
JTorX:

 Exploring

 Model-Based

 Testing

 Belinfante
 Ede
 Frits
Axel

JTorX
: E

xploring M
odel-B

ased Testing
A

xel B
elinfante

INVITATION

to the public defense
of my PhD dissertation

JTorX:

Exploring

Model-Based

Testing

Thursday,
September 18th, 2014,

at 14:45
building De Waaier, room 4,

University of Twente

Axel Belinfante
Axel.Belinfante@gmail.com

Directly before the defense,
at 14:30, I will give a brief

introduction to the subject of
my dissertation.

The defense will be followed
by a reception in the same

building.

JTorX: Exploring Model-Based Testing

Axel Belinfante

Graduation committee:

Chairman: Prof. dr. Peter M.G. Apers
Promotors: Prof. dr. Jaco C. van de Pol

Prof. dr. ir. Arend Rensink

Members:
Prof. dr. ir. Aiko Pras Universiteit Twente
Prof. dr. ir. Roel J. Wieringa Universiteit Twente
Prof. dr. Alexander Pretschner TU München
dr. Thierry Jéron IRISA / INRIA Rennes
dr. Jan G. Tretmans Radboud Universiteit Nijmegen

Prof. dr. Ed Brinksma Universiteit Twente (acting chairman)

CTIT Ph.D. Thesis Series No. 14-319
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217 – 7500 AE Enschede, NL

IPA Dissertation Series No. 2014-09
The work in this thesis has be carried out under
the auspices of the research school IPA (Institute
for Programming research and Algorithmics).

ISBN 978-90-365-3707-0
ISSN 1381-3617 (CTIT Ph.D. Thesis Series No. 14-319)
DOI 10.3990/1.9789036537070
URL http://dx.doi.org/10.3990/1.9789036537070

Cover picture: the Lego Mindstorms ball sorter, developed to make
model-based testing with JTorX tangible. This sorter was designed and
constructed by Arjan Snippe, and then enhanced by Mathijs van der Werff.
Spine center picture: a home-built revolution [Rev] kite;
spine edge pictures: home-built Vluis [Buu95] kites.

Edited with Wily, Acme SAC, and Plan9port acme (and occasionally vi).
Typeset with LATEX
Printed by Ipskamp Drukkers Enschede

Copyright c© 2014 Axel Belinfante, Borne, The Netherlands

http://dx.doi.org/10.3990/1.9789036537070

JTORX: EXPLORING MODEL-BASED TESTING

PROEFONTWERP

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 18 september 2014 om 14:45 uur

door

Axel Frits Ede Belinfante

geboren op 4 juli 1964
te Alkmaar

This dissertation has been approved by:

Prof. dr. Jaco van de Pol (promotor)
Prof. dr. ir. Arend Rensink (promotor)

Aan Sandra, Esther en Ede

Acknowledgements

Many people were, in some way or another, helpful in making this thesis happen,
you probably know who you are, and I would like to thank all of you! I will
try to mention your names, below, but if your name by accident doesn’t appear
here—which might easily happen, given that the work described in this thesis
took place over a significant number of years— please don’t feel left out, your
help is appreciated nevertheless! :-)

To start, I would like to thank testman Jan for inviting me, so many years
ago, to do some work on a prototype testing tool—in the course of the Côte-
de-Resyste project, this prototype eventually evolved to what became known as
TorX. Then, of course, it is time to thank Ed for helping me to bite the bullet
and finally start working on a thesis... neither of us realizing that it would take
so many years to complete it. Having Ed, the initial supervisor of this thesis, as
chairman of the defense ceremony makes it very special for me: now the words
“Mister Rector”, typically spoken to a “replacement”, will actually address the
R.M. (in the words of Rom) of this university! Next, I would like to thank Jaco
for allowing me to continue work on the thesis, and, in particular, in helping
me to find a way to describe my thoughts about the symbolic part. Finally,
I would like to thank Arend for his help in deciding on the overall structure
of the thesis, fiddling with the formal notation, and in helping to polish my
writing, and making it actually happen. I also want to thank the members of
the committee, Aiko, Roel, and Alexander, Jan and Thierry in particular, for
their (extensive) feedback. Thank you all: without you, this thesis would never
have materialized.

Next, in order of appearance, more or less...
I would like to thank all members of the Côte-de-Resyste project: Loe,

Sjouke, Nicolae, Lex, Ron, Erik, Arjan, Ed, Jan, Henk, and of course my room
mates René and Jan. Thank you, other room mates: Henk, Han, Laura, André,
Vincent, Jeroen, Mohsin, Pedro, Andreas, Joost-Pieter, Theo.

I would like to thank the people at Inria/Irisa Rennes that made our “van
Gogh” visits to Rennes so enjoyable, in particular Thierry, Vlad, Claude, Solofo,
Lydie, Séverine, and César.

Thank you Albert, for some early adapter-related discussions.
Thank you, members of the Plan 9 community, for inspiration and nice

meetings. A special thank you to Sape, and to those of you who came to the
Twente9con meeting.

Thank you, Jan-Friso and Muck for your super-fast creation of the lps2torx

vii

viii ACKNOWLEDGEMENTS

component in the mCRL2 toolset during a one-day visit to Twente, and Jeroen
for extending it with functionality to measure coverage of lps summands. Thank
you, Stefan, for your help creating the lps2torx component for LTSmin.

Thank you, Machiel and Wouter, for your help with the “Oosterschelde
Storm Surge Barrier” case (and, Machiel, for all the rest).

Thank you, all participants of the GI/Dagstuhl Research Seminar “Model-
based Testing of Reactive Systems”, and in particular the co-authors of our
chapter: Lars and Christian.

Thank you, “testing group” members: Marielle, Machiel, Laura, Henrik.
Thank you Lars, for developing STSimulator; Henrik, for developing ta2torx;

Sabrina, for the discussions and brainstorming about data and time. Thank you
David, for your lazy-otf work, and enhancements of STSimulator and JTorX.

Thank you, Jeroen, voor Spex. Thank you, Marten, for your great internship
at Neopost, as one of the first serious users of JTorX, and Marielle, for you
contributions to the (journal) paper that we wrote about it—I learned a lot
in the process. Thank you Thijs and Jeroen, for using JTorX at ProRail and
Panalytical, and providing feedback about it. To all other students—I am not
going to name you here individually: thank you!

Thank you Arjan, for developing our nice Lego ball-sorter demo, and Mathijs,
for improving its robustness, and making it such that we can test “forever”.
Thank you Mark, for the rivercrossing implementation, and your other contri-
butions to the testing techniques lab class (and for being one of the first users of
puptol; regarding puptol thanks also go to Freark, Dennis and Stefan). Thank
you, Boni, for your kind permission to use your mathcats.com images for the
rivercrossing visualisation/animation. Thank you, Andrew, for making your
nice Lego elevator design available on the web: combined with Jaco’s lift model
it gave us yet another nice JTorX demo.

Thank you, Tangram project members—I have nice memories of a cooking
event! Thank you, Quasimodo project members, for the various nice and inter-
esting meetings. Thank you, Marcel, Frits and Bert, Jan and Feng, for your help
with the “Myrianed Wireless Sensor Node” case. Thank you, Kai and Hernan,
for the opportunity to try the STS support of JTorX on your case study.

Thank you all past and present members of the FMT (and TIOS, and IPS)—
in particular those of you with whom I worked together or otherwise spent time
with... I’m not going to name you all, but will of course make an exception for
Joke and Jeanette.

A special thanks to those kite-flyers and kite-builders that have made the last
year unforgettable, you know who you are!
Jen bela okazo por saluti amikojn kaj amikinojn en la tuta mondo!

Tenslotte wil ik mijn ouders bedanken, die me altijd vrij gelaten hebben
om mijn eigen weg te kiezen—ze zouden zo trots zijn geweest. Als afsluiting:
Sandra, Esther en Ede, dank voor jullie geduld gedurende het hele traject, en
voor jullie rol in mijn leven, die me heeft doen realiseren wat ècht belangrijk
voor me is.

Abstract

The overall goal of the work described in this thesis is: “To design a flexible
tool for state-of-the-art model-based derivation and automatic application of
black-box tests for reactive systems, usable both for education and outside an
academic context.” From this goal, we derive functional and non-functional
design requirements. The core of the thesis is a discussion of the design, in
which we show how the functional requirements are fulfilled. In addition, we
provide evidence to validate the non-functional requirements, in the form of case
studies and responses to a tool user questionnaire.

We describe the overall architecture of our tool, and discuss three usage scen-
arios which are necessary to fulfill the functional requirements: random on-line
testing, guided on-line testing, and off-line test derivation and execution. With
on-line testing, test derivation and test execution takes place in an integrated
manner: a next test step is only derived when it is necessary for execution.
With random testing, during test derivation a random walk through the model
is done. With guided testing, during test derivation additional (guidance) in-
formation is used, to guide the derivation through specific paths in the model.
With off-line testing, test derivation and test execution take place as separate
activities.

In our architecture we identify two major components: a test derivation en-
gine, which synthesizes test primitives from a given model and from optional
test guidance information, and a test execution engine, which contains the func-
tionality to connect the test tool to the system under test. We refer to this latter
functionality as the “adapter”. In the description of the test derivation engine,
we look at the same three usage scenarios, and we discuss support for visu-
alization, and for dealing with divergence in the model. In the description of
the test execution engine, we discuss three example adapter instances, and then
generalise this to a general adapter design. We conclude with a description of
extensions to deal with symbolic treatment of data and time.

ix

Contents

Acknowledgements vii

Abstract ix

Contents xi

List of Figures xvii

List of Tables xxi

List of Algorithms xxiii

List of Listings xxv

1 Introduction 1
1.1 Concepts . 1
1.2 Design Choices and Design Goal 9

1.2.1 Design Choices and Criteria 9
1.2.2 Design Goal . 11
1.2.3 Validation . 13

1.3 Overview . 17
1.4 Synopsis . 18

2 Theoretical Foundation 21
2.1 Formal Framework for Conformance Testing 23
2.2 Instantiating the Formal Framework 27

2.2.1 Specifications . 27
2.2.2 Implementations and Implementation Models 32
2.2.3 Tests . 34
2.2.4 Test Execution, Observations and Verdicts 35
2.2.5 Implementation Relation 36
2.2.6 Test Derivation . 38
2.2.7 Overview . 42

2.3 Formal Framework for Observation Objectives 43
2.4 Instantiating the Formal Framework for Observation Objectives . 45

2.4.1 Reveal Relations . 45

xi

xii CONTENTS

2.4.2 Test generation . 47
2.4.3 Including hit and miss verdicts into test cases 48
2.4.4 Conclusion . 52

2.5 Summary . 52

3 Architecture of TorX 55
3.1 Starting Point . 56
3.2 Link with Theory . 56
3.3 Running Example . 58
3.4 Random On-Line Testing . 61

3.4.1 Components . 61
3.4.2 Interfaces . 62
3.4.3 Manager Algorithm . 65
3.4.4 Examples . 67
3.4.5 Concluding Remarks and Observations 71

3.5 Guided On-Line Testing . 72
3.5.1 Components . 74
3.5.2 Interfaces . 76
3.5.3 Manager Algorithm . 79
3.5.4 Examples . 80
3.5.5 Concluding Remarks . 86

3.6 Off-Line Test Derivation and Execution 87
3.6.1 Components . 88
3.6.2 Interfaces . 88
3.6.3 Exhaustive Off-Line Derivation 89
3.6.4 Random Off-Line Derivation 92
3.6.5 Guided Off-Line Derivation 93
3.6.6 Execution of Derived Test Cases 96
3.6.7 Execution of Test Suites 98

3.7 Summary . 99

4 Test Derivation Engine 105
4.1 Dealing with τ -cycles . 106

4.1.1 Example: Self-kicking Coffee Machine 108
4.1.2 Avoiding looping on τ -cycles 109
4.1.3 Adding δ-self-loops to divergent states 109
4.1.4 Adding δ-self-loops to copies of divergent states 110

4.2 DerivationEngine for Random Testing 111
4.2.1 Components . 111
4.2.2 Interfaces . 113
4.2.3 Primer algorithm . 114
4.2.4 Explorer Instances . 122
4.2.5 Visualisation . 127
4.2.6 Algorithm for uioco . 129
4.2.7 Interpreting divergent states as quiescent 130

4.3 DerivationEngine for Guided Testing 138
4.3.1 Components . 138

CONTENTS xiii

4.3.2 Interfaces . 139
4.3.3 Combinator algorithm . 141

4.4 DerivationEngine to access Off-Line Test Cases 145
4.4.1 Components . 146
4.4.2 Interfaces . 146
4.4.3 Exec Primer algorithm . 147

4.5 Summary . 150

5 Test Execution Engine 151
5.1 Adapter Examples . 155

5.1.1 Stdin/out Adapter for Toy Implementations 156
5.1.2 UDP Adapter for a Conference Protocol Entity 159
5.1.3 TCP Adapter for a Software Bus Server 166

5.2 Adapter Design . 170
5.2.1 High-level architecture overview 170
5.2.2 Initial decomposition step 171
5.2.3 Refined decomposition . 171
5.2.4 Detailed decomposition 173

5.3 Summary and Related Work . 176

6 Symbolic Extensions 179
6.1 Symbolic Transition System . 181

6.1.1 Preliminaries . 181
6.1.2 Syntax and semantics of Symbolic Transition System . . . 183

6.2 Motivating Examples . 184
6.2.1 Music Player . 185
6.2.2 Two-slot Buffer . 187

6.3 Parameterised Transition System 188
6.3.1 APTS Syntax and Semantics 189
6.3.2 Example: APTS of two-slot buffer 191

6.4 Derivation of APTS from STS . 192
6.4.1 Mapping STS to APTS 192
6.4.2 Example: Music Player 195

6.5 Testing with an alternating PTS 198
6.5.1 Computation of potential behaviour 199
6.5.2 Interaction with the SUT 201
6.5.3 Updating the tester state 202

6.6 Extension of Architecture . 202
6.6.1 Components . 202
6.6.2 Interfaces . 203
6.6.3 Extension of Primer algorithm 206
6.6.4 Extension of Manager Algorithm 208
6.6.5 Example . 209
6.6.6 Implementation Notes . 210

6.7 Timed Testing with a PTS . 211
6.8 Summary . 213

xiv CONTENTS

7 Model-based specification, implementation and testing of a soft-
ware bus 215
7.1 Introduction . 215

7.1.1 First phase: Developing the XBus 216
7.1.2 Second phase: Analysis 217
7.1.3 Our findings . 219

7.2 Background . 219
7.2.1 The XBus and its context 219
7.2.2 The specification language mCRL2 220

7.3 Development of the XBus and post case-study analysis 221
7.3.1 XBus requirements . 221
7.3.2 XBus design . 222
7.3.3 Implementation . 225
7.3.4 Unit testing . 226
7.3.5 Model-based integration testing 226
7.3.6 Acceptance testing . 228

7.4 Modelling & Model Checking of the XBus 228
7.4.1 The model mdev . 228
7.4.2 Model checking & model transformation 230

7.5 Model-Based Testing of the XBus 233
7.5.1 Model-based integration testing in the first phase 233
7.5.2 Model-based testing in the second phase 236
7.5.3 Model coverage . 238
7.5.4 Code coverage . 241
7.5.5 Distribution of coverage 242
7.5.6 Testing time . 243

7.6 Findings and Lessons Learned . 247
7.6.1 First phase . 247
7.6.2 Second phase . 248

7.7 Conclusions and Future Research 249

8 Evidence 251
8.1 Case Studies . 251

8.1.1 Conference protocol entity 251
8.1.2 Easylink . 252
8.1.3 Highway Tolling System 252
8.1.4 Storm Surge Barrier . 253
8.1.5 Myrianed Protocol Entity 254
8.1.6 Rivercrossing puzzle . 254

8.2 Independent Use . 255
8.3 Use in Education . 255

8.3.1 Use in Courses . 256
8.3.2 Use in Assignments and Internships 256

8.4 Questionnaire . 257
8.4.1 Req. 12: it should be easy to deploy the tool (install and

use) . 257

CONTENTS xv

8.4.2 Req. 13: it should be easy to create a simple model (like
an automaton) for use with the tool 258

8.4.3 Req. 14: the tool should provide insight in the theory and
algorithms that it implements, e.g. by visualisation 258

8.4.4 Req. 16: it should be simple to connect the tool to toy
implementations . 259

8.4.5 Req. 24: it should be easy to connect the tool to the
system under test . 259

8.5 Evaluation . 260
8.5.1 Functional requirements 260
8.5.2 Non-functional requirements w.r.t. Development 263
8.5.3 Non-functional requirements w.r.t. Use 265
8.5.4 Summary . 267

9 Conclusion 269
9.1 Conclusions . 269
9.2 Related Work . 270
9.3 Possible Extensions . 273
9.4 Availability . 274

A Implementations 275
A.1 TorX . 275
A.2 JTorX . 276
A.3 Synopsis . 277

B Case Studies 279
B.1 Conference Protocol Entity . 279
B.2 EasyLink . 281
B.3 Highway Tolling System Payment Box 283
B.4 Oosterschelde Storm Surge Barrier Emergency Closing System . 285
B.5 Myrianed Protocol Entity . 287
B.6 Rivercrossing Puzzle Program . 289

C Questionnaire 291

Publications from the Author 297

References 301

Index 311

Samenvatting 315

List of Figures

1.1 Tester with Implementation Under Test and Verdict 2

1.2 V-model, development model . 3

1.3 Off-line Testing, with Implementation Under Test and Verdict . . 4

1.4 Test Architecture with test tool, SUT, test context and IUT. . . 8

2.1 Schematic views of model-based testing with/out test purpose . . 22

2.2 Relating implementation with specification, in physical resp. formal
world . 23

2.3 Correct and incorrect implementations pass and fail tests 25

2.4 Symmetric communication between system and environment . . 30

2.5 Asymmetric communication between system and environment . . 30

2.6 Relating implementation with observation objective, in physical
resp. formal world . 43

2.7 Practical approach towards combining exhibition and conformance 45

3.1 Abstract view of TorX . 56

3.2 Schematic view of on-line model-based testing 57

3.3 Schematic view of off-line model-based testing 57

3.4 Quirky Coffee Machine . 59

3.5 Refund-only Machine . 59

3.6 Kick-insensitive Machine . 59

3.7 Sequence diagrams of run with the refund-only implementation . 68

3.8 Transitions covered in quirky coffee machine model, in run with
refund-only implementation . 69

3.9 Sequence diagrams of run with the kick-insensitive implementation 70

3.10 Transitions covered in quirky coffee machine model, in run with
kick-insensitive implementation 71

3.11 Observation objectives to obtain coffee resp. to “hit” the error in
the kick-insensitive implementation 73

3.12 Sequence diagrams of guided run with the kick-insensitive machine 83

3.13 Sequence diagrams of guided run with (correct) quirky coffee ma-
chine . 84

3.14 Sequence diagrams of guided run on kick-insensitive machine
resp. (correct) quirky coffee machine 85

xvii

xviii LIST OF FIGURES

4.1 Self-kicking Coffee Machine . 108
4.2 Illustrating “avoid-looping” approach (Self-kicking Coffee Machine)109
4.3 Addition of self-loops to divergent states resp. copies of divergent

states (Self-kicking Coffee Machine) 110
4.4 Decomposition of DerivationEngine (non-guided) 112
4.5 Asymmetric Machine, to illustrate the pseudo-state identity issue 121
4.6 GraphML resp. our visualisation (quirky coffee machine) 123
4.7 Animation of Quirky Coffee Machine specification visualisation . 127
4.8 Animation of Quirky Coffee Machine suspension automaton (SA),

resp. traversed SA states/transitions 128
4.9 Decomposition of DerivationEngine extended to handle guidance. 139
4.10 Decomposition of DerivationEngine to access test case 145

5.1 Position of the Adapter in the high-level architecture 151
5.2 Test architecture for toy implementation 156
5.3 Adapter for toy implementations. 157
5.4 Test architecture for conference protocol CPE 160
5.5 Overview of conference protocol adapter 162
5.6 Stimulus handler of conference protocol adapter 163
5.7 Observation handler of conference protocol adapter 164
5.8 Test architecture for software bus server 167
5.9 Software bus adapter . 168
5.10 Figure 5.1 refined to show the Adapter interface. 170
5.11 Initial decomposition of Adapter. 171
5.12 Refined decomposition of Adapter 172
5.13 Detailed decomposition of Adapter 174

6.1 STS model of music player . 185
6.2 Labelled transition system of the music player (nsong = 3) . . . 186
6.3 STS model of two-slot buffer . 187
6.4 Labelled transition system of the two-slot buffer (initial part) . . 188
6.5 APTS well-definedness consistency constraints 1 (a) and 2 (b) . 190
6.6 APTS for the two-slot buffer of Figures 6.3 and 6.4 (initial part) 192
6.7 Partial APTS of the music player 196
6.8 Our architecture for on-line model-based testing of Fig. 3.2 and

Fig. 4.4, extended with Instantiator 203
6.9 Sequence diagrams of run with music player 210

7.1 V-model used for development of XBus 221
7.2 High level architecture of the XBus system 224
7.3 Communication between clients and XBus 225
7.4 Testing XBus with JTorX playing the role of 3 clients. 226
7.5 Models discussed in this chapter, and how they are related 231
7.6 Test Architecture used in the first phase 234
7.7 Screen shot of the configuration pane of JTorX to test XBus . . . 235
7.8 Test architecture used in the second phase 237
7.9 Model coverage obtained in test runs of 250,000 test steps. 239

LIST OF FIGURES xix

7.10 Model coverage obtained in test runs of 10,000 test steps. 240
7.11 Code coverage (on i2) obtained in test runs of 10,000 test steps . 240

7.12 LPS summand hit counts of mreq,ie
opt in run of 250,000 test steps . 241

7.13 Code branch hit counts with mreq,ie
opt in run of 10,000 test steps . . 242

7.14 Time between test steps: morder
dev , mopt (both using lps2torxmCRL2) . 244

7.15 Time between test steps: mreq,ie
opt (lps2torxmCRL2), mopt (lps2torxLTSmin)245

7.16 Distribution of time spent per step in runs of 250,000 test steps . 246

8.1 Introduction of Selector in our decomposition of Fig. 4.4. 253

List of Tables

1.1 Functional requirements . 17
1.2 Non-functional requirements w.r.t. development of the tool . . . 18
1.3 Non-functional requirements w.r.t. use of the tool 18

2.1 Ingredients of formal testing framework 26
2.2 Instantiation of the formal testing framework 42
2.3 Ingredients of formal framework extended with exhibition testing 46
2.4 Instantiation of framework for conformance and exhibition testing 53

3.1 Overview of TorX configurations discussed 55
3.2 Signature of Adapter interface functions. 62
3.3 Signature of DerivationEngine interface functions (non-guided) . . 64
3.4 Signature of pseudo-state type (non-guided) 64
3.5 Signature of DerivationEngine interface functions (incl. guidance) 76
3.6 Signature of pseudo-state type (incl. guidance) 76
3.7 Pseudo-state type (incl. guidance) 100
3.8 DerivationEngine Interface signature 100
3.9 DerivationEngine Interface function definitions (non-guided) . . . 100
3.10 DerivationEngine Interface function definitions (incl. guidance) . . 101
3.11 DerivationEngine Interface function definitions to access test case 102
3.12 Adapter Interface functions. 103

4.1 Overview of DerivationEngine configurations discussed 105
4.2 Signature of Explorer interface functions. 113
4.3 Signature of IO-Oracle interface function. 114
4.4 Pseudo-state type (non-guided) 115
4.5 Implementation of the DerivationEngine interface (non-guided) . . 118
4.6 Tool(set)s, and modelling languages, accessible via torx-explorer 124
4.7 Illustrating divergence detection (Algo. 4.3), unfolding initial state

of self-kicking coffee machine . 135
4.8 Illustrating divergence detection, unfolding state reached by ?coin 137
4.9 Signature of Explorer interface functions, extended for guidance . 139
4.10 Signature of IO-Oracle interface function, extended for guidance . 139
4.11 Pseudo-state type for guidance 141
4.12 Implementation of DerivationEngine interface in Combinator . . . 144

xxi

xxii LIST OF TABLES

4.13 Signature of Explorer interface functions, for test case access . . . 146
4.14 Signature of IO-Oracle interface function, for test case access . . 146
4.15 Pseudo-state type for test case access 147
4.16 Implementation of the DerivationEngine interface in exec Primer . 149

5.1 Overview of the examples discussed 155

6.1 Signature of Instantiator interface functions. 204
6.2 Signature of PTS-based Explorer interface functions. 204
6.3 Signature of PTS-based Primer functions 205
6.4 Overview of symbolic Explorer implementation instances. 211

7.1 XBus requirements obtained in the first phase 222
7.2 Additional XBus requirements obtained in the second phase . . . 222
7.3 Overview of XBus protocol messages. 223
7.4 Sizes of state spaces of our models 232
7.5 Wall-clock time for runs on i2, with max. code coverage 243
7.6 Estimation of the time spent in the first phase 248

8.1 Overview of selected case studies 252
8.2 DerivationEngine Interface, extended for delegation of choice of

input . 253
8.3 Fulfilment of design requirements 268

A.1 Overview of functionality of TorX and JTorX 278

C.1 Q. & A. installation, respondent background, GUI/CLI, visual-
isation . 292

C.2 Q. & A. modelling and test purposes 293
C.3 Q. & A. connecting JTorX to IUT 294
C.4 Q. & A. likes and dislikes . 295
C.5 Q. & A. suggested improvements and other remarks 296

List of Algorithms

3.1 Random On-Line Test Derivation and Execution 66
3.2 On-Line Test Derivation and Execution Algorithm for random and

guided on-line testing . 79
3.3 Off-Line Exhaustive Test Derivation 90
3.4 single-step-extension-set . 91
3.5 obs-step-extension . 91
3.6 Off-Line Random Test Derivation 93
3.7 stim-step-extension . 93
3.8 Guided Off-Line Exhaustive Test Derivation 94
3.9 guided-single-step-extension-set . 95
3.10 guided-obs-step-extension . 95
3.11 Guided Off-Line Random Test Derivation 97
3.12 Off-Line Execution of a Given Test Suite 99

4.1 P.unfold() for ioco Primer . 117
4.2 P.unfold() for uioco Primer — changes w.r.t. Algo. 4.1 131
4.3 P.unfold() for τ -loop detection — changes w.r.t. Algo. 4.1 132
4.4 P.unfold() for making copies of divergent states — changes w.r.t.

Algo. 4.3 . 133
4.5 P.unfold() for traces Primer — changes w.r.t. Algo. 4.1 140
4.6 P.n(l) for Combinator . 142
4.7 P.unfold() for Combinator . 143
4.8 P.unfold() for exec Primer . 148

6.1 P.unfold() for PTS Primer— changes w.r.t. Algo 4.1 207
6.2 P.n(l) for PTS Primer . 208
6.3 Random On-Line Testing with PTS — changes w.r.t. Algo. 3.2 . . 209

xxiii

List of Listings

1 Definition of XBus handling of Connreq message in mCRL2. . . . 229
2 MCL formulas—input for model checker evaluator4—used to verify

Requirement 2. 233

xxv

1

Chapter 1

Introduction

The overall goal of the work described in this thesis can be summarised as
follows: “To design a flexible tool for state-of-the-art model-based derivation
and automatic application of black-box tests for reactive systems, usable both
for education and outside an academic context.” We refer to our test tool
design as TorX1. The design that we describe in this thesis encompasses work
on several test tool implementations, in particular TorX [BFdV+99, TB03a]
and JTorX [Bel10]. TorX was our first implementation, in which we shaped our
design. It was developed for a large part during a research project called Côte
de Resyste [TB03b]. JTorX, developed several years later, is a reimplementation
of TorX, created with ease of deployment in mind. We give more information
about TorX and JTorX in Appendix A.

In this introduction, we provide a bridge between the high-level summary
above and the remainder of this thesis. We start by introducing the concepts
mentioned in the above summary. We then discuss the functional and non-
functional requirements that we “impose” on the tool, and discuss how we valid-
ate them. For the functional requirements, this validation consists of indicating
where, in the remainder of this thesis, they are introduced into the design of
the tool. For the non-functional requirements, we discuss how to show that our
tool satisfies them. We end this chapter with an outline of the remainder of this
thesis.

1.1 Concepts

We introduce the concepts of the summary above one by one, where we first
look at concepts that have to do with the functionality of the tool. We start
with a discussion of “reactive systems”, followed by a general introduction to
testing, and a discussion of various kinds of testing, of which “black box” is
one. We then discuss testing activities, where we explain “test derivation” and
“test application”; we discuss test automation; and we give an introduction to

1The acronym TorX– Testing Open arCHitecture – was chosen during the Côte de Resyste
project [TB03b] in which the tool TorX was originally developed.

1

21 CHAPTER 1. INTRODUCTION

“model-based” testing, and explain what we mean by “state-of-the-art” in that
context.

Reactive systems The systems that we consider for testing are so-called
reactive systems. For this kind of systems, the system behaviour is largely driven
by the behaviour of the environment, i.e. the system behaviour is a reaction to
the behaviour of the environment. Reactive systems are (almost by definition)
open systems: systems that depend on an environment (which would be a user
or another part of a larger system) that interacts with them. In contrast, a
closed system, like a system that prepares a batch of monthly salary statements
from an employer’s employee database, is typically not reactive—such a system
just transforms input data into output data. Many (most?) systems that we use
everyday in daily life are reactive. A typical example of a reactive system is the
plain old telephone system. We pick up the handset of a phone and we hear a
dialling tone. We start dialling and the dialling tone stops. Once we completed
dialling a number we hear an indication of the dial ed phone ringing, or tones
that tell us that the dial ed number is busy or is not in use. This example
nicely shows how a reactive system reacts to the actions of the user (picking
up the handset, dialling a number) and how the user can observe the reaction
of the system to these actions (the various tones heard, and the silence). For
testing the behaviour of such system—the kind of testing that we focus on in
this thesis—we can build on this interaction: We provide stimuli to the system
(we pick up the handset) we observe what the system does (we listen whether
we hear a dialling tone), and then we compare the observed system behaviour
(dialling tone or silence or something else) to the expected behaviour (dialling
tone).

Testing Testing is the activity of assessing some quality of a system—our fo-
cus is on reactive systems—by means of experimentation, i.e. stimuli are applied
to the system, and its responses to these stimuli are observed, and evaluated,
which typically leads to a so-called verdict (discussed below). The system that
we want to test is called the Implementation Under Test (abbreviated as IUT).
In Figure 1.1 we show testing in a very abstract way.

Tester IUT
stimuli

observations

verdict

Figure 1.1: Tester with Implementation Under Test and Verdict

Testing is an important means to ascertain the quality of systems, by at-
tempting to find errors in them (and thus allowing these to be repaired), as
well as to increase confidence in the quality of systems, by showing that im-
portant functionality works as expected. As the V-model [Roo86] shows, during

1.1. CONCEPTS 13

3. Implementation 4. Unit Testing

2. XBus Design
a. Developing architecture (class diagram)
b. Specifying business logic (formal model)

1. XBus Requirements

5. Integration Testing
(model-based)

6. Acceptance Testing

Figure 1.2: The V-model used for development of XBus, see Chapter 8.

the construction of systems, considerable effort is spent on testing on many
levels—from the unit test of small parts via integration tests when components
are combined till acceptance tests on the entire system when it is handed over
to a client. When parts of a system are revised, regression tests help to ensure
that functionality untouched by the revision continues working as expected. In
Fig. 1.2 we show the V-model used in the development of a software bus called
the XBus; we discuss development and testing of the XBus in Chapter 8.

Of course, testing is not the sole activity that is decisive when it comes
to the quality of systems. Testing points out errors in the implementation
of a system, but it does not build the system. And though it may help to
improve the confidence in the quality of systems, testing can only demonstrate
the presence of errors, not guarantee their absence. During the construction of a
system, other activities help to improve its quality. Validation of the design, for
example using techniques like model-checking, helps to catch design errors before
the system is implemented. During implementation traditional techniques, like
code reviewing of central parts of the code, remain useful. New techniques like
model-checking the implementation of a system itself (instead of only a model
of it), may in a nearby future be an important complement to testing.

All techniques available to control and improve quality of systems, of which
testing is just a single one, have their particular strong points. Using the tech-
niques in combination is the best way to build better systems, in particular
because that avoids using testing as the ‘catchall’ for all errors. Moreover, er-
rors that are found soon after they have been made are relatively cheap to repair;
a design error that is found only when the complete system is tested may be
very expensive to repair. That said, testing right now remains one of the chief
techniques to catch errors before systems are put into production use.

Kinds of testing There are many different kinds of testing. In the first place,
testing differs based on the aspect one wants to assess. For example, usability
testing tries to discover how easy it is to use a system; robustness testing tests
how well the system deals with other inputs than those anticipated for ‘normal’
use of the system; stress testing tests how well the system can cope with a
high load; interoperability testing tests whether two or more systems can work
together (communicate with each other); conformance testing tests whether a
system complies with a functional specification of it. In this thesis we focus on

41 CHAPTER 1. INTRODUCTION

conformance testing.
As we have seen above, testing also differs in the system level on which

it is applied: whether on individual units, modules, combinations of modules,
subsystems or complete systems.

Testing can also differ in who is doing the testing (or for whom the testing
is being done). For example, a software module can be tested by a developer
who tests his own work, but also by an integrator who tests the modules he has
to combine; a system can be tested by a user before accepting it, but also by an
independent testing institute that tests it, e.g. for certification.

Another difference is the distinction between black box and white box test-
ing. When we cannot look inside the system and do not not know its internal
structure but can only use the interfaces that it offers to interact with it, we say
that we are black box testing. This is the natural way of testing when doing con-
formance testing, because then we test whether the system behaviour conforms
to a given specification in terms of its interactions with its environment. When
we can look inside the system and do know its internal structure, and can use
that for testing we are white box testing. Between black and white there usually
is grey; also here. When we have a limited view on the internal structure of the
system that we test we are grey box testing.

The last difference that we mention is about the relation between two test-
ing activities: test derivation (making, designing, or in any other way obtaining
the test “experiments”, which are typically referred to as test cases) and test
execution (applying the test cases, i.e. performing the test “experiments” on
the system under test). (Below we discuss these activities in more detail.) Test
derivation and test execution are usually done in separate phases, where the
test suite (the collection of test cases) is the intermediate result. We call that
approach off-line testing, it is also referred to as batch testing . We illustrate
this approach in Fig. 1.3, which we obtained from Fig. 1.1 by decomposing com-
ponent “Tester” into the combination of “Test Derivation”, “Test Execution”
and “Test Suite”. A different approach is to derive a test on demand during
execution, which for example may occur when a programmer is exploring freshly
written code and uses observations made so far as inspiration for the next stim-
ulus to give. In that case there is no test suite as intermediate result. We call
this approach on-line testing, it is also referred to as on-the-fly testing .

Test
Derivation

Test
Suite

Test
Execution

IUT
stimuli

observations

verdict

Figure 1.3: Off-line Testing, with Implementation Under Test and Verdict. Note
how component “Tester” of Fig. 1.1 has been decomposed into the combination
of “Test Derivation”, “Test Execution” and “Test Suite”.

1.1. CONCEPTS 15

Conformance testing As seen above, conformance testing is the activity of
testing whether or not a system implementation conforms to (is a valid imple-
mentation of) a functional specification of it. The functional specification of
a system prescribes the behaviour of the system—how it should interact with
its environment, which can be seen as the user (in a broad sense) of the sys-
tem. The functional specification prescribes nothing about the implementation
of the system, not even about its structure. In a way, it only defines the in-
terface between the system and its user. In an ideal world such specification
could be the basis for the implementation of a system, in which case the activity
of conformance testing allows testing whether the implementation behaves as
expected.

Conformance testing originated in the application domain of communication
protocols. Typical examples of such protocols are those that ‘run’ the Internet
like IP [Int81], UDP [Pos80], TCP [Pos81], and, to give an example of an older
system, those that make the ‘plain old telephone system’ work. Such protocols
need a rigid and unambiguous specification to allow multiple parties to inde-
pendently create implementations that can cooperate (interoperate). For this
purpose such protocols are typically standardised. The existence of a stand-
ard almost automatically raises the question whether a particular implementa-
tion complies with the standard—a question to which conformance testing can
provide an answer.

The answer that conformance testing provides is a judgement about the
correctness of a system: a verdict . Verdicts are issued on multiple levels: they
are associated with the result of an individual test run, and also with the result
of an entire test suite. Typical verdicts are pass, fail , inconclusive and error .
Verdicts pass and fail are used to indicate whether or not the system complies
with the specification, at least as far as the tested behaviour is concerned. It
may not be possible to give such conclusive verdict. Verdict inconclusive is
used when a system does not exhibit the behaviour that we want to test, but
at the same time does not produce an error. This may be the case with a
non-deterministic system that at a certain ‘point’ can choose between multiple
behaviours, and then chooses a different behaviour than the one that we want to
test. Verdict error is used when an error occurred during testing, not because
of errors in the implementation under test, but because of errors in the tester.

Testing activities Usually the activity of testing is subdivided into activities
test derivation and test execution, already mentioned in the discussion of kinds
of testing, above. When testing is used to find errors in order to repair them,
a third important activity is analysis of the test execution results (if testing
is only used to decide whether the system is correct or not, one may not care
about the details of the errors).

The activity of test derivation is responsible for deciding which stimuli to
provide, in which order, and for deciding which observations will be interpreted
as indicative for correct behaviour. Each test case that results from this activity
consists of test steps which represent the interactions (providing stimuli, making
observations) with the system. A test case may have an associated test purpose:
the objective of the test case.

61 CHAPTER 1. INTRODUCTION

The activity of test execution is responsible for doing the actual experiment-
ation with the system that is to be tested, i.e. to provide stimuli and make
observations, and to evaluate whether the observations obtained can be inter-
preted as indicative of correct behaviour.

For test result analysis the most important ingredients are the sequences
of stimuli and observations that result from execution. There may be more
information that can be used, information produced by the implementation
that is not part of its “normal” interaction with its user, and thus not part of
the observations used in testing. Examples could be diagnostics or debugging
messages. Essentially all information that can help to get insight in what the
implementation was doing when it was in error may be helpful.

Test selection and scheduling In general, it will be neither possible nor
desirable to execute all imaginable (or derivable) test cases on a system: selec-
tion is necessary. In addition, in some cases the order in which test cases are
executed matters, and then scheduling of the selected test cases is necessary
too. Selection can be done in each of the activities of derivation and execu-
tion: one can be selective about which tests to derive, and one can be selective
about which tests to execute. We mention three ways in which one can do test
selection, and then we discuss scheduling.

Firstly, one can use random selection: whenever, in the derivation or execu-
tion activity, there is a choice among multiple alternatives, one makes a random
choice. One can use random selection as the complete and sole selection strategy,
but also as “fallback” strategy in combination with other selection strategies. In
the latter case, when other selection strategies are not fully decisive, but leave
a choice among multiple alternatives, random selection is used to resolve such
choice.

Secondly, in addition to the information about the behaviour of the system,
there may be other information about the system that can be used for selec-
tion, like: (1) behaviour that the user wants to observe (or to not observe),
i.e. a test purpose, or (2) information about typical interaction scenarios, or
(3) information about the (relative) importance of (testing) certain behaviours.

Finally, there may be information from previous test runs, (or even from
the test that is actively being derived) that can be used in the test selection
process, for example: coverage information. Coverage information is about how
much of the requirements, or how much of the model from which the tests are
derived, or how much of the implementation (code), has already been covered
by the tests derived or executed so far. Using such coverage information, one
then derives or selects the test or tests that will increase the coverage most. In
the case of on-line testing, one can use information obtained from the test steps
executed so far, during the derivation of additional test steps for the current test
run—one can imagine tool-guided exploratory testing, where choices in the test
derivation process are resolved by a user that interacts with the testing tool.

When multiple test cases have to be executed, one has to choose in which
order the individual tests are executed (unless in the test execution activity
all tests are executed in parallel). Although in many cases the order may not
matter—in each run, all test cases are always executed—there may be cases

1.1. CONCEPTS 17

where such order is important. For example, when risks or costs are associated
with errors, one may want to start with those test cases that expose errors
with the highest risk resp. the highest cost. Other criteria to schedule the
order in which test cases are executed, may be, for example, the importance of
functionality to the user, the cost or availability of the resources necessary for
the execution of each of the test cases, the time that each of the test cases takes
to execute, or the dependencies between the test cases. Dependencies between
the test cases can be such that if one test fails other tests become irrelevant
because the features they test for depend on functionality that has been shown
to contain errors already.

Test automation Testing can be a laborious task with lots of repetition,
which makes it error-prone, and at the same time an ideal candidate for auto-
mation, for both the activities of test derivation and test execution.

For test execution, there are many solutions that help to automate it. The
so-called ‘capture and playback’ tools essentially repeat (playback) on command
(pieces of) a task that has been demonstrated (captured) once. Other tools read
a test case or test suite in some given format and automatically execute each of
the test steps. Such tool will typically either be only usable for a certain class
of systems, or it will contain some kind of “glue code” that can be adapted to
match the (kind of) system it has to interact with. There are tools that help
to realise the actual interaction with the system under test. For unit testing,
libraries exist that allow one to easily define (program) tests for the software
modules one is working on, and to execute these. Also support for regression
testing exists.

For test derivation, automation is less common: in many cases, test deriva-
tion is done manually, from ad-hoc quick testing by a programmer to ‘test if it
works’ to systematic manual derivation of tests from the system requirements
or system specification. This does not mean that automatic derivation of tests
is not done at all; to us, the most promising way do automatic test derivation
is by using model-based testing, which we discuss below.

Model-based testing In model-based testing, tests are derived algorithmic-
ally from a formal model , typically in an automated way. This means that the
model must be available in a form that allows automatic processing, and that
the model must have a precise meaning (semantics). To us, there is a natural
match between conformance testing, where we want to check for conformance
of a system to a specification, and model-based testing, where we automatically
derive tests from a given model. This match is realised (made effective) by
deriving the tests, necessary to check conformance, automatically from a model
that describes the behaviour of the system in terms of its interactions with its
environment.

Of course, such automatically derived tests must not give fail verdicts for
implementations that we (intuitively) would consider conforming, i.e. they have
to be sound . Moreover, we want to have some form of guarantee that the
automatically derived tests do not consistently overlook certain errors, i.e. the
derivation algorithm must have no inherent “blind spots”; it must be exhaustive.

81 CHAPTER 1. INTRODUCTION

The formal framework for conformance testing, which we discuss in Chapter 2,
allows us to reason about this.

Test architecture In Figure 1.1 we depicted that the tester can directly
interact with the IUT. In practice this may not always be the case, for example
because the system that we want to test (i.e., the IUT) is actually a subsystem
of a bigger system from which it cannot be isolated for testing. Then, we have
to interact with the IUT ‘through’ this bigger system. A test architecture gives
an abstract view of how the tester interacts with the IUT. It contains the IUT,
the tester, the test context and the interfaces between them. Figure 1.4 shows
an example.

IUT
IAP

IAP

Test
Context

System Under Test (SUT)

Tester
PCO

PCO

Figure 1.4: Test Architecture with test tool, SUT, test context and IUT.

The test context consists of those parts of a system that are not the object
of testing, but nevertheless are present when the IUT is tested. For testing
we usually assume that these parts are correct. From now on we say that the
tester interacts with the system under test (abbreviated as SUT), i.e. with the
combination of IUT and test context. The interfaces that the tester uses to
interact with the SUT are called the points of control and observation (PCOs).
The interfaces by which the IUT offers access to its environment (its user, in
a broad sense) are called the implementation access points (IAPs). Ideally, the
test context is empty, such that the SUT coincides with the IUT, and the IAPs
coincide with the PCOs, but often this is not the case. We are not very strict,
though: when the difference between IUT and SUT does not matter for the
discussion at hand, we may use either SUT, IUT or “the implementation” to
refer to the system under test.

Model-driven testing? Beyond the notion “model-based” there is, in our
view, the notion “model-driven”. To our understanding, the model-driven devel-
opment approach takes automation a step further than we do with model-based
testing. In the model-driven development approach the focus is on automa-
tion, using (domain) models as input—all other artefacts are either generic or
automatically created from the models.

In our model-based testing approach we do have artefacts that are automat-
ically created from models (test cases), and generic artefacts (the test tool), but
also at least one artefact that is, at least in some cases, neither generic, nor
automatically created: the “glue code” that allows the (generic) testing tool to
interact with the SUT. Typically, when, for a given SUT, there is no generic
“‘glue code” available, we create ad hoc “glue code”, by hand.

1.2. DESIGN CHOICES AND DESIGN GOAL 19

A natural extension of our “model-based” approach would be to use, in
addition to models that describe the behaviour of the SUT, also models that
describe how the SUT interacts with its environment, such that also the “glue
code” can be automatically derived.

In this thesis we do discuss the functionality that has to be provided by
the “‘glue code”, but we leave the ability to automatically generate the “glue
code” from a model for future research. In this sense, we limit ourselves to
model-based testing.

1.2 Design Choices and Design Goal

Now that we discussed the concepts used to formulate the overall design goal
at the start of this chapter, we discuss how we mapped this overall goal on
functional and non-functional requirements. We do this in two steps. First,
in Section 1.2.1, we discuss the design choices that we made, i.e. those choices
that we made at the start of the design, to focus the design. These choices
constrain the design space. Then, in Section 1.2.2 we discuss the design goal,
i.e. we present the functional and non-functional requirements.

1.2.1 Design Choices and Criteria

State-of-the-art theory An important decision was to use existing, state
of the art theory, and not work on theoretical extensions. The theory that
we chose consists of a formal framework for conformance testing (we give an
overview in the first part of Chapter 2, ‘Theoretical Foundation’ on page 21)—
together with an instantiation of that framework (presented in the second part of
Chapter 2). The framework formalises the concepts that play a role in conform-
ance testing, like model, implementation, test, observation, verdict, execution,
but also the concept of conformance itself—what does it take for a system to
conform to a specification—as abstract concepts, for which a concrete instan-
tiation can be chosen. We chose to instantiate the framework with Tretmans’
ioco theory [Tre96, Tre08], with models that are (can be interpreted as) labelled
transition systems.

Modelling formalism and language The ioco theory that we use is defined
on models that are labelled transition systems (LTSes), i.e. models that describe
the behaviour of a system in terms of states and transitions between the states,
where the transitions are annotated with (action) labels that represent actions
of the system (interactions between the system and its environment). Thus, we
chose LTSes as the (abstract) model type on which we base our design.

For very small systems (toy examples) we may write (or draw) an LTS by
hand, but for bigger systems, describing the behaviour directly as an LTS is
cumbersome and, worse, error-prone. To describe the behaviour of bigger sys-
tems we typically use more higher-level description languages, like the process-
algebras LOTOS [ISO89], mCRL2 [GKM+08], or Promela [Hol91], and then
derive the LTS from such higher-level description. Because, on the one hand,

101 CHAPTER 1. INTRODUCTION

we had no clear preference for a higher-level modelling language, and on the
other hand, we wanted to be able to reuse existing tool support for such lan-
guages, we decided that for our tool design we should strive for independence
of modelling languages.

Coping with large models When describing a system in a higher-level lan-
guage, it is not uncommon to obtain a model of which the LTS has a high,
or even infinite, number of states and transitions (state space). First creating
such large (or infinite) LTS from a model, and then reading the LTS into the
testing tool, may take a relatively long time (or not finish at all, in the case of
an infinite state space).

The ioco theory can handle models that have a large, even infinite, num-
ber of states, as long as each state has a finite number of outgoing transitions
(is finitely branching), and as long as there is no infinite sequence of internal
transitions (cycles of internal transitions are o.k.). The ioco theory can handle
large models, because in the test derivation algorithm, for each test step, the
algorithm only looks at the outgoing transitions of the “current set of model
states”. This set of model states initially only contains the initial state of the
model; after a test step this state set is updated to contain the destination states
of those transitions that correspond with the current test step.

Thus, for test derivation with ioco we can cope with large models by obtain-
ing the LTS from the model on demand (on-the-fly), during (concurrent with
the) test derivation, as needed by the activity of test derivation. We chose to use
this way of accessing the LTS for our design, for two reasons. Firstly, because,
as we discussed already, it allows us to deal with large models. Secondly, be-
cause it seemed the most general way of obtaining the information necessary for
test derivation from a higher-level language model—and such generality seemed
beneficial to our design, given our decision to strive for independence of the mod-
elling language. (A side effect of this choice is that we may not know how many
states and transitions the LTS of our higher-level model contains, which may
affect e.g. the ability to compute model coverage criteria like state-transition
coverage).

Black-box testing An immediate consequence of the choice for the ioco the-
ory is the choice for black-box testing, with models that describe the interaction
between the system under test and its environment: that is what the ioco the-
ory is about. And, as we wrote when we mentioned black-box testing as one of
the “kinds of testing” in Section 1.1: this is the natural way of testing, when
doing conformance testing. An advantage of this choice for black-box testing
is that we have rather limited requirements on the implementations that we
will test: We only have to be able to interact with them, i.e. it will not be a
problem when we do not have access to the actual implementation, for example
because it is at the other side of the network connection via which we access it,
or because it is running on (inside) an embedded device.

Test selection and test execution The theory describes how to derive test
cases, but does not say anything about test selection, nor about the relation

1.2. DESIGN CHOICES AND DESIGN GOAL 111

between test derivation and test execution (i.e. about the choice between on-
line and off-line testing), allowing us to take our own decision in this regard. We
decided that our design should be suitable for both on-line and off-line testing.
That said, we chose to focus mostly on on-line testing, because it is easier
to implement. Regarding test selection, we chose to support two approaches
that were based on available theory. Both approaches affect the test derivation
activity, because of our focus on on-line testing.

1. Our first selection approach is a simple one: to use a random walk in the
(state space of the) model.

2. Our second selection approach is based on the use of test purposes, where,
to us, a test purpose is a model of a part of the system behaviour that
we want to focus on during testing. During test derivation, a given test
purpose is used to guide the test to a part of the the system behaviour
(and thus, the corresponding part of the state space) that we want to focus
on.

1.2.2 Design Goal

The overall design goal stated at the beginning of this chapter can now, with
the help of the concepts and design choices discussed above, be broken down
into functional requirements (denoted by (f)) and non-functional requirements
(denoted by (nf)).

Functional requirements Expressed as functional requirements, our design
goal is:

1 (f). the tool should be based on ioco theory;
2 (f). the tool should work on models that have an LTS semantics;
3 (f). the tool design should be suitable for both on-line and off-line testing;
4 (f). the tool should support on-line testing;
5 (f). the tool design should be independent from particular modelling lan-

guages;
6 (f). the tool should support very large and infinite state space models;
7 (f). for on-line testing, the tool should support random mode and guided

mode;
8 (f). the tool design should make no assumptions about the SUT, except

that it is a reactive system.

Non-functional requirements In the design goal summary we mentioned
the following high-level non-functional requirements: (a) the tool should be
flexible, (b) it should be usable for education, and (c) it should be usable
outside an academic environment. These high-level requirements entail more
concrete requirements, some of which are functional, and some of which are
non-functional.

Ad a: Flexibility Flexibility of the tool translates to the following require-
ments about evolving the tool.

121 CHAPTER 1. INTRODUCTION

9 (nf). it should be easy to accommodate theoretical progress;
10 (nf). it should be easy to incorporate new conformance relations;
11 (nf). it should be easy to incorporate new test selection strategies.

Ad b: Usability for education Use in education involves the following two
scenarios. Firstly, the tool should be usable in courses at bachelor or master
level, to allow the students to experience the concept of model-based testing.
In this scenario, the students use the tool not only to test real (toy) implement-
ations, but also to compare models by testing (i.e. to obtain an answer to the
question: does an implementation, represented by given model i, conform to
the specification, represented by model m). Secondly, the tool should be usable
to explain, on an intuitive level, the basic principles of model-based testing, to
almost any person (but in particular: testers and managers). This means:

12 (nf). it should be easy to deploy the tool (install and use);

13 (f). it should be easy to create a simple model (like an automaton) for
use with the tool;

14 (f). the tool should provide insight in the theory and algorithms that it
implements, e.g. by visualisation;

15 (f). it should be possible to use a simulated model as system under test;

16 (nf). it should be simple to connect the tool to toy implementations (this
requirement is subsumed by requirement 24 below).

Ad c: Usability outside an academic context Usability outside an aca-
demic context involves two scenarios. Firstly, the tool should be usable by
students that need model-based testing functionality when doing an internship
or an external graduation project. Secondly, the tool should be usable by the
people (like experienced testers) at the company where the internship or gradu-
ation project takes place, or where a case study (that involves model-based
testing) takes place. This means:

12 (nf). (as for educational use) it should be easy to deploy the tool (install
and use);

17 (nf). it should be possible to use the tool without being an expert in the
theory that the tool implements;

18 (f). the design should allow use of modelling languages suitable for non-
experts;

19 (f). the design should allow use of modelling languages with suitable ex-
pressive power;

20 (f). it must be possible to validate the models, either in the tool, or using
external tools;

21 (f). the tool should produce/keep test execution data for analysis;
22 (f). the tool should be correct (i.e. it should correctly implement the

theory);

23 (nf). the tool should have sufficient performance to be usable;
24 (nf). it should be easy to connect the tool to the system under test (this

requirement subsumes requirement 16).

1.2. DESIGN CHOICES AND DESIGN GOAL 113

1.2.3 Validation

Here we discuss how the design goal can be validated. In Chapter 8 we do the
actual validation. In that chapter, we evaluate to what extent the design goal
is fulfilled. That evaluation is preceded by a discussion of the “evidence” that
is used in the evaluation: two implementations of our design, TorX [BFdV+99]
and JTorX [Bel10], case studies done with these implementations, their use in
research and industry, and results of a questionnaire posed to users.

Below, we discuss each of the requirements in turn.

Ad 1 (f): the tool should be based on ioco theory. In Chapter 2 we show
the ioco test derivation algorithm. In Chapter 3 we discuss the architecture of
our tool for model-based testing, and we show how the ioco test derivation can
be performed by the components in our architecture.

Ad 2 (f): the tool should work on models that have an LTS semantics.
In Chapter 3 we discuss our architecture for test derivation and execution. In
Section 4.2.1 we discuss the decomposition of the test derivation component of
that architecture into two sub-components: (1) a modelling-language-specific
one, that provides access to the LTS of the model, and (2) a generic one, that
does the ioco test derivation using the interface provided by the modelling-
language-specific sub-component.

Ad 3 (f): the tool design should be suitable for both on-line and
off-line testing. In Chapter 3 we discuss our architecture for test derivation
and execution. In Section 3.4 we discuss how it supports on-line testing; in
Section 3.6 we discuss how it supports off-line testing.

Ad 4 (f): the tool should support on-line testing. In Section 3.4 we
decompose the tool into components and show an algorithm for on-line testing
that does its work using these components.

Ad 5 (f): the tool design should be independent from particular mod-
elling languages. In Section 4.2.1 we show how we decomposed the test
derivation component into two sub-components: (1) a modelling-language-
specific one, that provides access to the LTS of the model, and (2) a generic
one, that does the ioco test derivation using the interface provided by the
modelling-language-specific sub-component. In this way, instances of the first
sub-component hide modelling language specific details from the rest of the tool.

Ad 6 (f): the tool should support very large and infinite state space
models. In Section 4.2.2 we discuss the interface between the modelling-
language-specific and the modelling-language-independent test derivation sub-
components; this interface offers on-the-fly model access, which provides support
for infinite state space models.

141 CHAPTER 1. INTRODUCTION

Ad 7 (f): for on-line testing, the tool should support random mode
and guided mode. In Section 3.4 we discuss the random mode, and in Sec-
tion 3.5 the guided mode.

Ad 8 (f): the tool design should make no assumptions about the
SUT, except that it is a reactive system. In our architecture, the adapter
component provides an abstract interface to the SUT (i.e. the “glue code” that
provides the connection between tester and SUT). This interface, which we
discuss in Section 3.4.2, only assumes that we can provide stimuli to the SUT,
and obtain responses from the SUT.

Ad 9 (nf): it should be easy to accommodate theoretical progress.
In Section 8.5.2 we validate this requirement by discussing the impact on the
design of our tool of (i) a change in the ioco theory, and (ii) the addition of
the ability to deal with divergence (τ -loops).

Ad i: In the initial definition in [Tre96] test cases were not input-enabled,
i.e. in a test step, in which the tester would try to apply a stimulus, the tester
would not be willing to accept a response from the SUT. In [Tre08] this was
revised to make test cases input-enabled: the tester is always willing to accept
a response from the SUT.

We evolved the design of our tool over time, and, a number of years after
our initial implementation TorX, we made a reimplementation JTorX [Bel10].
Initially, in TorX, we used the initial ioco definition; later, in JTorX, we used
the revised definition.

Ad ii: The ioco theory of [Tre96, Tre08] explicitly rules out models with τ -
cycles. In [Sto12, STS13] ioco is also defined in case of divergence. In Section 4.1
we discuss the changes necessary to our design to include basic support for
divergence.

Ad 10 (nf): it should be easy to incorporate new conformance rela-
tions. In Section 8.5.2 we validate this requirement by discussing the impact
of the addition of support for the uioco conformance relation [vdBRT04]. Ini-
tially, we only supported test derivation based on ioco; later we added support
for uioco. (It should be noted, though, that uioco is very similar to ioco.)

Ad 11 (nf): it should be easy to incorporate new test selection
strategies. In Section 8.5.2 we validate this requirement by discussing how
we, for a case study, delegated the selection of the next test step to a separate
component in the architecture.

Ad 12 (nf): it should be easy to deploy the tool (install and use). In
Chapter 8 we discuss experience with the tool; this includes experience reported
by users in publications about case studies done with the tool, and experience
reported in response to a questionnaire. In Section 8.5.3 we use this experience
to validate this requirement.

1.2. DESIGN CHOICES AND DESIGN GOAL 115

Ad 13 (f): it should be easy to create a simple model (like an auto-
maton) for use with the tool. As indicated above, the tool design allows
the use of multiple different concrete modelling languages. JTorX has built-in
support for the GraphML [Gra12] format that is written by the graph editor
yEd [yWo]. This graph editor allows creation of models by drawing them.
Moreover, the layout of GraphML models is respected by the visualisation of
JTorX. We discuss the former in Section 4.2.4 and the latter in Section 4.2.5.
We use a questionnaire to get information about the user’s perception.

Ad 14 (f): the tool should provide insight in the theory and al-
gorithms that it implements, e.g. by visualisation. We have chosen to
provide insight in the test derivation algorithm, by using visualisation to show
the relation between the model and the test steps that are derived from it. In
Section 4.2.5 we discuss the impact of this choice on the design. Moreover, JT-
orX contains an interactive simulator (see Section A.2), which is coupled to the
visualisation functionality. We do not discuss details of the interactive simulator
in this thesis.

Ad 15 (f): it should be possible to use a simulated model as system
under test. As we discuss in Chapter 5, in our design the adapter component
provides the connection (the “glue code”) between the generic functionality of
our tool, and a given SUT. We have a few generic instances of the adapter
component, one which allows us to use a simulated model as SUT. We mention
this adapter instance in the introduction to Chapter 5.

Ad 16 (nf): it should be simple to connect the tool to toy imple-
mentations. Among the generic instances of the adapter component which
are mentioned above Ad 15 (f), there are two that are specifically designed to
make it simple to connect to a toy SUT. These adapter instances expect that
the SUT interacts either on its standard input and standard output, or via a
TCP connection. They also expect that the SUT interacts using messages that
are a textual representation of the interaction description in the model, i.e. mes-
sages that are a textual representation of the labels of the LTS. We discuss these
adapter instances in Section 5.1.1.

Ad 17 (f): it should be possible to use the tool without being an
expert in the theory that the tool implements. In Chapter 8 we discuss
the experience with the tool. In Section 8.5.3 we discuss to what extent the
reported experience allows us to validate this requirement.

Ad 18 (f): the design should allow use of modelling languages suitable
for non-experts. Any language, of which the semantics can be expressed as
an LTS, can be used with the tool, as long as a modelling-language-specific
model-access component for the language is available. It may not always be
feasible to construct such model-access component. However, if there is an

161 CHAPTER 1. INTRODUCTION

interactive simulator for the language available, and an API to access the LTS-
related data structures inside it (states, transitions, labels), it may be possible
to construct a model-access component, based on the simulator. In Section 4.2.2
we discuss the interface that a model-access component must provide.

Ad 19 (f): the design should allow use of modelling languages with
suitable expressive power. In Chapter 8 we discuss the experience with the
tool. In particular, we list the case studies that have been carried out, and with
each case study we indicate the modelling language (formalism) that was used.
In Section 8.5.3 we use this information—where we pay special attention to the
suitability of the modelling language to represent the behaviour of the SUT—to
validate this requirement.

Ad 20 (f): it must be possible to validate the models, either in the
tool, or using external tools. For modelling formalisms that have their
own tool environment, typically this tool environment contains functionality to
validate the model, like an interactive simulator, or model-checking function-
ality. However, not all modelling formalisms that we support in JTorX have
a tool environment that contains this kind of functionality. Examples of such
formalisms are the GraphML formalism, and the GraphViz input language. As
discussed in Section A.2, we integrated an interactive simulator in our tool (in
the JTorX implementation of our design), to provide at least some validation
functionality for such formalisms.

Ad 21 (f): the tool should produce/keep test execution data for ana-
lysis. The tools produce a test log that contains, for all test steps that were
executed, (i) a timestamp, (ii) the model representation of the interaction with
the SUT, (iii) information about the states and transitions that have been tra-
versed in the model, (iv) a concrete representation of the interaction with the
SUT, when reported by the “glue code” that connects the tool to the SUT.
We don’t discuss further details about these logs in this thesis. In Chapter 7
we discuss a case study in greater detail. There we present information that is
obtained from log file analysis during the case study.

Ad 22 (f): the tool should be correct. What we mean is: the tool should
not give a fail verdict for a correct (conforming) implementation (i.e. the tool
should be sound), and, moreover, testing a non-conforming implementation
with the tool should eventually—ideally in a reasonable amount of time, even
though in practice it may take longer than we are willing to wait—produce a
fail verdict (the tool should not have inherent blind spots). In Chapter 8 we
discuss experience with the tool; in none of the cases correctness of the tool was
an issue. In one of the case studies, discussed in Section B.1, we created 25
mutants from an assumed-to-be-correct program, by introducing errors into it,
and used the tool to identify the erroneous mutants. To our surprise, the tool
was unable to find errors in two of the mutants. After analysis, we found that

1.3. OVERVIEW 117

the model, used for testing, was incomplete in one aspect, and did not contain
the scenario that was necessary to trigger that particular error.

Ad 23 (nf): the tool should have sufficient performance to be usable.
In Chapters 7 and 8 we discuss the experience with the tool. In all cases tool
performance sufficed to carry out the case study, even when in some of the case
studies it initially took some work to obtain sufficient performance. In most
of the discussed case studies we did not look at performance in detail. We
did study performance of the tool in more detail in the case study discussed
in Chapter 7. In Section 8.5.3 we use the experience results to validate this
requirement.

Ad 24 (nf): it should be easy to connect the tool to the system under
test. In Chapter 8 we discuss experience with the tool; for each case study we
indicate how we connected the tool to the SUT. In Section 8.5.3 we discuss to
what extent this experience allows us to validate this requirement.

1.3 Overview

For easy reference, we list the functional requirements in Table 1.1, and the non-
functional ones in Tables 1.2 (non-functional requirements w.r.t. development
of the tool) and 1.3 (non-functional requirements w.r.t. use of the tool).

requirement

1 the tool should be based on ioco theory
2 the tool should work on models that have an LTS semantics
3 the tool design should be suitable for both on-line and off-line testing
4 the tool should support on-line testing
5 the tool design should be independent from particular modelling languages
6 the tool should support very large and infinite state space models
7 for on-line testing, the tool should support random mode and guided mode
8 the tool design should make no assumptions about the SUT, except that it is a

reactive system
13 it should be easy to create a simple model (like an automaton) for use with the

tool
14 the tool should provide insight in the theory and algorithms that it implements,

e.g. by visualisation
15 it should be possible to use a simulated model as system under test
18 the design should allow use of modelling languages suitable for non-experts
19 the design should allow use of modelling languages with suitable expressive power
20 it must be possible to validate the models, either in the tool, or using external

tools
21 the tool should produce/keep test execution data for analysis
22 the tool should be correct

Table 1.1: Functional requirements

181 CHAPTER 1. INTRODUCTION

requirement

9 it should be easy to accommodate theoretical progress
10 it should be easy to incorporate new conformance relations
11 it should be easy to incorporate new test selection strategies

Table 1.2: Non-functional requirements w.r.t. development of the tool

requirement

12 it should be easy to deploy the tool (install and use)
16 it should be simple to connect the tool to toy implementations
17 it should be possible to use the tool without being an expert in the theory that

the tool implements
23 the tool should have sufficient performance to be usable
24 it should be easy to connect the tool to the system under test (subsumes 16)

Table 1.3: Non-functional requirements w.r.t. use of the tool

1.4 Synopsis

The rest of this thesis is organised as follows.

Chapter 2 serves as starting point for the remaining chapters in this thesis:
it provides the reader with a formal background for the remaining chapters.
This chapter only recapitulates theory published by others.

Chapter 3 introduces the global architecture of TorX. The main decompos-
ition into components was, in my recollection, more or less a group decision in
the Côte-de-Resyste project. Our contribution is in the design of the interfaces
and the algorithms.

Chapter 4 discusses the test derivation engine of TorX. First the basic test
derivation engine is introduced; subsequently it is shown how this can be exten-
ded with means to guide the test derivation. Again, the main decomposition
into components was a group decisions; our contribution lies in the interfaces
and the algorithms.

Chapter 5 discusses the test execution engine of TorX, and in particular
the TorX component (to which we refer as Adapter) that is responsible for the
connection to and interaction with the system under test. We first present three
example Adapter instances, and then present our Adapter design. Our contri-
bution consists of the design of the example Adapter instances (even though
typically case studies are a collaborative effort, we did design these), and of our
Adapter design.

Chapter 6 discusses extensions to deal with symbolic treatment of data and
time. Our contribution to this chapter is the (A)PTS formalism, which we use
to describe the interfaces in the symbolic setting, and the extensions to our
design that allow us to use the symbolic and timed Explorer components, which

1.4. SYNOPSIS 119

were all (with the exception of SmileExp) designed and developed by others.
The other theory presented in this chapter (e.g. about STS) recapitulates work
published by others.

Chapter 7 presents a case study: Model-based specification, implementation
and testing of a software bus at Neopost. The work in this case study was
done in two phases: a first phase, which took place during the internship of
a student at Neopost, and a second phase in which we tried to evaluate the
thoroughness of the model-based testing that had taken place in the first phase.
Our contribution consists of the work done in the second phase; in the first
phase, the work was done by the student.

Chapter 8 presents an evaluation of our design w.r.t. the design requirements.
This evaluation is preceded by the ‘evidence’ on which the evaluation is based,
i.e., by a discussion of case studies that have been done with TorX and JTorX,
of the use of TorX and JTorX for research and for education, and of the relevant
responses to a questionnaire about them.

Chapter 9 summarises the thesis, presents overall conclusions and ideas for
future work.

Appendix A discusses two implementations of our design: TorX and JTorX.
Our contribution consists of the design and implementation of these two tools.

Appendix B gives additional details about the case studies presented in
Chapter 8. Typically, case studies are an collaborative effort.

For the “Conference Protocol Entity” case, our contribution was on the test
tool, the Adapter, and the actual test runs; the models and implementations
were produced by other team members.

For the “EasyLink” case, our contribution was mostly on the test tool, and
in the collaborative solving of problems as they arose once we started running
the tests (like dealing with the unknown initial state of the television set); model
and Adapter were created by other team members.

For the “Oosterschelde Storm Surge Barrier” case our contribution was in
the model, in a small Adapter to connect TorX to the already existing test
environment, and in running the tests.

For the “Myrianed Protocol Entity” case our contribution was again in cre-
ation of a model (this time for JTorX) and in a small Adapter to connect the
testing tool to a testing environment created by the company that developed
the Myrianed Protocol Entity, and in testing with JTorX. Other persons made
the models, and ran the tests, with other testing tools.

For the “RiverCrossing Puzzle” case, our contribution was in creation of an
Adapter, and of a visualisation of the IUT; the IUT itself was created by Mark
Timmer (another member of the teaching team of the Testing Techniques course
for which this “case” was developed), and the model was decided on by the team
in a collaborative effort.

201 CHAPTER 1. INTRODUCTION

Appendix C gives the questions and responses of the questionnaire.

2

Chapter 2

Theoretical Foundation

In the previous chapter we formulated requirements on our testing tool design.
In this chapter we give a brief overview of the main existing theory that forms
the foundation of our work.

Model-based testing (black box conformance testing) studies the relation
between a specification of a system and an implementation of that specification,
i.e. the working system. The question that it tries to get an answer to is whether
or not a given system implementation “is a correct implementation of” or “does
conform to” a given specification. Because the implementation is treated as a
black box, the method to get an answer is testing: performing experiments on
the implementation and observing the responses. The left part of Figure 2.1
sketches the process of model-based testing. The idea is that to test whether
implementation IUT “conforms to” specification s we apply test suite Ts. If
IUT passes all tests, it conforms to s.

Mere conformance of an IUT to a specification s is no guarantee for a useful
product, as we will try to illustrate with the following example. Imagine the
following specification for a coffee- and tea machine. After a user inserted a coin
of the right value, the machine must offer the user the ability to choose between
coffee and tea, and then it will serve the chosen drink. However, the machine
may also decide to immediately return the coin, instead of offering the choice
between coffee and tea. This would be correct behaviour when the machine is
unable to produce coffee or tea, for example because it has run out of coffee or
tea. The choice between returning the coin and offering the choice between cof-
fee and tea can not be controlled from outside of the machine. A machine that
accepts a coin, and then immediately returns it would be a valid implementation
of such a specification. However, to a typical user this would be a fairly useless
implementation. Therefore, an extension to the process of model based testing
has been proposed, orthogonal to the notion of “conforms to”, that allows us
to test whether an IUT “exhibits” interesting behaviour p—“interesting beha-
viour” p is referred to as a test purpose. The right part of Figure 2.1 visualises
this extension. For the example above “interesting behaviour” would consist of
the two scenarios in which the machine, after insertion of a coin, offers the user
the choice between coffee and tea, and then produces the chosen drink.

21

22

2

CHAPTER 2. THEORETICAL FOUNDATION

In this chapter we present existing theory that allows formal reasoning about
this process of model based testing. This theory is presented in four parts.

specification
s

Test
Derivation

test suite
Ts

Test
Execution

implementation
IUT

verdict

conforms-to

specification
s

Test
Derivation

test suite
Ts

Test
Execution

implementation
IUT

verdict

conforms-to

test purpose
p

exhibits

Figure 2.1: Left: Schematic view of model-based testing. Right: This frame-
work, extended for testing whether the implementation exhibits a given inter-
esting behaviour.

In Section 2.1, we show the general framework of formal methods in conform-
ance testing which defines concepts and their relationships. A more detailed
exposition of this framework can be found in [BAL+90, Tre94, ISO96, Tre99].

In Section 2.2 we will instantiate this framework with a particular notion
of “conforms to”. We have chosen to base our work on a conformance relation
called ioco [Tre96, Tre08] (design requirement 1). Note that on a practical level
the most important thing is that to be able to build tools we do need a notion
of conformance; which particular notion of conformance is chosen may not be
that relevant.

In Section 2.3, we show an extension of the general framework of formal
methods in conformance testing with concepts that allow reasoning about when
an IUT “exhibits” interesting behaviour.

In Section 2.4 we instantiate this extended framework with a particular
notion of “exhibits”.

Bibliographic note The remainder of this chapter is effectively a summary
of chapters 2, 3, 4, and 5 of [Tre02] and of parts of [Tre08] (Sections 2.1 and 2.2),
and of parts of [dV01] (Sections 2.3 and 2.4), mostly by omitting information
deemed irrelevant for the presentation here, and paraphrasing or (almost) ver-
batim including relevant information.

This presentation differs with these sources in one respect: in this present-
ation we do not use the separate action θ to represent quiescence in test cases,
but for simplicity we use δ instead.

2.1. FORMAL FRAMEWORK FOR CONFORMANCE TESTING

2

23

2.1 Formal Framework for Conformance Testing

We reason about conformance testing in the formal world of mathematics; to
do that we need in the formal world representations of the “ingredients” that
we want to reason about, most of which are shown in Figure 2.1, i.e. the spe-
cification, the implementation, the conformance relation, the test suite, test
derivation, test execution and the verdict. We assume SPECS to be the set of
all specifications, and thus s ∈ SPECS ; we assume IMPS to be the set of all
implementations, so IUT ∈ IMPS . Now we would like to have a formal relation
between s and IUT, like conforms-to ⊆ IMPS × SPECS , but that is where
we face a problem: the system implementation is not a formal object, it is a
concrete object like a piece of hardware or software and it is difficult to form-
ally relate to that (we assume formal specifications written down in languages
that have a formally defined semantics so specifications are formal objects). We
work around this problem by making an assumption, the so-called test hypo-
thesis, which says that each possible concrete implementation in IMPS has a
corresponding model in the formal world. It is sufficient to assume that such
formal model exists, we do not need to assume that we a priori know the model.
We assume MODS to be the set of models of implementations, and we use
iIUT ∈ MODS to denote the model of implementation IUT ∈ IMPS . The test
hypothesis allows formal reasoning about conformance between specifications
and (models of) implementations, and formally expressing such conformance as
a relation: the implementation relation imp (also referred to as conformance
relation), where imp ⊆ MODS × SPECS . We can now mirror the informal
relation conforms-to between IMPS and SPECS in the informal world by
the (formal) relation imp between MODS and SPECS in the formal world,
as depicted in Figure 2.2, and we say that IUT is correct with respect to s,
i.e. IUT conforms-to s, if and only if relation imp holds between iIUT and s:
iIUT imp s.

IUT conforms-to s =def iIUT imp s (2.1)

specifications
SPECS

implementations
IMPS

IUT conforms-to s

specifications
SPECS

models of
implementations

MODS

iIUT imp s

Physical world Formal world

Figure 2.2: Relating implementations and implementation models with specific-
ations.

24

2

CHAPTER 2. THEORETICAL FOUNDATION

Because the implementation is treated as a black box, we can only experience
its behaviour by interacting with it: by performing experiments on it and ob-
serving the reactions. Also these experiments are formalised. The specification
of each such experiment is called a test case, and the process of performing such
experiment on an implementation under test is called test execution. A single
test case may be applied to an implementation more than once; the application
of a test case to an implementation is called a test run. Each test run results in
an observation. We formalise this as follows. We assume TESTS to be the set of
all test cases, and OBS the set of all observations. We represent the application
of test case t ∈ TESTS on implementation IUT (multiple times, when neces-
sary to get all different test runs) by EXEC(t, IUT). Due to non-deterministic
behaviour of the implementation different test runs of the same test case on the
same implementation may result in different observations and thus we say that
the result of EXEC(t, IUT) consists of a set of observations, i.e. it is a subset
of OBS . Since IUT is not a formal object, EXEC is not a formal concept; it
just represents the concrete execution of a test case. We mirror the concrete
execution EXEC(t, IUT) in the formal world as obs(t, iIUT) using observation
function obs : TESTS ×MODS → P(OBS). Here we used P(OBS) to denote
the powerset of OBS (the set of all subsets of OBS).

The essence of formal testing now is that we assume that we cannot distin-
guish the real IUT from its formal model iIUT by executing tests and comparing
observations (essentially formalising what is said in the test hypothesis):

∀IUT ∈ IMPS ∃iIUT ∈ MODS ∀t ∈ TESTS : EXEC(t, IUT) = obs(t, iIUT)
(2.2)

With the result of executing a test on an implementation a verdict is asso-
ciated, which is either pass or fail. We formalise this using a family of verdict
functions vt : P(OBS) → {pass, fail} that for each test case t associate a ver-
dict with the set of observations that results from executing the test case. We
can now define what it means to pass a test:

IUT passes t =def vt(EXEC(t, IUT)) = pass (2.3)

To pass a test suite T ⊆ TESTS all tests in it must be passed:

IUT passes T ⇔ ∀t ∈ T : IUT passes t (2.4)

The test suite is failed if it does not pass:

IUT fails T ⇔ IUT /passes T (2.5)

We now have almost all the ingredients to talk about test execution in the
informal world and to reason about conformance in the formal world. What is
missing is how we get a test suite, and how we get the verdict functions for the
test cases in it. We assume that for each implementation relation imp that we
are interested in we can come up with a test derivation algorithm genimp that
from a specification s ∈ SPECS derives a set of test cases Ts ⊆ TESTS , i.e.
we can see test derivation as a function genimp : SPECS → P(TESTS), with

2.1. FORMAL FRAMEWORK FOR CONFORMANCE TESTING

2

25

the associated family of verdict functions. The actual algorithm and verdict
functions depend on the actual relation that we are interested in.

Now that we know how we will get test cases from a specification, we can
make the connection between the test execution in the informal world and the
reasoning about conformance in the formal world. We do that by making the
connection between conforms-to and passes.

IUT /conforms-to s IUT conforms-to s

IUT fails Ts

IUT passes Ts

Figure 2.3: Correct and incorrect implementations pass and fail tests

Given a specification s, an implementation IUT and a test suite Ts we have
that either IUT conforms-to s or IUT /conforms-to s and either IUT passes Ts
or IUT fails Ts. We illustrate this in Figure 2.3. In this figure the box repres-
ents all possible implementations. Those implementations that conforms-to s
are at the right hand side of the vertical line that divides the box. Those that

/conforms-to s are at the left. Those implementations that pass the test suite
are inside the ellipse, those outside if fail it. We now have two “problematic”
areas in the box: we have implementations that fail even though they conform,
and we have implementations that pass even though they do not conform. We
call a test suite sound if the only implementations that fail are those that do
not conform (however, some non-conforming implementations may pass). This
is a very important property because when it holds each test execution failure
is a symptom of a genuine error, i.e. there are no “false negatives”. Formally:

IUT conforms-to s⇒ IUT passes Ts (2.6)

We call a test suite exhaustive if all implementations that do not conform do not
pass, i.e. if an implementation does pass we are guaranteed that it conforms
(however, also implementations that do conform may fail). Formally:

IUT conforms-to s⇐ IUT passes Ts (2.7)

We call a test suite complete if it is both sound and exhaustive, i.e. the test
suite perfectly distinguishes between implementations that conform and those
that do not conform. Formally:

IUT conforms-to s⇔ IUT passes Ts (2.8)

Completeness is a very strong requirement. We may need a very large (possibly
infinite) test suite to realise this; executing an infinite test suite is not a very
practical thing to do. In the figure, the test suite is complete when the ellipse
coincides with the right part of the box.

26

2

CHAPTER 2. THEORETICAL FOUNDATION

To do real testing we have to instantiate the model with a “real” relation
imp, for which we need a test derivation algorithm (and corresponding ver-
dict functions). When we want to show that the test suites that we derive
for a particular relation imp are sound or exhaustive we can do the necessary
mathematical reasoning in the formal world, reasoning about models of imple-
mentations. For soundness resp. exhaustiveness we have to prove, on the level
of models, the left-to-right resp. the right-to-left implication of:

∀i ∈ MODS : i imp s⇔ ∀t ∈ T : vt(obs(t, i)) = pass (2.9)

If we have proven completeness on the level of models, and we have reason to
believe that the test hypothesis holds, then we obtain as consequence that we
can decide on conformance of an implementation with respect to a specification
by means of a testing procedure.

To conclude our discussion of the framework we give in Table 2.1 an overview
of the elements that we have seen.

physical ingredients:
black-box implementation IUT belongs to IMPS
execution of a test case EXEC(t, IUT)

formal ingredients:
specification s ∈ SPECS
model of implementation iIUT ∈ MODS
implementation relation imp

test case t ∈ TESTS
observations OBS
model of execution of a
test case

obs : TESTS ×MODS → P(OBS)

verdict functions vt : P(OBS)→ {pass, fail}
test derivation algorithm genimp : SPECS → P(TESTS)

assumptions:
test hypothesis for all IUT some iIUT models IUT

obs(t, iIUT) models EXEC(t, IUT)

prove obligations:
soundness genimp is sound for any s ∈ SPECS
exhaustiveness genimp is exhaustive for any s ∈ SPECS

Table 2.1: The ingredients of the formal testing framework

Extensions Several extensions have been made to this framework. Two of
them are important to us. The first enhances the framework to formally deal

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

27

with the test context (as discussed in the previous chapter on page 8). We will
come back to this in Chapter 5. The other enhances the framework to formally
deal with test purposes to guide the test derivation such that the resulting tests
trigger the implementation to exhibit a particular behaviour of interest. We will
come back to this in Chapter 4.

2.2 Instantiating the Formal Framework

We will instantiate the framework with the implementation relation that in-
terests us: ioco. Before we discuss the ioco relation itself we present the
concepts needed for its definition. In particular, we will first choose the form-
alisms that we will use to represent specifications, models of implementations,
and tests, and we will discuss what we mean by test execution. The choices
that we make here are such that they nicely provide what is needed to define
ioco. Only then we will discuss the ioco implementation relation, after which
we will show a test derivation algorithm for ioco.

2.2.1 Specifications

Labelled Transition Systems

We will use labelled transition systems as formal representation of specifications.
Labelled transition systems are commonly used as a semantic model of formal
specification languages, and there exists much theory on labelled transition sys-
tems.

Definition 2.2.1
A labelled transition system (LTS) consists of a 4-tuple 〈S,L, T, s0〉 with S a
countable, non-empty set of states, L a countable set of labels, T ⊆ S × (L ∪
{τ})× S the transition relation, and s0 ∈ S the initial state.

2

We use the labels in L to represent observable actions of the system and τ
to represent internal actions that cannot be observed from outside the system.
We use Lτ to denote L∪{τ}. When a state cannot do an internal (τ) action we
call it stable. We often write s µ−−→ s′ for a transition µ from state s to state s′

(this corresponds with 〈s, µ, s′〉 of the transition relation). We interpret this as:
when the system is in state s it may perform action µ and go to state s′. We
represent a labelled transition system by a directed, edge-labelled graph where
nodes represent states and edges represent transitions.

We call the composition of a (finite) number of transitions in a row as in
s1

µ1−−→ s2
···−−→ sn−1

µn−−→ sn a computation. It reflects both observable behaviour
of the system (the sequence of actions, i.e. the transition labels) and “internal”
information about system that usually can not be observed from the outside (the
state in which the system is). If we take a computation and “abstract away”
the information about the states we get a trace of the computation: a finite
sequence of actions. The set of all finite sequences of actions over L is denoted
by L∗, and we use ε to denote the empty sequence. We denote concatenation of

28

2

CHAPTER 2. THEORETICAL FOUNDATION

sequences σ1, σ2 ∈ L∗ as σ1·σ2. The computation above has the following trace:
µ1 ·. . .·µn. Of course, many different computations may lead to the same trace.

Definition 2.2.2
Consider labelled transition system 〈S,L, T, s0〉, let s, s′ ∈ S, let µ(i) ∈ Lτ , let
a(i) ∈ L, and σ ∈ L∗:

1. s µ1·...·µn−−−−−−→ s′ =def ∃s0, . . . , sn : s = s0
µ1−−→ s1

µ2−−→ . . . µn−−→ sn = s′

2. s µ1·...·µn−−−−−−→ =def ∃s′ : s µ1·...·µn−−−−−−→ s′

3. s
µ1·...·µn−−−−−−−→/ =def not ∃s′ : s µ1·...·µn−−−−−−→ s′

4. s
ε

=⇒ s′ =def s = s′ or s τ ·...·τ−−−−→ s′

5. s
a

=⇒ s′ =def ∃s1, s2 : s
ε

=⇒ s1
a−→ s2

ε
=⇒ s′

6. s
a1·...·an======⇒ s′ =def ∃s0, . . . , sn : s = s0

a1==⇒ s1
a2==⇒ . . .

an==⇒ sn = s′

7. s
σ

=⇒ =def ∃s′ : s
σ

=⇒ s′

8. s
σ

=6⇒ =def not ∃s′ : s
σ

=⇒ s′

2

We will not always distinguish between a labelled transition system and its
initial state: we may identify a process p = 〈S,L, T, s0〉 with its initial state s0

and write, for example, p
σ

=⇒ s1 instead of s0
σ

=⇒ s1.
We now define a number of functions that we use on labelled transition

systems. We use init(p) to denote the outgoing transitions of a state p in a
labelled transition system. We use traces(p) to denote the set of traces from
a state p of a labelled transition system. We use p after σ to denote the set
of states that we can reach (“end up in”) starting from state p by doing the
transitions in σ, and we use P after σ to denote the set of states that we can
reach by doing the transitions in σ when starting from a set of states P . The
expression P refusesA is true if at least one of the states in P can not “do”
(has no outgoing transition for) any of the labels in A, and also has no outgoing
transition labelled τ . We use der(p) to denote the set of states that we can
reach from state p.

