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Summary

In this thesis, a computational model was developed for the simulation of aerosol

formation through nucleation, followed by condensation and evaporation and filtra-

tion by porous material. Understanding aerosol dynamics in porous media can help

improving engineering models that are used in various industrial, medical and environ-

mental applications. Within the Euler-Lagrange framework of modeling two-phase

flow, the trajectories of individual aerosol droplets, as well as the heat and mass

transfer with their surroundings, were evaluated in velocity, temperature and species

concentration fields that were computed by applying the immersed boundary (IB)

method to flow in complex domains.

Focusing mainly on rather dilute situations the so-called ‘one-way’ coupling ap-

proximation was adopted that allows to separate the problem of determining the flow

field from the problem of tracking the motion of inertial droplets in that flow field.

Following this approach, in Chapters 2 and 3 we concentrated on the problem of

filtration of droplets by porous filters. First, we focused our attention on particle

deposition on the solid filter surface due to inertial impaction. A numerical approach

was described to simulate the motion of a large number of particles suspended in a gas

flow that avoids numerical filtration of massless/passive particles. We considered two

structured porous media in 3D, composed of in-line and staggered arrangements of

square rods. It was established that the inner structure of a porous medium strongest

influences the deposition of particles. In staggered geometries filtration appeared to

depend strongly on particle inertia suggesting that the staggered geometry can be

used to separate particles according to their Stokes number.

The ‘no-slip consistent’ particle tracking described in Chapter 2 is formulated en-

tirely in terms of the phase-indicator function related to the inner structure of the

filter. This enables adapting this method directly to more complex filter geometries

which was done in Chapter 3, where we considered dynamics of droplets in a real-

istic porous filter. In this chapter, the dynamics of droplets was governed both by

Stokes drag and Brownian motion. The effects of inertial motion and Brownian diffu-
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sion on the filtration characteristics were first illustrated for flow through a straight

pipe. Subsequently, the filtration characteristics of a steady flow through a realistic

porous material were determined, illustrating the potential of the approach in terms

of predicting such macroscopic aspects based on pore-resolved flow. High filtration

efficiency was observed in case of dominant Brownian motion or dominant inertial

motion and a reduced filtration efficiency was found for droplets of intermediate size.

Filtration of already generated aerosol droplets can be regarded as an indirect way

of controlling the aerosol that eventually emanates from a process. A more direct way

implies control over the conditions at which the aerosol actually forms. This involves

coupling of the fluid flow with the process of nucleation and subsequent evolution

of the aerosol properties due to evaporation and condensation. We restricted our-

selves to single-species aerosols and adapted the classical nucleation theory (CNT)

which links locally supersaturated vapor state to the nucleation of so-called ‘critical

clusters’. The nucleation rate from CNT is adopted in the Euler-Lagrange frame-

work as the probability per unit of time and volume to generate such critical clusters.

Subsequent growth of a newly formed droplet can arise from further condensation of

vapor molecules onto the droplet, thereby influencing the local vapor concentration

and temperature fields. This computational model was applied to a laminar flow in

a channel between two parallel plates. Nucleation was initiated by rapid cooling of

air saturated with dibutylphthalate vapor at the inflow of the channel. Due to a

sharp temperature drop at some location along the channel a supersaturated state is

achieved, thereby inducing droplet nucleation. This approach illustrates a first ap-

plication of the Euler-Lagrange framework to aerosol formation and presents aspects

such as the evolving droplet size distribution and characteristics of the aerosol as it

emanates from the end of the channel. It is a basis for studying the dependence of the

aerosol formation process on important process parameters such as the temperature,

the cooling rate and the flow velocity.
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Samenvatting

In dit proefschrift wordt een computermodel ontwikkeld voor de simulatie van het

vormingsproces van aerosol door middel van nucleatie en de daaropvolgende processen

van condensatie, verdamping en filtratie door poreus materiaal. Het begrijpen van

het gedrag van aerosol in poreuze media draagt bij aan de verbetering van technische

modellen voor diverse industriële, medische en ecologische toepassingen.

We hebben binnen het Euler-Lagrange raamwerk voor de modellering van twee-

fase stromingen de banen van individuele aerosoldruppels en ook de warmte- en mas-

saoverdracht met hun omgeving geanalyseerd in snelheidsvelden, temperatuurvelden,

en concentratie -velden van de diverse componenten in het mengsel. Deze velden zijn

berekend door de zgn. ‘Immersed boundary’ methode toe te passen op stromingen in

complexe domeinen. Door te focussen op situaties met lage aerosolconcentraties kan

de zgn. ‘one-way’ koppelingsbenadering worden gebruikt. Hiermee kan het probleem

van de bepaling van het stromingsveld worden gescheiden van het probleem van het

volgen van de beweging van druppels in hetzelfde stromingsveld.

In hoofdstuk 2 en 3 hebben we ons geconcentreerd op het probleem van filtratie

van druppels met behulp van poreuze filters. Allereerst, in hoofdstuk 2, hebben we

ingezoomd op de afzetting van deeltjes op de oppervlakte van het filter door ‘inertial

impaction’. Vervolgens beschrijven we een numerieke aanpak om de beweging van een

groot aantal deeltjes in een gasstroming te simuleren, waarbij ‘numerieke filtratie’ van

passieve deeltjes wordt vermeden. We hebben twee poreuze media bestudeerd: de ene

bestaande uit ‘inline’ en de andere uit ‘staggered’ geordende vierkante staven. Hieruit

blijkt dat de inwendige structuur van het poreuze medium een grote invloed heeft op

de afzetting van deeltjes. In de ‘staggered’ structuur hing de mate van filtratie sterk

af van het impuls van de deeltjes. Dit suggereert dat deze structuur kan worden

gebruikt om deeltjes te scheiden op basis van hun getal van Stokes.

De ‘no-slip consistent particle tracking’ methode beschreven in hoofdstuk 2 is

volledig geformuleerd in termen van de ‘phase-indicator’ functie behorende bij de

inwendige structuur van het filter. Hierdoor kan deze methode gemakkelijk worden
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aangepast aan complexere filters, zoals we hebben laten zien in hoofdstuk 3. Daar

hebben we voor realistische poreuze filters het gedrag van druppels bestudeerd. Dit

gedrag wordt voornamelijk bepaald door ‘Stokes drag’ en Brownse beweging. We

hebben in eerste instantie het effect van impuls en Brownse diffusie op de filtratie-

eigenschappen laten zien voor stroming door een rechte pijp. Vervolgens hebben we

de filtratie-eigenschappen ook bepaald voor een stabiele stroming door een realistisch

poreus materiaal. Dit laatste toont het potentieel van onze aanpak met betrekking

tot het voorspellen van macroscopische aspecten gebaseerd op een stroming berekend

op de schaal van de poriën. Bijvoorbeeld voor de gevallen van dominante Brownse

beweging en dominante impuls vinden we een hoge filtratie-efficiëntie, terwijl voor

het geval van druppels van middelmatige grootte de filtratie-efficiëntie gereduceerd

bleek.

Filtratie van reeds gegenereerde aerosoldruppels kan worden beschouwd als een

indirecte methode om het aerosol dat uiteindelijk het proces verlaat te kunnen be-

heersen. Een directere methode impliceert dat de omstandigheden waaronder het

aerosol ontstaat beter moeten worden beheerst. Dit vereist eerst het koppelen van de

stroming aan het zowel nucleatieproces als aan het ontwikkelen van de aerosoleigen-

schappen door middel van verdamping en condensatie. In hoofdstuk 4 hebben we deze

aanpak beschreven waarbij we onszelf beperkt hebben tot aerosol dat uit 1 enkele com-

ponent bestaat. Voor deze situatie hebben we de klassieke nucleatie theorie (CNT)

toegepast. Deze theorie relateert de lokale oververzadigde damptoestand aan de nu-

cleatie van zgn. ‘kritische clusters’. Binnen het Euler-Lagrange raamwerk hebben we

de kans om per eenheid van tijd en volume zulke kritische clusters te genereren gelijk

genomen aan de nucleatiesnelheid van de CNT. Het raamwerk biedt ook de mogeli-

jkheid tot integratie van verdere groei van nieuwgevormde druppels met als gevolg

veranderende lokale dampconcentraties en temperatuurvelden. Het onderliggende

computermodel hebben we toegepast op een laminaire stroming in een kanaal tussen

twee parallelle platen. Hierbij werd het nucleatieproces ge¨ınitieerd door het snel

afkoelen van lucht verzadigd met dibutylftalaat bij de instroom van het kanaal. Door

de snelle daling van de temperatuur wordt in het kanaal een oververzadigde toes-
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tand bereikt wat leidt tot de nucleatie van druppels. Dit demonstreert een eerste

toepassing van het Euler-Lagrangian raamwerk op de vorming van aerosol en geeft

de transiënte druppelgrootteverdeling en eigenschappen van het aerosol wanneer deze

het kanaal verlaat. Daarmee vormt dit werk een basis om de afhankelijkheid van het

vormingsproces van aerosol van belangrijke procesparameters zoals de temperatuur,

de afkoelsnelheid en de stromingssnelheid verder te bestuderen.
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Chapter 1

Introduction

The concept of an aerosol refers to large numbers of tiny particles or droplets that

are suspended in the air around us [23]. Their properties may influence our lives in

a number of desired and sometimes undesired ways. One may think of soot particles

emitted by Diesel engines [32], which may reside in the atmosphere for extended

periods of time and be inhaled, constituting a health risk primarily in urban situations

under conditions of serious smog [45, 24]. Less risky at first sight may be aerosols

consisting of fine dust. However, depending on the prevalent size of these particles,

studies have shown that over time contamination even deep into our brains may occur,

resulting from extended periods of exposure [52]. Another well-known aerosol present

in our daily lives is formed by small water droplets, contributing to a hazy atmosphere

of silvery ‘Dutch light’ at times, and known to be an important green-house gas by

itself.

Apart from the presence of aerosols in the environment, there is a number of

technological/medical applications of aerosols worth mentioning. A prime example

is in the treatment of asthmatic patients in which an aerosol should be generated

from the medication to penetrate the lungs [26, 27]. This requires the formulation of

an aerosol with quite precise size distribution in order to guarantee that the effective

substances contained in the droplets actually do reach deep into the lungs rather than

get deposited early on in the airway tract, as would occur if the droplets would be

too large [33, 59]. As a final example of this certainly not comprehensive overview,
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the problem of spray drying can be mentioned in which a finely dispersed spray of,

e.g., a food substance is formed and exposed to heat in order to rapidly evaporate the

more volatile components. This process also requires considerable control over the

formation of the aerosol such that the final product satisfies rather narrow quality

conditions in terms of size and composition of the deposited ‘dried’ particles [1].

Within the field of aerosol research, this thesis is devoted to the mathemati-

cal modelling and simulation of the generation, evolution and filtration of aerosol

droplets. To formulate accurate models for such aerosols a number of processes need

to be dynamically coupled. On the one hand, the generation and evolution of the

aerosol mainly relates to the nucleation of nano-meter sized critical clusters from

a supersaturated vapor, followed by further condensation and evaporation of vapor

onto and from the aerosol droplets, respectively. On the other hand, the filtration of

droplets deals with the capturing of droplets in a flow by collision with solid objects

contained in the domain. Both through a careful maintenance of the desired process

conditions associated with the generation and transport of the aerosol, as well as

through properly designed filtration, one may achieve a good level of control over

the properties of the resulting aerosol. In this way one may prepare aerosols with

a desired size distribution and chemical composition for subsequent use in various

applications as sketched above.

