 U
X

with l
i

y⇤ + l�1

i,X

N
i

> A(y⇤), r⇤
i

= r
min

,

• there exists a positive number B(x⇤), such that

for each j 2 U
Y

with l
j

x⇤ + l�1

j,Y

N
j

< B(x⇤), r⇤
j

= R
max

and

for each j 2 U
Y

with l
j

x⇤ + l�1

j,Y

N
j

> B(x⇤), r⇤
j

= r
min

.

For a non regular point, the following theorem gives a complete characterization
of the optimal power and rate assignment.

Theorem 4.2.5 For each non regular point (x, y, r), the following conditions are
satisfied:
a) x = Pmax

X

or y = Pmax

Y

,
b) If x = Pmax

X

and y 6= Pmax

Y

, then r
i

2 {r
min

, R
max

}, for each i 2 U
X

,
c) If y = Pmax

Y

and x 6= Pmax

X

, then r
i

2 {r
min

, R
max

}, for each i 2 U
Y

.

Proof. Let (x, y, r) be a non regular point, feasible for the optimization prob-
lem (P ). Consider the matrix M formed by the rh

1

(x, y, r), rh
2

(x, y, r) and
rh

i

(x, y, r), rg
j

(x, y, r) for

i 2 A(x, y, r)
\

{3, 4, 5, 6}, j 2 A(x, y, r). (4.24)

Let K be the number of active inequality constraints. Notice that for a non-
regular point it must be that K > 0, since rh

1

(x, y, r), rh
2

(x, y, r) are linearly
independent. Clearly, 2  rank(M)  K + 2.

a) Suppose that x 6= Pmax

X

and that y 6= Pmax

Y

. In other words, the active
inequality constraints correspond to the constraints on rates. Then, matrix M has
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the following form:

M =

0

B

B

B

B

@
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)l
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V (r
i

) 0 B
0 0 C 0
0 0 0 D

1

C

C

C

C

A

,

where the vectors A 2 R|U
X

|, B 2 R|U
Y

| are defined as follows:

A = [�V 0(r
i

)(↵x+ l
i

y + l�1

i,X

N
i

)]
i2U

X

, B = [�V 0(r
i

)(↵y + l
i

x+ l�1

i,Y

N
i

)]
i2U

Y

,

and the matrices
C 2 R|{i2U

X

:g

i

2A(x,y,r)}|⇥R|{i2U

X

}|, (4.25)

D 2 R|{i2U

Y

:g

i

2A(x,y,r)}|⇥R|{i2U

Y

}|, (4.26)

are obtained from the diagonal square matrices with diagonal

diag(C) = [I{r
i

=r

min

})� I{r
i

=R

max

}]{i2U

X

},

diag(D) = [I{r
i

=r

min

})� I{r
i

=R

max

}]{i2U

Y

},

by deleting all rows for which the diagonal elements equals zero, where I{a} = 1 if
a is true, and 0 otherwise.

Clearly, rank(C) + rank(D) = K. Since constraints rh
1

(x, y, r), rh
2

(x, y, r) are
linearly independent, it follows that rank(M) = K+2, which contradicts the fact
that (x, y, r) is non regular. Hence, in a non regular point, the power assigned to
one of the cells has to be maximal.

b) Suppose that x = Pmax

X

and y 6= Pmax

Y

and that there exist i 2 U
X

such that
r
min

< r
i

< R
max

. It can be proved that the rank of the matrix M is again
rank(M) = K + 2, which contradicts the fact that (x, y, r) is non regular.

c) The proof is similar to b).

4.3 An Exact Algorithm for the optimization problem (P )

Based on Theorems 4.2.1-4.2.5 and Corollary 4.2.4, we now propose on algorithm
for finding the optimal solution of (P ). The algorithm relies on a reduction of
the optimization problem (P ) to a series of optimization problems in R. Notice
that the algorithm is exact since it considers all points, both the regular and non
regular points.

The exact algorithm for two cells consists of three major step. In Step 1, the
algorithm assigns maximum rates to all users. If maximum rate to all users is
feasible, then the optimal solution has been found. To check whether the maximum
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rate is feasible, one only has to check if the corresponding powers calculated from
(4.2)-(4.3) satisfy 0  x  Pmax

X

and 0  y  Pmax

Y

. If this is not the case,
then in Step 2, the algorithm calculates the rate allocation achieving maximum
throughput for the case when the power in cell X is maximal, respectively the
power in cell Y is maximal. In Step 3, the algorithm will choose among these 2
allocations the one with higher throughput. Note that if the rates are known, from
(4.1), (4.2) and (4.3), the powers of each user can be derived. The algorithm is
summarized below.

Step 1: Assign maximum rate R
max

to all users i 2 U
X

and j 2 U
Y

.
if there exists a feasible power allocation, then

return as optimal solution r
i

= R
max

for all users i 2 U
X

and j 2 U
Y

.
else

Step 2: Assign maximum power in cellX, then calculate a rate allocation that
gives maximum throughput in cells X and Y . Next, assign maximum power
in cell Y , then calculate a rate allocation that gives maximum throughput in
cells Y and X.
Step 3: Choose among the feasible rate and power allocations obtained in
Step 2 the one that gives maximum throughput.

end if

Notice that Step 1 and Step 3 are fairly obvious. We will describe Step 2 in greater
detail.

First, we consider the case when in cell X the base station transmits at maximum
power, i.e., x⇤ = Pmax

X

. Based on Corollary 4.2.4, we will find B(Pmax

X

). In Step 2,
the algorithm provides a reduction of the optimization problem (P ) that is based
on a search procedure to find the values B(x⇤) and A(y⇤) introduced in Corollary
4.2.4 to obtain the set of mobiles at which the rate drops from R

max

to r
min

in
both cells. As the set of users for maximum power at cell X also depends on the
power assignment in cell Y , these sets cannot be determined independently. Thus
we propose the following search algorithm from Theorem 4.2.1 and Theorem 4.2.2.

• According to Theorem 4.2.2, there is at most one user j⇤ in cell Y with
intermediate rate r

j

⇤ 2 (r
min

, R
max

). Let B(Pmax

X

) = l
j⇤Pmax

X

+ l�1

j⇤,Y Nj⇤ be
the value that characterizes user j⇤.

• From Theorem 4.2.1 and Theorem 4.2.2 follows that for each j 2 U
Y

with
l
j

P
X

+ l�1

j,Y

N
j

< B(Pmax

X

), r⇤
j

= R
max

and for each j 2 U
Y

with l
j

P
X

+

l�1

j,Y

N
j

> B(Pmax

X

), r⇤
j

= r
min

.

• Suppose Umax

Y

is the set of users with rate R
max

, and let s = |Umax

Y

| be the
number of users with rate R

max

. Suppose Umin

Y

is the set of users with rate
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r
min

, and let v = |Umin

Y

| be the number of users with rate r
min

. We know
that there is at most one user with intermediate rate r

Y

. The rate r
Y

is
unknown at this stage of the algorithm. The power assigned to cell Y , as a
function of r

Y

, can be determined from constraint (4.3), and is given by

y⇤(r
Y

) =
Q

Y

1� ↵

 

P

j2U

max

Y

V (R
max

) +
P

j2U

min

Y

V (r
min

) + V (r
Y

)

! , (4.27)

where

Q
Y

= V (R
max

)

 

P

j2U

max

Y

l
j

x+ l�1

j,Y

N
j

!

+ V (r
min

)

 

P

j2U

min

Y

l
j

x+ l�1

j,Y

N
j

!

+V (r
Y

)
⇣

l
j

⇤x+ l�1

j

⇤
,Y

N
j

⌘

• Similarly, for a specific y⇤(r
Y

), Theorem 4.2.2 implies that there is at most
one user i⇤ in cell X with r

i

2 (r
min

, R
max

) which is characterized by the
value of l

i

y⇤(r
Y

) + l�1

i,Y

N i

0

, say A(y⇤(r
Y

)).

Then all i 2 U
X

with l
i

y⇤(r
Y

)+ l�1

i,X

N
i

< A(y⇤(r
Y

)), have rate R
max

and all

i 2 U
X

with l
i

y⇤(r
Y

) + l�1

i,X

N
i

> A(y⇤(r
Y

)) have rate r
min

.