Definition 2.2.3
Consider labelled transition system 〈S,L, T, s0〉, let P ⊆ S, let p, p′ ∈ S, let
A ⊆ L, and let σ ∈ L∗.

1. init(p) =def {µ ∈ Lτ | p µ−−→}
2. traces(p) =def {σ ∈ L∗ | p

σ
=⇒}

3. p after σ =def {p′ | p
σ

=⇒ p′}
4. P after σ =def

⋃
{ p after σ | p ∈ P}

5. P refusesA =def ∃p ∈ P,∀µ ∈ A ∪ {τ} : p
µ−−→/

6. der(p) =def {p′ | ∃σ ∈ L∗ : p
σ

=⇒ p′}
2

A failure trace is a trace consisting of actions and refusals. Each action
reflects a behaviour that a system is able to do, just like in an ordinary trace.
Each refusal reflects behaviour that a system is not able to do. A refusal is
represented by the set of actions A ⊆ L that the system is not able to do
(refuses to do) in a particular state. We only allow refusals in stable states

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

29

(states without outgoing τ transition). We can extend a labelled transition
system with refusal transitions to make the refusals explicit. We do this by
adding a self loop transition to each stable state. The self loop transition is
labelled with the set of actions refused in that stable state. Formally, the refusal
transition p A−−→ p for a state p in a labelled transition system means that p

µ−−→/
for any µ ∈ (A ∪ {τ}). We use Ftraces(p) to denote the set of failure traces
from a state p of a labelled transition system. In its definition we use P(L) to
denote the powerset of L: the set of all subsets of L: P(L) =def {L′ | L′ ⊆ L}.

Definition 2.2.4
Consider labelled transition system 〈S,L, T, s0〉, let P ⊆ S, let p, p′ ∈ S, let
σ ∈ L∗, and let A ⊆ L.

1. p A−−→ p′ =def p = p′ and ∀µ ∈ (A ∪ {τ}) : p
µ−−→/

2. Ftraces(p) =def {φ ∈ (L ∪ P(L))∗ | p φ
=⇒}

2

We now define the class of transition systems that we will use as the basic
class for our models. We will denote it as LT S(L).

Definition 2.2.5
Consider labelled transition system 〈S,L, T, s0〉, and let p ∈ S.

1. p has finite behaviour if there is a natural number n such that all traces
in traces(p) have length smaller than n

2. p is finite state if the number of reachable states der(p) is finite.
3. p is deterministic if, for all σ ∈ L∗, p after σ has at most one element.

If σ ∈ traces(p), then p after σ may be overloaded to denote this element.
4. p is image finite if, for all σ ∈ L∗, p after σ is finite.
5. p is strongly converging if there is no state of p that can perform an infinite

sequence of internal transitions.
6. LT S(L) is the class of all image finite and strongly converging labelled

transition systems with labels in L.
2

The restriction of LT S(L) to image finite and strongly converging transition
systems makes it possible to algorithmically compute an after -set. As we will
see in Algorithm 2.2.18 on page 39, this computation is a crucial element of our
test derivation algorithm.

We let two labelled transition systems p and q interact by composing them
in parallel, denoted by p‖q. The systems that are composed in parallel must
synchronise on identical labels. This means that for an observable action a ∈ L
to “happen” (i.e. p‖q a−→) both labelled transition systems must be willing to
“do” action a, i.e. in both systems action a must be enabled (thus: p a−→ and
q a−→). If that is the case, both systems do the corresponding transition at the
same moment. When both systems offer more than one interaction then it is
assumed that by some mysterious negotiation mechanism they will agree on a
common interaction. A system can autonomously decide to “do” an internal
action (a transition labelled with τ). As a consequence, a system can only
make progress on observable actions in cooperation with its environment (and

30

2

CHAPTER 2. THEORETICAL FOUNDATION

autonomously, by τ transitions). If an observable action is enabled in one system
but not in the other (not even after performing τ transitions), the action cannot
“happen” and the latter system is said to block the action.

Definition 2.2.6
We define operator ‖ : LT S(L)×LT S(L)→ LT S(L) by the following inference
rules:

1. p τ−−→ p′ ` p‖q τ−−→ p′‖q
2. q τ−−→ q′ ` p‖q τ−−→ p‖q′
3. p a−→ p′, q a−→ q′, a ∈ L ` p‖q a−→ p′‖q′

2

This way of composing systems gives us synchronous symmetric communic-
ation between a system and its environment. We call it synchronous because
when an interaction occurs, it occurs at exactly the same time in both com-
posed systems. We call it symmetric because all actions are treated in the same
way for both communicating partners – there is no notion of input or output,
initiative or direction. We depict this in Figure 2.4.

system environment

Figure 2.4: Symmetric communication between system and environment

Inputs and Outputs We have seen that with labelled transition systems we
have synchronous symmetric communication between a system and its envir-
onment. There is no notion of initiative or direction, nor of input or output
associated with this kind of communication.

Many real systems do not abstract from initiative and direction: they make
a distinction between actions initiated by their environment, i.e. inputs, and
actions initiated by themselves, i.e. outputs. To model such systems, our form-
alism needs to be able to express asymmetric communication between a system
and its environment, as depicted in Figure 2.5.

system environment

Figure 2.5: Asymmetric communication between system and environment

We define labelled transition systems with inputs and outputs to model sys-
tems for which the set of actions is partitioned into input actions contained in
an input label set LI and output actions contained in an output label set LU .

Definition 2.2.7
A labelled transition system with inputs and outputs is a 5-tuple 〈S,LI , LU , T, s0〉
where

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

31

◦ 〈S,LI ∪ LU , T, s0〉 is a labelled transition system in LT S(LI ∪ LU);
◦ LI and LU are countable sets of input labels and output labels, respect-

ively, which are disjoint: LI ∩ LU = ∅.
The class of labelled transition system with inputs in LI and outputs in LU

is denoted as LT S(LI , LU).

2

Instantiation of the formal framework We now instantiate SPECS in the
formal framework.

For specifications we allow the use of labelled transition systems, or any
formal language with a labelled transition system semantics. The actions of
the transition system must be known, and, it must be possible to partition
the actions into inputs and outputs, denoted by LI and LU respectively. No
restrictions are imposed on inputs or outputs. So, we instantiate SPECS with
LT S(LI , LU).

Notation for Labelled Transition Systems

To denote a labelled transition system we use at some places in this thesis
a notation that is based on notation that is used in process-algebra [BPS01,
Fok00], for example in definition 2.2.13 on page 34 and Algorithm 2.2.18 on
page 39.

This notation denotes the behaviour of so-called processes, in terms of the
temporal ordering of actions. This ordering is expressed using behaviour-expressions.
We construct these behaviour expressions using three operators: “;”, “+” and
“
∑

”. Each behaviour expression that we construct with these operators cor-
responds to a labelled transition system, in which the actions correspond to
transitions labelled with the action names.

We use the action-prefix operator “;” to denote that a given action is fol-
lowed by subsequent behaviour: B ::= a;B′. For example, p := a; p′ denotes
a transition system with state set {p, p′}, label set {a}, transition p a−→ p′, and
initial state p.

The summation operator “+” denotes a choice between behaviours: B ::=
B1 +B2. In the corresponding labelled transition system we have transitions for
B ::= B1 and for B := B2. For example, p0 := a; pa + b; pb denotes a transition
system with state set {p0, pa, pb}, label set {a, b}, transitions {p0

a−→ pa, p0
b−→ pb}

and initial state p0.

The operator
∑

generalises the summation operator to operate on a set of
behaviours: B :=

∑
Bi. In the corresponding labelled transition system we

have transitions for each B ::= Bi. For example, p0 :=
∑
{xi; pxi | xi ∈ {a, b}}

denotes a transition system with state set {p0, pa, pb}, label set {a, b}, transitions

{p0
a−→ pa, p0

b−→ pb} and initial state p0.

We denote cycles by writing a recursive behaviour expression: p := a; p
denotes a state p with a self-loop p a−→ p.

32

2

CHAPTER 2. THEORETICAL FOUNDATION

2.2.2 Implementations and Implementation Models

Input-output Transition Systems

The formalism labelled transition systems with inputs and outputs allows us to
distinguish between inputs and outputs. However, to allow a system to make
progress autonomously on the actions that it initiates, we need something more.

The formalism of input-output transition systems allows us to model systems
with inputs and outputs, in which outputs are initiated by the system and
never refused by the environment, and inputs are initiated by the system’s
environment and never refused by the system. This means that the system is
always prepared to perform any input action, i.e. all inputs are always enabled
in all states. We say that the system is input-enabled .

Definition 2.2.8
An input-output transition system is a labelled transition system with inputs and
outputs 〈S,LI , LU , T, s0〉 where all input actions are enabled in any reachable
state:

∀s ∈ der(s0),∀a ∈ LI : s
a

=⇒

We use IOT S(LI , LU) ⊆ LT S(LI , LU) to denote the class of input-output
transition systems with input actions in LI and output actions in LU .

2

Quiescence

When we let two input-output transition systems interact and make sure that
the inputs of the one are the outputs of the other and vice versa, an input-
output transition system can autonomously decide to perform output actions
because its environment will always accept them. In states where output actions
are enabled it can autonomously decide whether to continue or not. However,
in (stable) states where no output actions are enabled it has to wait for the
environment to provide the next input action. If that is the case, we say that
the system is quiescent or suspended. A state in which no output actions are
enabled is called a quiescent state.

We use δ(p) to denote that state p is quiescent. A state p is quiescent if

∀µ ∈ (LU ∪ {τ}) : p
µ−−→/ . We use the special action δ /∈ (L ∪ {τ}) to represent

quiescence. We can extend a labelled transition system to make the quiescence
explicit by adding self loops with label δ, i.e. p δ−→ p. Suspension traces are
traces of a system in which action δ may occur. We use Straces(p) to denote
the set of suspensions traces from a state p of a labelled transition system.

Definition 2.2.9
Let p ∈ LT S(L).

1. Straces(p) =def {φ ∈ (L ∪ {δ})∗ | p φ
=⇒}

2

In a way, quiescence can be seen as refusal of all output actions. So, we can
also see a suspension trace as a failure trace where all refusals are (LU ∪ {τ}),
i.e. δ.

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

33

For input-output transition systems we use out(p) to denote the set contain-
ing all output actions that are enabled in state p. If p is quiescent we add δ to
out(p). We use LδU to denote LU ∪ {δ}.

Definition 2.2.10
Let p be a state in a transition system, and P be a set of states, then

1. out(p) =def {x ∈ LU | p x−−→} ∪ {δ | δ(p)}
2. out(P) =def

⋃
{out(p) | p ∈ P}

2

We use in(p) to denote the set containing all input actions that are enabled
in state p.

Definition 2.2.11
Let p be a state in a transition system, and P be a set of states, then

1. in(p) =def {a ∈ LI | p a−→}
2. in(P) =def

⋃
{in(p) | p ∈ P}

2

Suspension Automaton

From a labelled transition system with inputs, outputs and quiescence we can
create a deterministic transition system of which the traces are the suspension
traces of the original system, as follows. We first make quiescence explicit in
the system by adding self loops with label δ, i.e. p δ−→ p for all quiescent states,
after which we determinize the resulting automaton. The resulting deterministic
transition system is referred to as a suspension automaton.

Definition 2.2.12

Let p = 〈S,LI , LU , T, s0〉 ∈ LT S(LI , LU) be a labelled transition system,
with inputs and outputs, then the suspension automaton of p, Γp, is the labelled
transition system 〈SΓ, LI , L

δ
U , TΓ, q0〉, where

SΓ =def P(S) \ {∅}
LδU =def LU ∪ {δ}
TΓ =def {q a−→ q′ | a ∈ LI ∪ LU , q, q′ ∈ SΓ, q

′ = {s′ ∈ S | ∃s ∈ q : s
a

=⇒ s′}}
∪{q δ−→ q′ | q, q′ ∈ SΓ, q

′ = {s ∈ q | δ(s)}}
q0 =def {s′ ∈ S | s0

ε
=⇒ s′} 2

We consider δ to be an output action of a suspension automaton, i.e. it has LI
as inputs and LU ∪{δ} as outputs. A suspension automaton is deterministic. In

the suspension automaton σ−−→ and
σ

=⇒ coincide. The traces of a suspension
automaton Γp are identical to the suspension traces of the original system p.
Each state q ∈ SΓ of suspension automaton Γp coincides with (is) a set of states
Q ⊆ S of the original system p: the set of states p after σ that is reached
by σ, a suspension trace of p. Such a state has (outgoing) transitions q a−→ q′

for each input label a ∈ in(q) and each output (or quiescence) label a ∈ out(q).
Furthermore σ is a trace of Γp iff out(Γp after σ) 6= ∅, because the set of states
P ′ that we reach by a valid suspension trace from p either has at least one state
with an outgoing output action, or contains at least one quiescent state. In
either case out(P ′) 6= ∅.

34

2

CHAPTER 2. THEORETICAL FOUNDATION

Instantiation of the formal framework We now instantiate MODS and
IMPS in the formal framework.

We assume that implementations can be modelled as labelled transition sys-
tems over the same inputs LI and outputs LU as the specification. Moreover,
we assume that implementations can always perform all their inputs, i.e. any
input action is always enabled in any state. So, we instantiate MODS with
IOT S(LI , LU).

For IMPS we allow any computer system or program which can be modelled
as an input-output transition system, i.e. a system that has distinct inputs and
outputs, where inputs and outputs can be mapped one-to-one on LI resp. LU ,
and where inputs can always occur.

2.2.3 Tests

We now define the formalisation of test cases. A test case specifies the exper-
iment that we want to conduct on an implementation. We use a special kind
of input-output transition system for test cases. It will synchronise with the
implementation, and it will use δ to represent the observation of quiescence.
We want tests to be finite (we will never be able to run an infinite test in finite
time). We want to have maximal control over the testing. Therefore, we want
tests to be deterministic. A test should not allow the choice between multiple
input actions. However, the test should be input-enabled for all outputs of the
implementation (to avoid blocking the implementation when it wants to provide
output). Note that we do not regard quiescence to be an output of the imple-
mentation – it is something that we observe during test execution, typically
when a timer expires. As a consequence each state of a test case is either a sink
state (accepting all outputs of the implementation) or a state that offers exactly
one input to the implementation (and accepts all outputs of the implementa-
tion), or a state that accepts all outputs of the implementation and quiescence.
Each test execution should result in a verdict, pass or fail, which we achieve
by labelling the sink states with pass and fail.

Definition 2.2.13
A test case t for an implementation with inputs in LI and outputs in LU is an
input-output transition system 〈S,LU , LI ∪ {δ}, T, s0〉 ∈ IOT S(LU , LI ∪ {δ})
such that:

1. t is deterministic and is finite state
2. S contains special states pass and fail, pass 6= fail, with

pass :=
∑
{x; pass | x ∈ LU ∪ {δ}}

fail :=
∑
{x; fail | x ∈ LU ∪ {δ}}

3. t has no cycles except those in states pass and fail
(formally: for σ ∈ (L ∪ {δ})∗ \ {ε} : q

σ
=⇒ q implies q = pass or q = fail)

4. for any state p ∈ S of the test case
either init(p) = {a} ∪ LU for some a ∈ LI ,
or init(p) = LU ∪ {δ}

The class of test cases for implementations with inputs LI and outputs LU
is denoted as T T S(LU , LI).

A test suite T is a set of test cases: T ⊆ T T S(LU , LI).

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

35

2

Instantiation of the formal framework We instantiate TESTS of the
formal framework with T T S(LU , LI).

Bibliographic note Initial publications of the theory that we summarise in
this chapter defined test cases that were not input enabled [Tre96]. Only re-
latively recently that initial theory has been enhanced with the definition of
input-enabled test cases, and with corresponding changes to the test derivation
algorithm [Tre08].

2.2.4 Test Execution, Observations and Verdicts

When a test is executed outputs of the specification (i.e. outputs of the test case)
are inputs for the implementation and vice versa. To reduce possible confusion
we will use the term stimulus for an output of a test case (i.e. an input to the
implementation) and response for an output of the implementation (i.e. an input
to the test case).

Execution of a test case on an implementation is modelled by parallel com-
position of the test case and the implementation, where inputs of the test case
synchronise with outputs of the implementation and vice versa. Note that in
case of quiescence the test case and the implementation synchronise on δ. Test
execution takes place until the test case reaches one of its sink states. Reaching
a sink state is guaranteed by the special structure of a test case. The verdict of
a test run is given by the label of the sink state (pass or fail).

Definition 2.2.14

1. A test run of test case t ∈ T T S(LU , LI) and implementation i ∈ IOT S(LI , LU)
is a trace of the synchronous parallel composition t‖i leading to one of the
sink states of t:

σ is a test run of t and i =def ∃i′ : t‖i σ
=⇒pass‖i′ or t‖i σ

=⇒ fail‖i′

2. Implementation i passes test case t if all their test runs lead to a sink state
of t with label pass:

i passes t =def ∀σ ∈ L∗δ ,∀i′ : t‖i /
σ

=⇒ fail‖i′

3. Implementation i passes test suite T if it passes all test cases in T :

i passes T =def ∀t ∈ T : i passes t

If i does not pass test suite T , it fails:

i fails T =def ∃t ∈ T : i /passes t

2

36

2

CHAPTER 2. THEORETICAL FOUNDATION

Instantiation of the formal framework We can now instantiate OBS , obs,
and vt in the formal framework

As observations we can use logs of actions, i.e. traces over L ∪ {δ}, so OBS
is instantiated with (L ∪ {δ})∗.

We can define the observation function using the test runs we have defined.
It restricts OBS to those observations that can be obtained from test runs for
given t and i:

obs(t, i) =def {σ ∈ (L ∪ {δ})∗| σ is a test run of t and i} (2.10)

An implementation i passes a test case t if all their test runs lead to a state
labelled pass of t. We rephrase this in terms of the testing framework by defining
the verdict functions that assign a verdict to set of observations O ⊆ OBS as:

vt(O) =def

{
pass if ∀σ ∈ O : t

σ
=⇒pass

fail otherwise

2.2.5 Implementation Relation

Two elements of the formal framework now remain to be instantiated: the
relation imp and the corresponding test derivation algorithm genimp. We have
already defined TESTS , which imposes constraints on genimp.

As said in the introduction to this chapter, we will use implementation re-
lation ioco. Informally, ioco requires that all outputs produced by the im-
plementation during test runs can be predicted by the specification. Also all
absence of output (quiescence) of the implementation must be predicted by the
specification.

Definition 2.2.15
i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

2

Instantiation of the formal framework We instantiate imp of the formal
framework with ioco.

Generalisations and Extensions

We discuss a few of the generalisations and extensions of ioco that have been
proposed in the literature. Section 4.2 of [Tre08] contains a more elaborate
overview.

iocoF Relation ioco is a specific instance of a family of implementation rela-
tions iocoF .

Definition 2.2.16
i iocoF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ)

2

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

37

The relations in iocoF differ in F : the traces that they consider for the test
runs.

One such difference is whether or not the traces can contain (multiple oc-
currences of) quiescence. Another difference is whether all possible traces are
considered, or only those that are present in the specification.

If only those traces are considered that are present in the specification, then
the implementation is free to implement additional functionality as long as it
is triggered by an input that is not enabled at that point in the specification.
During testing this additional functionality will not be reached because the
tester will never apply the stimulus that triggers it.

If all possible traces are considered the relation is more strict. In that case
all behaviour of the implementation after an input that was not enabled at
that point in the specification will result in failures, due to the definition of
out: if σ ∈ Straces(s) and a ∈ LI and σ ·a 6∈ Straces(s) then s after σ ·a =
∅ and thus out(s after σ ·a) = ∅, whereas, assuming σ ·a ∈ Straces(i) then
P = i after σ ·a 6= ∅, which means that there is at least one state p ∈ P .
State p will either be quiescent or non-quiescent. If state p is quiescent, δ ∈
out(P) 6= ∅; if state p is non-quiescent, there is at least one output action
x ∈ LU that is enabled in p, and thus x ∈ out(P) 6= ∅. In both cases we have that
out(i after σ ·a) 6= ∅ whereas out(s after σ ·a) = ∅ and thus out(i after σ ·a) 6⊆
out(s after σ ·a).

In the remainder of this thesis we do not consider the general family of
implementation relations iocoF , but only its specific instance ioco for which
F = Straces(s).

miocoF In [Hee98] an implementation relation is presented that generalises
iocoF : miocoF . Relation iocoF (implicitly) deals with a single communic-
ation channel between a system and its environment (or, to be more precise,
with two uni-directional channels), such that a property like quiescence is per-
ceived as a global property of a system. In contrast, miocoF allows multiple
communication channels between a system and its environment, where quies-
cence is a per-channel property (i.e. the implementation may be quiescent on
one channel, and simultaneously producing output on another one). In addi-
tion, iocoF assumes (depends on) input-completeness of the implementation,
whereas miocoF also allows input-suspension, i.e. allows the implementation
to refuse input, again per channel.

Where for iocoF implementations are modelled as input-output transition
system and the label set L is partitioned in input label set LI and output
label set LU , for miocoF implementations are modelled as multi input-output
transition systems in which LI is partitioned into multiple disjoint sets of input
labels LjI and LU is partitioned into multiple sets of output labels LkU , each of
which corresponds to a uni-directional input or output communication channel
between the implementation and its environment. Each of the input and output
label sets has its own special action δji or δku to represent input suspension resp.
quiescence on the corresponding channel.

In [Hee98] it is shown that iocoF is a special case of miocoF . Also a test de-
rivation algorithm is given for miocoF , of which soundness and exhaustiveness

38

2

CHAPTER 2. THEORETICAL FOUNDATION

is proved.

uioco Relation uioco, presented in [vdBRT04] was designed to better handle
specifications that are not input-enabled and therefore underspecified . When a
specification is not input-enabled and contains non-determinism it may occur
that we get test failures that were not intended. This may happen when during
test execution, at a point where the current tester S state consists of multiple
specification states, we chose to apply an input a that is enabled in some, but
not all states in S. For those states in S for which a is not enabled, we effectively
did not specify how the implementation should behave after input a. However,
when judging the behaviour of the implementation after a, ioco only considers
the behaviour in states S after a as correct. This ignores the possibility that
the implementation might have been in a state that corresponds with a state in
S in which a was not enabled, and because of that produced output, or did not
produce output, in a way that is not accounted for in the specification – leading
to an unexpected observation, and a fail verdict.

With relation uioco this is resolved by not using the Straces of the specific-
ation for testing, but a subset of it, the Utraces that only contains those input
actions that are not underspecified.

Definition 2.2.17
Consider input-output transition system i ∈ IOT S(Li, LU), and labelled trans-
ition system with inputs and outputs s ∈ LT S(LI , LU).

1. Utraces(s) =def {σ ∈ Straces(s) | ∀σ1, σ2 ∈ L∗, a ∈ LI :
σ = σ1 ·a·σ2 implies not s after σ1 refuses {a} }

2. i uioco s =def i iocoUtraces(s) s
2

tiocoM , rtioco For testing with (real-)time, various extensions of ioco have
been proposed, of which we mention tiocoM , presented in [BB04], and rtioco,
presented in [LMN05]. For an overview of relations for timed testing, see [ST08].

sioco Relation sioco, presented in [FTW05] extends ioco for testing in a
setting where actions are parameterised with data, and where the data is treated
in a symbolic way to avoid state explosion during test derivation. It does not
alter ioco, but only gives a presentation of the relation in case data variables
and parameters are involved.

2.2.6 Test Derivation

There are several algorithms to derive tests for iocoF or ioco in the literature.
Most of these derive the non-input enabled test cases of [Tre96]. We are aware
of only one that derives input-enabled test cases.

For non-input-enabled test cases We first discuss the older algorithms
that derive non-input-enabled test cases. They differ in two aspects. They
differ in whether they derive tests directly from the specification, other via an

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

39

intermediate structure, and they differ in whether the set of traces that they
consider (as denoted by F) is made explicit in the algorithm.

We are aware of two algorithms to derive tests for iocoF . Both these al-
gorithms make the set of traces that are considered, denoted by F , explicit in
the algorithm. Both these algorithms do not derive tests for arbitrary F but
only for suspension traces of the specification (F = Straces(s)). Algorithm 6.2
of [Tre96] does not derive the tests directly from the (traces of the) specifica-
tion but from (traces of) an intermediate structure, the suspension automaton
as defined in definition 2.2.12. The algorithm given in Figure 7.9 of [Hee98]
derives tests directly from the specification, i.e. it does not need the interme-
diate suspension automaton. Algorithm 5.3.2 of [Tre02] derives tests directly
for ioco, directly from the specification. In this algorithm F is not explicitly
present.

For input-enabled test cases Algorithm 1 of [Tre08] derives input-enabled
tests directly for ioco, directly from the specification. In this algorithm F is
not explicitly present. We paraphrase this algorithm below in algorithm 2.2.18.

Algorithm 2.2.18
Let s ∈ LT S(LI , LU) be a specification, and let S be a non-empty set of states
with initially S = s after ε . A test case t ∈ T T S(LU , LI) is obtained from
S by a finite number of recursive applications of one of the following three
nondeterministic choices (rules). The resulting test case has a tree structure.
Initially the tree consists of just the root node which acts as a placeholder to be
expanded. Each rule expands a placeholder node, but may also add new place-
holders node. Below we use white (non-filled) nodes to represent placeholders
and dark (filled) nodes to represent placeholders that have been expanded. In
the rules we use a process-algebraic notation to denote the construction of the
tree that is explained where we use it.

Initially, the tree consists of just the root node which acts as a placeholder
to be expanded. This corresponds to a transition system with a single state
that is not pass or fail.

t

The rules are:

1. (* terminate the test case; stop the recursion in the algorithm *)
t := pass

pass
LU ∪ {δ}

This rule turns a placeholder t into a sink state pass. In this state any
output from the implementation (including quiescence) is accepted.

40

2

CHAPTER 2. THEORETICAL FOUNDATION

2. (* give a next input to the implementation, but be prepared to accept
output *)
t := a; ta

+
∑
{xi; txi

| xi ∈ LU ∧ xi ∈ out(S)}
+

∑
{xj ; fail | xj ∈ LU ∧ xj 6∈ out(S)}

where a ∈ LI , S after a 6= ∅ (i.e. a ∈ in(S))
and ta is obtained by recursively applying the algorithm on S after a
and for each xi ∈ out(S), txi

is obtained by recursively applying the
algorithm for the set of states S after xi .

ta

a

tx1
txi

xi ∈ LU ∩ out(S)

fail fail

xj ∈ LU \ out(S)

fail

LU ∪ {δ}

fail

LU ∪ {δ}

This rule extends the tree by turning a placeholder t into a non-leaf node
by creating from it a whole set of edges: one for the input that we want to
give, and one for each output label (but not for quiescence). The edge for
the input is labelled with an input action a, arbitrarily chosen from the
input actions enabled at this point. This edge points to a newly created
placeholder ta. Those edges that correspond to output actions that are
not present in (expected by) the specification at that point lead to a sink
state fail. Those edges that correspond to output actions that are present
in the specification lead to newly created placeholders. Note that here
we only accept immediate “pending” output actions – we do not accept
quiescence, because during test execution we do not intend to wait at this
point until quiescence is detected.

3. (* check the next output of the implementation *)
t :=

∑
{xi; txi

| xi ∈ (LδU) ∧ xi ∈ out(S)}
+

∑
{xj ; fail | xj ∈ (LδU) ∧ xj 6∈ out(S)}

where txi
is obtained by recursively applying the algorithm on S after x .

tx1
txk

xi ∈ (LU ∪ {δ}) ∩ out(S)

fail fail

xj ∈ (LU ∪ {δ}) \ out(S)

fail

LU ∪ {δ}

fail

LU ∪ {δ}

2.2. INSTANTIATING THE FORMAL FRAMEWORK

2

41

This rule extends the tree by turning a placeholder t into a non-leaf node by
creating from it a whole set of edges, one for each output label (including
quiescence). Those edges that correspond to output actions or quiescence
states that are not present in (expected by) the specification at that point
lead to a sink state fail. Those edges that correspond to output actions
(or quiescent states) that are present in the specification lead to newly
created placeholders.

2

Each run of algorithm 2.2.18 produces a test case. Each test case so pro-
duced is sound by construction, by the following reasoning. (Proofs of soundness
and exhaustiveness for derivation of non-input-enabled test cases can be found
in [Tre96]. We are not aware of publications that give these proofs for the case of
input-enabled test cases.) The tests only lead to fail verdicts when outputs are
checked. In every step where outputs are checked (say, after performing trace σ)
the only outputs x that lead to fail states are those for which x 6∈ out(s after σ).
The other outputs lead to pass or test deeper. So, the only way for an imple-
mentation to fail the test is to produce an output x 6∈ out(s after σ). However,
in that case the implementation does not conform to ioco because the produced
output x ∈ out(i after σ) 6⊆ out(s after σ) because x 6∈ out(s after σ).

Each run of the algorithm contains a number of non-deterministic choices: in
each recursive step (i.e. for each placeholder) a rule has to be chosen. In addition,
when applying a stimulus in rule 2, a stimulus has to be chosen from LI . By
choosing differently in different runs of the algorithm we obtain different test
cases. If we run the algorithm repeatedly and choose differently in a systematic
way we eventually end up with a (possible infinite) test suite containing all
possible tests that can be derived from the specification.

It has been shown in [Tre96] that the resulting (possibly infinite) test suite
(of non-input enabled test cases) is exhaustive.

The fact that a possibly infinite test suite is exhaustive may seem to be of
little practical value. However, the fact that the test suite is exhaustive, even if
only “in the limit” demonstrates that the test derivation algorithm does consider
all possible test cases that “in the limit” find (detect) all possible errors. This
means that there are no inherent “blind spots” in the algorithm.

Definition 2.2.19
Let s ∈ LT S(LI ∪ LU) be a specification and Ts be the set of all test cases
that can be derived from s with algorithm 2.2.18, then we define genioco :
LT S(LI , LU)→ P(T T S(LU , LI)) as follows:
genioco =def a test derivation function such that genioco(s) ⊆ Ts

2

Instantiation of the formal framework We instantiate genimp of the
formal framework with genioco.

42

2

CHAPTER 2. THEORETICAL FOUNDATION

2.2.7 Overview

To conclude our discussion of how we instantiate the framework we present in
Table 2.2 on the current page an updated version of Table 2.1 on page 26, in
which the instantiations that we have chosen are shown.

physical ingredients:
black-box implementation IUT can be any computer system or

program which can can be modelled as
input-output transition system, where
inputs and outputs can be mapped one-
to-one on LI resp. LU and inputs can
always occur

execution of a test case EXEC(t, IUT): physical execution of
test case t on IUT; may involve multiple
runs, e.g. to cater for non-determinism

formal ingredients:
specification s ∈ LT S(LI , LU)
model of implementation iIUT ∈ IOT S(LI , LU)
implementation relation ioco

test case t ∈ T T S(LU , LI)
observations (L ∪ {δ})∗
model of execution of a
test case

obs : T T S(LU , LI)×IOT S(LI , LU)→
P((L ∪ {δ})∗)

verdict functions vt : P((L ∪ {δ})∗)→ {pass, fail}
test derivation algorithm genioco : LT S(LI , LU) →

P(T T S(LU , LI))

assumptions:
test hypothesis for all IUT some iIUT models IUT

obs(t, iIUT) models EXEC(t, IUT)

prove obligations:
soundness genioco is sound for any s ∈

LT S(LI , LU)
exhaustiveness genioco is exhaustive for any s ∈

LT S(LI , LU)

Table 2.2: Our instantiation of the ingredients of the formal testing framework

2.3. FORMAL FRAMEWORK FOR OBSERVATION OBJECTIVES

2

43

2.3 Formal Framework for Observation Object-
ives

We now extend the framework of Section 2.1 with observation objectives.
An observation objective describes the observations that we wish to see from

the implementation during a test. Whether an implementation is able to show
these observations is called exhibition: an implementation exhibits an observa-
tion objective if it has the possibility to show the observations described in the
observation objective. The idea is that this notion of exhibition is orthogonal
to correctness.

We assume TOBS to be the set of all observation objectives, and thus ob-
servation objective e ∈ TOBS . The relation exhibits ⊆ IMPS ×TOBS relates
an observation objective with all implementations that are able to exhibit that
observation objective. Now we would like to have a formal relation between e
and IUT, but as we have seen in the framework for conformance testing, the
implementation is not a formal object. Again we link the informal, experimental
world and the formal world by making the assumption of the testing hypothesis,
and we formally express the relation between exhibition of observation objectives
by (models of) implementations as the reveal relation rev ⊆ MODS × TOBS .
We can now mirror the informal relation exhibits between IMPS and TOBS
in the informal world by the (formal) relation rev between MODS and TOBS
in the formal world, as depicted in Figure 2.6, and we say that IUT satisfies an
observation objective e, i.e. IUT exhibits e, if and only if relation rev holds
between iIUT and e: iIUT rev e.

observation objectives
TOBS

implementations
IMPS

IUT exhibits e

observation objectives
TOBS

models of
implementations

MODS

iIUT rev e

Physical world Formal world

Figure 2.6: Relating implementations and implementation models with obser-
vation objectives.

To decide whether an implementation exhibits an observation objective we
use testing, and interpret the observations obtained by the experiments. Like in
the framework for conformance testing, we associate a verdict with the result of
executing a test on an implementation. We formalise this using a family of hit
functions He : P(OBS)→ {hit,miss}. Here hit expresses that we have found
evidence during experimenting that the implementation is able to exhibit a given

44

2

CHAPTER 2. THEORETICAL FOUNDATION

observation objective. We can now define what it means to hit an observation
objective by a test, where te is a test case related to an observation objective e,
i.e. developed based on e.

IUT hits e by te =def He(EXEC(te, IUT)) = hit (2.11)

This is extended to hitting an observation objective by a test suite Te (note how
this differs from the extension for passing a test suite, cnf. Equation 2.4)

IUT hits e by Te =def He(∪{EXEC(t, IUT) | t ∈ Te}) = hit (2.12)

An implementation misses a test suite Te if it does not hit:

IUT misses e by Te =def ¬(IUT hits e by Te) (2.13)

We now make a connection between exhibits and hits. Analogous to con-
formance testing, we can introduce notions of completeness, exhaustiveness and
soundness. We call a test suite e-exhaustive when it only can detect non-
exhibiting implementations. Formally:

IUT exhibits e by Te ⇒ IUT hits e by Te (2.14)

We call a test suite e-sound when it only can detect exhibiting implementations.
Formally:

IUT exhibits e by Te ⇐ IUT hits e by Te (2.15)

We call a test suite e-complete when it can distinguish among all exhibiting and
non-exhibiting implementations. Formally:

IUT exhibits e by Te ⇔ IUT hits e by Te (2.16)

To reason whether a test suite is able to challenge an implementation to
exhibit an observation objective and is able to detect all exhibiting implement-
ations, we have to show e-soundness and e-completeness of such a test suite,
i.e. we have to prove, on the level of models, the left-to-right resp. right-to-left
implication of:

∀i ∈ MODS : i rev e⇔ He(∪{obs(te, i) | te ∈ Te}) = hit (2.17)

Finally, we have to decide which relation we want between correctness and
exhibition.

For a practical approach to conformance testing using exhibition we choose
our observation objectives e such that

{i | i rev e} ∩ {i | i imp s} 6= ∅ (2.18)

This is visualised in Figure 2.7. (This scenario for the intersection of i rev e
and i passes T is, together with three other possible scenarios, discussed in
greater detail in [dV01].) Here i imp s is the set of all conforming models of
the implementation, i passes T is the set of all models that pass a sound test
suite of T , and i rev e is the set of models that exhibit observation objective

2.3. INSTANTIATING THE FORMAL FRAMEWORK FOR OBS. OBJ.

2

45

i rev e

i imp s

i passes T

Figure 2.7: Practical approach towards combining exhibition and conformance

e (this latter set corresponds to the set of IUT hits e by Te with Te being an
e-complete test suite).

We have most confidence in the correctness of an implementation that con-
forms and exhibits (verdict 〈pass,hit〉). However, we might still find an imple-
mentation that is correct, but does not exhibit (which corresponds to the notion
of the inconclusive verdict [ISO91]), or an implementation that is incorrect and
exhibits.

From such an observation objective e and formal specification s we derive a
test suite Ts,e that is e-complete and sound. After execution of Ts,e we reject
an implementation that gives a fail verdict. We have an increased confidence
in the correctness when the test result evaluates to a 〈pass,hit〉 verdict. An
experiment that evaluates to a 〈pass,miss〉 verdict has not found any evidence
of non-conformance of the implementation, but has also not detected any beha-
viour that supports our confidence in the correctness of the implementation.

To conclude our discussion of the extension of the framework for conformance
testing with we give an overview of the elements that we have seen in Table 2.1.

2.4 Instantiating the Formal Framework for Ob-
servation Objectives

We now instantiate the framework for exhibition presented in Section 2.3 with
the ioco theory of Section 2.2.

2.4.1 Reveal Relations

We instantiate the framework of Section 2.3 with the ioco theory. We inherit
TESTS = T T S(LU , LI), OBS i = (L ∪ {δ})∗, and MODS = IOT S(LI , LU).

Singular observation objectives We first consider singular observation ob-
jectives. A singular observation objective can be exhibited by one observation
of a test case execution.

We take as specification of the observation objective a set of traces from L∗δ .
So TOBS = P(L∗δ) and we instantiate rev ⊆ IOTS(LI , LU)×((LI∪LU∪{δ})∗).

We define the reveal input output singular relation rios for the singular case.
This relation relates formally all models of implementations that are potentially

46

2

CHAPTER 2. THEORETICAL FOUNDATION

physical ingredients:
black-box implementation IUT belongs to IMPS
execution of a test case EXEC(t, IUT)

formal ingredients:
specification s ∈ SPECS
model of implementation iIUT ∈ MODS
implementation relation imp

observation objective e ∈ TOBS
reveal relation rev

test case t ∈ TESTS
observations OBS
model of execution of a
test case

obs : TESTS ×MODS → P(OBS)

verdict functions vt : P(OBS)→ {pass, fail}
hit functions He : P(OBS)→ {hit,miss}
test derivation algorithm genimp : SPECS → P(TESTS)

assumptions:
test hypothesis for all IUT some iIUT models IUT

obs(t, iIUT) models EXEC(t, IUT)

prove obligations:
soundness genimp is sound for any s ∈ SPECS
exhaustiveness genimp is exhaustive for any s ∈ SPECS
e-soundness genimp is e-sound for any e ∈ TOBS for

which {i | i rev e} ∩ {i | i imp s} 6= ∅
e-exhaustiveness genimp is e-exhaustive for any e ∈

TOBS for which {i | i rev e} ∩ {i |
i imp s} 6= ∅

Table 2.3: The ingredients of the formal testing framework extended with ex-
hibition testing

able to exhibit a singular test objective to that observation objective. A model
of an implementation exhibits the singular test objective if one of its suspension
traces is an element of the observation objective. So a hit-function He for
a singular observation objective evaluates to hit if one of the prefixes of an
observation(test run, i.e. trace from L∗δ) is included in the observation objective.

Definition 2.4.1
Let i ∈ IOT S(LI , LU) be an implementation, O ⊆ L∗δ a set of observations,

2.4. INSTANTIATING THE FORMAL FRAMEWORK FOR OBS. OBJ.

2

47

and e ⊆ L∗δ a singular observation objective, then
1. prefix(O) = {σ1 | σ1 · σ2 ∈ O with σ2 ∈ L∗δ}
2. i rios e =def Straces(i) ∩ e 6= ∅
3. Hrios

e (O) = hit =def prefix(O) ∩ e 6= ∅
2

Plural observation objectives With a singular objective we can only re-
quire the exhibition of one trace from that observation objective. This limits
the expressivity of an observation objective. We want to specify more than one
trace that should be exhibited during the experiment. We can do this with
plural observation objectives. A plural observation objective is composed out of
multiple singular observation objectives, each of which should be individually
exhibited during the execution of the test suite in order to satisfy the composed
(plural) observation objective.

In ioco terms a plural observation objective is a set which is element of
TOBS = P(P(L∗δ)) and the reveal relation is rev ⊆ IOTS(LI , LU)×P(P(L∗δ)).
The exhibition of a plural test objective E requires in general more than one
observation during testing, since seldom ∩{e | e ∈ E} 6= ∅, which can be
satisfied by just one observation. We define the reveal plural relation riop and
the hit-function Hriop

e (O), analogously to the singular case.

Definition 2.4.2
Let i ∈ IOT S(LI , LU) be an implementation, O ⊆ L∗δ a set of observations,
and E ⊆ P(L∗δ) a plural observation objective, then

1. i riop E =def ∀e ∈ E : i rios e
2. Hriop

E (O) = hit iff ∀e ∈ E : Hrios
e (O) = hit

2

2.4.2 Test generation

We first consider the singular case. We have formal definitions of the rev relation
and of the imp relation, resp. as rios and ioco. We want to generate a test
suite that is sound and e-complete. Furthermore we restrict our observation
objective such that {i ∈ MODS | i rios e} ∩ {i ∈ MODS | i ioco s} 6= ∅
(c.f. Section 2.3 Equation 2.18). Observation objectives that are contained in
the suspension traces of the specification (observation objective e ⊆ Straces(s))
satisfy this restriction. For such observation objectives Algorithm 5.6 in [dV01]
derives a test suite that is sound and e-complete, by deriving a test case for
each trace of the observation objective—note that e need not be finite, i.e. it
may contain an infinite number of traces.

Algorithm 2.4.3
Let s ∈ LT S(LI , LU) be a specification, and let e ⊆ Straces(s) ⊆ L∗δ be a
singular observation objective. A test suite T ⊆ T T S(LU , LI) can be obtained
by adding a test case tε,σ to T for every trace of e, i.e. T = {tε,σ | σ ∈ e}. The
test case tε,σ is obtained by application of the following rules:

1. (* terminate the test case when we reach the end of a guidance trace *)
tρ,ε := pass

48

2

CHAPTER 2. THEORETICAL FOUNDATION

2. (* the next item in the guidance trace is an input action a: apply it to the
implementation, and be prepared to accept output, but then terminate
the test case *)
tρ,a·σ′ := a; tρ·a,σ′ with a ∈ LI

+
∑
{xi; pass | xi ∈ LU ∧ xi ∈ out(s after ρ)}

+
∑
{xj ; fail | xj ∈ LU ∧ xj 6∈ out(s after ρ)}

3. (* the next item in the guidance trace is an output action x: check the
next output of the implementation; terminate the test case when the
output is not expected by model or guidance trace. (note that by our
choice that observation objectives are e ∈ Straces(s) it is the case that
x ∈ out(s after ρ)}) *)
tρ,x·σ′ := x; tρ·x,σ′ , with x ∈ LU ∪ {δ}

+
∑
{xi; pass | xi ∈ LU ∧ xi ∈ out(s after ρ) \ {x}}

+
∑
{xj ; fail | xj ∈ LU ∧ xj 6∈ out(s after ρ)}

2

In order to judge if we have found evidence whether an implementation
exhibits the observation objective, we collect all observations during testing,
which gives us a set of test runs. We obtain the exhibition verdict by applying
the hit-function Hrios

e .
The test generation of test suites for plural observation objectives is straight-

forward. We flatten the set of singular observation objectives to one set and
apply Algorithm 2.4.3. So, for specification s ∈ LT S(LI , LU) and plural ob-
servation objective E ⊆ P(Straces(s)) a test suite T ⊆ T T S(LU , LI) can be
obtained by applying Algorithm 2.4.3 with e =

⋃
E. We obtain the exhibition

verdict by applying the hit-function Hriop
E for the set of test runs obtained

during the execution of the test suite.

2.4.3 Including hit and miss verdicts into test cases

In the previous section we gave test derivation algorithm 2.4.3 that derives
tests for ioco and rios, but where we have to apply the hit-function separately
to obtain the exhibition verdict. With on line testing we restrict ourself to
singular observation objectives, which can be exhibited by one observation of
a test case execution (for plural observation objectives we need, by definition,
multiple test runs). If such test case already contains the exhibition verdicts
hit and miss (like it contains the verdicts pass and fail) we do not have to
apply the hit-function separately. We adapt the ioco algorithm that we gave
as Algorithm 2.2.18 on page 39 to support the use of guidance information and
to include the exhibition verdicts into the derived test cases, and present the
result as Algorithm 2.4.5 on the facing page.

The main difference between our adaptation of the ioco algorithm (Al-
gorithm 2.4.5) and Algorithm 2.4.3 (that derives tests for ioco and rios) is
that the latter shows how to derive a test case for a specific individual trace of
the observation objective, where our algorithm essentially does the same random
test derivation as in the ioco algorithm, with the random choices constrained
to follow the observation objective.

2.4. INSTANTIATING THE FORMAL FRAMEWORK FOR OBS. OBJ.

2

49

Extended observation objectives In Algorithm 2.4.3 we considered obser-
vation objectives that are contained in the suspension traces of the specification.
This means that a trace σ, that brings the IUT to a known error, (i.e. it makes
the IUT respond with action x, where σ·x is not in the suspension traces of the
specification) is among the observation objectives that we considered, but trace
σ ·x is not (it isn’t a suspension trace of the specification).

However, we want to be able to use such trace σ.x as observation objective:
on an IUT that contains the error, a test case for it should yield verdict 〈fail,hit〉.

Therefore, for Algorithm 2.4.5 we consider a slightly larger class of observa-
tion objectives. Each trace of the observation objective either is a suspension
trace of the specification, or it is a suspension trace of the specification extended
with one observation that is not in the specification. Such latter trace is of the
form σ ·x with σ ∈ Straces(s) and x ∈ LδU and σ ·x 6∈ Straces(s).

Function out tr We use out tr to denote the output actions (including δ) that
are enabled in state p of a trace of an observation objective (treating δ as an
ordinary output action, without synthesising it—this is where out tr differs from
out).

Definition 2.4.4
Let p be a state in a transition system, and P be a set of states, then

1. out tr (p) =def {x ∈ LδU | p
x−−→}

2. out tr (P) =def

⋃
{out tr (p) | p ∈ P}

2

Algorithm 2.4.5
Let s ∈ LT S(LI , LU) be a specification, and let S be a non-empty set of states
with initially S = s after ε . Let g ∈ LT S(LI , LU ∪ {δ}) be a guidance spe-
cification, and let G be a non-empty set of states with initially G = g after ε .
A test case t ∈ T T S(LU , LI) is obtained from S and G by a finite number
of recursive applications of the following nondeterministic choices (rules). The
resulting test case has a tree structure. Initially the tree consists of just the
root node which acts as a placeholder to be expanded. Each rule expands a
placeholder node, but may also add new placeholder nodes. In the rules we use
the process-algebraic notation that we mentioned at the end of Section 2.2.1 to
denote the construction of the tree. We use ε(p) to denote that at state p the
end of the guidance trace is reached (i.e. p is a sink state). and ε(P) to denote
that ∃p ∈ P : ε(p)1.

The rules are:

1a. (* for when we terminate the test case before we reach the end of a guid-
ance trace; stop the recursion in the algorithm *)
t := 〈pass,miss〉 if 6ε(G)

This rule turns a placeholder t into an end state 〈pass,miss〉.

1In the implementation in TorX and JTorX we typically mark the end of a guidance trace
in an observation objective LTS with a self-loop with label ε.

50

2

CHAPTER 2. THEORETICAL FOUNDATION

1b. (* terminate the test case when we reached the end of a guidance trace;
stop the recursion in the algorithm *)
t := 〈pass,hit〉 if ε(G)

This rule turns a placeholder t into a sink state 〈pass,hit〉.

2. (* give a next input to the implementation, and be prepared to accept
output *)
t := a; ta

+
∑

{xj ; 〈fail,miss〉 | xj ∈ LU ∧ xj 6∈ out(S)
∧ (xj 6∈ out tr (G) ∨ (xj ∈ out tr (G)∧ 6ε(G after xj)))}

+
∑

{xj ; 〈fail,hit〉 | xj ∈ LU ∧ xj 6∈ out(S)
∧ (xj ∈ out tr (G) ∧ ε(G after xj))}

+
∑

{xi; 〈pass,miss〉 | xi ∈ LU ∧ xi ∈ out(S)
∧xi 6∈ out tr (G)}

+
∑

{xi; 〈pass,hit〉 | xi ∈ LU ∧ xi ∈ out(S)
∧ xi ∈ out tr (G) ∧ ε(G after xi)}

+
∑

{xi; txi
| xi ∈ LU ∧ xi ∈ out(S)

∧ xi ∈ out tr (G)∧ 6ε(G after xi)}
where a ∈ LI , S after a 6= ∅ (i.e. a ∈ in(S)) and G after a 6= ∅ (i.e.
a ∈ in(G)),
and ta is 〈pass,hit〉 if ε(G after a),
and otherwise (6 ε(G after a)) ta is obtained by recursively applying the
algorithm on S after a and G after a
and for each xi ∈ out(S), txi

is obtained by recursively applying the
algorithm for the set of states S after xi and G after xi .

With t := a; t′ we mean that we add a state t′ and a transition t a−→ t′.

This rule extends the tree by turning placeholder t into a non-leaf node
by creating from it a whole set of edges: one for the input that we want
to give, and one for each output label (but not for quiescence).

The edge for the input is labelled with an input action a, arbitrarily chosen
from those input actions enabled at this point in the specification that are
also enabled in the guidance information. This edge points to a newly
created node, which is either a newly created placeholder ta, when the
end of the guidance trace is not reached, or sink state 〈pass,hit〉, when
the end of the guidance trace is reached.

Those edges that correspond to output actions that are not present in (ex-
pected by) the specification at that point lead to a sink state that contains
fail. If the output action is not present in the guidance information at
that point, or not the last action of the guidance trace, the sink state also
contains miss; otherwise it contains hit.

Those edges that correspond to output actions that are present in (expec-
ted by) the specification at that point, but are not present in the guidance
information at that point, lead to a sink state that contains 〈pass,miss〉.
Those edges that correspond to output actions that are present in the
specification and are present in the guidance information and are the last

2.4. INSTANTIATING THE FORMAL FRAMEWORK FOR OBS. OBJ.

2

51

action of a guidance information trace lead to a sink state that contains
〈pass,hit〉.
Those edges that correspond to output actions that are present in the spe-
cification and are present in the guidance information but are not the last
action of a guidance information trace lead to newly created placeholders.

3. (* check the next output of the implementation *)
t :=

∑
{xj ; 〈fail,miss〉 | xj ∈ (LδU) ∧ xj 6∈ out(S)
∧ (xj 6∈ out tr (G) ∨ (xj ∈ out tr (G)∧ 6ε(G after xj)))}

+
∑

{xj ; 〈fail,hit〉 | xj ∈ (LδU) ∧ xj 6∈ out(S)
∧ (xj ∈ out tr (G) ∧ ε(G after xj)))}

+
∑

{xi; 〈pass,miss〉 | xi ∈ (LδU) ∧ xi ∈ out(S) ∧ xi 6∈ out tr (G)}
+

∑
{xi; 〈pass,hit〉 | xi ∈ (LδU) ∧ xi ∈ out(S)
∧ xi ∈ out tr (G) ∧ ε(G after xi)}

+
∑

{xi; txi | xi ∈ (LδU) ∧ xi ∈ out(S)
∧ xi ∈ out tr (G)∧ 6ε(G after xi)}

where txi
is obtained by recursively applying the algorithm on S after xi

and G after xi .

This rule extends the tree by turning a placeholder t into a non-leaf node
by creating from it a whole set of edges, one for each output label (in-
cluding quiescence). This rule is very similar to the part of rule 2 that
describes dealing with accepted output: the only difference is that we ac-
cept quiescence here, and we do not accept it (wait for it to be “observed”)
in rule 2.

2

In the algorithm we not only have rules 1a and 1b to end the test case with
a verdict that contains pass, but we also in rules 2 and 3 explicitly test if we
reached the end of a guidance trace. Rule 1a is present for generality, to allow
user interaction during the guided testing: it allows us to give the right verdict
when a user stops testing prematurely (when left alone, the algorithm will never
choose rule 1a). Rule 1b is present only for the case where initially already ε(G);
in rules 2 and 3, we test whether we reached the end of the guidance trace when
we might recursively apply the algorithm.

Comparison with Algorithm 2.2.18 We now compare the guided algorithm
with the non-guided one.

• Both algorithms have a similar structure of (essentially) three rules.

• In both algorithms we can always replace a placeholder by a sink state
with label pass (rule 1).

• In both algorithms we replace a placeholder by an edge leading to a sink
state with label fail (rules 2 and 3) under the same condition on the
specification: xj ∈ LU∧xj 6∈ out(S) (rule 2) resp. xj ∈ (LδU)∧ xj 6∈ out(S)
(rule 3).

52

2

CHAPTER 2. THEORETICAL FOUNDATION

• In the guided algorithm there are more cases in rules 2 and 3 where we
replace a placeholder by an edge leading to a sink state with label pass
than in the non-guided one: these are the cases where we can decide that
we hit or miss an observation objective. In the non-guided algorithm we
would create a placeholder instead of the sink state. However, because
we can always replace a placeholder by a sink state with label pass, we
can with the non-guided algorithm obtain a test case with the same sink
states (only looking at pass and fail verdicts) as with the guided one.

2.4.4 Conclusion

To conclude our discussion of how we instantiate the framework we give in
Table 2.4 an updated version of Table 2.3 on page 46, in which the instantiations
that we have chosen are shown.

Bibliographical note This section, up-to (but not including) Section 2.4.3,
has been taken from [dV01]. Algorithm 2.4.3 in Section 2.4.2 is based on Al-
gorithm 5.6 of [dV01]; we extended it to generate input-enabled test cases.
Section 2.4.3 is our own extension of the existing work.

2.5 Summary

We have presented the framework of formal methods in conformance testing,
and instantiated it with implementation relation ioco. For ioco sound test
cases can be produced, resulting in an exhaustive test suite “in the limit” of
running the test derivation algorithm. We discussed an extension to guide the
test derivation. We briefly mentioned a few generalisations and variants of ioco:
implementation relations iocoF , miocoF , uioco, tiocoM , rtioco and sioco.

2.5. SUMMARY

2

53

physical ingredients:
black-box implementation IUT can be any computer system or

program which can can be modelled as
input-output transition system, where
inputs and outputs can be mapped one-
to-one on LI resp. LU and inputs can
always occur

execution of a test case EXEC(t, IUT): physical execution of
test case t on IUT; may involve multiple
runs, e.g. to cater for non-determinism

formal ingredients:
specification s ∈ LT S(LI , LU)
model of implementation iIUT ∈ IOT S(LI , LU)
implementation relation ioco

observation objective e ∈ P(L∗δ)
reveal relations rios (singular o.o.), riop (plural o.o.)

test case t ∈ T T S(LU , LI)
observations (L ∪ {δ})∗
model of execution of a
test case

obs : TESTS ×MODS → P(OBS)

verdict functions vt : P((L ∪ {δ})∗)→ {pass, fail}
hit functions Hrios

e : P((L ∪ {δ})∗)→ {hit,miss}
hit functions Hriop

E : P((L ∪ {δ})∗)→ {hit,miss}
test derivation algorithm genioco,rios : LT S(LI , LU) →

P(T T S(LU , LI))

assumptions:
test hypothesis for all IUT some iIUT models IUT

obs(t, iIUT) models EXEC(t, IUT)

prove obligations:
soundness genioco,rios is sound for any s ∈

LT S(LI , LU)
exhaustiveness genioco,rios is exhaustive for any s ∈

LT S(LI , LU)
e-soundness genioco,rios is e-sound for any e ∈

TOBS for which {i | i rev e} ∩ {i |
i imp s} 6= ∅

e-exhaustiveness genioco,rios is e-exhaustive for any e ∈
TOBS for which {i | i rev e} ∩ {i |
i imp s} 6= ∅

Table 2.4: Our instantiation of the framework for conformance and exhibition
testing

3
Chapter 3

Architecture of TorX

In the previous chapters we introduced our design goal and presented the theory
that we build on. In this chapter we present the global architecture of our design;
we refer to the design as TorX. In Chapter A we discuss two implementations
of this design: the model-based testing tools TorX and JTorX.

We start this chapter with a very abstract view of the architecture in Sec-
tion 3.1. In Section 3.2 we make the connection between this abstract view and
the theory that we discussed in Chapter 2.

In the remainder of this chapter, and in the following chapters, we refine this
abstract architectural view to fulfil our design goal, where we look in particular
at requirement 3 (the design should be suitable for on-line and off-line testing)
and requirement 7 (the design should support random and guided on-line test-
ing). We do this by discussing configurations of TorX that correspond with
these requirements, as shown in Table 3.1.

random guided

on-line Sect. 3.4 Sect. 3.5

off-line (Sect. 3.6)
exhaustive Sect. 3.6.3 Sect. 3.6.5
non-exhaustive Sect. 3.6.4 Sect. 3.6.5

Table 3.1: Overview of TorX configurations discussed, with section numbers.

For each configuration we show its decomposition in components, and the in-
terfaces between them, and we show how those components that “are in charge”
can accomplish their task using the other components. We use a running ex-
ample to illustrate each scenario; we introduce the example in Section 3.3.

In Section 3.4 we discuss on-line testing with random test selection, which we
in Section 3.5 extend with guided test selection (i.e. the use of test purposes to
guide test derivation). In Section 3.6 we discuss off-line testing with systematic
exhaustive test derivation, derivation with random test selection, and guided
derivation of test cases. Section 3.7 ends the chapter with a summary of the
inter-component interfaces.

55

56

3

CHAPTER 3. ARCHITECTURE OF TORX

Typographic conventions In the previous chapter we typically used a slanted
font for ‘mathematical’ functions, e.g. those on LTSes, like in and out . In this
chapter we introduce interface functions for which we use a sans serif font. Some
of the functions that we introduce here have names that coincide with names
of ‘mathematical’ functions of the previous chapter, e.g. in and out, but which
thus can be distinguished by font.

3.1 Starting Point

We start with the most abstract view of the TorX architecture and its environ-
ment, depicted in Figure 3.1. This view is obtained by taking the abstract view
of testing that we gave in Chapter 1, ‘Introduction’ as Figure 1.1 on page 2,
and extending it with the model (Specification), to reflect the fact that we are
dealing with model-based testing.

Specification TorX
Implementation

IUT

stimuli

responses

verdict

Figure 3.1: Abstract view of TorX: it interacts with Implementation via stimuli
and responses. It derives the stimuli and predictions for the responses from
Specification. Testing results in a verdict.

In Figure 3.1 the tester (TorX) itself is shown as a black box. We sur-
rounded the tester (TorX) with a dashed box to indicate the border between
the tester and its environment. When we decompose the tester in subsequent
figures, we also show the dashed box there. The environment of TorX con-
sists of the Specification (at its left side in the figure), and the Implementation
(at its right side in the figure). Neither Specification nor Implementation are
part of TorX itself, but TorX uses the Specification (to derive tests from) and
interacts with the Implementation (by “playing the role” of its environment).

Note that we have omitted the user from the picture. For now we only talk
about automated testing for which we do not need a user. We come back to the
user later, in Section 3.5.

3.2 Link with Theory

In the previous chapter we have seen the formal framework of model-based
testing, and the instantiation of it for the implementation relation ioco.

Formal framework The formal framework was schematically presented in
Figure 2.1 on page 22. From the formal model we take the basic testing con-
cepts that we use in the architecture: specification, test purpose (a.k.a. ob-

3.2. LINK WITH THEORY

3

57

Derivation-
Engine

Manager Adapter

Test Derivation Test Execution

Specification

Observation
Objective

IUT

verdict

Figure 3.2: Schematic view of on-line model-based testing. Test derivation (top
inner box) and test execution (bottom inner box) take place in an integrated
manner. Each test step that is derived from Specification, and optional Obser-
vation Objective, is immediately executed on the IUT, and only then the next
test step is derived. Thus, a test case is only implicitly present, and therefore
there is no test suite in this figure. Execution of the test on IUT yields a verdict.

Derivation-
Engine

Derivation-
Manager

Test Derivation

test suite

Derivation-
Engine

Execution-
Manager

Adapter

Test Execution

Specification

Observation
Objective

verdict

IUT

Figure 3.3: Schematic view of off-line model-based testing. Test derivation,
in the top inner box, uses Specification, and optional Observation Objective,
as input and produces a test suite. Test execution, in the bottom inner box,
applies the test suite to the IUT, to yield a verdict.

servation objective), test derivation, test suite, implementation, test execution,
and verdict. We leave out the implementation relation because its role in the
architecture is only indirect (it is implicitly present in the test derivation). We
rearrange these elements of Figure 2.1 into a form that is more suitable for use
as basis of the architecture for on-line (Fig. 3.2) and off-line (Fig. 3.3) testing.
In both these figures we already “opened up” the test derivation and test execu-
tion boxes; the outer dashed box separates the components of the architecture
from their environment.

In Figure 3.2 we show our basic architecture for on-line testing. Here, no
test suite is shown, because tests are only implicitly present: recall that each
test step that is derived, is immediately executed. The integration between test

58

3

CHAPTER 3. ARCHITECTURE OF TORX

derivation and test execution is shown: they share the Manager component.
Figure 3.3 targets off-line testing, as the presence of the test suite indicates.

This figure has the same components as the abstract view of off-line testing of
Figure 1.3 on page 4, except for the model that had not yet been introduced at
that point.

The formal framework and its instantiation with ioco leave choices open,
like about the relation between test derivation and test execution (on-line or
off-line?) and about how to do test selection. When a tool that is based on
this theory is used to do actual testing, all these open choices will have to be
resolved. For TorX we resolved some of them by our design choices, discussed
in Chapter 1; others we made part of the design goal, and thus they are passed
on to the user as user-configurable options of TorX.

Test Derivation As laid down by requirements 1 and 2 we use the ioco
algorithm (discussed in Section 2.2.5) to derive test cases from a labelled trans-
ition system (LTS) representation of the specification. How we obtain an LTS
from a specification in an “arbitrary” formalism is outside the scope of the ioco
theory, and, as laid down by requirement 5, we strive for language independ-
ence. Nevertheless, obtaining the LTS from a given model is an indispensable
part of a working testing tool. For now, we assume that the test derivation
tool component will take care of this; we will discuss this in greater detail in
Chapter 4.

As laid down in requirement 3, the tool should be suitable for both on- and
off-line testing. To obtain a test suite (multiple different test cases) we have to
run the ioco algorithm multiple times and vary the two choices that the ioco
algorithm leaves open: the choice of the next test step (do we try to stimulate,
do we observe, or do we stop?) and the choice of the particular stimulus when
we have chosen to stimulate. This will give us an exhaustive test suite “in the
limit”.

Test Execution In the formal framework, test execution function EXEC
takes a test suite and an IUT and returns a verdict. In the ioco testing the-
ory with which we instantiated the formal framework, the execution of a test
suite consists of the application of each of its test cases to the IUT. The test
cases themselves are (by construction) deterministic, but when there is non-
deterministic behaviour in the system under test, or when the system under
test contains uncontrollable choices (such that the same sequence of stimuli
yields different responses) the repeated application of a test case may lead to
different observations. How often test cases must be applied and in which order
are choices left open by the formal framework and the ioco testing theory. The
implementations of our design leave this to their user.

3.3 Running Example

We will illustrate each of the configurations of Table 3.1 with a small example.
For this example we will use a model, depicted in Figure 3.4, that is based on

3.3. RUNNING EXAMPLE

3

59

0

1

?coin

2

?coin !coin

?cof ?tea ?kick

3

?coin

?tea

4

?cof

?cof

5

?tea!cof

?cof
?tea
?kick

!tea

?cof
?tea
?kick

?kick

Figure 3.4: Quirky Coffee Machine (Specification)

0

2

?coin !coin

?cof ?tea ?kick

Figure 3.5: Refund-only Machine (not input-enabled; when used as implement-
ation, missing or omitted inputs are assumed to be on self-loops, see the text).

0

1

?coin

2

?coin !coin

?cof ?tea ?kick

3

?coin

?tea
?kick

4

?cof

?cof
?kick

5

?tea!cof

?cof
?tea
?kick

!tea

?cof
?tea
?kick

Figure 3.6: Kick-insensitive Machine: ?kick in states 1 and 3 has no effect.
(not input-enabled; when used as implementation, missing or omitted inputs
are assumed to be on self-loops, see the text).

60

3

CHAPTER 3. ARCHITECTURE OF TORX

the Quirky Coffee machine of Rom Langerak [Lan90]. In this model we prefix
inputs (to the system under test) with a question mark (?) and outputs with an
exclamation mark (!). The model describes a machine that is able to produce
coffee and tea, although obtaining the preferred beverage may take some effort.
When a coin is inserted the machine nondeterministically goes to one of three
states: 1, 2, or 3. In state 2 it will immediately return the coin and return to
the initial state. In state 1 only the functionality to produce coffee, and in state
3 only the functionality to produce tea is working. In states 1 and 3, when the
button is pressed for the beverage that cannot be produced, the machine does
nothing (modelled as a self loop). However, kicking the machine, while it is in
one of these states, makes it change state (from 1 to 3, and vice versa), such
that the functionality for the other beverage (and only for that one) is working.
So, when the machine consumes an inserted coin (and does not immediately
return it), but does not produce coffee when the coffee button is pressed, it is
possible to obtain coffee by kicking the machine and pressing the coffee button
once more. Tea can be obtained in a similar way.

Implementations In the examples we use two different implementations of
this machine: a refund-only one, and a kick-insensitive one. Note that the im-
plementation examples that we present here do not allow all inputs in all states,
i.e. they are not input-enabled. We assume that any model, which is used as
implementation, is (implicitly) made input-enabled by adding self-loops for the
missing inputs—our tool implementation (i.e. the Adapter for use of simulated
model as IUT, design req. 15) does such input-completion automatically. This
allows us to use also models, that are not input-enabled, as implementation.

The refund-only implementation, depicted in Figure 3.5, never serves coffee
or tea, but only refunds money. It is ioco-correct w.r.t. the specification.

The kick-insensitive implementation, depicted in Figure 3.6, does serve coffee
and tea, but deviates from the specification in its behaviour when it is kicked.
In the specification, a kick in the right states (state 1 or 3) triggers a transition
to a new state, in which the beverage is available that before was inaccessible.
However, in the kick-insensitive implementation, kicking does not help: the
machine remains in the same state, and thus, kicking does not affect which
beverage can be served. We illustrate this by showing the sets of expected
outputs for the traces that describe these scenarios, where we use i for the
kick-insensitive implementation, and s for the specification.

with σ2 = ?coin · ?cof · δ · ?kick · ?cof:
out(i after σ2) = {δ} 6⊆ {!cof} = out(s after σ2)

with σ1 = ?coin · ?tea · δ · ?kick · ?tea:
out(i after σ1) = {δ} 6⊆ {!tea} = out(s after σ1)

Moreover, the behaviour of the kick-insensitive implementation also differs
from the specification when, after not receiving the requested beverage and then
kicking the machine, one asks for the opposite beverage: the kick-insensitive
implementation serves it, but the specification does not (and remains quiescent).

with σ3 = ?coin · ?cof · δ · ?kick · ?tea:
out(i after σ3) = {!tea} 6⊆ {δ} = out(s after σ3)

3.4. RANDOM ON-LINE TESTING

3

61

with σ4 = ?coin · ?tea · δ · ?kick · ?cof:
out(i after σ4) = {!cof} 6⊆ {δ} = out(s after σ4)

This shows that the kick-insensitive implementation is ioco-incorrect w.r.t. the
specification.

3.4 Random On-Line Testing

When we integrate test derivation and test execution to the point where each
test step is derived “on demand” driven by the test execution, i.e. when we do
on-line testing, we can simplify the architecture that we showed in Figure 2.1.

This section is structured as follows. After defining components (Section 3.4.1)
and interfaces (Section 3.4.2), we show how these can be used for random on-line
testing (Section 3.4.3), and illustrate this using our example (Section 3.4.4).

3.4.1 Components

In our schematic view of model-based testing of Figure 2.1 we have separate
activities Test Derivation and Test Execution, with the test suite as object that
is passed from the former to the latter. Conceptually, we use the approach of
separation of concerns to decompose both test derivation and test execution in
components that provide access to the Specification (the DerivationEngine com-
ponent) resp. the IUT (the Adapter component), and a Manager component that
is responsible for the progress, and for resolving any remaining open choices in
test derivation resp. test execution. Figure 3.2, without the optional observation
objective, depicts the architecture. (We discuss the case where the observation
objective is present in Section 3.5.)

The DerivationEngine hides the details of the Specification from the Man-
ager. The DerivationEngine computes the information (those “primitives”) that
the Manager needs from the Specification. As we will see, the DerivationEngine
provides access to the suspension automaton of Specification; the Manager uses
this to implement the test derivation algorithm. In this way, the Manager is as
independent as possible from the Specification; in particular, it is independent
from its syntactical format, and the Manager only has to resolve the open choices
in the test derivation algorithm: it decides which test case to construct.

The Adapter hides IUT-specific details from the Manager (which is IUT-
independent) and provides it with a uniform interface to the IUT. The Adapter
is, by definition, IUT-dependent. It provides the connection to the IUT, which
encompasses the connection proper as well as the mapping between the abstract
labels of the Specification (and thus of the test case) and the concrete interac-
tions with the IUT. This mapping in the Adapter resolves the remaining open
choices for test execution: the choice of interaction details (like test data) that
are not represented in (have been abstracted away from) the stimuli labels.

For on-line testing we don’t have to pass a test suite from test derivation to
test execution – passing one test step at a time suffices, and thus we omit the
test suite from the architecture for on-line testing.

62

3

CHAPTER 3. ARCHITECTURE OF TORX

3.4.2 Interfaces

Here we discuss the interfaces between the components in our decomposition.
Before we look at the individual interfaces we discuss the form of our interfaces
in general.

In general our interfaces are between two components, and in general the
interaction between them follows a question-answer (request-response, client-
server) scheme: one of them always takes the initiative, the other always re-
sponds. Components may exchange formal objects over the interfaces, like la-
bels, states or sets of these. For now we do not care about the specific way in
which the interfaces may be implemented, nor about the concrete representa-
tion of the formal objects that are exchanged over them. We therefore present
the interfaces as functions of which we give the signature, typically in terms of
labels, states, or sets of these. For the discussion in this thesis, we assume that
no errors result from the application of the interface functions, and thus they
do not appear in the interface definitions.

In general we strive for lean interfaces. Lean interfaces between modules
are an indication of high independence between the modules, which is a sign of
successful decomposition. Two practical consequences of lean interfaces are run-
time efficiency (reduced amount of data to be passed between the components)
and implementation efficiency (reduced number of interface functions that have
to be implemented).

Between Manager and Adapter

Inspiration for the interface between Manager and Adapter comes from the test-
ing process. When the test is derived and executed one step at a time, these
test steps, i.e. the stimuli that are to be given and the observed responses, are
natural elements in the interface between Manager and Adapter.

Because the testing is “driven” by the Manager, we choose that the Manager
will take the initiative on this interface. The interface must at least be capable of
transferring a stimulus from Manager to Adapter, and transferring an observation
in the opposite direction. As mentioned before, we use labels from LI ∪ LδU to
represent stimuli and observations. To this we add functions for initialisation
and cleanup. Our interface thus exists of the following four functions, to be
implemented by the Adapter. (We explain below why tryStim and getObs return
a tuple instead of just a label.)

1. start :→ void
2. tryStim : LI → {i,u} × (LI ∪ LU)
3. getObs :→ {u} × (LU ∪ {δ})
4. stop :→ void

Table 3.2: Signature of Adapter interface functions.

3.4. RANDOM ON-LINE TESTING

3

63

Ad 1: start With function start the Manager can ask the Adapter to start the
IUT (or make a connection to it, or reserve resources, or anything else that is
necessary for a specific IUT).

Ad 2: tryStim With function tryStim the Manager can ask the Adapter to
attempt to apply a given stimulus. By construction, our test cases are able
to consume observations that are (turn out to be) pending when an attempt
is made to apply a stimulus (see property 4 of Definitions 2.2.13 on page 34,
and step 2 of Algorithm 2.2.18). We delegate the issue of maintaining a queue
of pending observations to the Adapter, and provide minimal (but sufficient)
support via our definition of tryStim. It is defined as follows.

tryStim(a) =def

{
〈u, x〉 with x ∈ LU if x was produced before a could be applied

〈i, a〉 with a ∈ LI otherwise (i.e. a was applied to the IUT)

The return value of tryStim is a tuple 〈t, l〉. It contains a type t ∈ {i,u} and
a label l. The type t is there to be able to distinguish the two kinds of return
values without knowledge of the label sets LI and LU . The label l is either
◦ an acknowledgement of the successful application of stimulus a (when

there was no pending observation), or
◦ the first pending observation, x (when there was a pending observation).

The acknowledgement consists of the stimulus that was applied, because then in
either case the Adapter returns a representation of the latest interaction between
Adapter and IUT. Application of a stimulus should always succeed when there
is no observation pending, because the IUT is assumed to be input-enabled.

Ad 3: getObs With function getObs the Manager can ask the Adapter for an
observation. It is defined as follows.

getObs() =def

{
〈u, x〉 with x ∈ LU when x was produced by the IUT

〈u, δ〉 when the IUT did not produce output

For consistency with tryStim also getObs returns a tuple 〈t, l〉. Here t is always
u, and l is either the first pending or freshly observed observation, or δ (as
representation of quiescence).

Ad 4: stop With function stop the Manager can ask the Adapter to stop the
IUT (or break the connection to it, or release resources, or anything else that is
necessary for a specific IUT).

Between Manager and DerivationEngine

The Manager drives the test derivation algorithm and resolves its open choices,
and uses the DerivationEngine to access the specification. In the interaction
between Manager and DerivationEngine it always is the former that takes the
initiative.

64

3

CHAPTER 3. ARCHITECTURE OF TORX

1. start :→ P
2. in : P → P(LI)
3. out : P → P(LU ∪ {δ})
4. next : P × (LI ∪ LU ∪ {δ})→ P] {⊥}

Table 3.3: Signature of DerivationEngine interface functions (non-guided), given
in terms of label(set)s LI , LU and δ, and the pseudo-state type of Table 3.4.

5. PS : SΓ → P
6. m : P → SΓ

Table 3.4: Signature of pseudo-state type (used in non-guided DerivationEngine
interface).

Our interface consists of the four functions, to be implemented by the Derivation-
Engine, given in Table 3.3.

Inspiration for the interface between Manager and DerivationEngine comes
from the ioco test derivation Algorithm 2.2.18. In each step of the algorithm,
the next step in the test case is derived from a set of states from the specific-
ation which we will call S in the following. In particular, each instance of S
encountered during test derivation corresponds to a state of Γs, the suspension
automaton of s (defined in Definition 2.2.12). At the start of the algorithm
this set is s0 after ε . To derive a test step the algorithm looks at the sets of
stimuli and responses that are enabled in S, i.e. at in(S) resp. out(S). For the
next step the algorithm looks at S after l , the states that can be reached from
S via a transition with observable label l. We thus let the DerivationEngine
provide access to the suspension automaton states, and to the sets of stimuli
and responses that are enabled in these states.

For now we do not care how the suspension automaton states are represented
on the interface (whether as actual sets of state representations in serialised
form, as set of state identifiers, or as state set identifiers) nor where the actual
states and state sets are stored (in DerivationEngine or Manager– when states are
stored in DerivationEngine, the interface needs an additional function to allow
the Manager to indicate which states or state sets can be deleted). We make
this explicit, by using an indirection: functions start and next return a pseudo-
state object, and functions in, out and next accept a pseudo-state as argument.
The signature of the pseudo-state functions is given in Table 3.4. We let PS
construct a pseudo-state from a suspension automaton state, and let method m
return the suspension automaton state from a pseudo-state:

PS(s).m() =def s

Below we give the functionality of the DerivationEngine interface functions
in terms of the functions in, out and after of Chapter 2, and the pseudo-state
functions of Table 3.4. (In Chapter 4 we discuss how the interface functions can
be implemented). There s is the (initial state of) the specification, and P is a
pseudo-state (that gives access to a suspension automaton state, i.e. to a set of

3.4. RANDOM ON-LINE TESTING

3

65

states).

start() =def PS(s after ε)

in(P) =def in(P.m())

out(P) =def out(P.m())

next(P, l) =def

{
⊥ if P.m() after l = ∅
PS(P.m() after l) otherwise

Note that we let next(P, l) return the special value ⊥ when there is no out-
going transition from P.m() that has observable label l. We used special value
⊥ to make it stand out. Moreover, ∅, i.e. the empty set of states of the specific-
ation, is not part of SΓ, as given in Definition 2.2.12—otherwise we could have
used PS(∅) instead of ⊥.

3.4.3 Manager Algorithm

Above we mentioned that when we do on-line derivation and execution we do not
explicitly use a test suite, nor even a test case. We show this in Algorithm 3.1
for random on-line test derivation and execution, presented on the following
page. Algorithm 3.1 is based on Algorithm 2.2.18 on page 39, and we discuss
the correspondence below.

Algorithm 2.2.18 constructs a test case by the application of three rules:
1. to terminate the test case at any point with a pass verdict,
2. to try to apply a stimulus (and be ready to consume and check an obser-

vation), and
3. to obtain and check an observation.

Algorithm 2.2.18 keeps a state set S, with initial value s after ε as its main
data structure.

Algorithm 3.1 uses a pseudo-state P , that gives access to the same state set
S, with the same initial value (set at line 2). It applies the first rule at line 5
when a given maximal length for the test run (intended depth) has been reached.
It bases its choice between the second and the third rule on the knowledge
whether stimuli are enabled, and on knowledge whether the previous interaction
consisted of the observation of quiescence, as follows (see lines 7–12, and lines 4
and 25).
◦ If no stimuli are enabled, it applies the third rule;
◦ otherwise, if the previous interaction was an observation of quiescence, it

applies the second rule (this is an heuristic that tries to avoid consecutive
observations of quiescence);

◦ otherwise it randomly chooses one of the rules.
The application of the second rule starts at line 14, and the application of the
third rule at line 17. For both rules, l, the result of the interaction with the IUT,
is checked by asking the DerivationEngine to compute the successor pseudo-state
P ′ (at line 19), and evaluating whether P ′ = ⊥ at line 20. (By the definition of
next, P ′ will be either ⊥ or PS(P.m() after l).)

66

3

CHAPTER 3. ARCHITECTURE OF TORX

Algorithm 3.1: Random On-Line Test Derivation and Execution

input : A DerivationEngine d that gives access to the Specification and
an Adapter a that gives access to the SUT

output: A verdict
1 begin
2 P ←− d.start()
3 a.start()
4 prevLabel←− ⊥
5 while intended depth not reached do
6 stimuli←− d.in(P)
7 if stimuli = ∅ then
8 action←− observe
9 else if prevLabel = δ then

10 action←− stimulate
11 else
12 action←− random choice from {stimulate, observe}
13 switch action do
14 case stimulate
15 pick stimulus l′ ∈ stimuli
16 t, l←− a.tryStim(l′)

17 case observe
18 t, l←− a.getObs()

19 P ′ ←− d.next(P, l)
20 if P ′ = ⊥ and t = u then
21 a.stop()
22 return fail

23 else
24 P ←− P ′
25 prevLabel←− l

26 a.stop()
27 return pass

◦ When l is an unexpected observation (i.e. when P ′ = ⊥ and t = u) the
test run is aborted with a fail verdict.

When testing continues, P is updated (at line 24) to PS(S after l), which
directly corresponds to what happens in Algorithm 2.2.18. When testing stops,
Algorithm 3.1 stops the IUT and returns the verdict. The actual implementation
of the algorithm in our testing tool also shows the expected responses to the
user.

Note that the algorithm doesn’t access the suspension automaton states of
the pseudo-states; all that the algorithm does with the pseudo-states, is pass
them back to the DerivationEngine as argument to a DerivationEngine interface
function.

3.4. RANDOM ON-LINE TESTING

3

67

3.4.4 Examples

We illustrate Algorithm 3.1 by showing two runs with the Quirky Coffee Machine
specification of Figure 3.4, one on the refund-only implementation of Figure 3.5,
and one on the kick-insensitive implementation of Figure 3.6. Recall that we
assume implicit input-completion on a model that is used as implementation
(see the “Implementations” paragraph of Section 3.3).

Example 1: Refund-only implementation

In Figure 3.7 we show a run with the Quirky Coffee Machine specification of
Figure 3.4 on the refund-only implementation of Figure 3.5. In particular, we
show the interaction between the Manager and the DerivationEngine and the
Adapter. We look at a run of maximal 5 steps. We assume that the IUT makes
its own choices, such that the test tool has no control over them. In Figure 3.8
on page 69 we show the transitions that are covered in the model by this run.
Below, we follow the structure of Figure 3.7.

Initialisation Pseudo-state P is initialised to PS({0}), representing only the
initial state of the specification (there are no internal transitions enabled in the
initial state), and via the Adapter the IUT is started.

Test step 1 Set stimuli = in(PS({0})) = {?coin} 6= ∅. Because stimuli 6= ∅
the algorithm makes a random choice from {stimulate, observe}. Assume it
chooses to observe1. The algorithm obtains an observation via the Adapter
(line 18). The IUT is still in its initial state and has not produced output, and
thus the Adapter returns 〈u, δ〉. The label value is in out(PS({0})) = {δ}, and
thus testing continues, with P updated to PS({0} after δ) = PS({0}) (i.e. it
remains unchanged), and with prevLabel = δ.

Test step 2 Now, the algorithm chooses to try to apply a stimulus (stimuli 6=
∅, and prevLabel = δ). There is only one enabled stimulus, ?coin. The Adapter
is requested to apply it, which succeeds, such that the IUT moves to state 2,
and thus l = ?coin and t = i at line 19. Successor pseudo-state P ′ is computed:
P ′ = PS({0} after ?coin) = PS({1, 2, 3}) 6= ⊥. Thus, testing continues with P
updated to P ′ = PS({1, 2, 3}), and with prevLabel = ?coin.

Test step 3 Now, stimuli = in(PS({1, 2, 3})) = {?cof, ?tea, ?kick} 6= ∅, and
prevLabel 6= δ; again the algorithm makes a random choice from {stimulate, observe}.
Assume this time it chooses to apply a stimulus, ?kick. However, when the Ad-
apter receives the request to apply this stimulus, and is ready to pass it on to
the IUT, the IUT decides to produce output. The Adapter thus receives an ob-
servation: !coin, which it passes on as return value of tryStim: t = u and l =
!coin. Successor pseudo-state P ′ is computed: P ′ = PS({1, 2, 3} after !coin) =

1This is what the implemented algorithm does in JTorX-1.8.0 on mac, with random number
generator seed 547723777.

68

3

CHAPTER 3. ARCHITECTURE OF TORX

Manager DerivationEngine Adapter

start()

PS({0})

start()

initialisationinitialisation

in(PS({0}))

{?coin}

getObs()

〈u, δ〉

next(PS({0}), δ)

PS({0})

test step 1test step 1

in(PS({0}))

{?coin}

tryStim(?coin)

〈i, ?coin〉

next(PS({0}), ?coin)

PS({1, 2, 3})

test step 2test step 2

(a)

Manager DerivationEngine Adapter

in(PS({1, 2, 3}))

{?cof, ?tea, ?kick}

tryStim(?kick)

〈u, !coin〉

next(PS({1, 2, 3}), !coin)

PS({0})

test step 3test step 3

test step 4: omitted: identical to test step 1test step 4: omitted: identical to test step 1

in(PS({0}))

{?coin}

tryStim(?coin)

〈i, ?coin〉

next(PS({0}), ?coin)

PS({1, 2, 3})

test step 5test step 5

stop()

finalisationfinalisation

(b)

Figure 3.7: Sequence diagrams showing interaction between Manager and
DerivationEngine and Adapter for the refund-only implementation.

PS({0}) 6= ⊥. Thus, testing continues, with P updated to P ′ = PS({0}), and
with prevLabel = !coin.

Test step 4 Now stimuli = in(PS({0})) = {?coin} 6= ∅, and prevLabel 6= δ.
Assume this time the algorithm decides to observe. It requests an observation
from the Adapter, which returns 〈u, δ〉, as in the first test step. Testing contin-
ues, with P updated to PS({0} after δ) = PS({0}) (i.e. unchanged), and with
prevLabel = δ.