To arrive at an accurate yet efficient mathematical description of an aerosol, one

faces the dilemma of addressing the aerosol at the level of discrete particles and

droplets embedded in a continuous gaseous carrier phase, or to coarsen the description

and treat the large number of particles in the aerosol as a continuum as well, capturing

their distribution in terms of a space and time dependent density field. The latter

would be referred to as an Euler-Euler formulation while the former is known as an

Euler-Lagrange framework, with the dispersed discrete particulate phase associated

with the Lagrangian part of the description. These two formulations obviously have

different advantages and drawbacks. Therefore, depending on the precise application

a choice for either needs to be made. Generally, the Euler-Euler framework is more

suitable for large-scale applications as it is computationally more accessible, while the
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Euler-Lagrange framework requires, as a rule, more computational resources, up to

the point of becoming not feasible for realistic conditions with correspondingly large

numbers of particles. However, the Euler-Lagrange framework is often seen as the

more fundamental approach of the two, allowing to introduce specific mechanisms

into the model at a more basic and often better controlled level of accuracy. As an

example, while the presence of phase transition in the Euler-Euler framework requires

the inclusion of phenomenological source terms to couple vapor and liquid phases, the

Euler-Lagrange framework would allow such heat and mass transfer on the basis of a

more microscopic and often more fully motivated set of assumptions.

An Euler-Euler approach requires coupling of fluid flow to the transport of energy

and of aerosol-forming vapor and its liquid phase. The generation and evolution

of aerosol droplets, accounting for the phase transitions, requires the inclusion of

source terms for energy transfer, nucleation and evaporation/condensation. While the

transport part of such a model follows from well-established conservation principles,

the source terms are formulated on the basis of phenomenological classical nucleation

theory (CNT) [57, 3]. We will consider only single-species aerosol formation, e.g., from

water vapor, for which CNT provides a complete physical description with a good

level of accuracy. The Euler-Euler approach can be complemented with the Euler-

Lagrange formulation in which fluid, vapor and energy transport are described by a

system of partial differential equations, while the dynamics of the aerosol droplets,

treated as point particles, is captured by a system of ordinary differential equations

governing the motion of individual droplets as well as aspects such as the droplet

temperature and its size. The link with CNT is provided in terms of the probability

of actually initiating a droplet of specified initial size, taken directly from the CNT

source terms. In particular, the nucleation rate may be interpreted as this probability

per unit volume and unit time, which can be evaluated along with a simulation of the

developing flow, thereby completing the Euler-Lagrange formulation.

Apart from control over the properties of an aerosol by controlling the conditions

at which the aerosol was formed, i.e., control at the source, one may also exert some

level of control by filtration in which an already formed aerosol is passed through a
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rather complex domain which is designed such that droplets or particles of a certain

size range are more likely to pass the filter than particles which are considerably

smaller or larger [14, 47, 12, 51, 18, 43, 6, 4, 9, 19]. In order to investigate filtra-

tion characteristics of flow through such complex domains, a prime challenge is to

accurately predict the flow down to details of the size of individual pores in a filter.

For this purpose, in computational fluid dynamics one distinguishes between body-

fitted grids and immersed boundary methods. In the body-fitted grid approach much

effort is put into generation of a smooth grid suitable for accurate flow simulations

in the fluid-filled pores. Such a grid aligns precisely with the fluid-solid interface.

Obviously, the generation of such a grid becomes more and more demanding with

increasing complexity of the inner structure of the porous material. Alternatively, we

will adopt a so-called immersed boundary (IB) method [36, 2, 49] in which the fluid

and solid regions are represented on a simple Cartesian grid. In fact, a grid cell is

assigned to be of type ‘solid’ in case its contents is for more than 50% solid and of

type ‘fluid’ otherwise. In this way a ‘staircase’ approximation of the fluid-solid inter-

face arises and the flow that takes place in the fluid-filled regions can be simulated.

This approach was employed to the level that actual tomographic reconstructions of

a given porous material could be used as basis for the domain representation and a

full capturing of flow in such domains was possible [30, 35].

The problem of filtration of aerosol droplets may be expressed conveniently in

the Euler-Lagrange framework. In fact, in the dilute regime, i.e., in case of one-

way coupling between the flow of air and the motion of the embedded droplets, the

immersed boundary method can be adopted to independently compute the detailed

flow field. For steady flows one may subsequently compute the motion of droplets

of different inertia in this flow. As inertia implies that droplet trajectories do not

coincide with streamlines of the flow, the droplets may actually collide with objects

present in the domain. Such collision is required in order to have the possibility of

filtration of droplets by deposition on these objects. Taking the simple rule that any

encounter of a droplet with the surface of an object implies deposition then gives a

basic algorithm to compute filtration efficiency of a given configuration of objects.
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This can be applied to rather simple configurations and serve as general validation

of a computation, but also to flow domains of realistic complexity such as derived

from fibrous materials. In this way one may predict aspects as the overall filtration

efficiency but also local information such as the locations in the domain where most

filtration occurs. While the overall filtration efficiency may be compared with exper-

imental findings, predictions of the precise motion and deposition of droplets on the

walls of a complex flow domain are examples of complementary information that is

currently only accessible through simulation.

The organization of this thesis is as follows:

• Chapter 2 is devoted to the formulation and application of a new treatment

of near-wall motion of inertial droplets transported by Stokes drag in a flow

predicted using the staircase approximation IB approach as sketched above.

The new treatment is designed to be consistent with the fact that in the limit

of very small droplets without inertia, collision with solid objects in a flow will

not occur. This is essential in order to prevent a component of unphysical

filtration due to numerical discretization errors in case of droplets with low

Stokes numbers and is basic to all Euler-Lagrange simulations presented in this

thesis. In this chapter, we investigate the filtration characteristics of a staggered

array of beams in case droplets are transported in laminar flow at low Reynolds

numbers and quantify the dependence of filtration on the droplet sizes.

• Chapter 3 considers filtration of droplets whose dynamics is governed by both

Stokes drag as well as Brownian motion. In case of sufficiently large inertia, i.e.,

sufficiently large Stokes numbers, the consequences of Brownian forces acting

on the droplets will be negligible. However, as the droplet inertia reduces with

droplet size, Brownian forces will become more important at typical process

temperatures and even induce strong diffusive transport in the limit of very

small droplets. The competition between inertial motion and Brownian diffu-

sion has marked effects on the filtration characteristics. This is first illustrated

for flow through a straight pipe, serving also as validation of the model. Sub-
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sequently, the filtration characteristics of steady flow through a realistic porous

material are determined, illustrating the capabilities of the approach in terms

of predicting such macroscopic aspects based on pore-resolved flow. In fact, we

show a characteristic ‘V-shaped’ dependence of the filtration efficiency on the

droplet size with high values in case of dominant Brownian motion or domi-

nant inertial motion and a strongly reduced filtration efficiency for droplets of

intermediate size.

• Chapter 4 deals with a first Euler-Lagrange model of the full set of processes

of aerosol nucleation, growth by condensation and evaporation, and motion,

governed by Stokes drag as well as Brownian forces. This model is applied to

Poiseuille flow. The flow contains vapor at the inflow, which is rapidly cooled

at some location downstream, thereby inducing droplet nucleation. While work

presented in literature mainly deals with an Euler-Euler formulation [17, 42]

in Chapter 4 we show results based on the more fundamental Euler-Lagrange

formulation in which the trajectories of nucleated droplets are followed precisely

in time. In this way we may directly predict the size distribution and other

statistical properties of the aerosol as it exits the tube, and hence predict what

level of control one may exert on the aerosol by adapting flow conditions and

cooling parameters.

• Chapter 5 presents the main conclusions of the research and a set of recommen-

dations for future investigations.
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Chapter 2

No-slip consistent immersed

boundary particle tracking to

simulate impaction filtration in

porous media1

Abstract

In this chapter we present a new method for simulating the motion of a disperse
particle phase in a carrier gas through porous media. We assume a sufficiently dilute
particle-laden flow and compute, independently of the disperse phase, the steady lam-
inar fluid velocity using the Immersed Boundary (IB) method. Given the velocity of
the carrier gas, the equations of motion for the particles experiencing the Stokes drag
force are solved to determine their trajectories. The ‘no-slip consistent’ particle track-
ing algorithm avoids possible numerical filtration of very small particles due to the
non-zero velocity field at the solid-fluid interface introduced by the IB method. This
physically consistent tracking allows a reliable estimation of the filtration efficiency
of porous filters due to inertial impaction. We illustrate and test our new approach
for model porous media consisting of a structured array of aligned rectangular fibers,
arranged in-line and staggered. In the staggered geometry the effect of the residual
velocity at the solid-fluid interface is significant for particles with low inertia. Without
adopting the developed ‘no-slip consistent’ numerical method, an artificial numerical
filtration is observed, which becomes dominant for small enough particles. For both

1This chapter was published as: Ghazaryan, L., Lopez Penha, D.J., Stolz, S., Kuczaj, A.K.,
Geurts, B.J.: 2013. No-slip consistent immersed boundary particle tracking to simulate impaction
filtration in porous media, International Journal for Numerical Methods in Fluids, 73 (7), 615-636
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the in-line and the staggered geometries the filtration rate depends quite strongly
and non-monotonically on the particle inertia. This is expressed most clearly in the
staggered arrangement in which a very strong increase in the filtration efficiency is
observed at a well-defined critical droplet size, corresponding to a qualitative change
in the dominant particle paths in the porous medium.

2.1 Introduction

In many practical applications porous media are used for separation of particulate

matter from gasses, for example for air purification from dust particles, allergens

or viruses. Prediction of particle deposition on the solid filtering material is an es-

sential component in developing suitable filtration techniques. Several theoretical

[14, 47, 12], numerical [51, 18, 43, 6] and experimental [4, 9, 19] approaches have

been developed to quantify and qualify the filtration efficiency of porous filters. The-

oretical and numerical approaches are usually limited to certain geometries while

experimental measurements are often difficult to perform. In this contribution, we

present a method that allows to simulate, from first principles, filtration properties of

filters with known complex inner structures down to the pore scale, e.g., from micro-

computed tomography (μCT) [50]. The method can be used not only to estimate

the filtration efficiency of given filters, but also to study the influence of a number of

relevant physical and geometrical parameters on the particle deposition.

The deposition of particles on the surface of a filter can be caused by different

filtration mechanisms, including inertial impaction and diffusion [23]. In both cases,

particles are captured because their trajectories deviate from fluid streamlines close

to the surface of the solid. In the case of impaction this is due to the particle inertia

while in the case of diffusion the underlying Brownian motion is the cause. Depending

on the particle inertia one of these mechanisms is dominant. Particle inertia, or the

particle’s responsiveness to changes in the flow, is characterized by the Stokes number

(St): the ratio of the particle response time to the flow time scale. In the absence of

Brownian motion, low inertia particles essentially follow the fluid flow and therefore

are transported as fluid elements. Relatively larger particles can, e.g., be trapped by

20



vortices in the flow. Trajectories of particles with large inertia will not be affected

much by vortex structures, due to the large inertial resistance to changes in the flow.

An important step to compute the inertial filtration component properly, concerns

the treatment of particles with low inertia. While particles with considerable inertia

can be readily tracked on their way to collision with the solid surface, tracking light

particles may lead to an exaggerated filtration due to the residual velocity at the

solid-fluid interface, introduced by our numerical method. The key is to develop a

particle tracking method that ensures that also at finite numerical resolution, massless

particles will not collide at all with the solid surface, but follow the intricate motion

around the surface.

Our aim is to develop a proper numerical method for particle tracking that is

physically consistent for the entire range from heavy to very light particles. For this

purpose the point-particle approximation is very suitable, allowing to evaluate the

trajectories of individual particles at low computational cost [44, 58]. For resolving

the gas flow we use a symmetry-preserving finite-volume discretization on a staggered

grid [56]. In order to incorporate the solid material we employ an Immersed Boundary

(IB) method, which allows one to consider complex porous media [36]. Alternative to

body-fitted meshes, in IB methods simple Cartesian meshes are used and the solution

algorithm is locally modified with a forcing term to represent the physical boundaries.