• Suppose Umax

X

is the set of users with rate R
max

, and let u = |Umax

X

| is the
number of users with rate R

max

. Suppose Umin

X

is the set of users with rate
r
min

, and let the intermediate rate is r
X

2 (r
min

, R
max

). Then the rate r
X

can be expressed from (4.2) as follows:

r
X

(r
Y

) =

✓

W

✏

◆

(Pmax

X

�H
max

�H
min

)
⇣

↵H
max

+ ↵H
min

+ l
i

⇤y + l�1

i

⇤
,X

N
i

⌘ . (4.28)

where

H
max

= V (R
max

)
P

i2U

max

X

⇣

↵x+ l
i

y⇤ (r
Y

) + l�1

i,X

N
i

⌘

,

H
min

= V (r
min

)
P

i2U

min

X

⇣

↵x+ l
i

y⇤ (r
Y

) + l�1

i,X

N
i

⌘

.

Note that if B(Pmax

X

), |Umax

Y

| and |Umin

Y

| were known, then |Umax

X

| and |Umin

X

|
were also known. Then, r

Y

would be the only unknown. This suggests that by
enumerating all the possible values of B(Pmax

X

), |Umax

Y

| and ||Umin

Y

||, the problem
could be reduced to an optimization problem in one variable, r

Y

. The optimization
problem is not easy to formulate due to the fact that the value of r

Y

, more precisely
y⇤(r

Y

), is a decision variable in the assignment of R
max

and r
min

to users in U
X
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(see Corollary 4.2.5). However, it can be easily seen that only some values of
y⇤(r

Y

) induce a di↵erent rate allocation in cell X. Let

L = {
l�1

j

1,X

N
j

1

� l�1

j

2

,X

N
j

2

l
j

2

� l
j

1

, j
1

, j
2

2 U
X

}
\

R+.

Suppose that L 6= ;. For all y⇤(r
Y

) 2 [L
i

, L
i+1

) the ordering of mobiles in cell
X, as determined by their value of l

i

y⇤(r
Y

) + l�1

i,X

N
i

is the same, but for di↵erent
intervals [L

j

, L
j+1

) this ordering may be di↵erent. Note that V (r) is strictly
increasing, so that y⇤(r

Y

) is strictly increasing. As a consequence, each unknown
y⇤(r

Y

) 2 [L
i

, L
i+1

) yields a unique r
Y

.
Hence, for y⇤(r

Y

) 2 [L
i

, L
i+1

), P can be reduced to the following optimization
problem in R:

max r
X

(r
Y

) + r
Y

s.t. y⇤(r
Y

)  Pmax

Y

,

y⇤(r
Y

) 2 [L
i

, L
i+1

], (4.29)

r
X

(r
Y

) 2 [r
min

, R
max

],

r
Y

2 [r
min

, R
max

].

Thus, the original rate optimization problem can be reduced to O(|U
X

|2) optim-
ization problems in R, one for each interval [L

i

, L
i+1

).

If L = ;, then the order of the users in U
X

does not depend on y⇤(r
Y

) and we
obtain a similar optimization problem to (4.29), without the second constraint.

Note that the optimization problems (4.29) are constraint optimization problems
in one variable, which can be easily solved.

4.4 Conclusions

In this chapter we have proposed an exact algorithm for the joint rate and power
allocation problem in two cells of a CDMA network. We have analyzed several
properties of the optimal solutions, based on which we have proposed a polynomial
time algorithm for solving the problem. Our results can be extended to non-
decreasing utility functions at the cost of a rather involved notation. The multicells
algorithm will be presented in the next chapter.



Chapter5
Multi-cell: Exact and Heuristic
Algorithm for Throughput
Maximization

This chapter presents a full analytical characterization of the optimal joint down-
link rate and power assignment for maximal total system throughput in a multi
cell CDMA network. The rest of the chapter is organized as follows. Sections
5.1 and 5.2 present analytical results for the optimal rate and power assignment.
Sections 5.3 and 5.4 present an exact algorithm and a heuristic for rate and power
assignment. Numerical results and examples are provided in Section 5.5.

5.1 The model: multi-cell with continuous rates

First, we introduce the mathematical model for a multi-cell CDMA network. We
consider the downlink in a system with mobiles U served by a set B of N base
transmitter stations (BTS). Let l

i,X

denote the path loss from BTS X to mobile
i, N i

0

the thermal noise received by mobile i, and let ✏
i

denote the energy per bit
to interference ratio requirement for mobile i. Let P

iX

denote the transmission
power of BTS X to mobile i, and Pmax

X

the maximum down link transmission
power of BTS X. The power received by mobile i from BTS X is P rec

iX

= P
iX

l
i,X

.

We impose the natural assumption for rate and power assignment to moving mo-
biles: each mobile is served by a single BTS. Let U

X

denote the set of mobiles
served by BTS X and r

i

the rate at which mobile i is served. We assume a min-
imum and maximum rate r

min

and R
max

, where r
min

> 0, i.e., a rate assignment
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is feasible when all the mobiles are served with at least at a minimal rate.

A power and rate assignment (P, r), with

P = (P
i,X

)
i2U

X

, X2B and r = (r
i

)
i2U

,

is feasible if
X

i2U

X

P
iX

 Pmax

X

for all X 2 B and
r
i

2 [r
min

, R
max

],

for all i 2 U such that the energy per bit to interference ratio, (E
b

/I
0

)
i

, exceeds
the threshold ✏

i

required for correct decoding of transmissions.

We assume perfect power control so that the energy per bit to interference ratio
equals its threshold

✓

E
b

I
0

◆

i

:=
W

r
i

P
iX

l
i,X

↵l
i,X

(P
X

� P
iX

) +
P

Y 2B\{X}
l
i,Y

P
Y

+N i

0

= ✏
i

,

for all i 2 U
X

, where X is the BTS serving mobile i, W is the system chip rate,
and ↵ is the down link orthogonality factor.

In a UMTS system rates are selected from a discrete set. However, these rates may
be rapidly modified in accordance with channel conditions, resulting in average
rates that lie in an interval [r

min

, R
max

]. The optimization problem considered in
this chapter is to determine a feasible assignment of powers (to BTSs) and rates
(to mobiles) that maximizes the total throughput

P

i2U

r
i

:

max
X

i2U

r
i

s.t.

✓

E
b

I
0

◆

i

= ✏
i

, for all i 2 U, (5.1)

X

i2U

X

P
iX

 Pmax

X

, for all X 2 B,

r
i

2 [r
min

, R
max

], for all i 2 U,

P
iX

� 0, for all i 2 U
X

, X 2 B.

In this chapter, for clarity of presentation, we assume that all mobiles have the
same energy per bit to interference ratio threshold ✏

i

= ✏(r) = ✏. For generalisa-
tion, see Remark 5.2.1.

The next section provides a more compact characterization of feasible power and
rate assignments. This is done by reformulating the conditions of (5.1).
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5.2 Feasible rate and power assignment

Consider a fixed rate assignment r 2 R|U | , with r
min

 r
i

 R
max

, for all i 2 U .
A power assignment P = (P

X

)
X2B is feasible for rate assignment r, if (P, r) is a

feasible rate and power assignment, i.e., for all i 2 U
X

and allX 2 B the conditions
of (5.1) are satisfied:

8

>

>

>

<

>

>

>

:

P
iX

= ↵V (r
i

)P
X

+ V (r
i

)
P

Y 2B\{X}
lY
i,X

P
Y

+ V (r
i

)l�1

i,X

N i

0

,

P

i2U

X

P
iX

 Pmax

X

,

P
iX

� 0,

(5.2)

where
V (r) =

✏r

W + ↵✏r
,

and

lY
i,X

=
l
i,Y

l
i,X

,

for i 2 U
X

, Y 2 B \ {X}.

Remark 5.2.1 (Generalising ✏ to ✏(r)) The energy per bit to interference ratio
is typically decreasing in the rate r

i

to achieve the same degree of reliability, see
e.g. [HT07, chapter 8]. This may be included in our results without changing
the formulation of the problem. To this end, notice that the restrictions in our
optimization problem include the energy per bit to interference ratio only via the
function V (r) = ✏r/(W +↵✏r), see (5.2). Generalising ✏ to ✏(r) will not a↵ect the
structure of the optimization problem. The analysis below merely requires that

V (r) = ✏(r)r/(W + ↵✏(r)r)

is continuous, increasing and concave.

Let F
1

(r) denote the set of feasible power assignments with rate assignment r:

F
1

(r) = {P 2 R|U | : P satisfies the system of equations (5.2)},

and R
1

the set of rates within the allowed range for which a feasible power
assignment exists:

R
1

= {r 2 R|U | : F
1

(r) 6= ; and r
min

 r
i

 R
max

for all mobiles i 2 U}.