Test step 5 Set stimuli has the same value as for the fourth step, but now
prevLabel = δ, thus the algorithm chooses to try to apply a stimulus, i.e. ?coin,
the only stimulus enabled. The Adapter successfully applies it, such that the IUT
moves to state 2, and l = ?coin and t = i at line 19. Successor pseudo-state P ′

is computed: P ′ = PS({0} after ?coin) = PS({1, 2, 3}) 6= ⊥. Testing continues
with P updated to P ′ = PS({1, 2, 3}), and with prevLabel = ?coin.

3.4. RANDOM ON-LINE TESTING

3

69

0

1

?coin

2

?coin !coin

?cof
?tea
?kick

3

?coin

?tea

4

?cof

?cof

5

?tea!cof

?cof
?tea
?kick

!tea

?cof
?tea
?kick

?kick

Figure 3.8: Transitions covered in quirky coffee machine model, in run of ex-
ample 1, on refund-only implementation.

Finalisation Now, the expression in the condition at line 5 of the algorithm
evaluates to false, the Adapter is requested to stop the IUT, and the verdict pass
is returned.

Example 2: Kick-insensitive implementation

We now show a run with the Quirky Coffee Machine specification of Figure 3.4
on the kick-insensitive implementation of Figure 3.6. The interaction between
Manager, DerivationEngine and Adapter is shown in Figure 3.9. In Figure 3.10
on page 71 we show the transitions that are covered in the model by this run.

For most of the steps, the presentation in Figure 3.9 will speak for itself. We
give just a few lines of explanation for each step.

Test step 1 The algorithm has a random choice from {stimulate, observe};
we assume it chooses to stimulate with the only enabled stimulus ?coin. We
assume that the IUT accepts the stimulus, randomly chooses one of the enabled
transitions with label ?coin, and makes a transition to its state 32.

Test step 2 The algorithm again has a random choice from {stimulate, observe};
we assume it again chooses to stimulate, this time with ?cof. The IUT accepts
the stimulus, and follows its only enabled ?cof transition, which is a self-loop.

Test step 3 The algorithm again has a random choice from {stimulate, observe};
we assume it chooses to obtain and check an observation. The IUT has not
produced output, and does not produce output while the adapter waits, so
quiescence is observed, which is correct.

2In JTorX we can configure two random number generator seeds: one for the test derivation
functionality, and one for the simulator that is used when we use a model as IUT. With a
simulator seed value of 1279935 in JTorX 1.8.0 on Mac, it makes this transition.

70

3

CHAPTER 3. ARCHITECTURE OF TORX

Manager DerivationEngine Adapter

start()

PS({0})

start()

initialisationinitialisation

in(PS({0}))

{?coin}

tryStim(?coin)

〈i, ?coin〉

next(PS({0}), ?coin)

PS({1, 2, 3})

test step 1test step 1

in(PS({1, 2, 3}))

{?cof, ?tea, ?kick}

tryStim(?cof)

〈i, ?cof〉

next(PS({1, 2, 3}), ?cof)

PS({2, 3, 4})

test step 2test step 2

in(PS({2, 3, 4}))

{?cof, ?tea, ?kick}

getObs()

〈u, δ〉

next(PS({2, 3, 4}), δ)

PS({3})

test step 3test step 3

(a)

Manager DerivationEngine Adapter

in(PS({3}))

{?cof, ?tea, ?kick}

tryStim(?kick)

?kick

next(PS({3}), ?kick)

PS({1})

test step 4test step 4

in(PS({1}))

{?cof, ?tea, ?kick}

tryStim(?cof)

〈i, ?cof〉

next(PS({1}), ?cof)

PS({4})

test step 5test step 5

in(PS({4}))

{?cof, ?tea, ?kick}

getObs()

〈u, δ〉

next(PS({4}), δ)

⊥

test step 6test step 6

out(PS({4}))

{!cof}

(to show expected observations)(to show expected observations)

stop()

finalisationfinalisation

(b)

Figure 3.9: Sequence diagrams showing interaction between Manager and
DerivationEngine and Adapter for the kick-insensitive implementation.

Test step 4 Having observed quiescence in the previous step, the algorithm
chooses to stimulate, with, we assume, ?kick. The IUT accepts the stimulus,
and follows its only enabled ?kick transition, which is a self-loop.

Test step 5 The algorithm again has a random choice from {stimulate, observe};
we assume it chooses to stimulate, this time with ?cof. The IUT accepts the
stimulus, and follows its only enabled ?cof transition, which is a self-loop.

3.4. RANDOM ON-LINE TESTING

3

71

0

1

?coin

2

?coin !coin

?cof
?tea
?kick

3

?coin

?tea

4

?cof

?cof

5

?tea!cof

?cof
?tea
?kick

!tea

?cof
?tea
?kick

?kick

Figure 3.10: Transitions covered in quirky coffee machine model, in run of ex-
ample 2, on kick-insensitive implementation. The dashed transition has the
output that was expected, but not produced by the kick-insensitive implement-
ation.

Test step 6 The algorithm again has a random choice from {stimulate, observe};
we assume it chooses to obtain and check an observation. The IUT has not pro-
duced output, and does not produce output while the adapter waits, so quies-
cence is observed, which is not correct. (In our testing tool implementation, the
Manager requests the set of expected observations from the DerivationEngine, to
show it to the user. This set is {!cof}.) Testing stops with a fail verdict.

3.4.5 Concluding Remarks and Observations

We conclude this section on on-line testing with the following remarks and
observations.

(a) The Manager is not aware of LI and LU , which shows success in decoup-
ling;

(b) Typically we see for each test step three interactions between Manager,
DerivationEngine and Adapter (Figures 3.7 and 3.9 illustrate this clearly):

1. Manager obtains potential behaviour from DerivationEngine,

2. Manager interacts with Adapter for actual next step,

3. Manager updates DerivationEngine with executed next step.

There seem to be two optimisations possible.

On the one hand, it seems that we could reduce the number of interactions
from three to two by combining the two interactions between Manager and
DerivationEngine, i.e. by letting the DerivationEngine include the potential
behaviour for the next test step in its response to the update with the last
executed step. We leave this for future work.

On the other hand, the Manager can skip obtaining potential behaviour
from DerivationEngine, when it knows that the Adapter has a pending

72

3

CHAPTER 3. ARCHITECTURE OF TORX

observation. However, the Adapter interface of Table 3.2 does not provide
a means to pass information about pending observations from Adapter to
DerivationEngine. Also this we leave for future work.

(c) For random on-line testing DerivationEngine.start, DerivationEngine.in and
DerivationEngine.next suffice: we only use DerivationEngine.out to provide
more information to the user, e.g. to help diagnose fail verdicts.

(d) By adding a simple user interface we can easily allow a user to make the
choices that Algorithm 3.1 makes randomly. The user can then control the
testing not unlike he would control an interactive simulator, except that
during a test run we can not go one step back and explore an alternative
branch (which is typically easily possible with an interactive simulator).
To provide the user more insight in the testing, it is best to obtain, together
with the set of possible stimuli, also the list of expected responses, and
show that to the user. (For this we do need function DerivationEngine.out.)

3.5 Guided On-Line Testing

In the previous section we described an architecture for random on-line testing.
Now we describe how this can be extended to guidance information, i.e. using
additional information not present in the specification.

We consider two (strongly related) kinds of guidance information:
1. guidance information that directs the test derivation (e.g. to a particular

behaviour in the specification), and
2. guidance information that constrains the test derivation (e.g. by imposing

a particular interaction pattern).
The essential difference is that the former consists of (can be treated as) a
(possibly infinite) set of finite traces, whereas the latter consists of (can be
treated as) a set of infinite traces. In practice, however, we treat both kinds of
guidance information in the same way.

In Chapter 4 we discuss a different class of guidance, namely how we can
change the random test derivation such that certain actions or behaviours have
a higher likely-hood to appear in the test runs than others.

Guidance based on exhibition testing We base our support for guidance
on the theory for exhibition testing described in Sections 2.3 and 2.4, in partic-
ular on Algorithm 2.4.5 on page 49. In the context of this theory, the guidance
information represents a singular observation objective.

Recall that we take as specification of the observation objective a set of traces
from Lδ∗ which describe the behaviour we are interested in testing. In this set-
ting, we get a two-dimensional verdict 〈c, e〉, with c the usual ioco correctness
verdict (pass or fail), and e an indication of whether the implementation ex-
hibited the observation objective (hit or miss). Thus, we may get four different
verdicts:

〈pass,hit〉 no error was found, and a wanted trace has been observed;
〈pass,miss〉 no error was found, but no wanted trace has been observed;

3.5. GUIDED ON-LINE TESTING

3

73

0

1

?coin
!coin
[at most 100 times]

2

δ

3

?cof

!cof

4
δ

7

5

?kick

?cof!cof
6

(a)

0

1

?coin
!coin
[at most 100 times]

2

δ

3

?cof

4
δ

7

5

?kick

?cofδ
6

(b)

Figure 3.11: Observation objective (a) attempts to obtain coffee, either directly,
or via ?kick. Observation objective (b) attempts to “hit” the error in the kick-
insensitive implementation. The end states of the traces that we want to see
(i.e., states that we want to reach) are marked with a double circle. In both
observation objectives action !coin will be enabled only in the first 100 iterations
through the loop. Thus, when the implementation returns !coin for the 101fst

time, action !coin will not be enabled, and the test run will end with verdict
〈pass,miss〉.

〈fail,hit〉 an error was found, and a wanted trace has been observed;
〈fail,miss〉 an error was found, but no wanted trace has been observed.

Examples We show two example observation objectives in Figure 3.11; in
Section 3.5.4 we show test runs with them.

Observation objective (a) attempts to guide the test run such that coffee
is obtained, either directly, or by kicking the machine. When in this way coffee
is obtained, the test run will end with a verdict 〈pass,hit〉. Otherwise, a test
run will end with either 〈pass,miss〉 or with 〈fail,miss〉. It will end with
〈pass,miss〉 when the goal is not reached, but no error was detected—this
verdict we will get, for example, with the refund-only implementation. It will
end with verdict 〈fail,miss〉 when an error is found, because this observation
objective does not contain erroneous outputs—this we may get with the kick-
insensitive implementation, because it may serve tea when coffee is requested.

Observation objective (b) attempts to guide the test run such that the er-
ror in the kick-insensitive implementation is exposed, as follows. A first attempt

74

3

CHAPTER 3. ARCHITECTURE OF TORX

to get coffee is made. When the IUT remains quiescent after this first attempt,
the IUT is kicked, and a second attempt to get coffee is made. At that moment, a
correct implementation should serve coffee, but the kick-insensitive implement-
ation will remain silent. Thus, the observation objective expects quiescence at
that moment. When a test run gets to that point, and observes quiescence,
the run will end with a verdict 〈fail,hit〉, which tells us that we successfully
reproduced the error scenario. Otherwise, again, a test run with observation
objective (b) will end with either 〈pass,miss〉 or 〈fail,miss〉. Again, it will
end with verdict 〈pass,miss〉 with e.g. the refund-only implementation, but
also with the kick-insensitive implementation, or even the specification, when
they choose the “wrong” transition when the coin is inserted. It will end with
verdict 〈fail,miss〉 when any other error than the expected one is encountered.

About observation objectives that can lead to 〈fail,hit〉 Note that ob-
servation objectives that can give us 〈fail,hit〉 differ from the other ones, in the
following way. Whereas for the other observation objectives, all traces to their
goal states typically are (included in the suspension) traces of the specification
s for which they are made, this is not the case for observation objectives that
can give us 〈fail,hit〉. For the latter ones, the traces to their goal states are of
the form σ · x, with x ∈ LδU , with σ ∈ Straces(s), and with x /∈ out(s after σ).
Thus, the last output of such trace takes us out of the specification.

3.5.1 Components

We now look at the extensions necessary to support singular observation ob-
jectives in our architecture. Figure 3.2, with the optional observation objective
present, depicts the architecture.

The verdict now contains both a conformance and an exhibition aspect. We
use a special DerivationEngine instance that is able to handle both a specific-
ation and a singular observation objective, and thus gives access to a richer
structure than the specification-only DerivationEngine that we use for random
on-line testing. Therefore, we extend the DerivationEngine interface, and we ex-
tend the Manager to use this extended DerivationEngine. As before, an Adapter
provides the Manager with uniform access to the IUT.

The DerivationEngine for specification and test objective Where the
specification-only DerivationEngine that we defined in Section 3.4.2 gives access
to the suspension automaton of the specification (in a sense, a representation
of all ioco test cases for the specification), this DerivationEngine gives access to
a structure that is a representation of all ioco test cases for the specification
satisfying the observation objective (like they are derived by Algorithm 2.4.5).
We refer to this structure as the exhibition automaton. It is like a cross product
of the suspension automaton of the specification and the (determinized) obser-
vation objective, with the following two special characteristics: (1) it offers the
intersection of enabled input actions, and the union of enabled output actions,
and (2) states in which the observation objective has been hit, or missed, are
libelled with a verdict.

3.5. GUIDED ON-LINE TESTING

3

75

Although the DerivationEngine interface defined in Section 3.4 clearly offers
functionality to give access to the basic elements of the exhibition automaton,
extensions are necessary to give access to all information contained in it. Access
to the basic elements is provided as follows: we let function in return the inter-
section of enabled input actions, and function out the union of enabled output
actions, and functions start and next the initial state of, resp. a successor state
in, the exhibition automaton. However, the Manager needs access to additional
information contained in the exhibition automaton, on the one hand to let it-
self be guided by it; and on the other hand to be able to provide additional
information to the user. The extensions give the Manager access to:

1. information to affect the choice that the Manager makes between rule 2
(try to apply stimulus) and rule 3 (obtain and check observation);

2. the verdict, if any, that is associated with an output that is returned by
out (to be precise: the verdict, if any, that is associated with the state
that is reached by the output);

3. the verdict, if any, that is associated with a state that is returned by start;
4. the verdict, if any, that is associated with a state that is returned by next.

We discuss each of these below.

Ad: 1: Making the Manager choose for rule 3 (observe) is trivial (and does not
need extensions to the interface): the exhibition automaton contains the inter-
section of inputs enabled in specification and observation objective, and this is
passed as return value of function in. Thus, it suffices to have no stimuli enabled
in the concerning states in the observation objective: then the intersection will
be empty, and the Manager will choose to observe.

Making the Manager choose for rule 2 (stimulate) is more involved: the
exhibition automaton contains the union of outputs enabled in specification and
observation objective. The Manager should choose to stimulate when this union
is empty, or when all outputs in the union lead to miss. (We may be tempted
to say that the Manager should choose to stimulate when the intersection of
outputs enabled in specification and observation objective is empty, but that
does not work for observation objectives that lead to an error, i.e. to a verdict
〈fail,hit〉: for such observation objective the intersection of enabled outputs is
empty, and the union of enabled outputs contains at least one element that does
not lead to miss.)

We need to extend the interface, to be able to provide the Manager with the
information whether the union of enabled outputs contains one or more outputs
that do not lead to miss.

Ad 2: When the Manager shows the enabled outputs to the user, obtained
using function out, the user not only wants to see what outputs are enabled,
but also, for each enabled output, the verdict (if any) that is associated with
the state reached by the output. We need to extend the interface, to be able to
pass such verdict information.

Ad 3: The initial state, as returned by function start, may have a verdict
associated with it (e.g. when we have an observation objective that is satisfied

76

3

CHAPTER 3. ARCHITECTURE OF TORX

by the empty trace). We need to extend the interface, to be able to pass such
verdicts.

Ad 4: States returned by function next may have a verdict associated with
them. We need to extend the interface, to be able to pass such verdicts.

3.5.2 Interfaces

Our aim is to be able to use a single Manager (algorithm) that will work without
change for both guided and unguided testing. We arrange the DerivationEngine
interface functions to achieve this, as we discuss below.

Between Manager and Adapter

The interface between Manager and Adapter is unchanged w.r.t. random on-line
testing.

Between Manager and DerivationEngine

Our DerivationEngine interface functions have the signature given in Table 3.5.

1. start :→ P × (LV] {⊥})
2. in : P → P(LI)
3. hasOutputs : P → bool
4. out : P → P((LU ∪ {δ})× (LV] {⊥})
5. next : P × (LI ∪ LU ∪ {δ})→ P × (LV] {⊥})
6. defPosVerdict :→ LV
7. defNegVerdict :→ LV

Table 3.5: Signature of DerivationEngine interface functions (incl. guidance),
given in terms of label(set)s LI , LU and δ, verdicts LV and the pseudo-state
type of Table 3.6.

8. PS : SΓ ×GΓ → P
9. m : P → SΓ

10. g : P → GΓ

Table 3.6: Signature of pseudo-state type (used in guided DerivationEngine in-
terface).

Here LV represents the set of verdicts, i.e. LV = {〈v, e〉 | v ∈ {pass, fail} and
e ∈ {hit,miss}}. A pseudo-state P now wraps a tuple of SΓ and GΓ, where SΓ

and GΓ represent the set of states of Γs resp. Γg, i.e. each element of SΓ resp.
GΓ represents a set of states of the LTS of resp. specification s and observation

3.5. GUIDED ON-LINE TESTING

3

77

objective g.

PS(SΓ, GΓ).m() =def SΓ

PS(SΓ, GΓ).g() =def GΓ

We now discuss the interface functions, where we focus on the changes w.r.t.
Table 3.3.

Ad 1: start Function start now returns a pseudo-state that gives access to the
exhibition automaton initial state, and a verdict.

Ad 2: in Function in returns the intersection of the inputs (stimuli) enabled
in specification and observation objective.

Ad 3: hasOutputs Function hasOutputs has been added to the interface, to
provide the Manager with the information whether the union of enabled outputs
contains one or more outputs that do not lead to miss.

Ad 4: out Function out returns the union of the outputs (expected observa-
tions) enabled in specification and observation objective, with, for each output
returned, the verdict (if any) associated with the state reached by the output.

Ad 5: next Function next now returns a pseudo-state that gives access to the
successor state in the exhibition automaton, and the verdict, if any, associated
with it.

Ad 6: defPosVerdict Function defPosVerdict has been added to the interface,
to allow the manager to give the right verdict, 〈pass,miss〉, when testing stops
and no other verdict is available. This corresponds to the case where we ter-
minate the test case with pass in the ioco algorithm.

Ad 7: defNegVerdict Function defNegVerdict has been added to the interface,
to allow the manager to give the right verdict, 〈fail,miss〉, when we check an
observation and it is expected by neither the specification nor the observation
objective, i.e. when it is not in the cross product. This corresponds to the case
where we terminate the test case with fail in the ioco algorithm.

Ad 8: PS Function PS is a constructor for the pseudo-state type; in the guided
setting it constructs a pseudo-state from an exhibition automaton state.

Ad 9: m Function m is a pseudo-state method; it returns the specification
(suspension automaton) state from a pseudo-state.

Ad 10: g Function g is a pseudo-state method; it returns the guidance (de-
terminized observation objective) state from a pseudo-state.

78

3

CHAPTER 3. ARCHITECTURE OF TORX

Interface definition Below we define the interface functions in terms of func-
tions in, out , out tr , after and ε, of resp. Definitions 2.2.11, 2.2.10, 2.4.4, 2.2.3,
and Algorithm 2.4.5. (In Chapter 4 we discuss how the interface functions can
be implemented). Below s and g are the (initial states of) the specification
resp. the observation objective, and S and G are sets of states (i.e. a suspension
automaton state, resp. a state of a determinized LTS).

start() =def

{
〈PS(s after ε , g after ε), 〈pass,hit〉〉 if ε(g after ε)

〈PS(s after ε , g after ε),⊥〉 otherwise

in(P) =def in(P.m()) ∩ in(P.g())

out(P) =def {〈l, 〈fail,hit〉〉 | l ∈ LδU∧
l 6∈ out(P.m())∧
l ∈ out tr (P.g()) ∧ ε(P.g() after l)}

∪ {〈l, 〈pass,hit〉〉 | l ∈ LδU∧
l ∈ out(P.m())∧
l ∈ out tr (P.g()) ∧ ε(P.g() after l)}

∪ {〈l, 〈pass,miss〉〉 | l ∈ LδU∧
l ∈ out(P.m())∧
l 6∈ out tr (P.g())}

∪ {〈l,⊥〉 | l ∈ LδU∧
l ∈ out(P.m())∧
l ∈ out tr (P.g())∧ 6ε(P.g() after l)}

hasOutputs(P) =def ∃ l ∈ out tr (P.g()) : l ∈ out(P.m())∨
ε(P.g() after l)

next(P, l) =def

〈PS(P.m() after l , P.g() after l), 〈fail,hit〉〉
if l ∈ LδU ∧ l 6∈ out(P.m())∧
l ∈ out tr (P.g()) ∧ ε(P.g() after l)

〈⊥,⊥〉
if l ∈ LδU ∧ l 6∈ out(P.m())∧

(l 6∈ out tr (P.g())∨ 6ε(P.g() after l))

〈PS(P.m() after l , P.g() after l), 〈pass,hit〉〉
if l ∈ (in(P.m()) ∪ out(P.m()))∧
l ∈ (in(P.g()) ∪ out tr (P.g()))∧
ε(P.g() after l)

〈PS(P.m() after l , P.g() after l), 〈pass,miss〉〉
if l ∈ (in(P.m()) ∪ out(S))∧
l 6∈ (in(P.g()) ∪ out tr (P.g()))

〈PS(P.m() after l , P.g() after l),⊥〉
otherwise

3.5. GUIDED ON-LINE TESTING

3

79

defPosVerdict() =def 〈pass,miss〉
defNegVerdict() =def 〈fail,miss〉

3.5.3 Manager Algorithm

We now give the algorithm that the Manager runs, as Algorithm 3.2. This
algorithm differs from Algorithm 3.1, for random on-line testing, in the following

Algorithm 3.2: On-Line Test Derivation and Execution Algorithm, us-
able for random on-line testing and guided on-line testing.

input : A DerivationEngine d that gives access to the Specification and
the observation objective, and an Adapter a that gives access to
the SUT

output: A verdict
1 begin
2 P, v ←− d.start()
3 a.start()
4 prevLabel←− ⊥
5 while v = ⊥ and the user does not stop the testing do
6 stimuli←− d.in(P)
7 if stimuli = ∅ then
8 action←− observe
9 else if prevLabel = δ or ¬d.hasOutputs(P) then

10 action←− stimulate
11 else
12 action←− random choice from {stimulate, observe}
13 if action = stimulate then
14 pick input l′ ∈ stimuli
15 t, l←− a.tryStim(l′)

16 else obtain and check observation
17 t, l←− a.getObs()

18 P ′, v′ ←− d.next(P, l)
19 if t = u and P ′ = ⊥ then
20 v ←− d.defNegVerdict()

21 else
22 P, v ←− P ′, v′
23 prevLabel←− l

24 a.stop()
25 if v 6= ⊥ then
26 return v

27 return d.defPosVerdict()

80

3

CHAPTER 3. ARCHITECTURE OF TORX

aspects.
◦ the termination condition in the main loop has changed;
◦ we implicitly obtain a verdict at each test step;
◦ we use function hasOutputs to be able to force application of a stimulus;

note that without guidance there will always be an expected observation,
either a real one, or quiescence;
◦ when next returns 〈⊥,⊥〉 we give the verdict obtained with function

defNegVerdict, i.e. 〈fail,miss〉 (was fail);
◦ when testing is stopped, and no other verdict is available we give the

verdict obtained with function defPosVerdict, i.e. 〈pass,miss〉 (was pass).

Making the specification-only DerivationEngine compatible with Al-
gorithm 3.2 The specification-only DerivationEngine (i.e. the DerivationEngine
that gives access to only a specification), as defined in Section 3.4.2, is incom-
patible with Algorithm 3.2: it lacks the interface extensions that we made in
Section 3.5.2 to support the use of guidance. For completeness sake, we list the
changes that make it compatible with Algorithm 3.2:
◦ Add a function hasOutputs(P) that returns out(P.m()) 6= ∅;
◦ Add a function defPosVerdict() that returns pass;
◦ Add a function defNegVerdict() that returns fail;
◦ Change function out to return, instead of a set of labels, a set of tuples
〈l,⊥〉, consisting of a label l and an empty verdict ⊥;
◦ Change function init and next to return, in addition to the pseudo-state,

an empty verdict ⊥.

3.5.4 Examples

We illustrate Algorithm 3.2 by showing runs with the Quirky Coffee Machine
specification of Figure 3.4. We discuss runs on the kick-insensitive machine
(Fig. 3.6) and the correct machine (Fig. 3.4), both with the observation objective
of Figure 3.11 (a), that tries to obtain coffee, and with the observation objective
of Figure 3.11 (b), that tries to expose the error in the kick-insensitive machine.
Recall that we assume implicit input-completion on a model that is used as
implementation (see the “Implementations” paragraph of Section 3.3).

Example 1: run on kick-insensitive machine with obs. objective (a)

In this example we try to obtain coffee from the kick-insensitive machine (Fig-
ure 3.6). For this run, shown in Fig. 3.12, we assume that the IUT, upon
insertion of the coin, goes to state 3, in which it is only able to produce tea.
Thus, after requesting coffee, the tester observes quiescence, kicks the machine,
requests coffee once more without effect, and thus a verdict 〈fail,miss〉 results.

For each step in the test run, the observation objective provides the action
kind (apply stimulus, or obtain and check observation), and when a stimulus is
to be applied, it provides the stimulus.

Note that in states 1 and 3 the observation objective allows two possible
responses from the IUT: coffee and quiescence. This allows the observation

3.5. GUIDED ON-LINE TESTING

3

81

objective to deal (to a certain extent) with the non-determinism in the IUT.

Initialisation At the start of the test run d.start() is invoked. It returns a
pseudo-state that gives access to the initial state PS({0}, {0}) and verdict ⊥.

Test step 1 Initially, stimuli = in(PS({0}, {0})) = {?coin} ∩ {?coin} =
{?coin} 6= ∅. Therefore, the algorithm checks whether prevLabel = δ, which is
not true. Thus, it checks whether d.hasOutputs(PS({0}, {0})) is false, which is
the case, and thus it chooses to stimulate. The algorithm requests the Adapter to
apply ?coin – the only available stimulus (line 15). The IUT accepts the stimulus.
It randomly chooses one of the enabled transitions with label ?coin. We assume
that it makes a transition to its state 3. The Adapter thus returns 〈i, ?coin〉. The
algorithm invokes d.next(PS({0}, {0}), ?coin), which results in verdict ⊥ (be-
cause ?coin is enabled in the specification and in the observation objective) and
in new pseudo-state PS({0} after ?coin , {0} after ?coin) = PS({1, 2, 3}, {1})
and thus testing continues, with prevLabel set to ?coin.

Test step 2 Now, stimuli = in(PS({1, 2, 3}, {1})) = {?cof, ?tea, ?kick}∩∅ = ∅.
The algorithm thus chooses to obtain and check an observation. It requests
the Adapter to obtain an observation. The IUT is still in state 3 and has not
produced output, and will not produce output even when the Adapter is willing
to wait for it. Thus, the Adapter returns 〈u, δ〉, the observation of quiescence.
The algorithm invokes d.next(PS({1, 2, 3}, {1}), δ), which results in verdict ⊥
(because δ is expected by both specification and observation objective) and in
new pseudo-state PS({1, 2, 3} after δ , {1} after δ) = PS({1, 3}, {2}), and thus
testing continues. Now, prevLabel is set to δ.

Test step 3 Now, stimuli = in(PS({1, 3}, {2})) = {?cof, ?tea, ?kick}∩{?cof} 6=
∅. Thus, the algorithm checks whether prevLabel = δ, which is true. This suf-
fices to make the algorithm choose to stimulate. It requests the Adapter to apply
the only available stimulus ?cof. The IUT still is in state 3, where the only en-
abled ?cof transition consists of a self-loop. It thus stays in state 3, and the Ad-
apter returns 〈i, ?cof〉. The algorithm invokes d.next(PS({1, 3}, {2}), ?cof), which
results in verdict ⊥ (because ?cof is enabled in both specification and observa-
tion objective) and in new pseudo-state PS({1, 3} after ?cof , {2} after ?cof) =
PS({3, 4}, {3}), and thus testing continues, with prevLabel set to ?cof.

Test step 4 Now, stimuli = in(PS({3, 4}, {3})) = {?cof, ?tea, ?kick} ∩ ∅ = ∅.
The algorithm thus chooses to obtain and check an observation. It requests
the Adapter to obtain an observation. The IUT is still in state 3 and has
not produced output, and will not produce output even when the Adapter is
willing to wait for it. Thus, the Adapter returns 〈u, δ〉. The algorithm in-
vokes d.next(PS({3, 4}, {3}), δ), which results in verdict ⊥ (because δ is expec-
ted in both specification and observation objective) and in new pseudo-state
PS({3, 4} after δ , {3} after δ) = PS({3}, {4}), and thus testing continues, with
prevLabel set to δ.

82

3

CHAPTER 3. ARCHITECTURE OF TORX

Test step 5 Now, stimuli = in(PS({3}, {4})) = {?cof, ?tea, ?kick}∩{?kick} 6=
∅. Thus, the algorithm checks whether prevLabel = δ, which is true. Assuming
short-circuit evaluation of the expression, this suffices to make the algorithm
choose to stimulate. (Without short-circuit evaluation the algorithm would
also check whether d.hasOutputs(PS({3}, {4})) is false, which is the case.) It
requests the Adapter to apply the only available stimulus ?kick. The IUT is still
in state 3. It accepts the stimulus and takes the only enabled ?kick transition,
which is a self-loop, and thus it stays in state 3. The Adapter returns 〈i, ?kick〉.
The algorithm invokes d.next(PS({3}, {4}), ?kick), which results in verdict ⊥
(because ?kick is enabled in both specification and observation objective) and
in new pseudo-state PS({3} after ?kick , {4} after ?kick) = PS({1}, {5}), and
thus testing continues, with prevLabel set to ?kick.

Test step 6 Now, stimuli = in(PS({1}, {5})) = {?cof, ?tea, ?kick} ∩ {?cof} 6=
∅. Thus, the algorithm checks whether prevLabel = δ, which is false. Thus,
the algorithm checks whether d.hasOutputs(PS({1}, {5})) is false, which is the
case, and thus it chooses to apply a stimulus. It requests the Adapter to ap-
ply the only available stimulus ?cof. The IUT is in state 3. It accepts the
stimulus and takes the only enabled ?cof transition, which is a self-loop, and
thus it stays in state 3. The Adapter returns 〈i, ?cof〉. The algorithm in-
vokes d.next(PS({1}, {5}), ?cof), which results in verdict ⊥ (because ?cof is en-
abled in both specification and observation objective) and in new pseudo-state
PS({1} after ?cof , {5} after ?cof) = PS({4}, {7}), and thus testing continues,
with prevLabel set to ?cof.

Test step 7 Now, stimuli = in(PS({4}, {7})) = {?cof, ?tea, ?kick} ∩ ∅ = ∅.
The algorithm thus chooses to obtain and check an observation. It requests
the Adapter to obtain an observation. The IUT is still in state 3 and has not
produced output, and will not produce output even when the Adapter is will-
ing to wait for it. Thus, the Adapter returns 〈u, δ〉. The algorithm invokes
d.next(PS({4}, {7}), δ), which results in verdict ⊥ and new pseudo-state ⊥ be-
cause δ is expected by neither specification nor observation objective. Thus, the
algorithm requests verdict d.defNegVerdict, which is 〈fail,miss〉. Then, the test
at line 5 evaluates to false, the Adapter is requested to stop the IUT and testing
stops with verdict 〈fail,miss〉.

Note that the implementation may go to a different state when it receives
the ?coin stimulus in the first test step, and this will give us a different test run.

Example 2: run on quirky coffee machine with obs. objective (a)

We now show a similar run on the correct quirky coffee machine, see Figure 3.13,
and explain how it differs from the run on the kick-insensitive machine.

We assume that the IUT behaves in the same way, and thus the first part of
the test run (up-to and including step 4) is the same as with the kick-insensitive
IUT. From step 5 on, the (correct) IUT internally behaves in a different way
than the kick-insensitive one, but this is not visible to the tester, until coffee is

3.5. GUIDED ON-LINE TESTING

3

83

Manager DerivationEngine Adapter

start()

〈PS({0}, {0}),⊥〉

start()

initialisationinitialisation

in(PS({0}, {0}))

{?coin}

hasOutputs(PS({0}, {0}))

false

tryStim(?coin)

〈i, ?coin〉

next(PS({0}, {0}), ?coin)

〈PS({1, 2, 3}, {1}),⊥〉

test step 1test step 1

in(PS({1, 2, 3}, {1}))

∅
getObs()

〈u, δ〉

next(PS({1, 2, 3}, {1}), δ)

〈PS({1, 3}, {2}),⊥〉

test step 2test step 2

in(PS({1, 3}, {2}))

{?cof}

tryStim(?cof)

〈i, ?cof〉

next(PS({1, 3}, {2}), ?cof)

〈PS({3, 4}, {3}),⊥〉

test step 3test step 3

(a)

Manager DerivationEngine Adapter

in(PS({3, 4}, {3}))

∅
getObs()

〈u, δ〉

next(PS({3, 4}, {3}), δ)

〈PS({3}, {4}),⊥〉

test step 4test step 4

in(PS({3}, {4}))

{?kick}

tryStim(?kick)

〈i, ?kick〉

next(PS({3}, {4}), ?kick)

〈PS({1}, {5}),⊥〉

test step 5test step 5

in(PS({1}, {5}))

{?cof}

hasOutputs(PS({1}, {5}))

false

tryStim(?cof)

〈i, ?cof〉

next(PS({1}, {5}), ?cof)

〈PS({4}, {7}),⊥〉

test step 6test step 6

in(PS({4}, {7}))

∅
getObs()

〈u, δ〉

next(PS({4}, {7}), δ)

〈⊥,⊥〉

defNegVerdict()

〈fail,miss〉

test step 7test step 7

stop()

finalisationfinalisation

(b)

Figure 3.12: Sequence diagrams showing interaction between Manager and
DerivationEngine and Adapter of guided testing the kick-insensitive machine.

84

3

CHAPTER 3. ARCHITECTURE OF TORX

Manager DerivationEngine Adapter

initialisation and test steps 1–3 as in Fig. 3.12initialisation and test steps 1–3 as in Fig. 3.12

in(PS({3, 4}, {3}))

∅
getObs()

〈u, δ〉

next(PS({3, 4}, {3}), δ)

〈PS({3}, {4}),⊥〉

test step 4 (identical, as far as tester can see)test step 4 (identical, as far as tester can see)

in(PS({3}, {4}))

{?kick}

tryStim(?kick)

〈i, ?kick〉

next(PS({3}, {4}), ?kick)

〈PS(e{1}, {5}),⊥〉

test step 5 (identical, as far as tester can see)test step 5 (identical, as far as tester can see)

(a)

Manager DerivationEngine Adapter

in(PS({1}, {5}))

{?cof}

hasOutputs(PS({1}, {5}))

false

tryStim(?cof)

〈i, ?cof〉

next(PS({1}, {5}), ?cof)

〈PS({4}, {7}),⊥〉

test step 6 (identical, as far as tester can see)test step 6 (identical, as far as tester can see)

in(PS({4}, {7}))

∅
getObs()

〈u, !cof〉

next(PS({4}, {7}), !cof)

〈PS({0}, {6}), 〈pass,hit〉〉

test step 7test step 7

stop()

finalisationfinalisation

(b)

Figure 3.13: Sequence diagrams showing interaction between Manager and
DerivationEngine and Adapter of guided testing the (correct) quirky coffee ma-
chine. Initialisation and first test steps have been omitted, because they are
identical to the run with the kick-insensitive machine shown in Figure 3.12.

observed in step 7 (recall, with the kick-insensitive implementation, quiescence
was observed in step 7). Thus, the run ends after 7 steps with verdict 〈pass,hit〉.

Test steps 1–4 We assume that the IUT behaves in the same way, and thus
the first part of the test run is the same as with the kick-insensitive IUT.

Test step 5 In this test step the IUT is in state 3, and receives a stimulus
?kick. It accepts the stimulus and takes the only enabled ?kick transition to
state 1.

Test step 6 Now, the IUT is in state 1, and it receives a stimulus ?cof . It
accepts the stimulus and takes the only enabled ?cof transition to state 4. There
it can produce output !cof and return to state 0. The Adapter returns 〈i, ?cof〉.
The algorithm invokes d.next(PS({1}, {5}), ?cof), which results in verdict ⊥ (be-
cause ?cof is enabled in both specification and observation objective) and in new

3.5. GUIDED ON-LINE TESTING

3

85

Manager DerivationEngine Adapter

initialisation and test steps 1–6 as in Fig. 3.12initialisation and test steps 1–6 as in Fig. 3.12

in(PS({4}, {7}))

∅
getObs()

〈u, δ〉

next(PS({4}, {7}), δ)

〈PS(∅, {6}), 〈fail,hit〉〉

test step 7test step 7

stop()

finalisationfinalisation

(a)

Manager DerivationEngine Adapter

initialisation and test steps 1–6 as in Fig. 3.13initialisation and test steps 1–6 as in Fig. 3.13

in(PS({4}, {7}))

∅
getObs()

〈u, !cof〉

next(PS({4}, {7}), !cof)

〈PS({0}, ∅), 〈pass,miss〉〉

test step 7test step 7

stop()

finalisationfinalisation

(b)

Figure 3.14: Test runs with (a) the kick-insensitive machine and (b) the (correct)
quirky coffee machine, both with the observation objective of Fig. 3.11 (b) that
attempts to expose the error in the kick-insensitive machine. Initialisation and
first test steps have been omitted, because they are identical to the runs shown
in Figure 3.12 resp. 3.13.

pseudo-state PS({1} after ?cof , {5} after ?cof) = PS({4}, {7}), and thus test-
ing continues.

Test step 7 Now, stimuli = in(PS({4}, {7})) = {?cof, ?tea, ?kick} ∩ ∅ = ∅.
The algorithm thus chooses to obtain and check an observation. It requests
the Adapter to obtain an observation. Either the IUT is still in state 4 and
has not yet produced output in which case, as mentioned above, it is willing
to produce !cof and return to state 0, or it already is in state 0 and already
has produced !cof. Thus, the Adapter returns 〈u, !cof〉. The algorithm invokes
d.next(PS({4}, {7}), !cof), which results in verdict 〈pass,hit〉 (because !cof is
expected by both specification and observation objective, and the end of the
observation objective is reached – ε({7} after !cof) holds) and new pseudo-state
PS({4} after !cof , {7} after !cof) = PS({0}, {6}). Thus, the test at line 19
evaluates to true, and the test at line 5 evaluates to false, after which the Adapter
is requested to stop the IUT and testing stops with a 〈pass,hit〉 verdict.

Example 3: triggering error in kick-insensitive machine

Now we look at the observation objective depicted in Figure 3.11 (b). It will
give us a verdict 〈fail,hit〉 when we hit the error in the kick-insensitive machine.
We look at a run with the kick-insensitive machine (see Figure 3.14 (a)), and
one with the (correct) quirky coffee machine (see Figure 3.14 (b)).

86

3

CHAPTER 3. ARCHITECTURE OF TORX

Test steps 1–6 We assume that the implementations behave as they did in
the runs that we described as example 1 and 2. Then, with both implementa-
tions, up-to the seventh test step, the runs with this behaviour objective are as
described before.

Test step 7 In the seventh test step, with both implementations, stimuli = ∅
so we decide to obtain and check an observation. Now the tester sees the
difference between the two implementations.

With the kick-insensitive machine we receive an observation of δ, see Fig-
ure 3.14 (a). The algorithm invokes d.next(PS({4}, {7}), δ), which results in
verdict 〈fail,hit〉 (because δ is not expected by the specification but is expected
by the observation objective, and the end of the observation objective is reached
– ε({7} after δ) holds) and new pseudo-state PS({4} after δ , {7} after δ) =
PS(∅, {6}).

With the correct quirky coffee machine we receive an observation of !cof, see
Figure 3.14 (b). The algorithm invokes d.next(PS({4}, {7}), !cof), which results
in verdict 〈pass,miss〉 (because !cof is expected by the specification but not by
the observation objective) and new pseudo-state PS({4} after !cof , {7} after !cof) =
PS({0}, ∅).

With both machines, testing stops after the seventh test step.

3.5.5 Concluding Remarks

Observation During testing the (state space of the) observation objective is
explored on demand, as far as needed to derive the next test step (just like the
specification is explored on demand). Thus, our approach will still work when
we do not use as observation objective a static object that is “frozen” at the
start of the test run, but an object that is dynamically extended during the test
run, for example to take the effect of the current test run on the coverage of the
specification into account.

Supporting User Interaction Like in the setting of random on-line testing
we can allow user interaction by presenting the possible stimuli and expected
observations of the next test step to the user, and let the user make the choices
that otherwise are made using random choice. The user can only choose from
what is enabled for the next test step. For example, if there are no inputs that
are enabled in both specification and observation objective, the user is presented
an empty list of stimuli, and can only choose to obtain and check an observation.
To allow the user to make an informed choice, we present with each expected
observation label the verdict, if available, that results from an observation with
that label. (Note that the extension of out in Section 3.5.2 gives precisely this
information.)

Presenting verdicts with enabled stimuli is not really necessary, because only
those stimuli are presented that are enabled in both specification and observa-
tion objective. Giving a stimulus never leads to a correctness verdict in the next
step, and because only those stimuli are presented that are enabled in both spe-
cification and observation objective, it also never leads to a miss verdict. The

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

87

only potentially interesting verdict that could be shown is a 〈pass,hit〉 verdict.
However, such verdict would only appear when an observation objective is given
that intentionally has a stimulus as last step. For such observation objectives we
do not see a clear use–a typical observation objective ends with an observation.
Therefore, it does not seem necessary to show verdicts with stimuli.

Optimisation for guidance that only constrains the test derivation
To compute the results of DerivationEngine functions hasOutput and out the
DerivationEngine has to look-ahead at the states that can be reached from the
given state by doing an output action. This is clearly visible by the presence of
after in the definition of these functions. One of the things that is checked, is

whether ε(G after l), i.e. whether we hit the end of the observation objective.
When the guidance information is meant to constrain the test derivation,

rather than to direct it, the test run may miss the observation objective, with or
without failing at the same time, but it will never hit the observation objective.
For such observation objective, it will always be the case that 6ε(G after l). In
that case, checking whether ε(G after l) is superfluous, and the definitions of
these functions, and of function next, can be simplified. In the tool implement-
ation we (should) have a configuration option that allows the user to indicate
whether the guidance information is meant to direct the test derivation, or only
to constrain it, to avoid superfluous look-ahead in the DerivationEngine.

3.6 Off-Line Test Derivation and Execution

As we have seen, the framework of Figure 2.1 gives us an initial functional
decomposition of the tester into two main components: test derivation and test
execution. We will now decompose these further for off-line test derivation and
execution. The result of these decomposition steps is depicted in Figure 3.3,
where the observation objective is optional: we will first discuss off-line test
derivation without guidance, and then discuss how the presence of guidance
information affects this.

We discuss off-line test derivation and execution mostly for the sake of com-
pleteness, to show that the DerivationEngine and Adapter components offer suf-
ficient functionality to be able to do off-line testing.

As in the previous sections we first define the components of our decompos-
ition (Section 3.6.1) and the interfaces between them (Section 3.6.2). Then, we
show how these can be used to derive and execute tests. With respect to test
derivation, we show four different approaches. On one hand, these approaches
vary in whether tests are derived from only a specification, or also from guid-
ance information. On the other hand, these approaches vary on how they select
which test(s) to derive, and here we discuss two extremes: exhaustive, and ran-
dom. The exhaustive derivation approach does not actually choose one test
case over another one, but just derives all possible test cases (thus shifting the
selection problem from test derivation to test execution). The random deriv-
ation approach just randomly selects a single test case to derive. Essentially,
the testing then does a (number of) random walk(s) through the specification.

88

3

CHAPTER 3. ARCHITECTURE OF TORX

In Section 3.6.3 we discuss exhaustive, non-guided derivation. In Section 3.6.4
we discuss random, non-guided derivation. In Section 3.6.5 we discuss both
exhaustive and random guided derivation. In Section 3.6.6 we discuss execution
of individual test cases, and in Section 3.6.7 execution of test suites.

3.6.1 Components

As before we use the approach of separation of concerns to decompose both the
test derivation component and the test execution component.

We decompose the test derivation component into two components: the
DerivationEngine and the DerivationManager. We use the same DerivationEngine
as in the previous sections (either the specification-only one, or the one that also
supports guidance, depending on whether the optional observation objective is
present). However, where the Manager that we have seen in previous sections
directly interacts with the IUT, the DerivationManager derives test cases. Never-
theless, like the Manager, the DerivationManager is responsible for the progress
of the test derivation, and it resolves the open choices in the test derivation
algorithm: it decides which test case to construct.

The test execution component is very similar to our architecture for on-line
testing. We decompose it in the same three components that we use there: the
DerivationEngine, the ExecutionManager, and the Adapter. However, where the
DerivationEngine for on-line testing gives access to a specification, the Derivation-
Engine here gives access to a test case, selected from the test suite—we treat
a test case as a specification with a very special structure. The Adapter is the
same as we have seen in previous sections. The ExecutionManager resolves most
of the open choices during test execution. In this respect it is similar to the
Manager for on-line testing; what is different, is that it explicitly selects test
cases from the test suite. Execution of a single test case is very similar to on-
line testing: the DerivationManager accesses such test via the DerivationEngine,
navigates through it (as if it were a specification), and it interacts with the IUT
via the Adapter, as we have seen in previous sections.

3.6.2 Interfaces

Here we discuss the interfaces between the components in our decomposition.

Between DerivationManager and ExecutionManager: the test suite The
test suite forms an interface between DerivationManager and ExecutionManager.
As an interface we represent it as an object, not as a function.

The formalisation of tests in Section 2.2.3 forms the basis of our test suite
interface object. We make one change with respect to that formalisation: we
only store the expected observations in the tests, i.e. we omit the unexpected
ones. As a consequence our tests do not contain verdicts fail (or, in the guided
case, 〈fail,miss〉). During test execution a fail (or 〈fail,miss〉) verdict is given
when an observation is made that is not expected by the test case that is being
executed. We thus lose the distinction between “known but unexpected” obser-

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

89

vations and “unknown” observations (i.e. the distinction between observation
x ∈ LδU , x /∈ out(q) and x /∈ LδU , x /∈ out(q)).

We do not think this to be a great loss. This loss is compensated by the
following advantages: 1) the test suite is robust against additional observations
that were not in LU when the test was derived; 2) the DerivationManager needs
not be aware of LI or LU ; and 3) the test cases are smaller when the number
of elements in out(S) is small compared to the number of elements in LU .

Between DerivationManager and DerivationEngine we use the Derivation-
Engine interface that we gradually defined in the preceding sections.

Between ExecutionManager and Adapter we use the Adapter interface that
we defined in Section 3.4.2.

Between ExecutionManager and DerivationEngine we use the Derivation-
Engine interface that we gradually defined in the preceding sections. In Sec-
tion 3.6.6 we discuss how we use the DerivationEngine interface functions to
(give) access (to) a test case.

3.6.3 Exhaustive Off-Line Derivation

In Algorithm 3.3 we sketch how we can systematically derive an exhaustive test
suite by applying the rules of the ioco algorithm (Algorithm 3.3 uses Algo. 3.4
which in turn uses Algo. 3.5). The interfaces that we have given above suffice
for this.

Recall that with the ioco algorithm, we start a new test with a single place-
holder : an “open”, unexpanded node (state), that is the root node of the test
case that is constructed. Each of the three rules of the ioco algorithm turns
such placeholder into either a“closed” end node (by attaching a verdict to it,
i.e. pass in the unguided case), or an intermediate node with transitions to new
placeholders (by adding outgoing transitions to it, each labelled with an input
action, an output action, or δ, and each leading to a new placeholder). When
the test case is ready, all placeholders have been turned into intermediate nodes,
or into end nodes with a verdict.

In the case of exhaustive off-line derivation, we derive all tests of the test
suite together. We try to derive them such, that each trace in the test suite
has approximately the same length (i.e. same number of test steps). In each
iteration of the algorithm we extend the depth of the test suite by one level (one
test step). Thus, in essence the systematic exhaustive approach constructs tests
in a breadth-first way—in this way our goal, that each trace in the test suite has
approximately the same length, holds not only at the end of test derivation, but
at any moment during test derivation. In this way, we can stop the derivation
at any moment without validating our goal. In Algorithm 3.3 we continue until
a sufficient depth has been reached. Other possible stop criteria include having
reached the end of a finite specification, or having produced a given number of
test cases.

90

3

CHAPTER 3. ARCHITECTURE OF TORX

Algorithm 3.3: Off-Line Exhaustive Test Derivation

input : A DerivationEngine d that gives access to the Specification
output: A test suite T

1 begin
2 s0, v ←− d.start()
3 test suite T ←− {PH(s0)}
4 while test cases in T not deep enough do
5 working set W ←− t ∈ T that have one or more placeholders
6 T ←− T \W
7 foreach t ∈W do
8 // apply rules 2 and 3 from the ioco algorithm

9 P ←− set of all placeholders pi (0 ≤ i ≤ n) of t
10 // pi.s yields the pseudo-state of placeholder pi
11 Q←− {pi.s, for all pi ∈ P}
12 foreach pseudo-state pi.s ∈ Q do
13 Epi.s ←− single-step-extension-set(d, pi.s) // Algo. 3.4

14 EP ←− cartesian product Ep0.s×Ep1.s× . . .×Epn.s for pi ∈ P
15 foreach element e = 〈e0, . . . , en〉 in EP do
16 t′ ←− clone of test case t
17 foreach placeholder pi in P do
18 replace pi in t′ by corresponding extension ei from e

19 T ←− T ∪ {t′}

20 // apply rule 1 from the ioco algorithm

21 foreach t ∈ T do
22 replace all placeholders in t by pass

23 return T

In the algorithm, set T holds the test suite constructed so far. Typically,
each test case in the test suite has one or more placeholder leaf nodes, each of
which holds a reference to the corresponding pseudo-state, that in turn gives
access to the corresponding suspension automaton state. We use p = PH(s) to
denote a placeholder that refers to pseudo-state s, and p.s to denote the pseudo-
state referenced by p, i.e. PH(s).s =def s. Initially T contains a single test
case that consists of a single placeholder that holds a reference to a pseudo-state
that gives access to the start state of the suspension automaton.

During the test derivation, working set W holds the test cases that are to
be extended during the current iteration (lines 5–19).

For each of the pseudo-states pi.s ∈ Q we construct the set Epi.s of all
possible single step extensions (lines 12–13, see Algorithm 3.4). (We can cache
these to avoid having to recompute them.) Each of these single step extensions
has the form of a sub-tree described in step 2 and 3 of the ioco algorithm, as
given in Algorithm 2.2.18 on page 39. The single step extensions also contain
placeholder leaf nodes, with which the corresponding suspension automaton

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

91

Algorithm 3.4: single-step-extension-set

input : A DerivationEngine d and a pseudo-state s
output: A set of single step test case extensions E

1 begin
2 E ←− ∅
3 // apply rule 3 from the ioco algorithm

4 e←− obs-step-extension(d, s) // Algo. 3.5

5 E ←− E ∪ {e}
6 // apply rule 2 from the ioco algorithm on all inputs

7 e′ ←− e with any branch with label δ removed
8 foreach input a ∈ d.in(s) do
9 s′, v′ ←− d.next(s, a)

10 e←− test with single branch a · PH(s′)
11 extend e with e′

12 E ←− E ∪ {e}
13 return E

Algorithm 3.5: obs-step-extension

input : A DerivationEngine d and a pseudo-state s
output: A single step test case extension e

1 begin
2 e←− empty test case consisting of only root node
3 foreach tuple 〈x, v〉 ∈ d.out(s) do
4 s′, v′ ←− d.next(s, x)
5 extend e with branch x · PH(s′)

6 return e

states are associated. Now we systematically enumerate all elements in the
cartesian product of the replacement sets of the placeholders of (a clone of) test
case t, produce all test cases that have one level more, and store these extended
test cases in T (lines 14–19).

When we have treated all test cases in W we continue in the same way to
expand one more level. When we are done, we replace each placeholder of each
test case in T into pass to obtain our test suite (lines 22–23).

Computation of the single step test case extensions In Algorithm 3.4
and Algorithm 3.5 we illustrate the computation of the set of single step test
case extensions for a given pseudo-state. It constructs all possible test cases
that apply a stimulus, and the single one that checks an observation. Note that,
as we wrote in Section 3.6.2 when we discussed the test suite as interface, our
test cases deviate from the test cases that we have defined in Chapter 2: we
omit the unexpected observations (and thus, also the fail verdicts).

92

3

CHAPTER 3. ARCHITECTURE OF TORX

Alternative choice for information associated with placeholders In
Algorithms 3.3, 3.4, and 3.5 we associate with each placeholder a pseudo-state,
which we denoted as “PH(s0)” and “PH(s′)” where s0 and s′ were obtained
from “d.start()”, resp. “d.next(s, a)” and “d.next(s, x)”. As an alternative, we
could associate with each placeholder, or at least each placeholder except the
initial one, the information necessary to obtain the pseudo-state: the arguments
to the d.next function. This we would denote as “PH(s, a)” resp. “PH(s, x)”.
This would allow us to only invoke d.next to compute the successor state when
we are actually going to use it, i.e. when we extend the placeholder. That
computation would then be done at line 11 of Algorithm 3.3 (where we obtain
the pseudo-states from the placeholders).

This alternative approach has the advantage that it avoids executing d.next
for all cases where we end a branch in the test case by replacing a placeholder
by pass without looking at the state associated with it.

With this alternative approach we lose some traceability: for the placeholders
we can no longer directly see where we are in the suspension automaton (but
only after computing d.next on the stored information). (We thus also cannot
directly see it when we return to a suspension automaton state that we have
visited before.) Given that we develop this architecture and tool also to get
insight in the theory by practically applying it, traceability is a property that
we do not want to lose. Therefore, we will use our original approach.

3.6.4 Random Off-Line Derivation

In the previous section we gave an algorithm to systematically derive an ex-
haustive test suite for ioco from a specification, up to a given test case depth.
We solved the problem of having to choose between the 3 rules of the ioco
algorithm by not choosing, but instead, in a breadth-first way, generating very
many test cases, such that each possible choice is represented in at least one of
them.

We now discuss an alternative where we use an algorithm that derives only
a single test case in each of its runs. Also here we can decide in advance (before
derivation starts) on the maximal depth of the test case. Deciding on the depth
of the test case resolves the question of when to apply rule 1 (end the test case).
The choice between trying to apply a stimulus and checking an observation
remains (except where resolved by the specification), as well as the choice of a
particular stimulus.

Algorithm We give the algorithm as Algorithm 3.6. This algorithm tries to
do the test derivation such that all test steps that are on the same level of
the entire test case tree are of the same kind (either all are stimuli or all are
expected observations). It assumes that at all moments during the derivation
of the test case we can choose between stimulating and observing. However, the
specification need not be input-enabled, and thus its labelled transition system
representation may contain states in which no stimulus is enabled. When the
algorithm wants to extend the test case with a stimulus in a branch where

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

93

Algorithm 3.6: Off-Line Random Test Derivation

input : A DerivationEngine d that gives access to the Specification
output: A test case t

1 begin
2 S0, v ←− d.start()
3 test case t←− PH(S0)
4 while intended depth not reached do
5 switch randomly choose from {stimulate, observe} do
6 case stimulate
7 foreach placeholder p in t do
8 s←− p.s
9 stimuli←− d.in(q)

10 if stimuli 6= ∅ then
11 pick input a ∈ stimuli
12 e←− stim-step-extension(s, a) // Algo. 3.7

13 replace p in t by extension e

14 case observe
15 foreach placeholder p in t do
16 e←− obs-step-extension(d, s) // Algo. 3.5

17 replace p in t by extension e

18 replace all placeholders in t by pass
19 return t

Algorithm 3.7: stim-step-extension

input : A pseudo-state s and stimulus a, and DerivationEngine d
output: A single step test case extension e

1 begin
2 e←− test with single branch a · PH(d.next(s, a))
3 foreach tuple 〈x, v〉 ∈ d.out(s) where x 6= {δ} do
4 S′, v′ ←− d.next(s, x)
5 extend e with branch x · PH(S′)

6 return e

no stimulus is available, that branch is not extended in that iteration of the
algorithm.

3.6.5 Guided Off-Line Derivation

Like we adapted the random on-line testing algorithm to take guidance into
account, we also adapt the off-line derivation algorithms. Where for the on-
line case we essentially follow a single trace from the trace set of a singular

94

3

CHAPTER 3. ARCHITECTURE OF TORX

Algorithm 3.8: Guided Off-Line Exhaustive Test Derivation

input : A DerivationEngine d that gives access to the Specification and
observation objective

output: A test suite T
1 begin
2 S0, v ←− d.start()
3 if v 6= ⊥ then
4 T ←− { test case consisting of verdict v}
5 return T

6 T ←− {PH(S0)}
7 while test cases in T still contain placeholders do
8 working set W ←− t ∈ T that have one or more placeholders
9 T ←− T \W

10 foreach t ∈W do
11 // apply rules 2 and 3 from the ioco algorithm

12 P ←− set of all placeholders pi (0 ≤ i ≤ n) of t
13 // pi.s yields the pseudo-state of placeholder pi
14 Q←− {pi.s, for all pi ∈ P}
15 foreach pseudo-state pi.s ∈ Q do
16 Epi.s ←− guided-single-step-extension-set(d, pi.s)

// Algo. 3.9

17 EP ←− cartesian product Ep0.s×Ep1.s× . . .×Epn.s for pi ∈ P
18 foreach element e = 〈e0, . . . , en〉 in EP do
19 t′ ←− clone of test case t
20 foreach placeholder pi in P do
21 replace pi in t′ by corresponding extension ei from e

22 T ←− T ∪ {t′}

23 // apply rule 1 from the ioco algorithm

24 foreach t ∈ T do replace all placeholders in t by d.defPosVerdict()
25

26 return T

observation objective, with off-line test derivation we can try to be exhaustive
and derive a separate test case for each trace of the singular observation ob-
jective. Note, however: an observation objective that contains a loop has an
infinite number of traces—in that case, the stop condition of the main loops in
Algorithms 3.8 and 3.11.

Guided Exhaustive Off-Line Derivation We adapt the exhaustive off-line
derivation algorithm to work with a DerivationEngine that gives access to both
a specification and a singular observation objective.

We use the same approach as in the unguided case, i.e. we gradually extend
the test cases. In this sense, Algorithms 3.8, 3.9 and 3.10 are guided versions

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

95

Algorithm 3.9: guided-single-step-extension-set

input : A DerivationEngine d and a suspension automaton state s
output: A set of single step test case extensions E

1 begin
2 E ←− ∅
3 // apply rule 3 from the ioco algorithm, if applicable

4 e←− guided-obs-step-extension(d, s) // Algo. 3.10

5 if d.out(s) 6= ∅ then
6 E ←− E ∪ {e}
7 // apply rule 2 from the ioco algorithm on all inputs

8 e′ ←− e with any branch with label δ removed
9 foreach input a ∈ d.in(s) do

10 s′, v′ ←− d.next(s, a)
11 if v′ = ⊥ then
12 e←− test with single branch a · PH(s′)

13 else
14 e←− test with single branch a · node with verdict v′

15 extend e with e′

16 E ←− E ∪ {e}
17 return E

Algorithm 3.10: guided-obs-step-extension

input : A DerivationEngine d and a suspension automaton state s
output: A single step test case extension e

1 begin
2 e←− empty test case consisting of only root node
3 foreach output x, v ∈ d.out(s) do
4 s′, v′ ←− d.next(s, x)
5 if v′ = ⊥ then
6 extend e with branch x · PH(s′)

7 else
8 extend e with branch x · node with verdict v′

9 return e

of Algorithms 3.3, 3.4 and 3.5. The main difference between the unguided and
the guided algorithms is in two places.

The first place is at the stop condition of the main loop in the algorithm.
The unguided algorithms need a decision when to stop the test derivation (when
sufficient depth has been reached). In the guided algorithms we continue the
algorithm until there are no test cases that contain placeholders—for the mo-
ment assuming that observation objectives are finite, such that we can reach
the end. When we reach the end of observation objectives, we don’t introduce

96

3

CHAPTER 3. ARCHITECTURE OF TORX

new placeholders, and thus at some point all placeholders that are introduced
will be expanded. Note that, as stated above, we do need an additional stop
condition when we are dealing with infinite observation objectives.

The second place is where we compute the single step test case extensions.
In the unguided case we always put a placeholder ‘at the end’ of the single step
extension. In the guided case we check whether the successor state computed
by the DerivationEngine has a verdict, and if so, we put a node with this verdict
‘at the end’ of the single step extension. Only when the successor state has no
verdict, we introduce a placeholder. See lines 11–14 in Algorithm 3.9, lines 5–8
in Algorithm 3.10, and lines 21–24 in Algorithm 3.11.

To extend Algorithm 3.8 to be usable both for guided and unguided testing,
it is sufficient to extend the condition of the main loop (i.e. at line 7) such that
we are also able to end test derivation when we have a DerivationEngine that
gives access to a specification. (Note that in the algorithm for random on-line
testing we do the same thing.)

Guided Random Off-Line Derivation For the random off-line derivation
algorithm we essentially merge the guided random on-line testing algorithm of
Algorithm 3.2 with the idea of random off-line testing of Algorithm 3.6. We
show the result as Algorithm 3.11.

3.6.6 Execution of Derived Test Cases

On line testing is very similar to off-line test execution. Imagine we have a
DerivationEngine that treats a test case as a special kind of specification. There
are three differences between a specification and a test case.

1. A test case contains quiescence actions, and a specification does not.
2. A test case contains verdicts, and a specification does not.
3. A test case has a special structure, which a typical specification has not:

in each state the test case either tries to apply a stimulus, or it obtains an
observation, or it gives a verdict.

The first difference means that the DerivationEngine does not have to synthesise
quiescence actions, but only has to recognise them in the test case, i.e. we use
out tr instead of out . The second difference means that the DerivationEngine
must be able to extract verdicts from a test case and make them available to
the Manager. We assume that verdicts are encoded in the test case in the
same way as we encode quiescence: by self loops with special labels. The third
difference means that the Manager no longer has to choose between stimulating,
observing and giving a verdict, but that it has to follow the DerivationEngine.
As we have seen in the discussion of guided testing, the Manager obtains this
information from the DerivationEngine using the functions in and hasOutputs.

The DerivationEngine interface that we defined in Section 3.5 is rich enough
to convey all information, that is contained in a the test case, to the Manager.
Moreover, we can continue to use Algorithm 3.2 in the Manager. Thus, we only
have to define the DerivationEngine interface functions, to be able to use our
testing architecture for execution of off-line derived test cases.

3.6. OFF-LINE TEST DERIVATION AND EXECUTION

3

97

Algorithm 3.11: Guided Off-Line Random Test Derivation

input : A DerivationEngine d that gives access to the Specification
output: A test case t

1 begin
2 s, v ←− PH(d.start())
3 if v 6= ⊥ then
4 t←− test case consisting of verdict v
5 return t

6 test case t←− PH(s)
7 while test case t still contain placeholders do
8 foreach placeholder p in t do
9 S ←− p.s

10 stimuli←− DerivationEngine.in(S)
11 if stimuli = ∅ then
12 action←− observe
13 else if DerivationEngine.out(S) = ∅ then
14 action←− stimulate
15 else
16 action←− random choice from {stimulate, observe}
17 if action = stimulate then
18 e←− empty test case consisting of only root node
19 pick input a ∈ stimuli
20 s′, v′ ←− d.next(s, a)
21 if v′ = ⊥ then
22 extend e with branch a · PH(s′)

23 else
24 extend e with branch a · node with verdict v′

25 e′ ←− guided-obs-step-extension(d, s) // Algo. 3.10

26 e′′ ←− e′ with any branch with label δ removed
27 extend e with e′′

28 replace p in t by extension e

29 else action = observe
30 e←− guided-obs-step-extension(d, s) // Algo. 3.10

31 replace p in t by extension e

32 replace all placeholders in t by pass
33 return t

We assume that the test case is a (special kind of) LTS 〈S,LI∪LδU∪LV , T, s0〉
where the verdicts are encoded in the test case as self-loop transitions with
special labels ∈ LV .

Depending on how the test case is derived, the defPosVerdict and defNegVerdict
should either return just a correctness verdict, or a tuple that also contains an
exhibition verdict.

98

3

CHAPTER 3. ARCHITECTURE OF TORX

start() =def

{
〈 s after ε , v〉 if ∃v ∈ LV , p ∈ (S after ε) : p v−→
〈 s after ε ,⊥〉 otherwise

in(S) =def in(S)

hasOutputs(S) =def in(S) = ∅

next(S, l) =def

〈S after l , v〉
if l ∈ in(S) ∪ out tr (S) and

∃v ∈ LV , p ∈ (S after l) : p v−→
〈S after l ,⊥〉

if l ∈ in(S) ∪ out tr (S) and

6 ∃v ∈ LV , p ∈ (S after l) : p v−→
〈⊥,⊥〉

if l ∈ LδU ∧ l 6∈ out tr (S)

out(S) =def {〈l, v〉 | l ∈ out tr (S) and ∃s′, v : next(S, l) = 〈s′, v〉}

defPosVerdict() =def

{
〈pass,miss〉 if the test was derived using guidance

pass otherwise

defNegVerdict() =def

{
〈fail,miss〉 if the test was derived using guidance

fail otherwise

3.6.7 Execution of Test Suites

In Algorithm 3.12 on the facing page we show how we can execute a test suite.
We repeatedly select a test case t from the test suite T , and execute t as indicated
in Section 3.6.6, until we are done. As given in Definition 2.2.14 the IUT only
passes the test suite if each execution of a test case yields pass – otherwise it
fails the suite.
This overall result will be interesting mostly when the main interest is in knowing
whether a system under test conforms to a given model. If the testing is done to
find, diagnose, and correct errors, then the individual test case execution results
will be much more informative.

Resolving choices during test execution We have not indicated how to
select the test case from the test suite, nor when to stop testing. Because we
do not remove the selected test case from the test suite, we do allow the same
test case to be run multiple times. When we merely want to know whether or
not a IUT conforms we can stop testing as soon as a test run yields fail.

When no other information is available, we can resolve these choices as
follows. We randomly select test cases in the test suite. Each test case that we
selected we remove from the test suite. When the test suite is empty, we stop.
In that way we run each test case exactly once. We can refine this by running

3.7. SUMMARY

3

99

Algorithm 3.12: Off-Line Execution of a Given Test Suite

input : A test suite T and an Adapter a that gives access to the IUT
output: A verdict for execution of T

1 begin
2 ready ←− false
3 suiteverdict←− passes
4 while not ready do
5 select test case t from test suite T
6 verdict←− execute t using a // Algo. 3.2

7 if verdict = fail then suiteverdict←− fails

8 return suiteverdict

test cases repeatedly. We can run each selected test multiple times in succession,
for example by randomly choosing between running it again and picking a next
one. In that way we focus on each individual test case for a while, and then
move on to the next one.

Alternatively, we can decide to only start rerunning test cases once all test
cases have been run once.

When we run test cases multiple times, we have to ask ourselves whether we
also want to rerun test cases that resulted in a fail result.

We have sketched various ways in which we can do test execution. Unfortu-
nately we do not have a clear criterion to prefer one over the other. We have
a certain preference for the approach of only rerunning test cases once all test
cases have been run once, and only rerunning those test cases that not resul-
ted in a fail verdict. We prefer this approach because it allows us to cover the
functionality of the system quicker than when we run a test case multiple times
before moving to the next one. Once a test case has triggered an error finding
other errors first is in our opinion more useful than focusing in on the particular
error. First we cover as much of the functionality as quickly as possible, to
get a rough idea of where the errors are. Once we know that, we probe deeper
“around” the errors, because where one error is, there probably are more.

3.7 Summary

We have decomposed our testing tool into a DerivationEngine that gives access to
the specification, an Adapter that gives access to the IUT, and one (in case of on
line testing) or two (in case of off-line testing) Manager components that resolve
the choices that are left open in the test derivation algorithm. We have shown
the testing algorithms of the Manager components, shown how they use the
DerivationEngine and Adapter, and indicated how these algorithms implement
the algorithms that we showed in Chapter 2.

We conclude this chapter with an overview of the interfaces of Derivation-
Engine and Adapter in Tables 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12. In Chapter 4
and Chapter 5 we will look in more detail at DerivationEngine and Adapter.

100

3

CHAPTER 3. ARCHITECTURE OF TORX

Pseudo-state type
Signature:

PS : SΓ → P
PS : SΓ ×GΓ → P
m : P → SΓ

g : P → GΓ] {⊥}

Definition:
PS(S).m =def S
PS(S,G).m =def S
PS(S).g =def ⊥
PS(S,G).g =def G

Table 3.7: Pseudo-state type. Each element of SΓ represents a set of states of
the LTS of specification s, and each element of GΓ represents a set of states of
the LTS of observation objective g. Furthermore, S ∈ SΓ, and G ∈ GΓ.

DerivationEngine:
Signature:

start : → P × (LV] {⊥})
in : P → P(LI)
hasOutputs : P → bool
out : P → P((LU ∪ {δ})× (LV] {⊥}))
next : P × (LI ∪ LU ∪ {δ})→ (P] {⊥})× (LV] {⊥})
defNegVerdict : → LV
defPosVerdict : → LV

Table 3.8: DerivationEngine Interface signature. Type P is the pseudo-state
type, see Table 3.7).

DerivationEngine (continued):
Definition for unguided case:

start() =def 〈PS(s after ε),⊥〉
in(P) =def in(P.m)
hasOutputs(P) =def out(P.m) 6= ∅
out(P) =def {〈l,⊥〉 | l ∈ out(P.m)}

next(P, l) =def

{
〈⊥,⊥〉 if P.m after l = ∅
〈PS(P.m after l),⊥〉 otherwise

defNegVerdict() =def fail
defPosVerdict() =def pass

Table 3.9: DerivationEngine Interface function definitions for specification-only
DerivationEngine, that gives access to specification s. Type P is the pseudo-state
type, see Table 3.7).

3.7. SUMMARY

3

101

DerivationEngine (continued):
Definition for guided case:

start() =def

〈PS(s after ε , g after ε), 〈pass,hit〉〉

if ε(g after ε)

〈PS(s after ε , g after ε),⊥〉
otherwise

in(P) =def in(P.m) ∩ in(P.g)
hasOutputs(P) =def ∃ l ∈ out tr (P.g) : l ∈ out(P.m)∨

ε(P.g after l)
out(P) =def {〈l, 〈fail,hit〉〉 | l ∈ LδU∧

l 6∈ out(P.m)∧
l ∈ out tr (P.g) ∧ ε(P.g after l)}

∪{〈l, 〈pass,hit〉〉 | l ∈ LδU∧
l ∈ out(P.m)∧
l ∈ out tr (P.g) ∧ ε(P.g after l)}

∪{〈l, 〈pass,miss〉〉 | l ∈ LδU∧
l ∈ out(P.m)∧
l 6∈ out tr (P.g)}

∪{〈l,⊥〉〉 | l ∈ LδU∧
l ∈ out(P.m)∧
l ∈ out tr (P.g)∧ 6ε(P.g after l)}

next(P, l) =def

〈PS(P.m() after l , P.g() after l), 〈fail,hit〉〉
if l ∈ LδU ∧ l 6∈ out(P.m())∧
l ∈ out tr (P.g()) ∧ ε(P.g() after l)

〈⊥,⊥〉
if l ∈ LδU ∧ l 6∈ out(P.m())∧

(l 6∈ out tr (P.g())∨ 6ε(P.g() after l))

〈PS(P.m() after l , P.g() after l), 〈pass,hit〉〉
if l ∈ (in(P.m()) ∪ out(P.m()))∧
l ∈ (in(P.g()) ∪ out tr (P.g()))∧
ε(P.g() after l)

〈PS(P.m() after l , P.g() after l), 〈pass,miss〉〉
if l ∈ (in(P.m()) ∪ out(S))∧
l 6∈ (in(P.g()) ∪ out tr (P.g()))

〈PS(P.m() after l , P.g() after l),⊥〉
otherwise

defNegVerdict() =def 〈fail,miss〉
defPosVerdict() =def 〈pass,miss〉

Table 3.10: DerivationEngine Interface function definitions for DerivationEngine
that gives access to specification s and observation objective g.

102

3

CHAPTER 3. ARCHITECTURE OF TORX

DerivationEngine (continued):
Definition for online execution of off-line derived tests:

start() =def

〈PS(s after ε), v〉

if ∃v ∈ LV , p ∈ (S after ε) : p v−→
〈PS(s after ε),⊥〉

otherwise

in(P) =def in(P.m)
hasOutputs(P) =def in(P.m) = ∅

next(P, l) =def

〈PS(P.m after l), v〉
if l ∈ in(P.m) ∪ out tr (P.m) and

∃v ∈ LV , p ∈ (P.m after l) : p v−→
〈PS(S after l),⊥〉

if l ∈ in(P.m) ∪ out tr (P.m) and

6 ∃v ∈ LV , p ∈ (P.m after l) : p v−→
〈⊥,⊥〉

if l ∈ LδU ∧ l 6∈ out tr (P.m)

out(P) =def {〈l, v〉 | l ∈ out tr (P.m) and
∃s′, v : next(P.m, l) = 〈s′, v〉}

defNegVerdict() =def

〈fail,miss〉 if the test was derived

using guidance

fail otherwise

defPosVerdict() =def

〈pass,miss〉 if the test was derived

using guidance

pass otherwise

Table 3.11: DerivationEngine Interface function definitions for DerivationEngine
that gives access to a test case s.

3.7. SUMMARY

3

103

Adapter:
Signature:

start : → void
tryStim : LI → {i,u} × (LI ∪ LU)
getObs : → {u} × (LU ∪ {δ})
stop : → void

Definition:

tryStim(a) =def

〈u, x〉 with x ∈ LU if x was produced before

a could be applied

〈i, a〉 with a ∈ LI if a was applied

getObs() =def

〈u, x〉 with x ∈ LU when x was produced

by the IUT

〈u, δ〉 when the IUT did not

produce output

Table 3.12: Adapter Interface functions.

4
Chapter 4

Test Derivation Engine

In the previous chapter we gave an overview of the functionality and architecture
of TorX, and we presented the interface that is offered by the DerivationEngine.
In this chapter we discuss how this interface can be provided for the three cases
that we have seen, i.e. for three classes of DerivationEngine instances, which
differ in what they give access to:

1. only a specification (used for random testing);
2. a specification and an observation objective (used for guided testing);
3. a test case (used for test execution).

We discuss each of these classes separately (see Table 4.1). Note that they
all provide the same interface, (i.e. they provide the same functions, with the
same signature, as given in Table 3.8), but that, because each gives access to a
different “input” (specification, specification + observation objective, resp. test
case), they each have their own definition (implementation) of those functions.

used for: Random Testing Guided Testing Off-Line Execution

gives access to: specification spec. + guide test-case
interface def.: Table 3.9 Table 3.10 Table 3.11
discussed in: Sect 4.2 Sect 4.3 Sect 4.4

Table 4.1: Overview of the DerivationEngine configurations that we discuss.

Design constraints The design of each class of DerivationEngine is con-
strained, on the one hand, by the interface that it has to provide, as given
in respectively Tables 3.9, 3.10, and 3.11, for the respective DerivationEngine
classes. On the other hand, it is constrained by requirements that we discussed
in Chapter 1, in particular:

1: the tool should be based on ioco theory;
2: the tool should work on models that have an LTS semantics;
5: the tool design should be independent from particular modelling lan-

guages;
6: the tool should support very large and infinite state space models;

105

106

4

CHAPTER 4. TEST DERIVATION ENGINE

9: it should be easy to accommodate theoretical progress;
10: it should be easy to incorporate new conformance relations;
13: it should be easy to create a simple model (like an automaton) for use

with the tool;
14: the tool should provide insight in the theory and algorithms that it im-

plements, e.g. by visualisation;
17: it should be possible to use the tool without being an expert in the theory

that the tool implements
18: the design should allow use of modelling languages suitable for non-experts;
22: the tool should be correct.

Requirements 1, 2, 5, 6 and 14 and to a lesser extent 18, directly affect the
design of the DerivationEngine, i.e. the decomposition and the inter-component
interfaces; requirement 13 influences which DerivationEngine instances we create
(for which modelling languages). We will come back to these requirements in
the discussion of the DerivationEngine components and interfaces. We illustrate
requirements 9 and 17 in our discussion of our three approaches to deal with
specifications that contain τ -cycles, i.e. that are divergent. We look at require-
ment 10 when we discuss the specification-only DerivationEngine that is used for
random testing: we first give the algorithm that allows it to be used for testing
using the ioco implementation relation, and then we discuss the changes neces-
sary to accommodate implementation relation uioco. For requirement 22 we
discuss correctness of each of the DerivationEngine instances.

Remainder of this section In Section 4.1 we discuss our approaches w.r.t.
dealing with (divergence due to) τ -cycles. In Section 4.2 we discuss the specification-
only DerivationEngine that is used for random (unguided) testing. In Section 4.3
we extend this to the DerivationEngine that is used for guided testing, i.e. that
gives access to both specification and observation objective. In Section 4.4 we
discuss the DerivationEngine that is used in off-line testing, i.e. that gives access
to a test case.

4.1 Dealing with τ-cycles

All DerivationEngine instances must traverse the state space of the specification,
including τ -transitions, to do the work that is represented by after in the
interface function definitions that we discussed in the previous chapter. The
basic ioco theory that we discussed in Chapter 2 only considers specifications
that are strongly converging, i.e. that do not contain τ -loops. Thus, we might
choose to assume that no specification that our tool will ever have to deal with,
contains a τ -cycle, such that, in our design we do not have to care about possible
τ -cycles, and leave it at that. However, we think that this does not suffice, for
two reasons:

1. robustness of our tool, i.e. to support careless non-expert users, and
2. theoretical progress: i.e. to incorporate extensions to the theory.

4.1. DEALING WITH τ -CYCLES

4

107

Ad 1, robustness: If we make our design with the assumption that we do
not have to care about τ -cycles, we might end up with a tool that cannot handle
them: it might hang when it encounters one, traversing the same τ -transition(s)
over and over again. Given the fact that we want our tool to be usable by non-
expert users (requirement 17), we want our tool to be able to handle “arbitrary”
specifications given to it by the user—such specification may contain a τ -cycle,
for example because the user has been careless, or because the user has turned
observable actions into internal ones.

Thus, we want our design to be at least aware of the possibility of a τ -cycle,
to avoid “hanging” when it encounters one. This gives us our first approach for
dealing with τ -cycles: we just use the definitions for quiescence that we have
given in the previous chapters—a state is quiescent unless it has an outgoing
output- or τ -transition, and we mark quiescent states by adding a δ-self-loop to
them—and merely avoid looping.

Ad 2, theoretical progress: Since the publication of the basic ioco the-
ory, theoretical progress has been made. In particular, the authors of [STS13]
propose an extension to the ioco theory to deal with divergence. With this
extension, divergent states (states on a (fair) τ -cycle) are considered to be qui-
escent, because it is possible to traverse the τ -cycle forever, without providing
any output, even when also output actions are enabled. (Note that the exten-
sion is defined in the framework of Input Output Automata (IOA), which have
(1) instead of a single action τ , a set of labels denoting internal (unobservable)
actions, and (2) the concept of a task partition, which plays a role in deciding
whether a certain loop is fair. For the translation of our setting, we assume
that the IOA that corresponds to (the LTS of) our specification has a single
internal action τ , and a single task partition that contains LU ∪{τ}.) Below, in
Section 4.1.1, we show an example specification that contains divergent states.

In [STS13] it is shown that it does not suffice to simply mark divergent states
as being quiescent by adding a δ-self-loop to them: in that case it is possible
that, after quiescence has been observed, output is allowed—which contradicts
the intuition of quiescence (once quiescence has been observed, the system will
remain quiescent until one or more stimuli are applied). (According to [STS13]
this is what has been implemented in TGV [JJ05].) A solution is also provided:
the δ-self-loop must not be added to the divergent states themselves, but to
copies of them, one state copy for each divergent state. Each state copy is
linked to its “original” divergent state via a δ-transition from the divergent
state to the copy. Each state copy has, as outgoing transitions, in addition to
the δ-self-loop, copies of the outgoing input transitions of the original divergent
state, but not of outputs or internal actions.

Given that we want our design to able to accept theoretical improvements
(requirement 9), we want our design to (also) support this approach.

Moreover, it may be instructive (remember the use in educational setting) to
be able to illustrate the difference between the approach that adds δ-self-loops
to the divergent states, and the one that adds them to copies of those states.
Therefore, we want our design to support both these approaches.

108

4

CHAPTER 4. TEST DERIVATION ENGINE

0

1

?coin

2

?coin !coin

?cof ?tea τ

3

?coin

?tea

4

?cof

?cof

5

?tea!cof

?cof
?tea
τ

!tea

?cof
?tea
τ

τ

Figure 4.1: Self-kicking Coffee Machine, obtained from Quirky Coffee machine
(Fig .3.4) by hiding the ?kick actions.

Supported approaches Thus, our design should support three approaches1:

1. just avoiding to loop on τ -cycles;
2. marking divergent states as quiescent, by adding δ-self-loops to them;
3. marking divergent states as quiescent, by adding δ-self-loops to state cop-

ies.

We discuss these approaches in more detail below, after a discussion of the
variant of our quirky coffee machine that we will use to illustrate the approaches.

Note that with each of the approaches we invested only limited effort in
trying to be efficient when dealing with τ -cycles, because we expect them to be
rare.

4.1.1 Example: Self-kicking Coffee Machine

As example, we need a specification that contains τ -cycles. Therefore, we took
the quirky coffee machine of Figure 3.4, and replaced the ?kick actions by τ
actions, which gives us the self-kicking coffee machine shown in Figure 4.1.

For the self-kicking coffee machine we have the following intuition. We as-
sume that at the front of the machine an additional cover has been added, that
prevents us from kicking the machine. We assume also that behind the machine
someone is hiding (we assume a big machine) who keeps on kicking the machine
at random moments—i.e. the machine is being kicked, but the kicking is (a) out
of our control, and (b) unobservable.

In Figure 4.2 we show the visualisation of our tool (discussed in more detail in
Section 4.2.5) for this specification, after execution of the first test step: applic-
ation of stimulus ?coin. For each of our τ -cycle handling approaches we will look
at s after ?coin , out(s after ?coin), and where possible, at s after ?coin · δ .

1 TorX implements only the first approach; JTorX implements all three, and uses the first
approach by default. We are happy that JTorX implements 3 these approaches so we can
experiment with them, because we are not sure (yet?) which approach we like best.

4.1. DEALING WITH τ -CYCLES

4

109

(a) (b)

Figure 4.2: (a) Self-kicking Coffee Machine after first step ?coin. The trans-
itions that correspond with this step are highlighted (red), as are the states
(s after ?coin) reached by these transitions. The grey markings show the pre-
vious (i.e., the initial) transition and the state(s) (s after ε) reached by it.
(b) Self-kicking Coffee Machine after ?coin·δ, with the “avoid looping” approach.
No states are highlighted, i.e. the last action (δ) was not in the specification:
testing has stopped with a fail verdict. (δ-transitions are not shown).

4.1.2 Avoiding looping on τ-cycles

With this approach, we do not care about τ -cycles per se—we just want our
testing tool to work (i.e., not hang) when a careless user gives it a specification
that does contain a τ -cycle.

To avoid hanging (due to traversing the same τ -transition time and again),
it suffices to recognise that an LTS state has been seen before, when we traverse
the state space. We take the interpretation that a system that contains such a
τ -cycle will eventually choose to do a non-τ action (i.e. we assume fairness), and
thus the presence of a τ -cycle has no effect on the test that is derived: any state
on the τ -cycle is not quiescent, just like any other state that has an outgoing
τ -transition. We use this approach in Algorithm 4.1, the algorithm of the main
DerivationEngine component, which we discuss in Section 4.2.3.

With this approach, we get the following results with self-kicking coffee ma-
chine s: s after ?coin = {1, 2, 3}. Moreover, in({1, 2, 3}) = {?tea, ?cof}, and
out({1, 2, 3}) = {!coin}. Note that states 1, 2, and 3 are not quiescent, due to
their outgoing τ -transitions. Thus, if we observe quiescence after stimulus !coin,
we have {δ} 6⊆ {!coin} = out(s after ?coin), and thus we get a fail verdict.