IB methods are also advantageous when dealing with problems with moving bound-

aries [21, 60], multi-phase or multi-material problems [16]. A number of studies

address issues specific to the treatment of flow near the boundary representation, dis-

cussing various aspects of discretization on cut cells [55, 11, 15, 53, 39]. In this paper

the issue of mass conservation at the immersed boundary is treated in the context

of particle tracking. The IB resolution of the gas flow on the staggered grid results

in small, but nonzero ‘residual’ velocities at the solid-fluid interfaces. This residual

velocity plays an important role in the Lagrangian tracking of particles, and it may

imply deposition of massless particles on the solid surface. We formulate a tracking

method constructed explicitly such that massless particles do not get captured. This

ensures that deposition estimated for very small particles is not increased due to fil-
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tration arising from numerical errors. This will yield a more accurate estimation of

filtration due to inertial impaction.

The proposed approach is studied for in-line and staggered structured porous

media in 3D [29, 38, 31]. The effect of the residual velocity at the solid-fluid interface

is essential for low inertia particles as this dominates the estimated filtration and leads

to large relative errors in the estimated filtration efficiency. High inertia particles are

less sensitive to these residual velocities.

Based on our approach for simulating the motion of particles in a gas flow through

porous material, filtration characteristics can be predicted for any complex porous

medium. The method allows one to understand filtration efficiency in terms of the

pore-scale motion that arises. Particle deposition both in the in-line and the stag-

gered geometries showed to depend on the particle size. In the staggered geometry

different filtration regimes can be identified, depending on the particle inertia. A

first regime is found for sufficiently small particles, which is characterized by a low

removal rate, implying particles to be transported through the porous medium with-

out being captured much. On the contrary, higher inertia particles get filtrated very

efficiently. This property of the staggered geometry can be adopted for filter design,

for instance, to separate particles with different sizes. The precise dependence of the

filtration efficiency on the particle size and inner structure of the porous medium

is quite complex. The new simulation method allows one to determine the filtra-

tion characteristics with high accuracy, using an Euler-Lagrange approach in which

individual particles are tracked as they move through the flow domain.

In Section 2.2, we describe the mathematical models for the particle-laden flow of

the carrier gas through a porous medium. Next, in Section 2.3, the numerical treat-

ment applied in our model is discussed. Here, we mainly address the computational

technique developed to avoid possible numerical filtration of very small particles. Sec-

tion 2.4 is devoted to the application of the method to investigate filtration properties

of structured porous media for different particle sizes. We summarize our findings in

Section 2.5.
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2.2 Motion of aerosol droplets in a gas flow

In this section we describe the Euler-Lagrange modeling of gas-particle two-phase

flow, using the point particle approximation for the particle motion. First we turn to

the gas flow and afterwards describe the particle phase.

2.2.1 Governing equations for the gas phase

The gas flow is treated on the basis of mass and momentum conservation. In our

temporal simulations, the governing equations are the incompressible Navier-Stokes

equations. We assume that the periodic physical domain Ω contains ‘obstacles’, which

form the solid part Ωs of our computational domain. The non-dimensional Navier-

Stokes equations read, in vector form [44]:

⎧⎨⎩
∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u

∇ · u = 0
(2.1)

in the flow domain Ωf . This set of equations describes the flow of fluid through the

pores that are left by the solid material. The variables to be solved for are the velocity

components u = (u, v, w) and the ‘reduced pressure’ p arising from the nondimen-

sionalization of the term P/ρf that appears in the Navier-Stokes equations, where P

is the actual pressure and ρf the mass density of the fluid. In order to maintain a

constant volumetric flow rate through the domain the nondimensional reduced pres-

sure p is expressed as: p = a(t)x + p̃ where a(t) is the mean pressure gradient in

the stream-wise x direction, forcing a prescribed constant volumetric flow through

the domain and p̃ represents fluctuations relative to the linear background pressure

field. The fluctuations p̃ are assumed to be periodic in space, a step commonly made

when dealing with fluid flow in periodic domains [37]. The Reynolds number Re

characterizes the ratio of convective and viscous fluxes and is defined as:

Re =
LU

ν
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where ν is the kinematic viscosity and L and U are characteristic length and velocity

scales, respectively. These scales also introduce a natural time-scale L/U and will be

used when considering the motion of suspended particles. In addition to the equations,

no-slip boundary conditions have to be satisfied at all solid-fluid interfaces, i.e., at

any solid boundary the fluid will have zero relative velocity.

Numerical methods for solving the Navier-Stokes equations around obstacles ([44],

[13]) are classified according to whether the computational grid is (a) body-conforming,

with grid-lines closely following the solid-fluid interface, or (b) non body-conforming,

with the obstacles ‘immersed’. In the past decades, a number of IB methods has

been used for simulation of flow through complex porous materials. The goal of these

methods is to avoid the expensive construction of body-conforming grids. Here, we

use the IB method [36], employing Cartesian grids, on which efficient and fast nu-

merical methods can be used. The flexibility of IB methods allows one to use any

geometry given by, for example, micro-computed tomography [30], without applying

difficult meshing techniques needed for body-conforming grids. A challenge to any

numerical method is the representation of flow near the actual solid boundary. If the

complexity of the domain allows a body-fitted grid then the imposition of the bound-

ary conditions can be done accurately and at the correct location. Alternatively, IB

methods can only address accurate treatment of the boundary conditions by adopting

adequate spatial resolution in combination with first or second order accuracy near

the boundary [49]. A representative IB method is the so-called volume penalization

method [2]. The idea is the following: instead of solving the problem in the fluid

domain Ωf , an extended problem on the whole domain is solved by penalizing the

flow entering the obstacles. This is done by adding a solution-dependent source term

to the momentum equations:

⎧⎨⎩
∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u − 1

ε
Γsu

∇ · u = 0
(2.2)

which applies to all x in the domain Ω. The penalization parameter ε � 1 and Γs is

the characteristic function of Ωs (the solid part of the domain), which we refer to as
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phase-indicator function. It is defined as:

Γs(x) =

⎧⎨⎩ 1 if x ∈ Ωs

0 if x ∈ Ωf

The IB approach allows to compute the flow field through porous media with

very complex inner geometries, provided the resolution is adequate. For validation

and illustration purposes we consider two structured porous media. Cross sections

of these two model porous media are shown in Figure 2-1. Both porous media are

constructed using a combination of square rods of size L×L in x and y directions and

infinitely extended in the z direction. The porous medium given in Figure 2-1(a) arises

by arranging the squares in-line [38], while in Figure 2-1(b) a staggered arrangement

is chosen [29]. In this paper, we will refer to these two structured porous media

as in-line and staggered, respectively. The corresponding representative elementary

volume (REV), which serves as building block for these porous media, is indicated

by the dashed lines in Figure 2-1. By changing the distance between the squares

the volume occupied by the solid can be changed giving control over the porosity

[41]. We assume that the distance between the squares in both x and y directions is

L, implying porosity of 3/4. Both the in-line and the staggered porous media were

used in Lopez Penha et al. [31] for validation of the IB method. Including both the

in-line and the staggered arrangement allows to study the influence of the inner flow

structure on the particle deposition.

Typically, the gas flow velocity characterizing the bulk flow in common filters,

termed the face velocity, is on the order of 0.1 m/s [23]. For our investigation of the

particle deposition we will consider Re = 100, which roughly corresponds to typical

industrial filters with a characteristic length scale in the order of 15 mm using the

kinematic viscosity of air at ambient conditions, i.e., ν = 15.11 × 10−6 m2/s. This

yields a typical time scale L/U of order 0.1 seconds. The flow field corresponding

to this value of the Reynolds number is laminar and develops several vortical flow

structures in the wakes of the rods [31].
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(a) (b)

Figure 2-1: 2D cross-sectional plots of in-line (a) and staggered (b) arrangement of
square rods.

2.2.2 Governing equations for the particle phase

The dynamics of a large number of independently moving particles, suspended in the

flow, is obtained by evaluating the solutions of the equation of motions that involves

the forces acting on the particles. We consider aerosol particles consisting of water

suspended in air, which implies that the ratio of the particle density ρp and the gas

density ρf is of the order 103. This allows to consider dynamics due to Stokes drag

alone, thereby greatly simplifying the general equation of motion given by Maxey-

Riley [34]. Taking into account the kinematic relationship for the particle position,

the total description of the motion of an individual particle is given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx

dt
= v

dv

dt
=

1

St
(u(x(t), t) − v(t))

(2.3)

where v is the particle velocity and u(x(t), t) is the fluid velocity at the actual particle

position x(t). In this equation of motion for a particle, the key parameter is the

Stokes number St. This number is obtained by scaling the particle response time

τ by the time-scale L/U as introduced before for the non-dimensionalization of the

26



Navier-Stokes equations. The response time expresses the timescale with which the

particle’s relative velocity goes to zero in the absence of an external flow [23], [7]. The

particle response time depends on its diameter D, the density of the particle ρp and

the molecular viscosity of the carrier gas μ:

τ =
ρpD

2

18μ
=

D2

18ν

ρp

ρf

(2.4)

where in the latter expression we emphasize the dependence on the ratio of the particle

and the fluid mass density, and introduce the kinematic viscosity of the gas ν. The

dimensionless Stokes number is defined as:

St = τ
U

L
=

1

18

ρp

ρf

D

L

UD

ν
=

1

18

ρp

ρf

D

L
Rep

where Rep is the Reynolds number based on the diameter of the particle. When

considering particles consisting of water with a size-range 0.1μm ≤ D ≤ 40μm in air,

we find the response time values 4 · 10−8s ≤ τ ≤ 6 · 10−3s. In the context of filtration

considered before, a typical time-scale is 0.1 seconds, yielding values for the Stokes

number as follows: 4 · 10−7 ≤ St ≤ 6 · 10−2. For the range of particle diameters

D ≥ 0.1μm impaction becomes important. Particles with size below 0.1μm are not

likely to be captured due to impaction and their deposition due to this mechanism is

negligible or not present at all [23]. Preserving this property of small particles on the

numerical level is essential.

Following the trajectories of the particles, we can investigate the dependence of

their motion on a number of parameters, such as the droplet size, the flow, etc. The

Stokes number acts as a measure of inertia containing a D2 dependence on the size

of the particle. A larger value of the Stokes number implies a higher resistance to

a sudden change in the flow. Conversely, if the Stokes number of a particle is small

enough, it easily adopts to any changes in the flow. In the limit St → 0, which

describes a particle without inertia (massless particle), the particle perfectly follows

the streamlines of the fluid flow, and hence would not collide with the solid material

making up the filter. For an accurate prediction of the particle dynamics in the range
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of low Stokes numbers, this property of a massless particle has to be preserved also

for the numerically computed trajectories. While particles with a nonzero St can

follow trajectories that could lead to a collision with one of the solid-fluid interfaces

in the domain, massless St = 0 particles should never encounter such collisions. This

is a crucial aspect to maintain numerically, since it is of direct relevance to particle

filtration efficiency at low St. Next we present a numerical particle tracking method

for IB simulations that is fully consistent with this requirement.

2.3 Numerical simulation of gas-droplet two-phase

flow through a porous medium

The system of equations formulated in the previous section is solved numerically. In

the following subsections we will describe the discretization method for solving the

Navier-Stokes equations. The particle tracking in the velocity field will be presented

in which we detail our approach for computing a particle’s velocity close to the solid-

fluid interface.