The rate and power assignment problem can be now written as:

max{
X

i2U

r
i

: r 2 R
1

}. (P)
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It is convenient to rephrase R
1

in terms of total powers allocated to cells. To
this end, consider the following system of equations obtained by summing the first
equation of (5.2) over i 2 U

X

:

(1� ↵
X

i2U

X

V (r
i

))P
X

�
X

i2U

X

V (r
i

)
X

Y 2B\{X}

lY
i,X

P
Y

�
X

i2U

X

V (r
i

)l�1

i,X

N i

0

= 0,

(5.3)

0  P
X

 Pmax

X

, for all X 2 B. (5.4)

For fixed r, let

F
2

(r) = {P 2 R|U | : P satisfies (5.3) and (5.4)},

and let R
2

the set of rates:

R
2

= {r 2 R|U | : F
2

(r) 6= ; and r
min

 r
i

 R
max

for all mobiles i 2 U}.

For two cells, it was shown in previous chapter and in [BBEW06] that R
1

= R
2

.
The following lemma extends this result to an arbitrary number of cells.

Lemma 5.2.1 R
1

= R
2

.

Proof. First, consider a rate assignment r 2 R|U | for which F
1

6= ;. Let P 2 R|U |

be the positive solution of (5.2).

By adding the powers of all mobiles in each cell X 2 B, we obtain

P
X

=
X

i2U

X

↵V (r
i

)P
X

+
X

i2U

X

V (r
i

)
X

Y 2B\{X}

lY
i,X

P
Y

+
X

i2U

X

V (r
i

)

l
i,X

N i

0

. (5.5)

It follows that (P
X

)
X2B verifies (5.3), so it belongs to R

2

.

Next, consider a rate assignment r 2 R|U | for which F
2

6= ;. Let P 2 R|B| be a
positive solution of (5.3). Define:

P̃
iX

= ↵V (r
i

)P
X

+ V (r
i

)
X

Y 2B\{X}

lY
i,X

P
Y

+ V (r
i

)l�1

i,X

N i

0

. (5.6)

By simple substitution in (5.2) it can be shown that P̃ is a solution of (5.2).
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Lemma 5.2.1 implies that optimizing the rate assignment over R
1

is equivalent to
optimizing the rate assignment over R

2

, i.e., that (PB) given by

max{
X

i2U

r
i

: r 2 R
2

}. (PB)

is equivalent to (P ).

The characterization of R
2

is much more compact than the characterization of R
1

,
as it uses the total powers per BTS instead of the powers assigned to all mobiles
individually. The set of feasible rate assignments in R

2

may be characterized via
Perron-Frobenius theory. To this end, observe that system (5.3) can be rewritten
as

(

(I � T (r))P = c(r),

Pmax

X

� P
X

� 0, for all X 2 B,

with T (r) the N ⇥N matrix:

T (r)
kk

= ↵
X

i2U

X

k

V (r
i

),

T (r)
kj

=
X

i2U

X

k

V (r
i

)l
X

j

i,X

k

, k 6= j, k, j = 1, 2, . . . , N,

and
c(r)

k

=
X

i2U

X

k

V (r
i

)l�1

i,X

k

N i

0

.

Necessary and su�cient conditions for the existence of a positive power assignment
satisfying (5.3) for a given rate assignment r can now be formulated in terms of
the Perron-Frobenius eigenvalue �

PF

(T (r)) of T (r).

Lemma 5.2.2 For a given rate assignment r 2 R|U | with r
min

 r
i

 R
max

, there
exists a positive power assignment satisfying (5.3) if and only if �

PF

(T (r)) < 1
or, equivalently, if and only if all the principal minors of I � T (r) are positive.

Proof. Since r
min

> 0, for a feasible rate allocation r, T (r) is irreducible, having
only positive elements. From the theory of non-negative matrices [Sen73], it fol-
lows that for a given rate allocation r 2 R|U |, (I � T (r))P = c(r) has a positive
solution P 2 RN for any vector c(r) 2 RN , (c(r) � 0 and c(r) 6= 0) if and only
if the Perron-Frobenius eigenvalue of the matrix T (r) is strictly smaller than 1.
This condition is equivalent to requiring all the principal minors of I � T (r) to
be positive [Sen73]. This implies that if F

2

(r) 6= ;, �
PF

(T (r)) < 1 and all the
principal minors of I � T (r) are positive. However, the opposite is not true, since
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�
PF

(T (r)) < 1 only guarantees a positive solution of (I � T (r))P = c(r), but not
necessarily one that is bounded from above by the maximum transmission powers
in the cells.

Remark 5.2.2 (Pole capacity) A necessary condition for the existence of a
feasible power assignment for a given rate assignment is that

1� ↵
X

i2U

X

V (r
i

) > 0,

for all X 2 B.

For minimum rate assignment to all mobiles, this condition reads

|U
X

|  W/(↵✏
D

r
min

) + 1,

where |U
X

| is the number of calls carried by BTS X. This determines the maximum
number of calls that can be carried by BTS X (the pole capacity of BTS X). It is
obvious that not all mobiles in a cell with

|U
X

| � W

↵✏R
max

> 1,

can receive maximum rate.

5.3 Characterising optimal rates and powers

This section characterizes the optimal rate assignment for a given assignment of
calls to the BTSs for the case of throughput optimization.

We first introduce some terminology for optimization problems (see [BNO03]). An
inequality constraint that is satisfied with equality in a feasible point (solution) is
said to be active in the feasible point. A feasible point is regular if the gradients
of the active inequality constraints and the gradients of the equality constraints
are linearly independent and non regular otherwise. For a power assignment P =
(P

X

)
X2B, for two mobiles i, j 2 U

X

, we define the received interference ordering
�P as

i �P j if
X

Y 2B\X

lY
i,X

P
Y

+ l�1

i,X

N i

0

<
X

Y 2B\X

lY
j,X

P
Y

+ l�1

j,X

N j

0

. (5.7)

Let (P⇤, r⇤) be an optimal solution to (PB). As (P⇤, r⇤) must satisfy (5.3), the
rate assignment problem decomposes into rate assignment problems for the cells,
i.e., for each cell X 2 B, (r⇤

i

)
i2U

X

is the optimal solution of the following problem:
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max
P

i2X

r
i

such that
P

i2U

X

V (r
i

)(↵P ⇤
X

+
P

Y 6=X

lY
i,X

P ⇤
Y

+ l�1

i,X

N i

0

) = P ⇤
X

,

r
min

 r
i

 R
max

, i 2 U
X

.

Based on this decomposition, the next theorem states that if (PB) is feasible, in
an optimal solution a call with lower received interference obtains a higher data
rate. Furthermore, there is at most one mobile with intermediate rate, all other
mobiles are served at rate r

min

or R
max

.

Theorem 5.3.1 Let (P⇤, r⇤) be an optimal solution to (PB).
(a) For any two mobiles i and j in the same cell, if i �P⇤ j, then r⇤

i

� r⇤
j

.
(b) There exists an optimal power and rate assignment such that in each cell at
most one mobile has intermediate rate r⇤, r

min

< r⇤ < R
max

.

Proof. (a) For every i 2 U
X

, denote by

a
i

=
X

Y 2B\{X}

lY
i,X

P ⇤
Y

+ l�1

i,X

N i

0

.

Clearly, i �P⇤ j is equivalent to a
i

< a
j

. Suppose that there exist two mobiles
i, j 2 U

X

such that a
i

< a
j

and r⇤
i

< r⇤
j

. Since V is increasing,

V (r⇤
i

) <
V (r⇤

i

)a
i

+ V (r⇤
j

)(a
j

� a
i

)

a
j

< V (r⇤
j

).

Since V is continuous, there exists an ↵ with 0 < ↵ < r⇤
j

� r⇤
i

such that

V (r⇤
i

+ ↵) =
V (r⇤

i

)a
i

+ V (r⇤
j

)(a
j

� a
i

)

a
j

.

Consider the rate assignment r̂ given by

r̂
k

=

8

>

<

>

:

r⇤
k

, for k 2 U
X

\ {i, j}
r⇤
j

, for k = i,

r⇤
i

+ ↵, for k = j.

(5.8)

It is straightforward to check that the rate (r̂
i

)
i2U

X

is feasible and since the utility
function u is increasing, it has a higher total utility then (r⇤

i

)
i2U

X

. Hence, the
optimality of (r⇤

i

)
i2U

X

is contradicted. We conclude that r⇤
i

� r⇤
j

.

(b) Suppose that there exist two mobiles i and j with intermediate rate r⇤
i

, re-
spectively r⇤

j

such that r
min

< r⇤
j

< R
max

and r
min

< r⇤
i

< R
max

.
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Suppose that r⇤
j

< r⇤
i

, and thus a
i

 a
j

.

Let
↵ = min{R

max

� r⇤
i

, r⇤
j

� r
min

}.