4.1.3 Adding δ-self-loops to divergent states

With this approach, we reason that divergent states are quiescent. Thus, as part
of the computation of quiescence, we need to detect the τ -cycles—only avoiding
to loop does not suffice. We use a variant of the path-based strong component
algorithm [Gab00] to find the τ -cycles, and more importantly: the (divergent!)
states on them. Once the divergent states are found, with this approach we

110

4

CHAPTER 4. TEST DERIVATION ENGINE

(a) (b)

Figure 4.3: (a) Self-kicking Coffee Machine s after ?coin · δ, with the “add δ-
self-loops to divergent states” approach With this approach, the state reached
with ?coin · δ is identical to the one reached with ?coin. Thus, the same states
are highlighted as in Figure 4.2 (a). (δ-transitions are not shown).
(b) Self-kicking Coffee Machine after ?coin · δ, with the “add δ-self-loops to
copies of divergent states” approach. With this approach, the state reached
with ?coin · δ differs from to the one reached with ?coin: the divergent state
copies are selected. (incoming and outgoing transitions of the state copies are
not shown.)

treat them exactly like we treat quiescent states.

In Section 4.2.7 we discuss the changes w.r.t. Algorithm 4.1, that are neces-
sary to implement this second approach.

With self-kicking coffee machine s we get the following results. As with the
previous approach, s after ?coin = {1, 2, 3}, and in({1, 2, 3}) = {?tea, ?cof}.

However, now out({1, 2, 3}) = {!coin, δ}. Note that with this approach states
1 and 3 are quiescent—even though they have outgoing τ -transitions—because
they are on a τ -cycle. In the same way, also state 2 is quiescent, even though it
has an outgoing output transition.

Now, an observation of quiescence after an (initial) stimulus ?coin is allowed:
s after ?coin · δ = {1, 2, 3}. However, with the observation of quiescence we
remain in the same (tester) state (i.e., we remain in the same set of LTS states),
and thus,the set of expected outputs before and after observing quiescence are
the same. As we saw above: out({1, 2, 3}) = {!coin, δ}, and thus, with this
approach an observation of !coin is allowed after an observation of quiescence.

4.1.4 Adding δ-self-loops to copies of divergent states

Like with the previous approach, with this approach we first have to identify
the divergent states (in the example, when handling the states s after ?coin =
{1, 2, 3}, the divergent states are 1, 2, and 3). Once they are found, we create
copies of them (d-1,d-2,d-3 in Figure 4.3 (b)), add the δ-transition from originals
to their copies, and add δ-self-loop and copies of the input transitions to the

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

111

divergent state copies (not shown in the figure). In Section 4.2.7 we discuss the
changes w.r.t. the previous approach in more detail.

With self-kicking coffee machine s we get the following results. As with both
other approaches, s after ?coin = {1, 2, 3}, and in({1, 2, 3}) = {?tea, ?cof}.
And, as with the previous approach, out({1, 2, 3}) = {!coin, δ}.

However, s after ?coin · δ = {d-1,d-2,d-3}, and out({d-1,d-2,d-3}) = {δ}.
Thus, directly after application of a stimulus ?coin, both an observation of δ
and an observation of !coin are allowed. However, once quiescence has been
observed, !coin is no longer allowed, until at least one more stimulus is applied.

4.2 DerivationEngine for Random Testing

Now we discuss the DerivationEngine for random (i.e. unguided) test derivation;
Figures 3.2 and 3.3 in Chapter 3 show the position of this DerivationEngine in
our architectures for on-line resp. off-line testing. In the case of random test
derivation, the optional observation objective, shown in these figures, is not
present: this DerivationEngine gives access to only a specification. Our design
of the DerivationEngine aims to achieve the following:

1. utilise requirement 2 (models have LTS semantics) by defining the interface
between the language-specific part and the rest of the DerivationEngine in
terms of LTS concepts;

2. support requirement 5 (independence of modelling languages) by decom-
posing the DerivationEngine into language-specific and language-independent
parts, such that, to support a new language, construction of a language-
specific part for it suffices;

3. support requirement 5, also, by allowing the tool-user to configure which
labels should be treated as input, and which as output, to support model-
ling languages that do not distinguish between input and output actions;

4. utilise requirement 6 (support large and infinite state models) by letting
this interface provide only “on-the-fly” access to the specification—the
interface provides functions to obtain the initial state, and the outgoing
transitions of a given state, but not all transitions, all states, or all labels;

5. support requirement 14, by providing support for visualisation.

In the remainder of this section we first describe the decomposition (Sec-
tion 4.2.1) and the inter-component interfaces (Section 4.2.2); then we describe
how the main DerivationEngine component provides the DerivationEngine inter-
face of Table 3.9 using the other DerivationEngine components, for ioco (Sec-
tion 4.2.3), and we describe the changes necessary to accommodate uioco (Sec-
tion 4.2.6).

4.2.1 Components

As we discussed in Section 1.2.1, we decided that for our tool design we should
strive for independence of modelling languages, as expressed by requirement 5.
In this way, our design should allow us to easily add support for additional
modelling languages. This provides us inspiration for the decomposition of

112

4

CHAPTER 4. TEST DERIVATION ENGINE

Explorer

IO-Oracle

Primer

DerivationEngine

Manager

Specification

partition
information

Figure 4.4: Decomposition of DerivationEngine into Explorer, Primer and IO-
Oracle.

the specification-only DerivationEngine. As we show in Figure 4.4, we split the
DerivationEngine in three parts: (1) an Explorer, which is specification-language
specific, (2) a Primer, which is specification-language independent, and (3) an
IO-Oracle, which we discuss below. Then, to provide support for an additional
modelling language, we only have to create an Explorer for it.

As we discuss in Section 4.2.2, we define the interface provided by the Explorer
in terms of LTS concepts. The Primer then has to realise the DerivationEngine
interface, as defined in Table 3.9, using (the interfaces provided by) the Explorer
and the IO-Oracle. Thus, once we have given the interface definitions and the
Primer algorithm, we should be able to show that the DerivationEngine indeed
realises the functionality defined in Table 3.9 (we will not actually show this,
however).

The IO-Oracle: Distinguishing between input and output One issue
that we have to deal with, is a mismatch between our testing theory and the
language “features” of some modelling languages that we would like to use. Our
testing theory assumes that we can partition the label set L of the LTS into a
set of input labels LI and a set of output labels LU , and it assumes that there
is a single representation of internal actions: τ . Some modelling languages that
we would like to use do not make such distinction between inputs and outputs
at the language level, or they use multiple distinct labels to represent internal
actions. For such modelling languages, the information on how to partition the
label set, or which labels to interpret as τ , has to come from another source:
tool configuration information provided by the user. We mention two ways to
deal with this.

In the approach that we have chosen, we let the Explorer return just labels l ∈
Lτ and let the type indication be provided by a separate IO-Oracle component
in the decomposition (see Figure 4.4). The IO-Oracle is able to give the type of
a given label.

An alternative approach could be to make this the responsibility of the
Explorer, i.e. to let it indicate, with each label that it returns over its interface,
whether the label belongs to LI or LU , or is the internal action τ . The Explorer
interface could then pass, instead of labels, tuples 〈l, t〉 containing a label l ∈ Lτ
together with an enumerated type t ∈ {i,u, τ} that provides such indication,

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

113

similar to the tuples returned by functions tryStrim and getObs of the Adapter
interface (see Table 3.12).

We have chosen the former approach, because it allows the Explorer to be
slightly simpler, and because the IO-Oracle functionality can be formalism- and
thus Explorer-independent.

4.2.2 Interfaces

Inspiration for the interface between the Explorer and the Primer comes from
requirements 2 and 6. By requirement 2, our design does not have to support
any arbitrary modelling language: we can restrict ourself to modelling languages
that have an LTS semantics. Thus, we decide that the Explorer provides an
interface that gives access to an LTS. Requirement 6 states that the tool should
support very large and infinite state space models. Thus, we decide that our
LTS interface should not try to offer direct access to the LTS and its transition
relation, but that it should allow step-by-step exploration of the LTS state
space, like our DerivationEngine interface allows step-by-step exploration of the
suspension automaton (in the unguided case) or exhibition automaton (in the
guided case).

Between Primer and Explorer: the Explorer interface

Each Explorer must implement the following two interface functions, of which
we give first the signature (in Table 4.2), and then the definitions, both in terms
of an LTS 〈S,L, T, s0〉:

1. start :→ S
2. menu : S → P(Lτ × S)

Table 4.2: Signature of Explorer interface functions.

Ad 1: start Function start must give access to the start state of the LTS (s0),
i.e. it is defined as follows:

start() =def s0 (4.1)

Ad 2: menu Function menu must give access to the outgoing transitions of
a given state, or more precisely, to the transition label and destination state of
each outgoing transition. It is defined as follows (with p ∈ S).

menu(p) =def {〈l, p′〉 | ∃p l−→ p′ ∈ T} (4.2)

Between Primer and IO-Oracle: the IO-Oracle interface

The interface offered by the IO-Oracle contains only a single function, kind, which
is given a label. When an IO-Oracle instance is created, it initialises itself using

114

4

CHAPTER 4. TEST DERIVATION ENGINE

the partition information; here we assume that, once initialised, the IO-Oracle
represents the partition information as functions isI , isU , and isH that test
whether a label represents an input, output or internal action. We don’t specify
how these functions are implemented—they could look up the label in a set, or
look for ‘?” and “!” prefixes or suffixes in (the string representation of) the
label, or anything else that is considered convenient. Thus, function kind has
the following signature:

1. kind : Lτ → {i,u, τ}

Table 4.3: Signature of IO-Oracle interface function.

Ad 1: kind Function kind tells to what partition a given label belongs. It is
defined as follows (with l ∈ Lτ):

kind(l) =def

i if isI (l)

u if isU (l)

τ if isH (l)

(4.3)

Provided by the Primer: the DerivationEngine interface

The Primer is the component in the DerivationEngine that realises the interface
that the DerivationEngine provides to its user (i.e. to the Manager). Thus, the
Primer interface coincides with the DerivationEngine interface (see Fig. 4.4). The
signature of this interface was given in Table 3.8; in Section 4.2.3 below we
discuss how the interface is realised.

4.2.3 Primer algorithm

We now discuss how the Primer can provide the DerivationEngine interface using
the functionality offered by Explorer and IO-Oracle (we discuss the Explorer in
Section 4.2.4; we do not discuss the IO-Oracle in more detail than we have done
above).

To realise the interface, we refine the pseudo-state type that we introduced in
the previous chapter (see Table 3.7). Recall that we can freely do so, because the
user of the DerivationEngine interface is not supposed to look inside the pseudo-
states. Moreover, in Chapter 3 we only mentioned constructors and methods
of the pseudo-state type; we did not expose its internal structure. Below we
discuss how we refine the specification-only DerivationEngine pseudo-state type,
and then show the DerivationEngine interface implementation.

The specification-only DerivationEngine pseudo-state type

In Chapter 3 we mentioned constructors PS and methods m, g of the pseudo-
state type. Recall that, when S is a set of LTS states, and p = PS(S) is a
pseudo-state constructed from S, then p.m() returns S, and p.g() returns ⊥.

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

115

Now we extend the pseudo-state type with four methods, of which three are
used in the DerivationEngine interface implementation; the fourth (unfold) is
used by the other three, to do the work. The four methods are:

1. P.i(), that returns the set of enabled inputs of P , i.e. P.i() = in(P.m());
2. P.o(), that returns the set of tuples of an enabled output of P and a verdict

(⊥), i.e. P.o() = {〈l,⊥〉 | l ∈ out(P.m())};
3. P.n(l), that returns the LTS states, reachable from P via a transition with

label l, i.e. P.n(l) = P.m() after l .
4. P.unfold(), that “unfolds” P (explained in detail below) and returns P (it

returns P to allow the “method chaining” that we use in Table 4.4).

In Table 4.4 we show the functionality (interface) offered by the pseudo-state
type, and the definitions of all its methods, except for unfold , which is given in
Algorithm 4.1. We now first, in Definition 4.2.1, define the pseudo-state type.

Signature:
PS : SΓ → P
m : P → SΓ

g : P → GΓ] {⊥}
i : P → P(LI)
o : P → P((LU ∪ {δ})× (LV] {⊥}))
n : P × Lδ → SΓ

unfold : P → P

Definition:
PS(S) = 〈S,⊥〉 (a new pseudo-state)
P.m() = P.md ∪ P.unfold().unfoldResult .me

P.g() = ⊥
P.i() = P.unfold().unfoldResult .i
P.o() = P.unfold().unfoldResult .o
P.n(l) = P.unfold().unfoldResult .nl[l]
P.unfold() = the outcome of Algo. 4.1

Table 4.4: Pseudo-state type. Each element of SΓ represents a set of states of
the LTS of specification s. Thus, S ∈ SΓ is a set of LTS states. Furthermore,
P is a pseudo-state instance, and l ∈ Lδ is a label.

Definition 4.2.1
A pseudo-state of the specification-only Primer is a tuple 〈md, unfoldResult〉,
with

1. md, a set of LTS states: those states directly reachable, like the initial
state, or the destination of a set of observable transitions;

2. unfoldResult , a tuple 〈i, o, nl,me〉 that holds the result of “unfolding” (ex-
plained below) the states in md. The tuple contains

1. i, the set of enabled input labels;
2. o, the set of tuples of an enabled output label, or δ, and a verdict (⊥

in the unguided case);

116

4

CHAPTER 4. TEST DERIVATION ENGINE

3. nl : Lδ → P(S), a mapping from labels to a set that contains those
states that are directly reachable via the label;

4. me, the set of indirectly reachable states, i.e. those states that are
reachable from the directly reachable states in md via one or more τ
transitions.

After construction of a pseudo-state instance, before it is unfolded, its unfoldResult
will have the value ⊥, as shown in the definition of constructor PS in Table 4.4.

2

Method unfold : functionality Method unfold provides the main function-
ality of the pseudo-state type. Method unfold returns the pseudo-state instance
that it is invoked on, to allow method chaining (here used to access unfoldResult
from the result value of unfold); it performs the following four tasks:

1. computing, for method m(), state set me: those states, not in the state set
md which was given in the pseudo-state constructor, that are reachable
from a state in md via one or more τ transitions, such that we can compute
state set Q = md after ε as Q = md ∪me;

2. computing, for method i(): i = in(Q), the set of enabled input labels;
3. computing, for method o(): o = {〈l,⊥〉 | l ∈ out(Q)}, the set of tuples of

an enabled output label (which includes δ if one or more of the LTS states
in set Q are quiescent) and a verdict (⊥, in the unguided case);

4. computing, for method n(l): nl = {q′ | ∃q ∈ Q : q l−→ q′}, the set of
LTS states directly reachable by l, for each label l in the two sets i and o
mentioned above.

Method unfold uses e.menu and IO-Oracle function kind to do its work.
Because computing e.menu may be time-consuming, we impose a constraint

on how unfold should perform these tasks: for each Explorer LTS state q that
“belongs” to a given pseudo-state Q, e.menu should be invoked only once. (But
note that e.menu may be invoked multiple times on q, if q belongs to multiple
different pseudo-states that are all unfolded. Of course, one could trade speed
for memory by caching the results of e.menu in the Primer.)

Moreover, unfold must be implemented such, that, when it is invoked for a
second (third, etc.) time on the same pseudo-state, it behaves as a no-op, i.e.
then it only returns the pseudo-state, without doing any real work.

Method unfold : algorithm Method P.unfold(), presented in Algorithm 4.1,
uses the following main data structures:
work a set of states, containing the states that have to be unfolded (initially

P.md)
extra a set of states, containing those states that are found during unfolding

as destination of τ -labelled transitions and that are not in P.md

inputs a set of input labels, containing the input labels encountered during
unfolding

outputs a set of tuples consisting of an output label and ⊥, containing a tuple
for each output label encountered during unfolding, and for δ if a quiescent
state was encountered

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

117

Algorithm 4.1: P.unfold() for ioco Primer

input : P , a pseudo-state
e, an Explorer that gives access to the Specification
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then
3 work ←− P.md

4 extra ←− inputs ←− outputs ←− ∅
5 destmap ←− {l→ ∅ | l ∈ Lδ}
6 while work 6= ∅ do
7 pick state p ∈ work
8 work ←− work \ {p}
9 isQuiescent ←− true

10 foreach 〈l, p′〉 ∈ e.menu(p) do
11 kind ←− o.kind(l)
12 if kind = i then
13 inputs ←− inputs ∪ {l}
14 destmap[l]←− destmap[l] ∪ {p′}
15 else if kind = u then
16 isQuiescent ←− false
17 outputs ←− outputs ∪ {〈l,⊥〉}
18 destmap[l]←− destmap[l] ∪ {p′}
19 else if kind = τ then
20 isQuiescent ←− false
21 if p′ 6∈ P.md ∧ p′ 6∈ extra then
22 extra ←− extra ∪ {p′}
23 work ←− work ∪ {p′}

24 if isQuiescent then
25 outputs ←− outputs ∪ {〈δ,⊥〉}
26 destmap[δ]←− destmap[δ] ∪ {p}

27 P.unfoldResult ←− 〈inputs, outputs, destmap, extra〉
28 return P

destmap : Lδ → P(S), that maps a label l to a set of states Q′, where Q′

contains those states that are the destination of a transition with label l
(i.e. Q′ = {q′ | ∃q ∈ Q : q l−→ q′}). This is initialised such that it returns
∅ for all labels for which no specific set is assigned.

As mentioned, Algorithm 4.1 uses our “avoid-looping” approach to τ -cycles;
we discuss the other two approaches in Section 4.2.7. The presence of a τ loop
will not cause the algorithm to never finish—an infinite sequence of τ transitions
will cause the algorithm to never finish, though.

118

4

CHAPTER 4. TEST DERIVATION ENGINE

start() = 〈PS(e.start()),⊥〉 (4.4)

in(P) = P.i() (4.5)

hasOutputs(P) = P.o() 6= ∅ (4.6)

out(P) = P.o() (4.7)

next(P, l) =

{
〈⊥,⊥〉 if P.n(l) = ∅
〈PS(P.n(l)),⊥〉 otherwise

(4.8)

defNegVerdict() = fail (4.9)

defPosVerdict() = pass (4.10)

Table 4.5: Implementation of the DerivationEngine interface functions, in the
specification-only Primer; where e represents the Explorer that gives access to
the specification.

DerivationEngine interface implementation

In Table 4.5 we show how the Primer implements the DerivationEngine interface
functions, using the pseudo-state methods that we introduced above, and an
Explorer e. (The IO-Oracle is not “visible” here, it is only used in P.unfold().)

Correctness

Requirement 22 states: the tool should be correct. Now that we have both
the definition of the DerivationEngine interface of Table 3.9, and the specifica-
tion of the implementation in Table 4.5, we can discuss the correctness of the
implementation.

For the implementation to be correct, the following must hold between a
Primer P and the DerivationEngine interface definition D:

1. the default verdicts must be identical;
2. the pseudo-state representations returned by start must be equivalent;
3. given equivalent pseudo-state representations, in and out must return

identical results;
4. given equivalent pseudo-state representations, the pseudo-state represent-

ations returned by next for any label in Lδ, must be equivalent again.

Note that we cannot directly compare the pseudo-states returned by the inter-
face definition with those returned by the interface implementation. That is
why we say that they must be equivalent and why we use ∼ in the equations
below. To a certain extent we can compare pseudo-states, by comparing the
LTS state sets that they represent; for this we can use method m() that we
defined on pseudo-states.

Our proof obligation is now to show that there exists a relation ∼ between
concrete pseudo-states as defined here, and pseudo-states as used in the interface
definition of Chapter 3, such that the following equations and condition hold:

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

119

Ad 1: The default verdicts must be identical:

D.defNegVerdict() = P.defNegVerdict() (4.11)

D.defPosVerdict() = P.defPosVerdict() (4.12)

Ad 2: The start states must be equivalent:

D.start() ∼ P.start() (4.13)

Ad 3: Given two equivalent pseudo-states QD and QP , i.e., such that QD ∼
QP , the results of m, g, in, out and hasOutputs must be identical:

D.m(QD) = P.m(QP) (4.14)

D.g(QD) = P.g(QP) (4.15)

D.in(QD) = P.in(QP) (4.16)

D.out(QD) = P.out(QP) (4.17)

D.hasOutputs(QD) = P.hasOutputs(QP) (4.18)

Ad 4: Given two equivalent pseudo-states QD and QP , obtained from D resp.
P , such that QD ∼ QP , the pseudo-states, reached via next, must be equivalent
again:

∀l ∈ Lδ : D.next(QD, l) ∼ P.next(QP , l) (4.19)

Above conditions on ∼ are essentially the conditions of strong bisimilarity,
augmented by the requirement that ∼-related (pseudo-)states have the same
m-, g-, in-, out-, and hasOutput results.

Discussion From the definitions it is clear that Equations 4.11, 4.12, and
4.15 hold. We believe it to be possible to prove also the other equations, i.e. to
prove that the suspension automata of P and D are strongly bisimilar, but we
do not give that proof.

Life time of pseudo-states

We have shown creation of pseudo-states—via DerivationEngine interface func-
tions start and next, of which we have seen applications in the algorithms in
Chapter 3—but we have not discussed the life-time of these pseudo-states. (Nor
have we discussed life-time of (LTS) states.) We have considered two approaches:

1. creating “fresh” instances every time, and deleting them as soon as pos-
sible;

2. creating (and reusing) instances via a factory, without deleting them.

120

4

CHAPTER 4. TEST DERIVATION ENGINE

Ad 1: creating and deleting instances For the testing algorithms that
we have seen so far, this approach will work fine, especially for (random) on-
line testing. For example, in Algorithm 3.1, we can delete the pseudo-state
that represents the “current” tester state, when a new pseudo-state becomes
“current” (i.e. after the assignment to P at line 24). This holds in particular,
of course, when we test with models in which we do not (often) revisit states
that we have visited before.

Ad 2: storing and reusing instances There are two cases where it is
advantageous, or even necessary, to store and reuse pseudo-states: (a) when
testing with models that have cyclic behaviour; (b) when visualising the testing.

When we have models with cyclic behaviour, i.e. where we regularly revisit
states that we have visited before, the advantage of storing and reusing pseudo-
states is that we do not have re-create and unfold the same pseudo-state(s) over
and over again.

When we are visualising the suspension automaton, whether in its entirety,
or only the part that has been (is being) traversed in a test run—both are
discussed in more detail in Section 4.2.5—we want to reuse states that we have
encountered (and drawn, as part of the same automaton) before: this allows us
to draw loops in the suspension automaton.

Given requirement 14, our design has to support visualisation. Therefore,
we have chosen to use the second approach, i.e. to use a factory to store and
reuse pseudo-states. (An optimisation could be to store and reuse states when
visualisation is enabled, and otherwise just create and delete states.) With
the store-and-reuse approach, we have to store pseudo-states in a set or map,
and then we have to decide about the identity of pseudo-states: when are two
pseudo-states identical? This we discuss below.

Identity of pseudo-states

A pseudo-state “holds” a set of LTS states, and thus, it feels natural to relate
the identity of a pseudo-state to the set of LTS states that it holds. (Recall
that pseudo-state method m() returns this set.) However, this set, and thus the
identity of the pseudo-state that holds it, may undergo a transition when the
pseudo-state is unfolded; we show this in an example below.

A pseudo-state P is created with an initial set of LTS states (P.md in Defin-
ition 4.2.1, the initial state, or states directly reachable from another pseudo-
state via a transition with an observable label). When P is unfolded, set
P.unfold().unfoldResult .me is computed: those states that are reachable from
states in md via one or more τ -transitions.

In an extreme case—when the model contains one or more τ -cycles—the
Primer may create pseudo-states P and Q that are (seem) distinct when they
are created, but turn out to be the same state, after unfolding. Here we give an
example, and discuss how we deal with this situation.

When we construct a new pseudo-state, we compare it with those that we
already have, to avoid constructing state duplicates. We compare states using

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

121

0

1
?coinA

3
?coinB

τ

!cof !tea

Figure 4.5: Asymmetric Machine: obtained by modifying the Self-Kicking Coffee
Machine (Fig. 4.1) to illustrate the pseudo-state identify issue. Initial sets {1}
and {3} have the same full set: {1, 3}.

a pseudo-state method id that is defined as follows:

P.id() =

{
P.md if P.unfoldResult = ⊥
P.md ∪ P.unfoldResult .me otherwise

(4.20)

Thus, using method id , the first sentence of one of the previous paragraphs
can be rephrased as follows: the Primer may create pseudo-states P and Q for
which P.id() 6= Q.id() before unfolding, but P.id() = Q.id() after unfolding.
We illustrate this with the Asymmetric Machine, drawn in Figure 4.5.

Asymmetric Machine The Asymmetric Machine is a variant of the Self-
Kicking Coffee Machine of Figure 4.1, modified to illustrate the pseudo-state
identity issue. It only contains those transitions that we need to make our
point. We call it the asymmetric, because it accepts different coins at the start,
and moves to different states, depending on which coin it is given.

For the initial state of the Asymmetric Machine, accessed via an explorer e,
we get a pseudo-state

p0 = PS(e.start()) = 〈e.start(),⊥〉 = 〈{0},⊥〉 (4.21)

Thus, p0.id() = {0}. Unfolding this pseudo-state gives us

p0 = 〈{0}, 〈{?coinA, ?coinB}, {〈δ,⊥〉}, (?coinA→ {1}, ?coinB→ {3}, δ → {0}), ∅〉〉
(4.22)

Thus, p0.id() = {0}, also after unfolding (i.e. identical to the value before
unfolding). However, things are different for the states reached from p0 via a
stimulus. For these states we get:

p1 = PS(p0.n(?coinA)) = 〈{1},⊥〉 (4.23)

p3 = PS(p0.n(?coinB)) = 〈{3},⊥〉 (4.24)

122

4

CHAPTER 4. TEST DERIVATION ENGINE

Before unfolding, p1.id() = {1} and p3.id() = {3}. Unfolding gives us2:

p1 = 〈{1}, 〈∅, {〈!cof,⊥〉, 〈!tea,⊥〉}, (!cof→ {0}, !tea→ {0}), {3}〉〉 (4.25)

p3 = 〈{3}, 〈∅, {〈!cof,⊥〉, 〈!tea,⊥〉}, (!cof→ {0}, !tea→ {0}), {1}〉〉 (4.26)

Thus, after unfolding we get: p1.id() = {1, 3} = p3.id().

Therefore, to identify duplicate states, we unfold a newly constructed pseudo-
state before we compare it with the pseudo-states that we already have.

Moreover, to deal with the case as described above, where we have two (or
more) different pseudo-states P and Q that turn out to be two different instances
of effectively the same pseudo-state, we extended the pseudo-state type in our
tool implementation with the following element: a reference to a “canonical”
pseudo-state instance (this element is initially ⊥, and assigned after/during
unfolding). In this way, all different instances have a reference to the same
canonical representation.

4.2.4 Explorer Instances

In our tool we provide a number of instances of the Explorer component, to fulfil
requirement 13 (it should be easy to create a simple model (like an automaton)
for use with the tool), requirement 19 (the design should allow use of modelling
languages with suitable expressive power), and requirement 5 (the tool design
should be independent from particular modelling languages).

An Explorer that falls in neither of these categories is the one for test run
log files. Therefore, we discuss it first.

Test run log The test run log Explorer can read a test run log that is produced
by the model-based testing tools TorX and JTorX (i.e., the tools that implement
our design). Such log contains, for each test step, the model label that represents
that test step. This Explorer treats such log as a trace of model labels.

Typical usage of this Explorer includes (i) re-running tests, (ii) use of the
log to guide a subsequent test, and (iii) to extract the trace from the log and
save it in Aldebaran format (discussed below), for use with other tools.

When the Explorer is used to re-run a test, it effectively treats the log as a
model, to be simulated as SUT. This allows to observe e.g. the effects of changes
to a model, or changes to the Primer component.

Easy creation of simple models

To support requirement 13, our tool has built-in Explorer functionality for three
(modelling) languages:

1. Aldebaran (.aut),
2. GraphML (.graphml), and
3. GraphViz DOT (.gv).

2Here we assume the “avoid-looping” approach was used to deal with the τ -loop.

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

123

(a) (b)

Figure 4.6: GraphML representation of the quirky coffee machine of Figure 3.4,
created with yEd (a). Our visualisation of this GraphML representation (b).

Aldebaran The Aldebaran language [ald] is a simple textual file format
that allows specification of a (finite) LTS. For small models, Aldebaran files
are typically created by hand; however, there is also quite a number of tools
that are able to export an LTS in Aldebaran format.

The Aldebaran format consists of a header and a body. The header con-
tains the identity (number) of the initial state, the number of transitions, and
the number of states. The body consists of a list of transitions, with for each
transition the identity (number) of the source state, the transition label, and
the identity (number) of the destination state.

GraphML The GraphML language [Gra12] is an XML file format that al-
lows specification of a graph.This format is (one of) the native format(s) of
yEd [yWo], a graph editor that makes it simple to draw a graph representation
of an automaton (or LTS). The GraphML format not only contains nodes,
edges and edge labels (that we interpret as states, transitions and transition
labels) but also (a.o.) node labels and position information of nodes, edges
and edge labels, and other visual information (colours, fonts, visibility, etc.).
From a GraphML file, the GraphML Explorer obtains, in addition to the LTS
information (nodes, edges, edge labels), also the node labels and the position
information (and associates this with the LTS information). The node labels
and position information are used for the visualisation (discussed later in this
section), to make the visualisation of GraphML models resemble as much as
possible the layout created in yEd (see Figure 4.6).

The GraphML format, unfortunately, does not have the concept of an initial
state. Our GraphML Explorer allows specification of the initial state in two
ways:

1. via an initial transition (of which there must be at most one): an edge
without label, of which the destination is interpreted as initial state;

2. by giving it node label “1” (with yEd, the first node drawn in a new graph
always has this label (this is used when no initial transition is present in
the graph).

124

4

CHAPTER 4. TEST DERIVATION ENGINE

The GraphML Explorer in JTorX reuses the GraphML parser that was
developed by Lars Frantzen for his iocoChecker tool (iocoChecker is discussed
in Appendix A.2).

DOT The GraphViz DOT language [Graa] is a textual file format that
allows specification of graphs. It is the input language for the tools in the
GraphViz toolset [Grab]; typically, these tools are used to automatically cre-
ate layouts of graphs, of which only the structure (nodes, edges, node labels,
edge labels) is given.

Like the GraphML format, the GraphViz language does not have the
concept of an initial state. Like the GraphML Explorer, the GraphViz Explorer
tries to identify the initial state by recognising a (unique) initial transition.

Modelling Languages with Suitable Expressive Power

To support requirement 19, our tool allows the use of external Explorer compon-
ents. (At the same time, this fulfils requirement 5.) Such external Explorer com-
ponents communicate with our testing tool via the torx-explorer interface [torb].
This interface offers (an extension of) the functionality of the Explorer interface
of Table 4.2: it also can pass information for visualisation—we return to this in
Section 4.2.5.

Table 4.6 gives an (non-exhaustive) overview of the tools and toolsets for
which the torx-explorer interface has been implemented, indicating the model-
ling languages that each of them supports.

tool / toolset language(s)

Jararaca Jararaca input language (.jrrc)
STSimulator STS (.sax)
Ta2Torx Timed Automaton

SPEX Promela
CADP LOTOS, BCG (.bcg), others
LTSmin mCRL2, others
mCRL2 µCRL, mCRL2

Table 4.6: Overview of tools (top) and toolsets (bottom) for which the torx-
explorer interface has been implemented, indicating the modelling languages
that they provide access to.

Jararaca The Jararaca language [Jar12] allows the concise specification of
(a set of) traces using a notation that was inspired by regular expressions. It
was developed to have an easy notation for the specification of test purposes
(observation objectives). A Jararaca file consists of 4 sections: (1) a free-
format textual description; (2) a list of named action labels that are used in the
test purpose (the action names are used in the regular expressions as shorthand
for labels); (3) a list of named regular expressions (the name allows referring to

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

125

a preceding regular expression); (4) the “goal” regular expression that describes
the (set of) traces (typically, referring to named regular expressions).

The Jararaca tool builds an automaton for the given input, and provides
access to it via the torx-explorer interface. For visualisation, the Jararaca
tool can output the automaton in DOT format (the automaton is more ab-
stract than the corresponding LTS: a single automaton node or edge may have
multiple corresponding LTS states and transitions). This automaton in DOT
format is only used for display, not to access the LTS of the automaton—the
LTS is accessed via the torx-explorer interface. However, the automaton in
DOT format contains node and edge identifiers. When state and transition
information is passed over the torx-explorer interface, also the corresponding
node and edge identifiers are passed, to allow highlighting of the right visual
elements (nodes and edges) in the visualisation.

Both the Jararaca tool and its input language were designed and imple-
mented by René de Vries.

STSimulator The STSimulator tool provides access to specifications in
the Symbolic Transition System (STS) language. An STS is an automaton with
state variables, parameters in the transition labels, and conditions and state
variable updates on the transitions. The conditions can refer to state variables
and label parameters; the updates assign new values to state variables. We
discuss this in greater detail in Chapter 6.

For visualisation, the STSimulator tool can output the STS in DOT
format. Like with the Jararaca tool, node and edge identifiers that are used
in the DOT format representation are passed with the state and transition
information over the torx-explorer interface.

The STSimulator tool was designed and implemented by Lars Frantzen.

Ta2Torx The Ta2Torx tool provides access to specifications given as net-
work of Timed Automata. We discuss this in greater detail in Chapter 6.

The Ta2Torx tool was designed and implemented by Henrik Bohnenkamp.

SPEX The SPEX tool [vY07] (Simple Promela EXplorer for TorX) provides
access to specifications given in Promela [Hol91]. A Promela specification
typically describes a system (with possible internal communication within the
system) with its interactions with its environment. However, Promela makes
no distinction between communication (interactions) within a system, and the
interactions between the system and its environment. For our testing, we are
not interested in the former, but we need the latter: we need a description of
the system in terms of its interactions with its environment3. Therefore, SPEX
implements two extensions to the Promela language. The first is an IO extension
to open the specified system for testing, by adding a mechanism to describe
the communication/interaction between the system and its environment. The

3Trojka [dT00], a predecessor of SPEX, solved this by extending Promela with a keyword
that allows the specifier to indicate that particular communication is observable; Trojka then
makes these available to the testing tool, and turns the other ones into internal (τ) actions.

126

4

CHAPTER 4. TEST DERIVATION ENGINE

second is a Set extension to close such system description for verification, by
replacing input actions by symbolic variables.

The SPEX tool was designed and implemented Jeroen van Yperen.

Because all Promela statements, except the interactions between system
and environment, are mapped onto τ -transitions, an LTS thus obtained typically
contains long “chains” of τ transitions, where the states on such chain only have
one incoming and one outgoing transition, both labelled with τ . An obvious op-
timisation is to replace such chain p τ−−→ p′ τ−−→ p′′ . . . τ−−→ q by a single transition
p τ−−→ q, and to ignore the intermediate states (p′, p′′, etc.). We experimented
with this optimisation when we experimented with SPEX.

CADP CADP [CAD] (”Construction and Analysis of Distributed Processes”,
formerly known as ”CAESAR/ALDEBARAN Development Package”) is a tool-
box for the design of asynchronous concurrent systems, such as communication
protocols, distributed systems, asynchronous circuits, multiprocessor architec-
tures, web services, etc. It offers compilers for high-level descriptions written in
a.o. LOTOS [ISO89]. It also offers the BCG (binary coded graphs) file format,
which allows storing of large graphs.

CADP offers access to the languages and file formats that it supports via
(a.o.) the OPEN/CAESAR programming interface, an interface that provides
(more than) the functionality needed for our Explorer interface. A torx-explorer
interface has been constructed to access specifications via the OPEN/CAESAR
interface.

LTSmin LTSmin [LTS, BvdPW09] is a toolset for model checking and manip-
ulating labelled transition systems. LTSmin already connects a sizeable number
of existing (verification) tools: muCRL, mCRL2, DiVinE, SPIN via an included
version of SpinJa, NIPS, CADP and opaal. Moreover, it allows to reuse existing
tools with new state space generation techniques.

The LTSmin toolset contains tools to access e.g. mCRL2 models using the
torx-explorer interface.

mCRL2 mCRL2 [mCR, GKM+08] is a formal specification language with
an associated toolset. The toolset can be used for modelling, validation and
verification of concurrent systems and protocols.

The toolset supports a collection of tools for linearisation, simulation, state-
space exploration and generation and tools to optimise and analyse specifica-
tions. Moreover, state spaces can be manipulated, visualised and analysed.

The mCRL2 toolset contains the lps2torx tool to access muCRL and
mCRL2 models using the torx-explorer interface.

Bibliographical note Some of the text describing the tools, toolsets and
languages has been taken from the web-sites describing the tools.

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

127

(a) (b)

Figure 4.7: Animation of the visualisation of the Quirky Coffee Machine spe-
cification (a), and of the Kick-Insensitive implementation (b), after the first test
step in which stimulus ?coin was applied. In both (a) and (b) the grey high-
lights are the same: state 0, to indicate that that was the previous state, and
the initial transition, to show how we “reached” state 0. The difference is in
the red highlights. In (a) states 1, 2, and 3 are highlighted in red, as are the
?coin transitions that lead to these states from state 0. In (b) only state 1 is
highlighted in red, as is (only) the ?coin transition that leads to this state from
state 0.

4.2.5 Visualisation

To fulfil requirement 14—the tool should provide insight in the theory and
algorithms that it implements, e.g. by visualisation—we let our tool visualise
the specification, the suspension automaton (SA), and, when we use a simulated
model as SUT, also the implementation model, and we animate these during test
runs. (During a test run, we also visualise the test steps that are executed in a
dynamically updated message sequence chart, but we do not discuss that here
further.)

Animation entails highlighting the visual elements that correspond with the
LTS resp. SA states that correspond with the current test step, and the trans-
ition(s) that brought us there. This is shown in Figure 4.7 (a) and (b), and in
Figure 4.8 (a). We also can show a view of the SA that is constructed during the
test run: it shows only the pseudo-states and transitions that we have traversed
so far (during the run); see Figure 4.8 (b). Therefore, this latter view is much
smaller, and thus, more understandable, than the visualisation of the entire SA.
In both views of the SA, the node-labels show the set of LTS labels that belong
to the pseudo-state.

The animations shown in Figures 4.7 and 4.8 are of a test run with the quirky
coffee machine and the kick-insensitive implementation, after the first test step
in which stimulus ?coin was applied. The animations in Fig. 4.7 (a) and (b)
show clearly the non-determinism that is present in the specification (states 1,
2, and 3 are highlighted, as are all ?coin transitions that lead to these states),
but absent (i.e., resolved, by making a random choice among the enabled ?coin

128

4

CHAPTER 4. TEST DERIVATION ENGINE

(a) (b)

Figure 4.8: Animation of suspension automaton (SA) of the Quirky Coffee
Machine specification (a), and of the states and transitions of the SA traversed
so far (b).

transitions) in the implementation (only state 1 is highlighted, as is only one
transition: the ?coin transition that leads to state 1). It is also clearly visible
that in this case4 the implementation has chosen the branch in which it only
serves coffee.

Below we discuss how the DerivationEngine supports visualisation and anim-
ation.

Supporting visualisation For the visualisation of the specification, we either,
when available (like for Jararaca and STSimulator), use a DOT represent-
ation of the specification, specifically created for visualisation; otherwise, we use
a visualisation of the state space of the LTS of the specification. In the latter
case, we just generate the state space of the specification: our Explorer interface
allows this, and this works fine as long as the state space is small enough for
this to finish in a time that is acceptable to the user.

Note that (node, edge) position information is optional: when we have posi-
tion information (which we have in the case of GraphML models), we use it for
the layout; otherwise, we let the dot tool of the GraphViz toolkit compute the
layout (this is done, for example, for both visualizations shown in Figure 4.8).

Supporting animation For the animation, we need to be able to highlight
(visual elements that correspond to)

1. the LTS states that belong to the current pseudo-state, and
2. the LTS transitions that lead from the previous pseudo-state to the current

one. (At the start of the test run, we highlight the initial transition.)

For this we need access to states and transitions of the LTS, as we discuss below.

4Random number seed 1012308167.

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

129

Ad 1: access to LTS states In our earlier discussion of the pseudo-state
type, we did provide it with a method m() that provides access to the LTS states
that belong to it. We refine this, by adding methods that give separate access
to (1) the LTS states that are directly reached (md), and (2) those that are
indirectly reached via one or more τ transitions (unfoldResult .me). This allows
us to color these with different colors in the animation, to better illustrate the
work done by unfold .

Ad 2: access to LTS transitions To be able to highlight the LTS trans-
itions, we let the Primer store the following:

1. With each pseudo-state, we store the τ -transitions that “belong” to it, i.e.
those that are traversed by method unfold .

2. With each pseudo-state, we store a mapping from the enabled input and
output labels to the corresponding set of LTS transitions. (We store such
set in a pseudo-transition type.)

Note that the information stored in destmap does not suffice, because, to be
able to highlight the transitions, we need to know not only the destination LTS
state and the transition label, but also the source LTS state. The destmap does
provide the destination LTS state, but it does not provide access to the source
LTS state.

4.2.6 Algorithm for uioco

In Section 1.2.3 we mentioned that we will validate requirement 10—it should
be easy to incorporate new conformance relations—by discussing the addition of
support for implementation relation uioco. Here we discuss the changes w.r.t.
Algorithm 4.1 that are necessary to support the uioco relation.

As mentioned in Section 2.2.5, uioco was designed to better handle spe-
cifications that are not input-enabled. Relations ioco and uioco differ in how
the set of enabled inputs is computed, and this difference only shows in case of
non-determinism, i.e., when the tester state consists of a number of LTS states
(say, set P). With ioco the union of the sets of enabled inputs of all the indi-
vidual LTS states in P is used; with uioco the intersection is used, of the sets
of enabled inputs of stable states in P (i.e. of those states in P that have no
outgoing τ -transitions).

In the algorithm for ioco, when we encounter an input transition, we im-
mediately add the input label to inputs, the set of enabled inputs, and update
destmap, the mapping from labels to (destination) LTS state set (see lines 13
and 14 of Algorithm 4.1). However, for uioco, we do not know whether we even
should consider the inputs of an LTS state, until we know whether the state
is stable—this is when we have dealt with all outgoing transitions of the state.
And even at that moment, we can only use those inputs, enabled in the state,
to update the intermediate result of the intersection of enabled inputs. Only
when we have dealt with (all transitions of) all states we know which inputs are
enabled, and thus, only then we update destmap.

130

4

CHAPTER 4. TEST DERIVATION ENGINE

Details In Algorithm 4.2 we show the changes that are necessary w.r.t. Al-
gorithm 4.1. In lines 4–5 we show the changes to the global variables: we
initialise inputs to ⊥ (instead of to ∅, so we can distinguish “uninitialised” from
“empty”), and we add inputTransitions, which will hold all transitions with an
input label that we encounter.

In lines 9–10 we added local variables (re-initialised for each state that we
handle) isStable and stateInputs. Variable isStable, initialised to true, is set to
false as soon as a transition with a τ label is encountered. Variable stateInputs
collects the inputs that are enabled for the state that is being handled. When all
transitions of a state have been handled, these two variables are used to update
inputs, the set of enabled inputs (lines 21–24).

Finally, when all states have been handled, inputs is initialised if it had not
been initialised before, i.e. when there were no transitions (lines 26–27), and
destmap is updated using the value of inputs (lines 28–30).

4.2.7 Interpreting divergent states as quiescent

The Primer algorithm that we gave in Section 4.2.3 uses the “avoid looping”
approach of Section 4.1.2 to deal with τ -cycles. We now discuss the two “diver-
gent states are quiescent” approaches of Section 4.1.3 and Section 4.1.4. These
either just add a δ-self-loop to divergent states (see Algorithm 4.3) or create
copies of divergent states (see Algorithm 4.4). In both approaches the following
two activities can be identified:

1. identifying the divergent states—this we do first, and this is followed by
2. marking the divergent states as being quiescent, by adding a δ-self-loop,

resp. by creating copies.
For each of these two activities, we discuss how they are performed. Al-
gorithm 4.3 shows the changes w.r.t. Algorithm 4.1, to identify the divergent
states and add a τ -loop to them, and Algorithm 4.4 shows the changes w.r.t.
Algorithm 4.3, to create copies of divergent states.

Ad 1: Identifying divergent states To identify the divergent states we
adapted the path-based strong component algorithm [Gab00] to our needs. For
strong components that consist of more than one state, all states are divergent.
For a single-state strong component, its state is divergent when it has a τ -self-
loop. Therefore, while computing the strong components, we remember which
states have a τ -self-loop. There are two important constraints on our adaptation
of the algorithm, due to the context in which we use it:
◦ we choose to use an iterative version, to reduce the “distance” from Al-

gorithm 4.1 (whereas the strong component algorithm is defined using
recursion);

◦ while we work on a state, we choose to handle all its outgoing transitions,
before we start working on (the transitions of) another state (we do this,
because the Explorer gives us all transitions of a state together).

As in Algorithm 4.1, when working on a state p we process all its outgoing
transitions, before we select the next state to work on. As a consequence, any
“new” (to be processed) states that are found while working on a state have to

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

131

Algorithm 4.2: P.unfold() for uioco Primer — changes w.r.t. Algo. 4.1

input : P , a pseudo-state
e, an Explorer that gives access to the Specification
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then

3
...

4 inputs ←− ⊥
5 inputTransitions ←− ∅

6
...

7 while work 6= ∅ do

8
...

9 isStable ←− true
10 stateInputs ←− ∅
11 foreach 〈l, p′〉 ∈ e.menu(p) do
12 kind ←− o.kind(l)
13 if kind = i then
14 stateInputs ←− stateInputs ∪ {l}
15 inputTransitions ←− inputTransitions ∪ {〈p, l, p′〉}

16
...

17 else if kind = τ then
18 isStable ←− false

19
...

20
...

21 if isStable and inputs = ⊥ then
22 inputs ←− stateInputs

23 else if isStable then
24 inputs ←− inputs ∩ stateInputs

25
...

26 if inputs = ⊥ then
27 inputs ←− ∅
28 foreach 〈p, l, p′〉 ∈ inputTransitions do
29 if l ∈ inputs then
30 destmap[l]←− destmap[l] ∪ {p′}

31 P.unfoldResult ←− 〈inputs, outputs, destmap, extra〉
32 return P

132

4

CHAPTER 4. TEST DERIVATION ENGINE

Algorithm 4.3: P.unfold() for τ -loop detection — changes w.r.t. Algo. 4.1

1 begin
2 if P.unfoldResult = ⊥ then
3 wStack ←− pStack ←− sStack ←− empty ; c←− 0
4 hasSCC ←− hasTauSelfLoop ←− ∅; pre ←− {p→ ⊥ | p ∈ S}
5 if md 6= ∅ then
6 wStack .push(〈⊥,md〉)
7

...
8 while |wStack | > 0 do
9 pick state p ∈ wStack .top().set

10 wStack .top().set←− wStack .top().set \ {p}
11 if pre[p] = ⊥ then
12 pre[p]←− c; increment c
13 pStack .push(p); sStack .push(p)
14 isQuiescent ←− true; tauChildren ←− ∅
15 foreach 〈l, p′〉 ∈ e.menu(p) do
16

...
17 else if kind = τ then
18 isQuiescent ←− false
19 if p′ 6∈ P.md ∧ p′ 6∈ extra then
20 extra ←− extra ∪ {p′}
21 if p = p′ then
22 hasTauSelfLoop ←− hasTauSelfLoop ∪ {p}
23 if pre[p′] = ⊥ then
24 tauChildren ←− tauChildren ∪ {p′}
25 else if p′ 6∈ hasSCC then
26 while pre[pStack .top()] > pre[p′] do
27 pStack .pop()

28
...

29 wStack .push(〈p, tauChildren〉)
30 while |wStack | > 0 and |wStack .top().set| = 0 do
31 if |pStack | > 0 and wStack .top().pnt = pStack .top() then
32 S ←− sStack .popUptoInc(wStack .top().pnt)
33 hasSCC ←− hasSCC ∪ S
34 if |S| > 1 or ∀s ∈ S : s ∈ hasTauSelfLoop then
35 outputs ←− outputs ∪ {〈δ,⊥〉}
36 destmap[δ]←− destmap[δ] ∪ S
37 pStack .pop()

38 wStack .pop()

39
...

40 return P

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

133

Algorithm 4.4: P.unfold() for making copies of divergent states —
changes w.r.t. Algo. 4.3

1 begin
2 if P.unfoldResult = ⊥ then

3
...

4 while |wStack | > 0 do

5
...

6 while |wStack | > 0 and |wStack .top().set| = 0 do
7 if |pStack | > 0 and wStack .top().pnt = pStack .top() then

8
...

9 if |S| > 1 or ∀s ∈ S : s ∈ hasTauSelfLoop then
10 foreach q ∈ S do
11 create input-only clone qqos of q
12 destmap[δ]←− destmap[δ] ∪ {qqos}

13
...

14
...

15
...

16 return P

be remembered, such that they can be processed later. The two main differences
between Algorithm 4.1 and Algorithm 4.3 are about (a) how we store the states
that we still have to work on, and (b) how we select the next state to work on.

In Algorithm 4.1 we store the states that we have to work on in a set work .
When we encounter a state that we have not seen before, we just add it to the
set (line 23). We process the states in work in an unspecified order: at line 7
we only state “pick state p ∈ work”.

In Algorithm 4.3, we store unprocessed states on a stack of sets of states,
where we group siblings (states that are children of the same state, i.e. reached
from the same state via a τ -transition) together in a set. With each such set
we also store the parent state—we need the parent for the computations that
are done after all outgoing transitions have been processed (including the work
that in the original algorithm is done in recursive calls). To stress the difference
with the set work , we refer to it as wStack . We use wStack .top().set to refer
to the set on the top of wStack , and wStack .top().pnt to refer to the associated
parent. We process the states in the sets on wStack such, that we process
children before we process siblings. While processing the outgoing transitions
of a state p, we collect all its τ -reached “children” that are still unprocessed in
a set tauChildren (line 24). When we have seen all outgoing transitions of p, we
push a tuple 〈p, tauChildren〉 onto wStack (line 29). When we select the next

134

4

CHAPTER 4. TEST DERIVATION ENGINE

state to work on, we pick an arbitrary one from the set of the topmost tuple on
wStack (line 9).

To find the strong components (strongly connected component, SCC), we
use two additional stacks, pStack , and sStack , a map pre, a set hasSCC and a
counter c. In addition, we use set hasTauSelfLoop to remember those states that
have a τ -self-loop. Onto sStack we collect τ -connected states that have not yet
been assigned to a SCC, in the order in which they are reached by depth-first
search. On pStack we have states for which it has not yet been decided whether
they belong to different SCCs. Map pre associates with each state a pre-order
visit number. Set hasSCC contains those states that have been assigned to an
SCC. Counter c counts the number of states that we have seen. On these data
structures we use one special operation: method sStack .popUptoInc(p) (line 32)
pops-and-returns state p, and all states on top of p, from sStack .

To make the SCC finding approach work, we have to do a depth-first search,
and that is why, while unfolding unprocessed states, we unfold children before
we unfold siblings. When we need a state to process, we take one (p) from the set
at the top of wStack—there should be one, because at the start of the algorithm,
we only push set md onto wStack if it is non-empty, and in the last part of the
algorithm (in lines 30–38) we make sure that we pop all topmost wStack items
that have an empty set. While processing p, we first check whether it already
has a pre-order visit number associated with it. If so, it has been processed
already, and we don’t process it again. Otherwise, we associate the next visit
number with it (and increment c), and push state p to both sStack and pStack .
Then, we process the outgoing transitions of p.

We process non-τ -transitions as in Algorithm 4.1. When processing a τ -
transition, we first check whether it is a self-loop, and if so, update hasTauSelfLoop.
Then, we check whether the destination state p′ is still unprocessed. If so, we
add it to tauChildren. Otherwise, if p′ has not yet been assigned to an SCC, we
pop from pStack those states that are on the same SCC as p′. When we have
processed all outgoing transitions of p, we push a tuple 〈p, tauChildren〉 onto
wStack .

Then, we check whether the (children) set at the top of the wStack is empty.
If so, we have finished the recursive processing of the children of the associated
parent (so we will pop wStack) and we must check whether we have identified
(completed) an SCC—if so, we pop it from sStack , and we pop pStack . We then
check whether the state(s) on the SCC are divergent, and if so, act accordingly
(lines 34–36).

We now first discuss activity 2: marking the divergent states as quiescent,
and then we give an example to illustrate Algorithm 4.3.

Ad 2: Marking the divergent states as quiescent In Algorithm 4.3 we
show the approach where we mark divergent states by adding δ-self-loops to
them, i.e. where we treat divergent states identical to quiescent states. We do
not show treatment of quiescent states (but see lines 25–26 of Algorithm 4.1);
we treat divergent states in lines 35–36.

In Algorithm 4.4 we show the approach where we mark divergent states by
creating copies of the divergent states. The copies are made at line 11. For each

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

135

copy qqos of state q it should hold that ∀a ∈ LI : if q a−→ q′ then qqos
a−→ q′,

and qqos should have no other outgoing transitions.

Example: Identifying divergent states

We illustrate Algorithm 4.3 with the self-kicking coffee machine of Figure 4.1.
We look at two invocations of the algorithm:

(a) for the initial state (i.e. for the DerivationEngine interface start method,
(b) for the state reached from the initial state by doing a ?coin transition (i.e.

s after ?coin).
For each invocation we describe the main steps of the algorithm; we show the
effect on the main data structures in Table 4.7 resp. Table 4.8.

Ad a: initial state At the start of this invocation of unfold , the pseudo-state
for which we invoke unfold contains 〈{0},⊥〉, i.e. md = {0} (i.e. it holds only
the initial state of the model), and unfoldResult = ⊥. Thus, we start by pushing
〈⊥, {0}〉 onto wStack , and intializing the other variables. Then, we enter the
main while loop at line 8 (wStack contains one element). We take state p = 0
from the set in wStack (thus, now wStack contains 〈⊥, ∅〉). No pre-order visit
number has been associated with state 0 so far, so we enter the if-clause at
line 11. We associate number 0 with state 0, increment counter c, push state 0
on both sStack and pStack , initialize isQuiescent and tauChildren, obtain the
outgoing transitions from state 0, and start processing them (line 15).

wStack p l p′ tauChildren sStack pStack SCC

〈⊥, {∅}〉
〈⊥, ∅〉 0
〈⊥, ∅〉 0 0
〈⊥, ∅〉 0 0 0
〈⊥, ∅〉 0 ?coin 1 0 0
〈⊥, ∅〉 0 ?coin 2 0 0
〈⊥, ∅〉 0 ?coin 3 0 0
〈⊥, ∅〉 0 ∅ 0 0
〈⊥, ∅〉 〈0, ∅〉 0 0 0
〈⊥, ∅〉 〈0, ∅〉 0 0 {0}
〈⊥, ∅〉 〈0, ∅〉 0 0
〈⊥, ∅〉 〈0, ∅〉 0
〈⊥, ∅〉

Table 4.7: Changes to main data structures of Algorithm 4.3 while unfolding
the pseudo-state that holds the initial state of the self-kicking coffee machine of
Fig. 4.1. The horizontal lines separate phases of the algorithm (initialization,
processing of transitions, popping of stacks and detection of SCC). Column SCC
shows the strong component that is found.

136

4

CHAPTER 4. TEST DERIVATION ENGINE

State 0 has three outgoing transitions: ?coin−−−−→ 1, ?coin−−−−→ 2, and ?coin−−−−→ 3.
After processing these transitions inputs = {?coin} and destmap[?coin] = {1, 2, 3};
other variables are unchanged, i.e. isQuiescent = true, tauChildren = ∅. Thus,
we mark state 0 as quiescent (lines 25–26 of Algorithm 4.1), and we push 〈0, ∅〉
onto wStack .

Now, we enter the while loop at line 30. The pnt field of the tuple that we just
pushed equals the top element of pStack (line 31), i.e. we have found a strong
component, which we obtain by pushing the topmost elements of sStack—in
this case just the single state 0. This state is not in hasTauSelfLoop, i.e. it is
not divergent, so we need not mark it as quiescent. We pop pStack and wStack .
Now wStack contains 〈⊥, ∅〉, so we enter the loop at line 30 once more, but this
time we only pop wStack .

Now, wStack is empty, so, the only things left to do, are to set field unfoldResult
(line 27 of Algorithm 4.1), and to return.

Ad b: state reached by ?coin from initial state At the start of this invoc-
ation of unfold , the pseudo-state contains 〈{1, 2, 3},⊥〉, i.e. md = {1, 2, 3} and
unfoldResult = ⊥. Again, we start by initializing; now wStack = 〈⊥, {1, 2, 3}〉.

Again, we enter the main while loop (line 8). We pick a state p from the set
at the top of wStack ; assume we pick 1. We associate a pre-order visit number
(0) with this state; we push the state onto sStack and pStack ; and we obtain

its outgoing transitions (?tea−−−→ 1, ?cof−−−→ 4, and τ−−→ 3) and process them.

After processing the two input transitions we have inputs = {?tea, ?cof} and
destmap[?tea] = {1}, destmap[?cof] = {4}. The τ -transition is no self-loop, and
its destination is “new”, and thus added to tauChildren. After processing these
transitions, we push 〈1, {3}〉 onto wStack , which already contains 〈⊥, {2, 3}〉.
The test at line 30 fails, so we loop in the main loop.

We pick a state from the set at the top of wStack ; then p = 3 and wStack =
(〈⊥, {2, 3}〉, 〈1, ∅〉). We have not processed state 3 before, so we associate a
pre-order visit number (1) with it, and push it onto sStack and pStack (both

already contain state 1). We obtain its outgoing transitions (?cof−−−→ 3, ?tea−−−→ 5,
τ−−→ 1), and process them.

After processing the two input transitions we have inputs = {?tea, ?cof} and
destmap[?tea] = {1, 5}, destmap[?cof] = {4, 3}. Again, the τ -transition is no
self-loop; this time its destination is neither “new”, nor part of an SCC, and thus
we pop elements from pStack as given in lines 26–27. Because pre[pStack .top()] =
pre[3] = 1 > pre[p′] = pre[1] = 0 we pop the topmost item from pStack ; we do
not pop the other item, because now pre[pStack .top()] = pre[1] = 0 6> pre[p′] =
pre[1] = 0. After processing these transitions, we push 〈3, ∅〉 onto wStack ; it
now contains (〈⊥, {2, 3}〉, 〈1, ∅〉, 〈3, ∅〉); sStack = (1, 3); pStack = (1).

The test at line 30 now holds. For the top element of wStack , the test at
line 31 does not hold, so we pop that top element; wStack = (〈⊥, {2, 3}〉, 〈1, ∅〉).
The test at line 30 still holds, and moreover, also the test at line 31 holds. Thus,
we have found an SCC, that contains state 1, and all elements on top of that
state on sStack , i.e. the SCC is {3, 1}, and we pop these states from sStack .
The SCC is divergent (contains more than one element), so we update outputs

4.2. DERIVATIONENGINE FOR RANDOM TESTING

4

137

wStack p l p′ tauChildren sStack pStack SCC

〈⊥, {1, 2, 3}〉
〈⊥, {2, 3}〉 1
〈⊥, {2, 3}〉 1 1
〈⊥, {2, 3}〉 1 1 1
〈⊥, {2, 3}〉 1 ?tea 1 1 1
〈⊥, {2, 3}〉 1 ?cof 4 1 1
〈⊥, {2, 3}〉 1 τ 3 1 1
〈⊥, {2, 3}〉 1 {3} 1 1
〈⊥, {2, 3}〉 〈1, {3}〉 1 1 1
〈⊥, {2, 3}〉 〈1, ∅〉 3 1 1
〈⊥, {2, 3}〉 〈1, ∅〉 3 1 3 1
〈⊥, {2, 3}〉 〈1, ∅〉 3 1 3 1 3
〈⊥, {2, 3}〉 〈1, ∅〉 3 ?cof 3 1 3 1 3
〈⊥, {2, 3}〉 〈1, ∅〉 3 ?tea 5 1 3 1 3
〈⊥, {2, 3}〉 〈1, ∅〉 3 τ 1 1 3 1
〈⊥, {2, 3}〉 〈1, ∅〉 3 ∅ 1 3 1
〈⊥, {2, 3}〉 〈1, ∅〉 〈3, ∅〉 3 1 3 1
〈⊥, {2, 3}〉 〈1, ∅〉 1 1 3 1
〈⊥, {2, 3}〉 〈1, ∅〉 1 1 {1, 3}
〈⊥, {2, 3}〉 〈1, ∅〉 1 1
〈⊥, {2, 3}〉 〈1, ∅〉 1

〈⊥, {2, 3}〉
〈⊥, {3}〉 2
〈⊥, {3}〉 2 2
〈⊥, {3}〉 2 2 2
〈⊥, {3}〉 2 ?cof 2 2 2
〈⊥, {3}〉 2 ?tea 2 2 2
〈⊥, {3}〉 2 !coin 0 2 2
〈⊥, {3}〉 2 τ 2 2 2
〈⊥, {3}〉 2 ∅ 2 2
〈⊥, {3}〉 〈2, ∅〉 2 2 2
〈⊥, {3}〉 〈2, ∅〉 2 2 {2}
〈⊥, {3}〉 〈2, ∅〉 2 2
〈⊥, {3}〉 〈2, ∅〉 2

〈⊥, {3}〉
〈⊥, ∅〉 3
〈⊥, ∅〉

Table 4.8: Changes to main data structures of Algo. 4.3 while unfolding the
state reached by ?coin from the initial state of the self-kicking coffee machine of
Fig. 4.1. (Although in the algorithm we do not change p when we pop wStack ,
here we show p changed to the parent on wStack .) Horizontal lines separate
phases of the algorithm; column SCC shows strong components that are found.

138

4

CHAPTER 4. TEST DERIVATION ENGINE

and destmap: outputs = {〈δ,⊥〉} and destmap[δ] = {1, 3}. We also pop pStack
and wStack ; now wStack = (〈⊥, {2, 3}〉), and the test at line 30 fails, so we loop
in the main loop.

We pick a state from the set at the top of wStack ; assume we pick 2, then
p = 2 and wStack = (〈⊥, {3}〉). We have not processed state 2 before, so
we associate a pre-order visit number (2) with it, and push it onto sStack and

pStack (both were empty). We obtain its outgoing transitions (?cof−−−→ 2, ?tea−−−→ 2,
!coin−−−→ 0, τ−−→ 2), and process them. After processing the two input transitions

and the output transition we have inputs = {?tea, ?cof}, outputs = {δ, !coin}
and destmap[?tea] = {1, 5, 2}, destmap[?cof] = {4, 3, 2}, destmap[δ] = {1, 3}
and destmap[!coin] = {0}. Now, the τ -transition is a self-loop, so we add state
2 to hasTauSelfLoop. Moreover, pre[p′] = pre[2] = 2 6= ⊥, and state 2 is not yet
part of an SCC, so we test whether we should pop pStack , and this test fails, so
pStack is not changed. After processing these transitions, we push 〈2, ∅〉 onto
wStack ; it now contains (〈⊥, {3}〉, 〈2, ∅〉); sStack = (2); pStack = (2).

The test at line 30 now holds. For the top element of wStack , the test at
line 31 also holds. Thus, we have found an SCC; this time it contains only state
2; we pop that state from sStack . Even though the SCC consists of a single
state, that state is divergent (because it is in hasTauSelfLoop), so we update
(outputs and) destmap: destmap[δ] = {1, 3, 2}. We pop pStack and wStack ;
now wStack = (〈⊥{3}〉). The test at line 30 fails, so we loop in the main loop.

We pick the last element from the set at the top of wStack ; thus we pick 3,
then p = 3 and wStack = (〈⊥, ∅〉). We have seen state 3 before, so the test at
line 11 fails. The test at line 30 holds, but the test at line 31 fails. Thus, we
only pop wStack , which is now empty, and thus the condition for the main loop
fails. All that is left to do is setting the unfoldResult field, and returning.

4.3 DerivationEngine for Guided Testing

We now discuss the DerivationEngine for guided test derivation, i.e. the Derivation-
Engine that gives access to both a specification and an observation objective.

Our design of this DerivationEngine aims to achieve the following:

1. support the “guided mode” part of requirement 7 (support random mode
and guided mode), by extending our decomposition of Figure 4.4 with
components to access the guidance information (test purpose, observation
objective), and to compute the cross product between the specification
and the guidance information.

4.3.1 Components

The extended decomposition is depicted in Figure 4.9. It extends the decom-
position of Figure 4.4 with 3 components: (1) a second Explorer, which provides
access to the observation objective; (2) a traces Primer, which provides access to
a determinized “version” of the observation objective; (3) a Combinator, which
computes the cross-product between specification and observation objective.

4.3. DERIVATIONENGINE FOR GUIDED TESTING

4

139

Explorer

IO-Oracle

ioco-
Primer

Explorer

traces
Primer

Combinator

DerivationEngine

Manager

Specification

partition
information

Observation
Objective

Figure 4.9: Decomposition of DerivationEngine extended to handle guidance.

Moreover, because the observation objective may contain labels that represent
quiescence, both the Explorer and IO-Oracle are extended to deal with these.

4.3.2 Interfaces

Between (traces) Primer and Explorer: the Explorer interface

1. start :→ S
2. menu : S → P((Lτ ∪ {δ})× S)

Table 4.9: Signature of Explorer interface functions, which can return a label
that represents quiescence.

The return type of the Explorer function menu is extended, to allow it to
return labels that represent quiescence, i.e. δ. This is the only change to the
Explorer interface.

Between Primer and IO-Oracle: the IO-Oracle interface

There may be labels in an observation objective that represent quiescence. As
mentioned above, we extend the IO-Oracle interface with the ability to identify
such labels. We assume that the “partitioning information”, has been extended
as well, and that an initialised IO-Oracle has (in addition to functions isI , isU ,
and isH) a function isQ that tests for quiescence.

1. kind : Lδτ× → {i,u, τ, δ}

Table 4.10: Signature of IO-Oracle interface function that supports quiescence
(Lδτ represents Lτ ∪ {δ}).

140

4

CHAPTER 4. TEST DERIVATION ENGINE

Algorithm 4.5: P.unfold() for traces Primer — changes w.r.t. Algo. 4.1

input : P , a pseudo-state
e, an Explorer that gives access to the observation objective
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then

3
...

4 while work 6= ∅ do

5
...

6 foreach 〈l, p′〉 ∈ e.menu(p) do
7 kind ←− o.kind(l)

8
...

9 else if kind = δ then
10 outputs ←− outputs ∪ {〈δ,⊥〉}
11 destmap[δ]←− destmap[δ] ∪ {p′}

12 P.unfoldResult ←− 〈inputs, outputs, destmap, extra〉
13 return P

Ad 1: kind Function kind tells to what partition a given label belongs. It is
defined as follows (with l ∈ Lτ ∪ {δ}):

kind(l, 〈isI , isU , isH , isQ〉) =def

i if isI (l)

u if isU (l)

τ if isH (l)

δ if isQ(l)

(4.27)

Between (ioco or traces) Primer and Combinator: the Primer interface

The Primer interface is unchanged w.r.t. random on-line testing, as is the im-
plementation of this interface in the ioco Primer. However, the traces Primer
has (compared to the ioco Primer) a slightly different implementation of this
interface. The traces Primer does not synthesise δ labels, but when it receives
such a label from its Explorer, it passes a δ label on. The changes are isolated
to the unfold() function. Algorithm 4.5 shows the changes w.r.t. Algorithm 4.1:
there is an additional case, to pass on δ labels (lines 9–11); moreover, variable
isQuiescent is no longer set nor used.

Provided by the Combinator: the DerivationEngine interface

In the guided case, it is the Combinator that is the component that realises the
interface that the DerivationEngine provides to its user, i.e. now the Combinator

4.3. DERIVATIONENGINE FOR GUIDED TESTING

4

141

interface coincides with the DerivationEngine interface (see Fig. 4.9). The signa-
ture of this interface was given in Table 3.8. In Section 4.3.3 below we discuss
how the interface is realised.

4.3.3 Combinator algorithm

We now discuss how the Combinator can provide the DerivationEngine interface
using the functionality offered by ioco Primer and traces Primer.

To realise the interface, we once more refine the pseudo-state type (intro-
duced in the previous chapter (see Table 3.7), to obtain the pseudo-state type
that is used by the Combinator. The internal structure and interface of this
pseudo-state type differ from those of the pseudo-state type that we used in
the Primer for random testing. In particular, we added two utility methods:
resultTuple(), and v(), and we changed the return type of method P.n(l). The
resulting pseudo-state type is shown in Table 4.11, and discussed below.

Signature:
PS : (PS] ⊥)× (PG] ⊥)→ PC
m : PC → PS] ⊥
g : PC → PG] ⊥
resultTuple : PC → (PC] ⊥)× (LV] ⊥)
i : PC → P(LI)
o : PC → P(LδU × (LV] {⊥}))
v : PC → LV] ⊥
n : PC × Lδ → (PC] ⊥)× (LV] ⊥)
unfold : PC → PC

Definition:
PS(ps, pg) = 〈ps, pg,⊥〉 (a new pseudo-state)
pc.m() = pc.m
pc.g() = pc.g
pc.resultTuple() = 〈pc, pc.v()〉
pc.i() = pc.unfold().unfoldResult .i
pc.o() = pc.unfold().unfoldResult .o
pc.hasOutputs() = pc.unfold().unfoldResult .hasOutputs
pc.v() = pc.unfold().unfoldResult .v
pc.n(l) = outcome of Algo. 4.6
pc.unfold() = outcome of Algo. 4.7

Table 4.11: Pseudo-state type. We use PC , PS and PG to represent the pseudo-
state types of resp. the Combinator, the ioco-Primer, and the traces Primer, and
pc, ps and pg to represent the corresponding pseudo-state instances. Further-
more, l ∈ Lδ is a label.

142

4

CHAPTER 4. TEST DERIVATION ENGINE

Algorithm 4.6: P.n(l) for Combinator

input : P , a pseudo-state
l, a label
ps, an ioco Primer that gives access to the Specification
pg, a traces Primer that gives access to the observation objective
o, an IO-Oracle

output: P ′, the pseudo-state reached from P by l, unfolded
1 begin
2 〈ns, vs〉 ←− ps.next(P.m, l)
3 〈ng, vg〉 ←− pg.next(P.g, l)
4 if ns = ⊥ ∧ ng = ⊥ then
5 return 〈⊥,⊥〉
6 P ′ ←− PS(ns, ng)
7 return 〈P ′, P ′.v()〉

The Combinator pseudo-state type

In Table 4.11 we show the functionality offered by the pseudo-state type of the
Combinator, and the definition of all its methods, except for n, which is given in
Algorithm 4.6, and unfold , which is given in Algorithm 4.7. Below we first define
the Combinator pseudo-state type, and then show and discuss n and unfold .

Definition 4.3.1
A pseudo-state of the Combinator is a tuple 〈m, g, unfoldResult〉, with

1. m, a pseudo-state returned by the ioco Primer;
2. g, a pseudo-state returned by the traces Primer;
3. unfoldResult , a tuple 〈i, o, hasOutputs, v〉 that holds information obtained

from the ioco Primer and the traces Primer. The tuple contains
1. i, the set of enabled input labels;
2. o, the set of tuples of an enabled output label and a verdict;
3. hasOutputs, a boolean that indicates whether one might choose to

observe;
4. v, the verdict associated with the current tester state.

After construction of a pseudo-state instance, before it is unfolded, its unfoldResult
will have the value ⊥, as shown in the definition of constructor PS in Table 4.11.

2

Method n Method n combines the results obtained by invoking the next
function in both the ioco Primer and the traces primer. It either returns 〈⊥,⊥〉
—when in neither Primer a valid successor state is reached via label l—or it
returns a new pseudo-state that contains the results returned by both Primers.

Method unfold Method unfold computes the enabled inputs and outputs
(with the associated verdicts), and the verdict associated with the “current”

4.3. DERIVATIONENGINE FOR GUIDED TESTING

4

143

Algorithm 4.7: P.unfold() for Combinator

input : P , a Combinator pseudo-state
ps, an ioco Primer that gives access to the Specification
pg, a traces Primer that gives access to the observation objective
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then
3 inputs ←− outputs ←− ∅
4 hasOutputs ←− false
5 if P.m = ⊥ then
6 if (P.g = ⊥) ∨ (ε 6∈ pg.out(P.g)) then
7 verdict ←− 〈fail,miss〉
8 else
9 verdict ←− 〈fail,hit〉

10 else
11 if P.g = ⊥ then
12 verdict ←− 〈pass,miss〉
13 else
14 verdict ←− ⊥
15 inputs ←− ps.in(P.m) ∩ pg.in(P.g)
16 os ←− {l | 〈l,⊥〉 ∈ ps.out(P.m)}
17 og ←− {l | 〈l,⊥〉 ∈ pg.out(P.g)}
18 foreach l ∈ (os ∪ og) do
19 if l = ε ∧ l ∈ og then
20 verdict ←− 〈pass,hit〉
21 else if l 6∈ os ∧ l ∈ og then // is error‘hit’?

22 〈d, v〉 ←− pg.next(P.g, l) // d 6= ⊥ because l ∈ og
23 if ε ∈ pg.out(d) then
24 outputs ←− outputs ∪ 〈l, 〈fail,hit〉〉
25 hasOutputs ←− true

26 else if l ∈ os ∧ l ∈ og then
27 〈d, v〉 ←− pg.next(P.g, l) // d 6= ⊥ because l ∈ og
28 if ε ∈ pg.out(d) then
29 outputs ←− outputs ∪ 〈l, 〈pass,hit〉〉
30 else
31 outputs ←− outputs ∪ 〈l,⊥〉
32 hasOutputs ←− true

33 else if l ∈ os ∧ l 6∈ og then
34 outputs ←− outputs ∪ 〈l, 〈pass,miss〉〉

35 P.unfoldResult ←− 〈inputs, outputs, hasOutputs, verdict〉
36 return P

144

4

CHAPTER 4. TEST DERIVATION ENGINE

start() = PS(ps.start(), pg.start()).resultTuple() (4.28)

in(P) = P.i() (4.29)

hasOutputs(P) = P.hasOutputs() (4.30)

out(P) = P.o() (4.31)

next(P, l) = P.n(l) (4.32)

defNegVerdict() = 〈fail,miss〉 (4.33)

defPosVerdict() = 〈pass,miss〉 (4.34)

Table 4.12: Implementation of the DerivationEngine interface functions, in the
Combinator; where ps and pg represent the Primer that give access to the spe-
cification resp. the observation objective.

pseudo-state. It does this using the in and out functions of both its Primer, and
using the next function of the traces primer—it uses the latter in the compu-
tation of the verdict that is to be associated with an enabled output label: for
that it needs to know whether “end-of-trace” is reached after that output.

While processing output transitions, it keeps track of whether there are
outputs that do not lead to miss—this is used for the implementation of the
hasOutputs interface function.

DerivationEngine interface implementation

In Table 4.12 we show how the Combinator implements the DerivationEngine
interface functions, using the pseudo-state functions of Table 4.11. As in the
case of random testing, the work is done by (methods of) the pseudo-state type.

Correctness

For the guided case we have essentially the same proof obligation as for the
unguided (random testing) case (see page 118).

Optimization for infinite guidance

At the start of Section 3.5 we distinguished two kinds of guidance information:
(1) guidance information that directs the test derivation, and (2) guidance in-
formation that constrains the test derivation. As mentioned there, the former
can be treated as a finite set of finite traces, and the latter can be treated as a
finite set of infinite traces.

We give a hit verdict when we reach the end of (a finite trace in) the guidance
information, and, when computing the set of expected outputs, we associate a
hit verdict with outputs, accordingly. However, to be able to associate hit
verdicts with outputs, we have to look ahead in the guidance information: for
each of the enabled outputs we invoke the next function of the traces Primer,
and check whether, in the state thus reached, end of guidance is reached.

4.4. DERIVATIONENGINE TO ACCESS OFF-LINE TEST CASES

4

145

Reaching the end of guidance information, is, of course, only possible when
the guidance information corresponds to a set of finite traces, i.e., only with
guidance information that directs the test derivation.

For guidance information that is intended to constrain the test derivation,
and that thus corresponds to a finite set of infinite traces, it is impossible to
reach the end. Thus, for such guidance information, it is not useful to check
whether we have reached the end. Therefore, when we know that guidance
information only contains infinite traces, we use a version of Algorithm 4.7 that
does not look ahead for end-of-guidance: it does not execute lines 22–25 and
lines 27–30. Our tool implementation relies on the user of the tool to indicate
(in the tool configuration) whether or not the guidance information contains
only infinite traces.

4.4 DerivationEngine to access Off-Line Test Cases

We now discuss the DerivationEngine for test execution, i.e. the DerivationEngine
that gives access to a test case.

Our design of this DerivationEngine aims to achieve the following:

1. support the “off-line testing” part of requirement 3 (design should be suit-
able for both on-line and off-line testing), by adapting our decomposition
of Figure 4.4 to deal with test cases: extend Explorer and IO-Oracle com-
ponents to be verdict-aware, such that a new exec primer can use them to
provide access to a test case.

We assume that a test case is like we implicitly defined them in Chapter 3,
i.e. as an LTS with the following features: (a) it is deterministic, and thus
contains no internal (τ)-transitions; (b) it contains no unexpected outputs (i.e.
outputs that lead to verdict fail or 〈fail,miss〉); and (c) verdicts are represented
by self-loops with special verdict labels.

Note that such test case lacks one feature: it does not contain the default
“positive” and “negative” verdicts. For the defNegVerdict and defPosVerdict
DerivationEngine interface functions we must know, though, whether the “plain”
default verdicts of Table 3.9 must be used, or the “guided” default verdicts of
Table 3.10. From a test case, this information can only be inferred by inspecting

Explorer

IO-Oracle

exec Primer

DerivationEngine

Manager

test case

partition
information

Figure 4.10: Decomposition of DerivationEngine into Explorer, Primer and IO-
Oracle.

146

4

CHAPTER 4. TEST DERIVATION ENGINE

(at least one of) its verdict labels. For now we assume that the user knows
whether “plain” or “guided” default labels must be used.

4.4.1 Components

Figure 4.10 shows the decomposition that we use. This is very similar to the
one for random testing, shown in Fig. 4.4. The only difference is that, where in
the case of random testing we had an ioco (or uioco) Primer, we now have an
exec Primer that gives access to the test case.

The exec Primer is very similar to the traces Primer that we discussed in
Section 4.3. The main difference is that the exec Primer also gives access to the
verdicts in the test case.

4.4.2 Interfaces

Between (exec) Primer and Explorer: the Explorer interface

1. start :→ S
2. menu : S → P((Lτ ∪ {δ} ∪ LV)× S)

Table 4.13: Signature of Explorer interface functions, that can return a label
that represents a verdict.

The return type of the Explorer interface is extended, to allow it to return
verdict labels. This is the only change to the Explorer interface.

Between Primer and IO-Oracle: the IO-Oracle interface

There may be labels in a test case that represent verdicts (we represent verdicts
that are associated with states using self-loops). As mentioned above, we extend
the IO-Oracle interface with the ability to identify such labels. We assume
that the “partitioning information” has been extended as well, and thus an
initialised IO-Oracle instance has (in addition to functions isI , isU , isH , and
isQ) a function that tests for verdicts: isV .

1. kind : Lδτ,V → {i,u, τ, δ,v}

Table 4.14: Signature of IO-Oracle interface function that supports verdicts
(Lδτ,V represents Lτ ∪ {δ} ∪ LV).

4.4. DERIVATIONENGINE TO ACCESS OFF-LINE TEST CASES

4

147

Ad 1: kind Function kind tells to what partition a given label belongs. It is
defined as follows (with l ∈ Lτ ∪ {δ} ∪ LV):

kind(l) =def

i if isI (l)

u if isU (l)

τ if isH (l)

δ if isQ(l)

v if isV (l)

(4.35)

Provided by the Primer: the DerivationEngine interface

In the case of test execution, it is the Primer that realises the DerivationEngine
interface, using the functionality offered by the Explorer and IO-Oracle.

4.4.3 Exec Primer algorithm

To realise the interface, we (again) refine the pseudo-state type, to obtain the
one used by the exec Primer.

Signature:
PS : S → P
m : P → S
resultTuple : P → (P] ⊥)× (LV] ⊥)
i : P → P(LI)
o : P → P(LδU × (LV] {⊥}))
v : P → LV] ⊥
n : P × Lδ → S] ⊥
unfold : P → P

Definition:
PS(S) = 〈S,⊥〉 (a new pseudo-state)
P.m() = P.m
P.resultTuple() = 〈P, P.v()〉
P.i() = P.unfold().unfoldResult .i
P.o() = P.unfold().unfoldResult .o
P.v() = P.unfold().unfoldResult .v
P.n(l) = P.unfold().unfoldResult .nl[l]
P.unfold() = P (unfolded, if not unfolded before, see Algo. 4.8)

Table 4.15: Pseudo-state type. P is a pseudo-state instance, and l ∈ Lδ ∪LV is
a label.

The exec Primer pseudo-state type

In Table 4.15 we show the functionality offered by the pseudo-state type of the
exec Primer, and the definition of all its methods, except for unfold which is

148

4

CHAPTER 4. TEST DERIVATION ENGINE

Algorithm 4.8: P.unfold() for exec Primer

input : P , a pseudo-state
e, an Explorer that gives access to the test case
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then
3 verdict ←− ⊥
4 inputs ←− outputs ←− ∅
5 destmap ←− {l→ ⊥ | l ∈ Lδ}
6 if P.md 6= ⊥ then
7 foreach 〈l, p′〉 ∈ e.menu(P.md) do
8 kind ←− o.kind(l)
9 if kind = v then

10 verdict ←− l
11 else if kind = i then
12 inputs ←− inputs ∪ {l}
13 destmap[l]←− p′
14 else if kind = u ∨ kind = δ then
15 nv ←− ⊥
16 no ←− e.menu(p′)
17 if ∃〈l′, p′′〉 ∈ no with o.kind(l′) = v then
18 nv ←− l′

19 outputs ←− outputs ∪ {〈l, nv〉}
20 destmap[l]←− p′
21 else if kind = τ then
22 // should not happen

23 else
24 // should not happen

25 P.unfoldResult ←− 〈inputs, outputs, destmap, verdict〉
26 return P

given in Algorithm 4.8. We define the exec Primer pseudo-state type in Defini-
tion 4.4.1.

Definition 4.4.1
A pseudo-state of the exec Primer is a tuple 〈md, unfoldResult〉, with

1. md, an LTS state: a state directly reachable, like the initial state, or the
destination of an observable transition;

2. unfoldResult , a tuple 〈i, o, nl, v〉 that holds the result of “unfolding” (ex-
plained below) the state in md. The tuple contains

1. i, the set of enabled input labels;
2. o, the set of tuples of an enabled output label and a verdict;

4.4. DERIVATIONENGINE TO ACCESS OFF-LINE TEST CASES

4

149

3. nl : Lδ → S] {⊥}, a mapping from labels to the state that is
directly reachable via the label (a single state, because a test case is
deterministic);

4. v, the verdict associated with the current tester state.

After construction of a pseudo-state instance, before it is unfolded, its unfoldResult
will have the value ⊥, as shown in the definition of constructor PS in Table 4.15.

2

Method unfold Like the unfold method of the Combinator, the unfold method
of the exec Primer computes the enabled inputs and outputs (with the associated
verdicts), and the verdict associated with the “current” pseudo-state.

Like the unfold method of the Combinator, it looks ahead to obtain verdicts
that are to be associated with outputs.

Algorithm 4.8 relies on a test-case being deterministic, and thus 1. it does
not handle internal (τ) transitions; 2. it assumes that, from any given state,
with any label, at most one state in the test case is reached; 3. it assumes that
there is at most one verdict associated with any state in the test case. All three
are valid assumptions, given how we derive test cases.

DerivationEngine interface implementation

In Table 4.16 we show how the Primer implements the DerivationEngine interface
functions, using the pseudo-state functions of Table 4.15.

One thing to point out is how we define the hasOutputs function. Each test
step in the test case will either try to apply a stimulus, or obtain and check
an observation. The Manager should just honour whatever choice is in the test
case. The Manager uses hasOutputs when it decides between stimulating and
observing. Thus, hasOutputs should only return true when the test step is an
observation. Hence the additional check whether the test step has any inputs
in Equation 4.38.

start() = PS(e.start()).resultTuple() (4.36)

in(P) = P.i() (4.37)

hasOutputs(P) = P.i() = ∅ ∧ P.o() 6= ∅ (4.38)

out(P) = P.o() (4.39)

next(P, l) =

{
〈⊥,⊥〉 if P.n(l) = ⊥
PS(P.n(l)).resultTuple() otherwise

(4.40)

defNegVerdict() = fail or 〈fail,miss〉 (4.41)

defPosVerdict() = pass or 〈pass,miss〉 (4.42)

Table 4.16: Implementation of the DerivationEngine interface functions, in the
exec Primer; where e represents the Explorer that give access to the test case.