2.3.1 Immersed Boundary method

In the previous section we described the set of governing equations for the gas-phase.

We use an IB method to compute the gas flow around solid obstacles embedded in

the domain. The IB technique employs Cartesian meshes on which the governing

equations are solved. Once the Cartesian mesh {xi, yj, zk}, with i ∈ [1, ..., nx], j ∈
[1, ..., ny], and k ∈ [1, ..., nz] is defined, the next step is to discretize the governing

equations (3.1) on this mesh. Below we will detail the discretization method and

describe the representation of the solid-fluid interface.

For simulation of incompressible flow a finite-volume discretization of the equa-

tions (3.1) is used [44]. In collocated finite-volume methods, the control volumes,

over which the Navier-Stokes equations are integrated, are the same for the different

velocity components. Here, we consider uniform Cartesian grids with different control
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volumes for the different components of velocity, which results in a staggered storage

of variables. An illustration is given for the 2D case in Figure 2-2. The control volume

Vi+1/2,j for the velocity component in the x-direction, u, is staggered from the ‘basic’

control volume Vi,j = [xi−1, xi]× [yj−1, yj] to the right direction by half a grid cell. If

we denote by xi+1/2 = (xi + xi+1)/2, then the control volume of the u-component is

defined as Vi+1/2,j = [xi−1/2, xi+1/2]× [yj−1, yj]. Similarly, the control volume Vi,j+1/2

for v (velocity component in y-direction) is staggered up by half a grid. Staggered

storage of the variables helps avoiding unphysical pressure fields, which might result

from the pressure-velocity coupling step in solving the Navier-Stokes equations [13].

In the 3D case the scalar variables, such as pressure, are stored in the middle of the

grid cell, while the velocity components are stored in the center of the corresponding

face of the grid cell.

Discretization of the Navier-Stokes equations requires approximation of the dif-

ferential operators appearing in the equations. The skew-symmetry of the differential

operators (u · ∇) and ∇ implies that the total energy of the flow is conserved when

the flow is inviscid. It only decreases when there is dissipation. To achieve this on the

discrete level a discrete skew-symmetric approximation of the operator (u · ∇) and

a positive-definite approximation of −∇ · ∇ are developed in Verstappen and Veld-

man [56]. Below we briefly give the main steps of the derivation of the method for

a uniform Cartesian mesh employed here. This method also applies to non-uniform

meshes.

The evolution of the total energy (u,u) =
∫

Ωf
(u · u)dV is given by:

∂

∂t
(u,u) = (

∂u

∂t
,u) + (u,

∂u

∂t
)

= −((u · ∇)u,u) − (u, (u · ∇)u)

+
1

Re
((∇ · ∇u,u) + (u,∇ · ∇u)) − (

∇p

ρf
,u) − (u,

∇p

ρf
)

(2.5)

where we substituted
∂u

∂t
from the Navier-Stokes equations. This expression reduces

to
∂

∂t
(u,u) = − 2

Re
(∇u,∇u) ≤ 0 (2.6)

29



if one takes into account (while transforming volume integrals into surface integrals)

the skew-symmetry property of the differential operators:

(u · ∇)∗ = −(u · ∇) and ∇∗ = −∇ (2.7)

where ‘∗’ stands for the adjoint operator [28]. Condition (2.6) also holds true on

the discrete level, provided that the discrete approximations of differential operators

inherit the (skew-)symmetry property of the continuous operators, given in (2.7).

This yields an unconditionally stable and conservative spatial discretization scheme

for the Navier-Stokes equations.

The discrete system of non-linear equations, obtained from integration of the

Navier-Stokes and the continuity equations over the staggered control volumes, is

given by:

V
duh

dt
+ C(uh)uh + Duh −M∗ph = 0

Muh = 0
(2.8)

with uh ( ph) being the vector of discrete velocities (pressure). For the definitions of

the matrices and a detailed derivation, we refer to [56].

Figure 2-2: Control volumes for velocities in x and y directions in 2D

An important feature of the applied IB method is that meshing is done for the

entire computational domain, including the areas occupied by the solid obstacles. The

interface is formed by the faces of the basic grid cells. The phase indicator function

Γ is defined according to the material (solid or fluid) at the center of each basic cell.
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This indicates whether a given cell is in the solid (Γ = 1) or in the fluid region (Γ = 0)

(Figure 2-3). The indicator function can easily be employed to determine whether

a particle is deposited, i.e., hit or entered the solid domain. The advantage of this

approach is that it is a local method and no wall-distances have to be computed which

can be particularly challenging in an irregular 3D geometry.

For an efficient implementation of the method, we define Γf , Γe, Γv on the faces,

edges and vertices of a grid cell, respectively. For this we use the values of Γ of the

grid cells adjacent to a given face (edge, vertex). If one of the cells intersecting with a

given face (edge, vertex) is solid then the face (edge, vertex) is also considered to be

part of the solid. If we denote with Γ(i, j, k) the value of the phase indicator function

for the basic (i, j, k) cell, then the value of Γf on the face (xi × [yj−1, yj] × [zk−1, zk])

is denoted by Γf
i (j, k) and is defined as:

Γf
i (j, k) = max {Γ(i, j, k), Γ(i + 1, j, k)} (2.9)

For edges (xi × yj × [zk−1, zk]) and (xi × [yj−1, yj] × zk) the values of Γe are denoted

by Γe
i,j and Γe

i,k, correspondingly, and defined as follows:

Γe
i,j(k) = max {Γ(i, j, k), Γ(i + 1, j, k), Γ(i, j + 1, k), Γ(i + 1, j + 1, k)}

Γe
i,k(j) = max {Γ(i, j, k), Γ(i + 1, j, k), Γ(i, j, k + 1), Γ(i + 1, j, k + 1)}

(2.10)

And finally, for a vertex (xi, yj, zk) the value of Γv is defined as:

Γv(i, j, k) = max {Γ(i, j, k), Γ(i + 1, j, k),

Γ(i, j, k + 1), Γ(i + 1, j, k + 1),

Γ(i, j + 1, k), Γ(i + 1, j + 1, k),

Γ(i, j + 1, k + 1), Γ(i + 1, j + 1, k + 1)}

(2.11)

In a similar manner face, edge, vertex phase-indicator functions can be defined for

the rest of the faces, edges and vertices of the grid cells. These functions will be

used when interpolating the flow field at the particle position. This is crucial for

a physically consistent treatment of the particle tracking in a velocity field obtained
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with the IB method, i.e., including a small residual velocity where solid-fluid interfaces

are located.

Figure 2-3: Example of representation of a solid obstacle using a phase-indicating
function Γ, defined according to the material found at center of each basic grid cell.
For grid cells that form the solid obstacle Γ = 1, and in the part of the domain
occupied by the fluid Γ = 0.

2.3.2 Particle tracking

In the previous subsection we presented a numerical method for solving the governing

equations for the gas phase. Here, we turn attention to solving the equations of motion

for the particle phase, assuming steady flow for convenience. This assumption is not

a principal limitation of the method and extension to time-dependent flow is readily

made. The trajectory of an individual particle flowing in the gas is then computed

from (2.3), using Euler’s time-stepping method. We adopt a mixed formulation using

implicit (for v) and explicit (for x) first order time integration methods:

⎧⎪⎨⎪⎩
xn+1 = xn + Δtvn

vn+1 =
St

St + Δt

(
vn +

Δt

St
un

)
(2.12)

where xn and vn are the position and the velocity of the particle at time t = tn = nΔt

and un is the gas velocity at the corresponding particle position (for simplicity, we

will drop the subscript ‘h’ when referring to the discrete solution of (2.8)). Using the

implicit scheme for the velocity allows one to consider small values of St, without any

restriction on the time step. For instance, in case of the explicit Euler method for the
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velocity the condition Δt ≤ 2St has to be satisfied to assure stability. This condition

implies very small time steps for low values of the Stokes number.

In order to propagate the particle position and velocity over a time step the ve-

locity of the gas at the particle position has to be computed. This requires that the

flow velocity has to be interpolated at the particle position, from the gas velocity field

u at time tn and location xn. A simple choice for the interpolation method would

be a trilinear interpolation. In the following subsection, we will first illustrate on

an example in a one-dimensional (1D) representation that near the solid-fluid inter-

face ordinary linear interpolation can cause a slight numerical inconsistency, which

would imply numerical filtration of massless particles. A computational algorithm to

avoid this inconsistency will be described and analyzed in 1D and extended to 3D

subsequently.

2.3.3 Analysis of particle motion near a solid-fluid interface

in 1D

We will look at the motion of a particle in a linear flow field in 1D. Collision of a

particle with a wall is determined by the velocity component normal to that wall.

For the analysis of collision in the 3D linear flow field in the grid cell adjacent to a

wall it is sufficient to analyze the 1D problem associated with the normal velocity

separately. In this section we will show that a linear flow field that has a residual

velocity at a solid-fluid interface may cause a collision of the particle with the wall

even if it is massless. Such a situation closely corresponds to the actual velocity field

computed by using a volume-penalizing IB method for the incompressible gas flow.

This is unacceptable for a massless particle moving in a physically realizable velocity

field and will also affect the computed filtration efficiency for inertial particles at low

St. To avoid this, the linear velocity field can be corrected to remove the residual

velocity at the solid-fluid interface.

Let us consider a test particle, that has no inertia and which moves with the flow

from an initial position at x0 ∈ [0, h], h > 0. Assume x = 0 defines an interface
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between a liquid region (0, h] and a solid region x ∈ [−h, 0]. The discrete values

of the flow field u are known at x = 0 and x = ±h. We will look at the set of

cases corresponding to all possible situations when a particle is in a velocity field that

moves it either away from the wall or toward the wall. These cases are illustrated

in Figure 2-4: (u(h) > 0, u(0) > 0), (u(h) > 0, u(0) < 0), (u(h) < 0, u(0) > 0)

and (u(h) < 0, u(0) < 0), where |u(h)| ≥ |u(0)|. The velocity u(xp) at the particle

location x = xp(t), xp(t) ∈ [0, h], can be computed based on the given values u(0) and

u(h). Let us now assume that u(0) 	= 0. In terms of the flow field this would mean

that there is a residual velocity at the solid-fluid interface. Such a velocity field for a

massless particle, i.e., a particle with St = 0, may lead to a collision with the wall.

For instance, this may be the case for u(h) < 0, u(0) < 0. If we instead assume that

at the interface the flow velocity is zero, then the corresponding linearly interpolated

velocity u(xp) will be such that a massless particle will not be able to reach the wall.

This can be seen on an example of the corresponding continuous problem that we

look into next.

Consider the following initial value problem in 1D, which can be derived from the

equations of motion, taking into account the initial conditions:

Figure 2-4: Linear interpolation of velocity field close to the solid-fluid interface:
(a) linearly interpolated velocity when u(0) 	= 0, (b) interface restricted velocity
interpolation, when u(0) is set to zero.
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′′(t) +
1

St
x′(t) − ul(x)

St
= 0

x(0) = x0; x0 ∈ [0, h]

x′(0) = v0

ul(x) = ax + b; a, b ∈ R

The linear function ul can be seen as the linear interpolation of u(h) and u(0).

Dynamics of this system depends on the initial conditions and the parameters St, a, b.

The analytical solution for this problem can be evaluated. For any a and any initial

velocity v0, the particle’s location x will be positive, implying that the particle will

not hit the wall. This can be seen if we look at the general solution, given by:

x(t) = C1 exp(λ1t) + C2 exp(λ2t) − b

a

with λ1,2 =
1

2St
(−1 ±√

1 + 4aSt) and C1, C2 ∈ R, which can be computed from the

initial conditions. In particular, it is interesting to study the behavior of the system

for the limiting case of St → 0. Using the Taylor expansion of
√

1 + 4aSt in the

expressions for λ1 and λ2, for the limit of St → 0 we can write x(t) as:

x(t) = C1 exp(−t/St) + C2 exp(at) − b

a

If b = 0, one can show that x(t) → x0 exp(at) > 0, as St → 0, hence showing the

absence of a collision of a massless particle with the solid-fluid interface for all times.