Assume that ↵ = R
max

� r⇤
i

. Since V is concave,

V (R
max

)� V (r⇤
i

) = V (r⇤
i

+ ↵)� V (r⇤
i

) < V (r⇤
j

)� V (r⇤
j

� ↵),

and consequently

V (R
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)a
i

+ V (r⇤
j

� ↵)a
j

< V (r⇤
j

)a
j

+ V (r⇤
i

)a
i

< V (R
max

)a
i

+ V (r⇤
j

)a
j

.

Since V is continuous and increasing, there exist a 0 < � < ↵ such that

V (R
max

)a
i

+ V (r⇤
j

� �)a
j

= V (r
j

)a
j

+ V (r
i

)a
i

.

One can easily verify that the rate assignment given by r̂ defined as

r̂
k

=

8

>

<

>

:

r⇤
k

, for k 2 U
X

\ {i, j}
R

max

, for k = i,

r⇤
j

� �, for k = j.

(5.9)

is feasible and it has a higher total rate than r⇤, since � < ↵.

Similarly, if ↵ = r⇤
j

� r
min

, one can show that there exists a � such that

r⇤
j

� r
min

< � < R
max

� r⇤
i

,

with the property that

r̂
k

=

8

>

<

>

:

r⇤
k

, for k 2 U
X

\ {i, j}
r⇤
i

+ �, for k = i,

r
min

, for k = j.

(5.10)

is feasible and it has a higher total rate than than r⇤. Hence, we can conclude
that there exists at most one mobile with intermediate rate in one cell.

Theorem 5.3.1 characterizes the rate assignment when the optimal powers are
known. Below we will characterize the optimal joint rate and power assignment
in a multi-cell environment with a maximal power per BTS. We first proceed with
optimal solutions given by non regular points and then by regular points.

Theorem 5.3.2 For each non regular point (P, r) at least one BTS X transmits
at maximal power Pmax

X

.
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Proof. Let (P, r) be a non regular point, feasible for (PB). Consider the matrix
M(P, r) formed from the gradients of the equality constraints (rh

X

(P, r))
X2B

and by the gradients of the active inequality constraints. The matrix M(P, r) has
thus the general form

M(P, r) =

0

@

I � T (r) A(r)
B(P) 0
0 C(r)

1

A ,

where T (r) was introduced in Section 3,

A(r) =

0

B

@

A
X

1

0
. . .

0 A
X

N

1

C

A

,

with A
X

i

= (�V 0(r
i

)(↵P
X

i

+
P

Y 2B\{X
i

} l
Y

i,X

i

P
Y

+ l�1

i,X

1

N i

0

))
i2U

X

i

, B(P) is the

matrix obtained from the diagonal matrix B(P) with the diagonal

diag(B(P)) = [I
P

X

k

=P

max

X

k

]{X
k

2B}

by deleting the zero rows. (Here I{a} = 1 if a is true, and 0 otherwise). Further-
more, C(r) is a matrix defined as:

C(r) =

0

B

B

B

@

C
1

(r) 0
. . .

0 C
N

(r)

1

C

C

C

A

,

with the sub matrices C
k

(r) 2 R|{i2U

X

k

:r

i

=R

max

}|⇥R|{i2U

X

k

}| obtained from the
diagonal square matrices with diagonal

diag(C
k

(r)) = [I{r
i

=R

max

} � I{r
i

=r

min

}]{i2U

X

}

by deleting all rows for which the diagonal element equals zero.

Let K
r

be the number of active inequality constraints of the form r
min

 r
i

or r
i

 R
max

. Notice that since the principal minors of I � T (r) are positive,
rank(I � T (r)) = N .

Suppose that none of the base stations transmit at maximum power, in other
words, all the constraints of the form P

X

 Pmax

X

are inactive. Then, matrix M
has the following form:

M(P, r) =

✓

I � T (r) A(r)
0 C(r)

◆

,
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Since rank(I � T (r)) = N and C(r) has a single nonzero entry per row, M(P, r)
has rank K

r

+N , which implies that the rows of M(P, r) are linearly independent,
a contradiction with the fact that (P, r) is non regular. We thus conclude that
there must be at least one station transmitting at maximum power.

Theorem 5.3.3 Let (P⇤, r⇤) be regular and a local optimum of problem (PB).
Then there either exists a BTS that transmits with maximum power or r⇤

i

= R
max

for all mobiles i 2 U .

Proof. Consider the Lagrangian function corresponding to problem PB. Let
�,�, ⇣ 2 R|B| and µ, ⌫ 2 R|U | be the Lagrangian multipliers corresponding to
equations in (5.3), (5.4) and r

min

 R
max

. The Lagrangean corresponding to PB
is

L(P, r,�,�, ⇣, µ, ⌫) =
X

i2U

r
i

+
X

X2B
�
X

0

B

B

B

B

B

@

 

1� ↵
P

i2U

X

V (r
i

)

!

P
X

�
P

Y 2B\{X}

P

i2U

X

V (r
i

)lY
i,X

P
Y

�
P

i2U

X

V (r
i

)l�1

i,X

N i

0

1

C

C

C

C

C

A

+
X

X2B
�
X

(Pmax

X

� P
X

) +
X

X2B
⇣
X

P
X

+
X

i2U

µ
i

(R
max

� r
i

) +
X

i2U

⌫
i

(r
i

� r
min

).

The Karush-Kuhn-Tucker necessary conditions for a regular point (P⇤, r⇤) that is
an optimum of (PB) state that

there exists an unique multiplier vector (�⇤,�⇤, ⇣⇤, µ⇤, ⌫⇤) such that:

(K1) 5
(P⇤

,r⇤)L(P
⇤, r⇤,�⇤,�⇤, ⇣⇤, µ⇤, ⌫⇤) = 0

(K2) �⇤ � 0, ⇣⇤ � 0, µ⇤ � 0 and ⌫⇤ � 0,

(K3) The Lagrangean multipliers corresponding to non active constraints are
equal to 0.

Note that since the minimum rate can be ensured to all accepted mobiles, con-
straints (5.3) imply that P ⇤

X

> 0 for eachX 2 B. Thus, based on (K3), we conclude
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that ⇣⇤ = 0 . Condition (K1) implies that @L

@P

X

(P⇤, r⇤,�⇤,�⇤, ⇣⇤, µ⇤, ⌫⇤) = 0, and
@L

@r

i

(P⇤, r⇤,�⇤,�⇤, ⇣⇤, µ⇤, ⌫⇤) = 0. Combining with ⇣⇤ = 0 yields

�t(I� T (r)) = �⇤, . (5.11)

Furthermore, for each mobile i, the following holds

1 + ⌫⇤
i

� µ⇤
i

� �⇤
X

V 0(r
i

)(↵P
X

⇤ +
X

Y 2B\{X}

lY
i,X

P ⇤
Y

+ l�1

i,X

N i

0

) = 0. (5.12)

Assume that none of the base stations transmits at maximum power and that there
exists a mobile i 2 U such that r

min

 r
i

< R
max

. From condition (K3) follows
that �⇤ = 0. Since P ⇤ is a positive solution of the system (I � T (r⇤))P = c(r⇤),
by Lemma 5.2.2, I � T (r⇤) is nonsingular. Hence, �⇤ = 0.

Let i be the mobile with r
min

 r
i

< R
max

. Clearly, µ⇤
i

= 0. From (5.12) now
follows that ⌫⇤

i

= �1, which contradicts condition (K2).

We conclude that in a local optimal solution, either the rates of all mobiles are
maximal, or the power in one of the cells is maximal.

Theorems 5.3.1 - 5.3.3 imply that in an optimal solution (P⇤, r⇤) mobiles in a
cell X are assigned R

max

, r
min

, or an intermediate rate r. This assignment is
determined by the ordering �P⇤ , as summarized in the following corollary.

Corollary 5.3.4 Let (P⇤, r⇤) be an optimal solution of problem (PB). In each cell
X there exists a mobile i

k

2 U
X

such that

(

r
i

= R
max

, for all i �P⇤ i
k

,

r
i

= r
min

, for all i �P⇤ i
k

.

We have shown that in an optimal solution, there exists a BTS that transmits at
maximal power. The following theorem refines this result.

Theorem 5.3.5 Suppose that N � 3 and that there exists an optimal solution
(P⇤, r⇤) with P ⇤

X

= Pmax

X

for one BTS in B. Then there either exists another
BTS Y 2 B \ {X} with P ⇤

Y

= Pmax

Y

or all mobiles assigned to BTSs in B \ {X}
have maximal rate.