150

4

CHAPTER 4. TEST DERIVATION ENGINE

Correctness

For the case of test execution we have essentially the same proof obligation as
for the unguided (random testing) case (see page 118).

4.5 Summary

In this chapter we showed how we do test derivation, how we deal with τ -cycles,
and how we support visualisation, and we discussed our support for a number
of modelling languages.

5

Chapter 5

Test Execution Engine

In Chapter 3 we gave an overview of the functionality and architecture of TorX,
and we presented the interface that is offered by the Adapter. In this chapter
we discuss how this interface can be provided.

Specification
Derivation-

Engine
abstract
labels

Manager
abstract
labels

Adapter SUT

concrete
stimuli

responses

verdict

Figure 5.1: Position of the Adapter in the high-level architecture. Interaction
between Manager and Adapter is using the Adapter interface functions applyStim
and getObs, using labels from the model to represent interactions between Ad-
apter and SUT. Interaction between Adapter and SUT uses whatever means of
interaction the SUT offers.

The rôle of the Adapter is to interact with the system under test while a
test case is being executed, where the test case is represented using labels of the
model, as depicted in Figure 5.1. Two main functions of the Adapter are thus:

◦ interacting with the system under test, represented by concrete stimuli
and responses in Fig. 5.1, and

◦ mapping between these interactions and their representation as (abstract)
labels of the model.

From these two functions, we see that an Adapter instance is not only IUT-
specific, but also model-specific, in particular, specific to the model labels. In
addition, an Adapter instance may also be test-architecture-specific. Recall that
a test architecture (see on page 8) specifies via which interfaces the test tool
is supposed to interact with the IUT, and the concepts “test context”, PCO
(point of control and observation), IAP (implementation access point), and

151

152

5

CHAPTER 5. TEST EXECUTION ENGINE

SUT (system under test). Thus, a test architecture dictates which PCOs an
Adapter needs to have, to be able to execute test cases in accordance with the
test architecture. Therefore, when referring to Adapter functionality in general,
we will refer to an Adapter rather than to the Adapter. We now look at the
constraints that we impose on the design of an Adapter.

Design constraints The design of an Adapter is constrained, on the one
hand, by the interface that it has to provide, as given in Table 3.12. On the
other hand, it is constrained by requirements that we discussed in Chapter 1,
in particular:

1 the tool should be based on ioco theory;
5 the tool design should be independent from particular modelling lan-

guages;
8 the tool design should make no assumptions about the SUT, except that

it is a reactive system;
13 it should be easy to create a simple model (like an automaton) for use

with the tool;
15 it should be possible to use a simulated model as system under test;
16 it should be simple to connect the tool to toy implementations;
19 the design should allow use of modelling languages with suitable expressive

power;
21 the tool should produce/keep test execution data for analysis;
24 it should be easy to connect the tool to the system under test (sub-

sumes 16).

Requirement 1 directly affects (the design of) an Adapter: it requires the
Adapter to be able to observe quiescence. Requirements 5, 13 and 19 illustrate
that, in general, we support multiple modeling languages. Thus, for a single
SUT, we may have several models, each with a different label set. In that case
we need, at least conceptually, multiple Adapter instances, that differ only in the
label-to-interaction mapping. Thus, our Adapter design must support creation
of such family of Adapter instances. Requirement 8 states that we do not limit
ourselves to specific classes of systems, as long as they are reactive. This means
(a) that we cannot make any assumption on how the SUT expects to interact
with its environment (whether using a network protocol, or an API, or via some
sort of physical interaction, or anything else); and (b) that the SUT will take the
initiative to produce output as it sees fit (we only know that once it is quiescent,
it will stay quiescent until further input is given to it). To interact with a SUT,
an Adapter must conform itself to the interfaces via which the SUT interacts with
its environment—this includes establishing a means of communication with the
SUT, as we discuss below (see “Common Adapter functionality”). In addition
to requirement 8 (no assumptions about SUT), we also have requirement 15
and requirement 16 that demand specific support for resp. “simulated models”
and toy implementations—we discuss both below; there we also discuss how we
interpret “toy implementation”. To support requirement 21 we include the
concrete interactions between Adapter and SUT in the test run log, with time
stamps.

5

153

Adapter support We deal with these requirements

1. by having specific built-in Adapter instances for the required two cases:
◦ use of simulated model as IUT;
◦ use of “toy implementation” as IUT.

2. by offering the torx-adapter interface [tora] for using external Adapter
programs (in spirit this is similar to the torx-explorer interface that allows
the use of external Explorer programs), and

3. by giving a general design for an Adapter. We introduce the design by dis-
cussing three Adapter instances; in the design we generalise the function-
ality encountered in these examples. Of course, the design is also inspired
by Adapter instances used in other case studies that we have worked on,
see Chapter 8.

Common Adapter functionality

Before we discuss the Adapter examples, and our general design, we look at
functionalities that all Adapter instances have in common. To do its job, each
Adapter must be able to provide the two main Adapter functions:

1. interact with the IUT (this includes establishing a means to interact with
it), if necessary through a test context (i.e., SUT 6= IUT);

2. map between model labels and interactions with the SUT.

In addition, it must also be able to

3. observe quiescence;
4. provide the Adapter interface of Table 3.12;
5. synchronise: the SUT takes the initiative for outputs, and the Manager

takes the initiative for all operations on the Adapter interface.

We use this list to structure the discussion of each of the Adapter examples, and
as basis for our Adapter design. We discuss establishing a means to interact,
observation of quiescence, and synchronisation below.

Establishing a means to interact Typically, we let the Adapter take the
initiative to establish a means to interact with the IUT at the start of a test run,
i.e. in the start interface function implemented by the Adapter. For an IUT that
interacts on standard input and output, the easiest (only?) way to establish
communication is by letting the Adapter start the IUT and create pipes to its
standard input and output. Starting the IUT at the start of the test run has the
benefit that, at the start of the test run, the IUT is ‘automagically’ in its initial
state. Also for an IUT that interacts (also?) in another way, e.g. via one or more
network connections, the start interface function is the place to establish such
network connection(s), whether actively (by connecting to a network interface
provided by the IUT), or passively (by establishing a network interface to which
the IUT may connect). In such case, the IUT may already be active at (before)
the start of the test run, and thus, at the moment that a means of interaction
is established, the IUT need not be in its initial state. We assume that in such
case (a) there is a way to reset the IUT to a known state, and the model used
for testing starts with the abstract representation of this reset, or (b) there is

154

5

CHAPTER 5. TEST EXECUTION ENGINE

a way for the Adapter to obtain (information about) the state of the IUT (this
we used in the Easylink case study, discussed in Appendix B.2).

We also assume that the stop interface function undoes the work done by
start, i.e. it will stop an IUT that it started, or disconnect any connection that
it made.

Observing quiescence Typically, we observe quiescence by starting a timer,
and waiting to see whether the IUT produces output before the timer expires.

On the one hand, from the viewpoint of theory, all that matters is that
we wait long enough. If we wait too short, we might make the mistake of
concluding that an IUT is quiescent, while it is only slow. If, at that moment,
quiescence is not expected, we get an immediate fail. If, instead, quiescence
is expected at that moment, e.g. because the model is non-deterministic and
expects both output and quiescence, we do not get an immediate fail. However,
if then, after the observation of quiescence, the “slow” output arrives, we still
get a fail verdict, because once quiescence has been observed, output is not
allowed. Only when between the (mistaken) observation of quiescence and the
observation of the slow output, already a stimulus has been given, then we may
not get a fail verdict, because then to the tester it may appear that, after the
(mistaken) observation of quiescence, the stimulus caused (triggered) the slow
output. Thus, if the quiescence timeout value is too short, we typically reject
a correct (but slower than expected) IUT, i.e. then our testing has become
unsound.

On the other hand, from the viewpoint of test efficiency, we should wait
as short as possible. As soon as we wait for any significant amount of time
to observe quiescence, typically—for any IUT that occasionally is quiescent—
overall wall-clock testing time is, to a large extent, determined by (spent) waiting
for quiescence.

In Section 7.5.6 we look at the test execution times of a case study; the effect
of waiting for quiescence on the time between test steps is clearly visible there.

Synchronisation – races The Adapter has to deal with the fact that the
SUT takes the initiative for outputs, and the Manager takes the initiative for
all operations on the Adapter interface. Thus, output obtained from the SUT
has to be stored until the Manager asks for it. Moreover, when communication
between SUT and Adapter is asynchronous, we have to consider the possibility
of races: messages, that are approximately sent concurrently may overtake each
other. So, it may be hard, or impossible, to establish in the Adapter in what
precise order the SUT interacted with its environment, i.e., with the Adapter.
And, as we see in the examples in Section 5.1, the presence of a test context
that behaves as one or more FIFO buffers does not make things easier. We
distinguish two kind of races:

1. input-output races, where both SUT and Adapter try to communicate, by
e.g. sending a message, at approximately the same moment, and

2. concurrent output races, where the SUT provides multiple outputs at ap-
proximately the same moment.

5.1. ADAPTER EXAMPLES

5

155

Typically, we deal with such races outside the Adapter. To be able to cope with,
or prevent, a race in the Adapter, we would first have to be able to detect that
it has happened (or is about to happen), and this is often not possible. We
have experimented with time-stamping interactions in the Adapter, and using
these timestamps, together with a small queue of recent interactions in the
Manager, to adjust apparent reordered interactions, but we do not discuss this
further. In practice, we typically deal with races at the model level: by avoiding
input-output non-determinism in the model, we can try to avoid input-output
races, and by including FIFO-queues in the model, we can make it—and the test
cases derived from it—robust against message reordering, both for input-output
races and concurrent output races. In our experience, this is not only the easiest
solution, but also the most complete one: it also works for reordering caused by
a test context—unless the IUT or the test context timestamp interactions with
the IUT, we do not see how an Adapter may solve such reordering.

Remainder of this chapter First, in Section 5.1, we discuss three Adapter
instances, to illustrate the functionality that an Adapter has to offer, and to
illustrate additional requirements for the Adapter design. Then, in Section 5.2,
we generalise the functionality, seen in the examples, to our general Adapter
design.

5.1 Adapter Examples

To illustrate the functionality that an Adapter has to offer and to elicitate addi-
tional requirements, we discuss three Adapter instances, as shown in Table 5.1:

1. for “toy implementations”, in Section 5.1.1,
2. for a conference protocol entity, in Section 5.1.2, and
3. for a software bus server, in Section 5.1.3.

used for: Toy Impl. Chatbox Software Bus

#IAP: 1 2 1
#PCO: 1 3 3
interaction via: stdin/stdout stdin/stdout + UDP TCP
interaction set-up: static static dynamic
mapping: - data + address address
mapping configuration: - static + dynamic dynamic
possible races:

in-out non-determ. x x
concur. msg reord. x x

discussed in: Sect 5.1.1 Sect 5.1.2 Sect 5.1.3

Table 5.1: Overview of the examples that we discuss.

Ad 1: “toy implementations” The first Adapter communicates model la-
bels over the standard input and output of an IUT. For this Adapter, the map-

156

5

CHAPTER 5. TEST EXECUTION ENGINE

ping between interactions and labels is trivial, and, regarding potential races
there is only potential input-output non-determinism.

Ad 2: conference protocol entity The second Adapter communicates with
the IUT in two ways: over its standard input and output, and over UDP [Pos80].
In both cases, encoded messages are exchanged. The main difference with the
first Adapter is that, where for communication over standard input and output
it suffices to just write and read messages, with communication over UDP also
UDP addresses (source and destination) play a role. Moreover, due to the
use of encoded messages, the mapping between interactions and labels is less
trivial than with the first Adapter. Finally, because both Adapter and IUT send
and receive messages at multiple PCOs resp. IAPs, there is the possibility of
reordering of messages that are sent “at approximately the same moment” over
different communication interfaces.

Ad 3: software bus server The third Adapter communicates with the IUT
over TCP [Pos81], using model labels. The main difference with the other two
Adapter instances is that this Adapter actively opens and closes TCP connec-
tions during a test run, i.e. the “interaction infrastructure” changes dynamically
during a test run. Thus, this Adapter is stateful: it maintains interaction infra-
structure state.

Below we discuss the three example Adapter instances in more detail, where
we use the same structure in each case: first we introduce the SUT, and then we
discuss the Adapter, where we, in turn, discuss each of the five common Adapter
functionalities that we gave above in the introduction.

5.1.1 Stdin/out Adapter for Toy Implementations

Here we discuss the Adapter that aims to fulfil Requirement 16 (connect to
toy implementations easily). As we will see, this Adapter is made for IUTs
that communicate using model labels over standard-input and output. We first
discuss the IUT, and then the Adapter.

TI

testing tool

in out err

Figure 5.2: Test architecture for toy implementation (TI). The testing tool
interacts with the TI at standard input and standard output, and consumes the
diagnostic output of the TI at its standard error.

5.1. ADAPTER EXAMPLES

5

157

Manager
interface
handler

queue

poll(tδ) x/⊥

x
stdout
handler

stderr
handler

timer

Adapter

IUT

stdin

stdout

stderr

request a

response x

diagnostics

Manager

tryStim(a)
getObs()
〈i, a〉
〈u, x〉

Figure 5.3: Adapter for toy implementations.

The IUT: a Toy Implementation

Fulfilment of the requirement to “connect to toy implementations easily” starts
with defining what a toy implementation is. To us, a toy implementation is
an implementation, that is developed to exhibit a certain behaviour, i.e. to
perform certain series of interactions with its environment. Typically, such
intended behaviour will be described in a design; part of such design can be
an (LTS) model that describes the intended behaviour in terms of input- and
output labels.

Given the focus on exhibiting a certain behaviour, the way in which such
implementation interacts with its environment should be as simple as possible.
Given that the behaviour is defined in terms of input- and output labels, it feels
natural to let the interaction take place using input- and output labels. The
remaining question then is: how does the interaction take place? We want to
make as few assumptions on the implementation as possible, to give maximum
implementation freedom. Therefore, we let the interaction take place over the
standard input and standard output of the implementation, using lines of text,
one label per line1. The implementation can then use standard error to write
diagnostics etc. With this choice, a user can interact with the implementation
by just starting it, typing at it, and reading its responses. Also, there is ample
implementation freedom: communication over standard input- and output can
easily be implemented in any programming language.

Testing a Toy Implementation

In this case, the SUT coincides with the IUT; there is no test context. The test
architecture is depicted in Figure 5.2.

1 An (obvious) alternative would be to communicate model labels over TCP. TorX sup-
ports this with two additional Adapter instances: one for the case where the IUT opens a
listening socket and waits for its environment to connect (this Adapter is a TCP client), and
one for the case where the IUT expects the environment to open a listening socket, to which
it then connects (this Adapter is a small TCP server).

158

5

CHAPTER 5. TEST EXECUTION ENGINE

The Adapter

We now discuss our Adapter for this kind of toy implementations, see Figure 5.3.

Ad 1: Interact with IUT This is the first of the two main Adapter functions
that we mentioned in the introduction to this chapter. We let the Adapter “play
the role of the user”, i.e. we let it provide the environment that the IUT expects.
Thus, it has to be able to start the IUT program, write labels as lines of text
to its standard input, and read labels as lines of text from its standard output.
This Adapter does all this as follows.

When the Adapter is started, it starts the IUT program in such a way that
it can write to the IUT program standard input, and can read from the IUT
program standard output and standard error. The Adapter runs three threads:
◦ the main thread, on which it interacts with the Manager, and on which

it applies stimuli to the IUT (because this Adapter is just a module in
the test tool, the Adapter main thread coincides with the test tool main
thread);

◦ a thread to read the standard output of the IUT program;
◦ a thread to read the standard error of the IUT program.

The two reader threads can wait for output from the IUT, independently, while
at the same time stimuli are applied.

Synchronisation between the threads happens via a shared FIFO queue: the
stdout-handler appends label strings to it, and the Manager interface handler
gets them from it. The shared queue has additional synchronisation function-
ality: in the poll request to get the first item of the queue, a time-out value can
be provided. When the queue is empty, and the timeout value is greater than
zero, the poll request will wait until either an item is added to the queue, or the
timeout time has passed, whatever happens first. It will return the item just
added in the former case, and ⊥ in the latter.

The stderr-handler just writes everything that it reads from the IUT to the
standard error of the tester tool. The reason to nevertheless intercept the IUT
standard error are two-fold. Firstly, we may use it to provide additional con-
venience to the user, by e.g. filtering out specific diagnostics and showing them
to the user. Secondly, it avoids blocking: when this output is not consumed, ,
the operating system may suspend the execution of the IUT program when the
IUT program writes to standard error and the corresponding write buffer is full.

Ad 2: Mapping between labels and interactions This is the second main
Adapter function. In this Adapter, the mapping is trivial.

To encode a stimulus, it suffices to add a new-line character to the end of the
string representation of the label that is the argument of the tryStim interface
function. To decode an observation, it suffices to remove the new-line character
from the line of text which is read from the standard output of the IUT program.

In this case, the encoding can be done by the Manager interface handler, just
before it applies a stimulus, by writing the encoding result to the IUT standard
input. The decoding can be done by the stdout handler, just before it adds the
decoding result to the queue.

5.1. ADAPTER EXAMPLES

5

159

Ad 3: Observing quiescence This can be seen as a special case of the
second main Adapter function: it has to map lack of interaction onto a label.
In this Adapter, this is done as follows.

This Adapter uses the poll functionality offered by the shared queue to ob-
serve quiescence. The Adapter is configured with a quiescence time-out value
tδ. When the Manager requests an observation, the Manager interface handler
requests an observation from the queue using poll, with a time-out value tδ.
When the queue returns an observation, it is returned to the Manager; when
the queue returns ⊥ (time-out), an observation of δ is returned to the Manager.

Ad 4: Providing the Adapter interface The Manager interface handler
implements the Adapter interface functions. As discussed above (ad 3) and
below (ad 5) it uses the queue to obtain observations (when handling getObs),
and to check for pending ones (when handling tryStim). Both getObs and tryStim
only return once they have an observation, or quiescence, to return, or once the
stimulus has been applied.

Ad 5: Synchronisation When the Adapter is handling a tryStim request
to try to apply a given stimulus, before applying the stimulus, it first checks
whether the queue contains a pending observation (using poll with a time-out
value of 0). If there is a pending observation, the Adapter returns it, and ignores
the given stimulus. Otherwise, it applies the given stimulus by writing it to the
standard input of the IUT program. Once the Adapter has written the stimulus,
the stimulus is out of its control, and it reports that it has applied the stimulus.

Potential improvements When requesting observations from the queue, this
Adapter always uses the same tδ value for the queue poll request.

The theory does not say anything about the quiescence timeout value; for
practical reasons—avoiding incorrect test results, as we discussed in the intro-
duction to this chapter—we only have to be careful to not choose a timeout
value that is too short.

Thus, to speed up testing, by reducing the time that we spend, waiting for the
quiescence timer to expire, the Adapter could remember at what time the latest
interaction with the IUT took place, and, for the poll request timeout value,
subtract the time that passed since last interaction from tδ. That approach we
also used in other Adapter instances.

5.1.2 UDP Adapter for a Conference Protocol Entity

The conference protocol is a simple chat box protocol that was designed for
a course on protocol implementation. We created and tested a number of
conference protocol entity (CPE) implementations, as discussed in [BFdV+99,
DRS+00]. A detailed description of the conference protocol, and our imple-
mentations of it, can be found at [Feea, Feeb].

The main differences between (the Adapter for) a Toy Implementation and
(one for) a CPE are (1) how they interact, and (2) what they communicate.
Whereas a Toy Implementation interacts only via standard input and output,

160

5

CHAPTER 5. TEST EXECUTION ENGINE

CPE

udp0 udp1 udp2

cf0

underlying UDP service

testing tool

Figure 5.4: Test architecture for conference protocol CPE. The CPE has two
IAPs: cf0 and udp0 . The testing tool interacts directly with the CPE at PCO
(IAP) cf0 and via the UDP service at PCOs udp1 and udp2 . The UDP service
forms the test context.

a CPE communicates both via standard input and output, and via UDP. And,
where a Toy Implementation communicates using model labels, a CPE com-
municates via messages with a specific encoding. As a consequence, the CPE
Adapter contains, in addition to functionality to interact on a CPE’s standard
input and output, also functionality to interact via UDP, functionality to map
between encoded messages and model labels, and functionality to pass encoded
messages to the right interaction handling (sub-)component.

We now first give an overview of the functionality of the CPE, then we
describe how we tested CPE instances, after which we describe the Adapter.

The IUT: a Conference Protocol Entity

Conference protocol service The conference protocol allows conference
users to join a named conference, exchange messages with conference partners,
and leave the conference they are in. It uses UDP[Pos80] as underlying service.
A user can participate in at most one conference at a time. When a CPE in-
stance is started, it is given the set of potential conference partners, as a set of
UDP addresses (internet host name or IP address, together with a UDP port
number). This set is then “frozen” during the CPE run.

Interfaces The CPE has two interfaces with its environment, indicated as cf0
and udp0 in Figure 5.4. At interface cf0 it interacts with its user, and at udp0 it
interacts with the underlying UDP service. The CPEs use the underlying UDP
service to communicate among each other to provide the conference service.

Messages At cf0 four types of user messages are exchanged (join, leave,
datareq and dataind), and at udp0 four types of UDP messages are exchanged
(join, leave, answer, data). These messages contain as parameters user names,
conference names, and user message data, where the user and conference names
consist of a 10-character string, and data messages of up to 256 octets. For
details about these messages, and their encoding, we refer to [Feea, Feeb]; the

5.1. ADAPTER EXAMPLES

5

161

format of the user messages exchanged at cf0 is very similar to the UDP mes-
sages.

Testing the Conference Protocol Entities

For all our CPE testing we used the same architecture. We tested with models in
multiple modelling languages; here we mention LOTOS and Promela. Because
the labels of the LOTOS model differ from those of the Promela model, we
needed (at least conceptually) distinct—though very similar—per-modelling-
language Adapter instances.

IUT instances We tested a “family” of 28 CPE implementations. The family
consists of one assumed-to-be-correct implementation, and 27 mutants that have
been derived from the correct one by introducing (known) errors. All CPE
implementations can be tested with the same Adapter instance.

Test architecture The test architecture is depicted in Figure 5.4. We let
the testing tool play the role of the user (interacting at cf0), and of two peer
CPEs (interacting at udp1 and udp2). The testing tool interacts directly with
the CPE at cf0 (the CPE’s standard input and output) and via the underlying
UDP service at udp1 and udp2 . We chose to test via the underlying UDP
service, because that was the easiest way to interact at interface udp0 . (To
directly interact with the CPE at that interface, it would have been necessary
to either change the CPE to directly provide access, or to replace the UDP
networking library that the CPE uses by one that provides direct access. Neither
of these options looked particularly inviting.) In principle, the UDP service is
unreliable, but we assumed that, when using it over the loopback interface (i.e.
the UDP packets are only moved around within the same machine, without
actually travelling over the network), it will perform in a reliable way—just as
we always assume that the test context behaves correctly. Our experimental
results did not give us reason to regret this assumption—otherwise, we could
have gotten inappropriate fail verdicts, caused, not by errors in an IUT, but
just by unreliability of the UDP connection; i.e., we could have gotten unsound
test results.

Models We tested the CPE implementations using models in LOTOS and
Promela. The test architecture is reflected in the model. The models describe a
CPE as a service that continuously processes messages, one message at a time.
For each message that it processes (received from user or from underlying UDP
service), it updates its internal state, and sends out any corresponding responses
(to the user, and/or to the underlying UDP service).

In the LOTOS model we modelled also the test context, as FIFO queues,
to represent the message reordering that the queue context may induce. For
example, two messages, sent from udp0 to udp1 and udp2 at the same moment
(in response to the same stimulus), may arrive in any order. In the Promela
model we explicitly modelled that messages sent by the IUT together (at the
same time, in response to the same stimulus) may be observed in any order.

162

5

CHAPTER 5. TEST EXECUTION ENGINE

pipe
handler

udp
handler

udp
handler

stimulus
handler

observation
handler

coding
maps

Manager
interface
handler

to Manager

udp1 udp2cf0

Figure 5.5: Overview of conference protocol adapter

In the model we made one simplification: for all messages, for each message
parameter, we used an enumeration with only a few (three or four) different
values. We made this simplification for two reasons. Firstly, because we con-
sidered it (practically) unfeasible to enumerate all possible data value combina-
tions. For example, without this simplification, when a join user message would
be enabled, the list of enabled stimuli would contain a label for each possible
combination of a 10-character user name and a 10-character conference name.
Secondly, because we considered it unnecessary to enumerate all possible data
value combinations, because our focus was on testing the control paths of the
CPE, for which a limited number of distinct data values suffices (for example,
to check whether the CPE correctly maintains its set of conference partners).

Below we describe how we map, in the Adapter, between these enumeration
values and concrete message parameter values. Choosing the concrete message
parameter values amounts to test data value selection.

The Adapter instances

Also the two CPE Adapter instances (for LOTOS resp. Promela) must perform
the 5 functionalities that we mentioned in the discussion of the Toy Implement-
ation Adapter. Both Adapter instances have the same structure; they only have
small differences in the encoding and decoding (mapping) components. In the
description below, we first describe the overall structure of the Adapter, and
then discuss how stimuli are applied and responses are handled.

Adapter structure The main structure of the Adapter is shown in Figure 5.5.
It consists of a handler for the requests of the Manager, a stimulus handler, an

5.1. ADAPTER EXAMPLES

5

163

user
message
encoder

udp
message
encoder

stimulus
handler
control

pco
selector

stimulus handler

constant
map

address
map

coding maps

to pco handlers

to Manager interface handler

Figure 5.6: Stimulus handler of conference protocol adapter, with coding maps.

observation handler, and, for each PCO, a PCO-type specific interaction handler
(i.e. for UDP and for pipes).

Ad 1: Interact with the IUT Each UDP handler binds a socket and lets the
operating system choose a UDP port number for it. This gives it its UDP address
(ip address and UDP port number). Each UDP handler concurrently waits
for stimulus application requests from the stimulus handler, and for incoming
datagrams on its socket. When a stimulus has to be applied, the UDP handler
is given an octet string, together with the UDP address to send it to. As soon
as a datagram arrives, it forwards the received octet-string, together with the
UDP address of the sender, to the observation handler.

The pipe handler starts the CPE program and connects pipes to the standard
input and standard output of the program. Before starting the CPE, it updates
the potential conference partner configuration file for the CPE with the UDP
addresses of the UDP interaction handlers. It concurrently waits for stimulus
application requests from the stimulus handler, and for data that appears on
the pipe connected to the standard output of the CPE. When a stimulus has to
be applied, the pipe handler is given an octet-string to write on the pipe that
is connected to the standard input of the CPE. As soon as data from the CPE
is obtained, it is forwarded to the observation handler.

Ad 2: Mapping between labels and interactions We separately discuss
this for stimuli and for observations.

2A: Stimulus handler When a stimulus has to be applied, the stimulus
handler (see Fig. 5.6) is given a model label to apply.

First it obtains a concrete representation of the abstract stimulus that it can
pass to the interaction handler, to pass it to the CPE. It obtains this repres-
entation from one of its two encoders. One encoder is used for the messages

164

5

CHAPTER 5. TEST EXECUTION ENGINE

user
message
decoder

udp
message
decoder

observation
handler
control

q
u
e
u
e

q
u
e
u
e

q
u
e
u
e

timer

observation handler

constant
map

address
map

coding maps

from pco handlers

to Manager interface handler

Figure 5.7: Observation handler of conference protocol adapter, with coding
maps.

that are passed at cf0 , the other for the UDP messages that are passed at udp1

and udp2 . The encoder for UDP messages returns a tuple: the message to be
sent, together with the remote UDP address. The stimulus handler chooses an
encoder based on the structure of the abstract action (label from the model).
The abstract actions are chosen such that their prefix (the gate in LOTOS ter-
minology, or channel in Promela) indicates the interaction mechanism that is
to be used.

Both encoders consult a translation map that maps between abstract label
constants for user names and conference names and concrete message paramet-
ers, as mentioned above. Moreover, the encoder for UDP messages consults a
translation map that maps between the UDP addresses that are used during
the test run and the abstract representations that are used in the model. Part
of this map is dynamically constructed for each different test run, because the
UDP addresses for udp1 and udp2 are chosen by operating system at the start
of a test run, i.e. the Adapter is stateful.

The stimulus handler looks at the label to determine the PCO at which the
stimulus has to be applied. For the stimuli that are to be passed over cf0 there
is only one possibility; for the stimuli that are to be sent over UDP it looks at
the abstract representations of the UDP addresses in the labels.

Finally, it passes the encoded stimulus to the interaction handler for the
PCO at which the stimulus has to be applied.

2B: Observation handler The observation handler (see Fig. 5.7) has a queue
for each of the interaction handlers in which pending observations are kept until

5.1. ADAPTER EXAMPLES

5

165

they are processed2. When a request for an observation is received the first
observation of one of the queues that has pending observations is decoded and
returned. If no observation is pending a timer is set. When no observation has
been obtained when the timer expires a quiescence observation is synthesised.

The decoder associates a decoding function with each PCO. The decoding
functions consult the same maps for data constants and addresses as the encod-
ing functions do.

Keeping separate queues for pending observations creates the possibility that
they get reordered. In this case that was not as much an issue as it may seem on
first sight, because similar reordering of observations may also take place due
to the underlying UDP service and the pipe between CPE and Adapter, and
therefore the models that were used for test derivation took the possibility of
reordering into account, as mentioned above in the discussion of the models.

Ad 3: Observing quiescence As mentioned above, quiescence is observed
by the observation handler, when the observation queues are empty, and the
timer expires before any item is added to a queue.

Ad 4: Providing the Adapter interface The Manager interface handler
implements the Adapter interface functions.

Ad 5: Synchronisation When handling tryStim, the Manager interface hand-
ler asks the observation handler for an observation, and instructs it to only
return a pending one, without setting the timer, i.e. to not wait for a “fresh”
observation when there is not one pending. If an observation is returned, the
Manager interface handler returns it to the Manager (and discards the stimulus);
otherwise it applies the stimulus, and acknowledges this to the Manager.

Adapter variants due to multiple modelling formalisms We used mod-
els in two different modelling languages in the case study, LOTOS and Promela.
The models in the two languages were made by different persons, such that each
model had its own syntactical representation for a particular interaction with
the system under test. This led to separate sets of coding functions, to com-
pensate for the different structure of the labels, and to separate mapping tables,
to compensate for the different model representations for the interaction data
value constants.

Bibliographical note The original Adapter instances for the conference pro-
tocol predate the change that made test cases input-enabled. The Adapter
description here extends on these Adapter instances, to allow input-enabled test
cases.

2 The separate queues were not there by design, but as an artefact of the chosen imple-
mentation for the connection between the interaction handlers and the other components of
the Adapter. We prefer a single queue, for how it orders observations.

166

5

CHAPTER 5. TEST EXECUTION ENGINE

5.1.3 TCP Adapter for a Software Bus Server

We now discuss the Adapter for testing a software bus server (SBS). In Chapter 7
we discuss the design, implementation, and testing of the SBS in detail. As we
discuss there, we actually created and tested two SBS implementations, i1 and
i2, each using a dedicated Adapter a1 resp. a2. Here we limit the discussion to
implementation i2 and Adapter a2; here we will typically refer to them as “the
IUT” resp. “the Adapter”.

Below we first discuss the IUT, then we discuss how we tested it, after which
we discuss the Adapter.

The IUT: a Software Bus Server

The software bus server (SBS) allows clients to communicate with each other
without having to create connections between each pair of clients that wants
to communicate: each client only has a single connection, to the server. The
software bus uses TCP [Pos81] as underlying service.

Like the conference protocol entity (CPE) that we discussed in the previous
section, the SBS is tested via the underlying service. However, where for the
CPE all “interaction infrastructure” (connection to standard input and output
of the IUT, creation of UDP listening sockets) was set up at the start of a
test run, and did not change during the test run, for the SBS the interaction
infrastructure is dynamically updated during a test run. With the SBS, a client
may connect, exchange messages, and then disconnect. And then connect again,
etc.

This difference also shows in the respective models: whereas the model for
the CPE only contains actions (LTS labels) that represent message exchange
between CPE and its environment, the model for the SBS also contains actions
that represent connect and disconnect.

Other functionality of the SBS includes a notification service, and a service-
announcement service. The notification service allows a client to ask the server
to tell it (by sending it a message) about given activity of other clients, like
connecting and disconnecting. The service-announcement service allows a client
to tell the server what services it (the client) can perform. The server forwards
such announcement to other connected clients. In the messages exchanged by
server and clients, each connected client is identified by an ID (identification
number). A client gets such ID from the server, when it has connected. In
Chapter 7 we discuss the software bus server, and the services that it provides,
in more detail.

Testing the Software Bus Server

Implementation i2 implements all SBS behaviour. However, because with i2 we
were only interested in testing the interaction behaviour, and estimating testing
quality, by measuring test coverage, we did not implement the message encoding
and decoding, but let i2 communicate using model labels.

5.1. ADAPTER EXAMPLES

5

167

SBS

tcp0 tcp1 tcp2 tcp3

in out err

underlying TCP service

testing tool

Figure 5.8: Test architecture for software bus server (SBS). The testing tool
interacts with the SBS through the underlying TCP service at PCOs tcp1 , tcp2

and tcp3 . The testing tool observes the standard output of the SBS at out ,
because there the SBS announces its TCP address (i.e. the address of tcp0).
The TCP service forms the test context.

Test architecture We let the testing tool play the role of up-to 3 clients. It
interacts with the SBS implementation through the underlying TCP service, as
depicted in Figure 5.8.

The model The model (in mCRL2) describes the behaviour of the SBS as
a single-threaded server that, forever, accepts a message, and processes it by
(a) updating the internal server state, and (b) (when appropriate) sending out
one or more responses.

The model contains explicit actions to represent that a client connects to, or
disconnects from, the server: ConnectRequest, resp. DisconnectRequest(id). In
response to a ConnectRequest which is received from a client, the IUT will send
a ConnectAcknowledge(id), where the id is the connection identification number
(ID) chosen by the IUT. The ID is just a number (initial value 0) that the IUT
increments for each received ConnectRequest. To close a connection immediately
after creation, i.e. before an ConnectAcknowledge(id) is received, a client sends a
DisconnectRequest(−1) (because the ID is not yet known). To close a connection
for which the ID is known (say j), a client sends DisconnectRequest(j).

Like in the conference protocol model, for message parameters of a large
domain, we represent services using an enumerated type with just a few (2)
values.

The Adapter

We discuss the Adapter for i2.

Ad 1: Interact with IUT We separately discuss Adapter and IUT startup
(1A), connection handling (1B), and the actual interaction (1C).

1A: Startup Because this Adapter has to interact with the IUT over TCP, it
needs to know the TCP address at which the IUT listens for connection requests.

168

5

CHAPTER 5. TEST EXECUTION ENGINE

tcp
handler

tcp
handler

tcp
handler

in
handler

out
handler

err
handler

stimulus
handler

queue

connection
handler

Manager
interface
handler

timer

to Manager

tcp1 tcp2 tcp3 in out err

Figure 5.9: Software bus adapter

There are numerous ways to arrange the start up of Adapter and IUT, in such
a way that this is achieved. Because IUT i2 was created especially for testing,
we could implement our own choice, which is as follows.

The Adapter starts the IUT, such that it can read the IUT’s standard output
and can write to the IUT’s standard input, and then it waits for the first line
of output from the IUT. Upon startup, the IUT starts a TCP listener, and lets
the operating system decide on the TCP address (port number). If we choose
a port number ourselves, we risk that it is already occupied. Then, it writes
the resulting TCP address to its standard output, which the Adapter reads, and
stores for subsequent use. Subsequent IUT output on its standard output and
standard error is consumed, and logged for diagnostic purposes.

The Adapter will not write to the IUT’s standard input, but at the end of a
test run, it will close the IUT’s standard input, which tells the IUT to terminate.

1B: Connection handling The Adapter dynamically opens and closes TCP
connections to the IUT, in response to ConnectRequest and DisconnectRequest
stimuli. When the Adapter opens a TCP connection, it starts a reader thread
that reads messages written by the IUT and adds them to a shared observation
queue. This queue has the same role as the queue in the Adapter for the toy
implementation; but it lacks the built-in poll-until-a-timer-expires functionality.

The Adapter maintains a mapping between connection identification IDs, as
used in the model labels and the corresponding connection handles that are used
to write TCP messages. After opening a new connection, the Adapter gets to
know the ID in the ConnectAcknowledge message which the SBS sends as soon
as the connection has been created.

5.1. ADAPTER EXAMPLES

5

169

1C: Interaction The actual interaction between Adapter and SUT takes
place in the TCP handler components.

For observations, interaction takes place in the reader threads that the Ad-
apter starts for each connection that it opens. Two kinds of observations are
possible. Either a message (model label) is obtained, or the Adapter observes
that the IUT has closed the connection. Messages that are obtained, are ad-
ded to the shared queue. When connection closure is observed, the connection
handler component is informed, such that it can update its ID-to-connection
mapping.

For all stimuli, except ConnectRequest and DisconnectRequest, the Adapter
uses the ID in the label to look up the TCP connection handle, which it then
uses to write the label onto the right TCP connection.

Ad 2: Mapping between labels and interactions For each kind of stim-
ulus label, the Adapter has a function to handle the stimulus, and for each kind
of observation, a function to handle the observation. The stimulus handling
functions are invoked when a stimulus has to be applied; The observation hand-
ling functions are invoked to process an enqueued observation. Some of the
stimulus handling functions open or close TCP connections; the other ones send
a message (the label, in this case) over the connection that is indicated by the
ID in the label. The observation handling function for the ConnectAcknowledge
extracts the ID from the received label and updates the ID–client-handle map-
ping. The other observation handling functions are essentially a no-op: because
the SBS i2 implementation communicates using labels, no decoding is necessary.

Ad 3: Observing quiescence The Adapter is configured with a quiescence
timeout value. During a test run, the Adapter remembers the time at which the
last interaction with the SBS took place. If, when an observation is requested
by the Manager, the observation queue is empty, the Adapter computes how
long it must wait before it can report quiescence. If it does not have to wait
(sufficient time passed since the last interaction with the SBS), an observation
of quiescence is reported to the Manager immediately. Otherwise, a timer is
started, and then, if an observation is added to the queue before the timer
expires, the observation is reported to the Manager. Otherwise, an observation
of quiescence is reported to the Manager.

Ad 4: Providing the Adapter interface The Adapter interface handler
implements the Adapter interface functions.

Ad 5: Synchronisation Handling of tryStim is done in the same way as
discussed in Section 5.1.2 for the CPE Adapter: The Adapter first checks for
a pending observation, and, if one is obtained, returns the observation and
discards the stimulus. Otherwise, the Adapter applies the stimulus by writing it
to the right TCP connection handle. Once the Adapter has written the stimulus
the stimulus is out of its control, and it reports that the stimulus has been
applied.

170

5

CHAPTER 5. TEST EXECUTION ENGINE

5.2 Adapter Design

We now give a functional decomposition of the Adapter. We start with a high-
level overview of the overall architecture (Section 5.2.1) which we subsequently
refine in several steps.

In the high-level overview and the initial decomposition (Section 5.2.2) we
implicitly assume a single point of interaction with the system under test (single
PCO), and we ignore the concept of implementation access point (IAP) (i.e.,
single PCO and IAP coincide). We generalise this when we refine the decom-
position (Section 5.2.3) and decompose the SUT into an IUT and a test context,
like we have seen in the conference protocol example. In our last decomposi-
tion step (Section 5.2.4) we discuss support for dynamic changing interaction
infrastructure, like we have seen in the software bus example.

5.2.1 High-level architecture overview

Specification
Lδ

Derivation-
Engine

abstract
labels

Manager Adapter

tryStim(a)
getObs()

〈i, a〉
〈u, x〉

(a ∈ LI , x ∈ LδU)

SUT

concrete
stimuli

responses

verdict

Figure 5.10: Figure 5.1 refined to show the Adapter interface.

In Figure 5.10 we depict the Adapter in our high-level architecture.

The Adapter interacts with the system under test by applying stimuli and
obtaining observations. These stimuli and observations take place using the
means of interaction that a given system under test offers to its environment.
We refer to these as concrete interactions, and refer to data items exchanged in
such interaction as concrete data. In the figure the stimuli travel from Adapter
to system under test, and observations travel in the opposite direction, as a
suggestion that they can be messages that are sent asynchronously: the Adapter
(triggered by the Manager to do so) takes the initiative for the interactions
that we refer to as stimuli, and the system under test takes the initiative for
the interactions to which we refer as observations. For now we do not make
additional assumptions about the interaction between Adapter and system under
test.

The Adapter interacts with the Manager component using the abstract rep-
resentations of the model from which the tests are derived: the labels in LI (for
stimuli) and in LδU (for observations).

In the introduction to this chapter we listed common Adapter functionalities.
We now refine the decomposition to see how this functionalities can be realised.

5.2. ADAPTER DESIGN

5

171

5.2.2 Initial decomposition step

stimulus
processing

observation
processing

decoupler

Adapter

SUT

concrete
stimuli

concrete
observations

a ∈ LI

ack

fetch

x ∈ LδU

Manager

tryStim(a)
getObs()

〈i, a〉
〈u, x〉

(a ∈ LI , x ∈ LδU)

Figure 5.11: Initial decomposition of Adapter.

In Figure 5.11 we decomposed the Adapter into three components: (1) de-
coupler, (2) stimulus processing, and (3) observation processing. For now we just
treat them as functional blocks, where decoupler and observation processing
typically “run” concurrently.

The decoupler component has the same role as the Manager interface handler
has in the examples (Figures 5.3, 5.5, 5.9): it provides the mapping between the
synchronous interface between Adapter and Manager (where the Manager takes
the initiative), and the asynchronous interface with the Adapter, where the
Adapter takes the initiative to apply stimuli, but the SUT takes the initiative
to produce responses. The decoupler deals with the case where a response,
produced by the SUT, interferes with application of a stimulus.

The stimulus processing component is responsible for performing interactions
that are initiated by the Adapter (i.e. stimuli) with the SUT. The decoupler takes
the initiative (triggered by a tryStim request from the Manager) to request the
stimulus processing component to apply a stimulus, and the stimulus processing
component acknowledges application of a stimulus back to the decoupler.

The observation processing component is responsible for performing (or ob-
serving) interactions that are initiated by the SUT. The decoupler takes the
initiative (triggered by a tryStim or getObs request from the Manager) to (try
to) fetch observations from the observation processing component.

5.2.3 Refined decomposition

We now decompose the SUT into IUT and test context, refine the connection
between Adapter and SUT, and refine the Adapter decomposition by decom-
posing the stimulus processing and observation processing components, thereby
exposing the Adapter state, as depicted in Figure 5.12. We first discuss the SUT
decomposition, and the refinement of the connection between Adapter and SUT,
and then we discuss the refinement of the Adapter components.

SUT decomposition and Adapter–SUT connection refinement

We now decompose the SUT in a IUT and a test context, such that the Adapter
may have to interact with the IUT via one or more underlying services that
are part of the test context, and we allow both Adapter and IUT to interact

172

5

CHAPTER 5. TEST EXECUTION ENGINE

encoding

data map

decoding

d
ec

ou
p
le

r

sa

sa

...

obs

obs

...

stimulus processing

observation processing

state

Adapter

C
om

m
u
n
ic

a
ti

o
n

S
er

v
ic

e

IUT

a ∈ LI

ack

fetch

x ∈ LδU

Manager

tryStim(a)
getObs()

〈i, a〉
〈u, x〉

︸ ︷︷ ︸
data

handling
layer

︸ ︷︷ ︸
interaction
handling

layer

︸ ︷︷ ︸
test

context︸ ︷︷ ︸
SUT

Figure 5.12: Refined decomposition of Adapter, introducing encoding and de-
coding components, and stimulus application (sa) and observer (obs) compon-
ents. Back-arrows from sa components to encoding component are to ack that
stimulus has been applied. (Note that, due to our choice for the placement
of the sa and obs components, any PCO that is used both for stimuli and for
observations, appears twice.) (a ∈ LI , x ∈ LδU)

via multiple interaction points (PCOs resp. IAPs). In Fig. 5.12, as an example,
the test context consists of a single underlying “Communication Service”. In
general, the Adapter may be able to access the IUT directly (in that case PCOs
and IAPs coincide), and it may have to use one or more underlying services—in
the conference protocol example of Section 5.1.2 we saw direct interaction at
PCO/IAP cf0 , and the use of the underlying UDP service, at PCOs udp1 and
udp2 to interact at IAP udp0 .

The underlying service may connect one PCO to multiple IAPs, and one IAP
to multiple PCOs—also this we have seen in the conference protocol example.
In such case, the underlying service must be provided (in addition to the data or
messages that it must deliver) with address information, to be able to deliver at
the right interface, and to be able to indicate to the recipient, who the originator
was.

In Fig. 5.12 we do not show the underlying service address information (even
though we do discuss it below); we do show it in Fig. 5.13 which we discuss in
Section 5.2.4.

Adapter Components Decomposition

Inspiration for the decomposition of the stimulus processing and observation
processing components comes from the two main Adapter functions: interacting

5.2. ADAPTER DESIGN

5

173

with the SUT, and mapping between these interactions and their representation
as model labels. We decompose both components in a data handling and an
interaction handling part. Together, the data handling parts form the data
handling layer, and the interaction handling parts form the interaction handling
layer.

The data handling layer consists of an encoding component—for stimulus
processing, and a decoding component—for observation processing, together
with a shared data map. The data map, which is part of the Adapter state, is
used by both coding components. It contains mappings between abstract label
values and concrete interaction values.

The interaction handling layer contains stimulus application (sa) compon-
ents for stimulus processing, and observer (obs) components for observation
processing. For each PCO at which the Adapter applies stimuli or obtains ob-
servations, the Adapter has an sa resp. an obs component.

In this decomposition we do not show the queue and timer components,
which we have shown in the Adapter examples; we show these components in
the detailed decomposition in Section 5.2.4.

Stimulus processing For stimuli, the encoding component maps model la-
bels onto tuples 〈sa, data, addr〉 that contain the following elements:

sa an identification of the sa at which the interaction will take place;
data the concrete interaction data that has to be passed to the SUT;
addr optional addressing information for the underlying communication ser-

vice, to identify an IAP, or to provide address information, that is not
already associated with the sa, for a PCO.

Thus, after encoding, the data and addr elements are passed to the sa indicated
by the sa element, to perform the actual interaction. When the interaction has
taken place, an acknowledgement is given to the decoupler component, which
then informs the Manager that the stimulus has been applied.

Observation processing For each interaction initiated by the SUT, the ob-
servation handler that handles the interaction creates a similar tuple 〈obs, data, addr〉
that contains

obs an identification of the observer component at which the interaction took
place;

data the concrete interaction data that was passed by the SUT;
addr optional addressing information from the underlying communication ser-

vice, that identifies the IAP, or that formed (part of) the identification of
the PCO, and was not already associated with the obs.

The decoding component maps such tuples onto model labels. At this stage in
the decomposition, we leave open what is queued: whether the observations, or
the labels that result from decoding them.

5.2.4 Detailed decomposition

In this last decomposition step we
1. add a shared observation queue,

174

5

CHAPTER 5. TEST EXECUTION ENGINE

encoding

data
address

map

decoding

d
ec

ou
p

le
r

queue

timer

sa

sa

...

obs

obs

...
d, a

d, a

stimulus processing

observation processing

ih
state

Adapter

C
om

m
u

n
ic

at
io

n
S

er
v
ic

e

IUT

b ∈ LI

〈sai, d, a〉

〈ack, t〉
d, a, t
〈ack, t〉
d, a, t

〈obsi, d, a〉

x

poll(tδ)

〈〈obsi, d, a〉, t〉/⊥

M
an

ag
er

tryStim(b)
getObs()

〈i, b〉
〈u, x〉

config
data, addr

config
tδ, data, addr

︸ ︷︷ ︸
data

handling
layer

︸ ︷︷ ︸
interaction
handling

layer

︸ ︷︷ ︸
test

context︸ ︷︷ ︸
SUT

Figure 5.13: Detailed decomposition of Adapter, showing queue and timer com-
ponents, and interaction handler (ih) that can create and delete sa and obs com-
ponents, as it dynamically updates the interaction infrastructure. Also shown
are underlying service data (d) and address information (a), and (optional)
timestamps t associated with interactions. The “fetch” observation processing
function of Fig. 5.12 has been replaced by “poll”. (Note that, due to our choice
for the placement of the sa and obs components, any PCO that is used both for
stimuli and for observations, appears twice.) (b ∈ LI , x ∈ LδU)

5.2. ADAPTER DESIGN

5

175

2. add a component that takes care of the dynamic reconfiguration of the
interaction infrastructure, and

3. refine the interaction between the decoupler component and the stimulus-
and observation processing components.

Ad 1: Shared observation queue In this decomposition we added the
shared observation queue that we used in the first Adapter example (discussed in
Section 5.1.1). The shared observation queue offers the same “poll” functionality
as in that example: with the “poll” request, the decoupler gives a time-out value
(tδ in Fig. 5.13). If the queue contains one or more pending observations, or
receives an observation within the time-out period, the earliest observation is
returned; otherwise, special value ⊥ is returned. A time-out value of 0 allows
checking for pending observations.

Ad 2: Interaction handler component The interaction handler compon-
ent (“ih” in Fig. 5.13) is there to adjust the interaction infrastructure in response
to stimuli obtained from the Manager, and in response to certain observations
(e.g., detection that a connection is closed by the SUT). It does this by inter-
acting with existing sa and obs components in the Adapter (to reconfigure or
delete them), and by creating new sa and obs instances.

Ad 3: Refined decoupler interaction In this decomposition the decoupler
is the central component in the Adapter: it does not only interact with the
Manager, but it also provides the link between the data handling components
and the interaction handling ones. This allows the decoupler to check whether
an observation has arrived while a stimulus was being encoded.

To handle a tryStim(b) request, the decoupler first checks whether the queue
has a pending observation—if so, the pending observation is handed over to
the decoding component, and the decoding result is returned to the Manager.
Otherwise, the decoupler lets the encoding component encode b. This results
either in a stimulus tuple 〈sai, data, addr〉, or in interaction infrastructure re-
ordering data. Then, the decoupler again checks for a pending observation—if
one is found, it is, after decoding, returned to the Manager. Otherwise, if the
encoding result was a stimulus tuple, the stimulus data and (optional) address
information are passed to right sa component; if the encoding result consists of
interaction infrastructure reordering data, it is passed to the ih component.

To handle a getObs request, the decoupler polls the queue for an observation,
using a time-out value that is computed using the configured time-out value
tδ, the timestamp of the last interaction with the SUT (the t elements in the
results obtained from the sa and obs components), and the current time3. If an
observation is obtained from the queue, it is decoded, and the decoding result
is passed to the Manager. If ⊥ is obtained from the queue, δ is passed to the
Manager.

3 We assume that the decoupler and the sa and obs components have access to a shared
clock, which allows the sa and obs components to timestamp their interactions with the SUT,
and which allows the decoupler to compute how much time has passed since the last such
interaction. If no clock is present, the Adapter uses the configured time-out value tδ.

176

5

CHAPTER 5. TEST EXECUTION ENGINE

This concludes our discussion of the Adapter design.

5.3 Summary and Related Work

In this chapter we described three Adapter instances, and an Adapter design that
generalises upon these and other Adapter instances that we have worked on.

Below we mention related work.

TTCN-3 test system reference architecture The TTCN-3 [WDT+11,
TTC] test system reference architecture (TSRA) contains functionality that
serves the same purpose as our Adapter. The central element in the TTCN-
3 TSRA is the TTCN-3 Executable, which results from compiling a suite of
TTCN-3 tests. The TTCN-3 Executable corresponds, more or less, to the com-
bination of test case, partition information and DerivationEngine in Fig. 4.10.

The TTCN-3 TSRA specifies two standardised interfaces between the TTCN-
3 Executable and the other components in the TTCN-3 TSRA: the TTCN-3
Control Interface (TCI) and the TTCN-3 Runtime Interface (TRI).

The TCI interface connects the TTCN-3 Executable with a Test Manage-
ment component, a Test Logging component, an Encoding and Decoding com-
ponent, and a Component Handling component. The role of the Test Man-
agement component corresponds, more or less, to the role of our Manager in
Fig. 4.10. In our design we do not have a separate component that corresponds
to the TTCN-3 TSRA Test Logging component; our torx-explorer and torx-
adapter interfaces contain support for logging, and the JTorX tool contains a
logging module. The Encoding and Decoding component provides functional-
ity that we placed in the data handling layer in our design. The Component
Handling component provides functionality related to the use of parallel test
components; our design has no such component: in our design, all interaction
with the SUT takes place via functionality in the interaction handling layer.

The TRI interface connects the TTCN-3 Executable with a System Ad-
apter and a Platform Adapter. The System Adapter contains functionality that
corresponds to functionality in our interaction handling layer. The Platform
Adapter provides the TTCN-3 system with a single notion of time—this, to a
certain extent, corresponds to our timer component—and it contains the im-
plementation of external TTCN-3 functions—we do not have a corresponding
concept in our design.

A clear difference between the TTCN-3 setting and our LTS-based one, is
that in the TTCN-3 setting much more information is readily available, like
the interaction operation (message or procedure based), the interaction points,
the types of the values exchanged in the interactions, etc.—in our setting this
information is “hidden” in LTS labels.

Data abstraction Our encoding and decoding components use data and ad-
dress mappings, which are part of the Adapter state. The concept of mappings
that have state is taken to a next level in [AHK+12], which formalises a stateful
Mapper component that maps between concrete and abstract values.

5.3. SUMMARY AND RELATED WORK

5

177

Behaviour abstraction Orthogonal to the mapping between concrete and
abstract values lies the topic of action refinement, which studies the map-
ping between high-level abstract actions and the corresponding concrete be-
haviours [van11].

6

Chapter 6

Symbolic Extensions

In this chapter we discuss how we support requirement 6 of our design con-
straints: the tool should support very large and infinite state space models.

Although the approach that we discussed so far is based on the formalism
of labelled transition systems (LTSs), in practice, when using our approach,
models are typically not directly written directly as LTSs, but in a higher-level
language, and a language-specific Explorer component provides the LTS “view”
on a given model. As we have seen in Chapter 4, in this way we allow the
use of modelling languages like mCRL2, Promela, and LOTOS. In languages
like these, we can use variables to describe the system state, guards to specify
whether certain behaviour is or is not enabled, and variables and expressions to
describe the interaction between the system and its environment.

Although the expressivity of such languages enables construction of mod-
els of large systems, little of this expressivity remains in the LTS view on the
model, as offered by the LTS-based Explorer components. This holds in par-
ticular for the description of interactions with the system environment. In a
higher-level language model, we can describe concisely that in such interac-
tions, any value of a given set of values may be exchanged. For example, we can
describe an interaction as action in(x), with variable x a natural number, and
a constraint (or guard) 0≤ x< 5. Because LTSs lack the concept of variables,
however, an LTS has to contain a separate label (on a separate transition) for
each possible combination of values of the variables in the interaction descrip-
tion. Thus, to represent above interaction description, we need five LTS labels:
in(0), in(1), . . . , in(4). With a small change to the constraint: 0≤ x < 500, the
same interaction description maps onto 500 LTS labels, and with constraint
x≥5, the LTS needs to contain an infinite number of labels!

Limitations of our LTS-based approach This “blow-up”, which results
from the construction of separate labels for each combination of possible values,
causes two problems. Firstly, it may result in an LTS that contains states
which have an infinite number of outgoing transitions—something that our LTS-
based approach for test derivation cannot handle. Secondly, even when the
LTS has a finite state space, there may be an “unbalance” in the number of

179

180

6

CHAPTER 6. SYMBOLIC EXTENSIONS

LTS labels necessary to represent different high-level interaction descriptions,
and this unbalance may affect our approach of random on-line testing. For
example, it may be the case that one high-level interaction description has a
single corresponding LTS label, while another high-level interaction description,
enabled together with the first one, has many corresponding LTS labels. During
random on-line testing, it is much less likely that the label that corresponds with
the former interaction description is chosen, than one that corresponds with
the latter interaction description. In this way, the control flow of the higher-
level model (two transitions to choose between) becomes obscured in the LTS
mapping (many transitions to choose between, of which only one corresponds
to one of the higher-level transitions, and all others to the other).

Symbolic Transition System We illustrate these problems, and our solu-
tion to them, using the Symbolic Transition System (STS) formalism of [FTW05,
FTW06] as higher-level model. The STS formalism is a relatively simple mod-
elling language, which nevertheless is rich enough to give rise to the above-
mentioned phenomena. Our solution itself is not limited to the use of STS as
higher-level modelling language, as we show at the end of this chapter, where we
discuss how we can use our solution for timed testing. Instead, the STS formal-
ism is just a convenient formalism to illustrate the problems and our solution.
We use the STS formalism here, because it is well-known in the context of
symbolic testing with ioco.

Our solution: Parameterised Transition Systems Our solution is to base
the Explorer interface not on the LTS formalism, but on a slightly more express-
ive one, which we call Parameterised Transition System (PTS). We designed
the PTS formalism for on-line testing from higher-level (i.e. symbolic, or timed)
models.

During on-line testing, for each test step, the DerivationEngine is requested to
compute the potential behaviour (the possible stimuli and expected responses)
using interface functions in and out, after which the actual behaviour (interaction
with the SUT) takes place, after which the test derivation state (the tester’s view
of where it “is” in the model) is updated using interface function next.

In the LTS-based approach, the potential behaviour is represented by the set
of enabled LTS transitions, and the actual behaviour (of a correct SUT) by a
subset of those transitions: namely, those transitions of which the label matches
the label that represents the interaction with the SUT.

In contrast, in the PTS-based approach, the potential behaviour and the ac-
tual behaviour are represented by different transitions. The potential behaviour
is represented by a set of enabled parameterised transitions. A parameterised
transition has a Parameterised label, which may contain variables and a con-
straint over them. The idea is that each higher-level interaction description can
be mapped onto a single PTS parameterised transition. Each destination state
of a parameterised transition t has zero or more outgoing instantiation trans-
itions (a.k.a. instantiations). Each instantiation i associates a value with each of
the parameters of the original incoming transition t. Thus, where the LTS map-
ping maps a higher-level interaction description d onto n different LTS labels,

6.1. SYMBOLIC TRANSITION SYSTEM

6

181

the PTS mapping maps d onto a single parameterised transition, together with
n different instantiations. Effectively, we thus delay enumerating the combina-
tions of possible values to the instantiation transitions. The actual behaviour
is represented by one or more combinations of an enabled parameterised trans-
ition t and a subsequent instantiation i: those t,i combinations correspond to
the LTS label of the actual behaviour when the values of i are substituted in
the label of t.

In this way, a finite number of PTS labels in the Explorer and Derivation-
Engine interfaces can represent potential behaviour that would take an infinite
number of LTS labels to represent. An important benefit of our solution is
that on the PTS-based Explorer interface we only expose that information we
want and need to expose. Just like we defined the LTS-based Explorer interface
in terms of opaque LTS states, without exposing the contents of those states,
we define the PTS-based Explorer interface in terms of opaque PTS states, and
only expose parameters in parameterised labels, without exposing the contents
of the PTS states—nor do we expose how the un-exposed PTS state information
is updated when a transition in the higher-level language model takes place.

Remainder of this chapter In Section 6.1 we describe the STS formalism.
In Section 6.2 we discuss two (running) examples that illustrate the two prob-
lems mentioned above. In Section 6.3 we present our solution: the parameterised
transition system (PTS). In Section 6.4 we show how we can derive a PTS from
an STS. In Section 6.5 we informally discuss the impact of using a PTS for
testing, on our architecture. In Section 6.6 we extend our architecture to cope
with PTSs. In Section 6.7 we sketch how we can use our PTS-based approach
for timed testing.

6.1 Symbolic Transition System

6.1.1 Preliminaries

The STS definition uses basic concepts from first order logic to deal with data,
for which we need to introduce additional notation. We combine the notation
from [Eer94, FTW06, vS09].

Functions We denote a function f from A onto B as f : A → B, where
dom(f) = A and cod(f) = B denote the domain resp. codomain of f . We
denote a partial function f from A onto B as f :A⇀B, where dom(f) (⊆ A)
contains those a ∈ A for which f is defined. For (partial) functions f :B⇀C
and g :A⇀B, we denote the composition of f and g as f ◦ g (which is defined
on x if g is defined on x and f is defined on g(x)). Given a function f from A
onto B, and A′ ⊆ A, we denote the restriction of f to A′→B as f

∣∣
A′ .

Sequence We use x to denote a sequence of x, i.e. (x1, . . . , xn). We use
|x| to denote the number of elements of a sequence: |(x1, . . . , xn)| =def n. We

182

6

CHAPTER 6. SYMBOLIC EXTENSIONS

sometimes treat a sequence (x1, . . . , xn) as the set {x1, . . . , xn} when the context
allows it.

Structure We assume a structure (Σ,M) with signature Σ and model M .
Here Σ = (Sorts,Ops) is a many-sorted signature with Sorts a non-empty set
of sorts, and Ops a set of function symbols (operations). Each o ∈ Ops has a
type ∈ Sortsn × Sorts, where n ∈ N is the arity of o. A corresponding model
M = ((Us)s∈Sorts , (fo)o∈Ops) is a many sorted algebra. It contains for each
sort s ∈ Sorts of Σ a non-empty set Us, which is called the universe of sort s,
and for each operation o ∈ Ops of Σ with o : s1×. . .×sn→ s an interpretation
fo :Us1×. . .×Usn→Us. We let U =

⊎
s∈Sorts Us.

We assume that Sorts contains a boolean sort bool, and that Ops contains
the usual boolean operations.

We assume a global universe of sorted variables Vars, and we use subsets
X,Y ⊆ Vars. We use Varss to denote the set of variables of sort s.

Terms Assuming a many-sorted signature Σ we use TΣ (= TΣ(∅)) to denote
the set of ground terms that can be constructed from Σ, and TΣ(X) to denote
the set of well-typed terms over a set of variables X.

We use T sΣ to denote the set of terms of sort s; for instance, the set of all
boolean expressions over X is denoted as T bool

Σ (X).
We use sort(t) to denote the sort of a term t ∈ TΣ(Vars). We use var(t) to

denote the set of variables that occur in a term t.
We assume that each element of U has a canonical term representation as a

term in normal form.

Term-mapping and substitution We refer to a partial function σ : X ⇀
TΣ(Y) as a term-mapping. The identity term-mapping id is defined as id(x) = x
for all x ∈ Vars. We use {x ← tx, y ← tx, . . .} to denote a term-mapping that
maps x onto tx, y onto ty, etc. We use σX to denote the restriction of σ that is
only to be applied on variables from X, i.e.

σX(x) =

{
σ(x) if x ∈ X
undefined otherwise

Given a term t ∈ T , we use t[σ] to denote the substitution in t of σ(x)
for every x ∈ var(t). We also use x← E to denote a particular substitution
where each variable xi must be replaced by the term Ei (and all variables not
in x are unaffected). We use dom(σ) to denote the set of variables that are
substituted (i.e. dom(x← E) =def x). We use terms(σ) to denote the terms
that are substituted for these variables (i.e. terms(x← E) =def E). To denote
the set of variables used in the images of σ we use var(σ) =def var(terms(σ)) .

Valuation A valuation is a function ϑ : Vars → U , with ϑ(〈x1, . . . , xn〉) =
〈ϑ(x1), . . . , ϑ(xn)〉 for a given tuple of variables 〈x1, . . . , xn〉 with xi ∈ Vars, 1 ≤
i ≤ n. Let ∗s denote a fixed arbitrary element of the set Us. A partial valuation

6.1. SYMBOLIC TRANSITION SYSTEM

6

183

is a partial function ϑX : Vars ⇀ U with dom(ϑX) = X; ϑX can be extended
to a total valuation as follows:

ϑ(x) =

{
ϑX(x) if x ∈ X
∗s ∈ Us if x ∈ Varss \X

Having two partial valuations ϑ, ς : Vars ⇀ U with dom(ϑ) ∩ dom(ς) = ∅, their
union (ϑ ∪ ς) ∈ Vars ⇀ U is defined as

(ϑ ∪ ς)(x) =

{
ϑ(x) if x ∈ dom(ϑ)

ς(x) if x ∈ dom(ς)

The extension of a valuation ϑ to terms is called a term-evaluation and denoted
ϑeval : TΣ(Vars)→ U .

The satisfaction of a boolean expression ϕ w.r.t. a given valuation ϑ is de-
noted ϑ |= ϕ; this is equivalent to ϑeval(ϕ) = true.

6.1.2 Syntax and semantics of Symbolic Transition Sys-
tem

The following definition of a Symbolic Transition System is based on [FTW06];
we changed notation to match the previous section, and made three other
changes as indicated in the bibliographic note below.

In the definition we use the concept of a gate; we assume a global universe
of gates Gates.

Definition 6.1.1
A Symbolic Transition System (STS) is a tuple S = 〈L, l0,VL, I,G,→〉, where

L is a set of locations,
l0 is the initial location,
VL : L → P(Vars) associates a set of location variables with every location;

we also use V =def

⋃
l∈L VL(l),

I ⊆ Vars is a set of interaction variables; V ∩ I = ∅, and Var =def V ∪ I.
G ⊆ Gates is the set of gates; constant τ 6∈ G denotes an unobservable gate;
Gτ abbreviates G ∪ {τ}. Every gate g ∈ Gτ has a type ∈ Sortsn, n ∈ N,
denoted as type(g), where we refer to n as the arity of the gate, denoted
arity(g). arity(τ) = 01. params(g) ∈ In yields a tuple of size arity(g) = n
of distinct interaction variables of type type(g).

→ is the switch relation, where each t ∈→ is a tuple 〈l, g, ϕ, ρ, l′〉 where
l ∈ L is the source location,
l′ ∈ L is the destination location,
g ∈ Gτ is a gate,
ϕ ∈ T bool

Σ (VL(l)∪ params(g)) is the switch restriction, which must hold
for the switch to be enabled, and

1 Also in [FTW06] arity(τ) = 0. We are aware that this imposes a limitation: for example,
full LOTOS [ISO89] cannot be expressed as STS; we leave that for future work.

184

6

CHAPTER 6. SYMBOLIC EXTENSIONS

ρ : VL(l′) → TΣ(VL(l) ∪ params(g)) is the update mapping, which as-
sociates new values with the location variables of the destination
location when the switch is traversed.

We use the following functions and vocabulary:

1. 〈S, ι〉 is an initialised STS S, where ι : VL(l0)→ U initialises all variables
associated with l0.

We write l g,ϕ,ρ−−−−→ l′ for 〈l, g, ϕ, ρ, l′〉 ∈→.

2

The interpretation of an STS is defined by defining a mapping onto an LTS.

Definition 6.1.2
Let S = 〈L, l0,VL, I,G,→〉 be an STS, and 〈S, ι〉 an initialised STS. Its in-
terpretation is defined as the LTS [[S]]ι = 〈(L × (V → U)), (l0, ι), A, T 〉 for all
ι ∈ (V → U), where

A =
⋃
g∈G({g} × U arity(g)) is the set of actions, and

T ⊆ (L× (V → U))× (A∪ {τ})× (L× (V → U)) is defined by the following
rule:

l g,ϕ,ρ−−−−→ l′ ς ∈ (params(g)→ U) ς is well-typed
ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(g,ς(params(g)))−−−−−−−−−−−→ (l′, ϑ′)

The semantics of an initialised STS 〈S, ι〉 is given by the LTS [[S]]ι.
2

In Section 6.2, below, we give two example STS models.

Bibliographical note The STS definition, and its interpretation, given as
Definition 6.1.1 resp. 6.1.2 are based on [FTW06]. Our definitions differs from
those in [FTW06] in the following aspects: (1) we use boolean expressions
as switch restriction, where [FTW06] allows first order formulas; (2) where we
associate a “local” set of location variables with each location, [FTW06] only
has a global set of location variables; (3) we renamed function type to params.

6.2 Motivating Examples

We now give two example STS models, one of a simple music player, and one of
a two-slot buffer. We use these models to illustrate the two problems that we
mentioned at the start of this chapter. The two-slot buffer LTS has states with
an infinite number of outgoing transitions, and the music player LTS has an
unbalance in the number of LTS transitions that are generated for the switches
of its STS model.

6.2. MOTIVATING EXAMPLES

6

185

i
∅

?init(n :nat)
{nsong := n}

s
{nsong}

?select(n :nat)
[n < nsong]
{cur := n}

si

{nsong , cur}
?play

pi

{nsong , cur}

!song(n :nat)
[n = cur]

?select(n :nat)
[n < nsong && n 6= cur]

{cur := n}

Figure 6.1: STS model of music player. With each state, its associated set of
state variables is shown. Switch restrictions appear enclosed between square
brackets “[” and “]”, and update mappings between braces “{’ and “}”. Switch
restrictions true and update mappings id are not shown.

6.2.1 Music Player

Imagine a music player with the following interface. After being initialised with
a number of songs, it presents a (finite, but possibly very long) list of these
songs, and a play button. The user can select a song from the list. Once the
user has selected a song, the play button becomes enabled, and the user can
play the selected song, or select a different song. While the song is playing,
no buttons are enabled. We use natural numbers 0, 1, . . . ,nsong−1 , to identify
(represent) the nsong songs. The STS is shown in Fig. 6.1, a partial LTS in
Fig. 6.2.

STS The music player STS structure has the following elements:
L is {i, s, si, pi},
l0 is i,
VL is (i 7→ ∅, s 7→ {nsong}, si 7→ {cur ,nsong}, pi 7→ {cur ,nsong}),
V is {cur ,nsong}, cur ∈ Varsnat,nsong ∈ Varsnat,
v0 is ∅,
I is {n}, n ∈ Varsnat,
G is {?init, ?select, ?play, !song},
T is { i ?init,true,nsong←n−−−−−−−−−−−−→ s,

s ?select,n<nsong,cur←n,nsong←nsong−−−−−−−−−−−−−−−−−−−−−−−−−→ si,

si
?select,n<nsong&&n 6=cur ,cur←n,nsong←nsong−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ si,

si
?play,true,id−−−−−−−−→ pi,

pi
!song,n=cur ,id−−−−−−−−−−→ si },

and the params function is defined as follows:
◦ params(?init)=params(?select)=params(!song)=(n),
◦ params(?play)=().

The STS uses two location variables: cur refers to the selected song, nsong con-
tains the number of songs available.

The switch labelled ?init(n :nat) from initial location i to location s represents
the initialisation. The switch labelled ?select(n : nat)[n < nsong] from location

186

6

CHAPTER 6. SYMBOLIC EXTENSIONS

i
?init(3)

s
?select(1)

s1
?play

p1

!song(1)

s0
?play

p0

!song(0)

?select(0)

s2
?play

p2

!song(2)?select(2)

?select(0)

?select(1)

?select(1)

?select(2) ?select(0)

?select(2)

Figure 6.2: Labelled transition system of the music player for the case where
it is initialised with 3 songs (i.e. nsong = 3). Note that this displays only part
of the entire (infinite) LTS. In particular, the initial state has (infinitely) many
more outgoing transitions than the sole one drawn here.

s to si represents the selection of song n: this switch updates variable cur
to n. The switch labelled ?play from location si to pi represents pressing the
play button; playing of the selected song is represented by the switch labelled
!song(n : nat)[n = cur] back to si. In that location we can also select any
song that is not the currently selected one (cur), as represented by the self-loop
labelled ?select(n :nat)[n < nsong && n 6= cur].

LTS In Figure 6.2 we show the LTS of the music player with an initialisation
of 3 songs, i.e. for the case where nsong = 3. From the initial state i we
have a transition labelled ?init(3) to state s. This transition represents the
initialisation. From state s we have for each song i a transition labelled ?select(i)
to a state si in which song i is selected. In each state si we can press the
play button (represented by a transition labelled ?play) which brings us to a
corresponding state pi. In state pi we can hear song i (represented by transitions
labelled !song(i)) and then return to state si. Moreover, in each state si we can
select any song j that is not the currently selected one (i), as represented by
transitions labelled ?select(j) for each j 6= i from each state si to a state sj .

So, for the general case, using nsong as a named constant, we have transitions
with the following action labels:

?init(nsong) ?select(0)

?select(1)

. . .

?select(nsong−1)

?play !song(0)

!song(1)

. . .

!song(nsong−1)

6.2. MOTIVATING EXAMPLES

6

187

s0

∅

?in(x :nat)
{v1 := x} s1

{v1} τ
{v2 := v1}

s2

{v2}

!out(x :nat)
[x = v2]

?in(x :nat)
{v1 := x} s3

{v1, v2}

!out(x :nat)
[x = v2]

Figure 6.3: STS model of two-slot buffer.

STS vs. LTS comparison In the STS model, location si has two outgoing
switches, one with action ?select, and one with ?play; both switches are enabled
when the music player is initialised with at least two songs (i.e. nsong > 1).
In the LTS, after an initialisation with nsong songs (nsong > 1), each of the
states si (0 ≤ i < nsong) has nsong outgoing transitions: a single outgoing
transition labelled ?play, and nsong−1 outgoing transitions that ?select another
song. This demonstrates the unbalance in the mapping from STS transitions
to LTS transitions that we mentioned in the introduction: two STS switches
are mapped onto in total nsong LTS transitions, where one switch is mapped
onto 1 of the transitions, and the other onto the other nsong−1 transitions. The
larger the value of nsong is, the more the control flow of the STS is distorted in
the corresponding LTS.

6.2.2 Two-slot Buffer

Imagine a buffer that consists of two cells. We store natural numbers in the
cells, i.e. we insert them into the cells, and take them out again, in FIFO order.
A number that is inserted, is stored in the first cell. When the second cell is
empty, and the first cell contains a number, the number is transferred to the
second cell—this is an internal transition in the buffer. When the second cell is
non-empty, its number can be taken out.

STS An STS model is depicted in Figure 6.3. Location variables v1 and v2

represent the buffer cells. The model has 5 switches. The two switches labelled
?in(x :nat) represent putting a number (x) into the buffer; this puts the number
in the first cell. The two switches labelled !out(x : nat) represent getting a
number from the buffer; this takes the number from the second cell. The switch
labelled τ represents the internal transition where the value in the first cell is
put (copied) into the second cell. Note that for the initial location we only have
a single switch with label ?in(x :nat).

LTS A small part of the state space of the model is depicted in Figure 6.4.
Enumeration of the outgoing transitions of the initial state gives us an infinite
number of transitions with labels like ?in(0), ?in(1), ?in(2), etc. Such infinite
enumeration cannot be handled by our LTS-based approach. On the other

188

6

CHAPTER 6. SYMBOLIC EXTENSIONS

s0〈〉
?in(1)

s1〈1〉
τ

s2〈1〉
!out(1)

s0〈〉

s3〈0,1〉
?in(0) !out(1)

s1〈0〉
τ

s2〈0〉

s3〈1,1〉
?in(1) !out(1)

s1〈1〉
τ

s2〈1〉

s3〈2,1〉
?in(2) !out(1)

s1〈2〉
τ

s2〈2〉

s1〈0〉

s2〈0〉
!out(0)

s0〈〉

τ

?in(0)

s3〈0,0〉
?in(0) !out(0)

s1〈0〉
τ

s2〈0〉

s3〈1,0〉
?in(1) !out(0)

s1〈1〉
τ

s2〈1〉

s3〈2,0〉
?in(2) !out(0)

s1〈2〉
τ

s2〈2〉

Figure 6.4: Initial part of labelled transition system of the two-slot buffer. The
state labels show the contents of the cells between angled brackets, and a state
number (s0 etc.) that refers to the state numbers in the symbolic model that is
given in Figure 6.3. The transitions labelled with τ transfer (copy) the contents
of the first cell to the second cell. Of some states we have drawn multiple
(equivalent) copies (as is visible in the state labels), to avoid a more complicated
non-planar graph.

hand, as shown in Fig. 6.3, our symbolic model is perfectly able to represent
this infinite behaviour with only four locations and five switches.

6.3 Parameterised Transition System

We now discuss the parameterised transition system (PTS) formalism. We first
define PTS syntax and semantics, after which we discuss the PTS for the two-
slot buffer example.

The PTS formalism was designed as a representation of a symbolic (e.g.
STS) model that fits the two activities of our on-line testing approach: the ex-
ploration of potential behaviour as well as the execution of actual behaviour. In
this sense, we use a PTS to give access to the symbolic model represented by the
PTS. A PTS combines a symbolic representation of the potential behaviour with
a non-symbolic representation of the actual behaviour. In the symbolic repres-
entation it only exposes (in terms of STS concepts) interaction variables and
switch restrictions of the original model, without exposing its state variables or
update mappings. A PTS may contain sequences of two or more parameterised
transitions, without intermediate instantiation, i.e. both fully symbolic models
and LTSes are just special cases of such PTS formalism. However, for our on-line
testing approach, we do not need such generality. A restricted form of the PTS,
the alternating PTS (APTS), suffices for our on-line testing approach: it is a

6.3. PARAMETERISED TRANSITION SYSTEM

6

189

perfect fit for the strict alternation between exploration of potential behaviour
and execution of actual behaviour. Therefore, to keep the definitions simple, we
restrict ourselves, and only define the alternating PTS formalism. As we will
see, we can describe the APTS formalism as a special kind of STS.

By replacing the LTS-based interfaces in our test derivation architecture by
(A)PTS-based ones, we overcome the problems mentioned in the introduction
and illustrated in Section 6.2.

PTS edges: transitions and instantiations A PTS has two kinds of edges:
transitions and instantiations. As we will see, the potential behaviour is repres-
ented using transitions, which can be parameterised essentially like STS trans-
itions. When we want to stress that a transition has no parameters, we refer
to it as an instantiated transition. Actual behaviour is represented by the com-
bination of a parameterised transition t and a subsequent instantiation i that
associates values with the parameters of t.

In our figures, we use the convention that parameterised transitions are
denoted by dashed edges, and instantiated transitions are denoted using con-
tinuous edges; instantiations are drawn as dotted edges.

PTS nodes: states Like STS locations, PTS locations have associated sets
of variables. These are regarded as instantiation obligations.

In our figures, we use the convention that parameterised states (i.e. states
with a non-empty set of location variables) are drawn with dashed borders, and
instantiated states are drawn with solid borders.

We now first, in Section 6.3.1, define the alternating PTS formalism; then,
we give an example in Section 6.3.2.

6.3.1 APTS Syntax and Semantics

We define a PTS as an STS that is extended with instantiation transitions, and
that has restrictions on the location variables and the update mappings.

We use the location variables to keep track of the instantiation obligation,
i.e. of those interaction variables that still need to be instantiated. Therefore,
in a PTS we need, for each interaction variable x ∈ I, a corresponding location
variable xL ∈ Vars, and we use the update mapping ρ to state this correspond-
ence.

Definition 6.3.1
An alternating parameterised transition system (APTS) is a tuple 〈L, l0,VL, I,G,→
,Φ, . . .�〉 where

S = 〈L, l0,VL, I,G,→〉 is an STS,
Φ ⊆ (L→ T bool

Σ (Var)) associates a constraint with each location, and
. . .� is an instantiation relation, where each i ∈ . . .� is a tuple 〈l, b, l′〉 where

l is the source location,
l′ is the destination location, and
b ∈ (VL(l) 7→ TΣ) is a binding (i.e., a term-mapping to ground terms),

190

6

CHAPTER 6. SYMBOLIC EXTENSIONS

and where
i-1. dom(b) 6= ∅ and dom(b) ⊆ VL(l),
i-2. VL(l′) = VL(l) \ dom(b),
i-3. b ∪ σ |= Φ(l) for some σ, and
i-4. Φ(l′) = Φ(l)[b].

and where
1. VL(l0) = ∅, and
2. Φ(l0) = ∅.

We impose the following additional restrictions on each transition l g,ϕ,ρ−−−−→ l′ ∈→:
t-0. VL(l) = ∅,
t-1. VL(l′) = {xL | x ∈ params(g)},
t-2. cod(ρ) is restricted to params(g),
t-3. ρ is a type-correct bijection,
t-4. ρ

∣∣
VL(l)

= id
∣∣
VL(l)

, and

t-5. Φ(l′) = ϕ.
2

For each transition l g,ϕ,ρ−−−−→ l′ ∈ →, the update mapping ρ : (VL(l′) →
params(g)) associates each interaction variable x ∈ params(g) with a corres-
ponding variable xL ∈ VL(l′). In the instantiation transitions i = 〈l, b, l′〉 ∈ . . .�
we associate values with the location variables of the source location, i.e. with
variables xL.

We write l . . .b � l′ for 〈l, b, l′〉 ∈ . . .�, and l . . .b � if ∃l′ : 〈l, b, l′〉 ∈ . . .�. Because
ρ has such a regular form in a PTS, we typically omit it and write l g,ϕ−−−→ l′ for
〈l, g, ϕ, ρ, l′〉 ∈→, and s g,ϕ−−−→ if ∃l′ : 〈l, g, ϕ, ρ, l′〉 ∈→.

Well-definedness An APTS is well-defined when it fulfils the following con-
sistency constraints, see Figure 6.5:

l
b1

l′′
b2

l′

b1 ∪ b2

(a)

l
g, ϕ

l′
b

l′′

(b)

Figure 6.5: APTS well-definedness consistency constraints 1 (a) and 2 (b)

1. if lb1 � l′′b2 � l′, then also lb1 ∪ b2 � l′

2. if l
g, ϕ

� l′ ∈→ and VL(l′) 6= ∅ and b ∪ σ |= ϕ for some σ then ∃l′ . . .b � l′′

Ad constraint 1: This constraint says that when two instantiations can be
applied separately, one after the other, then there is also a ‘shortcut’ instanti-
ation in which both instantiations are applied together.

Ad constraint 2: This constraint says that from a parameterised state, there
only is no outgoing instantiation when the constraint on the incoming transition
does not hold.

6.3. PARAMETERISED TRANSITION SYSTEM

6

191

In the remainder we only consider well-defined alternating PTSs.

Semantics of an APTS The interpretation of a well-defined APTS is defined
by defining a mapping onto an LTS.

Definition 6.3.2
Let P = 〈L, l0,VL, I,G,→,Φ, . . .�〉 be an APTS, and ι : VL(l0) → U an initial-
isation that initialises all variables associated with l0. Its interpretation [[P]]ι is
defined as the LTS [[P]]ι = 〈SLTS , s0, A,→〉, where
SLTS = {S | VL(S) = ∅} is the set of states, and

s0 =

{
l0 if VL(l0) = ∅
l′ if VL(l0) 6= ∅ ∧ l0 . . .ι � l′

A =
⋃
g∈G({g} × U arity(g)) is the set of actions, and

→ ⊆ (SLTS × (A ∪ {τ})× SLTS) is defined by the following rules:

l g,ϕ,ρ−−−−→ l′ VL(l) = VL(l′) = ∅ |= ϕ

s
g,()−−−→ s′

l g,ϕ,ρ−−−−→ l′ VL(l) = ∅ VL(l′) 6= ∅
l′ . . .b � l′′ VL(l′′) = ∅ ς = b ◦ ρ−1 ς |= ϕ

l
g,ς(params(g))−−−−−−−−−→ l′′

2

6.3.2 Example: APTS of two-slot buffer

In Figure 6.6 we show the initial part of an APTS for the two-slot buffer example.
With each state, we show the values stored in the two buffer slots, as far as

the variables that hold them are “visible” in the state. When a parameterised
transition has taken place, and the concrete interaction value is not yet known,
we show the parameter (e.g. x). Note that we only show these values to make
it easier to relate the APTS to the STS and the LTS; these values are not part
of the formal APTS definition.

From the initial state (s0<>) it shows a parameterised transition, labelled
?in(x : nat), to s1<x>. This represents the initial potential behaviour. For the
actual value of x in the first interaction with the tester, there is an infinite
number of possibilities, as represented by the infinite number (only two have
been drawn) of outgoing instantiation edges—each with a different value for
parameter x—from state s1<x>. When we compare this with the STS model
and the LTS, then, instead of a single symbolic transition as in the STS, or
an infinite number of LTS transitions, we now have first a symbolic transition
followed by an infinite number of instantiations.

From each of the states reached by one of the instantiations, only a τ -labelled
transition is possible. Note that this same transition is also present in the STS
and the LTS of resp. Fig. 6.3 and 6.4.