It can also be shown that if a > 0, b > 0, the particle position x(t) > 0, for all times.

If a < 0, b < 0 then x(t) → −b/a < 0, for t → ∞, implying a finite time collision,

even as St → 0. For ab < 0 the analysis is more technical and depends on the relative

values of x0, a and b. The main conclusion is that if b = 0, no collision of a massless

particle with a wall can occur.

One can show that the same holds true for the numerical solution, for instance

calculated using Euler’s explicit time integration method. It should be mentioned

that b = 0 is not a necessary condition, but a sufficient one. In terms of our 1D
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setting this means that if u(0) = 0, without any restriction on u(h), a collision of a

massless particle with the wall will not arise. To illustrate the four cases identified

above, in Figure 2-5 we include (a = 1, b = 1), (a = 1, b = 0), (a = −1, b = −1) and

(a = −1, b = 0). We compute the ‘arrival time’ at which the trajectory of an inertial

particle with initial condition (x(0), v(0)) = (1,−1) and Stokes number St crosses

the line x = 0. The arrival time is estimated by determining the time t for which

x(t) = 0. The value of the arrival time is calculated through linear interpolation

of two consecutive particle positions at times tn and tn+1, such that xn > 0 and

xn+1 ≤ 0. We see in the figure that it takes a finite time for a massless particle to

hit the wall for the velocity field defined by a = −1, b = −1. The other three curves

do confirm the analysis made based on the signs of a and b: particles with a small

Stokes number do not arrive at x = 0 in finite time.
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Figure 2-5: Arrival time versus the Stokes number for a particle moving in a linear
velocity field ul = ax + b. Four different velocity fields are considered: a = 1, b = 1
(solid); a = 1, b = 0 (dot); a = −1, b = −1 (dash dot); a = −1, b = 0 (dash).

To ensure that massless particles will not enter a solid part of the domain, it is

necessary to restrict the interpolation of the velocity field at the particle position

in such a way that at the wall the interpolated velocity is zero. Therefore, the
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interpolated velocity field is then defined ul(x) = (u(h)/h)x. The main steps in the

1D setting are: (i) localization of the particle, (ii) determine whether the particle is in

a grid cell that is adjacent to a solid-fluid interface, (iii) produce a linear velocity field

in the grid cell that is consistent with the no-slip condition at a solid wall. Based on

this simple algorithm, in the following subsection we describe the interpolation of the

gas velocity close to the solid-fluid interface in 3D such that the physically consistent

tracking of massless particles is maintained.

2.3.4 3D solid-fluid interface velocity interpolation

As we have seen in the 1D example, massless particles will not be captured at the

solid, provided that the interpolated value of the gas velocity at the solid surface is

zero. In the fluid simulations the velocities at the interface are of order 10−5 related

to the damping parameter ε. Based on the discrete phase-indicator function Γ, the

computed velocity can be mapped onto the grid in such a way that prior to the

interpolation of the fluid velocity at the particle position at all solid-fluid interfaces

the velocities are zero. This only affects the velocity field seen by the particles and is

not adopted as correction for the IB-computed velocity field itself. To implement this,

auxiliary values of the velocity fields are computed, defined at the edges and vertices

of the basic grid cells. These values are evaluated by interpolating the velocity u to

the edges and vertices, taking into account whether a given face belongs to a solid-

fluid interface or not. Setting the introduced auxiliary velocities to zero once they lie

on a solid-fluid interface is the key step in our computational technique for avoiding

deposition of massless particles.

As an example we consider the x-component of the velocity vector u. Let us

denote Δxi = xi+1 − xi, Δyj = yj+1 − yj and Δzk = zk+1 − zk. Particle localization

determines which points need to be included in the interpolation. Let us assume that

the particle at time t is located at xp = (xp, yp, zp) ∈ R
3, where

xi−1 ≤ xp ≤ xi; yj−1 − Δyj

2
≤ yp ≤ yj − Δyj

2
; zk−1 − Δzk

2
≤ zp ≤ zk − Δzk

2
.
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Figure 2-6: Velocity interpolation-cell in 3D for the velocity component in x direction.

Figure 2-7: (a) Velocities defined at points marked by � are available from the IB.
(b) Velocities defined at points marked by �, � and • are the auxiliary, interpolated
velocities.

At the particle location (xp, yp, zp) the gas velocity u(xp(t), t) is computed by

interpolating auxiliary velocities at the faces of the u-velocity interpolation-cell, as

shown in Figure 2-6. The u-velocity interpolation-cell is shifted half a grid cell from

the basic grid in the y and z directions. Here we use fractional index notation to

denote the velocities. For instance, u(i, j− 1

2
, k− 1

2
) represents the velocity at (xi, yj−

Δyj

2
, zk− Δzk

2
), as shown in Figure 2-7(a). The main step is setting the auxiliary values

and IB resolved velocities to zero once the points where the velocities are defined lie

on the solid-fluid interface. To do this we use the values of previously defined Γf , Γe

and Γv. This defines the auxiliary velocities ū as follows:
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ū(i, j − 1

2
, k − 1

2
) = u(i, j − 1

2
, k − 1

2
)(1 − Γf

i (j, k))

ū(i, j − 1

2
, k − 1) =

1

2

[
u(i, j − 1

2
, k − 1

2
) + u(i, j − 1

2
, k − 3

2
)
]
(1 − Γe

i,k−1(j))

ū(i, j − 1, k − 1

2
) =

1

2

[
u(i, j − 1

2
, k − 1

2
) + u(i, j − 3

2
, k − 1

2
)
]
(1 − Γe

i,j−1(k))

ū(i, j, k) =
1

4

[
u(i, j − 1

2
, k − 1

2
) + u(i, j − 1

2
, k − 3

2
)

+ u(i, j − 3

2
, k − 1

2
) + u(i, j − 3

2
, k − 3

2
)
]
(1 − Γv(i, j, k))

Within the velocity interpolation-cell auxiliary velocities are now available. This

approach can be directly applied to the case of a non-uniform Cartesian mesh since

all operations are defined in index-space; these transfer directly to physical space.

Having the values of the velocity field at the vertices and edges of the grid cells, the

particle localization is reduced to defining in which quarter of the interpolation-cell

the particle is found. If we look at the x = xi face (cf. Figure 2-7(b)), such localization

defines the location of the particle with respect to (yj−1, zk−1). The interpolation of

the velocity at the particle location is then done using the auxiliary values of the

velocities, e.g., with a trilinear interpolation. Once the velocity field is computed this

way at the particle location, the particle velocity and location at the next time step

can be computed from (2.12). With this we can follow trajectories of the particles

moving in a given velocity field.

In the following section we will present results obtained from numerical simulations

based on the described algorithms.

2.4 Impaction filtration of aerosol droplets in porous

media

One of the applications of particle tracking in a porous material is the prediction of

particle deposition on a filter. In this section we turn to one of the filtration mecha-

nisms, called impaction filtration. Two structured porous media were considered as

a point of reference: these consist of a parallel in-line and staggered arrangement of
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square rods in 3D (cf. Figure 2-1). We focus on the computation of the filtration

efficiency for these reference cases, to validate and establish the numerical method.

2.4.1 The motion of particles in model porous media

We show the motion of inertial particles and its relation with the inner structure of

the porous medium. The detailed flow that develops will have a direct consequence

on the deposition rate. To understand this, we first look at the flow field for both the

in-line and the staggered geometries. In Figure 2-8 we present vector plots of velocity

components in the x and y directions, calculated for Re = 100 (cf. Lopez Penha et

al [31]). The flow is computed by applying a pressure gradient in the x direction

with spatial resolutions 64 × 64 × 4 (for the in-line geometry) and 128 × 64 × 4 (for

the staggered geometry). The sizes of the computational domains are 1 × 1 × 1

and 2 × 1 × 1 for the in-line and staggered geometries, respectively. In the in-line

geometry a ‘channel’-type flow pattern is formed between the upper and the lower

layer of rods. The apparent channel flow in the in-line geometry is broken in case of a

staggered arrangement of the rods. In both porous media formation of recirculation

zones behind the solid walls is observed.

The structured flow that develops can be appreciated in more detail by visualizing

the trajectories of particles moving in it as a function of a non-dimensional time t.

The steady state fluid flow is precomputed and afterwards particles are introduced.

We first consider structured initial positions to help developing the method. For the

simulation of the filtration characteristics a different initial distribution of the particles

is used. In fact, particles are introduced in the fluid domain at random locations, such

that particles cover the fluid domain statistically evenly and no clustering of particles

arises. The initial velocity of a particle is taken equal to the local velocity of the fluid.

Periodic boundary conditions for the particle transport are applied in all directions.

We take 104 particles that are initially positioned on the line x = 0, z = 0 and simulate

their motion. We concentrate first on motion through the staggered arrangement

of rods. Two values of the Stokes number are considered, for which a qualitative

difference in the trajectories through the porous medium is observed: St = 0.01 and
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(a) In-line arrangement (resolution 64 × 64 × 4)
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(b) Staggered arrangement (resolution 128× 64 × 4)

Figure 2-8: Vector representation of flow field. Velocity components in the x and y
directions are presented for Re = 100.
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St = 0.05. These values of the Stokes number correspond approximately to a particle

diameter of 16 μm and 37 μm, respectively. The positions of non-deposited particles

are registered at non-dimensional times t = 0.1, t = 0.3, t = 0.4, t = 0.8, t = 0.9 and

t = 1, shown in Figure 2-9 for St = 0.01 and in Figure 2-10 for St = 0.05. For both

Stokes numbers a fraction of the droplets gets captured by the upstream face of the

solid rod in the center of the REV. In case St = 0.01, particles, that do not collide

with the front face of the center rod, move around it without being captured. These

leave the REV of the porous medium and enter on the opposite side, because of the

periodic conditions, quite closely following streamlines that do not lead to (much)

collision with the solid. On the other hand, particles with a slightly larger Stokes

number St = 0.05 (this corresponds to a diameter that is approximately twice larger)

behave qualitatively differently. Those that manage to avoid collision with the center

rod, are to a large extent captured by the solid squares in the left and right corners.

This example with structured initial conditions hints at a complex dependence of the

motion and ultimately of the filtration efficiency on the Stokes number. To this we

turn next.

We now consider 104 particles that are initially positioned randomly in the fluid

domain, using a linear congruential generator (LCG). In Figures 2-11 and 2-12 the

location of a large ensemble of particles at St = 1 is presented for the in-line and the

staggered geometries, respectively. Only suspended, i.e. non-deposited, particles are

shown. For this reason, the number of particles shown in the figures is smaller than the

initial number of suspended particles. In the sequel, we refer to traveled distance ‘on

average’, as the distance that a particle would travel having the bulk velocity U . The

positions of particles are registered (a) at an early stage in the simulation, (b) when

particles on average have traveled through half of the REV and (c) when particles on

average have traveled well across the REV. Snapshots of particle positions are taken

at t = 0.05, t = 1 and t = 3. For the in-line case, particles that are initially positioned

in the wakes, behind rods, gradually move towards the walls in a form of ‘centrifugal’

motion and get captured. Particles in the central part, that effectively appears to

form a channel, smoothly continue their journey without much structuring, e.g., by
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Figure 2-9: Particle dynamics for St = 0.01 in the staggered geometry. Initially, 104

particles are placed at the line x = 0, z = 0 of the fluid part of the domain. The
initial velocity of the individual particles is taken equal to the fluid velocity at the
particle position. The locations of non-deposited particles are registered at times
t = 0.1, t = 0.3, t = 0.4, t = 0.8, t = 0.9 and t = 1.
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Figure 2-10: Particle dynamics for St = 0.05 in the staggered geometry. Initially,
104 particles are placed at the line x = 0, z = 0 of the fluid part of the domain.
The initial velocity of the individual particles is taken equal to the fluid velocity at
the particle position. The locations of non-deposited particles are registered at times
t = 0.1, t = 0.3, t = 0.4, t = 0.8, t = 0.9 and t = 1.
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local clustering. The situation is different for the staggered geometry: depending on

the Stokes number, particles form clusters near preferential paths, as presented in

Figure 2-12.