Proof. Let (P⇤, r⇤) be an optimal solution with P ⇤
X

= Pmax

X

. Denote by P̃ =
(P ⇤

Y

)
Y 2B\{X} and r̃ = (r

i

)
i2

S

Y 2B\{X} U

Y

. Clearly, (P̃, r̃) is an optimal solution of
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the following mathematical program.

PB\{X} : max
X

i2U\U
X

r
i

0

@1� ↵
X

i2U

X

0

V (r
i

)

1

AP
X

0 �
X

Y 2B\{X,X

0}

X

i2U

X

0

V (r
i

)lY
i,X

0P
Y

(5.13)

=
X

i2U

X

0

V (r
i

)l�1

i,X

0(N i

0

+
X

i2U

X

r̃⇤
i

lX
i,X

0Pmax

X

), for each X 0 2 B \ X

Pmax

X

0 � P
X

0 � 0, X 0 2 B \ {X}
P
X

0 � 0, X 0 2 B \ {X}
R

max

� r
i

� 0, for i 2 U \ U
X

,

r
i

� r
min

� 0, for i 2 U \ U
X

.

Note that PB\{X} is a rate and power optimization problem for N�1 cells, with the
noise for an arbitrary mobile i 2 U

X

0 defined by N i

0

+
P

i2U

X

r⇤
i

lX
i,X

0Pmax

X

. Therefore,

the results proven in Theorem 5.3.2 and Theorem 5.3.3 hold for PB\{X}. Hence, if

(P̃, r̃) is a non regular point of PB\{X}, then based on Theorem 5.3.2 we conclude
that there must be a base station in B \ {X} transmitting at maximum power.
On the other hand, if (P̃, r̃) is a regular point and an local optimum of PB\{X},
Theorem 5.3.3 implies that either there exists a base station in B \ {X} transmit-
ting at maximum power or all the mobiles corresponding to cells in B \ {X} have
maximum rate. The statement of the theorem now follows.

Note that Theorems 5.3.2 and 5.3.3 imply that in an optimal solution, either all
users receive R

max

, or there is at least one BTS that transmits at maximal power.
In the latter case, if N > 3, by following the steps in the proof of Theorem 5.3.5,
one can reduce the problem to a rate and power assignment problem in N � 1
cells. At its turn, this problem can be reduced to a problem in N � 2,...3 cells. If
N = 3, the problem reduces to a rate and power assignment problem for 2 cells.
Based on Theorems 5.3.2 and 5.3.3, we obtain that either all users in the two cells
get R

max

, or one of the cells transmits at Pmax. Note that in the last case, the
rates in the other cell can take values {r

min

, r, R
max

}, with r
min

< r < R
max

. We
have the following Corollary.

Corollary 5.3.6 In a network with N cells, in the optimal power and rate assign-
ment, only one of the following situations can occur:

1. all mobiles have R
max

;

2. in k cells all mobiles have R
max

, the other N �k BTSs transmit at maximal
power;
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3. N � 1 BTSs transmit at maximal power.

In the next sections we will give an exact algorithm for optimal power and rate
assignment which is suitable for small networks and propose a heuristic for larger
networks.

5.4 Exact algorithm for throughput maximization

This section provides an algorithm for optimal rate and power assignment to
achieve maximal throughput. Although the algorithm is too slow for practical
purposes, it is of interest as it provides an exact optimal rate and power assign-
ment. This assignment will serve as benchmark for the heuristic power and rate
assignment provided in Section 6.

The exact algorithm has four major steps based on Corollary 5.3.6. In Step 1
the algorithm assigns maximum rate to all mobiles. If this is infeasible, in Step
2 it assigns maximum rates to mobiles in k < N � 1 cells and maximum power
to the other cells. All the subsets of k elements of B will be checked. In Step 3
the algorithm analyzes the situation in which N � 1 BTSs transmit at maximum
power. In Step 4 the rate and power assignment with maximum throughput is
chosen. The algorithm is summarized below.

Algorithm 1 The exact algorithm

Step 1: Assign maximum rate to all mobiles i 2 U .
if There exists a feasible power allocation, then
Return as optimal solution r

i

= R
max

for all i 2 U .
else
Step 2: For all subsets A = {X

1

, ..., X
k

} ⇢ B, with k = 2, ..., N �1 elements,
assign R

max

to the mobiles in A and maximum power to the mobiles in the
cells in B \ A. Find the rate and power assignment that gives maximum
throughput.
Step 3: For each cell X 2 B, assign maximum power to the cells in B \X.
Calculate the power in X and the rate allocation that gives the maximum
throughput.
Step 4: Choose among the feasible rate and power allocations obtained in
Step 2 and Step 3 the one that gives maximum tthroughput.

end if

Steps 1 and 4 are fairly obvious. Steps 2 and 3 require additional work. Next we
will describe these steps in greater detail.
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Step 2: maximum rates to mobiles in k < N � 1 cells and maximum power to the other
cells

Step 2 of the algorithm is based on two basic procedures. The first procedure
calculates the powers in cells A ⇢ B when the powers in cells B \ A are known
and the mobiles in the cells in A receive maximum rate. The second procedure
subsequently calculates the optimal rates in cells in B \ A. These procedures are
described below.

Finding feasible powers when the rates are known.

Assume that all mobiles in the cells in A have maximal rate and the BTSs in B\A
transmit at maximal power. There exists a feasible power allocation for the cells
in A if and only if the following system has a solution, recall (5.3):

8

>

>

>

<

>

>

>

:

(1� ↵
P

i2U

X

V (R
max

))P
X

�
P

Y 2A\X
P

i2U

X

V (R
max

)lY
i,X

P
Y

=
P

i2U

X

V (R
max

)(
P

Y 2B\A lY
i,X

Pmax

Y

+ l�1

i,X

N i

0

), for each X 2 A,

0  P
X

 Pmax

X

, for each X 2 A.

(5.14)

Following the arguments used to prove Lemma 5.2.2, it can be shown that feasib-
ility of (5.14) implies unicity of its solution. Thus, we have determined the rate
and power allocation for the cells and mobiles in A.

Finding the optimal rates when the powers are known.

When the powers in all cells are known, finding the optimal rate allocation for mo-
biles in B\A reduces to solving N�k rate allocation problems for which the power
and the interference are known. Each such optimization problem corresponds to
a cell X 2 B \A and has the following form:

max{
X

i2X

r
i

:
X

i2U

X

V (r
i

)(↵P
X

+
X

Y 6=X

lY
i,X

P
Y

+l�1

i,X

N i

0

) = P
X

, r
min

 r
i

 R
max

, i 2 U
X

}.

(P
X

)

By Theorem 4.2.5, in an optimal solution, if i �P j, then r
i

� r
j

. Moreover, the
rates belong to the set {r

min

, r, R
max

}, where r
min

< r < R
max

and at most one
mobile has intermediate rate. Hence, an optimal rate assignment in cell X can be
obtained by ordering the mobiles in a cell according to �P and assigning R

max

to mobiles as long as the power P
X

is not exceeded, while all the mobiles have a
rate greater than r

min

. The intermediate rate is chosen such that the power P
X

is reached. The exact algorithm is as follows.
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Algorithm 2 Optimal rate allocation when powers are known

Step 1: Set r
i

= r
min

for all i 2 U
X

.
Step 2: Order the mobiles in U

X

such that i
1

�P ... �P i|U
X

|.
Step 3: Set in this order r

i

= R
max

until for some index k setting r
k

= R
max

yields
|U

X

|
P

i=1

V (r
i

)(↵P
X

+
P

Y 6=X

lY
i,X

P
Y

+ l�1

i,X

N i

0

) > P
X

.

Step 4: Choose r
k

such that
|U

X

|
P

i=1

V (r
i

)(↵P
X

+
P

Y 6=X

lY
i,X

P
Y

+ l�1

i,X

N i

0

) = P
X

.

Step 3: N � 1 BTSs transmit at maximum power

Let X
2

, ..., X
N

be the cells in which the BTSs transmit at maximal power. In an
optimal solution of the form P = (P

X

1

, Pmax

X

2

, ..., Pmax

X

N

), from Theorem 4.2.5, in
each cell X

k

there exists a mobile i
k

such that r
i

= R
max

if i �P i
k

and r
i

= r
min

if i �P i
k

. Moreover, there is at most one mobile with intermediary rate in each
cell.

The definition of the order relation �P implies that the ordering of the mobiles
in cell X

1

is known (since the powers in cells 2, . . . , N are maximal). For cells
X

2

, . . . , X
N

this ordering depends on P
X

1

. Fortunately, as implied by Theorem

5.4.1 below, there are at most
P

N

k=1

|U
X

k

|2 such orderings. In the sequel, let PA
X

1

denote the set of power assignments in which all BTSs in B \ {X
1

} transmit at
maximum power.