From each of the states reached by one of these τ -labelled transitions, there is
one parameter-free transition, and one parameterised transition. The parameter-
free transition represents taking out the first value from the buffer—the value is

192

6

CHAPTER 6. SYMBOLIC EXTENSIONS

s0〈〉
∅

?in(x :nat)
s1〈x〉
{x}

x←1
s1〈1〉

τ
s2〈1〉

!out(1)
s0〈〉

∅ ∅ ∅

s3〈x,1〉
x←0

s3〈0,1〉
!out(1)

s1〈0〉
τ

s2〈0〉

?in(x :nat)

{x}
∅ ∅ ∅

s3〈1,1〉
x←1 !out(1)

s1〈1〉
τ

s2〈1〉

s3〈2,1〉
x←2 !out(1)

s1〈2〉
τ

s2〈2〉

s1〈0〉

s2〈0〉
!out(0)

s0〈〉

τ

x←0 ∅

∅ ∅

s3〈x,1〉
x←0

s3〈0,0〉
!out(0)

s1〈0〉
τ

s2〈0〉

?in(x :nat)

{x}
∅ ∅ ∅

s3〈1,0〉
x←1 !out(0)

s1〈1〉
τ

s2〈1〉

s3〈2,0〉
x←2 !out(0)

s1〈2〉
τ

s2〈2〉

Figure 6.6: Initial part of APTS for the two-slot buffer of Figures 6.3 and 6.4,
showing parameterised states (dashed border), parameter-free states and in-
stantiated states (solid border), parameterised transitions (dashed edges),
parameter-free transitions (solid edges), and instantiations (dotted edges). With
the states, we indicate the instantiation obligation. We have drawn edges like

l
!out(0)−−−−−→ l′ for transition-instantiation pairs where the switch restriction of the

transition restricts all parameters to a single value, i.e. where we have a trans-

ition l
!out(v:nat)[v=0]−−−−−−−−−−−→ l′′ and a corresponding instantiation l′′v ← 0

� l′.

known, because it was given in the instantiation, and thus there is no need for
a parameter. The parameterised transition represents inserting one more value
into the buffer; the value is still unknown, hence the parameter, which again
is instantiated via one of the instantiation edges that follow the parameterised
transition.

6.4 Derivation of APTS from STS

To illustrate the use of an APTS to give access to a higher-level model, we show
how we can use a APTS to give access to an STS model. First, in Section 6.4.1,
we describe the STS-to-APTS mapping, and then, in Section 6.4.2, we give an
example: we show the use of this mapping on the music player STS model from
Section 6.2.1.

6.4.1 Mapping STS to APTS

We define the mapping from an initialised STS 〈S, ι〉, to an alternating PTS P
below. We first describe the APTS states, transitions, and the location variables
and update mapping. We formalise the mapping in Definition 6.4.1.
Below we assume that STS is given as S = 〈LS , l0,S ,VL,S , IS ,GS ,→S〉, with

6.4. DERIVATION OF APTS FROM STS

6

193

VS =def

⋃
l∈LS

VL,S(l), and
VarS =def VS ∪ IS .

APTS States Given STS S, we construct APTS states as tuples 〈l,X, ϑ, ϕ, ρ〉
with
l ∈ LS a location of S;
X ∈ {∅} ∪ {Vg | g ∈ GS} an instantiation obligation (set of state variables that

correspond to the parameters of incoming parameterised transition);
ϑ ∈ (VS → U) a valuation for the location variables of l;
ϕ ∈ TΣ(VarS) a constraint (switch restriction of incoming transition of l in S);
ρ ∈ (VS → TΣ(VarS)) update mapping of incoming transitions of l in S.
Note that we include information in APTS states (i) for subsequent use, and
(ii) to avoid unintended overlap between the intermediate parameterised APTS
states which we construct as discussed in case 2. in the next paragraph.

APTS transitions We map STS transitions l g,ϕ,ρ−−−−→ l′ onto transitions in the
APTS as follows:

1. We map each STS transition that has an empty list of interaction variables,
i.e. where arity(g) = 0, onto a single (instantiated) transition in the APTS.

2. We map each other STS transition, i.e. where arity(g) > 0, onto the com-
bination of

◦ a parameterised transition t,

◦ an intermediate parameterised state s′′ reached by t, and

◦ a set of instantiations i that link s′′ with an instantiated state s′.

Location variables and update mapping For each switch tS in the STS,
and for each corresponding APTS transition tP , the set of interaction variables
is fully determined by the gate g of tS resp. tP . In the APTS, the source
state of any transition tP has an empty instantiation obligation, and thus, the
instantiation obligation of the APTS state reached by tP consists of (location
variables corresponding to) the interaction variables of tP . In the APTS, for
each interaction variable x ∈ IS = IP , we always use the same location variable
xL to represent x in the instantiation obligation. Thus, for each gate g ∈ GP
we always use the same set of location variables Vg to represent the interaction
variables params(g), and an update mapping ρg such that Vg is bijective with
params(g), as made explicit by bijective function ρg : Vg → params(g). We use
Vg and ρg in the SOS rules in Definition 6.4.1.

Definition 6.4.1
Let 〈S, ι〉 be an initialised STS with STS S = 〈LS , l0,S ,VL,S , IS ,GS ,→S〉, and
initialisation ι ∈ (VL,S(l0)→ U), where
VS =def

⋃
l∈LS

VL,S(l), and
VarS =def VS ∪ IS .
The corresponding APTS P is defined as P = 〈LP , l0,P ,VL,P , IP ,GP ,→P ,Φ, . . .�〉,
where

194

6

CHAPTER 6. SYMBOLIC EXTENSIONS

LP = LS × ({∅} ∪ {Vg | g ∈ GS})× (VS → U)× TΣ(VarS)× (VS → TΣ(VarS))
is the set of states,

l0,P = 〈l0,S , ∅, ι, true, ∅〉 is the initial state,
VL,P is projected on the second component of a state,
IP = IS ,
GP = GS , and

Φ is projected on the fourth component of a state,
→P and . . .� are defined using SOS rules below.

We map STS transitions as discussed above:

1. for the case where arity(g) = 0 the APTS contains a single instantiated
transition (solid arrow):

pf:
l g,ϕ,ρ−−−−→ l′ arity(g) = 0 ϑ |= ϕ ϑ′ = ϑeval ◦ ρ

〈l, ∅, ϑ, true, ∅〉 g,true,ρg−−−−−−→〈l′, ∅, ϑ′, true, ∅〉

2. for the case where arity(g) > 0 the APTS contains

(rule pm-t) a single parameterised transition t (dashed arrow), with

(rule pm-i) for each possible valuation of the parameters of t that satisfies
the constraint, an instantiation (dotted arrow).

The parameterised label contains parameters, and a constraint which is
obtained from the switch restriction. Note that we assume that we can
represent the switch restriction ϕ, updated with the valuation ϑ, as a term
∈ T bool

Σ (params(g)).

pm-t:

l g,ϕ,ρ−−−−→ l′ arity(g) > 0 ς ∈ (params(g)→ U)
ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

〈l, ∅, ϑ, true, ∅〉 g, ϕ[ϑ], ρg � 〈l′, params(g), ϑ, ϕ[ϑ], ρ〉

pm-i:
same premiss as in pm-t

〈l′, params(g), ϑ, ϕ[ϑ], ρ〉ς ◦ ρg � 〈l′, ∅, ϑ′, true, ∅〉
2

Correctness It is in principle possible to prove that the LTS that can be
obtained directly from an instantiated STS 〈S, ι〉 by using Definition 6.1.2, is
bisimilar with the LTS that can be obtained by first mapping the STS on an
APTS, using Definition 6.4.1, and then obtaining the LTS from the APTS, using
Definition 6.3.2. We do not give the proof here.

Implementation note In the implementation of the Explorer component that
implements the APTS access to an STS model, we used the following optim-
isation. We use information from the switch restrictions of the STS to obtain
bindings for interaction variables of which the value is fully determined by the
switch restriction, such that we can create transitions where some, or all, of
the parameters are instantiated. For example, as shown in Figure 6.6, we cre-

ate a transition l
!out(0)−−−−−→ l′, instead of a transition l

!out(x:nat)[x=0]−−−−−−−−−−−→ l′′ with an
instantiation l′′x← 0

� l′.

6.4. DERIVATION OF APTS FROM STS

6

195

6.4.2 Example: Music Player

We now show the construction of the APTS for the music player of Section 6.2.1.
This APTS is infinite, because parameter (interaction variable) n of ?init(n :nat)
has an infinite domain: it ranges over all natural numbers. In Figure 6.7 we
thus show only part of this APTS. In the discussion below, we look at states of
the APTS, and for each of the states that we discuss, we look at the outgoing
transitions.

Initial state The initial state of the APTS is 〈i, ∅, ∅, true, ∅〉. It contains
(1) the initial location of the STS (i), (2) the set of interaction variables that
have to be instantiated (∅), (3) the valuation of the variables of location i (∅),
(4) the constraint that must hold over the variables (true), and (5) the update
mapping (∅). The set of interaction variables that have to be instantiated, and
the update mapping are empty, because we are in the initial location of the
STS. For the same reason, the constraint is true.

From initial location i of the STS there is a single outgoing switch:

i ?init,true,nsong:=n−−−−−−−−−−−−−→ s

This switch is enabled, because its switch restriction is true. Thus, in the APTS
there is a parameterised transition, t0, from the initial state. The destination
state of t0 differs in two aspects from its source state: (1) it contains location
s (the destination of the switch in the STS), and (2) it contains parameter n in
the set of free variables, because n is introduced in the label on transition t0.

〈i, ∅, ∅, true, ∅〉 ?init(n : nat)
� 〈s, {n}, ∅, true, ∅〉 (t0)

State 〈s, ∅, true, ∅〉 From the destination of transition t0 there is an infinite
number of instantiations, of the form shown below as i0,j, that assign value j to
n, where we use j as a named constant, representing any natural number. The
source state of each such instantiation is the destination of transition t0; the
destination state of the instantiation is obtained by updating the source state
to show the effect of the instantiation:

1. parameter n is removed from the set of free variables, and
2. variable nsong is set to j.

〈s, {n}, ∅, true, ∅〉n =j
� 〈s, ∅, {nsong←j}, true, ∅〉 (i0,j)

Of the infinite number of concrete instances of these instantiation transitions,
in Figure 6.7 we show only the following ones:

〈s, {n}, ∅, true, ∅〉n =0
� 〈s, ∅, {nsong←0}, true, ∅〉 (i0,0)

〈s, {n}, ∅, true, ∅〉n =1
� 〈s, ∅, {nsong←1}, true, ∅〉 (i0,1)

〈s, {n}, ∅, true, ∅〉n =2
� 〈s, ∅, {nsong←2}, true, ∅〉 (i0,2)

〈s, {n}, ∅, true, ∅〉n =3
� 〈s, ∅, {nsong←3}, true, ∅〉 (i0,3)

Now, we look at the transitions that are enabled from the destinations of these
instantiations.

196

6

CHAPTER 6. SYMBOLIC EXTENSIONS

s, {n}, 〈n〉

i, ∅, 〈〉

?init(n:nat)

n = 3
s, ∅, 〈3〉

si, {n}, 〈n, 3〉,
n < 3

?select(n:nat)
[n < 3]

n = 1
si, ∅, 〈1, 3〉

pi, ∅, 〈1, 3〉

?play !song(1)

?select(n:nat)
[n < 3 && n 6= 1]

s, {n}, 〈n, 3〉,
n < 3 &&

n 6= 1

pi, ∅, 〈0, 3〉

si, ∅, 〈0, 3〉

?play !song(0)

?select(n:nat)
[n < 3 && n 6= 0]

s, {n}, 〈n, 3〉,
n < 3 &&

n 6= 0

si, ∅, 〈2, 3〉

pi, ∅, 〈2, 3〉

?play !song(2)

?select(n:nat)
[n < 3 && n 6= 2]

s, {n}, 〈n, 3〉,
n < 3 &&

n 6= 2

n = 0

n = 2

n = 0

n = 1

n = 2

pi, ∅, 〈1, 2〉

si, ∅, 〈1, 2〉

?play !song(0)

pi, ∅, 〈0, 2〉

si, ∅, 〈0, 2〉

?play !song(0)

s, ∅, 〈2〉

si, {n}, 〈n, 2〉,
n < 2

?select(n:nat)
[n < 2]

?select(n:nat)
[n < 2 && n 6= 1]

s, {n}, 〈n, 2〉,
n < 2 &&

n 6= 1

?select(n:nat)
[n < 2 && n 6= 0]

s, {n}, 〈n, 2〉,
n < 2 &&

n 6= 0

n = 1

n = 0

n = 0

n = 1

n = 2

pi, ∅, 〈0, 1〉

si, ∅, 〈0, 1〉

?play !song(0)

s, ∅, 〈1〉

si, {n}, 〈n, 1〉,
n < 1

?select(n:nat)
[n < 1]

n = 0

n = 1

s, ∅, 〈0〉
n = 0

Figure 6.7: Partial APTS of the music player—showing full behaviour for 0,
1, 2 and 3 songs. States show, from left to right: STS location, free variables,
the values of cur and nsong , when relevant for the given state, and (when
applicable) the switch restriction in which values of cur and nsong have been
instantiated.

6.4. DERIVATION OF APTS FROM STS

6

197

States 〈s, ∅, {nsong← j}, true, ∅〉 Each of these destinations corresponds to
location s in the STS. This STS location has only a single outgoing switch:

s ?select,n<nsong,cur :=n−−−−−−−−−−−−−−−−→ si

The switch has label ?select and switch restriction n < nsong . For the destina-
tion of instantiation i0,0 it is the case that nsong = 0; when we substitute this
value in the switch restriction we get n < 0, and there are no natural numbers
n for which this switch restriction holds. Therefore, the destination of i0,0 has
no outgoing transitions in the APTS. For each of the other destinations, it is
the case that nsong >= 1, and thus, for those destinations, there is at least
one natural number n for which the switch restriction n < nsong holds. In Fig-
ure 6.7 we show the outgoing transitions for the destinations of instantiations
i0,0, i0,1, i0,2 and i0,3; we only discuss the outgoing transitions of the destination
of instantiation i0,3.

State 〈s, ∅, {nsong←3}, true, ∅〉 Now, we look at the transitions that are en-
abled from the destination of instantiation i0,3. As we have seen above, from
location s in the STS there is only one outgoing switch, and, as we discussed,
there is at least one solution for its switch restriction. Thus, there is a corres-
ponding transition in the APTS:

〈s, ∅, {nsong←3}, true, ∅〉 ?select(n : nat)[n < 3]
�

〈si, {n}, {nsong←3},n < 3, ∅〉
(t1)

State 〈si, {n}, {nsong←3},n < 3, ∅〉 From the destination of transition t1
there is a finite number of instantiation transitions, one for each natural number
n < 3:

〈si, {n}, {nsong←3},n < 3, ∅〉n =0
� 〈si, ∅, {cur←0,nsong←3}, true, ∅〉 (i1,0)

〈si, {n}, {nsong←3},n < 3, ∅〉n =1
� 〈si, ∅, {cur←1,nsong←3}, true, ∅〉 (i1,1)

〈si, {n}, {nsong←3},n < 3, ∅〉n =2
� 〈si, ∅, {cur←2,nsong←3}, true, ∅〉 (i1,2)

For each of these instantiations, there are two outgoing transitions from their
destination, one parameterised one, and one instantiated one.

State 〈si, ∅, {cur←0,nsong←3}, true, ∅〉 From the destination of instantiation
i1,0 these two transitions are:

〈si, ∅, {cur←0,nsong←3}, true, ∅〉 ?select(n : nat)[n < 3 && n 6= 0]
�

〈si, {n}, {cur←0,nsong←3},n < 3 && n 6= 0, ∅〉
(t2)

〈si, ∅, {cur←0,nsong←3}, true, ∅〉 ?play−−−−→〈pi, ∅, {cur←0,nsong←3}, true, ∅〉 (t3)

198

6

CHAPTER 6. SYMBOLIC EXTENSIONS

State 〈si, {n}, {cur←0,nsong←3},n < 3 && n 6= 0, ∅〉 From the destination
of transition t2 there are two instantiations; both bring us to states that we
have visited before—the destinations of instantiations i1,1 resp. i1,2:

〈si, {n}, {cur←0,nsong←3},n < 3 && n 6= 0, ∅〉n =1
�

〈si, ∅, {cur←1,nsong←3}, true, ∅〉
(i2,0)

〈si, {n}, {cur←0,nsong←3},n < 3 && n 6= 0, ∅〉n =2
�

〈si, ∅, {cur←2,nsong←3}, true, ∅〉
(i2,1)

State 〈pi, ∅, {cur←0,nsong←3}, true, ∅〉 From the destination of transition t3
there is a single transition that brings us back to the destination of instantiation
i1,0

〈pi, ∅, {cur←0,nsong←3}, true, ∅〉 !song(0)−−−−−−→〈si, ∅, {cur←0,nsong←3}, true, ∅〉
(t4)

With this transition we show the effect of the optimisation mentioned in
the implementation note at the end of Section 6.4. The STS contains switch

pi
!song,n=cur ,∅−−−−−−−−−−→ si, where params(!song) = (n). Effectively, the switch restric-

tion n = cur equates the interaction variable n with location variable cur . The
value of cur is given in the valuation: cur←0. Combined, we get the APTS
transition with label !song(0).

6.5 Testing with an alternating PTS

In the remainder of this chapter, when we discuss testing based on PTSes,
we will restrict ourselves to well-defined alternating PTSes. Before we discuss
how we extend our architecture to support on-line testing with APTSs, we first
discuss how testing with an APTS differs from testing with an LTS.

A first difference is with the labels: we use parameterised and instantiated
labels, instead of “plain” LTS labels. For the other differences, we structure the
discussion by the main activities in our approach to on-line testing:

1. computing the potential behaviour for the next step;
2. interacting with the SUT;
3. updating the tester state and giving a verdict, if one is available.

Only the first and last activity are affected by the use of an APTS instead of an
LTS. The second activity (interaction with the SUT) is (by design) unaffected.

Labels

In the previous chapters we used opaque labels, introduced as part of the LTS
definition. Now we decompose these labels. Two kinds of labels are exchanged
over our interfaces, as we explain using Fig. 6.8.

1. instantiated labels are exchanged in the Test Execution part of our archi-
tecture, i.e. between Manager and Adapter;

2. parameterised labels are exchanged in the Test Derivation part.

6.5. TESTING WITH AN ALTERNATING PTS

6

199

Ad 1: instantiated labels An instantiated label is a tuple 〈g, t〉 where g is a
gate, and each ti in t is a ground term. Each such ground term is the canonical
term representation of a value in U . Examples of such labels are !out(0) and
!song(0).

Ad 2: parameterised labels A parameterised label is a tuple 〈g, x, ϕ〉 where
g is a gate, each xi in x is a variable ∈ params(g), and ϕ is a constraint ∈ T bool

Σ (x)
over the variables in x. Examples of such labels are ?in(x : nat) and ?select(n :
nat)[n < 3].

We use the following additional notation.
◦ we will use subscripts i and p, as in e.g. Li resp. Lp, to explicitly indicate

whether instantiated or parameterised labels are exchanged.
◦ act(l) denotes the gate of a label,act i.e. act(〈g, x, ϕ〉) =def g.
◦ term(l) denotes the sequence of terms or variables of a label,

i.e. term(〈g, t) =def t andterm term(〈g, x, ϕ〉) =def x.
◦ constraint(l) denotes the constraint in a label,

i.e. constraint(〈g, t) =def true andconstraint constraint(〈g, x, ϕ〉) =def ϕ.
◦ var(l) denotes the variables in a label,

i.e. var(〈g, t) =def () andvar var(〈g, x, ϕ〉) =def x.

Representation of quiescence To denote quiescence as parameterised (in-
stantiated) label, we use 〈δ, (), true〉, a parameterised label with action δ, an
empty sequence of terms (), and constraint true; we will typically abbreviate
this to δ.

We continue to use Lδ to denote the label set L, extended with quiescence.

6.5.1 Computation of potential behaviour

We compute the potential behaviour, using the enabled outgoing transitions of
our current states in the APTS. The computation of the potential behaviour
involves the following activities:

1. obtain the enabled outgoing transitions of our current states in the APTS;
2. compute the possible stimuli and the expected responses;
3. compute which of the current APTS states are quiescent, to be able to

synthesise δ-labelled transitions;
4. combine the labels of the enabled transitions such that (a) we can easily

select a stimulus, when we decide to apply a stimulus as next test step,
and (b) we can easily update our state, after the interaction with the SUT
has taken place. This corresponds to the on-the-fly determinization that
we do in the LTS setting.

Ad 1: obtaining the enabled transitions Obtaining the enabled outgoing
APTS transitions from a given model is the task of the modelling-language-
specific Explorer component for the respective modelling language. According to
the SOS rules that describe the derivation of an APTS from an STS, we only add

200

6

CHAPTER 6. SYMBOLIC EXTENSIONS

a transition to the APTS when the constraint on the corresponding STS switch
is satisfiable, i.e. when a valuation of the variables in the constraint exists, such
that evaluating it yields true. In general, satisfiability checking is undecidable,
i.e. the result of such computation may be either of three possibilities: (1) no
valuation exists, (2) a valuation exists, or (3) it is unknown whether a valuation
exists.

Thus, there may be switches in the STS model, for which an Explorer cannot
decide whether or not they are enabled. The source of the undecidability lies in
the presence of variables (interaction variables in the STS) in the guard (switch
restriction). We assume that, once a valuation is known, such a constraint can
simply be evaluated.

Our approach to deal with this problem of undecidability is twofold. Firstly,
we assume that in most cases data types and constraints (switch restrictions)
in any practical STS model are chosen such that satisfiability of the constraints
is decidable. Secondly, in the implementation of our test tool design we provide
a “safety net” for the (rare, we assume) case that our decidability assumption
does not hold.

For this “safety net” we use the ability of the Explorer to report its inability
to decide on satisfiability of an constraint, when we add transitions to the APTS:
◦ If no valuation exists, the respective transition is excluded from the APTS.
◦ If a valuation exists, the respective transition is included in the APTS.
◦ When it is unknown whether a valuation exists, the respective transition

is included in the APTS, but with a special mark that indicates its special
status, and this mark plays a role in the subsequent activities.

Ad 2: computation of possible stimuli and expected responses We
obtain the sets of possible stimuli and expected responses from the set of en-
abled APTS transitions, using the IO-Oracle. We include the transitions for
which enabledness could not be decided. However, we mark stimuli obtained
from transitions for which enabledness could not be decided, so the random
testing strategy can avoid them when choosing a stimulus (if we are unable to
decide satisfiability, it is likely that we are also be unable to come up with an
instantiation for the label parameters). When we, in this way, skip a potential
stimulus while deciding on the next test step, we add an entry into the test run
log, to allow subsequent analysis of omitted stimuli.

Ad 3: computation of quiescent states In the LTS setting, we mark states
as quiescent when they do not have any outgoing internal or output transitions
(or when they are divergent, when the corresponding setting is enabled).

In the APTS we may have states
◦ without outgoing output or internal transitions. These states are quies-

cent, just like in the LTS setting.
◦ with at least one outgoing output or internal transition of which the en-

abledness could be decided. These states are not quiescent, just like in
the LTS setting.

◦ that have one or more outgoing output or internal transitions, all of which
have the special mark, i.e. enabledness could not be decided. These states

6.5. TESTING WITH AN ALTERNATING PTS

6

201

are conditionally quiescent, which we explain below.
A conditionally quiescent state is quiescent when, for each of the outgoing output
transitions, the constraint does not hold. The corresponding condition (the
conjunction of, for each of the outgoing output transitions, the negation of the
constraint) is associated with the state. We return to this when we discuss how
we update the tester state and give verdicts, below.

Ad 4: combining labels In the LTS setting we perform on-the-fly determ-
inization in the unfold function in the Primer: during the computation of the
potential behaviour we collect sets of enabled input and output labels, and with
each observable label l in these sets, we associate a set containing the states
reached by traversing a transition with l. Thus, when, after an interaction with
the SUT, represented by label l, we can immediately “take” the set of states
associated with l, to get the set of states, reached by model transitions with l.

In the APTS setting we can not determinize in this way. We may have
parameterised labels of which the constraints “overlap”, and then a single in-
stantiated label may be “an instance of” multiple, distinct, parameterised la-
bels. For example, if we have parameterised labels ?in(x : nat)[x < 3] and
?in(x : nat)[x > 1 ∧ x < 4], then an instantiated label ?in(2) will match with
both. To a certain extent we can use the gates of the labels to distinguish
between them, but given parameterised and instantiated labels with the same
gate, we cannot immediately say whether two distinct parameterised labels have
the same, or overlapping, or distinct instantiations, nor can we immediately say
whether a given instantiated label is an instance of the parameterised labels.
To check whether an instantiated label is an instance of parameterised ones, we
have to look in the APTS, and see whether the states that are reached by the
parameterised labels have an instantiation that corresponds to the instantiated
label.

In the APTS setting we perform so-called pre-determinization. We collect
sets of parameterised labels lp, and with each parameterised label in these sets,
we associate a set containing the states reached by traversing a transition with
lp. When we have two parameterised labels 〈g, x, ϕ1〉 and 〈g, x, ϕ2〉, that only
differ in their constraints (ϕ1 vs. ϕ2), we will use them as two distinct items in
the sets of possible stimuli and expected responses. We do this, to expose the
control structure of the model in the potential behaviour. Thus, we will treat
?in(x : nat)[x < 3] and ?in(x : nat)[x 6= 2 and x < 3] as distinct items. Given
an instantiated label li (representing interaction with the SUT), there may be
multiple parameterised labels that match li. For example, given li =?in(1),
both parameterised labels that we gave above match. Thus, for both labels we
will have to check whether the APTS states, reached by transitions with these
labels, have instantiations x← 1, to compute the successor behaviour.

6.5.2 Interaction with the SUT

Interaction with the SUT is in the APTS setting the same as in the LTS setting,
except that interactions (with the SUT) are now represented by instantiated
labels.

202

6

CHAPTER 6. SYMBOLIC EXTENSIONS

6.5.3 Updating the tester state

After the interaction with the SUT has taken place, we have to update the tester
state, and give a verdict, if one is available. We discuss two cases:

1. interaction took place (stimulus was applied, or response obtained), and
2. no interaction took place (quiescence was observed).

Ad 1: interaction In this case, we have an instantiated label li that repres-
ents the interaction with the SUT. As we have discussed above, there may be
more than one parameterized label lp of which li is an instance, and thus, we
have to check all candidates, i.e. all parameterized labels that have the same
gate as the instantiated label. With each such candidate label li we have the set
of APTS states reached by a transition with li; for each of these states we check
whether it has an outgoing instantiation that corresponds to li. Even when for
some of the labels, satisfiability of the constraints could not be decided, an in-
stantiated label gives us a valuation for the parameters of such constraint, such
that it can simply be evaluated.

If none of the candidates have an instantiation that corresponds to il, the
test run will end, and a verdict will be given: a fail verdict if li is an output
(response), and an error verdict otherwise—any stimulus that we apply should
be present in the model.

Ad 2: quiescence In this case, we check whether quiescence was expected—
if not, we issue a fail verdict. If quiescence was expected, we update the tester
state to the set of quiescent states (independent of whether they were condition-
ally quiescent). In addition, we check whether we have conditionally quiescent
states. If so, we add their associated conditions to the test run log, and we add
a note that tells whether all quiescent states (of the current tester state) are
conditionally quiescent. At the end of the test run, the conditions collected in
the test run log form a proof obligation: the test run verdict is only valid when
the conditions hold.

6.6 Extension of Architecture

We now look at the changes necessary to allow the use of an alternating PTS as
underlying formalism in our architecture, where we restrict ourselves to random
on-line testing.

This section is structured as follows. We first look at the extension of our
architecture with additional components (Section 6.6.1), and discuss new and
changed interfaces (Section 6.6.2); then we discuss changes to the algorithms of
Primer (Section 6.6.3) and Manager (Section 6.6.4).

6.6.1 Components

As indicated in the introduction to this chapter, we use the PTS formalism
to have a more concise (finite) representation of potential behaviour (possible
stimuli and expected responses), using parameterised labels. However, we do

6.6. EXTENSION OF ARCHITECTURE

6

203

not let this affect the interface between Manager and Adapter: there we still
exchange LTS labels (to which we now refer as instantiated labels). Thus, we
have introduced a “gap” between the labels that the Manager gets from the
DerivationEngine, and the labels that the Manager has to pass to the Adapter
when it wants to apply a stimulus. For example, in the case of the music player,
the potential behaviour of the initial state consists of the parameterised label
?init(n :nat). The Manager cannot pass that label to an Adapter: an Adapter
needs an instantiated label, like ?init(3).

The role of the Instantiator, the sole component that we add to the architec-
ture (see Fig. 6.8), is to bridge this gap: the Manager can ask the Instantiator
to instantiate a parameterised label. The Instantiator may need information
from the model to do its work, hence the dotted arrow from Specification to
Instantiator in the figure.

(The labels that the Manager gets from the Adapter, as representation of
observations, are instantiated labels. As we will see, the Manager can, as before,
pass such label to the DerivationEngine in interface function next).

IO-Oracle

Explorer

Primer

DerivationEngine

Manager Adapter

Instantiator

Test Derivation Test Execution

Specification

partition
information

IUT

verdict

Figure 6.8: Our architecture for on-line model-based testing of Fig. 3.2 and
Fig. 4.4, extended with Instantiator

6.6.2 Interfaces

An immediate consequence of the change from an LTS-based DerivationEngine
interface to an APTS-based one, is that we refine (decompose) the labels. We
discuss this first. Then we discuss the new Instantiator interface, and we discuss
the impact of the change to APTS-based interfaces.

Interfaces

Since our aim is to change from an LTS-based DerivationEngine interface to a
PTS-based one, obviously we have to update the DerivationEngine (i.e. Primer)
interface, and we also have to update the Explorer interface. The interface
between the IO-Oracle and the Primer is not changed (except that Primer now
passes parameterised labels over the interface); we do not discuss it further. We
start by discussing the interface between Instantiator and Manager.

204

6

CHAPTER 6. SYMBOLIC EXTENSIONS

Between Instantiator and Manager: the Instantiator interface

The Instantiator must implement one interface function, of which we give first
the signature (in Table 6.1), and then the definitions, both in terms of a PTS
〈S, s0,VL, I,G,→,Φ, . . .�〉2:

1. getInstance : Lp → Li] {⊥}

Table 6.1: Signature of Instantiator interface functions.

Ad 1: getInstance Function getInstance must instantiate the parameters in
a given parameterised label, satisfying the constraint, and return the resulting
instantiated label. We describe its functionality using instances(l).

instances(l) =def {l[ς] | ς |= constraint(l) and l[ς] is correctly typed} (6.1)

Function getInstance(l) returns an element from instances(l) when instances(l) 6=
∅, or ⊥ otherwise. The choice, which element to return (when instances(l) when
instances(l) 6= ∅), is left to the implementation.

Between Explorer and Primer: The Explorer interface

In Chapter 4 we defined the Explorer interface that provides access to an LTS
in Table 4.2. We now extend this to allow the Explorer to provide access to a
PTS 〈S, s0,VL, I,G,→,Φ, . . .�〉, as follows:

1. start :→ S
2. menu : S → P(Lp,τ × (V ⇀ I)× S)] {⊥}
3. inst : S × (Vars ⇀ TΣ)→ S] {⊥}

Table 6.2: Signature of PTS-based Explorer interface functions.

Ad 1: start Function start is not changed, i.e. its definition remains:

start() =def s0 (6.2)

Ad 2: menu Function menu now returns parameterised labels, and a mapping
between the parameters (interaction variables) in the labels and the associated
set of location variables—we need this mapping to generate correct bindings for
the inst function. Moreover, it can return an error (represented by ⊥) when the
interface user asks for the menu of a parameterised state (whether it returns an

2We use S and s0 for the set of states resp. the initial state, to be able to use L, Li, Lp
etc. for labels.

6.6. EXTENSION OF ARCHITECTURE

6

205

error, or just returns a menu, depends on whether the Explorer allows delayed
instantiation). It is defined as follows:

menu(p) =def

{
{〈〈g, params(g), ϕ〉, ρ, s′〉 | ∃p g,ϕ,ρ−−−−→ s′ ∈→} if VL(p) = ∅
{⊥} otherwise

(6.3)

Ad 3: inst The new function inst is given a parameterised state p and a set of
bindings b (here represented as a partial mapping from variables to terms). If
the PTS contains a corresponding instantiation i (of which the set of bindings
b′ is contained in b—bindings b \ b′ are simply ignored), function inst returns
the destination state of i; otherwise it returns an error (represented by ⊥). It
is defined as follows:

inst(p, b) =def

{
s′ if ∃pb′

� s′ ∈ . . .� such that b′ ⊆ b
{⊥} otherwise

(6.4)

Provided by the Primer: The DerivationEngine interface

In Chapter 3 we defined the LTS-based interface to the DerivationEngine by
giving the signature (see Table 3.8), and the definition (see Table 3.9 for the
unguided case) of the interface functions. In Chapter 4 we showed how the
Primer component implements this interface. To be able to interact with the
parameterized transition system, we extend this interface to the following (the
interface contains the same functions, only the signatures of the functions that
accept or return labels have changed):

1. start :→ P × (LV] {⊥})
2. in : P → P(LI,p)
3. hasOutputs : P → bool
4. out : P → P(LδU,p × (LV] {⊥}))
5. next : P × Lδi → (P] {⊥})× (LV] {⊥})
6. defNegVerdict :→ LV
7. defPosVerdict :→ LV

Table 6.3: Signature of PTS-based Primer functions. Type P is the pseudo-state
type.

Ad 1, 3, 6, 7: The signatures of functions start, hasOutputs, defNegVerdict
and defPosVerdict are not changed.

Ad 2: in Function in returns parameterized labels.

Ad 4: out Function out returns parameterized labels.

206

6

CHAPTER 6. SYMBOLIC EXTENSIONS

Ad 5: next Function next takes an instantiated label as its second argument.

6.6.3 Extension of Primer algorithm

We now discuss the changes to the Primer. Our choice for a concise, symbolic,
representation of the potential behaviour, affects how we deal with determiniz-
ation, and with actual behaviour.

We first discuss the changes to the Primer pseudo-state type, and then we
discuss changes to the DerivationEngine interface implementation.

The specification-only DerivationEngine pseudo-state type

In Definition 4.2.1 we defined the pseudo-state type for the DerivationEngine
for random testing as a tuple 〈md, unfoldResult〉, with unfoldResult a tuple
〈i, o, nl,me〉, and in Table 4.4 we showed the methods implemented on it.

We change the following fields of pseudo-state type element unfoldResult :

1. field i, to have signature P(LI × (V ⇀ I)),
2. field o, to have signature P((LδU)× (LV] {⊥})× (V ⇀ I)), and
3. field nl, to have signature Gates → ((TΣ(Var)∗ × T bool

Σ (Var))→ S).

Moreover, we change two methods:

4. method unfold , and
5. method n (used by interface function next).

Ad 1: field i Whereas, in the non-symbolic case, field i contains a set of
(input) labels, it now contains a set of tuples, where each tuple consists of a
parameterized label and a mapping between location and interaction variables.

Ad 2: field o Whereas, in the non-symbolic case, field o contains a set of
tuples, where each tuple consists of a label and a verdict (or ⊥), now the tuples
contain one additional element: a mapping between location and interaction
variables.

Ad 3: field nl Whereas, in the non-symbolic case, field nl contains a mapping
from labels to sets of states, it now contains a two-level mapping. Given a label
l, the first-level mapping maps label gates (act(l)) to the second-level mapping,
which maps variables-constraint tuples (〈term(l), constraint(l)〉) to a set of states.
Thus, the type of the mapping is:

nl : Gates → ((TΣ(Var)∗ × T bool
Σ (Var))→ S)

Ad 4: method unfold In Algorithm 6.1 we show the modifications to method
unfold. The changes are the following:

◦ in line 4, the initialization of destmap is changed to reflect the two-level
mapping of field nl;

6.6. EXTENSION OF ARCHITECTURE

6

207

Algorithm 6.1: P.unfold() for PTS Primer— changes w.r.t. Algo 4.1

input : P , a pseudo-state
e, an Explorer that gives access to the Specification
o, an IO-Oracle

output: P , the pseudo-state, unfolded if it wasn’t already unfolded
1 begin
2 if P.unfoldResult = ⊥ then

3
...

4 destmap ←− {g → (〈t, ϕ〉 → ∅) | 〈g, t, ϕ〉 ∈ Lδ}
5 while work 6= ∅ do

6
...

7 foreach 〈l=〈g, x, ϕ〉, ρ, p′〉 ∈ e.menu(p) do
8 kind ←− o.kind(l)
9 if kind = i then

10 inputs ←− inputs ∪ {l}
11 destmap[g][〈x, ϕ〉]←− destmap[g][〈x, ϕ〉] ∪ {〈ρ, p′〉}
12 else if kind = u then
13 isQuiescent ←− false
14 outputs ←− outputs ∪ {〈l,⊥〉}
15 destmap[g][〈x, ϕ〉]←− destmap[g][〈x, ϕ〉] ∪ {〈ρ, p′〉}
16 else if kind = τ then

17
...

18 if isQuiescent then
19 outputs ←− outputs ∪ {〈〈δ, (), true〉,⊥〉}
20 destmap[δ][〈(), true〉]←− destmap[δ][〈(), true〉] ∪ {〈id, p〉}

21
...

22
...

◦ in lines 11, 15, and 20 assignments to destmap are changed to reflect the
two-level mapping of field nl, and the presence of the variable mapping—
note that here notation like destmap[g][〈t, ϕ〉] does not refer to application
of substitution, but to array (map) indexing;

This concludes the changes to method unfold.

Ad 5: method n In the non-symbolic setting of Chapter 4, Table 4.4 showed
that method n(l) just looks up the given label l in map P.nl, and returns the
associated set of LTS states. This suffices in the non-symbolic setting, because
l matches at most one label in the map.

In the symbolic case the situation is different, as shown in Algorithm 6.2—
note that also here square brackets denote map indexing, not substitution ap-

208

6

CHAPTER 6. SYMBOLIC EXTENSIONS

Algorithm 6.2: P.n(l) for PTS Primer

input : P , a pseudo-state
e, an Explorer that gives access to the Specification
l = 〈g, t〉, an instantiated label

output: S, the set of states, reachable from P via a transition with label l
1 begin
2 S ←− ∅
3 m←− P.nl[g] // P.nl holds destmap as computed in Algo. 6.1

4 foreach 〈x, ϕ〉 ∈ keys(m) do
5 ρ, p′ ←− m[〈x, ϕ〉]
6 if |x| = |t| and |x| = 0 then
7 S ←− S ∪ {p′}
8 else if |x| = |t| and |x| > 0 then
9 p′′ ←− e.inst(p′, ρ(x)← t)

10 if p′′ 6= ⊥ then
11 S ←− S ∪ {p′′}

12 return S

plication. When the potential behaviour is represented using parameterized
labels, a single instantiated label l may match multiple parameterized labels.
Thus, without the two-level mapping, we should try to match l with all labels
that represent the potential behaviour, i.e. all labels in the map. With the two-
level mapping, we still have to match l = 〈g, t〉 with all of those labels in the
map that have the same gate g—hence the loop (at lines 4–11) over all tuples
〈x, ϕ〉 that are key in the second level of the map. (Function keys returns the
keys of second-level map m).

DerivationEngine interface implementation

No changes are necessary to the DerivationEngine interface implementation: all
changes necessary have been taken into account, in the changes that we made to
the pseudo-state type. Thus, also for the symbolic case, Table 4.5 shows how the
Primer implements the DerivationEngine interface functions for the specification-
only DerivationEngine (as long as the symbolic pseudo-state type is used).

6.6.4 Extension of Manager Algorithm

We have to extend Manager Algorithm 3.1 in three places, as shown in Al-
gorithm 6.3:

1. the check whether the previous test step was an observation of quiescence
at line 5 now uses the act function;

2. the application of a stimulus, at lines 10–17 where we use the Instantiator to
obtain an instantiation of a parameterized label—when the instantiation
fails, we set the verdict to “error”;

6.6. EXTENSION OF ARCHITECTURE

6

209

Algorithm 6.3: Random On-Line Testing with PTS — changes w.r.t.
Algo. 3.2

input : A DerivationEngine d that gives access to the Specification, an
Instantiator i, and an Adapter a that gives access to the SUT

1 begin

2
...

3 while v = ⊥ and the user does not stop the testing do

4
...

5 else if act(prevLabel) = δ or ¬d.hasOutputs(P) then

6
...

7
...

8 if action = stimulate then
9 pick stimulus 〈l′, V 〉 ∈ stimuli

10 if var(l′) 6= ∅ then
11 l′′ ←− i.getInstance(l′, V)
12 if l′′ = ⊥ then
13 v ←− error(unable to instantiate)

14 else
15 l′′ ←− l′

16 if v = ⊥ then
17 t, l←− a.tryStim(l′′)

18 else obtain and check observation

19
...

20 if v = ⊥ then

21
...

22
...

3. the invocation of next, and the evaluation of its result, is now guarded by a
test that the verdict is still unset, to avoid invoking next when no interac-
tion with the SUT took place because the instantiation failed (lines 20–21).

These are the only changes necessary.

6.6.5 Example

In Figure 6.9 we illustrate the interaction between Manager, Primer, Explorer and
Adapter for the music player. In particular, we show how the invocation of next
function of the Primer, with an instantiated label that matches a parameterized
label, triggers the invocation of the inst function of the Explorer with the binding
that results from the match.

210

6

CHAPTER 6. SYMBOLIC EXTENSIONS

Manager Adapter Instantiator Primer Explorer

start()

start()

〈i, ∅, 〈〉〉

PS({〈i, ∅, 〈〉〉})

start()

initializationinitialization

in(PS({〈i, ∅, 〈〉〉}))

menu(〈i, ∅, 〈〉〉)

{〈〈?init(n:nat)〉, 〈s, {n}, 〈n〉〉, {n}〉}

{〈〈?init(n:nat)〉, {n}〉}

computation of possible stimulicomputation of possible stimuli

getInstance(〈〈?init(n:nat)〉)

〈?init(3)〉

instantiation of ninstantiation of n

tryStim(〈?init(3)〉)

〈i, 〈?init(3)〉〉

application of stimulusapplication of stimulus

next(〈PS({〈s, {n}, 〈n〉〉}), 〈?init(3)〉

inst(〈s, {n}, 〈n〉〉, {n 7→ 3})

〈s, ∅, 〈3〉〉

PS({〈s, ∅, 〈3〉〉}),⊥〉

computation of successor statecomputation of successor state

Figure 6.9: Sequence diagrams illustrating interaction between Manager, Primer,
Explorer and Adapter for the music player. We give a simplified view on the
manipulation of the pseudo-state: we do not show that it is actually unfold
that invokes menu to initialize the pseudo-state fields i, o, and nl, and thus
pre-compute the results for in, out etc. Of the pseudo-state we only show the
set of PTS states that it contains, and of those states we only show the fields
that are relevant here, i.e. location, instantiation obligation, and the value of
nsong (the value of cur is not relevant in this sequence).

6.6.6 Implementation Notes

In this chapter we have chosen to use the STS formalism as vehicle to explain
our symbolic extensions. We represented the PTS formalism as an extended
STS to avoid confusing the reading with additional notation and formalisms.

Our implementation of the symbolic extensions extends beyond what we de-
scribed, to allow for “richer” modelling languages; it is inspired by the ETS

6.7. TIMED TESTING WITH A PTS

6

211

Table 6.4: Overview of symbolic Explorer implementation instances.

nr name main author publications case studies

1 SmileExp Axel Belinfante - -
2 spex Jeroen van Yperen [vY07] -
3 ta2torx Henrik Bohnenkamp [BB07, BB05] Sec. 8.1.5
4 STSimulator Lars Frantzen - [vSY13]

formalism [Eer94]. In particular, the parameterized labels in our implementa-
tion consist of tuples 〈g, t, ϕ〉, where each ti in t is a term in normal form. Our
Explorer implementations use a naming scheme for the variables in the para-
meterized labels, to facilitate the pre-determinization, by avoiding that we have
parameterized labels that only differ in variable names. In the Primer, we check
whether an instantiated label is a candidate instance of a parameterized one,
by matching the terms of instantiated labels with the terms of parameterized
ones. When such matching succeeds, the result is a valuation for the variables
in the parameterized label; such valuation is then used with the Explorer next
function.

Implementations In Table 6.4 we give an overview of symbolic Explorer im-
plementation instances.

SmileExp uses Smile [Eer94] to explore the transition system of a LOTOS
model symbolically. It was developed to study the feasibility of testing with an
symbolic Explorer; it was not used in practice.

spex uses Spin [Hol03] to explore the transition system of a Promela model
symbolically. It was developed as a master thesis; it has been used at model-
based testing company Axini [axi].

ta2torx gives access to the (timed) transition system of a network of timed
automata. It has been used in a case study to test a Myrianed protocol entity,
see Section 8.1.5.

STSimulator gives access to the transition system of an STS. It has been
used in case studies, see [vSY13].

6.7 Timed Testing with a PTS

In [BB05, BB07] we discuss the extension of our tool to timed testing. Here
we give an overview of our approach. With the time-aware ta2torx Explorer (see
below) we test with tiocoM .

Also for timed testing, we use a PTS as underlying formalism. In this PTS,
each transition label has a parameter that represents time. A constraint on this
time parameter gives the time-interval in which the interaction, represented by
the label, should take place. The time-interval just consists of an lowerbound
and an upperbound. The upperbound can be infinity.

For each interaction with the SUT, the Adapter creates a label representation—
either as acknowledgement of the stimulus that was applied, or as representation

212

6

CHAPTER 6. SYMBOLIC EXTENSIONS

of an observation. In these instantiated labels, the time parameter has been in-
stantiated such that it is a timestamp for the moment at which the interaction
took place.

After each interaction, as part of the work done for the next function, the
timestamp is fed back to the Explorer, such that observations can be checked,
and, such that it can be checked whether a stimulus was applied in time: it
may be the case that a stimulus is applied too late, in which case there may not
be successor behaviour, and the test run stops with a verdict that indicates the
reason for the premature end of the test run.

Timed-testing with our architecture To adapt our architecture for timed
testing, we need

1. a time-aware Explorer,
2. a time-aware Instantiator, and
3. a time-aware Adapter.

Ad 1: time-aware Explorer The time-aware Explorer provides access to a
PTS that contains time parameters in the labels. The ta2torx Explorer, men-
tioned in Section 6.6.6, and discussed in [BB05, BB07], uses a network of timed
automata as model.

Ad 2: time-aware Instantiator The time-aware Instantiator just picks a ran-
dom moment in the time-interval. To avoid that it chooses a moment in time
that has already passed, it consults the system clock whenever it has to instan-
tiate. To be able to deal with an upperbound of infinity, it is configured with a
maximum delay.

Ad 3: time-aware Adapter For stimuli, the time-aware Adapter is given an
instantiated label. It consults the system clock, to decide how long it must wait
before trying to apply the stimuli. When the stimulus has been applied, the
Adapter returns a label to acknowledge the application of the stimulus, like in
the un-timed case. However, the Adapter does not return the label exactly as it
was given: in the label that it returns, the time parameter has been adjusted to
represent the moment at which the stimulus was applied. In this way, (via the
Primer) the Explorer is informed when the stimulus was applied.

Also for observations, the Adapter returns a label, in which the time-parameter
represents the moment at which the observation was received.

The JTorX builtin Adapter instances for toy implementations have a time-
aware mode, which can be enabled in the JTorX GUI.

Application We used JTorX with the ta2torx Explorer in a case study to test
a Myrianed protocol entity, see Section 8.1.5.

This concludes our description of timed testing.

6.8. SUMMARY

6

213

6.8 Summary

In this chapter we introduced the APTS formalism, and showed how we can use
it in our architecture to support symbolic models.

7

Chapter 7

Model-based specification,
implementation and testing
of a software bus

In this chapter we describe a medium-sized project where JTorX has been used
effectively, namely the development of a software bus, called the XBus. The
XBus was developed using formal engineering, i.e. by using formal methods dur-
ing the design, implementation and testing phases of the development; model-
based testing with JTorX was one of multiple techniques used.

The experiences that we report on were obtained during two phases: a first
phase—an internship carried out at Neopost Inc. in the summer of 2009, and
a second, post-internship analysis phase that took place at the university. In
the first phase the XBus was developed, an mCRL2 model was created and
simulated (Reqs 18, 19, 20), and used for on-line model-based testing of the
XBus implementation (Reqs 4, 12, 17, 23, 24). In the second phase we performed
model checking of the XBus protocol (Req 20), and measured the quality and
performance of the model-based testing process (Reqs 23, 24). In both phases,
the models used for model-based testing had an unbounded state space (Req 6);
for model-checking, finite versions of these models were used.

Bibliographical note This chapter is derived from [SBSM14]. In the de-
scription of the work done during the first phase, i.e. during the internship at
Neopost, we typically write “we”, even when that work was carried out by the
person doing the internship: Marten Sijtema, at that time a Computer Science
MSc. student, and the first author of the related papers [SSBM11, SBSM14].

7.1 Introduction

Formal methods refer to a rich palette of mathematically rigorous modelling,
analysis and testing techniques, including formal specification, model checking,

215

216

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

theorem proving, extended static checking, run-time verification, and model-
based testing. The central claim made by the field of formal methods is that,
while it requires an initial investment to develop rigorous models and perform
rigorous analysis methods, these pay off in the long run in terms of better, more
maintainable code. While formal engineering has been a success in large and
safety-critical projects [HKL+10, FGM+10, KR10, Lev00, LK00], here we in-
vestigate this claim for this more modest and non-safety-critical project: model-
based specification, implementation and testing of the XBus.

7.1.1 First phase: Developing the XBus

The XBus Neopost Inc. is one of the largest companies in the world produ-
cing supplies and services for the mailing and shipping industry, like franking
and mail inserting machines, and the XBus is a software bus that supports
communication between mailing devices and software clients. The XBus allows
clients to send XML-formatted messages to each other over TCP (the X in XBus
stands for XML), and also implements a service-discovery mechanism. That is,
clients can advertise their provided services and query and subscribe to services
provided by others.

We have developed the XBus using the classical V-model [Roo86] (see Fig. 7.1
on page 221), and used formal methods during the design and testing phase.
The total running time of this project—i.e. of the internship—was 14 weeks.
An important step in the design phase was the creation of a behavioural model
mdev of the XBus, written in the process algebra mCRL2 [GKM+08, mCR].
We chose mCRL2 because of its powerful data types and function declarations,
which turned out to be very helpful for our purpose. Model mdev pins down the
interaction between the XBus and its environment in a mathematically precise
way. We simulated the model to check its validity, which greatly increased our
understanding of the XBus protocol and made the implementation phase a lot
easier. Due to time-constraints we did not use model-checking during XBus
development in this phase (model-checking was used in the second phase, as we
discuss in Section 7.1.2).

Testing the XBus After implementing the protocol, we tested the imple-
mentation, i1, distinguishing between data and protocol behaviour. Data be-
haviour concerns the input/output behaviour of a function and is static, i.e.,
independent of the order of methods calls. Protocol behaviour relates to the
business logic of the system, i.e. the interaction between the XBus and its cli-
ents. Here, the order in which protocol messages occur crucially determines the
correctness of the protocol. Therefore, we used unit testing to test the data
behaviour and model-based testing for the protocol behaviour.

Model-based testing with JTorX We used JTorX to test the implement-
ation against mCRL2 model mdev. During the design phase, we already catered
for model-based testing: we designed for testability by taking care that at the
model boundaries, we could observe meaningful messages. Moreover, we made
sure that the boundaries in the mCRL2 model matched the boundaries in the

7.1. INTRODUCTION

7

217

architecture. To be able to connect JTorX to the implementation, we had to
write an adapter (see Chapter 5). The adapter translates between the protocol
messages from the mCRL2 model and physical messages in the implementa-
tion. Keeping the adapter simple was an important design decision for us. We
achieved this by keeping a close correspondence between model mdev and the
system architecture. Again, our design for testability greatly facilitated the
development of the adapter.

After unit testing and repairing the issues uncovered by it, we ran JTorX (in
random on-line testing mode) against implementation i1 and mCRL2 model mdev

(once configured, JTorX runs completely automatically) and found five subtle
bugs. We believe that it is much harder to discover these bugs with unit testing,
because they involve the order in which protocol messages should occur. After
repairing them, we ran JTorX several times for more than 24 hours, without
finding any more errors in i1 (in the second phase, we found errors in i2, the
implementation that was developed and tested in that phase, see Section 7.1.2
Ad 3). After an acceptance test, the XBus was released for use in Neopost.
Unfortunately, we do not have information about Neopost’ experience with the
XBus.

7.1.2 Second phase: Analysis

The development of the XBus, carried out in the first phase, supported the
central claim made by Formal Methods—the use of rigorous methods during
the development is cost effective. Nevertheless, it left room for questions: how
thorough was the process carried out in 14 weeks? How good was the model—
this is important, since the model-based test process is as good as the model.
Would model checking have helped to produce better code? Was the testing
thorough enough; what can we say about coverage? In the second phase, we
investigated these questions. In particular, we focused on (1) the added benefits
of model checking, (2) the quality of the models, and (3) test coverage.

Ad 1: The added benefits of model checking We started out by model
checking the model mdev that was created during the development phase. We
created a series of new models with different features. Firstly, we needed to
change mdev to make it finite, yielding the model mdev,fin: mdev allows an un-
bounded number of client connections, and uses arbitrary integers as connection
identifiers—this is not a problem for (on-line) testing, but for model checking it
is, as it leads to an infinite state space.

We used evaluator4 [CAD12] from the CADP toolset to model check the
XBus requirements obtained during the first phase; these requirements were
formalised in the logic MCL [MT08], which is an extension of the µ-calculus
with data. The main reason that we chose evaluator4 is that it allows reasoning
over the individual parameters of the messages (labels). We used the mCRL2
and LTSmin toolsets to obtain, from the mCRL2 model, the binary coded graph
(.bcg) file that evaluator4 needs. Model checking did not uncover errors in model
mdev,fin. With hindsight, this is not so surprising, because model mdev had been
used extensively already in simulation and model-based testing, and because

218

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

of the simple structure of the model, which we describe in Section 7.4.1 on
page 228. We did find mdev,fin (and hence mdev) to be incomplete. In particular,
those requirements related to so-called bad weather behaviour are not present:
invalid or unexpected messages were not modelled, and neither were empty lists
of services.

Compared to testing, the model checking process was very labor intensive:
i.e. reworking the models, formalising requirements, playing round with tricks
to reduce the state space and making sure that the time needed for model
checking was manageable. This took us 4 person weeks. The entire model-based
testing approach, i.e. writing the model mdev, creating the adapter, executing
and analysing the tests, took 3 person weeks.

Ad 2: Model quality We included the additional requirements that we
uncovered during our model checking activities and created a family of models,
all in mCRL2, as shown in Fig. 7.5 on page 231. For each model, we constructed
an infinite variant (for testing) and a finite one (for model-checking). Also,
we investigated the use of queues: model mdev is simple in the sense that it
neither models the incoming message queue, nor the fifo-queue-like behaviour
of the TCP connections between the XBus server and its clients. We show
that including these queues in the model does not affect test coverage, but
does significantly increase testing time. Finally, we constructed several model
variants that were more liberal wrt the accepted inputs. An overview of this
family of models is given in Section 7.4.2.

Ad 3: Test coverage Code coverage metrics [Mye79] are standard meas-
ures to evaluate the quality of a test suite: the higher the coverage, the more
faults a test suite can potentially find. We extensively evaluated the thorough-
ness of our testing, by measuring code coverage and model coverage. Since the
original XBus implementation (i1) is proprietary software of Neopost, we had
no longer access to it after the internship. Therefore, we used i2, a carefully
reconstructed implementation. We used branch coverage as our code coverage
metric, i.e. the percentage of all branches in the control flow graph that were
executed during testing. To do so, we instrumented the code of the (reconstruc-
ted) implementation by hand. For model coverage, we used the percentage of
linear process specification (LPS) summands executed. LPSs are a uniformized
representation of mCRL2 models. Complete LPS coverage basically means that
each nondeterministic alternative is executed at least once.

We have extensively analysed model and code coverage from short test runs
(10,000 test steps, 5–30 minutes) and long ones (250,000 test steps, 2–40+
hours), with each of our (infinite) model versions. All the tests were derived
fully automatically by doing a random walk over (the state space of) the model.
We found that the maximal code coverage is typically already reached after 1000
test steps, i.e. after at most two minutes of testing.

We found that, the more complete a model was (wrt requirements or accep-
ted inputs), the higher code coverage could be obtained.

7.2. BACKGROUND

7

219

7.1.3 Our findings

In the first phase, during the internship, writing the model, simulating it, and
testing the implementation with JTorX only took 17% of the total development
time. Therefore, we conclude that the formal engineering approach has been
very successful: with limited overhead, we have created a reliable software bus
with a maintainable architecture. Thus, as in [GVZ01], we clearly show that
formal engineering is not only beneficial for large, complex and/or safety-critical
systems, but also for more modest projects.

In the second phase, during the analysis, after the internship, we found that,
within the limits of the model, the model-based testing that was done during
the project was rather thorough. However, we also found that the model, used
to derive these tests, was not fully complete, and more thorough analysis of the
requirements, during the project would have been desirable. This could have
been achieved with model checking, but at a high cost. We expect that more
light-weight methods that trace the requirements in the model are more cost
effective.

Finally, we experienced that model and code coverage metrics can provide
valuable insight in the quality, effectiveness, and progress of the model-based
testing process. Based on our experiences, we advocate that formal engineering
pays off, and that investing in high-quality models is worth-while. Formal engin-
eering pays off, in the sense that with limited overhead, a reliable software bus
was created. Investing in high-quality models is worthwhile, because the quality
of model-driven development lies within the quality of the model. To do so, we
believe that models should be as complete as possible, i.e. accept all inputs and
include all requirements. Extensive simulation and—though expensive—model-
checking help. Also, we believe that measuring coverage is helpful: if less than
100% code coverage is achieved, then the model should be augmented.

Remainder of this chapter The remainder of this chapter is organised as
follows. Section 7.2 provides the context of the XBus implementation project.
Then, Section 7.3 describes the activities involved in each phase of the devel-
opment of the XBus, including the activities done during the analysis after the
project. Section 7.4 gives the details of modelling, creation of additional models,
and model checking, and Section 7.5 gives the details of model-based testing,
and of code coverage and model coverage analysis. Section 7.6 reflects on the
lessons learn ed in this project. Finally, Section 7.7 presents conclusions.

7.2 Background

7.2.1 The XBus and its context

Neopost Neopost Incorporated [Neo09] is one of the world’s main manu-
facturers of equipment and supplies for the mailing industry. Neopost pro-
duces both physical machines, like franking and mail inserting machines, as
well as software to control these machines. Neopost is a multinational company
headquartered in Paris (France) that has departments all over the world. Its

220

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

software division, called Neopost Software & Integrated Solutions (NSIS) is loc-
ated in Austin, Texas, USA. This is where the XBus implementation project
took place.

Shipping and franking mail Typically, the workflow of shipping and frank-
ing is as follows. To send a batch of mail, one first puts the mail into a folding
machine, which folds all letters. Then an inserting machine inserts all letters
into envelopes1 and finally, the mail goes into a franking machine, which puts
appropriate postage on the envelopes and keeps track of the expenses.

Thus, to ship a batch of mail, one has to set up this process, selecting
which folding, inserting and franking machine to use and configure each of these
machines, setting the mail’s size, weight, priority, and the carrier to use. These
configurations can be set manually, using the machine’s built-in displays and
buttons. More convenient, however, is to configure the mailing process via one
of the desktop applications that Neopost provides.

The XBus To connect a desktop application to the various machines, a soft-
ware bus, called the XBus, has been developed. The XBus communicates over
TCP and allows clients to discover other clients, announce provided services,
query for services provided by other clients and subscribe to services. Also,
XBus clients can send self-defined messages across the bus.

When this project started, an older version of the XBus existed, called the
XBus version 1.0. The goal of our project was to re-implement the XBus while
maintaining backward compatibility, i.e. the XBus 2.0 must support XBus 1.0
clients. Key requirements for the new XBus were improved maintainability and
testability.

7.2.2 The specification language mCRL2

The language mCRL2 [GKM+08, mCR] is a formal modeling language for de-
scribing concurrent systems, developed at the Eindhoven University of Techno-
logy. It is based on the process algebra ACP [BK85], and extends ACP with
rich data types and higher-order functions. The mCRL2 toolset facilitates sim-
ulation, analysis and visualisation of behaviour; as we discussed in Section 4.2.4,
it also contains the lps2torx tool (Explorer component) which enables model-
based testing against mCRL2 models. Specifications in mCRL2 start with a
definition of the required data types. Technically, the behaviour of the system is
declared via process equations of the form X(x1 : D1, x2 : D2, . . . , xn : Dn) = t,
where xi is a variable of type Di and t is a process term, see the example in Sec-
tion 7.3.2. Process terms are built from (1) (potentially parameterised) actions;
(2) operators: alternative composition, sum, sequential composition, conditional
choice (if-then-else), parallel composition; and (3) encapsulation, renaming, and
abstraction. Actions represent basic events (like sending a message or printing
a file) which are used for synchronisation between parallel processes. Apart

1Alternatively, a combined folding/inserting machine can be used.

7.2. XBUS DEVELOPMENT AND POST CASE-STUDY ANALYSIS

7

221

3. Implementation (7.3.3) 4. Unit Testing (7.3.4)

2. XBus Design (7.3.2)
a. Developing architecture (class diagram)
b. Specifying business logic (formal model)

1. XBus Requirements (7.3.1)

5. Integration Testing (7.3.5)
(model-based)

6. Acceptance Testing (7.3.6)

Figure 7.1: The V-model used for development of XBus; parenthesized numbers
refer to sections.

from analysis within the tool set, mCRL2 interoperates with other tools: spe-
cifications in mCRL2 can be model checked via the CADP model checker by
generating the state space in .aut or .bcg format, they can be proven correct
using e.g. the theorem prover PVS, and they can be tested against with JTorX.
For model checking, we used the evaluator4 tool from the CADP tool set. The
tool evaluator4 is able to check whether a model-checking formula, given in its
input language MCL, holds for (the state space generated from) an mCRL2
model m.

7.3 Development of the XBus and post case-
study analysis

Below, we describe all the activities in the development (phase 1; during the in-
ternship) and analysis (phase 2; after the internship) of the XBus. We developed
the XBus according to the classical V-model ([Roo86], see Fig. 7.1). For each
step in the V-model we report the activities carried out in both phases—each
section below corresponds to one step in the V-model, see Fig. 7.1 again.

During the development, the overall test strategy was to test data behaviour
using unit testing, and to test protocol behaviour, i.e. the interaction between
XBus and its clients, using model-based testing. We chose to use model-based
testing for protocol behaviour, because here the dynamic behaviour, i.e., the
order of protocol messages, crucially determines the correctness of the protocol.
We only started with model-based testing of protocol behaviour after we had
completed unit testing of data behaviour.

7.3.1 XBus requirements

First phase We obtained the functional and nonfunctional requirements by
studying the documentation of the XBus version 1.0 (a four page English text
document) and by interviewing the manager of the XBus development team.

The functional requirements express that the XBus is a centralised software
application which can be regarded as a network router: clients can connect and
disconnect at any point in time; connected clients can send XML-formatted

222

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

1. XBus messages are formatted in XML, following the same Schema as the XBus 1.0.

2. Clients connecting to XBus perform a handshake with the XBus server. The hand-
shake consists of a Connreq—Connack—Connauth sequence.

3. Newly connected clients are assigned unique identifiers.

4. Clients can subscribe to be notified when a client connects or disconnects.

5. Clients can send messages to other clients with self-defined, custom, data. Such
messages can have a self-defined, custom message type. In addition there are protocol
messages for connecting, service subscription, service advertisement.

6. Clients can subscribe to receive all messages sent by other clients that are of one or
more given types (including self-defined messages), using the Sub message.

7. Clients can announce services that they provide, using the Servann message.

8. Clients can inquire about services, by specifying a list of service names in a Servinq

message. Service providers that provide a subset of the inquired services will respond
to this client with the Servrsp message.

9. Clients can send private messages, which are only delivered to a specified destination.

10. Clients can send local messages, which are delivered to the specified address, as well
as to clients subscribed to the specified message type.

Table 7.1: Overview of XBus requirements obtained in the first phase.

11. Invalid messages are discarded.

12. Unexpected messages are discarded.

13. Servann, Servinq and Servrsp messages with an empty list of services are not broadcast
to other clients.

14. Notif local messages are not broadcast to source or destination of a Localreq message.

Table 7.2: Overview of additional XBus requirements obtained in the second
phase.

messages to each other. Moreover, clients can discover other clients, announce
services, and query for services that are provided by other clients. Also, they can
subscribe to services, and send self-defined messages to each other. Table 7.3
on the next page gives an overview of the XBus protocol messages. Table 7.1
summarises the functional requirements; important non-functional requirements
are testability, maintainability and backwards compatibility with the XBus 1.0.

Second phase While formalising the requirements in Table 7.1 and model
checking them on model mdev, we realised that so-called bad weather behaviour
was not present in mdev nor in the requirements. Therefore, we extended both
the model, and the list of requirements. Table 7.2 shows the additional require-
ments, pinning down what to do with unexpected inputs.

7.3.2 XBus design

First phase In the first phase, the design step encompassed two activities:
we created

7.3. XBUS DEVELOPMENT AND POST CASE-STUDY ANALYSIS

7

223

Connection establishment and release
Connreq input (implicit) implied by a client establishing a TCP connection with

XBus.
Connack output sent from XBus to a client just after the client establishes a TCP

connection with the XBus, as part of the handshake.
Connauth input sent from a client to the XBus to complete the handshake.
Discreq input (implicit) implied by a client closing its TCP connection with XBus.

Service announcement and inquiry
Servann input sent (just after connecting) from a client c to XBus, which broadcasts

it to all other connected clients, to announce the services provided
by c.

Servinq input sent (just after connecting) from client to XBus, which broadcasts
it to all other connected clients, to ask what services they provide.

Servrsp output sent from a client via XBus to another client, as response to Servinq,
to tell the inquirer what services the responding client provides.

Event subscription and notification
(Un)Sub input sent from a client to XBus, with as parameter a list of (custom)

message types, to (un)subscribe receipt of all messages of the given
types.

Notifconn output sent from XBus to clients that subscribed to connect notifications.
Notifdisc output sent from XBus to clients that subscribed to disconnect notifications.
Notif local output sent from XBus to clients that subscribed to non-private messages.

Messages to other clients
Localreq input sent from client to XBus, to be delivered to indicated client (as

Localind), and to other clients that have subscribed to the given mes-
sage type (as Notif local).

Localind output sent from XBus to clients, as consequence of a received Localreq.
Privreq input sent from client to XBus, to be delivered to indicated client only.
Privind output sent from XBus to clients, as consequence of a received Privreq.

Table 7.3: Overview of XBus protocol messages.

(A) an architectural design, given by the UML class diagram in Fig. 7.2 on
the following page, and

(B) an mCRL2 model, mdev, describing the protocol behaviour.

We used the mCRL2 simulator to validate the design and model mdev. As stated,
time constraints prevented us to use model-checking in this phase.

The architectural design and mCRL2 model mdev were developed in parallel.
Central in their design are the XBus messages: each message translates into a
method in the class diagram and into an action in mCRL2 model mdev. The
UML diagram specifies which methods are provided, while the mCRL2 model
mdev describes the order in which actions should occur, i.e. the order in which
methods should be invoked. Thus, the architectural model in UML and the
behavioural model in mCRL2 are tightly coupled and complementary.

Ad A: Architectural design The architecture of the XBus is given in
Fig. 7.2 on the next page, and is based on a standard client-server architec-
ture. Thus, the XBus has a client side, implemented by the XBusGenericClient,
and a server side, implemented by the XBusManager. The latter handles incom-
ing protocol messages and sends the required responses. Both the server and

224

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

�i�ProtocolCommon

�i�ProtocolServer �i�ProtocolClient

Protocol

XBusManager

JTorXTestableXBusManager

�i�IXBus

0..*clients

XBus

ConnectionManager

�i�ConnectionListener

0..*listeners

TCPConnectionListener

�i�Connection
0..*

conns

TCPConnection

Communications�Server side�Engine

XBusGenericClient

�Client side�Client

�i�IXBusMessage XBusMessage

Messages

Figure 7.2: High level architecture of the XBus system. It contains a server side
package, and a client side package. Furthermore, it has functionality for TCP
connections and XBus messages. Both server and client implement the Protocol
abstract class. All interfaces are indicated with �i�.

the client use the Communications package, which implements communication
over TCP. As illustrated in Fig. 7.3 on the facing page, the ConnectionManager
class in the Communications package uses a queue data structure as a buffer for
incoming messages. When a message is handed over from the Communications
package to its user—in the server this user is the XBusManager—it is popped
from the queue.

We catered for model-based testing already in the design: class XBusManager
has a subclass JTorXTestableXBusManager. During testing, this subclass over-
rides the send message of class XBusManager, allowing JTorX to have more
control over the state of the XBus server; see Section 7.3.5 for more details.

Ad B: The mCRL2 model We modelled the required XBus behaviour as an
mCRL2 process. We profited from mCRL2’s concise notation for enumerated
types, records, and lists, and the ability to define functions.

A key decision in creating a model is what to model, and to determine the
abstraction level and model boundaries. We chose to model the XBusManager,
i.e. the handling of the messages that come into the server; this is the most
critical part of the XBus functionality. Thus, the Communications package is
not included in model mdev, and neither are the internal components like the
TCP-sockets, nor the queue that the Communications package uses as a buffer
for incoming messages. Thus, for each message that arrives at the server, mdev

models how to handle this message: it will either send a reply, relay, or broadcast
the message. Then, mdev will update its internal state: in order to determine
the correct response, the server keeps track of the client’s state by keeping an
internal list of client objects.

In Section 7.4.1 we discuss the model in more detail.

7.3. XBUS DEVELOPMENT AND POST CASE-STUDY ANALYSIS

7

225

c1 · · · cn XBusManager

ConnectionManager

XBus

TCP

· · ·

· · ·

data
queue

Figure 7.3: Communication between clients c1, . . . , cn and XBus. We show how
the XBus is decomposed into XBusManager and ConnectionManager. Incoming
messages are collected in a queue in the ConnectionManager—here drawn as
the left connection between XBusManager and ConnectionManager. The XBus-
Manager processes these messages one by one; it sends responses using methods
offered by the Communications package—this is represented by the arrow from
XBusManager to ConnectionManager.

Second phase In the second phase, we evaluated the quality of model mdev,
where we looked at both completeness and correctness—using model checking—
of the model. When we found that model mdev was incomplete—i.e., not all
requirements are represented in it—we created additional models, and used
model-checking to check their correctness. We elaborate on these activities, and
on the additional models, in Section 7.4.2.

7.3.3 Implementation

First phase In the first phase, we created implementation i1, at Neopost,
for use by Neopost. Implementation i1 was only created once we had sufficient
confidence in the quality of the design—to a large extent due to modelling
and simulation. As mentioned in Section 7.1.1, we kept a close correspondence
between model mdev and the system architecture. The programming language
used was C#—use of .NET is Neopost company policy. Together with XBus
server i1, also an XBus client library was implemented, to ease construction of
XBus clients. As we will see in Section 7.3.5, this client library was also used
during model-based testing of XBus server i1.

Second phase Since implementation i1 is proprietary software of Neopost,
it was not available during the second phase. Therefore, we carefully created
a second implementation, i2, to allow analysis of the thoroughness of model-
based testing. Implementation i2 was written in the programming language
Go [The12]. Implementation i2 has the same functionality as i1, except that i2
uses labels from the model, rather than XML formatted messages.

226

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

Model JTorX Adapter XBus

pass/fail

Figure 7.4: Testing XBus with JTorX playing the role of 3 clients.

7.3.4 Unit testing

First phase In the first phase, implementation i1 was tested using unit tests
as described below. Because the overall test strategy was to test data behaviour
using unit testing, and to test protocol behaviour using model-based testing,
the classes in the Communications and Messages packages were tested using unit
testing; details are out of scope for this thesis. For the Communications package,
unit tests were written to test the ability to start a TCP listener and to connect
to a TCP listener, to test the administration of connections, and to test transfer
of data. For the Messages package, unit tests were written to test construction,
parsing and validation of messages. The latter was tested using both correct
and incorrect messages.

Each error that was found during unit testing was immediately repaired.

Second phase In the second phase, no unit tests were run—implementation
i2 was only tested using model-based testing.

7.3.5 Model-based integration testing

For both implementations, we used model-based testing for the business logic,
i.e. to test the interaction between XBus and its clients. In the first phase,
for implementation i1, we did this after we had completed unit testing of data
behaviour.

General test set up To test whether the XBus implementations interact
correctly with their environment, we first have to decide on a test set up. In
both phases, we used the same test set up with three XBus clients, see Fig. 7.4
(although, as we show, the chosen test architecture differed). Three XBus clients
is the smallest number that allows testing interesting scenarios that involve
multiple clients. Thus, JTorX plays the role of three XBus clients, which are
able to perform all protocol actions described in Section 7.3.1.

Typically, such scenarios require one client to trigger the activity—for ex-
ample by connecting or disconnecting, or by sending a Servinq message. A second
client is necessary to cooperate in the activity, i.e. to witness or to realise the
effect—by receiving a message and, possibly, responding to it. The third client
can be used either to show the effect on a client that does not cooperate in the
activity, or to show that the XBus is correct when multiple clients do cooperate
in the activity. Typically, a single test run contains (many) instances of either
of these roles for the third client.

7.3. XBUS DEVELOPMENT AND POST CASE-STUDY ANALYSIS

7

227

It is our experience that model-based testing can easily generate long test
runs, in which, at least for models that are as small as the one in this project,
each possible scenario that can take place, does take place, multiple times. We
come back to this in the discussion of (code- and model) coverage, in Section 7.5.

Dealing with potential message reordering As mentioned above, what
we modelled is the XBusManager. However, the XBusManager implementation
that we want to test is just one component of the XBus server. So, as we
have seen more often when applying model-based testing (see e.g. Section 4
of [BFdV+99]), we could not connect the test tool directly to the implementation
that we wanted to test (the XBusManager), at interfaces that coincide with
the model boundaries. An obvious way to test the XBusManager, is via the
XBus server in which it is contained, and interact with the XBus server via
TCP connections—one for each XBus client impersonated by JTorX that has a
connection to the XBus. However, messages that are sent at approximately the
same moment, in the same direction, over different TCP connections between
the XBus and its clients (whether impersonated or not), may overtake each
other.

For stimuli, JTorX is in control: it can, if necessary, reduce the rate at
which stimuli are sent to the point that, when the next stimulus is sent, the
previous one will already have been received by the XBus. In both phases we
just assumed that, compared to the network, JTorX is slow, such that the pace
at which JTorX sends stimuli is slow enough to avoid one stimulus overtaking
another one.

We used different solutions to deal with the possibility that responses would
overtake each other—if we would not have dealt with this possibility, the tester
might have emitted a fail verdict to a sequence of responses whose order was
scrambled by the TCP channel. In the first phase, we extended the XBus
implementation with an additional interface that provided JTorX access to the
responses in the order in which the XBusManager produced them. In the second
phase, instead, we relaxed the model, to not only accept the responses to a single
stimulus in the single order in which they were produced by the XBusManager,
but also accept any possible reordering. We discuss details in Section 7.5.

First phase After unit testing had been completed, and all errors that were
found had been repaired, we tested implementation i1 against model mdev using
JTorX, to find errors. We found 5 bugs. Typically, a bug was found within
5 minutes after the start of a test. All these bugs concern the order in which
protocol messages must occur. Therefore, it is our firm belief that such bugs are
much harder to discover with unit testing. After these bugs had been repaired,
we ran JTorX several times for more than 24 hours, without finding any more
errors in i1 (later, we found a few more bugs when we tested i2—recall that i2 is
a separate implementation). In Section 7.5.1 we discuss the details of the test
architecture that we used, and of the bugs that we found.

Second phase In the second phase, we tested implementation i2 against all
(infinite) models that we created in that phase, not in order to find errors,

228

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

but to investigate the thoroughness of the testing process, by looking at code
coverage and model coverage. We did not test i2 against model mdev, because
the different solution (for responses that might overtake each other) led to a
different test architecture than in the first phase, one that was not consistent
with mdev. Among the models that we did test i2 with, though, is model morder

dev :
this model was derived from mdev, by extending it to cater for the slightly
different test architecture. We ran tests of 10,000 steps, and of 250,000 steps,
fully automatically.

Regarding code coverage, we found that with all models the maximal cov-
erage was already reached in the test runs of 10,000 steps. With model morder

dev

we obtained 79% code coverage. This is no surprise: we know that morder
dev does

not contain all possible messages, and thus certain stimuli can not be gener-
ated from it. With the most complete model, mreq,ie

opt , we obtained 100% code
coverage. The coverage obtained with the other models was between these two
numbers. Regarding model coverage, we saw that with each model we reached
the maximal coverage possible, in the runs of 250,000 steps. However, we needed
many more test steps to reach maximal model coverage, than to reach maximal
code coverage.

In Section 7.5.2 we discuss the details of the test architecture that we used,
and the test that we ran; in Sections 7.5.3–7.5.5 we discuss in more detail the
coverage that we obtained; and in Section 7.5.6 we discuss the test execution
time.

7.3.6 Acceptance testing

First phase Acceptance testing was done in the usual way: we organised a
session with the manager of Neopost’s ISS group, and showed how the XBus
2.0 implementation worked. In particular, we demonstrated that it implements
the features required in Section 7.3.1.

Second phase In the second phase no acceptance testing was performed.

7.4 Modelling & Model Checking of the XBus

This section zooms in on the modelling and model checking activities described
in Section 7.3.2.

7.4.1 The model mdev

As mentioned, the mCRL2 model mdev describes the desired functioning of the
XBusManager package, which is responsible for the handling of XBus messages
and therefore the most central part of the XBus. Internally mdev keeps track
of the state of all connected clients. Based on this state mdev decides, when a
message arrives, how to handle it: send a reply or broadcast, relay it, or simply
ignore it. After handling the message, mdev updates its internal state.

7.4. MODELLING & MODEL CHECKING OF THE XBUS

7

229

1 proc listening(c:Clients) =

2 (sum j:Int.(j >= 0 && j < numClients(c) &&

3 getClientStatus(j, c) == DISCONNECTED)

4 -> (ConnectRequest.ConnectAcknowledge.

5 listening(changeClientStatus(j, c, AWAIT_AUTH)))

6 <> delta

7) + ...

Listing 1: Definition of XBus handling of Connreq message in mCRL2.

Data Model mdev stores its internal data in a single data object: a list of
clients, modelled as a list of data structures. For each client, the following
information is kept.

• an integer that represents the identity of the client;

• the connection status of the client, being either: disconnected, awaiting-
Authentication, or connected;

• the subscriptions of the client, which is a list of message types.

• the services that the client provides, which is a list of integers.

Behaviour Model mdev consists of a single process that operates in the fol-
lowing loop: (1) accept a message, (2) send zero or more responses, (3) update
the internal state, i.e., the client list. After these steps, mdev is ready to process
the next message. For example, when mdev receives a Connreq, it replies with a
Connack, and adds the new client to the client list.

Listing 1 shows a (slightly simplified) part of mdev. The process is named
listening, and has as single parameter the list of clients c. The listing shows
that from each client j that currently is in disconnected state (line 3), the server
is willing to accept a Connreq message, after which it will send out a Connack

message (line 4). Then it will update the status of the jth client in the list and
continue processing via a recursive call (line 5).

Model size The entire model consists of 6 pages (180 lines, 12kB) of mCRL2,
including comments (without comments and blank lines: 142 lines, 9kB). Ap-
proximately half of it concerns the specification of data types and functions over
them; the other half is the behavioural specification.

Model validation During the construction of the model, we intensively used
the simulator from the mCRL2 toolkit. We incrementally simulated smaller
and larger models, using both manual and random simulation. This was done
for two reasons. First, to get a better understanding of the working of the
whole system, and to validate the design already before the implementation
activity was started. This was particularly useful to improve our understanding
of the XBus protocol, of which only a (non-formal) English text description was
available, which contained several ambiguities. Second, to validate the model,

230

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

to be sure that it faithfully represents the design, such that when we use JTorX
to test our implementation against the model, all tests that JTorX derives from
the model will yield the correct verdict.

7.4.2 Model checking & model transformation

Model completeness During the analysis, we carefully studied the require-
ments, and tried to formalise and model check them on model mdev. We found
that model mdev is incomplete, in the sense that not all requirements are repres-
ented in it. Model mdev does not contain self-defined messages, (i.e. no private
or local messages) and thus requirements 5 and 6 can only be checked partially,
and requirements 9 and 10 can not be checked. Also, mdev does not model lists
of services, but only uses a singleton list with exactly one service, and thus re-
quirements 7 and 8 can only be checked partially. Finally, mdev does not consider
the formatting of the messages, and thus requirement 1 can not be represented
in it.

During this analysis we also found that the list of requirements was incom-
plete: it only dealt with good-weather behaviour; bad-weather behaviour was
left unspecified. Thus, requirements 11–14 were added during this analysis.

Family of models In order to incorporate the missing behaviour, we created
a family of mCRL2 models, see Figure 7.5, that incorporate all requirements
except for requirement 1: we do still not consider the XML formatting of the
messages. We added the following two sets of features: (1) self-defined, private
and local messages, and non-empty lists of services (instead of a singleton list
with one element), (2) empty lists of services, invalid messages, and other bad
weather behaviour. We did this in several steps, to control the amount of change
introduced by each step, and to be able to observe (and show) the impact of the
change on state space size (see Table 7.4 on page 232) and testing speed and
coverage (see Sections 7.5.3–7.5.6).

We started with morder
dev , which is the same as mdev except that it caters for the

test architecture from the second phase. We optimised this model to mopt, in
which each state has a unique representation. From mopt, we investigated three
different variants: mreq

opt extends the requirements with the first set of features
mentioned above; mie

opt is an (semi) input-enabled variant of mopt, i.e. when it is
ready to accept input, it accepts any input; finally, mq

opt is obtained from mopt

by adding a message queue. We combined mreq
opt and mie

opt into mreq,ie
opt . Similarly,

we combined mie
opt and mq

opt into mq,ie
opt . As explained below, each model comes

in two variants: an infinite one for testing, and a finite one—indicated via a
subscript fin—for model checking.

Finite state space variants The original model mdev was infinite: it could
accept an unbounded number of clients, where it used an unbounded integer
as connection identifier in the protocol messages. For on-the-fly testing this is
not a problem, because we only generate the portion of the state space that the
system is currently in. For model checking, however, we need the complete state

7.4. MODELLING & MODEL CHECKING OF THE XBUS

7

231

mdev the original model, created in the first phase, during development of
the XBus. This model alternates between accepting an input and
producing the corresponding outputs, and it is not input-enabled:
for example, after a client has sent a Sub message for a certain event
e, a subsequent Sub message for e is only accepted after an Unsub
message for e.

morder
dev obtained from mdev, with one very small change, to accommodate the

slightly different test architecture that we used in the second phase,
as discussed in Section 7.3.5: it allows all possible interleavings of
the outputs produced for a single input.

mopt an optimized version of morder
dev , in which each state has a unique rep-

resentation (finite state space variant of mopt is branching bisimilar
to finite state space variant of morder

dev).

mie
opt obtained from mopt, (semi) input-enabled: when the system accepts

input, all (known) inputs are allowed.

mreq
opt obtained from mopt, by extending it such that all requirements (ex-

cept requirement 1) are represented (but without input enabling,
and: no invalid messages, and no messages with an empty list).

mreq,ie
opt derived from mopt, by extending it such that all requirements (except

requirement 1) are represented, and making it (semi) input-enabled.

mq
opt obtained from mopt, by adding a queue context (but without in-

put enabling, and without extending it to represent additional
requirements).

mq,ie
opt obtained from mq

opt, by making it (semi) input-enabled.

(a)

mdev morder
dev mopt

mreq
opt

mie
opt

mq
opt

mreq,ie
opt

mq,ie
opt

second phasefirst phase

(b)

Figure 7.5: Overview of models discussed in this chapter (a) and relation
between those models (b).