Next, we turn to the effect of the Stokes number on the trapping of the particles

by the flow streamlines. In Figures 2-13 and 2-14 we show particle positions for in-

line and staggered geometries for St = 1, St = 0.1 and St = 0.01. The snapshots are

taken when particles have on average traveled twice through the REV, i.e., at t = 3.5.

For the in-line geometry the particles follow trajectories quite similar to what would

apply in a channel flow - this holds for all Stokes numbers, i.e., the particles mainly

follow straight-line trajectories parallel to the walls, with a small exception near the

gaps between the rods. In this geometry, particles with an intermediate and large

Stokes number, i.e., St = 0.1 and St = 1, that were initially positioned in the

recirculation zones behind the rods, get gradually deposited at the solid material as

a result of centrifugal motion developed by the flow streamlines. Particles with small

Stokes number St = 0.01 get captured extremely slowly as they mainly follow the

streamlines. In the staggered geometry, the presence of the central rod results in more

rapid capturing of particles with intermediate and large Stokes numbers compared to

the in-line geometry. Particles with St = 1 deviate from the fluid streamlines and

gradually get captured by the solid. Even though particles with St = 0.1 are also

rapidly captured, the deposition patterns for this Stokes number differ from the ones

for St = 1. On the other hand, in the staggered geometry some part of the particles

with St = 0.01 form a ’band’, wrapping around the central rod and stay in this band,

effectively without being captured for comparably long time. This is similar to the

behavior observed in case of structured initial positions, presented in Figure 2-9. It

will be shown further in this section that such structuring influences the filtration of

particles in a manner that depends quite non-uniformly on the particle inertia.

2.4.2 Impaction filtration of aerosol droplets in porous media

In Section 2.4.1 we presented the qualitative differences of particle motion in the

in-line and the staggered geometries. In this section, we turn our attention towards
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Figure 2-11: Particle dynamics for St = 1 in the in-line geometry. Initially, 104

particles are randomly distributed in the fluid part of the domain. Initial velocity of
the individual particles is taken equal to the fluid velocity at the particle position.
The locations of non-deposited particles are registered at times t = 0.05, t = 1 and
t = 3.
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Figure 2-12: Particle dynamics for St = 1 in the staggered geometry. Initially, 104

particles are randomly distributed in the fluid part of the domain. Initial velocity of
the individual particles is taken equal to the fluid velocity at the particle position.
The locations of non-deposited particles are registered at times t = 0.05, t = 1 and
t = 3.

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) St = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(b) St = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(c) St = 0.01

Figure 2-13: Distribution of non-deposited particles in the in-line geometry at t = 3.5
for different values of St.
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Figure 2-14: Distribution of non-deposited particles in the staggered geometry at
t = 3.5 for different values of St.
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computations of particle deposition in these two distinct porous media geometries.

Generally, the following steps must be taken into account for effective computations

of the particle deposition on the surface of a porous filter:

• the geometry of the porous material through which particles travel must be

specified,

• steady flow field simulations for the computation of the corresponding velocity

field must be performed,

• initialization of particles’ positions and their velocities at these positions must

be carried out,

• simulations of particle trajectories suspended in the computed steady flow so-

lution must be executed, and

• appropriate post-processing of data must be applied, e.g., computation of the

so-called filtration efficiency function that characterizes deposition in time.

The so-called filtration efficiency function E(t) is defined as the ratio between the

number of not yet deposited particles that are still present in the flow N(t) at time t

and the initial number of particles N(0):

E(t) =
N(t)

N(0)
(2.13)

We distinguish between deposited and non-deposited particles using the masking

function introduced in Section 2.3, i.e., a particle is considered as deposited at time

t if its position belongs to a grid cell marked by Γ equal one.

In order to obtain statistically reliable results for the decay curve in time, defined

by E(t), aspects such as the initial number of particles and the number of different

random initial particle positions were considered in detail. Here, we adopt a single

configuration of 104 particles which are randomly distributed in the whole fluid do-

main Ωf . Subsequently, initialization of particle positions and velocities interpolated
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from the mesh values to their actual position is performed. We take the local veloc-

ity of the fluid as the initial velocity of a given particle, which means that initially

particles have zero acceleration. This results in a short transition (in the considered

case of about 1/100 of the time scale, i.e., 0.001 seconds) for a particle to adopt to

the flow accordingly to its Stokes number.

The filtration efficiency is computed here in terms of the decay rate γ, defined

conveniently as long-time decay γ(St) = 1 − E(T ). Here, the time scale T is larger

compared to the flow-through time for the REV, i.e., the time needed for one passage

through the domain at bulk velocity. We considered in this paper T = 10, corre-

sponding to about five passages of the REV, which was found to be representative

and sufficient to collect required statistics. For a range of Stokes numbers it was

established that by increasing the initial number of particles 100 times the effect on

the long-time decay rates is of order 10−3. This motivates our choice of the 104 initial

number of particles, allowing statistically reliable computation of γ as a function of

Stokes number.

To assess the importance of proper numerical treatment for low Stokes numbers we

considered the staggered alignment of rods. In this geometry filtration of introduced

particles not only corresponds to the considered flow conditions, but strongly depends

on the size of the particles. The point-like particles with negligible mass flow along

the streamlines with zero filtration efficiency, while the particles with significant mass

hit immediately the central element of the REV. In addition, the central element

itself causes remarkable flow redirection that further affects the deposition. As a final

result, the filtration efficiency sharply spans between zero and one depending on the

Stokes number.

In Figure 2-15(a) the distribution of deposited particles without applying ‘no-slip’

consistent treatment for St = 0 is presented. For this Stokes number about 8% of par-

ticles is getting captured by the solid, while there should be no filtration as discussed

in previous section. In Figure 2-15(b) we compare the decay rate γ computed for

two decay curves E, corresponding to velocity interpolation using auxiliary ‘no-slip’

consistent values and velocity interpolation based directly on the computed velocities
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from the immersed boundary method. As discussed in Section 3, the residual velocity

at the solid-fluid interface resulting from the IB method affects the motion of very

small particles close to a wall to such an extent, that numerical filtration dominates

physical filtration. Larger particles ’sense’ their inertia and their trajectories and

filtration are not significantly affected by the residual velocity. For particles with

St � 1/30, the additional numerical filtration is larger than the actual physical fil-

tration. Further on we present only results coming from proper numerical treatment

of the filtration.

Next, we turn our attention to comparison of deposition in two considered REV

geometries. As expected, qualitative and quantitative differences are observed in the

decay curves for the two porous media (cf. Figure 2-16). In the in-line geometry(cf.

Figure 2-16(a)) the filtration efficiency does not depend very strongly on the parti-

cle inertia since for the considered steady flow conditions the particles are flowing

through the domain undisturbed by the geometry. This results in low filtration effi-

ciency even for particles characterized by comparatively large Stokes numbers. In the

staggered arrangement much stronger dependence between the filtration and Stokes

number is observed. This can also be qualitatively observed in the patterns of particle

trajectories presented as snapshots of particle positions in Figure 2-14. As expected,

particles with negligible mass (small Stokes number) are not deposited since they flow

along the streamlines. When particle mass becomes larger the inertial effects become

dominant as well. The staggered geometry with an obstacle in the center of the REV,

together with discussed flow structuring, induces significant growth of the filtration

efficiency, as shown in Figure 2-16(b).

The decay rate γ for two porous geometries is shown to illustrate the difference

in filtration characteristic. For a range of Stokes numbers the dependence of γ is

presented in Figure 2-17. For the in-line geometry γ increases uniformly for St � 0.2.

For higher Stokes numbers, up to about 0.4, the filtration is less effective, while a

region of increased γ is found after a sharp jump in the filtration efficiency around

St = 0.4. In the staggered arrangement the dependence of γ on St is more complex. In

Figure 2-17 we have included all data obtained with the no-slip consistent algorithm,
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Figure 2-15: (a) Distribution of deposited particles without ‘no-slip’ consistent treat-
ment for St = 0. (b) Effect of ‘no-slip’ consistent treatment in the staggered geometry:
decay rate as a function of Stokes number with (star) and without (square) consistent
‘no-slip’ treatment near the solid-fluid interface.
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(a) In-line geometry.
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(b) Staggered geometry.

Figure 2-16: Decay of number of particles suspended in the flow as a function of
time for different values of the particle Stokes numbers: St = 0.01 (circle), St =
0.03 (diamond), St = 0.04 (square), St = 0.05 (star), St = 0.5 (plus) and St = 1
(triangle).

as already shown in Figure 2-15(b). In addition, we included results from further

variations in the Stokes number, displaying more detail in the filtration characteristic

for this structured porous medium. We may distinguish two regimes: St < 0.04 and

St ≥ 0.04. In the first regime γ is rather small, corresponding to particles that are

agile enough to move around the center rod in the REV. Particles with St ≥ 0.04 are

filtered rapidly, a consequence of the motion as illustrated in Figure 2-10 at St = 0.05.

For these Stokes numbers around 90% of the particles is captured by t = 10. The

additional complexity of the dependence of γ on St for the staggered arrangement

is illustrated, e.g., by the behavior for 0.03 < St < 0.04 and further non-uniform

growth of γ around St ≈ 0.4. These features can be reliably extracted using the

new simulation method. Values of γ as a function of Stokes number are statistically

reliable, implying that the complex structure observed in both geometries are signs of

the actual inertial behavior of particles within the porous media. Inclusion of random

Brownian effects on the motion of the droplets will influence the detailed structure of

the filtration characteristics at different St. However, the main features and filtration

regimes as observed in Figure 2-17 are expected to remain, particularly for the higher
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Figure 2-17: Decay rate γ as a function of Stokes number. Data points marked with
a star correspond to the in-line arrangement, and circles represent the data points
for the staggered arrangement. The standard deviation of data points from the mean
value averaged over 100 different initial random distributions is of order 10−3.

St values. The precise effects of Brownian motion can be investigated on the basis of

the current ‘no-slip consistent’ approach, which is the subject of the following chapter.

2.5 Conclusions

We proposed a particle tracking method to study filtration properties of various

porous filters. We focused our attention on particle deposition on the solid filter

surface due to inertial impaction. A numerical approach was described to simulate

the motion of a large number of particles suspended in a gas flow. The new compu-

tational method avoids numerical filtration of massless particles. We considered two

structured porous media in 3D, composed of in-line and staggered arrangements of

square rods. It was established that in the staggered geometry filtration efficiency

computed without ‘no-slip’ correction of the velocities leads to considerable system-

atic error in case of very small particles. This shows that the developed numerical
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scheme is crucial for the accuracy of the filtration.