Theorem 5.4.1 Assume that in the optimal power and rate assignment N � 1
BTSs transmit at maximum power. Let BTS X

1

be the BTS not transmitting at
maximum power. There exists a partition of [0, Pmax

X

1

] in intervals L
1

, ..., L
K

X

1

such that for all power assignments P 2 PA
X

1

with P
X

1

2 L
s

, for each pair of
mobiles i, j 2 B \ {X

1

} in the same cell i ⌫P j or i �P j. Moreover, K
X

1


P

N

k=1

|U
X

k

|2.

Proof. Consider a power assignment P 2 PA
X

1

and two mobiles i, j in cell
Y 2 B \ {X

1

}. Next we investigate for which values of P
X

1

, i �P j.

Note that if lX1

i,Y

6= lX1

j,Y

, then i =P j for

P
X

1

=
l�1

j,Y

N j

0

� l�1

i,Y

N i

0

+
P

Z2B\{Y,X
1

}(l
Z

j,Y

� lZ
i,Y

)P
Z

lX1

i,Y

� lX1

j,Y

.

Define

b
ij

=
l�1

j,Y

N j

0

� l�1

i,Y

N i

0

+
P

Z2B\{Y,X
1

}(l
Z

j,Y

� lZ
i,Y

)P
Z

lX1

i,Y

� lX1

j,Y

.
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By straightforward calculations based on the definition of i �P, we can verify that
the following a�rmations hold:

1. If lX1

i,Y

= lX1

j,Y

then i �P j if l�1

j,Y

N j

0

� l�1

i,Y

N i

0

+
P

Z2B\{Y,X
1

}(l
Z

j,Y

� lZ
i,Y

)P
Z

� 0
and i �P j otherwise.

2. If lX1

i,Y

� lX1

j,Y

> 0 then i �P j if P
X

1

< b
ij

and i �P j otherwise.

3. If lX1

i,Y

� lX1

j,Y

< 0 then i �P j if P
X

1

< b
ij

and i �P j otherwise.

4. If lX1

i,Y

6= lX1

j,Y

then i =P j if P
X

1

= b
ij

.

We can thus conclude that if lX1

i,Y

6= lX1

j,Y

, i �P j is influenced by the power in cell
X

1

only through the sign of P
X

1

� b
ij

.

Consider further the sequence (b
ij

)
(i,j)2B\{X

1

}. Suppose that after sorting the
sequence in increasing order, we obtain

b
i

1

j

1

 b
i

2

j

2

 ....b
i

s

j

s

.

Let b
i

m

j

m

be the smallest positive term in the sequence and b
i

p

j

p

be the largest
term that that does not exceed Pmax

X

1

. The set of intervals

L
1

= [0, b
i

m

j

m

),

L
2

= [b
i

m

j

m

, b
i

m+1

j

m+1

), ..., L
p�m+1

= [b
i

p�1

j

p�1

, b
i

p

j

p

), L
p�m+2

= [b
i

p

j

p

, Pmax

X

1

]

form a partition of [0, Pmax

X

1

].
Clearly, this partition has the desired properties.

Theorem 5.4.1 implies that the problem of finding the optimal power assignment
P 2 PA

X

1

can be reduced to the problem of finding the power assignment P 2
PA

X

1

with maximal throughput obtained when the power in cell X
1

is equal to
the borders of the intervals L

1

, . . . , L
K

X

1

, i.e., a finite set of powers. We will refer
to the partition of [0, Pmax

X

1

] that satisfies the conditions in Theorem 5.4.1 as the
partition associated to cell X

1

.

We may now describe Step 3 of the algorithm. Let L = {[0, b
i

1

j

1

], ..., [b
i

m

j

m

, Pmax

X

1

]}
be the partition associated to X

1

. From Theorem 5.4.1, for all P
X

1

2 L
s

the
ordering of the mobiles in cells X

2

, . . . , X
N

with respect to their received interfer-
ence remains unchanged. Therefore, it su�ces to consider the orderings given by
P 2 PA

X

1

with P
X

1

= b
i

s

j

s

, s = 1, ...,m.

Suppose mobiles in each cell are ordered with respect to �P,
with P = (b

i

s

j

s

, Pmax

X

2

, ..., Pmax

X

N

). Let i
k

be the minimal index in cell k such that
r
i

k

6= R
max

. Note that for given vector (i
1

, ..., i
N

), in each cell X
k

the rates of
all mobiles j 6= i

k

are either R
max

or r
min

. Hence, the goal is to find the vector
(i

1

, ..., i
N

) and the rates of the mobiles i
1

, ..., i
N

such that the total throughput is
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maximized. For a given i
1

with rate r the power assigned to cell X
1

, denoted by
P
X

1

(r), can be determined from (5.3) for cell X
1

, and is given by

P
X

1

(r) =

P

j2U

X

1

\{i
1

}
V (r

j
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✓
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For a given vector (i
1

, .., i
N

), all the rates in cell X
k

are known except for the rate
of mobile i

k

. The rate of mobile i
k

can be calculated as a function of the power
in X

1

from the following equation (obtained from (5.3)):

V (r̃
k
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k
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k
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All the variables in (PB) are now either known or can be expressed as a function
of the intermediary rate r of mobile i

1

in cell X
1

, recall that V (r) = ✏r

W+↵✏r

. As
a consequence, for a given ordering of the mobiles and a given vector (i

1

, ..., i
N

),
(PB) can be reduced to an optimization problem in R.

Step 3 of the algorithm checks all vectors (i
1

, .., i
N

). The number of vectors that
will be checked by the algorithm can be considerably restricted as follows. Sup-
pose the mobiles in each cell X

k

are ordered according to �P, with P 2 PA
X

1

and P
X

1

= b
i

s

j

s

, s  m. Consider the power assignment P0 2 PA
X

1

with
P 0
X

1

= b
i

s+1

j

s+1

. In each cell X
k

do the following. Under both power assign-
ments, assign R

max

to mobiles in increasing order of their index in �P until P
X

k

would be exceeded. In order to maintain feasibility, assign an intermediary rate
or r

min

to the mobile i for which r
i

= R
max

would render the solution infeasible.
Let i

k

(P) and i
k

(P0) be the minimal indices of the mobiles for which r 6= R
max

under P and P0, respectively. Since P
X

1

< P 0
X

1

, it must be that i
k

(P0) > i
k

(P).
By the same reasoning, i

k

(P0) � i
k

(P(r)) � i
k

(P), where P(r) 2 PA
X

1

such that
P
X

1

= P
X

1

(r). As a consequence, it must be that i
k

2 [i
k

(P), i
k

(P0)]. A detailed
description of Step 3 for the case P

X

1

= Pmax

X

1

for i = 2, ..., N is as follows.
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Algorithm 3 Step 3

Step 3.1: Order the mobiles in cell X
1

in increasing order of their pathloss
for i 2 X

1

do
Order the mobiles in cell X

1

in increasing order of their pl
i1

values, where
pl

i1

=
P

Y 2B\{X
1

} l
Y

i,X

1

Pmax

X

k

+ l�1

i,X

1

N i

0

.
end for
Step 3.2: Find the partition associated to X

1

for all cells k = 2, ..., N and all mobiles i, j 2 U
X

k

with lX1

i,X

k

6= lX1

j,X

k

do

b
ij

=
l

�1

j,X

k

N

j

0

�l

�1

i,X

k

N

i

0

+

P

Y 2B\{X
1

,X

k

}(l
Y

j,X

k

�l

Y

i,X

k

)P

Y

l

X

1

i,X

k

�l

X

1

j,X

k

.

end for
Order the sequence (b

ij

) in increasing order.
Consider the subsequence 0  b

i

1

j

1

 ...  b
i

m

j

m

< Pmax

X

1

.
Set b

i

m+1

j

m+1

= Pmax

X

1

.
Step 3.3: Rate and power assignment for all the orderings determined by the
partition associated to X