232

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

model #states #transitions #labels

mdev,fin 4,198,090 21,476,661 71
reduced (strong bisimulation) 686,151 1,236,486 71
reduced (branching) 362,958 867,666 71

morder
dev,fin 8,129,310 30,217,652 71

reduced (strong bisimulation) 198,095 425,112 71
reduced (branching) 83,414 194,271 71
mopt,fin 133,857 1,019,196 71
reduced (strong/branching bisim.) 83,414 194,271 71

mie
opt,fin 133,864 1,699,188 71

reduced (strong/branching bisim.) 16,620 69,550 71
mreq

opt,fin 41,264,499 743,604,503 230

reduced (strong bisimulation) 29,586,657 58,206,010 230
reduced (branching bisimulation) 21,643,798 50,263,151 230

mreq,ie
opt,fin 44,643,962 1,538,273,570 245

reduced (strong bisimulation) 4,371,205 12,321,042 245
reduced (branching bisimulation) 3,135,659 11,085,496 245
mq

opt,fin > 467,940,404 > 2,937,662,934 ?

mq,ie
opt,fin > 409,969,247 > 2,726,093,658 ?

Table 7.4: Size of state space of finite version of our models, before and after
reduction. (Only incomplete numbers for models mq

opt,fin and mq,ie
opt,fin available—

state space generation for them aborted, probably because the state space gen-
erator ran out of memory.)

space, and therefore models have to be finite. We achieved this by restricting
the number of times that the server accepts a new client connection to a finite
number, namely three. With three connections we can trigger the majority of
the interesting scenarios and verify the requirements. Still, the number is low
enough to allow state space generation. Table 7.4 shows the sizes of the state
spaces of these model variants.

Model optimisation To make model checking feasible, we needed to optim-
ise the model. Thus, we produced the optimised model, mopt, because in the
original model, mdev, a single event—a client connecting to the server—could
result (non-deterministically) in multiple different configurations of the client
administration data structures. This badly affected state space generation: it
took several hours, whereas with model mopt,fin it took in the order of minutes.
As discussed in Section 7.5.6, the speed of testing with JTorX is influenced in
a similar way. The optimised model mopt is almost fully deterministic, which
greatly reduces the work of JTorX’ on-the-fly determinization algorithm.

Model correctness We checked Requirements 2, 3, 4, 7 and 8 on model mopt

and on model mreq,ie
opt , using the evaluator4 tool of the CADP tool set. We found

that these requirements are all satisfied by the model.
To investigate feasibility of checking the other requirements on model mreq,ie

opt ,
we also checked requirements 9 and 10 on it, and checked requirement 7 with
messages that contain a list of two services. Listing 2 shows (some) of the
properties that we used to check requirement 2.

7.5. MODEL-BASED TESTING OF THE XBUS

7

233

1 (* each ConnectRequest is followed by a ConnectAcknowledge *)

2 [true* . ConnectRequest] < { ConnectAcknowledge ?m:Nat } > true

3
4 (* each ConnectAcknowledge for a connection m

5 is followed by a corresponding ConnectAuthenticate *)

6 [true* . { ConnectAcknowledge ?m:Nat }]

7 < { ConnectAuthenticate !m } > true

8
9 (* if , after sending a ConnectAcknowledge for connection m,

10 the server does not receive a corresponding ConnectAuthenticate ,

11 it will not send any other message on the connection *)

12 [true* . { ConnectAcknowledge ?m:Nat }]

13 [(not { ConnectAuthenticate !m })* .

14 ({ ServiceAdvertisementEvent !m ?n:Nat }

15 | { ServiceEnquiryEvent !m ?n:Nat }

16 | { Subscribe !m !" mConnectEvent" }

17 | { Subscribe !m !" mDisconnectEvent" }

18 | { Unsubscribe !m !" mConnectEvent" }

19 | { UnsSubscribe !m !" mDisconnectEvent" }

20)

21] false

Listing 2: MCL formulas—input for model checker evaluator4—used to verify
Requirement 2.

For those requirements that we checked, we typically formulated and checked
multiple formulas, to verify a single requirement. For example, for requirement 9
we not only tried to verify that the intended destination receives the private
message that is sent to it, but also that a client c only receives a private message
when there was a client that sent that message with c as destination.

7.5 Model-Based Testing of the XBus

This section describes the model-based testing activities from Section 7.3.5 in
more detail. We focus on (1) test architecture, (2) faults discovered, and (3) test
coverage.

7.5.1 Model-based integration testing in the first phase

Test architecture We used the test architecture from Fig. 7.6 on the follow-
ing page to test implementation i1. We wanted to test the XBusManager, but
we could not access it directly. We accessed it via a test context : everything
between the adapter and the XBusManager. We provide stimuli to the XBus-
Manager using three instances of XBusGenericClient (c in Fig. 7.6), each of which
is connected to the XBus via its own TCP connection. We observe the responses
from the XBus not via the XBusGenericClient, but via a direct (testing) inter-
face that has been added to XBus—t in Fig. 7.6. This interface is provided by
the JTorXTestableXBusManager in the Engine package, see Fig. 7.2 on page 224.
JTorXTestableXBusManager overrides the function that XBus uses to send a
message to a specified client: instead, it logs the message name and relevant

234

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

Model JTorX Adapter XBusManager

ConnectionManager
t

TCP

c c c

Figure 7.6: Test Architecture used in the first phase: JTorX provides stimuli
to XBus via generic clients (c), and observes responses via test interface (t),
both over TCP. Disadvantage: we have extended XBus with test interface t.
Advantage: we do not have to extend the model with FIFO queues to deal with
possible reordering of XBus responses by TCP.

parameters in the textual format that JTorX expects. Additional glue code—
the adapter—provides the connection between JTorX and the XBusGenericClient
instances on the one hand, and between JTorX and test interface t on the other
hand. From JTorX, the adapter receives requests to apply stimuli, and from test
interface t, it receives observed responses. The adapter forwards the received
responses to JTorX without additional processing. For each received request
to apply a stimulus, the adapter uses XBusGenericClient methods to construct a
corresponding XBusMessage message, and send it to the XBus server (except for
the Connreq message, for which XBusGenericClient only has to open a connection
to XBus).

The adapter is implemented as a C# program that uses the Client pack-
age (see Fig. 7.2) to create the three XBusGenericClient instances, which in
turn use the Communications package to interact with the XBus. The main
functionality implemented in the adapter is the mapping between XBus mes-
sages and the corresponding XBusGenericClient methods, and the corresponding
XBusGenericClient instances. Due to the one-to-one mapping that exists between
these—by design, recall Section 7.3.2— implementing this mapping was rather
straightforward.

Also JTorX and the adapter communicate via TCP: the adapter works as a
simple TCP server to which JTorX connects as a TCP client.

Although it may seem that the Communications package does not play a
role during model-based testing with this test architecture—also because we
mentioned that we excluded it from the model—this package certainly is tested
during model-based testing, as follows. The Communications package is used
normally in the XBus to receive the messages that clients send to it. Moreover,
the one functionality of the Communications package that is not used in the XBus
itself in this test architecture—the functionality to send messages over TCP—is
used by the XBusGenericClient instances that are used to send the stimuli to the
XBus.

7.5. MODEL-BASED TESTING OF THE XBUS

7

235

Figure 7.7: Screen shot of the configuration pane of JTorX, set up to test XBus.
JTorX will connect to (the adapter that provides access to) the system under
test via TCP on the local machine, at port 1234. The bottom two input fields
list the input and output messages.

Preserving observation order As we wrote in Section 7.3.5, the TCP con-
nections between XBus server and its client may reorder concurrently sent mes-
sages. We also wrote that we assumed that this would not be a problem for
stimuli. For observations we added an interface, t in Fig. 7.6, to allow JTorX to
observe responses in the order in which they were created. For each incoming
message the XBusManager sends at most one response to each connected client
(during the analysis phase, requirement 14 was added to make sure that this
property remained valid, even when we extended the model with local mes-
sages), and the order in which the XBusManager sends the responses is exactly
reflected in model mdev. As we mention in Section 7.5.2, in the analysis phase
we also looked at other ways to deal with this issue, e.g. by extending the model
with a queue context, hence models mq

opt and mq,ie
opt . However, we found that

code coverage obtained with these models was identical to code coverage ob-
tained with the corresponding models without queues, but the test runs took a
lot (5 to 10 times) longer.

Running JTorX Once we had the model (mdev), the XBus implementation
to test (i1), and the means to connect JTorX to it, testing was started. We ran
JTorX in random mode. In the first phase, we used JTorX via its graphical
user interface. Figure 7.7 shows the settings in the JTorX GUI. These include
the location of the model file, the way in which the adapter and the XBus are
accessed, and an indication of which messages are input (from the XBus server
perspective) and which ones are output.

236

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

Bugs found in the first phase One of the most interesting parts of testing is
finding bugs. In this case, not only because it allows improving the software, but
also because finding bugs can be seen as an indication that model based testing
is actually helping us. We found 5 bugs when testing implementation i1 (and
a few more when testing implementation i2—these we discuss in Section 7.5.2).
Typically these bugs were found within 5 minutes after the start of a test. Some
of them are quite subtle:

1. The Notifdisc message was sent to unsubscribed clients. This was due to
an if-statement that had a wrong branching expression.

2. The Servann message was sent (also) to unauthorised clients. Clients that
were still in the handshake process with the server, and thus not fully
authenticated, received the Servann message. To trigger this bug one cli-
ent has to (connect and) announce its service while another client is still
connecting.

3. The message subscription administration did not behave correctly: a client
could subscribe to one item, but not to two or more. This was due to a
bug in the operation that added the subscription to the list of a client.

4. The same bug also occurred with the list of provided services. It was
implemented in the same way as the message subscription administration.

5. There was a flaw in the method that handles Unsub messages. The code
that extracts subscriptions from these messages (to be able to remove
them from the list of subscriptions of the corresponding client) contained
a typing error: two terms in an expression were interchanged.

All these bugs concern the order in which protocol messages must occur. There-
fore, it is our firm belief that they are much harder to discover with unit testing.

7.5.2 Model-based testing in the second phase

In the second phase, we ran JTorX on implementation i2, with all (infinite)
models except mdev. We did not test i2 against model mdev, because mdev was
designed for the test architecture of the first phase. Model morder

dev is a version of
mdev that exactly catered for the test architecture used in the second phase.

Test architecture In the second phase, we chose a different architecture,
see Fig. 7.8. Rather than the—quite complex—set-up from the first phase, we
chose to observe the SUT’s responses via the same connections that are also
used for the stimuli. This led to a simpler adapter and test set-up, but required
a more complex model: morder

dev . Observations are no longer observed via the
test interface (block t in Fig. 7.6), but they were sent through TCP. For each
XBus client—recall that JTorX plays the role of three XBus clients—there was a
separate TCP connection between XBus server and adapter, such that responses
might arrive at the adapter in an order that differed from the order in which
they were sent. We adapted the model to reflect this, in two ways. In model

7.5. MODEL-BASED TESTING OF THE XBUS

7

237

Model JTorX Adapter XBus

TCP

Figure 7.8: Test architecture used in the second phase: JTorX connects to XBus
over TCP, where the TCP connections (one connection for each client of which
JTorX plays the role) are used for both stimuli and responses. Advantage: XBus
is unchanged. Disadvantage: we do have to extend the model to deal with the
possibility that TCP reorders concurrently sent XBus responses (the responses
sent for a single incoming message).

morder
dev we directly included the different orders in the model. In models mq

opt and

mq,ie
opt

2 we extended the model with a queue model that describes the behaviour
of the TCP channel.

Running JTorX In the second phase, we mostly invoked JTorX via its non-
graphical interface—a recent development, which did not yet exist in the first
phase. We ran the tests on the same machine that we also used for the model-
checking—it has two quad-core Intel Xeon X5555 processors and 144 GB of
memory3. To ensure that the Java virtual machine that ran JTorX had ample
memory, we invoked it with command line options that allowed it to use 8GB.

We tested implementation i2 with all models from Figure 7.5, except for mdev

which required the test architecture from the first phase. Table 7.5 on page 243
shows test execution time for runs of 10,000 and 250,000 test steps, and maximal
attainable code coverage.

We discuss coverage results and test execution time in Sections 7.5.3–7.5.6.

Bugs found in the second phase Testing in the second phase revealed bugs
in implementation i2. This does not help to improve the quality of i1—i2 was
developed separately from i1, based on textual information about i1—but it does
demonstrate the ability to find errors with our approach. We mention two bugs
that we found most illustrative.

1. Implementation i2 contained a race. Its TCP listener, while waiting for
new connections, would, after accepting a new connection c, do the fol-
lowing:

(a) first obtain a data structure for the connection information, then

(b) send a message m to the dispatcher, to inform it of c,

2Note that mq
opt was derived from mopt, rather than from mdev, mainly because mopt was

smaller and therefore easier to adapt.
3 For model-based testing that machine was quite a bit oversized: we have also done test

runs on a Macbook with a 2.4GHz Intel Core 2 Duo processor with 8GB of memory.

238

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

(c) finally, update the data structure with details necessary to send mes-
sages over the new connection.

This sequence contains a race: the implementation breaks when the dis-
patcher, after receiving message m, tries to send a Connack to the cli-
ent, before the data structure update—necessary to be able to send that
Connack—has taken place. We could trigger this error with each of our
models.

2. The adapter contained a resource leak. During a test run, it created and
closed many connections, but when closing a connection it did not release
all associated resources. We found this when a long test run failed after
approximately 125,000 test steps. Note that MBT excels at long test runs.
This bug can easily be found by any test that runs long enough.

While extending model and implementation, we occasionally tested on pur-
pose with old versions of the model or implementation, to see whether the
resulting inconsistencies were found. Again, we mention two examples.

1. The list of services that appears in a Servrsp message was not sorted cor-
rectly. We initially—on purpose—omitted code to do this sorting from
the implementation, to see whether this bug would be detected; it was.

2. One version of the model incorrectly prescribed that in response to a
Localreq, first a Localind message is sent to the destination, and only then
Notif local messages are sent to the subscribers. In the implementation,
Localreq messages are handled in precisely the same way. However, in a
test run, a Notif local was observed first (due to reordering of responses by
the TCP test context), while a Localind was expected first. We adapted
the model to allow observation of Notif local and Localind in arbitrary order.

Once models and implementation i2 were stable, we ran tests of up to 250,000
test steps without finding further errors.

7.5.3 Model coverage

LPS summand coverage We used LPS summand coverage as our model
coverage metric, i.e., the percentage of LPS summands that were hit during test
execution. To test with an mCRL2 model, it has to be translated (by mcrl22lps
from the mCRL2 toolset) into an intermediate format called Linear Process
Specification (LPS). JTorX then accesses such LPS via tool lps2torx, also from
the mCRL2 tool set4. An LPS represents a set of nondeterministic alternatives,
called summands. A summand is a syntactic expression over model variables
and parameters, containing a guard, an action to be executed, and a recursive

4 The LTSmin tool set also contains a tool lps2torx, that JTorX also can use to access an
LPS. Throughout the experiments described in this chapter we used lps2torxmCRL2, except in
the analysis of testing time, where, as discussed in Section 7.5.6 on page 243, we also used
lps2torxLTSmin. As we did above, when needed, we use subscripts to distinguish between these
two lps2torx instances.

7.5. MODEL-BASED TESTING OF THE XBUS

7

239

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000C
o
v
e
ra

g
e
 (

%
 L

P
S
 s

u
m

m
a
n
d
s;

 u
n
re

a
ch

a
b

le
 e

lid
e
d
)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie

Figure 7.9: Model coverage obtained in test runs of 250,000 test steps.

invocation of the process. They express, respectively, when this alternative is
enabled, the action to be taken, and the next state.

To measure LPS summand coverage, we extended the lps2torx tool from the
mCRL2 tool set, so that each summand is assigned a unique identifier5. During
test execution, we record the identifiers of all executed summands, and thus
LPS summand coverage can easily be computed.

Just as programs may contain unreachable code, models may contain un-
reachable summands, i.e. summands which are never executed because their
guard can never be enabled. We do not take unreachable summands into ac-
count when we compute model coverage; we used model checking to do the
analysis of summand reachability.

Coverage results Figure 7.9 and Fig. 7.10 show the model coverage for test
runs of 250,000 resp. 10,000 steps on models morder

dev , mopt, mie
opt, mreq

opt, and mreq,ie
opt ;

recall that testing is done by taking random test steps. We see that models
morder

dev and mopt reach 100% code coverage quickly (within 6,000 steps), model
mreq

opt takes somewhat more steps (slightly over 26,000), while model mie
opt needs

about 150,000 steps, and model mreq,ie
opt needs about 180,000 steps. We do not

show model coverage results for models mq
opt and mq,ie

opt , because the unreachable
summand analysis did not terminate.

5In the mean time, such functionality has been integrated in the lps2torx tool in the mCRL2
tool set.

240

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000C
o
v
e
ra

g
e
 (

%
 c

o
d
e
 b

ra
n
ch

e
s;

 u
n
re

a
ch

a
b
le

 e
lid

e
d
)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie

Figure 7.10: Model coverage obtained in test runs of 10,000 test steps.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000C
o
v
e
ra

g
e
 (

%
 c

o
d
e
 b

ra
n
ch

e
s;

 u
n
re

a
ch

a
b
le

 e
lid

e
d
)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie
m-opt-q

m-opt-ie-q

Figure 7.11: Code coverage (on i2) obtained in test runs of 10,000 test steps.
Note that coverage for morder

dev , mopt and mq
opt converges to the same level, and so

does coverage for mie
opt and mq,ie

opt . From the test runs of 250,000 steps, we obtain
an almost identical plot (not shown).

7.5. MODEL-BASED TESTING OF THE XBUS

7

241

7.5.4 Code coverage

Branch coverage We used branch coverage as our code coverage metric.
Branch coverage [Mye79] is a standard code coverage metric that counts the
percentage of branches traversed in a program’s control flow graph during test
execution. It was measured by instrumenting the code.

Initial coverage analysis showed that 19 blocks were unreachable, because of
the following reasons. Two blocks handle operating system errors, which never
occurred in our case—testing operating system related functionality requires a
different test set-up, where we simulate the operating systems, and deliberately
insert errors. Four blocks handle Sub and Unsub messages with an invalid mes-
sage type—such messages do not appear in our most complete model, though
they can easily be added (we leave that for future work). Finally, thirteen blocks
handle inherently unreachable cases. For example, when an incoming message
is being handled, the list of active connections will always contain at least one
element, namely the sending connection. Therefore, the code that looks up the
connection record for a given connection will never encounter an empty list of
connections, and thus the code that handles the case of an empty list is unreach-
able. One could use static analysis tools to show that these blocks can never be
executed, and then safely remove these blocks—but this falls beyond the scope
of this chapter.

Since coverage should, in our opinion, measure the code covered by a specific
test as a percentage of what can be covered, we left out the unreachable blocks
from our coverage analysis.

 1

 10

 100

 1000

 10000

 100000

-50 0 50 100 150 200 250 300 350

H
it

s
(2

5
0

,0
0

0
 t

e
st

 s
te

p
s)

Model LPS summands

m-opt-req-ie

Figure 7.12: Model coverage obtained in a test run of 250,000 test steps with
model mreq,ie

opt , showing, for each LPS summand of the model, how often it is hit.
LPS summands are ordered, in order of first “hit”.

242

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

 1

 10

 100

 1000

 10000

 100000

 1e+06

-50 0 50 100 150 200 250

H
it

s
(2

5
0

,0
0

0
 t

e
st

 s
te

p
s)

Code branches

m-opt-req-ie

Figure 7.13: Code coverage obtained in a test run of 10,000 test steps with
model mreq,ie

opt , showing, for each branch of the implementation, how often it is
hit. Branches are ordered, in order of first “hit”.

Coverage results Figure 7.11 shows the code coverage results for all models,
for test runs of 10,000 steps. These experiments reveal two interesting phenom-
ena: (1) the maximum attainable code coverage varies per model, and (2) the
use of queues does not affect maximum attainable coverage.

The maximum attainable code coverage figures are shown in Table 7.5 on
the facing page. As expected, we see that, the more complete a model is,
the higher the maximum code coverage is: morder

dev is the least complete model
with 79% maximal code coverage: since morder

dev does not contain self-defined
XBus messages, it can not trigger all behaviour in the implementation. Model
mopt reached the same coverage. This is no surprise either, because mopt is an
optimised version of morder

dev .
As we explain in Section 7.5.6, test execution from mopt is significantly faster.

Also mq
opt reaches 79% code coverage. This is interesting, because, apparently,

the use of queues does not affect maximal code coverage. Indeed, mie
opt and

mq,ie
opt reach the same maximal coverage, namely 83%. The most complete model

mreq,ie
opt reaches 100% coverage. From these experiments, we show that measuring

code coverage is important: if 100% code coverage cannot be reached, then the
model is incomplete, so not all behaviour can be tested. If this is the case, we
advise to extend the model.

7.5.5 Distribution of coverage

In Figures 7.12 and 7.13 we see that all “hit” code blocks and all “hit” LPS
summands were hit multiple times, although the number of hits is not evenly

7.5. MODEL-BASED TESTING OF THE XBUS

7

243

model 10,000 steps 250,000 steps 250,000 steps jittyc max att. code coverage

morder
dev 18 minutes 24 hours 15.75 hours 79%

mopt 5 minutes 2 hours 2 hours 79%
mie

opt 6 minutes 2.5 hours 2.25 hours 83%
mreq

opt 6 minutes 3 hours 2.5 hours 91%

mreq,ie
opt 7 minutes 3 hours 2.5 hours 100%

mq
opt 37 minutes 77.75 hours 69.75 hours 79%

mq,ie
opt 30 minutes 44.5 hours 38 hours 83%

Table 7.5: Wall-clock time for runs on implementation i2, using JTorX in non-
GUI mode, and the maximal attainable code coverage for each model.

distributed. (Note the logarithmic scale on the vertical axis.) For the code
coverage, obviously, certain blocks are hit quite often, e.g. because they are hit
whenever an incoming message has to be processed, whereas other blocks are
only hit once, during initialisation—this explains the “gap” slightly at the right
of block “0” in Figure 7.13.

For the plot of the model coverage (Fig. 7.12), it could be interesting to
separate the stimuli from the responses, to see to what extent the following
hypothesis is true: for stimuli, there is a direct correspondence between the
number of actions that are generated from a summand, and the number of
times that the summand is “hit”.

7.5.6 Testing time

We also analysed the test execution times, see Table 7.5 and Figures 7.14–7.16.
Table 7.5 shows the test execution times for the runs of 10,000 and 250,000

test steps. The 4th column shows the effect of enabling option jittyc of tool
lps2torx; all time-related results that we show in the plots were obtained with
this option enabled. When option jittyc is enabled, lps2torx uses a jit-compiled
rewriting engine, instead of its interpreting rewriting engine—the more rewriting
that has to be done, the greater the gain. Jit-compilation takes approx. 11
seconds at the start of a test run; this is not shown in Figures 7.14b, 7.15a
and 7.15b, to avoid compressing the scale on the vertical axis.

Figures 7.14a, 7.14b, 7.15a and 7.15b present scatter plots showing, for each
test step generated from respectively model morder

dev , mopt, mreq,ie
opt (accessed using

lps2torxmCRL2), and model mopt (accessed using lps2torxLTSmin), the amount of
time in milliseconds it takes to execute. (lps2torxmCRL2 and lps2torxLTSmin were
introduced in the footnote on page 238.) Thus, in these plots a point at test
step 12743 at testing time 300, means that the 12743th test step took 300 ms.
Figures 7.16a and 7.16b present the same information differently: for each test
step duration d, they shows the number of test steps that took d ms to execute.

Figure 7.14b shows two tick areas. One is below 20 ms, showing that most
test steps took less than 20 ms. Another tick area is around 100 ms, which is
exactly the value of the quiescence timer. This is to be expected: if one wants
to observe quiescence (i.e. absence of outputs), one observes the system for (in
our case) 100 ms and sees if any outputs are produced. Thus, if quiescence is
observed, this step takes exactly 100 ms. Also the plots for models morder

dev and

244

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

(a)

(b)

Figure 7.14: Time (ms) between test steps in run of 250,000 test steps with
models morder

dev (a) and model mopt (b), accessed using lps2torxmCRL2.

7.5. MODEL-BASED TESTING OF THE XBUS

7

245

(a)

(b)

Figure 7.15: Time (ms) between test steps in run of 250,000 test steps with

model mreq,ie
opt , accessed using lps2torxmCRL2 (a), and with model mopt, accessed

using lps2torxLTSmin (b).

246

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
u
m

b
e
r

o
f

te
st

 s
te

p
s

th
a
t

to
o
k

th
a
t

ti
m

e

Time between test steps (ms)

m-dev-order
m-opt

m-opt-req-ie

(a)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
u
m

b
e
r

o
f

te
st

 s
te

p
s

th
a
t

to
o
k

th
a
t

ti
m

e

Time between test steps (ms)

m-opt mCRL2
m-opt LTSmin

(b)

Figure 7.16: Distribution of the time spent per test step, for runs of 250,000
steps, with models morder

dev , mopt, and mreq,ie
opt , accessed using lps2torxmCRL2 (a),

resp. with model mopt, accessed using lps2torxmCRL2 resp. lps2torxLTSmin (b). Note
logarithmic scale on both axes in both figures.

7.6. FINDINGS AND LESSONS LEARNED

7

247

mreq,ie
opt contain these same two tick areas, but we have to zoom in sufficiently to

distinguish them; they are also visible separately in Figures 7.15a and 7.15b but
not in Fig. 7.14a, mainly due to the different scale on the vertical axis.

Figures 7.14a–7.15b show the time needed per test step as a function of the
total number of test steps executed. Those plots where the model was accessed
using lps2torxmCRL2 show few (Fig. 7.14b) resp. a significant portion (Fig. 7.14a,
7.15a) of test steps whose execution time grows linearly with the number of
test steps executed. This may be surprising, because one would assume that
executing a single test step requires a fixed amount of time. We attribute the
linear behaviour to the growth of state mappings in lps2torxmCRL2: both lps2torx
instances maintain a mapping between the state representation that they uses
internally, and the state identifiers (numbers) that they exchange over their in-
terface with JTorX. With lps2torxmCRL2, more or less regularly, a map insertion
takes more time, when the map adjusts itself to cope with the ever growing
number of entries. With lps2torxLTSmin this appears to happen much less often,
but when it does happen, it takes much longer than with lps2torxmCRL2. (We did
not do a full performance comparison between lps2torxmCRL2 and lps2torxLTSmin,
we leave that for future research. The measurements that we did suggest that
lps2torxLTSmin spends, in general, slightly more time on a model-access request
from JTorX than lps2torxmCRL2. Nevertheless, with both lps2torx instances, the
same test run of 250,000 test steps with model mopt took the same two hours
of wall clock time.) The difference in severity of the linear growth, that we
see across Figures 7.14a–7.15a, we attribute to the different numbers of states
that the mappings contain. After 250,000 test steps, with model mopt the map-

ping only contains approx. 900,000 states; with model mreq,ie
opt approx. 6,300,000,

and with model morder
dev approx. 35,000,000. To understand this huge difference,

recall that in model mdev (and thus also in morder
dev) a single event could result

(non-deterministically) in multiple different configurations of the client admin-
istration data structures, i.e. in multiple different states, whereas mopt is almost
fully deterministic. Note however, that in Figures 7.14a–7.15b the long test
steps are a small fraction of all steps. Figures 7.16a and 7.16b show that the
majority of all test steps take less than 1000 ms. In our experiments, test step
derivation time was not a bottleneck, but it could be an issue when testing
real-time systems.

7.6 Findings and Lessons Learned

7.6.1 First phase

The internship in a time perspective So how long did it take to create
the artefacts for model-based testing, namely the model, the test interface and
the adapter? Programming and simulating the model took 2 weeks, or 80 hours.
The test interface was created in a few hours, since it was designed to be loosely
coupled to the engine. It was a matter of a few dozens lines of code. The adapter
was created in two days, or 16 hours. Thus, given the total project time of 14
weeks, creating the artefacts needed for model-based testing took thus about

248

7

CHAPTER 7. MODEL-BASED ENGINEERING OF THE XBUS

V-model phase Time

1. XBus Requirements 7%
2. XBus Design 14 %
3. Implementation and 4. Unit Testing 60 %
5. Integration Testing (model-based, incl adaptors) 17%
6. Acceptance Testing 2%

Table 7.6: Estimation of the time spent in the first phase, in terms of the
activities of the V-model of Fig. 7.1.

17% of our time. Table 7.6 shows an estimation of how the time was spent.

The modelling process Writing a model takes a significant amount of time,
but also forces the developer to think about the system behaviour thoroughly.
Moreover, we found it extremely helpful to use simulation to step through the
protocol, before implementing anything. Making and simulating a model gives a
deep understanding of the system, in an early stage of development, from which
the architectural design profits.

7.6.2 Second phase

After a thorough analysis of the model-based testing process that was carried
out in the first phase, the question remains how good the approach was. We
reflect on the questions raised in Section 7.1.2.

How good was the model? Model mdev did its job, but there is certainly room
for improvement. In particular, completeness with respect to the requirements
and bad weather behaviour could be improved.

Was the testing thorough enough? Given model mdev, we believe that testing
was thorough enough, in the sense that the testing time sufficed to fully cover
model mdev, and to cover as much of the implementation code as was possible
with model mdev. On the other hand, model-based testing is as good as the
model is, so more complete models also mean better testing, resulting in higher
code coverage.

What can we say about code coverage? The model mdev does not reach 100%
code coverage. For that, more complete models are required.

Would model checking have helped to produce better code? Formalising the
requirements, which is a prerequisite for model checking, helps to improve the
model, and therefore the code. However, model checking requires great effort,
because models need to be made finite and efficient. For model-based testing,
this was not needed, since performance was not an issue here.

Despite these observations, we still believe in our approach during the first
phase. If we had to redo the XBus development we would take a very similar
approach, but (1) invest more effort in the modelling phase: trace back the
requirements, and make models input-complete, and (2) measure coverage.

7.7. CONCLUSIONS AND FUTURE RESEARCH

7

249

7.7 Conclusions and Future Research

We conclude that the approach of using formal methods in both the design step
and the integration testing step of the V-model was a success: with a relatively
limited effort, we found five subtle bugs. We needed 17% of the time to develop
the artefacts needed for model-based testing, and given the errors found, we
consider that time well spent. Moreover, for future versions of the XBus, JTorX
can be used for automatic regression tests: by adapting the mCRL2 model to
new functionality, one can detect automatically if new bugs are introduced.

Our post-case study analysis showed that a 14 week development process is
feasible but short: the model quality would have benefited from more attention—
in particular, tracing the requirements would have been helpful.

The test execution time analysis results suggest that performance improve-
ments can be made by optimising the interface between JTorX and the lps2torx
tools of the mCRL2 and LTSmin tool sets; for this, further measurements and
analysis will be necessary.

Thus, the post-internship analysis gave us a deeper understanding of the lim-
itations and the successes of the work done during the internship, an increased
understanding of what factors are responsible for the successes, and valuable
feedback that may help us to improve our tools.

8

Chapter 8

Evidence

In this chapter we present the evidence that we use to validate the design
requirements that we stated in Chapter 1. We focus on the non-functional
requirements—the functional ones have been incorporated in our design, as
indicated in the discussion of each of its elements; Section 1.2.3 contains an
overview of where each requirement is discussed. TorX and JTorX, the two im-
plementations of our design (see Appendix A), together referred to as (J)TorX,
have been used for teaching and for case studies. We first give an overview of the
educational and industrial use of (J)TorX that we are aware of—already several
years ago we made both tools available for free download, without restriction on
use, an without obligation to inform us of interesting use, so this overview will
be incomplete. We then present responses to a questionnaire about (J)TorX.
We conclude this chapter with an evaluation of the design requirements w.r.t.
the evidence that we presented.

Remainder of this chapter In Section 8.1 we give an overview of case studies
carried out with (J)TorX; in Section 8.2 of the use in industry, in Section 8.2 of
the use in research, and in Section 8.3 of the use in education. In Section 8.4 we
discuss the questionnaire, and in Section 8.5 we evaluate the design requirements
on the basis of the evidence.

8.1 Case Studies

Multiple case studies have been done with TorX and JTorX. In Table 8.1 we
give an overview of a selection of the case studies. In the description of the
case studies below, we focus on the design requirements that played a role. We
describe the case studies in more detail in Appendix B.

8.1.1 Conference protocol entity

In this case study we tested the protocol entity of a chatbox system. We used
TorX for on-line model-based testing using LOTOS and Promela models, and

251

252

8

CHAPTER 8. EVIDENCE

nr case study requirements covered size who section

all All case studies 1, 2, 4, 5, 7, 8, 19–21

0 Software bus 6, 12, 17, 18, 23, 24 0 S/R Ch. 7
1 Conference protocol entity 3, 6, 15, 22, 23 o R B.1
2 Easylink 6, 23 0 R B.2
3 Highway tolling system PB 11, 24 0 R B.3
4 Storm surge barrier EMCS 15, 19, 23, 24 0 R B.4
5 Myrianed protocol entity 10, 23, 24 O R B.5
6 Rivercrossing puzzle 10, 12–16, 18 . S B.6

Table 8.1: Overview of selected case studies, executed by Researchers and
Students, with relative size ranging from ‘.’ (tiny) to ‘O’ (large).

to execute tests that had been derived with the TGV tool (Req 3). The LO-
TOS model contained unbounded FIFO queues, which meant that it had an
unbounded state space (Req 6). We also used TorX to compare the LOTOS
model with an mCRL2 model of the same system, and found an error in the
mCRL2 model (Req 15). We used TorX to identify correct and incorrect im-
plementations from a set of 28 protocol entity implementations; TorX correctly
identified the incorrect implementations (Req 22). TorX performed sufficiently
well to be able to do this case study (Req 23).

8.1.2 Easylink

In this case study we tested the implementation of a protocol that allows tele-
vision sets and other audio-visual programs to communicate over SCART, in
particular, the functionality to communicate presets (channel name, frequency).
We used TorX for on-line model-based testing from LOTOS and Promela mod-
els. The main challenge in this case study was that, at the start of each test run,
the initial state (regarding presets) of the television set was unknown, i.e. for
any stimulus at that moment, we had a huge number (106) of potentially valid
responses (Req 6). Test derivation from LOTOS was too slow, but from Pro-
mela it was o.k. (Req 23). We explain this difference as follows. For Promela,
parameterised labels were used, and for LOTOS ‘normal’ (instantiated) labels.
Thus, for the initial state, the number of parameterised labels, enumerated from
Promela, was much smaller than the number of corresponding ‘normal’ labels,
enumerated from LOTOS. To better use our available computational resources,
we used a distributed test set-up, where test derivation took place on one com-
puter, and the Adapter ran on another one, connected via TCP telnet.

8.1.3 Highway Tolling System

In this case study we tested the payment box of a highway-tolling system. We
used TorX for on-line model-based testing from LOTOS and Promela models.
All communication between the payment box and its environment was encrypted
with a key that we did not have; we worked around this by extending a program
that had been used for traditional testing of the payment box, and that had the
necessary key, with a “remote control” interface, such that it could be controlled

8.1. CASE STUDIES

8

253

Explorer

IO-Oracle

Primer Selector

DerivationEngine

Manager

Specification

partition
information

weight
information

Figure 8.1: Introduction of Selector in our decomposition of Fig. 4.4.

by the Adapter (Req 24).
The model contained two kinds of stimuli: those that are part of the nor-

mal behaviour, and those that are related to error behaviour. We wanted to
give priority to normal behaviour during testing, without completely ignoring
the error behaviour. Therefore, we slightly adapted our tool architecture, and
introduced a new component. In the architecture discussed in Chapter 3, when
a stimulus has to be chosen for the next test step, it is the Manager that chooses
the stimulus from the set of enabled stimuli that is provided by the Primer.

For this case study, we let the Manager delegate the choice of the stimulus
to the DerivationEngine, i.e. the DerivationEngine interface was extended with
two functions: The Manager can use hasInputs for its decision whether to apply
a stimulus or to obtain an observation, and it can use getInput to obtain a
stimulus.

We added a tool component, the Selector, that associates weights to labels,
see Figure 8.1. Conceptually, the Selector delegates all requests that it gets from
the Manager to the Primer, except for the getInput request: for the getInput
request it makes a random selection from the inputs provided by the Primer,
taking the weights into account.

This extension to the DerivationEngine interface makes it easy to integrate
arbitrary test selection components into our architecture (Req 11).

8.1.4 Storm Surge Barrier

In this case study we tested the control software of a storm surge barrier. We
used TorX for on-line model-based testing from a Promela model. In this case
study, we experimented with timed testing: the system has requirements on
the timing of the outputs, but not on the inputs. We represented discrete time

DerivationEngine:
Signature:

hasInputs : P × (LI ∪ LU ∪ {δ})→ bool
getInput : P → LI] {⊥}

Table 8.2: DerivationEngine Interface signature extension to support delegation
of choice of input.

254

8

CHAPTER 8. EVIDENCE

as integers in the model, each unit of time representing a second (Req 19).
We tested the actual code of the system, running on a PC inside a testing
environment created by the developers of the system. We created an Adapter
to provide a connection to this testing environment (Req 24). Performance was
important in this case, because the testing environment used shared memory
to provide the Adapter access to the state of the system—the observations are
created from this state information. The Adapter had to regularly access this
information, in time, before it would be overwritten with fresh state information.
After some fiddling we got this working (Req. 23).

After the system had gone into production, we also tested whether actual
execution traces, obtained from the execution log of the system, were valid,
i.e. were in the model (Req 15). We did this by using such traces both as
model-to-be-simulated-as-SUT and as guide.

8.1.5 Myrianed Protocol Entity

In this case study we tested the protocol stack of a wireless sensor node. We
used JTorX for on-line model-based testing from a timed automata model. The
testing was done using simulated time: the actual protocol stack code was
run inside a testing environment, developed by the developers of the protocol
stack code, and this testing environment offered control over the progress of
time as “seen” by the protocol stack code. The Adapter provides access to this
testing environment (Req 24). The tool had sufficient performance to be usable
(Req. 23), but that was also thanks to the use of simulated time.

8.1.6 Rivercrossing puzzle

This is not a real case study, but a lab class exercise for the Testing Techniques
course given at University of Twente. The system under test is a small puzzle
program in which students have to “fill in the blanks”. It is tested with JT-
orX, from a GraphML model that is made from requirements that are given
(Req. 13, 18). The students install JTorX themselves (Req. 12). The model
is underspecified and non-deterministic. It is underspecified, because no inputs
are enabled in the states in which the puzzle program produces output. It is
non-deterministic, because it allows for two distinct implementations w.r.t. how
it responds to user “errors”: strict, or lenient. A strict implementation displays
an error message, and resets itself to the initial state. A lenient implementation
displays the same error message, and then goes to the previous state, and al-
lows the user to retry. It turned out that this combination of underspecification
and non-determinism makes it necessary to use uioco, to avoid unintended fail
verdicts (Req. 10). The students typically use the visualisations to see what
happens during testing (Req. 14). The implementation can interact with its
environment in two ways, selectable via a command line option: using model
labels over standard input and output, or using a binary encoding over standard
input and output. The former can be used with the JTorX built-in Adapter for
toy implementations (Req. 16); for the latter the students have to “fill in the
blanks” in an Adapter that connects to JTorX using TorX-adapter interface.

8.2. INDEPENDENT USE

8

255

The students also make mutants of the model, correct and incorrect ones, and
test them with JTorX to compare them (Req. 15).

8.2 Independent Use

The case studies that we described in the previous section were all done by, or
in close collaboration with, the developers of TorX and JTorX.

TorX and JTorX have also been used independent from their developers,
sometimes with, sometimes without, the developers being aware of it at the
time. Independent use of (J)TorX suggests that usability of (J)TorX sufficed
for “third parties” to be able to do whatever they wanted to do. The unfortunate
side-effect, however, is that our knowledge about the third parties’ experience
with (J)TorX is rather limited.

Below we mention some cases of independent use of (J)TorX in industry and
an research; we mention independent use for education in Section 8.3.

Use in Industry TorX and JTorX have been used in the industry, typically
in internships, assignments and project-related case studies. These we list in
the sections on case studies resp. on education.

Moreover, TorX has been extended with support for an additional model-
ling language: Statecruncher. Statecruncher is a language system which
implements statecharts [Tho04]. At Philips Research India Bangalore first a
Statecruncher Explorer was created [KB02, Kop03], and once that was ready,
TorX was used with Statecruncher models to test various embedded software
components [Tho04].

At the model-based testing company Axini [axi], initially TorX was used as
“motor” inside Axini’s web-based testing tool. In this tool, over time, parts of
TorX were gradually replaced by tool components that Axini developed itself,
until no trace of TorX was left in it.

Last, but not least, researcher J. Tretmans uses JTorX, typically with the
Rivercrossing example of Section B.6, to demonstrate the principles of model-
based testing in contacts with industry. To my understanding, in one case this
helped to get a project at the company.

Use in Research JTorX has been used in research, by D. Farago as research
vehicle to study “Lazy on-the-fly model-based testing” [Far14, Kut14], and by
S. von Styp to study the combination of time and data. Unfortunately, we are
not aware of publications about the latter work.

In addition, JTorX has been used in case studies in which the main fo-
cus was not on model-based testing. In case studies on machine learning, see
e.g. [AKT+13], JTorX has been used to check the learned model.

8.3 Use in Education

Both TorX and JTorX have been used in education: for practical exercises in
courses, for bachelor and master assignments, and for internships.

256

8

CHAPTER 8. EVIDENCE

Here we list courses and assignments in which we were involved, as well as
those that took place independently.

8.3.1 Use in Courses

At the University of Twente, students have been using JTorX, and, until JTorX
became available, TorX, for the lab class that is part of a master course on
Testing Techniques. The students use the tools to compare models, and to
test an actual implementation. With TorX they used models in the textual
Aldebaran format; with JTorX they use graphical models in GraphML.

At the University of Twente, students have been using JTorX in the bachelor
course Verification Engineering. In this course, small teams of students design,
implement and test a small system. They use model checking in the design
phase, and model-based testing using JTorX in the testing phase. Typically,
their models are in mCRL2.

At the Radboud University of Nijmegen, students have been using JTorX
for the lab class in a master course on Testing Techniques. Until two years ago,
the lecturer chose which testing tools the students should use, which included
JTorX. Now, students may choose themselves which testing tool they want to
use—JTorX is demonstrated by the lecturer—and still a few groups of students
choose to use JTorX.

At the dutch Open Universiteit, JTorX is used in a course on Software
verification and validation. Unfortunately, we do not have further information.

At the Graz University of Technology, students have been using JTorX in the
course Qualitätssicherung in der Softwareentwicklung, in the years 2010–2012.
We were not involved in this, and only found out about it later. Unfortunately,
we do not have information about their experience with JTorX.

8.3.2 Use in Assignments and Internships

Here we list assignments and internships in which TorX and JTorX have been
used for a case study, or in which an extension to TorX or JTorX was made.

Bachelor assignments
◦ ToLERo: ToRX-tested LEGO Robots [Sni10] (case study with JTorX,

where a simple LEGO ball sorter was constructed, together with a LEGO
“test harness” which allowed applying stimuli and obtaining observations.
The LEGO test harness was connected to JTorX.)

◦ Is Javacardsign correct and secure? [Kle12] (independent case study with
JTorX)

◦ Model-based Testing with a B Model of the EMV Standard [dAJ12] (in-
dependent case study with JTorX)

◦ Testing of channel based service connectors [Leu13] (independent case
study with JTorX)

8.4. QUESTIONNAIRE

8

257

Master assignments
◦ TorX, TestFrame and the Easy Mail Machine [Spe02] (case study with

TorX)
◦ Model-Based Testing of Network Security Protocols in Java Card Applic-

ations [Sse06] (independent case study with TorX)
◦ SPEX: A Simple Promela EXplorer for TorX [vY07] (extension for (J)TorX)
◦ SeCo - A Tool for Semantic Test Coverage [Men08] (used off-line test cases

derived with TorX)
◦ Model Based Testing of a PLC Based Interlocking System [tH12] (case

study with JTorX)

Internships
◦ Timed Modelling and verification of the DO/DG component: A case study

for testing a real time component with TorX, using verified timed mod-
els [Sch05] (case study with TorX)

◦ Experiences with Formal Engineering: Model-Based Specification, Imple-
mentation and Testing of a Software Bus at Neopost [SSBM11] (case study
with JTorX)

◦ Model Based System Testing in Practice: Report on an Internship Per-
formed at PANalytical [Mei12] (case study with JTorX)

8.4 Questionnaire

To obtain feedback about TorX and JTorX, we asked users to fill out a ques-
tionnaire. In the questionnaire we asked about their background, and about
their experiences with installing and using the tool. We obtained 13 responses:
◦ 8 students who used it in the lab class of the master course Testing Tech-

niques (TT);
◦ 1 student who used it also in the bachelor course Verification Engineering;
◦ 2 students who used it for an assignment or internship,
◦ 3 researchers, who all used JTorX for case studies, and of whom 2 used it

for teaching, and 2 used it for their PhD research.
Below we give an overview of those questions and responses that directly

correspond to non-functional requirements. In Appendix C we give the complete
set of questions and answers, although also there questions and answers have
been edited to improve the presentation.

8.4.1 Req. 12: it should be easy to deploy the tool (install
and use)

Installation We asked how hard it was to install JTorX. Responses: ‘ok’ (1),
‘easy’ (8), ‘very easy’ (4).

We asked whether it was necessary to install additional software to be able
to install and use JTorX. One respondent (on Mac OS X) needed to install
X11; one respondent (on linux, 64-bits) needed to install two 32-bit libraries to
make the automata visualization work. Furthermore, 2 respondents remarked

258

8

CHAPTER 8. EVIDENCE

that they had to install yEd and GraphViz to use JTorX1 and one researcher
installed CADP.

To the question for other remarks about installing TorX and JTorX, one
researcher responded “Switching from TorX to JTorX made installation much
more comfortable, and hence also teaching and supervision.”.

Use – GUI We asked how easy it was to use the JTorX GUI. Responses:
‘ok’ (8), ‘easy’ (5).

Use – CLI We also asked how easy it was to use the JTorX command line
tool. Response: ‘very easy’ (1). With that response came the remark that it
was helpful, easy to extend, and extremely important for large experiments.

8.4.2 Req. 13: it should be easy to create a simple model
(like an automaton) for use with the tool

We asked respondents which modelling languages they used, which tools they
used to make models, how hard it was to make a model, and how much time it
took.

Except for one respondent, all Testing Techniques students used the graph-
ical editor yEd that produces GraphML models. The other student used a text
editor to specify the models in the GraphViz input language. The students re-
sponded that model making was ‘ok’ (4), ‘easy’ (5), ‘very easy’ (1), and that it
took from ‘10 minutes’ up-to ‘1.5 hour’. Most likely, the ‘1.5 hour’ refers to the
time spent in a class session in which the initial models are made collectively.

We also asked respondents the same questions w.r.t. making models to be
used as test purposes.

All 4 Testing Techniques students who used test purposes, modelled them in
GraphML using yEd. They found this ‘easy’ (2) to ‘very easy’ (2), and it took
them from ‘no time at all, they were previous models’, via ‘a few minutes (they
were small guides)’ up-to ‘10 minutes’.

8.4.3 Req. 14: the tool should provide insight in the the-
ory and algorithms that it implements, e.g. by visu-
alisation

We asked respondents what visualization they used, how it helped them, how
it could be improved, and what visualization they missed.

They responded that they used visualization of ‘model’ (9), ‘real implement-
ation’ (1), ‘simulated model as implementation’ (6), ‘test run’ (6), ‘message se-
quence chart’ (3), ‘other’ (1): ‘own extensions, for visualization of lazy OTF
MTB’. To the question, whether visualization was helpful, 8 responded yes, and
they explained: ‘get insight’, ‘very useful to find the error’, ‘it made it more easy
to know where I was in the specification’, ‘visualise which part of the model is
visited. this was very helpful to me’, ‘you can really see what is going on’,

1All Testing Techniques students, except one, indicated to have used yEd, so more than 2
respondents actually installed yEd.

8.4. QUESTIONNAIRE

8

259

and ‘visual feedback gave first impression and helped during experiments until
everything worked fine, [and] it could be automated via command line tool’.

We got only one suggestion for improvement: ‘More userfriendly it should
be’.

Two respondents missed something: ‘monitoring’2, and ‘statistics/plots over
multiple runs would be quite helpful, but that should be part of a large test or
case study management tool’.

8.4.4 Req. 16: it should be simple to connect the tool to
toy implementations

We asked respondents how they connected JTorX to the SUT, where multiple
answers were possible, and we asked how easy it was to connect, how much
time they spent, and what the biggest stumbling blocks were. Unfortunately,
the latter questions were only asked once, and not separately for each “means
of connection” that a respondent gave as response to the first question.

The Testing Techniques students connected toy programs in two ways—via
the built-in ‘toy implementation’ Adapter, and via a “fill-in-the-blanks” external
one. They responded that connecting was ‘ok’ (7), ‘easy’ (3), ‘very easy’ (1),
and that it took ‘Practically nothing’ to ‘10 minutes’, ‘half an hour’ ‘1.5 hour’
and ‘2 hour’. Most likely, the ‘ok’ responses and all times longer than 10 minutes
reflect issues encountered while “filling-in-the-blanks” in the external Adapter.

Their biggest stumbling blocks were “I didn’t fully understand how it works”,
and “No clear documentation of the responsibilities of the different methods (in
Java)”.

8.4.5 Req. 24: it should be easy to connect the tool to the
system under test

The responses of the researchers, and of the student that did the case study, to
the question how easy it was to connect, and how much time they spent, may
give an indication how easy it is to connect the tool to the system under test.
Moreover, we asked how hard it was to create an Adapter, how much time that
took, and how much time it took to connect the Adapter to JTorX.

The researchers responded that connecting was ‘ok’ to ‘hard’, and that it
took ‘from 0 (simulated model) to couple of hours, depends very much on SUT’,
‘all in all about a person week (a student, a developer from industry and I)’, or
‘about an hour (a student of mine did it and told me)’.

Creating the Adapter took the student ‘2 hours’, and one researcher ‘all in all
about 3 days (most work was a facade to hide all the web service complexities
from the model and core adapter)’.

The biggest stumbling blocks were ‘all the small details you have to consider,
mostly due to the SUT’, which another researcher phrased as ‘to adjust the
adapter for the needs of the implementation’, and the third one referred ‘see
above: web service complexities’.

2What they meant with this we did not fully understand

260

8

CHAPTER 8. EVIDENCE

8.5 Evaluation

In the previous sections, and in Chapter 7, we collected evidence that will help
us to evaluate to what extent our design satisfies our design requirements of
Chapter 1, as given in Tables 1.1 (functional requirements), 1.2 (non-functional
requirements w.r.t. development) and 1.3 (non-functional requirements w.r.t.
use). We now do this evaluation, where we follow the grouping of requirements
in these tables.

8.5.1 Functional requirements

Ad 1: the tool should be based on ioco theory Clearly, the tool is based
on the ioco theory. This shows for example in the DerivationEngine interface
signature (Table 3.8). Moreover, extensions are incorporated in the design: sup-
port for uioco (Section 4.2.6), for divergence (Section 4.2.7), and for symbolic
models (Chapter 6).

Ad 2: the tool should work on models that have an LTS semantics
Clearly, the tool works on models that have an LTS semantics, as shown in the
signature of the Explorer interface (Section 4.2.2), and in Section 4.2 where we
discuss how we provide access to models that have an LTS semantics.

Ad 3: the tool design should be suitable for both on-line and off-line
testing In Section 3.4 and Section 3.5 we discuss how we support random
resp. guided on-line testing, and in Section 3.6 we discuss how we can support
off-line testing. In case studies we typically used on-line testing (Section 8.1);
in the Conference Protocol Entity case study we also used TorX for off-line
test execution of test cases which were derived using TGV, as mentioned in
Section B.1. The master assignment reported in [Men08] used TorX to derive
off-line test cases.

Ad 4: the tool should support on-line testing In Section 3.4 we show the
Manager algorithm for on-line testing. In Section 4.2 we show how the Primer
provides support for on-line testing. In case studies we typically used on-line
testing, as discussed in Section 8.1.

Ad 5: the tool design should be independent from particular mod-
elling languages In Section 3.4 we delegate model access to the Derivation-
Engine component. In Section 4.2 we decompose the DerivationEngine com-
ponent in a modelling-language specific component, and a modelling-language-
independent, generic, component. In Section 4.2.4 we list some of the modelling
languages for which we have support. The case studies have used many dif-
ferent modelling languages. Researchers have been able to add support for an
additional modelling language (Section 8.2).

8.5. EVALUATION

8

261

Ad 6: the tool should support very large and infinite state space mod-
els Using on-the-fly access to the model, as provided by the Explorer interface
(Section 4.2), allows the tool to deal with models that have an infinite state
space (as long as they are finitely branching). We used this in the Conference
Protocol Entity case study, see Section 8.1.1, and in the Software Bus case study,
see Section 7.4. We also used other techniques to deal with large models: in the
Easylink case study (Section 8.1.2) we used two techniques, an ad-hoc one, and
one that uses symbolic modelling features of our support for Promela, to deal
with an initial state with a huge number of outgoing output transition.

Ad 7: for on-line testing, the tool should support random mode and
guided mode In Section 3.4 we discuss our support for random on-line test-
ing, and in Section 3.5 our support for guided on-line testing. In all case studies
we used on-line random testing mode; in a number of them we also used guided
mode (see Section 8.1).

Ad 8: the tool design should make no assumptions about the SUT,
except that it is a reactive system In Section 3.12 we discuss our Ad-
apter interface, which is rather general and does not make any assumptions
about the SUT. In Section 8.1 we describe some of the systems that we have
tested using tools based on the design described in this thesis. This includes
systems accessed over TCP (Sections 7.5.1, 7.5.2) and UDP (Section 8.1.1), on
their standard input- and output (Section 8.1.1), via a serial line to a “magic
black box” (Section 8.1.2), via a USB connection to a Lego NXT (Section 8.3.2:
ToLERo BSc assignment), via a “human operator” (Section 8.1.2), and via test
environments that hid much of the intricacies (Sections 8.1.4, 8.1.5).

Ad 13: it should be easy to create a simple model (like an automaton)
for use with the tool In Section 4.2.4 we describe our support for model-
ling languages that make it easy to create simple models. In the responses to
the questionnaire users (students doing the lab class of the Testing Techniques
course at UT) indicated that indeed the modelling was easy (Section 8.4.2).

Ad 14: the tool should provide insight in the theory and algorithms
that it implements, e.g. by visualisation In Section 4.2.5 we discuss our
support for visualisation. Responses to our questionnaire show that the students
appreciate the visualisation (Section 8.4.3). Visualisation also has contributed
to demonstrations given to explain model-based testing to members of industry
(Section 8.2).

Ad 15: it should be possible to use a simulated model as system under
test In the introduction to Chapter 5 we mention that we support this func-
tionality, even though we do not discuss details. We used this functionality to
compare Conference Protocol Entity models with each other (Section 8.1.1), and
to check execution logs of the storm surge barrier control system (Section 8.1.4).
In Section 8.3 we mention how we use this in education.

262

8

CHAPTER 8. EVIDENCE

Ad 18: the design should allow use of modelling languages suitable
for non-experts In our opinion, the graphical modelling supported by yEd
(GraphML) is suitable for non-experts, even though it is only usable to model
small systems. In demonstrations that aimed to explain to non-experts the
concept of model-based testing (Section 8.2), (at least some of) the models that
were used were in GraphML.

In addition, if adding support for another modelling language would be felt
as beneficial, the torx-explorer interface allows this (Section 4.2.4), and it has
been done (Section 8.2).

Ad 19: the design should allow use of modelling languages with suit-
able expressive power In Section 4.2.4 we describe our support for mod-
elling languages with suitable expressive power. In the discussion of the case
studies, we also discuss the modelling languages that we used. Experience from
the case studies, and responses to the questionnaire indicate that, in general,
the modelling languages that we support provide sufficient expressivity. That
said, two things are felt missing.

1. symbolic treatment of both data and time together (and at the STS lan-
guage support implementation level, better diagnostics and error mes-
sages).

2. high-level language constructs which allow creating a single model that
contains all functionality, and allow enabling, disabling and parameterisa-
tion of such model, to obtain specific model instances from it, as needed
for separate test runs. To give an example: in the Highway Tolling Sys-
tem case study (Section 8.1.3) macro processor m4 [KR77] was used with
modelling languages LOTOS and Promela, to construct a single model in
which e.g. bad weather behaviour could be disabled, and the number of
concurrent connections could be chosen, for each individual test run.

Ad 20: it must be possible to validate the models, either in the tool,
or using external tools For modelling languages like mCRL2, LOTOS, and
Promela, validation support is present in their respective tool environments.
In the Highway Tolling System case study (Section 8.1.3) a serious error in
the design was found when the model (based on that design) was validated, In
Chapter 7 we describe how we validated the mCRL2 model using simulation and
model-checking. In the Verification Engineering course at University of Twente,
students first create and validate a model, then construct the system, which
they subsequently test (Section 8.3.1).

However, such validation support is not available for, for example, the auto-
mata in GraphML that we draw with yEd. For those latter models, JTorX
contains limited validation support in the form of the integrated interactive
simulator (Section A.2). Moreover, the utility that exports a (J)TorX log file
in Aldebaran format (Section A.2) can export any non-symbolic finite model
to Aldebaran format—in this way, validation support of CADP and LTSmin
can be used to validate any non-symbolic finite model. Finally, the visualisa-
tions may also help to validate models. In one case, an error in a test purpose,
which was given in the Jararaca regular-expression-style modelling language,

8.5. EVALUATION

8

263

was found thanks to the visualisation of the automaton that Jararaca uses as
representation of the regular expressions.

Ad 21: the tool should produce/keep test execution data for analysis
Both TorX and JTorX produce log files that contain, for each executed test
step, the model label that represents it, a timestamp, and, when provided by
the Adapter, a representation of the concrete interaction with the SUT.

Ad 22: the tool should be correct We have to evaluate correctness at two
distinct levels.

(i) at the level of the design, and
(ii) at the level of the tool implementations that implement the design.

Ad i: In the previous chapters we mentioned a number of proof obligations
(i.e. on pages 118, 144, 150, and 194), but we have not given the proofs.

Ad ii: Correctness of the TorX and JTorX implementations has been tested
manually. In addition, there is anecdotal evidence that the tools find errors (case
studies, student lab class exercises). Finally, in the first test runs of each case
study typically lots of test failures occur. Such failures are carefully analysed,
and the error is typically caused by mistakes in model, Adapter, or even in the
SUT.

8.5.2 Non-functional requirements w.r.t. Development

Ad 9: it should be easy to accommodate theoretical progress We
illustrate to what extent our design fulfils this requirement by describing two
changes: (i) a change in the ioco definition, and (ii) the addition of support
for divergence (τ -cycles).

Ad i: Our initial design was based on the ioco definition in [Tre96]. In
this definition of ioco, test cases are not input enabled, i.e. when the test case
prescribes that a stimulus is to be applied, the tester is not willing to accept
an observation. In our initial design, in automatic mode, in tester states in
which both stimuli and observations were enabled, a random choice was made
between applying a stimulus and obtaining and checking an observation, where
each of these choices has a probability of a half. In [Gog03] Goga proposed a
refinement to this random selection strategy. In this refinement he replaced the
probability of a half by a probability that is chosen to better fit the (behaviour
in the) model.

We refined our initial design, by making the choice between applying a stim-
ulus and obtaining an observation based on more complete information. In the
refined design we also check whether the Adapter has a pending observation, in
addition to checking that stimuli and observations are enabled in the model, as
we already did in our initial design. In the refined design the Adapter interface
contained a obsPending() function that allowed the Manager to request whether
the Adapter has a pending observation. (Obviously, this design contained a
race: an observation might arrive at the Adapter just after it has informed the
Manager that it has no pending observations. However, there was not much we

264

8

CHAPTER 8. EVIDENCE

could do about that.) In this refined design, the main algorithm in the Manager
was changed to use the obsPending() function.

Our current design is based on the ioco definition in [Tre08]. In this defini-
tion of ioco, test cases are input enabled, i.e. when a stimulus is to be applied,
the tester is also willing to accept an observation. For this design, two changes
were made to the Adapter interface. Firstly, the obsPending() function was re-
moved from the interface. Secondly, the applyStimulus() function, which so far
only returned a boolean value to indicate whether application of the stimulus
had succeeded, was changed to return an action label. This action label could
be either of two things: Either it was the stimulus that was applied, or it was an
observation that was already pending (and that thus had prevented application
of the stimulus). The Manager algorithm was then adapted to no longer use
function obsPending(), but just derive the next test step based on information
from the model, execute this test step (i.e. interact with the Adapter, which
might return a pending observation), and then deal with the Adapter result.

Ad ii: In Section 4.2.7 we show the impact of dealing with τ -cycles. See
also below, ad 10.

Ad 10: it should be easy to incorporate new conformance relations
We illustrate to what extent we satisfied this requirement by discussing the
impact of the addition of support for the uioco conformance relation. In the
JTorX implementation of our design, we initially only implemented test deriv-
ation based on ioco; later we added support for uioco. The changes necessary
to support uioco are described in Section 4.2.6.

Typically, changes to the conformance relation only have impact on the
Primer component, and in the Primer component only on the expand() function
that, for a given tester state, computes the set of possible stimuli and expected
responses (together with the tester states reached by each of those)3. This was
the case for the addition of support for uioco, as well as for the check for
τ -cycles (support for divergence).

Ad 11: it should be easy to incorporate new test selection strategies
In the discussion of the Highway Tolling System case study (Section 8.1.3) we
show how the extension of the DerivationEngine interface with interface functions
hasInputs and getInput, allows us to easily extend the architecture with new
selection components, like the Selector component discussed there.

In addition, we have used the guidance functionality (Section 4.3) to use
e.g. the traces produced by the iocoChecker tool to guide test runs. The fact
that the guidance information is accessed on-the-fly during a test run means
that we can also replace the guidance Explorer by a new tool component that
implements a new selection strategy, e.g. one that is based on model coverage.

3 There are a few changes in other places, to allow the user to choose between the supported
conformance relations.

8.5. EVALUATION

8

265

8.5.3 Non-functional requirements w.r.t. Use

Ad 12: it should be easy to deploy the tool (install and use) Our
initial implementation, TorX (Section A.1), was relatively hard to install and
use. TorX was hard to install, because it had to be installed from source, and it
had quite a number of dependencies. Most of these dependencies were standard
available on a Unix system, but installation on Windows necessitated installing
of a Unix compatibility layer, as e.g. Cygwin. TorX was hard to use, because
in TorX each component in the design was a separate program. Even though
TorX did have a graphical user interface, configuration was done via textual
configuration files, where each individual program had its own configuration
file. The Unix shell could be used to combine these individual programs for a
particular purpose. This made TorX extremely flexible for an expert user, but
not so easy to use by the casual user, because configuration required detailed
knowledge about the tool.

The second implementation, JTorX (Section A.2), was designed with ease of
installation and use in mind. To install JTorX, it suffices to unpack an archive
(e.g. a zip-file). Configuration of the tool is done via a graphical user interface.
JTorX has built-in support for a few modelling languages, and built-in Adapter
support for toy implementations. JTorX can also be used with a command
line interface, which has proven to be helpful when executing large numbers of
experiments. Ease of use and installation of JTorX has been confirmed by the
respondents to our questionnaire, see Section 8.4.1.

Ad 16: it should be simple to connect the tool to toy implementations
The built-in Adapter (mentioned in the introduction to Chapter 5) for programs
that communicate using model labels, either over standard input and output, or
over TCP, makes it easy to connect a toy implementation. This was confirmed
by the responses to our questionnaire, see Section 8.4.4.

Communication of model labels over TCP has also been used by JTorX users
to make the connection to their own Adapter, for example in the Software Bus
case study (Chapter 7).

Ad 17: it should be possible to use the tool without being an expert
in the theory that the tool implements To a certain extent, we can argue
that the students that use the tool in courses, assignments and case studies are
not experts in the theory that the tool implements. Their success, especially
with internships and graduation assignments, shows that the tool is usable for
them.

On the other hand, the Testing Techniques students do study the theory
that underlies the tool implementation, before the lab class in which they use it.
The Verification Engineering students, though, have not studied the underlying
theory; they only get a demonstration before they have to use the tool.

Finally, we also see that the tool “works” in demonstrations, where the tool
succeeds to convey insight in the ioco-based approach to model-based testing.

That said, there is one point where the tool does not succeed to hide the
underlying theory: it offers the choice between the use of Straces (for testing

266

8

CHAPTER 8. EVIDENCE

with ioco) and Utraces (for testing with uioco). To understand this choice,
a relatively deep understanding of the underlying theory is necessary. Because
uioco must be used when testing the UT Testing Techniques lab class exercise,
in the lecture prior to the lab class special attention is given to uioco. In this
regard, JTorX does not fully fulfil the requirement, but we do not see how this
can be avoided, except by not offering this choice—but then it would no longer
be possible to use JTorX to show the difference between testing with ioco and
testing with uioco, which would be a pity. A possible work-around could be
the introduction of a “user mode” choice, where “expert mode” would offer the
choice between Straces and Utraces, and the default “casual user mode” would
just use Utraces without offering the choice.

Ad 23: the tool should have sufficient performance to be usable Dur-
ing our case studies, in general we found that the tool has sufficient performance
to be usable (Chapter 7, Section 8.1).

However, in the early case studies with TorX (Easylink, Highway tolling
system), where we tried to use multiple modelling languages, we found that
performance with LOTOS models was less than with Promela, to the point
where only Promela was usable (see Section 8.1.2 resp. 8.1.3). In the Storm surge
barrier controller case we initially struggled with performance (Section 8.1.4).

In the later case studies, with JTorX, performance appeared less of an issue.
Of course, by then also the performance of the computer hardware had improved.

For the journal version of the Neopost case study paper, presented in Chapter 7,
we obtained performance measurements with JTorX. In this case study we
used the mCRL2 formalism for modelling, and accessed these models using
the lps2torx tool from the mCRL2 tool kit. We observed that the testing speed
is influenced by three factors: (i) the quiescence timeout value, (ii) the model,
and (iii) the means to access the model. We discuss these factors below.

Ad i: quiescence timeout Clearly, when the tester chooses to observe
while no observation is available, the tester has to wait until the quiescence
timer expires. In the Neopost case, the quiescence timeout value was set to
100 ms. Even though this is not an extremely high value by itself, test steps
in which it was not necessary to wait for quiescence happened a lot faster, as
visible in Figures 7.14b, 7.15a, and 7.15b.

In the “Oosterschelde storm surge barrier controller” case (Section B.4) we
used an ad-hoc approach, because setting the quiescence timeout value to the
longest allowed system response time (85 minutes) would result in very long
testing times.

Ad ii: model In the Neopost case we observed a clear correspondence
between the amount of non-determinism in the model, the number of model
states that belonged to each tester state, and the time that it took to test with
the model. The higher the amount of non-determinism, the higher the number
of model states per tester state, and the longer it took to do the testing.

Ad iii: means to access the model In the Neopost case we accessed
the mCRL2 model using the lps2torx tool from the mCRL2 tool kit. We found
that for a few test steps, the time that it took to compute the test step had a
direct correlation with the number of steps that had already been executed. We

8.5. EVALUATION

8

267

firmly suspected that the long computation time for these steps is caused by the
state tables (sets, maps) that reallocate themselves to have more space, to hold
the ever-growing number of states. Just to compare, we also used the lps2torx
tool from the LTSmin tool kit. With this tool, the number of test steps that
take more than twice the quiescent timeout time is much smaller than with the
mCRL2 toolkit version.

Both lps2torx tool implementations use rewriting for the computations on
the data values in the model. We noticed that the rewriter implementation
(generic interpreter, or just-in-time compiled) makes a difference, where, obvi-
ously, this difference is more pronounced when there is more rewriting to do,
i.e. the difference is bigger for the models that have more non-determinism.

Ad 24: it should be easy to connect the tool to the system under
test According to the responses to the questionnaire, the effort, necessary to
connect JTorX to a SUT, varies quite a bit: from easy to hard or very hard
(Section 8.4.5). This is what the researchers respond, and this is confirmed
by our own experience doing case studies. The researchers remark that this is
mostly caused by intricacies in the SUT.

In three of the case studies (Highway tolling system, storm surge barrier
controller, Myrianed protocol stack) we were able to use the testing environment
developed by the developers of the SUT. In those cases it sufficed to develop
an Adapter to connect to those testing environments—a task that was relatively
trivial, especially compared to the efforts necessary to construct the respective
testing environments themselves.

In our experience, connecting an Adapter to JTorX is rather trivial; more
support for constructing the Adapter, e.g. for dealing with SUT intricacies, would
be beneficial. The internship report [Mei12] contains suggestions for this.

8.5.4 Summary

In Table 8.3 we show to what extent, in our opinion, each of the design require-
ments is fulfilled.

For Requirement 22 we indicated ‘-/2’ because of the omission of proofs
w.r.t. the design, and the manual testing of the implementations (note that this
does not mean that we have no confidence in the implementations!).

For Requirement 17 we indicated ‘+/2’ because of the discussion about the
Straces–Utraces choice.

For Requirement 24 we indicated ‘2’ because of the very limited Adapter
implementation support.

268

8

CHAPTER 8. EVIDENCE

Nr. requirement fulfilment

1 the tool should be based on ioco theory +
2 the tool should work on models that have an LTS semantics +
3 the tool design should be suitable for both on-line and off-line testing +
4 the tool should support on-line testing +
5 the tool design should be independent from particular modelling lan-

guages
+

6 the tool should support very large and infinite state space models +
7 for on-line testing, the tool should support random mode and guided

mode
+

8 the tool design should make no assumptions about the SUT, except
that it is a reactive system

+

13 it should be easy to create a simple model (like an automaton) for use
with the tool

+

14 the tool should provide insight in the theory and algorithms that it
implements, e.g. by visualisation

+

15 it should be possible to use a simulated model as system under test +
18 the design should allow use of modelling languages suitable for non-

experts
+

19 the design should allow use of modelling languages with suitable ex-
pressive power

+

20 it must be possible to validate the models, either in the tool, or using
external tools

+

21 the tool should produce/keep test execution data for analysis +
22 the tool should be correct -/2

9 it should be easy to accommodate theoretical progress +
10 it should be easy to incorporate new conformance relations +
11 it should be easy to incorporate new test selection strategies +

12 it should be easy to deploy the tool (install and use) +
16 it should be simple to connect the tool to toy implementations +
17 it should be possible to use the tool without being an expert in the

theory that the tool implements
+/2

23 the tool should have sufficient performance to be usable +
24 it should be easy to connect the tool to the system under test 2

Table 8.3: Fulfilment of design requirements. Good: +, ok: 2, bad: -.

9

Chapter 9

Conclusion

In this chapter we present conclusions, discuss related work, mention a few
possible extensions, and discuss availability of the tool implementations TorX
and JTorX.

9.1 Conclusions

We started this thesis with a high-level summary of the goal of our work: “To
design a flexible tool for state-of-the-art model-based derivation and automatic
application of black-box tests for reactive systems, usable both for education
and outside an academic context.”, which we then broke down in a number of
functional and non-functional requirements. From then on, we no longer looked
at the high-level goal, but only referred to the requirements. Also the evaluation
of our design, in Section 8.5, we did in terms of these requirements.

Now, we return to the high-level goal, and use the evaluation of Section 8.5 to
reflect on the degree to which we achieved it. In the discussion below, we follow
the structure of Section 1.2.2. After reflecting briefly on the functional require-
ments, we discuss the three high-level non-functional requirements: (a) the
tool should be flexible, (b) it should be usable for education, and (c) it should
be usable outside an academic environment. In Section 1.2.2 we extracted ad-
ditional functional and non-functional requirements from these three high-level
non-functional requirements.

Functional requirements The initial functional requirements, i.e. Require-
ments 1–8, have all been taken care of in the design (see Section 8.5).

Non-functional requirement a: Flexibility In Section 1.2.2 we translated
“flexibility” as “evolvability”: we wish our tool to be evolvable, which we made
more specific in Requirements 9–11. Note that, although we speak of evolvability
of the design, it is typically the implementation that is evolved.

In Section 8.5 we gave several examples of evolving of the tool by the tool
author (e.g. enhancement of ioco support from the definition of [Tre96] to the

269

270

9

CHAPTER 9. CONCLUSION

one of [Tre08], addition of support for uioco, support for divergence). In addi-
tion we mentioned enhancement of the tool by others: development of the SPEX
Explorer for Promela by a MSc student, development of the Statecruncher
Explorer by people in industry (see Section 8.2), and extension of the tool with
support for the “lazy-on-the-fly model-based testing” approach [Far14, Kut14]
(see Section 8.2). These extensions all were successful, to our knowledge. On
the other hand, one response to the questionnaire indicates that construction
of another Explorer was “very difficult” due to “no good documentation” (see
Section C.2)—unfortunately we do not have further information.

So, regarding evolvability we have mixed success: evolvability by others may
need more attention, in particular w.r.t. documentation.

Non-functional requirement b: Usability for education In Section 1.2.2
we discussed two scenarios related to this requirement: firstly, use of the tool in
courses, to allow the students to experience the concept of model-based testing,
and secondly, use of the tool to explain, on an intuitive level, the basic principles
of model-based testing to almost any person (but in particular: testers and
managers). This we made more specific as Requirements 12–16.

• Use of the tool in courses, to allow the students to experience the concept
of model-based testing, appear to be successful. This is our own exper-
ience, which is confirmed by the use of the JTorX tool for teaching by
others.

• Use of the tool to explain the basic principles of model-based testing also
appears to be successful. We base this on our own experience, and on the
experience by others that are using JTorX exactly for this purpose.

Non-functional requirement c: Usability outside an academic con-
text In Section 1.2.2 we discussed two scenarios related to this requirement:
firstly, use by students for doing internships or external graduation projects,
and secondly, use by people in industry.

We have seen successful use of the tool JTorX by students in internships
and external graduation projects. We also have seen successful use of this tool
by researchers in case studies. We have not seen use of this tool by people in
industry, i.e. we lack information to evaluate that part of the requirement.

Conclusion Overall, we succeeded to fulfil our high-level requirements, with
the following two critical notes: (i) we lack information about the usability of
the tool by people in industry, and (ii) we should assess possible improvements
to the documentation for developers.

9.2 Related Work

In this section we discuss related work. An overview of model-based testing tools
can be found in for example [BFS05]; [UPL12] gives a taxonomy of model-based
testing approaches.

9.2. RELATED WORK

9

271

TGV The tool TGV [JJ05] derives off-line tests, given a specification and a
test-purpose. It implements the ioco implementation relation. It treats diver-
gent states (states on τ -cycles) as being quiescent, like we do with the approach
described in Section 4.1.3. TGV does not have a “random walk” strategy.

TGV is distributed as part of the CADP tool-set; the specification and the
test-purpose can be given in any of the input formalisms supported by CADP
that can be interpreted as an LTS. TGV does not have the two-dimensional
verdicts like we described in Section 2.3, but it has verdicts pass, inconclusive,
fail, none (the default verdict, like we use ⊥), and error.

Where our test purposes only have goal states, the TGV test purposes have
both “accept” states (comparable to our goal states), and “refuse” states, that
can be used to explicitly cut out traces that might otherwise result from the
auto-completion done by TGV: for each test purpose state that has no outgoing
transition for each input action, a self-loop with the special action “*” is added.
This “*” action represents any input action not explicitly given on an outgoing
transition from that state. Our test purposes do no have such auto-completion;
the closest that we have is the use of sets of actions in the Jararaca input
language [Jar12] (Jararaca is discussed in Section 4.2.4), but these have to be
added by hand—they are not automatically added.

Command-line options of TGV can be used to fine-tune what to generate—
a single test case with, or without, loops, or a single graph that contains all
test cases—how to generate it, and in what format (like e.g. TTCN or the
CADP [CAD] binary coded graph format).

SpecExplorer SpecExplorer [VCG+08, spe] is a tool that extends Microsoft
Visual Studio with functionality to visualize, validate and generate test cases
from the models that can be created with it. It supports on-line and off-line
testing, where for off-line testing users can provide their own strategy to tra-
verse the transition system that is derived from the model. In SpecExplorer
models can be written as “model program” coded in C#, and as “behavioural
descriptions” coded in the Cord scripting language. The former describes the
system’s behaviour, and the latter allows the user to select relevant behaviour.
The ability to compose models of either kind enables users to slice out test cases
from large state machines. The behaviour description has one special feature:
the ability to indicate so-called “accepting states”: those states in which tests
are allowed to terminate, such that the system under test is left in a “good”
state.

STG In a way, the tool STG (Symbolic Test Generator) [CJRZ02, PJJ07, PP]
“lifts” the approach of TGV to symbolic tests: STG derives symbolic off-line
tests from a symbolic model and a symbolic test purpose—both an IOSTS
(defined in [RdBJ00]); also the generated test case is an IOSTS. STG has its
own modeling language for the specification and test purpose IOSTSes.

For execution, a generated IOSTS test case is translated to Java; the con-
straint solver of Lucky [JR04] is used to instantiate symbolic stimuli.

272

9

CHAPTER 9. CONCLUSION

UPPAAL-TRON UPPAAL-TRON [LMNS05] is a tool for on-line model-
based testing of real-time systems. It does its work given a model of the system
behaviour, which is specified as a network of timed-automata, and an envir-
onment model, which fulfills a role that is very similar to the guidance in our
approach. UPPAAL-TRON implements the rtioco relation. It has significant
expressivity also on the data, but, whereas time is treated in a symbolic manner,
data values are not (they are enumerated, as in LTS-based approaches).

TorXAkis TorXAkis is a tool for on-line model-based testing, developed by
Tretmans to research symbolic testing [MPS+09]. TorXAkis implements the
sioco implementation relation. It does random walks through the model. Tor-
XAkis has also been used in a timed testing setting (next to JTorX and Uppaal-
Tron) in the The Myrianed Protocol case study described in Section B.5. In
that case study, the testing environment allows the testing tools to control the
clock of the IUT, i.e. testing happened in simulated time, not real-time. In the
model for TorXAkis, time was modeled as yet another variable in the symbolic
model.

Whereas the initial TorXAkis implementation relied on the functional pro-
gramming language (Haskell) in which TorXAkis is implemented to enter a
model into the tool, it now has its own input language, which allows models to
be entered using process-algebraic notation.

BAiT The tool BaiT [Cal08] also does symbolic testing, but it uses a different
approach than STG and TorXAkis. It uses TGV to generate test cases, but it
does not invoke TGV directly on the system model, but on a version of the
model from which all data has been abstracted away. From the model it also
generates a constraint logic program (CLP), and during test execution this CLP
is used to reintroduce the data, also for the expected outputs. However, during
test execution a non-deterministic system may produce an output that is valid,
but different from the one that was (re)introduced in the test case. To cope
with such situation, BaIT contains a mechanism that uses the system model to
adapt the test case, such that it can be executed further.

Axini TestManager Axini [axi] TestManager is a testing tool developed by
model-based testing company Axini, for both on-line and off-line testing. It
implements the ioco and sioco implementation relations: ioco for LTS-based
models, and sioco for STS-based ones. It has strategies for automatic test-
selection, including model-coverage-based ones (the latter ones at least for LTS-
based models with a finite state space, and for STS-based models). Using these
strategies, it typically derives and executes multiple (many!) test cases in a
run, as specified by the user (or as necessary to achieve the requested model-
coverage). Axini TestManager is a SAAS (sofware as a service) solution: users
access it via a web-interface. Where the GUI of JTorX is limited to configuration
and presentation of results of an individual test run1, the Axini TestManager

1In JTorX, the only exception to this is the experimental support to measure model cov-
erage, and to use the measured model coverage as guidance information in a next test run.

9.3. POSSIBLE EXTENSIONS

9

273

gives an overview of, and access to, all tests that are executed in a run.

Other tools and approaches TTCN-3 [WDT+11] is a standardized test
scripting language. In Section 5.3 we discuss the TTCN-3 test system refer-
ence architecture for execution of (compiled) TTCN-3. An important feature
of the TTCN-3 approach is the separation of concerns between the TTCN-3
tests (abstact test suites) on the one hand, and the execution environment on
the other, such that the tests are fully portable, independent of any platform
implementation. Tests in TTCN-3 can be written by hand; there are also test
generation tools that generate tests in TTCN-3.

The UML Testing profile [UTP] provides extensions to UML to support the
design, visualization, specification, analysis, construction, and documentation of
the artifacts involved in testing. It is independent of implementation languages
and technologies, and can be applied in a variety of domains of development.

The QuviQ QuickCheck tool [AHJW06] has an interesting feature: after
finding a failure, it tries to “shrink” the trace to the failure, to find a (much)
shorter trace to the same failure. Such functionality could be very beneficial
with our approach too, especially because with the on-line testing approach we
may easily do very long test runs, but analysis of the test results is not always
easy.

Test selection techniques make up another interesting topic. In [Wei09]
Weiglhofer describes various approaches to test selection, including derivation
of coverage-based test purposes from LOTOS specifications. In a case study he
applied these approaches on several systems, one of which was the chatbox of
Section B.1, and he compared his results for the chatbox with the results that
others published for the same system.

9.3 Possible Extensions

Here we discuss a few possible extensions to the tool, based on our own exper-
ience with the tool, on the experience gained in case studies, and on responses
to the questionnaire.

Explorer extensions The current support for symbolic models is split over
two separate Explorer instances: one for STSes, and one for a network of timed
automata. Unfortunately, the Explorer for the network of timed automata only
treats time symbolically. As expressed in the questionnaire by one of the re-
searchers, a nice extension would be an Explorer that treats both data and time
symbolically.

On a more practical level, the STS Explorer expects the model to be given
in an XML file, which currently has to be written by hand. Therefore, as
mentioned in the questionnaire by another researcher, another nice extension
would be a domain-specific language for STS models.

Finally, JTorX currently has no built-in support for creation of models2. In

2Actually, the model animation tool contains experimental support for the creation of
models, but this is part of the ‘advanced’ functionality, which is hidden by default.

274 CHAPTER 9. CONCLUSION

the questionnaire, one of the researchers expressed the wish for an integrated
model-creation front end.

Adapter extensions A library of Adapter instances, for example for GUI
testing, would be helpful, as indicated by respondents to the questionnaire.
The same holds for library support to ease Adapter construction, as mentioned
in [Mei12].

Model coverage Currently, the JTorX tool contains basic functionality to
measure model state- and transition coverage, and a heuristic that uses this
coverage information to guide the test derivation to unvisited parts of the model
(we did not discuss this functionality in this thesis).

This functionality could be extended, and the coverage-based guidance heur-
istic could be refined.

9.4 Availability

Both TorX and JTorX can freely be downloaded, and both are open-source.
JTorX is being maintained; maintenance of TorX stopped several years ago.

TorX is distributed in source form, under the Apache License, Version 2.0.
It is available from [torc].
Maintenance stopped several years ago.

JTorX is distributed in binary packages for Linux, Mac OS X, and Windows,
available at [JTob].

• The JTorX git repository [JToa] contains the source of the core compon-
ents.

• The STSimulator Explorer component (included in the JTorX distribution)
has its own source repository at [STS].

• For the Jararaca Explorer component (included in the JTorX distribution),
the source is available as part of the TorX distribution.

• The lps2torx Explorer component is not distributed with JTorX. However,
two instances are available, in resp. the mCRL2 and the LTSmin tool set.
Both these tool sets are open-source; see their respective web sites [mCR]
and [LTS].

• For other external Explorer components the availability varies; some are
available as part of TorX.

JTorX is being maintained; the JTorX web site [JTob] has an issue tracker.

A

Appendix A

Implementations

In this chapter we discuss two implementations of our design: TorX and JTorX.
TorX was our first implementation, in which we shaped our design. JTorX is a
reimplementation of TorX, created with ease of deployment in mind.

In Section A.1 we discuss TorX, in Section A.2 we discuss JTorX, and in
Section A.3 we present a table that lists the functionality of both TorX and
JTorX.

A.1 TorX

The core of TorX was developed in the Côte de Resyste project [TB03b], which
ran from 1998–2002. Effectively, the goal (of both TorX and the project) was to
make testing theory, which had been developed in the years prior to the project,
tangible. Work on the testing tool, that was to become TorX, had already
started before the start of the Côte de Resyste project; the latest release of TorX
is from October 2008. TorX was developed using a number of implementation
languages, like C, Tcl, Tk, and Perl. It is distributed in source form. The
total distributed source consists of 239k lines of code, documentation, and build
scripts; however, this number includes several 10k’s lines of code that have
been generated. TorX has been available for public download at [torc] since
December 2002, initially under a license that only allowed non-commercial use;
in December 2006 the licence was changed to the Apache License, Version 2.0.