In this chapter, we also showed that the inner structure of a porous medium

strongly influences the deposition of particles. In both in-line and staggered ge-

ometries filtration appears to depend strongly on particle inertia. A relatively mild

dependence on St was observed for the in-line geometry. On the other hand, particle

deposition in the staggered geometry showed strong dependence on the particle iner-

tia. As a result, a critical particle Stokes number was observed, which separates two

regimes. Particle with St ≥ 0.04 are filtered with high efficiency, while particles with

St < 0.04 are filtered at considerably lower rate. This suggests that the staggered

geometry can be used to separate particles with Stokes number below a critical value

from larger particles. The critical Stokes number is observed at an overall porosity of

3/4 - it is expected to depend on this porosity, flow conditions and inner structure of

the porous medium, yielding several additional design parameters for particle filters.

Based on the IB method for predicting flow in porous media, it is possible to con-

sider any complex porous medium, e.g., obtained using micro-computed tomography.

Since the ‘no-slip consistent’ particle tracking is formulated entirely in terms of the

phase-indicator function related to the geometry, our method is directly adaptable

without any further alterations required. The method allows one to investigate the

subtleties of filtration characteristics of a porous filter, depending on the flow con-

ditions, porosity and particle size. Further research is devoted to the inclusion of

Brownian motion into the particle dynamics, and to the application of this approach

to filtration characteristics of realistic filters.
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Chapter 3

Diffusive and inertial impaction

filtration of aerosol droplets by

porous media

Abstract

In this chapter we address filtration of droplets whose dynamics is governed by both
Stokes drag and Brownian motion. Within the Euler-Lagrangian framework of gas-
droplet two-phase flow, the effects of inertial motion and Brownian diffusion on the
filtration characteristics are first illustrated for flow through a straight pipe, serving
also as validation of the model. Subsequently, the filtration characteristics of a steady
flow through a realistic porous material are determined, illustrating the capabilities of
the approach in terms of predicting such macroscopic aspects based on pore-resolved
flow. We show a characteristic ‘V-shaped’ dependence of the filtration efficiency on
the droplet size with high values in case of dominant Brownian motion or dominant
inertial motion and a strongly reduced filtration efficiency for droplets of intermediate
size.

3.1 Introduction

In various areas, such as chemical engineering, mechanical engineering and environ-

mental sciences, prediction of the deposition rate of aerosol droplets on porous (fi-

brous) filters plays and important role. Detailed understanding of deposition charac-

teristics on fibrous (porous) filters may allow more control over the filtration process.
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In this chapter, the transport and deposition of dispersed liquid droplets embedded in

a gas flow through a porous material is studied using numerical simulations. We adopt

an Euler-Lagrange formulation and incorporate explicitly Brownian forcing next to

viscous Stokes drag. The filtration characteristics of a laminar flow through a realistic

porous material are predicted through these simulations.

We present a numerical approach to study filtration characteristics of fibrous

(porous) filters due to inertial impaction and diffusion. We consider one-way cou-

pling of the gas phase and the particle phase, where the gas phase is governed by the

Navier-Stokes equations [44], [13] and the dynamics of the particle phase is based on

the Maxey-Riley equation [34]. The inner geometry of the filter is incorporated in

our model using the immersed boundary (IB) [36] volume penalization technique [2],

allowing to consider complex flow domains at full spatial resolution. The motion of

small spherical particles in a fluid flow is approximated by retaining only the Stokes

drag term given that the ratio of particle density to fluid density is large. Adopting

this simplification and also including a random forcing to model Brownian motion,

a stochastic equation for the motion of individual particles is obtained. These two

forces represent the two main filtration mechanisms that will be investigated in this

chapter, i.e., inertial impaction filtration associated with Stokes drag and diffusive

filtration associated with thermal fluctuations representing Brownian forcing.

The collection efficiency of a filter may be influenced by several factors, such as

packing density of the fibers, gas flow rate, temperature of the gas, particle size, etc.,

as these factors define the relative importance of the two dominant filtration mecha-

nisms. The detailed understanding of the flow field in the filter and its impact on the

particle motion is essential to calculate the collection efficiency of a given filter. The

relative importance of the inertial and Brownian terms is directly connected to the

particle diameter dp and the temperature T . We will quantify this momentarily, show-

ing an increased Brownian effect with increasing temperature T and/or decreasing

particle size. Through systematic simulations the consequences of these mechanisms

to the overall filtration will be quantified.

The underlying dependencies on the particle size imply the existence of several

56



filtration regimes. While inertial forces are dominant for relatively large particles,

Brownian forces dominate for small particles. In the absence of Brownian motion,

small particles mainly follow the flow streamlines avoiding any obstacles. Trajectories

of large particles, on the other hand, deviate from the flow streamlines and thereby

may encounter obstacles. In the presence of Brownian acceleration, relatively small

particles are affected by the thermal motion of gas molecules and their trajectories

are no longer strictly following the flow streamlines. For the large size particles inertia

remains the main reason for deviation from gas streamlines.

Intuitively, there should exist an intermediate range of particle sizes for which

both the Stokes drag and the Brownian forces are of comparable importance. This

suggests a V-shaped filtration efficiency curve as function of a particle size. While

considerable filtration efficiency is expected for very small particles, arising from the

Brownian motion, and for very large particles, arising from ‘ballistic’ motion through

the fibrous medium, a reduced filtration efficiency is expected for intermediate range

particles. The aim of the study presented here is to quantify the precise depen-

dencies on particle size and system temperature. Confirmed by our simulations, both

light (diffusion dominated) and heavy (inertia dominated) particles are captured with

higher probability than intermediate sized particles.

The chapter is organized as follows: in Section 3.2 we briefly give the mathematical

description of the gas-particle two-phase flow and discuss the numerical methods used

to solve the corresponding system of equations and validate the approach on the basis

of Brownian motion in one-dimension. Next, in Section 3.3 we illustrate the approach

for Poiseuille flow in a tube. Section 3.4 is devoted to the application of the method

to a real filter geometry for which we estimate the filtration efficiency as function of

the particle size. Finally, we conclude with a summary of our findings in Section 3.5.
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3.2 Modeling the motion of small aerosol droplets

due to inertial and random forces

In this section, we describe the mathematical model for simulating gas-particle two-

phase flow through porous media. We first present the governing equations for both

phases and then turn our attention to the corresponding numerical methods, used

to obtain the solution. Finally, we validate the approach using 1D Brownian motion

and compare this to diffusion.

3.2.1 Eulerian description of the gas-phase

To model aerosol filtration by porous filters, we start with the mathematical modeling

for the carrier phase. We assume a dilute multiphase flow for which the fluid velocity

can be computed ignoring the droplet-phase [10]. The governing equations for the gas

phase are the incompressible Navier-Stokes equations. We assume that the physical

domain Ω contains N ‘obstacles’, which form the solid part Ωs of our computational

domain. We employ an IB volume penalization method [36],[2] which allows com-

puting the flow in complex geometries using fast and efficient numerical methods on

Cartesian grids. The non-dimensional Navier-Stokes equations [44], extended to the

whole computational domain, in vector form are:

⎧⎨⎩
∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u − 1

ε
Γsu

∇ · u = 0
(3.1)

to be solved for the unknown gas velocity u and pressure p. The penalization param-

eter ε � 1 and Γs is the characteristic function of Ωs. It is used to penalize the flow

entering the solid obstacles and approximates the no-slip boundary conditions at all

solid-fluid interfaces:

Γs(x) =

⎧⎨⎩ 1 if x ∈ Ωs

0 if x ∈ Ωf
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with Ωf being the part of the computational domain that is occupied by the fluid.

The Reynolds number Re quantifies the ratio of convective and viscous fluxes and is

defined as:

Re =
LU

ν

where ν is the kinematic viscosity and L and U are the characteristic length and

velocity scales, respectively, yielding a natural time-scale L/U . We will consider

laminar flow through porous filters, corresponding to relatively low values of Re.

This aspect will be specified in more detail below.

3.2.2 Lagrangian description of the droplet-phase

The deposition of particles on the surface of a filter can be caused by different filtration

mechanisms including inertial impaction and diffusion [23]. In both cases, particles

are captured because their trajectories deviate from fluid streamlines close to the

surface of the solid. In the case of impaction this is due to the particle inertia while

in the case of diffusion the underlying Brownian motion is the cause. Depending

on the particle inertia and the gas temperature one of these mechanisms may be

dominant.

Particle inertia, or the particle’s responsiveness to changes in the flow, is char-

acterized by the Stokes number (St): the ratio of the particle response time to the

flow time scale. In the absence of Brownian motion, low inertia particles essentially

follow the fluid flow and therefore are transported as fluid elements. Somewhat larger

particles can, e.g., be trapped by vortices in the flow before possibly colliding with

the fluid-solid interface. Trajectories of particles with large inertia will not be affected

much by vortex structures, and follow more or less ballistic paths, rather independent

of any surrounding flow of the carrier gas.

For droplets for which Brownian diffusion becomes pronounced, deposition can be

viewed as a mass transfer problem, for which various Euler-Euler engineering models

were proposed. This approach is limited to cases where particle collection by the

filter is only due to Brownian diffusion. For more general cases, where deposition
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mechanisms other than diffusion are also present, considering the droplet phase as a

discrete phase has marked advantages. Here, we consider the so-called Lagrangian

description of the droplet phase. The motion of individual droplets is modeled, based

on the Maxey-Riley equations [34], which is extended to include diffusive motion of

particles. This provides a framework for studying the combined effect of Brownian

motion and inertial forces on the particle deposition. The trajectories of individual

particles are obtained using the following system of non-dimensional equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx

dt
= v

dv

dt
=

(u − v)

St
+ A(t)

(3.2)

where x = {x, y, z} and v = {vx, vy, vz} are the particle position and velocity, respec-

tively, and A(t) = {Ax(t), Ay(t), Az(t)} is the random Brownian acceleration vector.

The dimensionless Stokes number St is defined as:

St =
U

L

1

β
(3.3)

where the relaxation time β with the use of Stokes’ law is given as:

β =
3πμdp

Ccm
(3.4)

with particle diameter dp, Cunningham correction factor Cc , dynamic viscosity of the

gas μ and particle mass m [7]. The Cunningham correction factor is essential when

calculating the drag on small particles to account for non-continuum effects and is

defined as[8]:

Cc = 1 +
2λ

dp
(1.257 + 0.4 exp(

−1.1dp

2λ
)) (3.5)

where λ is the free mean path of the gas molecules. The gas-phase velocity u is

evaluated at the particle location, i.e., u(x(t), t). The relaxation time can be rewritten
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as follows:

β =
18μ

Ccρpdp
2

(3.6)

where we introduce the particle density ρp and substitute m = d3
pπρp/6.

The random Brownian acceleration vector A(t) is assumed to be independent of

v(t) and fluctuates rapidly as compared to the variations in v. We consider a small

time interval Δt, which on the one hand is short enough such that during this interval

the external velocity u can be approximated as constant, while on the other hand it

is long enough such that a large number of random accelerations took place. Under

these conditions the formal solution of (3.2) for the interval Δt is given by [5]:

v(Δt) = v(0) exp(−Δt/St) + u(1 − exp(−Δt/St)) + Rv(Δt) (3.7)

where Rv(Δt) represents the net accumulated acceleration experienced by a Brownian

particle during the time interval Δt and v(0) is the particle’s velocity vector at the

beginning of the time interval. The random variable Rv has probability density

function w(Rv) given by [5]:

w(Rv) =
1

(2π
(

kBT
mU2

)
(1 − exp(−2Δt/St)))3/2

exp

⎛⎝ −|Rv|2
2
(

kBT
mU2

)
(1 − exp(−2Δt/St))

⎞⎠
(3.8)

This implies that each component of Rv = {Rvx, Rvy, Rvz} follows a normal distribu-

tion N(0, σ2) with zero mean and variance σ2:

σ2 =
( kBT

mU2

)
(1 − exp(−2Δt/St)) (3.9)

which emphasizes the important parameter (kBT )/(mU2), the ratio between the ther-

mal energy scale kBT and the kinetic energy scale mU2. The x component of the

solution vector given by (3.7) can then be written as follows:

vx(Δt) = vx(0) exp(−Δt/St) + ux(1 − exp(−Δt/St)) + σN(0, 1) (3.10)
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where we employ the fact that the statistical properties of a random variable X with

probability distribution function N(0, σ2) are identical to the statistical properties of

a random variable Y with a probability distribution σN(0, 1) [48].