1

for s = 1, ...,m+ 1 do
Set P

X

1

= b
i

s

j

s

for k = 2, ..., N and each mobile i 2 X
k

do
Calculate the pathloss pl

ik

=
P

Y 2B\{X
k

,X

1

} l
Y

i,X

k

Pmax

X

k

+lX1

i,X

k

P
X

1

+l�1

i,X

k

N i

0

.
end for
Order the mobiles in cell X

k

in increasing order of their pl
ik

values.
if s 6= m+ 1 then
Find i

k

(P) and i
k

(P0),
where P = (b

i

s

j

s

, Pmax

X

2

, ..., Pmax

X

N

) and P0 = (b
i

s+1

j

s+1

, Pmax

X

2

, ..., Pmax

X

N

).
end if
for all (i

1

, ..., i
N

) 2 [i
1

(P), i
1

(P0)]⇥ ...⇥ [i
N

(P), i
N

(P0)] do
for all cells k = 1, ..., N do

Set r
i

= R
max

for all i with pl
ik

< pl
i

k

k

Set r
i

= r
min

for all i with pl
ik

> pl
i

k

k

end for
Solve the following optimization problem to find the intermediary rate in
cell 1

max{r+
N

X

k=2

r̃
k

(r) : P
X

1

(r) 2 [b
i

s

j

s

, b
i

s+1

j

s+1

], r̃
k

(r) 2 [r
min

, R
max

], r 2 [r
min

, R
max

]},

with P
X

1

(r) defined by (5.15) and r̃
k

(r) chosen as to satisfy (5.16).
for each mobile u

k

2 X
k

do
Set r

k

= r̃
k

(r)
end for

end for
end for
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Remark 5.4.1 (Complexity) The exact optimal power and rate assignment al-
gorithm obtains the optimal solution, but is computationally intensive due to the
following two reasons. First, Step 2 of the algorithm checks 2N �N � 1 partitions
in cells that get Pmax and cells that get R

max

. Second, in Step 3, for each cell X
which initially does not have maximum power, K

X

⇥|U
X

1

|⇥...⇥|U
X

N

| optimization
problems may have to be solved, where K

X

is the number of intervals in the par-
tition associated to [0, Pmax

X

]. Note that the complexity of Step 3 is a consequence
of the fact that we allow for an intermediary rate in the cell which does not have
maximal power. In the next section we propose a heuristic which overcomes the
computational shortcomings of Step 2 and Step 3 of the exact algorithm.

5.5 Heuristic algorithm for the optimal rate and power assign-
ment

The exact optimal power and rate assignment algorithm is computationally in-
tensive and can therefore be used for small networks, only. This section proposes
a heuristic power and rate assignment that also allows for optimization of large
networks. The key idea of the heuristic is to replace Step 2 of the exact algorithm,
where all partitions of B in 2 subsets are considered for assigning maximal power
and maximal rate, by a procedure in which maximal power and maximal rate is
assigned to cells/mobiles in a certain order. Based on the power assignment for the
case when all mobiles have r

min

, the heuristic first orders the cells in increasing
order of the ratio between the interference they cause and the number of mobiles
in the cell. Subsequently, the heuristic assigns Pmax to k of the cells in this order,
and R

max

to the remaining N � k cells (k = 1, ..., N). In this way, instead of
checking 2N � N � 1 combinations for assigning Pmax and R

max

, only N com-
binations will be checked. We chose to order the cells with respect to the powers
given by r

min

since this rate assignment will give a set of feasible powers.

Step 3 will be fastened by not assigning an intermediary rate in the cell which does
not have maximal power. If for example cell X is the cell in which initially the
power is not maximal, the power in cell X can be easily determined if it is known
which mobiles have maximal, respectively minimal rate. Subsequently, since all
the powers are known, the problem can be reduced to solving N one cell rate as-
signment problems with known powers that can be solved with Algorithm 2. Note
that due to the lack of the intermediate rate, in Step 3 there is no need to calculate
the partitions (b

ij

) associated to each cell and to solve the optimization problem
associated to each partition. Finally, the assignment with maximum throughput
among the assignments checked in Step 2 and Step 3 will be given as output. The
heuristic is described in more detail below.
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Step 1: Assign maximum rate to all mobiles i 2 U .
if There exists a feasible power allocation, then

Return as optimal solution r
i

= R
max

for all i 2 U .
else

Step 2: Assign minimum rate to all mobiles and calculate the corresponding
powers in each cell.
For each cell X calculate the interference caused by BTS X to other cells

relative to the number of mobiles in cell X: ⌘
X

=
P

Y 2B\{X} P

X

P

j2U

Y

l

j,Y

|U
X

| .
Order the BTSs B in increasing order of ⌘

X

.
for k = 1 to N do
Assign Pmax to the cells X

1

, ..., X
k

.
Assign R

max

to all the mobiles in the cells X
k+1

, ..., X
N

Calculate the powers of the BTSs X
k+1

, ..., X
N

Calculate the rates in the cells X
1

, ..., X
k

Calculate the throughput obtained.
end for
Step 3: For each BTS X assign maximum power to all cells in B \ {X}
Order the mobiles in X in increasing order of

P

Y 2B\{X} l
Y

i,X

Pmax

Y

+ l�1

i,X

N i

0

.
for i 2 U

X

(in the above order) do
Set r

j

= R
max

for j �
P

i and r
j

= r
min

for j �
P

i.
Find the power in cell X.
Find the rates in cells B \ {X} by solving N � 1 one cell rate assignment
problems with known powers.
Calculate the throughput.

end for
Choose the feasible rate and power assignment which gives maximum through-
put.

end if

In the next section we will evaluate the quality of the heuristic algorithm by
comparison with the exact algorithm with respect to the total throughput and
computation time.

5.6 Numerical results

This paper has provided an exact and a heuristic algorithm to optimize total
downlink throughput in a W-CDMA system. It is shown that in each cell the exact
solution allocates rates r

min

and R
max

to all mobiles except for a single mobile
that receives rate r with r

min

< r < R
max

. A large share of the computation time
of the exact algorithm is devoted to determining the mobile with intermediate rate
and the value of this intermediate rate. The heuristic ignores this intermediate
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rate. This section investigates the accuracy and the speed-up of the heuristic in
comparison with the exact solution. As the running time of the exact algorithm
is substantial, we carry out the comparison for small networks, only.

The numerical examples use the parameters of W-CDMA as provided in [HT07]:
the system chip rate W= 3.84 MHz, the orthogonality factor is 0.7, the path loss
exponent is 4, the energy per bit to interference ratio threshold is 5dB, the thermal
noise is -100 dBm/Hz, and the maximal transmit power for each BTS is Pmax =
20W. The downlink transmission rate is allowed to vary continuously between
r
min

= 32kbps and R
max

= 384kbps, i.e., for feasibility all mobiles required the
minimum rate of 32kbps. We consider 3 BTSs in a two dimensional flat area with
the distance between BTSs equal to 1.5km. In all experiments, a pre-specified
number of mobiles are generated in each cell and distributed according to a uniform
distribution.

The exact and heuristic algorithms are coded in Matlab R2011a 64-bit for Mac,
and ran on a MacBook Pro (Mac OS X Lion 10.7.1) with 2.4 GHz Intel Core 2
Duo processor and 4 GB 1067 MHz DDR3 memory.

5.6.1 Performance ratio and speed up factor

The performance ratio (ratio of throughput obtained by the exact algorithm and
the heuristic algorithm) and the speed up factor (the ratio of the running time
of the exact algorithm and the heuristic algorithm) characterize the performance
of the heuristic. We first investigate the influence of the load for a network of 3
connected cells for 9 combinations of light, medium and high cell load to obtain
insight in the load region where the heuristic performs good or bad. Then we
consider the case of medium load and study the influence of the number of cells.
Finally, we study the performance of the heuristic as function of the load in more
detail.

For a three cell network, we consider 9 cases of load for the cells. Each cell may
have low load (10 mobiles), medium load (30 mobiles), or high load (80 mobiles).
For each of these cases, we generate the specified number of mobiles homogeneously
distributed over the respective cells and run for each realization both the exact
and the heuristic algorithm. Table I gives the average speed up factor and the
average performance ratio with their standard deviations. From Table 5.1 we
observe that the speed up factor of the heuristic is considerable, especially in the
moderate load cases. For light load the speed up factor is low as most mobiles
receive R

max

, and similarly, for high load this factor is low as most mobiles receive
r
min

. The performance ratio of the heuristic is less than 7% indicating that only
a few mobiles receive a di↵erent rate under the heuristic.

As a graphical illustration of the optimal rate profile and its heuristic approxima-
tion, Figures 5.1, 5.2 show the rates for all mobiles under the exact solution and
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Table 5.1: Evaluation heuristic for 9 load cases (L = 10, M = 30, H = 80 mobiles).