Development of the tool was driven by the case studies that were done during
this project. TorX is extremely flexible, but the benefits of this were mostly
restricted to its developers: for others it turned out to be relatively difficult to
install and configure.

The flexibility of TorX comes from the following two reasons: (1) each of
its architectural components is mapped onto a separate program; (2) these pro-
grams communicate over their standard input and output, using textual inter-
face messages. This makes it easy to use the Unix shell to compose components
in unanticipated ways, and to create and incorporate additional components.

The implementation as several independent components also made it easy to
create utility programs that, on the one hand, implement the CADP [GLMS07]

275

276

A

APPENDIX A. IMPLEMENTATIONS

Open/Caesar interface [Gar98], and on the other hand connect to an Explorer,
Primer or Combinator, thus allowing the use of e.g. the CADP simulator and the
CADP minimization tools on a model, suspension automaton, or the structure
offered by the Combinator.

TorX can be used via a command line interface CLI), and via a graphical
user interface (GUI). Configuration is done via per-component configuration
files. The GUI contains custom, user-configurable, menu’s for models, guid-
ance models and implementations. These menu’s make it easier to e.g. switch
from one model to another one, or one implementation to another one, during
demonstrations.

Because TorX is distributed in source form, to be able to install TorX, the
target system needs support for all the languages that are used in the imple-
mentation of TorX. On a typical Unix system this support is already there;
however, on Windows this is more of a problem; there, a user has to install a
Unix compatibility layer, as offered by e.g. Cygwin [cyg], before starting the
installation of TorX.

A.2 JTorX

JTorX was developed as a re-implementation of TorX, with focus on ease of
use, with respect to both installation and configuration [Bel10]. Work on JTorX
started approximately in 2008. The core of JTorX is developed in Java (Java was
chosen with ease of deployment in mind). JTorX’ visualization components—
written in Tcl/Tk—are reused from TorX, packaged as a Tcl Starpack, and
integrated in JTorX, together with the the tclkit program that is necessary to
run them. JTorX is distributed in binary form, packaged for Windows, Linux,
and Mac OS X; the source repository is also publicly accessible at [JTob]. JTorX
has been available for public download at [JTob] since January, 2009, under the
three-clause BSD license.

JTorX lacks some of the flexibility that is present in TorX: JTorX is essen-
tially a single program, which has interfaces to connect external Explorer and
Adapter programs.

In JTorX, configuration is done via a graphical user interface (GUI). Con-
figurations can be saved, for later use with the GUI. JTorX can also be used
as command line utility, without GUI, e.g. to run tests with previously saved
configurations.

JTorX is distributed with Explorer support for Aldebaran, GraphML,
GraphViz, Jararaca, STS, and for its own log files. Moreover, the mCRL2
and LTSmin toolkits contain support for JTorX, which provides support for
mCRL2.

In addition to the model-based testing functionality, JTorX contains an in-
teractive simulator, and a tool called iocoChecker.

◦ The interactive simulator can simulate a model, test purpose or model-
to-be-used-as-SUT (then it is connected to the Explorer), the suspension
automaton of a model (then it is connected to the Primer), or the combina-
tion of a model and a test purpose (then it is connected to the Combinator).

A.3. SYNOPSIS

A

277

Progress through the model can be visualised, using the functionality dis-
cussed in Section 4.2.5.

◦ The iocoChecker tool was developed as a separate tool by Lars Frantzen [Fra],
and has been integrated into JTorX. It can check whether an implement-
ation model is ioco- or uioco-conforming to a specification model (see
Chapter 2). It exhaustively checks, for each state of the specification,
whether its set of enabled outputs includes the corresponding set for the
corresponding state in the implementation. In case of non-conformance,
it shows the trace to the model state, and the output sets for that state
of specification and implementation. The trace can be used as guidance
information in a test, and it can be used to guide the interactive simulator,
when simulating the specification or implementation model.

JTorX is distributed with a utility that reads any non-symbolic finite model
in one of the supported modelling languages (see Section 4.2.4), and writes it
out in Aldebaran format. This allows analysis of these models, and of JTorX
log files, using tools like CADP and LTSmin.

The distribution of JTorX is rather self-contained: for installation of JTorX,
only a Java run-time environment is necessary. Thus, it is simple to install
JTorX on Windows.

A.3 Synopsis

Table A.1 gives an overview of the functionality of TorX and JTorX.

TorX JTorX

Functionality
on-line testing X X
off-line test derivation X -
off-line test execution X X
iocoChecker - X
uiocoChecker - X
interactive simulator - X

CLI X X
GUI X X
Configuration per-component via GUI
User-configurable GUI menu’s X -

Testing Relation etc.
ioco X X
uioco - X
τ -cycle detect X X
divergence - X

Input Formats
Aldebaran (.aut) Explorer built-in

278

A

APPENDIX A. IMPLEMENTATIONS

GraphML (.graphml) - built-in
GraphViz (.gv) - built-in
FSP Explorer Explorer from TorX
Jararaca Explorer built-in
LOTOS Open/Caesar Explorer Explorer from TorX
LOTOS SmileExp (external) SmileExp (external)
µCRL lps2torx (external) lps2torx (external)
mCRL2 lps2torx (external) lps2torx (external)
Promela Trojka -
Promela SPEX SPEX from TorX
Timed automata net ta2torx (external) ta2torx (external)
STS STSimulator (external) built-in
TorX log - built-in
Torx-explorer interface X X

Output Formats (to allow use of third-party tools on (J)TorX models etc.)
Aldebaran (.aut) - in distr
Open/Caesar interface in distr from TorX

Accessible Interfaces
Torx-explorer interface X X
Torx-adapter interface X X
Primer interface X -
Combinator interface X -

Adapter
labels over stdin/stdout built-in
labels over TCP built-in
simulated model via configuration built-in
Torx-adapter interface X X

Visualization
model via configuration built-in
guidance model via configuration built-in
implementation (sim. model) via configuration built-in
suspension automaton (SA) via configuration built-in
‘test run’ (visited part of SA) via configuration built-in
message seq. chart via configuration built-in

Table A.1: Overview of functionality of TorX and JTorX

B

Appendix B

Case Studies

B.1 Conference Protocol Entity
The conference protocol is a simple chat box protocol that was designed for a course
on protocol implementation. We discussed the Adapter for the CPE in Section 5.1.2.
We tested a number of conference protocol entity (CPE) implementations using mod-
els in LOTOS and Promela, as discussed in [BFdV+99]. We also used TorX to ex-
ecute test cases that were derived from the LOTOS model with TGV [JJ05], discussed
in [DRS+00]. In addition, we tested a LOTOS and mCRL2 model of the CPE against
each other.

Test architecture For the test architecture and the Adapter, used to test the CPE
implementations, see Section 5.1.2.

Test tools TorX and TGV; LOTOS support via CADP [Gar98], Promela support
via Trojka [dT00].

Testing modes on-line with TorX, random (+manual); off-line with TGV

Models We used LOTOS, Promela and mCRL2 models. In each of the models,
we modelled not only the protocol behaviour of the CPE, but also the possibility that
concurrently sent messages by the CPE may overtake each other. In the LOTOS and
mCRL2 models we used unbounded FIFO queues, and thus the LTSes of these models
have infinite state spaces.

Results Both with the LOTOS and the Promela models TorX was able to detect
ioco-incorrect CPE implementations. To our surprise, two CPE implementations in
which we had introduced errors were still ioco-correct to the models, because the scen-
ario, necessary to trigger their errors, did not occur, given our models (and corresponding
test set-up).

When running the LOTOS model against the mCRL2 one, we found one error in
the mCRL2 model, even though both models have an infinite state space.

Lessons learned
1. Number of test steps, needed to trigger errors very much depends on random

number generator seed.
2. Analysis of long error traces is cumbersome; translation of these traces to format

that allows study using existing tools would be helpful.

279

280

B

APPENDIX B. CASE STUDIES

3. We should not overlook unwanted (bad-weather) behaviour, even when we focus
on expected (good-weather) behaviour.

4. Producing the Adapter is a laborious task.

Impact on design and implementation Translation of test logs to the
Aldebaran format has been added (lesson learned 2).

Design requirements covered We only mention specific requirements.
1. Requirement 3: execution of test cases derived off-line by TGV;
2. Requirement 5: formalism independent: LOTOS, Promela and mCRL2 models;
3. Requirement 6: tool supports infinite state space models, i.e. the LOTOS and

mCRL2 ones;
4. Requirement 15: support for simulated model as SUT allowed testing of LOTOS

and mCRL2 models against each other;
5. Requirement 20: the LOTOS model was validated using simulators in LITE [BLV95]

and CADP, and the Promela model using Spin.

Design requirements triggered
1. Requirement 21: produce/keep test execution data: translation to tool-supported

format was triggered here.

Publications The case study was reported in [BFdV+99, DRS+00].

B

281

B.2 EasyLink
The EasyLink protocol facilitates communication between a TV and one or more Audi-
o/Video (AV) devices, like VCRs. We tested its preset download feature, which allows
automatic downloading of predefined settings (e.g. channel number, frequency, etc.)
from the TV to AV devices.

Test architecture We tested a TV that was connected to a single VCR via an
intermediate device called MBB by means of scart cables. The MBB—a proprietary
device, developed within Philips for testing purposes—is connected to, and controlled
by, a networked computer running the test tool (TorX) via a bidirectional serial link.
The MBB takes care of all timing constraints of the scart communication. The TV can
be operated by a uni-directional remote control. The remote control is also controlled
by the computer via a human interface—a human that presses buttons on the remote
control, as instructed by the computer.

To best use the computational resources which were available for this case study—
relatively slow machines—a distributed testing tool set-up was used: test derivation took
place on one machine, and the Adapter that interacted with the MBB ran on another
machine. This was facilitated by the TorX Adapter interface, that, for this case, was
run over TCP.

Test tool TorX; Promela support via Trojka [dT00].

Testing modes on-line, random

Model In Promela, with an extension to allow parameters (without constraints) in
labels. The label parameters were used to deal with the unknown initial state—its list
of presets—of the TV. The TV that was used, has a preset list of 100 entries, each
containing a name and a frequency. So, without the parameters in the labels, the enu-
meration of all possible responses at the start of the test run—all possible combinations
of possible names and frequencies, for 100 presets—would have given a huge number of
expect outputs. With the parameters in the labels, this number was manageable.

This approach of using labels with parameters was one of two approaches which we
tried to tackle the “unknown initial TV state” problem—for the other approach we refer
to [BFHd01].

Results Two (believed) errors were detected.

Lessons Learned
◦ A generic method was used to deal with SUT output messages that were deemed

irrelevant, such that they did not have not appear in (and clutter) the model,
but still did appear in the test log.

◦ The ability to distribute the testing tool over multiple machines was very useful;
◦ User guidance in the form of test purposes (i.e., specifications that specify the

property that is to be tested) would greatly improve the usability of the tool in
a practical setting.

Impact on design and implementation
◦ introduction and application of symbolic testing to decrease the state space, in

particular to reduce the number of transitions;
◦ the ability to distribute the tester over multiple machines;
◦ need for user guidance identified.

282

B

APPENDIX B. CASE STUDIES

Design requirements covered
◦ Requirement 19: modelling language with expressive power, suitable to express

large number of transitions;
◦ Requirement 23: in this case, the tool had sufficient performance to be usable,

even though distribution of the tool functionality was necessary.

Publications The case study was reported in [BFHd01].

B

283

B.3 Highway Tolling System Payment Box
In the highway tolling system a money transaction takes place, to pay toll, when a car
drives through a tolling gate.

We tested whether the payment box (PB), the tolling gate component that parti-
cipates in the money transaction protocol, correctly implements the money transaction
protocol. We used multiple concurrent transactions, and included the possibility that
protocol messages getting lost.

Test architecture We tested the actual PB hardware and software. However,
because the transactions are encrypted, and we did not have access to the keys, we
could not create an Adapter that directly interfaces with the PB. We were able to
use a testing framework that had already been developed for traditional testing of the
PB. It interacts with the PB over UDP. We added a “remote control” interface—to
be accessed over TCP/IP—to this testing framework, to be able to apply stimuli and
obtain responses—where the testing framework took care of encryption and decryption.
An Adapter provides the connection between TorX and the remote control interface.

Challenges When the PB waits for a next message in a transaction, it only waits
for t0 seconds (100ms); if no message has arrived by then, the PB aborts the transaction
with a TimeOut message. This makes it hard to decide on a suitable quiescence timeout
value tδ: a value >= t0 will cause transaction time-outs; a value < t0 may result in
unjustified test failures. Therefore, we choose tδ > t0, and let the Adapter, when asked
for an observation, return special action Tick when the PB is waiting for input, and no
other output is available. This use of Tick is included in the model.

When testing with multiple concurrent transactions, it turned out that the change
to successfully complete a transaction is very low, because apply inputs that belong to
the same transaction in time t0. Therefore, we let the Adapter do

To deal with a stringent timing requirement of the PB—two particular protocol
messages have to arrive within a given short time interval, or else the PB times out—we
let the Adapter do action refinement: The model contains a special label that represents
the sequence of the two messages. When the Adapter is given that label as stimulus, it
lets the testing framework send the two messages in quick succession.

Test tool TorX; Promela support via Trojka [dT00].

Testing modes on-line, random, random+weights. We used a new selection strategy,
random+weights, that associates weights with labels, and uses the weights during the
random selection, to affect the probability that particular labels are chosen. We used it
here to test with erroneous input, such that the erroneous inputs are tested less often
than the correct ones.

Model In LOTOS and Promela, using macro processor m4, to easily instantiate the
number of concurrent transactions, and to include/exclude partial behaviour descrip-
tions.

Results One unexpected observation of quiescence was made; otherwise, no errors
were detected.

Lessons Learned Action refinement may help to meet timing requirements of the
implementation.

Impact on design and implementation For this case study, we added the
Selector tool component to the architecture, see Section 8.1.3.

284

B

APPENDIX B. CASE STUDIES

Design requirements coverage
◦ Requirement 11: for this case study, we extended TorX with a component that

implements the random+weights selection strategya;
◦ Requirement 19: Expressive power of LOTOS and Promela, though sufficient

to describe the system behaviour, does not allow parameterising the models for
e.g. the number of concurrent transactions, or to include or exclude partial be-
haviours;

◦ Requirement 23: for this case study, we had to use action refinement in the
Adapter to meet IUT’s timing requirements—with faster test derivation that may
not have been necessary.

Publications The case study was reported in [dBF02].

aThis is not present in JTorX.

B

285

B.4 Oosterschelde Storm Surge Barrier Emer-
gency Closing System

The Oosterschelde storm surge barrier emergency closing system (ECS) controls the
main operation of closing and opening the barrier. Typically, in response to just a few
inputs, the ECS produces a series of outputs, where each of the outputs only arrives
after a specified amount of time has passed. The shortest expected response time (delay)
is two seconds, the longest expected response time is 85 minutes. There are no timing
requirements on inputs.

The ECS was tested using model-based testing, where we tested not only functional
behaviour, but also experimented with testing the timing requirements on the outputs
of the ECS. After the ECS was put into production, an event log was obtained from
it, and transformed to a trace of model actions, which was treated as a special kind of
SUT, to test whether the trace was valid.

Test architecture Normally, the ECS runs on dedicated hardware; it interacts
with its environment using signal lines that have either a high or a low signal. For
traditional testing of the ECS, a testing framework had already been developed, which
allows testing of the ECS on an ordinary PC—it simulates all connections that the ECS
has with its environment. For model-based testing, an Adapter was developed to use
this testing framework. The Adapter received every second the status of all signal lines
from the framework, via shared memory—if the Adapter looks “too late” a value may
have been overwritten. This Adapter reported, to the Manager, the signal line values of
all signal lines, but only when at least one value had changed.

With each applied stimulus, and each reported response, the Adapter includes a
timestamp in the label.

To deal with the large difference in response time, which made it very hard to
choose a sensible quiescence timeout value, we effectively tested without checking for
quiescence. The Adapter was made to return a special label Tick when an observation
was requested, and none was present.

Test tool TorX; Promela support via Trojka [dT00], guidance via jararaca.

Testing modes on-line, random, guided; IOCO, practically without quiescence.

Model We modelled the ECS in Promela. We modelled both functional behaviour,
and the time delays for the outputs. We modelled the functional behaviour in terms
of individual signal line changes. We modelled time delays as integers. We used a
special process in the model to combine the individual signal line changes and delays
into (expected) output labels, where also the special label Tick was included.

Scenarios We used Jararaca test purposes to guide the testing, to avoid applying
many inputs while waiting for an output that only comes after a long time.

Results No errors were detected. The event log obtained from the running system
was found to be a valid trace of the model.

Lessons Learned Since this was our first experiment with timed testing, we tried
several approaches to deal with time. The approach where we only gave fail verdicts for
functional errors, and logged timing errors, without stopping test runs due to a timing
error, was most successful. For the other approaches we refer to [Bel02].

286

B

APPENDIX B. CASE STUDIES

Impact on design and implementation
◦ To use the label, returned by the Adapter after applying a stimulus, to compute

the successor state—in this case study that label contained a timestamp.
◦ Visualisation/animation of test purposes was added.
◦ (indirectly) timed testing was studied theoretically, and a timed Explorer for TorX

was developed.

Design requirements covered
◦ Requirement 7: both random and guided strategies were used;
◦ Requirement 15: the trace, obtained from the execution log, was used as SUT;
◦ Requirement 19: after some tweaking, we got sufficient performance to not loose

observations;
◦ Requirement 23: performance sufficed to not miss responses in the Adapter.

Publications The case study was reported in [Bel02].

B

287

B.5 Myrianed Protocol Entity
The Myrianed gossip Medium Access Protocol gMAC is a protocol, developed by
CHESS, that allows CHESS Myrianed Wireless Sensor Network (WSN) nodes to com-
municate with each other, such that application programs that run on the WSN nodes
can exchange messages. Communication is via radio, and, to save power, the radio is
switched off most of the time. Important aspects of the protocol are time and non-
determinism: both play a role in the mechanisms that allow WSN nodes to synchronise
their clocks—and thus, the periods in which their radio receiver is switched on.

We tested the gMAC protocol stack on a normal PC, using simulated time. This
was part of a case study in which also two other model-based testing tools were used
to test the same SUT: TorXakis, and Uppaal-Tron. Here we focus on the experience
with JTorX, for a more elaborate discussion of the case study see [TV11].

Test architecture Normally, the gMAC protocol stack runs on the special hard-
ware of the WSN nodes. For the case study, a test framework was developed by CHESS
that allows to run and test the gMAC protocol on a normal PC, using simulated time.
Testers can control the clock that is implemented by the test environment, by issuing
clock tick commands that make time progress.

For JTorX we developed an Adapter to interact with this test framework.

Challenges The main challenge of this case study was to make the model. We used
an iterative approach to obtain system knowledge from an expert (and from system
source code):

1. we made a model that reflected our understanding of the system,
2. we tested the system w.r.t. this model, which typically resulted in fail verdicts,

after which
3. we discussed the result with the expert, which resulted in a better understanding

of the system, after which
4. we go back to step 1, and update the model to reflect our increased understanding,

etc.

Test tool JTorX, using the Explorer for Timed Automata.

Testing modes manual, automatic (random)

Model Timed automata

Results Improved understanding of the IUT, obtained by discussing test results with
the expert.

Lessons Learned
◦ Symbolic treatment of data (in addition to the already present symbolic treatment

of time) would be beneficial.
◦ Support for data functions (as present in Uppaal, but not supported in the Ex-

plorer) would be beneficial.

Impact on design and implementation

Design requirements coverage
◦ Requirement 5: the design should be modelling language independent: here we

were able to use a timed automata model.
◦ Requirement 19: the expressivity of the timed automata language, supported by

the Explorer sufficed for the case study; nevertheless, support of data functions
would have been beneficial.

288

B

APPENDIX B. CASE STUDIES

Publications The case study was reported in [TV11].

B

289

B.6 Rivercrossing Puzzle Program
The rivercrossing puzzle program is used in the lab class of a course name Testing
Techniques at University of Twente. The program implements the well-known puzzle in
which a farmer wants to cross a river with a goat, a cabbage and a wolf. For each move
in the puzzle, the player can say what the farmer takes with him when he crosses the
river. The puzzle program has invalid moves, unsafe moves, and valid moves. The model
is underspecified and non-deterministic. It is underspecified, because in an unsafe or
invalid state, only output is specified: the error message that the puzzle program should
present. It is non-deterministic, because each unsafe state has a transition to the initial
state, and a transition back to the last safe state. This combination of underspecification
and non-determinism makes that testing with ioco may lead to undesired fail verdicts:
for testing uioco must be used.

The students fill-in-the-blanks in a given Java implementation of the puzzle program,
and create (uioco-)incorrect mutants of it. They also create mutant models, both
uioco-correct and uioco-incorrect ones.

Test architecture The puzzle program provides two interfaces to each envir-
onment, both on standard input and output: firstly, using labels of the model, and
secondly, using a very simple encoding onto bytes. For the first interface, one of the
JTorX built-in Adapter programs can be used; for the second interface, the students
have to fill-in-the-blanks in an Adapter that connects to JTorX using the torx-adapter
interface.

Test tool JTorX

Testing modes on-line, manual, random, guided.

Model The model is made using yEd, in GraphML.

Scenarios The students design their own scenarios, e.g. to expose the errors they
introduced.

Results Typically, most of the erroneous implementations are uncovered.

Lessons Learned It was rather surprising that such a simple exercise already
made testing with uioco necessary.

Design requirements covered
◦ Requirement 7: both random and guided strategies were used;
◦ Requirement 15: in the lab class, the students also test models against each other;
◦ Requirement 14: most of the students use the visualisation to see what happens

during testing;
◦ Requirement 18: the modelling formalism is easy to understand, and suitable for

this case, because the model is small enough;
◦ Requirement 10: use of the uioco conformance relation was necessary;
◦ Requirement 23: performance sufficed to not miss responses in the Adapter.
◦ Requirement 12: the students install and use JTorX themselves.
◦ Requirement 16: the students can use the built-in Adapter for toy programs.

Publications None.

C

Appendix C

Questionnaire

To obtain feedback about TorX and JTorX, we asked users to fill out a ques-
tionnaire. We received 13 responses.

Below we present the questions and answers of the questionnaire. For this
presentation
◦ we have edited the questions to make them shorter;
◦ we have combined and summarised responses;
◦ where appropriate, we have combined related questions;
◦ where possibly relevant, we indicated the category of respondent (student,

researcher).
Note that for a number of multiple-choice questions, a single respondent could
select multiple answers.

We obtained responses in two “rounds”:
◦ in fall 2013 we presented the questionnaire to an initial small group of

users, and
◦ in spring 2014, after the Testing Techniques (TT) course at University of

Twente, we presented it to the TT students, and to a few more researchers.
Just before the start of TT course a new version of JTorX was released, for

use by the TT students, in which some of the feedback, obtained from the initial
respondents, had already been taken into account. This may explain why some
of the responses to the questionnaire seem to contradict each other—different
respondents based their responses on their experience with different versions of
JTorX, at different moments in time.

Some responses may refer to issues, present in some older versions of JTorX,
that have been dealt with, and are no longer present in the most recent version.

291

292

C

APPENDIX C. QUESTIONNAIRE

Did you ever install JTorX? Platforms? Windows: 11, Mac OS X: 3, Linux: 2
Installing JTorX was ... Very easy: 4, Easy:8, Ok: 1
How much time took installing JTorX? 30 sec – 30 min, typical 5-10 min
Did you have to install additional software? X11: 1; two 32-bit libs: 1; yEd, GraphViz:

2; CADP: 1.
Did you ever install TorX? Platforms? Linux: 1, Solaris: 1
Installing TorX was ... Impossible: 1, Hard: 1
How much time took installing TorX? several hours; (long ago) 1 hour, student

needed 1 day
Did you have to install additional software? a lot; some – both don’t remember details
Remarks about installing (J)TorX? Switching from TorX to JTorX made in-

stallation much more comfortable, and
hence also teaching and supervision.

How did you use (J)TorX? in a course: 11 (as lecturer: 1), internship
/ graduation assignment: 2, case study: 5,
research: 2

In what role did you use (J)TorX? student: 10, researcher: 3, teacher: 2,
other: 1 (developer)

Did you use the JTorX GUI? yes: 13, no: 0
Using the JTorX GUI was ... ok: 8, easy: 5
Did you use the JTorX command line tool? yes: 1, no: 12
Using the JTorX command line tool was ... very easy: 1 (helpful, easy to extend, ex-

tremely important for large experiments)
Did you use visualisations? yes: 10, no: 1, N/A: 1
Which ones did you use? model: 9; test run: 6; sim model as IUT:

4; msc: 4; real impl: 1; other: 1 (lazy OTF
MBT)

Were they helpful? yes: 8, no: 1, N/A: 4
How? get insight; see what goes on; find errors;

location in specification; show what part of
model is visited

Possible improvements? More userfriendly it should be.
Which viz. did you miss? Statistics/plots over multiple runs, but

that should be part of a large test/case
study management tool.
Monitoring

Table C.1: Overview of the questionnaire questions and answers about install-
ation, respondent background, GUI and CLI, and visualisation.

C

293

How did you make a model? yEd: 11, text editor: 3, graph drawing tool: 2 (1:
.dot), modelling env: 2 (1: mCRL2, cadp), other:
1: programmatically, and transforming model-code
into XML

Which modelling languages? GraphML: 10, mCRL2: 3, STS: 2, Aldebaran: 1,
GraphViz: 1

Making the model was ... hard: 2, ok: 4, easy: 5, very easy: 1
hard: not modelling, but finding/using additional
tools (researcher)
hard: limitations in error messages for STSs (re-
searcher)

How much time took modelling? few days (case study student), 5 min – several hours
(researcher), a lot (researcher), day per model (re-
searcher); 10 min – 1.5 hours (students)

Modelling language expressivity? ok (students); no data (researcher); no real-time in
STS (researcher); tool limitations necessitate mod-
elling restraints (researcher)

What add to modelling language? data (researcher); DSL for STS (researcher).
Which modelling language to add? NuSMV, because it is a very powerful modelling

language
Tried adding a modelling language? yes: 1
What was your experience? very difficult, no good documentation
Remarks about modelling? researcher: Error messages when JTorX cannot

read the model are often not very helpful
Have you used test purposes? yes: 6
Modelled in? GraphML: 5, Aldebaran: 1, mCRL2: 1, STS: 1,

other: 1: extension to combine multiple test pur-
poses

How? yEd: 6, text editor: 1, other: 1: programmatically
Making them was ... hard: 1, ok: 1, easy: 2, very easy: 2

hard: a single test purpose for a single feature was
simple, but combining became quickly complex (re-
searcher)

How much time to create? about 2 days, a student of mine about 2 weeks (re-
searcher); no time at all (previous models) - 10 min
(students)

Table C.2: Overview of the questionnaire questions and answers about modelling
and test purposes.

294

C

APPENDIX C. QUESTIONNAIRE

What IUT did you test? simulated model: 11, toy implementation: 6, real imple-
mentation: 7

How did you connect JTorX? simulation of given model – directly connected: 9
real program, communicating labels on stdin/stdout: 7
real program, communicating labels over TCP: 1
real program, started via given TorX adapter: 7

Connecting was ... hard: 2, ok: 7, easy: 3, very easy: 1
hard: sometimes easy, sometimes difficult (researcher)
hard: you really need to know which connections need
to be made (student)
very easy: there were little problems with the custom
adapter (student)

How much time took it? a day or so (student case study); Practically nothing – 2
hour (students)
from 0 (simulated model) to couple of hours, depends
very much on SUT (researcher)
all in all about a person week (a student, a developer
from industry and I) (researcher)
the simulations were easy to do; communication via TCP
was a bit more iffy (student)

Did you create an adapter? yes: 8
How did you connect JTorX? simulation of given model – directly connected: 2

real program, communicating labels on stdin/stdout: 3
(1: was the easiest way)
real program, communicating labels over TCP: 2
real program, started via given TorX adapter: 3

Connecting JTorX was ... very hard: 1, hard: 1, ok: 3, easy: 1, very easy: 2
How much time took it? researcher: about an hour (a student of mine did it and

told me)
Practically nothing.
2 hours

Creating an adapter was ... very hard: 1, hard: 1, ok: 3, easy: 1
How much time took it? researcher: all in all about 3 days (most work was a

facade to hide all the web service complexities from the
model and core adapter)
2 hours

Biggest stumbling blocks? researcher: all the small details you have to consider,
mostly due to the SUT
researcher: to adjust the adapter for the needs of the
implementation
researcher: see above: web service complexities
student: I didn’t fully understand how it works.
student: No clear documentation of the responsibilities
of the different methods (in Java).

How to ease adapter creation? researcher: a few example adapters and a better docu-
mentation on how to connect an adapter
researcher: Offer a utility api.

Remarks about connecting JTorX to IUT?
researcher: better documentation

Table C.3: Overview of the questionnaire questions and answers regarding con-
necting JTorX to IUT.

C

295

What are the top three things you dislike about JTorX?
Sometimes hard to understand how several features work.
Need own code (adapter) to make it work.
no data
no integrated front end
option boxes in GUI without on-line help for which I always forget their meaning
very little documentation
buggy, it sometimes simply crashes
storing configurations doesn’t work
some bugs, but none too difficult to fix
the core engine and STS integration
that lazy OTF MBT hasn’t become a part of JTorX yet ;)
Sometimes too verbose tool-tips
sometimes too high window (testing mode)
the simulation windows look a bit ugly on Linux (but are fully readable).
Too many things on the screen.
several options and boxes that can be ticked, but for which I have insufficient knowledge
of FMT to figure out what they do on my own.
A slightly clunky GUI that performs decently but is otherwise not immediately intuitive.
The lack of an in-depth manual to go with the tool
Hardness
not so much userfriendly
time consuming

What are the top three things you like about JTorX?
Very general
Seems useful in practice
Runs using Java
nice tool for playing, teaching, learning the theory
fast answer to questions
simple design (GUI is not overloaded)
visualisation of the test-process (msc, model ..)
the modular design and extensibility
the user-friendly GUI
that STSs are supported
It really works
the simulations are very informative
it can be customised and used in many ways.
Simple tool
Easy installment
the underlying theory
java-based
visualisation
The ease with which simulations from yEd are imported and tested
The range of communication possibilities, including TCP communication and Std in-
/out labels

Table C.4: Overview of the questionnaire questions and answers about likes and
dislikes.

296

C

APPENDIX C. QUESTIONNAIRE

What are the top three things would like to see added/changed/improved in JTorX?
NuSMV support
Function that uses GUI buttons as JTorX input (from implementation) in order to
automate GUI testing.
no data
no integrated front end
option boxes in GUI without on-line help for which I always forget their meaning
handling of real-time and data
more expressive STSs;
a DSL for modelling STSs;
more powerful core engine (symbolic, better solver, better guidance (e.g. via lazy OTF
MBT));
Sometimes too verbose tool-tips,
sometimes too high window (testing mode),
the simulation windows look a bit ugly on Linux (but are fully readable).
The manual, mostly! Especially for people using it in the course of the bachelor/master,
without the extensive FMT background that some have, would be very nice to have!

Is there anything else that you would like to share about JTorX or TorX?
JTorX has helped in my research a lot. Thanks.
I really enjoyed working with this tool. :)

Table C.5: Overview of the questionnaire questions and answers about suggested
improvements and other remarks.

Publications from the
Author

[1] M. Sytema, A. F. E. Belinfante, M. I. A. Stoelinga, and L. Marinelli. Exper-
iences with formal engineering: model-based specification, implementation
and testing of a software bus at neopost. Science of computer programming,
80(Part A):188–209, February 2014.

[2] F. Arnold, A. F. E. Belinfante, F. I. Van der Berg, D. Guck, and M. I. A.
Stoelinga. Dftcalc: a tool for efficient fault tree analysis. In Proceedings
of the 32nd International Conference on Computer Safety, Reliability, and
Security (SAFECOMP), Toulouse, France, volume 8153 of Lecture Notes
in Computer Science, pages 293–301, Berlin, September 2013. Springer
Verlag.

[3] F. Arnold, A. F. E. Belinfante, F. I. Van der Berg, D. Guck, and M. I. A.
Stoelinga. Dftcalc: a tool for efficient fault tree analysis (extended version).
Technical Report TR-CTIT-13-13, Centre for Telematics and Information
Technology, University of Twente, Enschede, June 2013.

[4] A. F. E. Belinfante and A. Rensink. Publishing your prototype tool on the
web: Puptol, a framework. Technical Report TR-CTIT-13-15, Centre for
Telematics and Information Technology, University of Twente, Enschede,
June 2013.

[5] M. Sijtema, M. I. A. Stoelinga, A. F. E. Belinfante, and L. Marinelli. Exper-
iences with formal engineering: Model-based specification, implementation
and testing of a software bus at neopost. In G. Salaün and B. Schätz, edit-
ors, FMICS 2011, volume 6959 of LNCS, pages 117–133. Springer, August
2011.

[6] Axel Belinfante. JTorX: A tool for on-line model-driven test derivation and
execution. In J. Esparza and R. Majumdar, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 16th International Confer-
ence, TACAS 2010, Paphos, Cyprus, volume 6015 of LNCS, pages 266–270,
Berlin, March 2010. Springer Verlag.

[7] A. F. E. Belinfante. Extensible synthetic file servers? or: Structuring
the glue between tester and system under test. In S. J. Mullender and

297

298 PUBLICATIONS FROM THE AUTHOR

G. Collyer, editors, Proceedings of the Second International Workshop on
Plan 9 (IWP9 2007), Bell Labs, Murray Hill, NJ, USA, pages 47–54, Mur-
ray Hill, NJ, USA, December 2007. Bell Labs.

[8] H. C. Bohnenkamp and A. F. E. Belinfante. Timed model-based testing.
In G. J. Tretmans, editor, Tangram: Model-based integration and testing
of complex high-tech systems, pages 115–128. Embedded Systems Institute
ESI, Eindhoven, the Netherlands, 2007.

[9] A. F. E. Belinfante. Experiments towards model-based testing using plan 9:
Labelled transition file systems, stacking file systems, on-the-fly coverage
measuring. In G. Guardiola, E. Soriano, and F. J. Ballesteros, editors,
Proceedings of the First International Workshop on Plan 9, Madrid, Spain,
pages 53–64, Madrid, December 2006. Universidad Rey Juan Carlos.

[10] A. Belinfante, L. Frantzen, and C. Schallhart. Tools for test case generation.
In Model-Based Testing of Reactive Systems: Advanced Lectures, volume
3472 of LNCS, pages 391–438. Springer, 2005.

[11] H. C. Bohnenkamp and A. F. E. Belinfante. Timed testing with torx.
In J. S. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, Formal Methods
Europe (FME), Newcastle, UK, volume 3582 of Lecture Notes in Computer
Science, pages 173–188, Germany, 2005. Springer-Verlag.

[12] A. F. E. Belinfante. Timed testing with torx: The oosterschelde storm surge
barrier. In M. Gijsen, editor, Handout 8e Nederlandse Testdag, Rotterdam,
the Netherlands, Rotterdam, 2002. CMG.

[13] R. G. de Vries, A. F. E. Belinfante, and J. Feenstra. Automated testing in
practice: The highway tolling system. In I. Schieferdecker, H. König, and
A. Wolisz, editors, Proceedings of the IFIP 14th International Conference
on Testing Communicating Systems XIV, volume 210 of IFIP Conference
Proceedings, pages 219–234, Dordrecht, 2002. Kluwer Academic Publishers.

[14] René G. de Vries, Axel Belinfante, and Jan Feenstra. Automated testing
in practice: The highway tolling system. In Ina Schieferdecker, Hartmut
König, and Adam Wolisz, editors, Testing of Communicating System XIV,
pages 219–234, Berlin, 2002. Kluwer academic publishers.

[15] A. F. E. Belinfante, J. Feenstra, A. W. Heerink, and R. G. de Vries. Spe-
cification based formal testing: The easylink case study. In J. P. Veen, ed-
itor, 2nd PROGRESS workshop on Embedded Systems, Utrecht, the Neth-
erlands, pages 73–82, Utrecht, October 2001. Technology Foundation STW.

[16] R. G. de Vries, G. J. Tretmans, A. F. E. Belinfante, J. Feenstra, L. M. G.
Feijs, S. Mauw, N. Goga, A. W. Heerink, and A. de Heer. Côte de resyste
in progress. In J. P. Veen, editor, 1st PROGRESS workshop on Embed-
ded Systems, Utrecht, pages 141–148, Utrecht, October 2000. Technology
Foundation STW.

PUBLICATIONS FROM THE AUTHOR 299

[17] L. Du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. F. E. Belinfante,
and R. G. de Vries. Formal test automation: The conference protocol with
TGV/TorX. In H. Ural, R. L. Probert, and G. von Bochmann, editors, Test-
ing of Communicating Systems: Tools and Techniques, IFIP TC6/WG6.1
13th International Conference on Testing Communicating Systems (Test-
Com 2000), Ottawa, Canada, volume 176 of IFIP Conference Proceedings,
pages 221–228, Dordrecht, August 2000. Kluwer Academic Publishers.

[18] G. J. Tretmans and A. F. E. Belinfante. Automatic testing with formal
methods - samenvatting van de eurostar’99 presentatie. TestNet Nieuws -
Nieuwsbrief van de vereniging TestNet, 4(1):8–10, 2000.

[19] G. J. Tretmans and A. F. E. Belinfante. Automatic testing with formal
methods. Technical Report TR-CTIT-99-17, Centre for Telematics and
Information Technology University of Twente, Enschede, December 1999.

[20] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experiment.
In G. Csopaki, S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on
Testing of Communicating Systems, pages 179–196. Kluwer, 1999.

[21] G. J. Tretmans and A. F. E. Belinfante. Automatic testing with formal
methods. In EuroSTAR’99: 7th European Int. Conference on Software
Testing, Analysis & Review, Barcelona, Spain, Galway, Ireland, 1999.
EuroStar Conferences.

[22] P. van Eijk, A. F. E. Belinfante, E. H. Eertink, and H. Alblas. The term
processor generator kimwitu. In H. Brinksma, editor, Tools and Algorithms
for Construction and Analysis of Systems, Third International Workshop,
TACAS ’97, Enschede, The Netherlands, volume 1217 of Lecture Notes in
Computer Science, pages 96–111, Berlin, April 1997. Springer Verlag.

[23] P. van Eijk, A. F. E. Belinfante, E. H. Eertink, and H. Alblas. The term
processor generator kimwitu (full version). Technical Report 96-49, Uni-
versity of Twente, 1996.

R

References

[AHJW06] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger.
Testing telecoms software with quviq quickcheck. In Proceedings
of the 2006 ACM SIGPLAN Workshop on Erlang, ERLANG ’06,
pages 2–10, New York, NY, USA, 2006. ACM.

[AHK+12] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F.W.
Vaandrager. Automata learning through counterexample-guided
abstraction refinement. In Proceedings 18th International Sym-
posium on Formal Methods (FM 2012), volume 7436 of LNCS,
pages 27–31. Springer-Verlag, 2012.

[AKT+13] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and
Sicco Verwer. Improving active mealy machine learning for protocol
conformance testing. Machine Learning, pages 1–36, 2013.

[ald] Aldebaran .aut file format. http://www.inrialpes.fr/vasy/

cadp/man/aldebaran.html#sect6.

[axi] Axini website. http://www.axini.com.

[BAL+90] Ed Brinksma, Rudie Alderden, Rom Langerak, Jan Tretmans, and
Jeroen van de Lagemaat. A formal approach to conformance test-
ing. In J. de Meer, W. Effelsberg, and L. Mackert, editors, Second
International Workshop on Protocol Test Systems, pages 349–363.
IFIP TC 6, North-Holland, 1990.

[BB04] Laura Brandán Briones and Ed Brinksma. A test generation
framework for quiescent real-time systems. In J. Grabowski and
B. Nielsen, editors, Formal Approaches to Software Testing: 4th
International Workshop, FATES 2004, Linz, Austria, volume 3395
of LNCS, pages 64–78, Berlin, September 2004. Springer Verlag.

[BB05] H. C. Bohnenkamp and A. F. E. Belinfante. Timed testing with
torx. In J. S. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors,
Formal Methods Europe (FME), Newcastle, UK, volume 3582 of
LNCS, pages 173–188, Germany, 2005. Springer-Verlag.

301

http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6
http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6
http://www.axini.com

302

R

REFERENCES

[BB07] H. C. Bohnenkamp and A. F. E. Belinfante. Timed model-based
testing. In G. J. Tretmans, editor, Tangram: Model-based integra-
tion and testing of complex high-tech systems, pages 115–128. Em-
bedded Systems Institute ESI, Eindhoven, the Netherlands, 2007.

[Bel02] A. F. E. Belinfante. Timed testing with torx: The oosterschelde
storm surge barrier. In M. Gijsen, editor, Handout 8e Nederlandse
Testdag, Rotterdam, the Netherlands, Rotterdam, 2002. CMG.

[Bel10] Axel Belinfante. JTorX: A tool for on-line model-driven test deriva-
tion and execution. In J. Esparza and R. Majumdar, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 16th
International Conference, TACAS 2010, Paphos, Cyprus, volume
6015 of LNCS, pages 266–270, Berlin, March 2010. Springer Verlag.

[BFdV+99] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga,
L. Feijs, S. Mauw, and L. Heerink. Formal test automation: A
simple experiment. In G. Csopaki, S. Dibuz, and K. Tarnay, editors,
12th Int. Workshop on Testing of Communicating Systems, pages
179–196. Kluwer, 1999.

[BFHd01] A. F. E. Belinfante, J. Feenstra, A. W. Heerink, and R. G. de
Vries. Specification based formal testing: The easylink case study.
In J. P. Veen, editor, 2nd PROGRESS workshop on Embedded
Systems, Utrecht, the Netherlands, pages 73–82, Utrecht, October
2001. Technology Foundation STW.

[BFS05] A. F. E. Belinfante, L. Frantzen, and C. Schallhart. Tools for test
case generation. In M. Broy, B. Jonsson, J. P. Katoen, M. Leucker,
and A. Pretschner, editors, Model-Based Testing of Reactive Sys-
tems: Advanced Lectures, volume 3472 of LNCS, pages 391–438.
Springer Verlag, 2005.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating pro-
cesses. In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra,
editors, Proceedings of the CWI Symposium on Mathematics and
Computer Science. CWI, Amsterdam, The Netherlands, 1985.

[BLV95] Tommaso Bolognesi, Jeroen van de Lagemaat, and Chris Vissers,
editors. LOTOSphere: Software Development with Lotos. Kluwer
Academic Publishers, 1995.

[BPS01] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of
Process Algebra. Elsevier, 2001.

[Buu95] Kees Buurman. Vluis. Vlieger, 2, 1995. http://www.kiteplans.

org/planos/vluis/vluis.html.

[BvdPW09] S. C. C. Blom, J. C. van de Pol, and M. Weber. Bridging the gap
between enumerative and symbolic model checkers. Technical Re-
port TR-CTIT-09-30, Centre for Telematics and Information Tech-
nology, University of Twente, Enschede, 2009.

http://www.kiteplans.org/planos/vluis/vluis.html
http://www.kiteplans.org/planos/vluis/vluis.html

REFERENCES

R

303

[CAD] CADP web site. http://www.inrialpes.fr/vasy/cadp/.

[CAD12] CADP evaluator4 manual webpage. http://cadp.inria.fr/man/
evaluator4.html, December 2012.

[Cal08] J. R. Calamé. Testing reactive systems with data: enumerative
methods and constraint solving. PhD thesis, University of Twente,
Wageningen, September 2008.

[CJRZ02] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva.
Stg: A symbolic test generation tool. In Joost-Pieter Katoen and
Perdita Stevens, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 2280 of LNCS, pages 470–475.
Springer Berlin Heidelberg, 2002.

[cyg] Cygwin website. http://www.cygwin.com.

[dAJ12] Roberto Alves de Almeida Junior. Model-based testing with a b
model of the emv standard. Bachelor’s thesis, Radboud University
Nijmegen, July 2012.

[dBF02] R. G. de Vries, A. F. E. Belinfante, and J. Feenstra. Automated
testing in practice: The highway tolling system. In I. Schiefer-
decker, H. König, and A. Wolisz, editors, Proceedings of the IFIP
14th International Conference on Testing Communicating Systems
XIV, volume 210 of IFIP Conference Proceedings, pages 219–234,
Dordrecht, 2002. Kluwer Academic Publishers.

[DRS+00] L. Du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. F. E.
Belinfante, and R. G. de Vries. Formal test automation: The con-
ference protocol with TGV/TorX. In H. Ural, R. L. Probert, and
G. von Bochmann, editors, Testing of Communicating Systems:
Tools and Techniques, IFIP TC6/WG6.1 13th International Con-
ference on Testing Communicating Systems (TestCom 2000), Ot-
tawa, Canada, volume 176 of IFIP Conference Proceedings, pages
221–228, Dordrecht, August 2000. Kluwer Academic Publishers.

[dT00] R. G. de Vries and G. J. Tretmans. On-the-fly conformance testing
using spin. International journal on software tools for technology
transfer, 2(4):382–393, 2000.

[dV01] R.G. de Vries. Towards formal test purposes. In J. Tretmans, ed-
itor, Formal Approaches to Testing of Software 2001 (FATES’01),
pages 61–76, Aalborg, Denmark, 2001. BRICS, University of Aar-
hus, Denmark. BRICS Notes Series (NS-01-4).

[Eer94] Henk Eertink. Simulation Techniques for the Validation of LOTOS
Specifications. PhD thesis, University of Twente, Enschede, The
Netherlands, 1994.

http://www.inrialpes.fr/vasy/cadp/
http://cadp.inria.fr/man/evaluator4.html
http://cadp.inria.fr/man/evaluator4.html
http://www.cygwin.com

304

R

REFERENCES

[Far14] David Faragó. Model Checking and Model-Based Testing: Improv-
ing These Formal Methods by Lazy Techniques. PhD thesis, Karls-
ruhe Institute of Technology, 2014. forthcoming.

[Feea] Jan Feenstra. Conference protocol description. http://fmt.ewi.

utwente.nl/tools/torx/confcasedescr.html.

[Feeb] Jan Feenstra. Conference protocol implementations. http://fmt.
ewi.utwente.nl/tools/torx/confcaseimpls.html.

[FGM+10] Alessio Ferrari, Daniele Grasso, Gianluca Magnani, Alessandro
Fantechi, and Matteo Tempestini. The Metrô Rio ATP case study.
In Kowalewski and Roveri [KR10], pages 1–16.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer, 2000.

[Fra] Lars Frantzen. Tools – iocochecker. http://www.cs.ru.nl/~lf/

tools/iocochecker/.

[FTW05] Lars Frantzen, Jan Tretmans, and Tim A.C. Willemse. Test
Generation Based on Symbolic Specifications. In J. Grabowski
and B. Nielsen, editors, Formal Approaches to Software Testing –
FATES 2004, number 3395 in LNCS, pages 1–15. Springer, 2005.

[FTW06] Lars Frantzen, Jan Tretmans, and Tim A.C. Willemse. A Symbolic
Framework for Model-Based Testing. In K. Havelund, M. Núñez,
G. Rosu, and B. Wolff, editors, Formal Approaches to Software
Testing and Runtime Verification – FATES/RV 2006, number 4262
in LNCS, pages 40–54. Springer, 2006.

[Gab00] Harold N. Gabow. Path-based depth-first search for strong and
biconnected components. Information Processing Letters, 74(3–
4):107–114, 2000.

[Gar98] H. Garavel. OPEN/CAESAR: An open software architecture for
verification, simulation, and testing. In Bernhard Steffen, editor,
Tools and Algorithms for the Construction and Analysis of Systems,
volume 1384 of LNCS, pages 68–84. Springer Berlin Heidelberg,
1998.

[GKM+08] Jan Friso Groote, Jeroen Keiren, Aad Mathijssen, Bas Ploeger,
Frank Stappers, Carst Tankink, Yaroslav Usenko, Muck van Weer-
denburg, Wieger Wesselink, Tim Willemse, and Jeroen van der
Wulp. The mCRL2 toolset. In Proc. International Workshop on
Advanced Software Development Tools and Techniques (WASDeTT
2008), pages 5/1–10, 2008.

[GLMS07] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin
Serwe. Cadp 2006: A toolbox for the construction and analysis
of distributed processes. In CAV 2007, pages 158–163, 2007.

http://fmt.ewi.utwente.nl/tools/torx/confcasedescr.html
http://fmt.ewi.utwente.nl/tools/torx/confcasedescr.html
http://fmt.ewi.utwente.nl/tools/torx/confcaseimpls.html
http://fmt.ewi.utwente.nl/tools/torx/confcaseimpls.html
http://www.cs.ru.nl/~lf/tools/iocochecker/
http://www.cs.ru.nl/~lf/tools/iocochecker/

REFERENCES

R

305

[Gog03] N. Goga. Experimenting with the probabilistic torx algorithm. In
International Workshop on Software Engineering for High Assur-
ance Systems (SEHAS ’03), pages 13–20, Portland, Oregon, USA,
2003. Software Engineering Institute, Pittsburg, USA.

[Graa] GraphViz dot language. http://www.graphviz.org/content/

dot-language.

[Grab] GraphViz web site. http://graphviz.org.

[Gra12] GraphML file format. http://graphml.graphdrawing.org, Janu-
ary 2012.

[GVZ01] Hubert Garavel, César Viho, and Massimo Zendri. System design
of a CC-NUMA multiprocessor architecture using formal specific-
ation, model-checking, co-simulation, and test generation. STTT,
3(3):314–331, 2001.

[Hee98] Lex Heerink. Ins and Outs in Refusal Testing. PhD thesis, Univer-
sity of Twente, Enschede, The Netherlands, 1998.

[HKL+10] H. H. Hansen, J. Ketema, S. P. Luttik, M. R. Mousavi, and J. C.
van de Pol. Towards model checking executable UML specifications
in mCRL2. Innovations in Systems and Software Engineering, 6(1-
2):83–90, March 2010.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall Inc., 1991.

[Hol03] G. J. Holzmann. The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[Int81] Internet Engineering Task Force. RFC 791 Internet Protocol
- DARPA Inernet Programm, Protocol Specification, September
1981.

[ISO89] ISO. Information Processing Systems, Open Systems Interconnec-
tion, LOTOS - A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. International Standard
IS-8807. ISO, Geneva, 1989.

[ISO91] ISO. Information Technology, Open Systems Interconnection,
Conformance Testing Methodology and Framework. International
Standard IS-9646. ISO, Geneve, 1991. Also: CCITT X.290–X.294.

[ISO96] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Information Re-
trieval, Transfer and Management for OSI; Framework: Formal
Methods in Conformance Testing, volume ITU-T Recommendation
Z.500 of Committee Draft CD 13245-1. ISO – ITU-T, Geneve, 1996.

[Jar12] Jararaca manual. http://fmt.cs.utwente.nl/tools/torx/

jararaca.1.html, January 2012.

http://www.graphviz.org/content/dot-language
http://www.graphviz.org/content/dot-language
http://graphviz.org
http://graphml.graphdrawing.org
http://fmt.cs.utwente.nl/tools/torx/jararaca.1.html
http://fmt.cs.utwente.nl/tools/torx/jararaca.1.html

306

R

REFERENCES

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and al-
gorithms. International Journal on Software Tools for Technology
Transfer, 7(4):297–315, 2005.

[JR04] E. Jahier and P. Raymond. The lucky language reference manual.
Technical Report TR-2004-6, Verimag, 2004.

[JToa] JTorX git repository. http://fmt.ewi.utwente.nl/gitweb/?p=

jtorx.git.

[JTob] JTorX website. http://fmt.ewi.utwente.nl/tools/jtorx/.

[KB02] Nitin Koppalkar and Animesh Bhowmick. Integration of generic ex-
plorer with the TorX tool chain. Technical Note 2002/387, Philips
Nat. Lab., 2002.

[Kle12] Robert Kleinpenning. Is javacardsign correct and secure? Bach-
elor’s thesis, Radboud University Nijmegen, July 2012.

[Kop03] Nitin Koppalkar. Interfacing STATECRUNCHER with TorX for
demonstrating the state-based testing technique taking mg-r com-
ponents for a case study. Technical Note draft report, Philips Nat.
Lab., 2003.

[KR77] Brian W. Kernighan and Dennis M. Ritchie. The m4 macro
processor. Technical report, Bell Laboratories, Murray Hill,
New Jersey, USA, 1977. http://wolfram.schneider.org/bsd/

7thEdManVol2/m4/m4.pdf. Accessed on May 19, 2014.

[KR10] Stefan Kowalewski and Marco Roveri, editors. FMICS 2010,
volume 6371 of LNCS. Springer, 2010.

[Kut14] Felix Kutzner. A case study for lazy on-the-fly model-based testing.
Bachelor’s thesis, Karlsruhe Institute of Technology, 2014.

[Lan90] Rom Langerak. A testing theory for lotos using deadlock detection.
In Proceedings of the IFIP WG 6.1 Ninth int. Symp. on Protocol
Spec., Testing, and Verification, pages 87–98. IFIP, 1990.

[Leu13] Joost Leuven. Testing of channel based service connectors. Bach-
elor’s thesis, Universiteit Leiden, August 2013.

[Lev00] Nancy G. Leveson. Experiences in designing and using formal spe-
cification languages for embedded control software. In Lynch and
Krogh [LK00], page 3.

[LK00] Nancy A. Lynch and Bruce H. Krogh, editors. HSCC 2000, volume
1790 of LNCS. Springer, 2000.

[LMN05] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online test-
ing of real-time systems using uppaal. In Jens Grabowski and Brian
Nielsen, editors, Formal Approaches to Software Testing, volume
3395 of LNCS, pages 79–94. Springer Berlin Heidelberg, 2005.

http://fmt.ewi.utwente.nl/gitweb/?p=jtorx.git
http://fmt.ewi.utwente.nl/gitweb/?p=jtorx.git
http://fmt.ewi.utwente.nl/tools/jtorx/
http://wolfram.schneider.org/bsd/7thEdManVol2/m4/m4.pdf
http://wolfram.schneider.org/bsd/7thEdManVol2/m4/m4.pdf

REFERENCES

R

307

[LMNS05] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou.
Testing real-time embedded software using uppaal-tron: An in-
dustrial case study. In Proceedings of the 5th ACM International
Conference on Embedded Software, EMSOFT ’05, pages 299–306,
New York, NY, USA, 2005. ACM.

[LTS] LTSmin web site. http://fmt.ewi.utwente.nl/tools/ltsmin.

[mCR] mCRL2 toolkit website. http://www.mcrl2.org/.

[Mei12] Jeroen Meijer. Model based system testing in practice: Report on
an internship performed at panalytical. Master’s thesis, University
of Twente, November 2012.

[Men08] Jeroen Mengerink. SeCo - a tool for semantic test coverage. Mas-
ter’s thesis, University of Twente, Enschede, The Netherlands,
2008.

[MPS+09] Wojciech Mostowski, Erik Poll, Julien Schmaltz, Jan Tretmans,
and Ronny Wichers Schreur. Model-based testing of electronic
passports. In Maŕıa Alpuente, Byron Cook, and Christophe
Joubert, editors, Formal Methods for Industrial Critical Systems,
volume 5825 of LNCS, pages 207–209. Springer Berlin Heidelberg,
2009.

[MT08] R. Mateescu and D. Thivolle. A model checking language for con-
current value-passing systems. In Proceedings of the 15th Inter-
national Symposium on Formal Methods FM’08, volume 5014 of
LNCS, pages 148–164, 2008.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley, 1979.

[Neo09] Neopost Inc. website. http://www.neopost.com/, August 2009.

[PJJ07] F. Ployette, B. Jeannet, and T. Jéron. Stg: a symbolic test genera-
tion tool for reactive systems. TESTCOM/FATES07 (Tool Paper),
June 2007.

[Pos80] J. Postel. User datagram protocol. RFC 768, Internet Engineering
Task Force, August 1980.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168.

[PP] F. Ployette and F.X. Ponscarme. The STG Tool Page. http:

//www.irisa.fr/prive/ployette/stg-doc/stg-web.html.

[RdBJ00] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to
symbolic test generation. In Wolfgang Grieskamp, Thomas Santen,
and Bill Stoddart, editors, Integrated Formal Methods, volume 1945
of LNCS, pages 338–357. Springer Berlin Heidelberg, 2000.

http://fmt.ewi.utwente.nl/tools/ltsmin
http://www.mcrl2.org/
http://www.neopost.com/
http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html
http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html

308

R

REFERENCES

[Rev] The shape that started a revolution. http://revkites.com.

[Roo86] Paul E. Rook. Controlling software projects. IEEE Software En-
gineering Journal, 1(1):7–16, January 1986.

[SBSM14] M. Sytema, A. F. E. Belinfante, M. I. A. Stoelinga, and L. Mar-
inelli. Experiences with formal engineering: model-based specific-
ation, implementation and testing of a software bus at neopost.
Science of computer programming, 80(Part A):188–209, February
2014.

[Sch05] Helen Schonenberg. Timed modeling and verification of the do/dg
component: A case study for testing a real time component with
torx, using verified timed models. Internship report, University of
Twente, August 2005.

[Sni10] Arjan Snippe. ToLERo: ToRX-tested LEGO robots. Bachelor’s
thesis, University of Twente, 2010.

[spe] SpexExplorer website. http://specexplorer.com.

[Spe02] Robert L. M. Spee. Automatic test generation and execution in
practice: TorX, TestFrame and the Easy Mail Machine. Master’s
thesis, Technische Universiteit Eindhoven, November 2002.

[SSBM11] M. Sijtema, M. I. A. Stoelinga, A. F. E. Belinfante, and L. Mar-
inelli. Experiences with formal engineering: Model-based specific-
ation, implementation and testing of a software bus at neopost. In
G. Salaün and B. Schätz, editors, FMICS 2011, volume 6959 of
LNCS, pages 117–133. Springer, August 2011.

[Sse06] Richard Ssekibuule. Model-based testing of network security proto-
cols in java card applications. Master’s thesis, Radboud University
Nijmegen, October 2006.

[ST08] Julien Schmaltz and Jan Tretmans. On conformance testing for
timed systems. In Franck Cassez and Claude Jard, editors, Formal
Modeling and Analysis of Timed Systems, volume 5215 of LNCS,
pages 250–264. Springer Berlin Heidelberg, 2008.

[Sto12] Gerjan Stokkink. Quiescent transition systems. Master’s thesis,
University of Twente, Enschede, The Netherlands, 2012.

[STS] Stsimulator project at java.net. https://java.net/projects/

stsimulator.

[STS13] W. G. J. Stokkink, M. Timmer, and M. I. A. Stoelinga. Divergent
quiescent transition systems. In M. Veanes and L. Viganò, editors,
Proceedings of the 7th International Conference on Tests and Proofs
(TAP 2013), Budapest, Hungary, volume 7942 of LNCS, pages 214–
231, Berlin, June 2013. Springer Verlag.

http://revkites.com
http://specexplorer.com
https://java.net/projects/stsimulator
https://java.net/projects/stsimulator

REFERENCES

R

309

[TB03a] G. J. Tretmans and H. Brinksma. Torx: Automated model-
based testing. In A. Hartman and K. Dussa-Ziegler, editors,
First European Conference on Model-Driven Software Engineering,
Nuremberg, Germany, pages 31–43, December 2003.

[TB03b] J. Tretmans and H. Brinksma. Torx: Automated model based
testing. In A. Hartman and K. Dussa-Ziegler, editors, Proc. 1st
European Conf. on Model-Driven Software Engineering, 2003.

[tH12] Thijs ten Hoeve. Model based testing of a plc based interlocking
system. Master’s thesis, Technische Universiteit Twente, November
2012.

[The12] The Go programming language website. http://golang.org/,
January 2012.

[Tho04] Graham G. Thomason. The Design and Construction of
a State Machine System that Handles Nondeterminism.
PhD thesis, School of Electronics and Physical Sciences,
2004. http://freespace.virgin.net/graham.thomason/

Statecruncher/StCrMainThesis.pdf. Accessed on May 23, 2014.

[tora] torx-adapter(5) - a program that implements an interface to the
sut. http://fmt.ewi.utwente.nl/tools/torx/torx-adaptor.

5.html.

[torb] torx-explorer(5) - interface to program to explore a labelled
transition system. http://fmt.ewi.utwente.nl/tools/torx/

torx-explorer.5.html.

[torc] TorX website. http://fmt.ewi.utwente.nl/tools/torx/.

[Tre94] J. Tretmans. A formal approach to conformance testing. In
O. Rafiq, editor, International Workshop on Protocol Test Systems
VI, volume C-19 of IFIP Transactions, pages 257–276, 1994.

[Tre96] J. Tretmans. Test generation with inputs, outputs, and repet-
itive quiescence. Software - Concepts and Tools, 17(3):103–120,
1996. Also: CTIT technical report 96–26, University of Twente,
Enschede, The Netherlands.

[Tre99] J. Tretmans. Testing concurrent systems: A formal approach. In
J.C.M Baten and S. Mauw, editors, CONCUR’99 – 10th Int. Con-
ference on Concurrency Theory, volume 1664 of LNCS, pages 46–
65. Springer Verlag, 1999.

[Tre02] J. Tretmans. Testing Techniques. University of Twente, 2002.
Course notes for the course on Testing Techniques.

[Tre08] J. Tretmans. Model Based Testing with Labelled Transition Sys-
tems. In Formal Methods and Testing, volume 4949 of LNCS, pages
1–38. Springer, 2008.

http://golang.org/
http://freespace.virgin.net/graham.thomason/Statecruncher/StCrMainThesis.pdf
http://freespace.virgin.net/graham.thomason/Statecruncher/StCrMainThesis.pdf
http://fmt.ewi.utwente.nl/tools/torx/torx-adaptor.5.html
http://fmt.ewi.utwente.nl/tools/torx/torx-adaptor.5.html
http://fmt.ewi.utwente.nl/tools/torx/torx-explorer.5.html
http://fmt.ewi.utwente.nl/tools/torx/torx-explorer.5.html
http://fmt.ewi.utwente.nl/tools/torx/

310

I

REFERENCES

[TTC] TTCN-3 test system reference architecture web page. http://www.
ttcn-3.org/index.php/about/referrence-architecture.

[TV11] J. Tretmans and M. Verhoef. Testing the Myrianed Protocol:
JTorX, torxakis, UPPAAL TRON. In QUASIMODO Deliverable
D5.10: Final report: case studies and tool integration, pages 10–14.
2011.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A tax-
onomy of model-based testing approaches. Software Testing, Veri-
fication and Reliability, 22(5):297–312, 2012.

[UTP] UML Test Profile on the OMG website. http://utp.omg.org/.

[van11] H. M. van der Bijl. On changing models in Model-Based Testing.
PhD thesis, University of Twente, Enschede, May 2011.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-based
testing of object-oriented reactive systems with spec explorer. In
RobertM. Hierons, JonathanP. Bowen, and Mark Harman, editors,
Formal Methods and Testing, volume 4949 of LNCS, pages 39–76.
Springer Berlin Heidelberg, 2008.

[vdBRT04] H. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional
testing with ioco. In FATES 2003, volume 2931 of LNCS, pages
86–100. Springer, 2004.

[vS09] Sabrina von Styp. Towards a testing theory for timed and symbolic
systems. Master’s thesis, RWTH Aachen, Aachen, Germany, 2009.

[vSY13] Sabrina von Styp and Liyong Yu. Symbolic model-based test-
ing for industrial automation software. In Valeria Bertacco and
Axel Legay, editors, Haifa Verification Conference, volume 8244 of
LNCS, pages 78–94. Springer, 2013.

[vY07] Jeroen van Yperen. SPEX: A Simple Promela EXplorer for TorX.
Master’s thesis, University of Twente, November 2007.

[WDT+11] Colin Willcock, Thomas Deiß, Stephan Tobies, Stefan Keil, Fed-
erico Engler, Stephan Schulz, and Anthony Wiles. An Introduction
to TTCN-3. Wiley, 2011.

[Wei09] Martin Weiglhofer. Automated Software Conformance Testing.
PhD thesis, Graz University of Technology, 2009.

[yWo] yWorks. yEd webpage. http://www.yworks.com/en/products_

yed_about.html.

http://www.ttcn-3.org/index.php/about/referrence-architecture
http://www.ttcn-3.org/index.php/about/referrence-architecture
http://utp.omg.org/
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html

I

Index

Symbols
δ .32

A
act .199
action .31
action-prefix operator 31
after . 28
alternating parameterised

transition system 189
APTS see alternating

parameterised transition
system

asymmetric . 30

B
behaviour-expression 31
block . 30

C
complete . 25
computation 27
conformance relation 23
conforms-to 23
constraint . 199

D
der . 28
deterministic 29

E
error . 5
EXEC . 24
exhaustive 7, 25
exhaustiveness 26
exhibition . 43
exhibits . 43

F
fail . 5
fail . 24
fails . 35
failure trace . 28
false negatives 25
finite behaviour 29
finite state . 29
Ftraces . 29

G
genimp .24

H
He . 43
Hriop
e . 47

Hrios
e . 47

hit .43
hit functions 43
hits . 44

I
IAP see implementation access

point
image finite . 29
imp . 23
implementation access point 8
implementation relation 23
implementation under test 2
IMPS . 23
in .33
inconclusive . 5
init . 28
input-completion 60, 67, 80
input-enabled 32
input-output transition system . 32
input-suspension 37

311

312

I

INDEX

ioco . 36
iocoF .36
IOT S(LI , LU)32
IUT see implementation under test
IUT .23

L
labelled transition system 27
labelled transition system with

inputs and outputs30
LTS see labelled transition system
LT S(L) . 29
LT S(LI , LU) 31

M
miocoF . 37
miss . 43
misses .44
model . 7
MODS .23
multi input-output transition

systems 37

O
OBS . 24
obs .24
observation . 24
observation objective 43

extended 49
plural . 47
singular 45

out . 33
out tr .49

P
Parameterised Transition System

180
pass .5
pass . 24
passes . 35
PCO see point of control and

observation
point of control and observation . 8
prefix . 47
process .31
PTS .see Parameterised Transition

System

Q
quiescent .32

R
reactive systems 2
refusal . 28
refuses . 28
rev . 43
riop . 47
rios .47
rtioco . 38

S
selection strategy

random walk 11
test purpose 11

sound . 7, 25
soundness . 26
SPECS . 23
stable state . 27
Straces . 32
strongly converging 29
STS see Symbolic Transition

System
summation operator31
suspension automaton33
suspension trace 32
SUT see system under test
Symbolic Transition System . . 180,

183
symmetric . 30
system under test 8

T
term . 199
test architecture8
test case 5, 24, 34
test context . 8
test derivation 4, 5
test execution 4, 5, 24
test hypothesis 23
test purpose 5, 21
test run . 24, 35
test steps . 5
test suite . 4, 34
testing . 2

batch see off-line
black box 4

INDEX

I

313

conformance 3
off-line .4
on-line .4
on-the-fly see on-line
white box4

TESTS . 24
tiocoM . 38
TOBS . 43
trace . 27
traces . 28
T T S(LU , LI) 34

U
uioco . 38
underspecification 38
Utraces . 38

V
vt . 24
V-model . 2
var . 199
verdict . 5, 24
verdict functions 24

Samenvatting

Het hoofddoel van het werk, dat we in dit manuscript beschrijven, is: “Het ont-
werpen van een flexibel en state-of-the-art tool voor model-gebaseerd afleiden
en automatisch uitvoeren van black-box tests voor reactieve systemen. Het tool
moet zowel bruikbaar zijn voor educatieve doeleinden, als ook buiten een aca-
demische context.” Van dit hoofddoel leiden we functionele en niet-functionele
eisen af voor het ontwerp van het tool. De kern van het manuscript is een
bespreking van het ontwerp van het tool, waarin we laten zien hoe aan de func-
tionele eisen voldaan wordt. Daarnaast presenteren we materiaal—case studies,
en antwoorden op een enquete die we gehouden hebben onder gebruikers van
het tool—dat laat zien in hoeverre aan de niet-functionele eisen voldaan wordt.

We bespreken de architectuur van het tool, en beschrijven een drietal ge-
bruiksscenarios die het tool moet kunnen ondersteunen, wil het aan de functi-
onele eisen kunnen voldoen: “random on-line” testen, “guided on-line” testen,
en het “off-line” afleiden en uitvoeren van tests. Bij het “on-line” testen vinden
test-afleiding en test-uitvoering gëıntegreerd plaats: een test-stap wordt pas af-
geleid op het moment dat die nodig is om de test-uitvoering voortgang te laten
vinden. Bij het “random on-line” testen wordt tijdens de test-afleiding een wil-
lekeurig pad door het model doorlopen. Bij het “guided on-line” testen wordt,
naast het model waaruit de tests worden afgeleid, extra sturingsinformatie ge-
bruikt, die aangeeft welke paden in het model doorlopen moeten worden bij het
afleiden van de test. Bij het “off-line” afleiden en uitvoeren van tests vinden het
afleiden en uitvoeren plaats als gescheiden activiteiten.

In de architectuur van ons tool onderscheiden we twee hoofdonderdelen:
één voor testafleiding en één voor testuitvoering. Het hoofdonderdeel voor tes-
tafleiding leidt testprimitieven (teststappen) af uit een gegeven model en uit
eventueel daarbij gegeven sturingsinformatie. Het hoofdonderdeel voor test-
uitvoering bevat de functionaliteit voor het koppelen van het tool aan een te
testen systeem—we noemen dit de “adapter”. We bespreken het hoofdonderdeel
voor testafleiding aan de hand van het bovengenoemde drietal gebruiksscena-
rios, en beschrijven daarnaast faciliteiten voor visualisatie, en voor het omgaan
met “divergence” in modellen. Bij de beschrijving van het hoofdonderdeel voor
testuivoering bespreken we drie adapter voorbeelden, waarna we deze veralge-
meniseren tot een algemeen ontwerp voor een adapter. We sluiten af met een
beschrijving van uitbreidingen voor het op symbolische wijze kunnen omgaan
met data en tijd.

315

Titles in the IPA Dissertation Series since 2008

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Auto-
maton Proofs in PVS. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-02

M. Bruntink. Renovation of Idio-
matic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Pars-
ing, and Assimilation of Language
Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Veri-
fication of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Complex Manufac-
turing Machines. Faculty of Mechan-
ical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,

Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spe-
cifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of
Aspects. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perform-
ance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of

Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Evalu-
ation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Re-
writing and Its Certification. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-24

U. Khadim. Process Algeb-
ras for Hybrid Systems: Compar-
ison and Development. Faculty of
Mathematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applic-
ations. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless
Sensor Networks in Motion: Cluster-
ing Algorithms for Service Discovery
and Provisioning. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Model-
ling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming
Ready for Prime Time. Faculty of
Science, UU. 2009-9

K.R. Olmos Joffré. Strategies
for Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Reas-
oning about Java programs in PVS
using JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluat-
ing Dynamic Analysis Techniques for
Program Comprehension. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2009-14

H.L. Jonker. Security Matters:
Privacy in Voting and Fairness
in Digital Exchange. Faculty of
Mathematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshap-
ing Trust Management. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer Al-
gebra on top of Proof Assistants
and making Proof Assistants available
over the Web. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-19

B. Ploeger. Improved Verifica-
tion Methods for Concurrent Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Med-
ical Image Analysis. Faculty of
Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Com-
putational Complexity of Probabil-
istic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools
for Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative

Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visual-
isation for Crime Analysis and Gen-
omics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specific-
ation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-

tions, Implementations and Applica-
tions. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-11

R. Bakhshi. Gossiping Models:
Formal Analysis of Epidemic Proto-
cols. Faculty of Sciences, Department
of Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in
Networks of Organizations. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Ana-
lysis of Information Leakage in Prob-
abilistic and Nondeterministic Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Veri-
fication of Distributed Failure Detect-
ors. Faculty of Mathematics and
Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From Comput-
ability to Executability – A process-
theoretic view on automata theory.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model
co-evolution. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and
Hiding in Concurrent Processes. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-13

S. Malakuti. Event Composi-
tion Model: Achieving Naturalness
in Runtime Enforcement. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-14

M. Raffelsieper. Cell Librar-
ies and Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of
Flow and Visibility on Triangu-
lated Terrains. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models
for Quality of Service of Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assess-
ing and Improving the Quality of
Model Transformations. Faculty of
Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct
Programs in Practice. Faculty of
Science, Mathematics and Computer
Science, RU. 2011-20

H.J.S. Basten. Ambiguity De-
tection for Programming Language
Grammars. Faculty of Science,
UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for
Language Workbenches. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis
of Real-Time Coordination Patterns.
Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Tech-
niques for the Design and Imple-
mentation of Domain-Specific Lan-
guages. Faculty of Electrical Engin-
eering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organiz-
ational Security Policies: Theory and
Practice. Faculty of Electrical Engin-
eering, Mathematics & Computer Sci-
ence, UT. 2012-04

S. Sedghi. Towards Provably Se-
cure Efficiently Searchable Encryp-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2012-05

F. Heidarian Dehkordi. Studies
on Verification of Wireless Sensor
Networks and Abstraction Learning
for System Inference. Faculty of
Science, Mathematics and Computer
Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Compos-
itional Interchange Format for Hy-
brid Systems: Design and Implement-
ation. Faculty of Mechanical Engin-
eering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by
Means of Annotated Graph Mining
Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2012-10

L.J.P. Engelen. From Napkin
Sketches to Reliable Software. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal
Models – An Engineering Perspective.
Faculty of Mathematics and Com-
puter Science, TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination.
Faculty of Sciences, Department of
Computer Science, VUA. 2012-14

A. Osaiweran. Formal Develop-
ment of Control Software in the Med-
ical Systems Domain. Faculty of
Mathematics and Computer Science,
TU/e. 2012-15

W. Kuijper. Compositional Syn-
thesis of Safety Controllers. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2012-16

H. Beohar. Refinement of Com-
munication and States in Models
of Embedded Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2013-01

G. Igna. Performance Analysis
of Real-Time Task Systems using
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Trans-
formation – Theory and Practice.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2013-03

B. Lijnse. TOP to the Rescue –
Task-Oriented Programming for In-
cident Response Applications. Fac-

ulty of Science, Mathematics and
Computer Science, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Compre-
hension for Modular and Dynamic
Systems. Faculty of Electrical Engin-
eering, Mathematics, and Computer
Science, TUD. 2013-06

L.E. Mamane. Interactive math-
ematical documents: creation and
presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-07

M.M.H.P. van den Heuvel. Com-
position and synchronization of real-
time components upon one processor.
Faculty of Mathematics and Com-
puter Science, TU/e. 2013-08

J. Businge. Co-evolution of the Ec-
lipse Framework and its Third-party
Plug-ins. Faculty of Mathematics and
Computer Science, TU/e. 2013-09

S. van der Burg. A Reference
Architecture for Distributed Software
Deployment. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-11

D.H.P. Gerrits. Pushing and
Pulling: Computing push plans for
disk-shaped robots, and dynamic la-
belings for moving points. Faculty of
Mathematics and Computer Science,
TU/e. 2013-12

M. Timmer. Efficient Modelling,
Generation and Analysis of Markov

Automata. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model.
Faculty of Mathematics and Com-
puter Science, TU/e. 2013-14

L. Lensink. Applying Formal Meth-
ods in Software Development. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2013-15

C. Tankink. Documentation and
Formal Mathematics — Web Techno-
logy meets Proof Assistants. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2013-16

C. de Gouw. Combining Monitor-
ing with Run-time Assertion Check-
ing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2013-17

J. van den Bos. Gathering
Evidence: Model-Driven Software
Engineering in Automated Digital
Forensics. Faculty of Science,
UvA. 2014-01

D. Hadziosmanovic. The Process
Matters: Cyber Security in Industrial
Control Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2014-03

C.-P. Bezemer. Performance Op-
timization of Multi-Tenant Software
Systems. Faculty of Electrical Engin-
eering, Mathematics, and Computer
Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quant-
itative Information Flow Analysis for
Multi-threaded Programs. Faculty of

Electrical Engineering, Mathematics
& Computer Science, UT. 2014-05

A.W. Laarman. Scalable Multi-
Core Model Checking. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2014-06

J. Winter. Coalgebraic Charac-
terizations of Automata-Theoretic
Classes. Faculty of Science, Math-
ematics and Computer Science,

RU. 2014-07

W. Meulemans. Similarity Meas-
ures and Algorithms for Carto-
graphic Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Explor-
ing Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2014-09

JTorX:

 Exploring

 Model-Based

 Testing

 Belinfante
 Ede
 Frits
Axel

JTorX
: E

xploring M
odel-B

ased Testing
A

xel B
elinfante

INVITATION

to the public defense
of my PhD dissertation

JTorX:

Exploring

Model-Based

Testing

Thursday,
September 18th, 2014,

at 14:45
building De Waaier, room 4,

University of Twente

Axel Belinfante
Axel.Belinfante@gmail.com

Directly before the defense,
at 14:30, I will give a brief

introduction to the subject of
my dissertation.

The defense will be followed
by a reception in the same

building.

JTorX:

 Exploring

 Model-Based

 Testing

 Belinfante
 Ede
 Frits
Axel

JTorX
: E

xploring M
odel-B

ased Testing
A

xel B
elinfante

INVITATION

to the public defense
of my PhD dissertation

JTorX:

Exploring

Model-Based

Testing

Thursday,
September 18th, 2014,

at 14:45
building De Waaier, room 4,

University of Twente

Axel Belinfante
Axel.Belinfante@gmail.com

Directly before the defense,
at 14:30, I will give a brief

introduction to the subject of
my dissertation.

The defense will be followed
by a reception in the same

building.

	Front cover
	Front matter
	Colophon
	Title
	Approval
	Dedication
	Acknowledgements
	Abstract

	Contents, Lists of ...
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings

	Body
	1 Introduction
	1.1 Concepts
	1.2 Design Choices and Design Goal
	1.2.1 Design Choices and Criteria
	1.2.2 Design Goal
	1.2.3 Validation

	1.3 Overview
	1.4 Synopsis

	2 Theoretical Foundation
	2.1 Formal Framework for Conformance Testing
	2.2 Instantiating the Formal Framework
	2.2.1 Specifications
	2.2.2 Implementations and Implementation Models
	2.2.3 Tests
	2.2.4 Test Execution, Observations and Verdicts
	2.2.5 Implementation Relation
	2.2.6 Test Derivation
	2.2.7 Overview

	2.3 Formal Framework for Observation Objectives
	2.4 Instantiating the Formal Framework for Observation Objectives
	2.4.1 Reveal Relations
	2.4.2 Test generation
	2.4.3 Including hit and miss verdicts into test cases
	2.4.4 Conclusion

	2.5 Summary

	3 Architecture of TorX
	3.1 Starting Point
	3.2 Link with Theory
	3.3 Running Example
	3.4 Random On-Line Testing
	3.4.1 Components
	3.4.2 Interfaces
	3.4.3 Manager Algorithm
	3.4.4 Examples
	3.4.5 Concluding Remarks and Observations

	3.5 Guided On-Line Testing
	3.5.1 Components
	3.5.2 Interfaces
	3.5.3 Manager Algorithm
	3.5.4 Examples
	3.5.5 Concluding Remarks

	3.6 Off-Line Test Derivation and Execution
	3.6.1 Components
	3.6.2 Interfaces
	3.6.3 Exhaustive Off-Line Derivation
	3.6.4 Random Off-Line Derivation
	3.6.5 Guided Off-Line Derivation
	3.6.6 Execution of Derived Test Cases
	3.6.7 Execution of Test Suites

	3.7 Summary

	4 Test Derivation Engine
	4.1 Dealing with tau-cycles
	4.1.1 Example: Self-kicking Coffee Machine
	4.1.2 Avoiding looping on tau-cycles
	4.1.3 Adding delta-self-loops to divergent states
	4.1.4 Adding delta-self-loops to copies of divergent states

	4.2 DerivationEngine for Random Testing
	4.2.1 Components
	4.2.2 Interfaces
	4.2.3 Primer algorithm
	4.2.4 Explorer Instances
	4.2.5 Visualisation
	4.2.6 Algorithm for uioco
	4.2.7 Interpreting divergent states as quiescent

	4.3 DerivationEngine for Guided Testing
	4.3.1 Components
	4.3.2 Interfaces
	4.3.3 Combinator algorithm

	4.4 DerivationEngine to access Off-Line Test Cases
	4.4.1 Components
	4.4.2 Interfaces
	4.4.3 Exec Primer algorithm

	4.5 Summary

	5 Test Execution Engine
	5.1 Adapter Examples
	5.1.1 Stdin/out Adapter for Toy Implementations
	5.1.2 UDP Adapter for a Conference Protocol Entity
	5.1.3 TCP Adapter for a Software Bus Server

	5.2 Adapter Design
	5.2.1 High-level architecture overview
	5.2.2 Initial decomposition step
	5.2.3 Refined decomposition
	5.2.4 Detailed decomposition

	5.3 Summary and Related Work

	6 Symbolic Extensions
	6.1 Symbolic Transition System
	6.1.1 Preliminaries
	6.1.2 Syntax and semantics of Symbolic Transition System

	6.2 Motivating Examples
	6.2.1 Music Player
	6.2.2 Two-slot Buffer

	6.3 Parameterised Transition System
	6.3.1 APTS Syntax and Semantics
	6.3.2 Example: APTS of two-slot buffer

	6.4 Derivation of APTS from STS
	6.4.1 Mapping STS to APTS
	6.4.2 Example: Music Player

	6.5 Testing with an alternating PTS
	6.5.1 Computation of potential behaviour
	6.5.2 Interaction with the SUT
	6.5.3 Updating the tester state

	6.6 Extension of Architecture
	6.6.1 Components
	6.6.2 Interfaces
	6.6.3 Extension of Primer algorithm
	6.6.4 Extension of Manager Algorithm
	6.6.5 Example
	6.6.6 Implementation Notes

	6.7 Timed Testing with a PTS
	6.8 Summary

	7 Model-based specification, implementation and testing of a software bus
	7.1 Introduction
	7.1.1 First phase: Developing the XBus
	7.1.2 Second phase: Analysis
	7.1.3 Our findings

	7.2 Background
	7.2.1 The XBus and its context
	7.2.2 The specification language mCRL2

	7.3 Development of the XBus and post case-study analysis
	7.3.1 XBus requirements
	7.3.2 XBus design
	7.3.3 Implementation
	7.3.4 Unit testing
	7.3.5 Model-based integration testing
	7.3.6 Acceptance testing

	7.4 Modelling & Model Checking of the XBus
	7.4.1 The model mdev
	7.4.2 Model checking & model transformation

	7.5 Model-Based Testing of the XBus
	7.5.1 Model-based integration testing in the first phase
	7.5.2 Model-based testing in the second phase
	7.5.3 Model coverage
	7.5.4 Code coverage
	7.5.5 Distribution of coverage
	7.5.6 Testing time

	7.6 Findings and Lessons Learned
	7.6.1 First phase
	7.6.2 Second phase

	7.7 Conclusions and Future Research

	8 Evidence
	8.1 Case Studies
	8.1.1 Conference protocol entity
	8.1.2 Easylink
	8.1.3 Highway Tolling System
	8.1.4 Storm Surge Barrier
	8.1.5 Myrianed Protocol Entity
	8.1.6 Rivercrossing puzzle

	8.2 Independent Use
	8.3 Use in Education
	8.3.1 Use in Courses
	8.3.2 Use in Assignments and Internships

	8.4 Questionnaire
	8.4.1 Req. 12: it should be easy to deploy the tool (install and use)
	8.4.2 Req. 13: it should be easy to create a simple model (like an automaton) for use with the tool
	8.4.3 Req. 14: the tool should provide insight in the theory and algorithms that it implements, e.g. by visualisation
	8.4.4 Req. 16: it should be simple to connect the tool to toy implementations
	8.4.5 Req. 24: it should be easy to connect the tool to the system under test

	8.5 Evaluation
	8.5.1 Functional requirements
	8.5.2 Non-functional requirements w.r.t. Development
	8.5.3 Non-functional requirements w.r.t. Use
	8.5.4 Summary

	9 Conclusion
	9.1 Conclusions
	9.2 Related Work
	9.3 Possible Extensions
	9.4 Availability

	A Implementations
	A.1 TorX
	A.2 JTorX
	A.3 Synopsis

	B Case Studies
	B.1 Conference Protocol Entity
	B.2 EasyLink
	B.3 Highway Tolling System Payment Box
	B.4 Oosterschelde Storm Surge Barrier Emergency Closing System
	B.5 Myrianed Protocol Entity
	B.6 Rivercrossing Puzzle Program

	C Questionnaire

	Back matter
	Publications from the Author
	References
	Index
	Samenvatting
	Titles in the IPA Dissertation Series since 2008

	Spine
	Back cover