Case speed up factor performance ratio
(L,L,L) 36.89 (±1.82) 1.0548 (±0.0025)
(L,L,M) 108.24 (±3.69) 1.0549 (±0.0017)
(L,L,H) 617.97 (±16.21) 1.0593 (±0.0019)
(M,M,L) 141.95 (±3.66) 1.0559 (±0.0013)
(M,M,M) 155.91 (±3.74) 1.0543 (±0.0012)
(M,M,H) 387.21 (±14.32) 1.0589 (±0.0012)
(H,H,L) 390.67 (±15.59) 1.0624 (±0.0015)
(H,H,M) 296.83 (±10.55) 1.0665 (±0.0050)
(H,H,H) 104.42 (±8.82) 1.0795 (±0.0529)

our heuristic approximation for two instances. Indeed, almost all mobiles receive
the same rate in both solutions. It is interesting to observe that the rate alloca-
tion is not monotone, that is, a mobile may receive rate R

max

even though mobiles
that are geographically closer to the BTS receive r

min

, see BTS 3 in Figure 5.2.
This is due to the ordering of mobiles according to �P that takes into account the
distance to the BTS serving the mobile and the other BTSs. As rates are assigned
according to �P to optimize throughput, this may result in a non geographically
monotone rate allocation.

We now consider the impact of the number of cells on the performance of our
heuristic. To this end, for moderate load (30 mobiles per cell) we consider a 7 cell
circular network. Starting with the 3 cell network of a central cell and 2 adjacent
cells in the circle around the central cell, we increase the network to the 7 cell
network where all 6 cells in the circle are added. Table 5.2 gives the results. We
observe a slight degradation of the performance of the heuristic.

Table 5.2: Evaluation heuristic for multiple cells under medium load

Case speed up factor performance ratio
3 cells 154.53 (±3.6) 1.05 (±0.012)
4 cells 135.10 (±2.6) 1.06 (±0.013)
5 cells 127.80 (±2.3) 1.06 (±0.014)
6 cells 124.50 (±1.9) 1.07 (±0.014)
7 cells 127.10 (±1.9) 1.07 (±0.014)
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We now consider the impact of increasing load. To this end, consider a 7 cell
network with cell 1 the central cell, and cells 2 – 7 in a ring around cell 1. We
increase the load from light (10 mobiles) to medium (30 mobiles). Table III gives
the results.

Table 5.3: Evaluation heuristic for 7 cells under increasing load

Case speed up factor performance ratio
(L,L,L,L,L,L,L) 27.6 (±0.7) 1.07 (±0.017)
(L,L,L,L,L,L,M) 47.6 (±0.9) 1.07 (±0.015)
(L,L,L,L,M,M,M) 71.4 (±1.3) 1.07 (±0.015)
(M,L,L,L,M,M,M) 85.2 (±1.5) 1.07 (±0.014)
(M,L,L,M,M,M,M) 110.5 (±1.9) 1.07 (±0.017)
(M,M,M,M,M,M,M) 129.1 (±2.0) 1.07 (±0.014)

In conclusion, for medium load the heuristic performs good, and for light and high
load the heuristic performs reasonably well. Note that the case of medium load
is more relevant in practice as this is the range in which CDMA systems often
operate.

5.6.2 The impact of cell load on the throughput

This section investigates the impact of the number of mobiles on the total through-
put. We consider again a pre-specified number of mobiles per cell.

First, for three cases in which the total number of mobiles is the same, we consider
the case where each cell contains [8 + n, 8+ n, 8+ n] mobiles, the case of two cells
with high load, where the cells contain [2 + n, 11 + n, 11 + n] mobiles, and the
case of a single cell with high load, where the cells contain [2 + n, 2 + n, 20 + n]
mobiles, where n, n = 0, 2, . . . , 44 is the additional number of mobiles in each cell.
Figure 5.3(a) depicts the average total throughput as function of the number of
additional mobiles, n.

For a di↵erent load combination, Figure 5.3(b) zooms in on the tail of the through-
put curve for the cases with [21+n, 21+n, 21+n] mobiles, [11+n, 26+n, 26+n],
and [11 + n, 11 + n, 41 + n] mobiles. We conclude, in agreement with intuition,
that inhomogeneity in the load reduces the throughput. Furthermore, as the load
increases the throughputs for di↵erent degrees of homogeneity tend to a common
limiting curve when more and more mobiles are assigned r

min

.
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5.6.3 The impact of maximum rate on the throughput

The minimum and maximum rates clearly a↵ect the total throughput. In the
optimal solution (except for a single mobile in each cell) all mobiles are assigned
either r

min

or R
max

. We now investigate the impact of R
max

on the total through-
put. Figure 5.4 considers three di↵erent values for R

max

in a 3 cell network under
homogeneous load with 8+n mobiles in each cell, n = 1, . . . , 62, for R

max

respect-
ively 64kbps, 144 kbps and 384kbps. In agreement with intuition, for low load
the impact of R

max

on system throughput is high. For increasing load, however,
this impact becomes smaller as more and more mobiles will be assigned r

min

.
Asymptotically, the impact of R

max

becomes negligible. From the perspective of
a network operator, this means that increasing R

max

while maintaining r
min

is
optimal with respect to maximal total throughput.
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5.7 Conclusions

In this chapter, we have presented a joint downlink rate and power assignment for
maximal total system throughput in a multi-cell CDMA network in an analytical
setting. First, we derived an explicit and exact characterization of the structure
of the optimal rate and power assignment: in a network with N base transmitter
stations (BTSs) either all mobiles have maximum rate, or in k BTSs all mobiles
have maximum rate and the other BTSs transmit at maximum power, or N � 1
BTSs transmit at maximum power. Second, we have given a characterization of the
optimal rate assignment in each cell. Third, we have presented an exact algorithm
for solving the rate and power assignment problem and a fast and accurate heuristic
algorithm for power and rate assignment to achieve maximal downlink throughput
in a multi-cell CDMA system. Via the numerical examples, we have shown that the
heuristic algorithm is fast and close to exact. We have investigated the distribution
of mobiles with high and low rate over the cells under various load scenarios and
the dependence of throughput on cell load and the maximum rate parameter. Our
results reveal that throughput maximization may be achieved by increasing R

max

,
but that at high load throughput reaches an asymptotic bound determined by the
value of r

min

.
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Summary

This thesis presents a full analytical characterization of the optimal joint downlink
rate and power assignment for maximal total system throughput in a multi cell
CDMA network.

In Chapter 2, we analyze the feasibility of downlink power assignment in a linear
model of two CDMA cell, under the assumption that all downlink users in the
system receive the same rate. We have obtained an explicit decomposition of
system and user characteristics. Although the obtained relation is non-linear, it
basically provides an e↵ective interference characterisation of downlink feasibility
for a fast evaluation of outage and blocking probabilities, and enable a quick
evaluation of feasibility. We have numerically investigated blocking probabilities
and have found for the downlink that it is best to allocate all calls to a single cell.
Moreover, this chapter has also provided a model for determining an optimal cell
border in CDMA networks. We have combined downlink and uplink feasibility
model to determine cell borders for which the system throughput, expressed in
terms of downlink rates, is maximized.

In Chapter 3, we have considered the two cell linear model where the coverage
area was divided into small segments. Previously, we have assumed that all users
in the cell are using the same rate, regardless their location. In this chapter, we
have di↵erentiated rate allocation based on their location. We have assumed that
users in the same segment receive the same rate which is chosen from a discrete
set. The goal is to assign rates to users in each segment, such that the utility of
the system is maximized. In this chapter, we design an algorithm that is actually
a fully polynomial time approximation scheme (FPTAS) for the rate optimization
problem. The model in this chapter indicates that the optimal downlink rate
allocation can be obtained in a distributed way: the allocation in each cell can be
optimized independently, interference being incorporated in a single parameter t.
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In Chapter 4, we have analyzed the two cell model under the assumption that the
rates are continuous and may be chosen from a given interval. Moreover, we also
taken into account the downlink limited transmit power. First, we developed a
model for the joint rate and power allocation problem. Despite its non-convexity,
the optimal solution in this chapter can be very well characterized. Second, we
analyzed several properties of the optimal solutions. We have proved that the
optimal rate allocations are monotonic as a function of the path loss. Based
on this property, we have showed that in the optimal rate allocation, in each
cell, only three rates are given to users. Finally, we have proposed a polynomial
time algorithm in the number of users that solves optimally the joint rate and
power allocation problem. The results can be extended to non-decreasing utility
functions.

In Chapter 5, we have extended the model of the previous chapter to a multi-cell
setting. We have presented a full analytical characterization of the optimal joint
downlink rate and power assignment for maximal total system throughput in a
multi cell CDMA network. Moreover, the cell model is a planar model. Chapter 5
has three main contributions. First, we provide an explicit and exact characteriz-
ation of the structure of the optimal rate and power assignment. Second, we give
a characterization of the optimal rate assignment in each cell. Third, based on
these results, we give an exact algorithm for solving the rate and power assignment
problem and a fast and accurate heuristic algorithm for power and rate assignment
to achieve maximal downlink throughput in a multi cell CDMA system.

Irwan Endrayanto Aluicius
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