3.2.3 Numerical solution of governing equations

We discuss the numerical technique for solving the formulated system of equations.

We first turn to the numerical solution of the Navier-Stokes equations.

The IB technique to compute the gas flow around solid obstacles embedded in

the domain allows to employ Cartesian meshes on which the governing equations are

solved. For simulation of an incompressible flow a finite-volume discretization of the

equations (3.1) is used [44]. We adopt a staggered storage of variables, which helps

avoiding unphysical pressure fields that might result from the segregated pressure

solving step [13]. In the 3D case, the scalar variables, such as pressure, are stored in

the middle of the grid cells, while the velocity components are stored in the center of

the corresponding faces of the grid cells.

Discretization of the Navier-Stokes system requires approximation of the differ-

ential operators appearing in the equations. The skew-symmetry of the differential

operator (u ·∇) implies that the total energy of the flow is conserved when the flow is

inviscid. It only decreases when there is dissipation. To achieve this on the discrete

level a discrete skew-symmetric approximation of the operator (u ·∇) and a positive-

definite approximation of −∇·∇ are developed in [56] which we employ in this work.

The numerical method is identical to that used in [31, 20].

The numerical treatment of the equations of motion for the droplets will be dis-

cussed next, assuming steady flow for convenience. This assumption is not a principal

limitation of the method and extension to time-dependent flow is readily made. Based

on the exact solution given by Equation (3.10), a numerical scheme can be developed

for computing the particle’s position and velocity for sufficiently small time intervals

Δt. Given the particle’s position and velocity at time t, Equation (3.10) can be used

to compute the particle’s velocity at t + Δt. Below we write down the scheme for the

x-component of the position and velocity vectors, where we adopt the Euler-forward
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method for evaluating the particle’s position:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn = xn−1 + Δtvn−1
x

vn
x = vn−1

x exp(−Δt/St) + ux(x
n−1)(1 − exp(−Δt/St))

+

√( kBT

mU2

)√
1 − exp(−2Δt/St)gn

(3.11)

with gn a random number drawn from N(0, 1). The time step Δt is assumed to be

small compared to the particle relaxation time. This implies, that Δt/St � 1. For

this limit, by approximating exp(−Δt/St) = 1−Δt/St, we can rewrite (4.59) in the

form of the Euler-forward scheme both for the position and the velocity as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xn = xn−1 + Δtvn−1

x

vn
x = vn−1

x (1 − Δt/St) + ux(x
n−1)Δt/St +

√(2Δt

St

)( kBT

mU2

)
gn

(3.12)

To assure stability of the explicit Euler-forward method for the velocity, the condition

Δt ≤ 2St has to be satisfied which implies very small time steps for low values of the

Stokes number. In order to propagate the particle position and velocity over a time

step, the velocity of the gas at the particle position is required. For this purpose the

gas flow velocity is interpolated to the current particle position. Here we use trilinear

interpolation.

3.2.4 Validation of Brownian motion in 1D

Let us consider the motion of N particles in 1D under a random Brownian force,

assuming a gas velocity u = 0. We simulate the motion of N particles having the

same initial position and velocity, given by xj(0) = 0, vj(0) = 0, j = 1, · · ·, N with

diameter dp = 1μm. We assume a constant gas temperature T = 300K and take

a time step Δt = 10−6 s. It is known that the root of the variance of the particle
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Figure 3-1: Numerically obtained root-mean-square displacement and theoretically
predicted (solid) for N = 103 (star), N = 102 (square), N = 10 (diamond) particles
with diameter dp = 1μm.

position λ on average grows as the square root of time [5]:

λ(t) =
√

2D
√

t (3.13)

where D is the diffusivity coefficient, which is given by Stokes-Einstein expression:

D =
kBT

6πdpμ
(3.14)

with η the viscosity of the gas. We consider T = 300 K, take the viscosity of air

μ = 1.98 × 10−5 kg/(m · s) and mass density ρp = 1000 kg/m3. The numerically

predicted root-mean-square of the displacement is defined as:

λn
num =

√∑N
j=1

(xn
j − xj(0))2

√
N

In Figure 3.2.4 we compare the numerically obtained mean square displacement

with the theoretical prediction. With N increasing the numerical curve for the root-

mean-square displacement converges to its theoretical prediction. We have also estab-

lished that by taking a sufficiently small time step, taken as a fraction of St, the two
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inflow

outflow

Figure 3-2: Illustration of the flow domain with particles entering with the flow at
the inflow boundary and leaving via the outflow boundary. At the inflow a Poiseuille
profile is imposed while at the outflow the derivative of the solution with respect to
the streamwise coordinate is set to zero.

numerical solutions based on the full Euler-forward scheme given by (3.12) and on

the exact solution computed by (3.11) converge likewise. Having a proper description

of the motion of Brownian particles, we next turn our attention to the application of

this method.

3.3 Filtration in a circular tube

The objective of this section is to illustrate the developed numerical model on the

example of flow in a circular tube. In this relatively simple geometry, we aim to qual-

ify filtration characteristics due to diffusion and inertial impaction and understand

the effects of the underlying physical mechanisms. This configuration is well suited

for validation purposes, a necessary step toward the application of this method to

filtration by realistic fibrous filters discussed in the next section.

Before going into the details of the setup for the numerical experiments, we intro-

duce some notation. Initially, a single ‘cloud’ of Nin particles is introduced near the

inlet plane of the computational domain (see the sketch of the computational domain

in Figure 3-2). This number of particles is followed in time - no further particles are

added at later times. We are interested in the number Ncap(t) of particles deposited
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on the wall of the tube. In addition, we denote with Nesc(t) the number of particles

that remain non-captured when exiting the tube. At any given time t:

Nin = Ncap(t) + Nesc(t) (3.15)

Based on these notations, we define the penetration of particles P as follows:

P (t) = 1 − Ncap(t)

Nin

(3.16)

According to this definition, P = 1 implies that the number of deposited particles up

to time t is zero. Correspondingly, P = 0 implies that all of the particles have been

deposited at time t.

The circular tube has an inner diameter and length of lt = 7.8 mm on which we

base the length scale L = lt. For the velocity reference scale we assume U = 0.28 m/s

while the particle density is taken as ρp = 1000 kg/m3 and air viscosity as ν = 15·10−6

m2/s, which is valid for system temperatures T ≈ 300 K. The Reynolds number Re

of the flow, based on the chosen length and velocity scales, is approximately 145. A

pressure difference is maintained over the length of the domain in the x direction to

force the flow. At the inflow we impose a Poiseuille flow profile for the velocity, while

at the outflow the derivative with respect to the streamwise coordinate is set to zero.

The numerical prediction for the laminar velocity profile in Poiseuille flow is illus-

trated in Figure 3-3. Note that the flow is computed numerically for a resolution that

provides a fair approximation to the analytical solution [35]. Particles are introduced

in the fluid domain at random locations, such that particles cover the fluid domain

statistically uniformly and no clustering of particles arises. The initial velocity of

a particle is taken equal to the local velocity of the fluid. By tracking the particle

trajectories, we can determine where and when particles collide with the tube wall.

First, we look at the snapshots of the locations of Nin = 104 particles with particle

diameter dp = 0.1 μm that are initially randomly distributed in the y − z plane at

{x = 0.125} (Figure 3-4). Simulations are performed until t = 2 non-dimensional

time units, which corresponds approximately to 1/2 a flow-through time, i.e., half
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Figure 3-3: Flow field in the circular tube. Velocity components in the x and y
directions are presented for Re = 145 at resolution of 32 × 64 × 64.

the time spent by a particle to travel through the domain in the streamwise direction

in case it would travel with the reference velocity U . For this particle diameter and

reference temperature, it appears that Brownian acceleration is not strong and the

trajectories are not affected much as the particles migrate towards the outlet of the

channel following the parabolic profile of the gas velocity field.

In this simple geometry, deposition arises mainly due to diffusion, which is domi-

nant for the motion of relatively small particles. Without diffusion no particles would

encounter the walls as, initially, no radial velocity component was given to the parti-

cles. The only mechanism that makes the particles deviate from a purely streamwise

motion is Brownian acceleration. This is confirmed by evaluating the dependency of

the penetration on the particle size for fixed gas temperature of 300 K(see Figure

3-5). For the smallest particle sizes considered here, dp = 0.06 μm, only 0.3% of the

particles are captured. We establish that for particles with dp ≥ 0.11 μm less than

0.1% of the particles gets captured. These very low values of the captured fraction

is due to the rather modest temperature, but also due to the short domain length

that was chosen in this illustration. In Figure 3-5 we notice that the penetration P

depends monotonously on the particle size, i.e., with decreasing size the fraction of
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Figure 3-4: Particle positions for particles with diameter dp = 0.1μm in the circular
tube. Initially, 104 particles are randomly distributed in the y−z plane at x = 0.125.
Initial velocity of the individual particles is taken equal to the linearly interpolated
fluid velocity at the particle position. The locations of non-deposited particles (pro-
jected onto the x − y plane) are registered at times t = 0.1, t = 0.5, t = 1 and t = 2.
Only the particles that moved to the right are shown.
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Figure 3-5: Penetration of particles as a function of time for different particle diam-
eters for T = 300 K: dp = 0.06 μm (circle), dp = 0.07 μm (triangle), dp = 0.1 μm
(plus) and dp = 0.2 μm (square). Initial number of particles is Nin = 104.

captured particles Ncap/Nin increases, which is due to the increased relevance of the

Brownian acceleration in view of the sharp increase in the parameter kBT/(mU2)

since m ∼ d3
p.

In Figure 3-6 we compare the penetration curves for gas temperatures T = 300 K

and T = 600 K at particle diameter dp = 0.06μm. By increasing the gas temperature

an increase in the deposition is observed. In fact, at t = 2 we notice that the cap-

tured fraction Ncap/Nin has increased by roughly a factor 1.5, which is comparable

to
√

600/300 =
√

2 governing the relative increase in the strength of the Brownian

acceleration through the parameter
√

kT/(mU2) as is evident in (3.11) and (3.12).

In the following section, we consider a realistic filter geometry which implies richer

particle dynamics and filtration trends.
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Figure 3-6: Penetration of particles as a function of time at different gas temperatures
T = 300 K (circle) and T = 600 K (triangle) for particle diameter dp = 0.06 μm.
Initial number of particles is Nin = 104.

3.4 Filtration in a porous filter

In this section, we consider a realistic filter geometry and apply the developed nu-

merical method to evaluate the particle removal efficiency. First, we describe the

construction of the computational domain based on a realistic porous filter and then

turn to numerical experiments performed to investigate its filtration efficiency.

3.4.1 Construction of the computational domain

The porous medium considered in this section is reconstructed from pore-scale geo-

metric data obtained from micro-computed tomography: a set of 1536 images each

having 664× 664 pixels with a uniform width of pw = 1.185 · 10−2 mm are processed

to construct a three-dimensional tube (using cubic voxels of volume p3
w). The porous

filter is essentially a tube filled with fibrous material forming the porous structure. In

Figure 3-7 we show a representative cross sectional plot of the tube. The tube has an

inner diameter d ≈ 7.8 mm and length D = 18 mm in the stream wise x-direction.

On both sides of the tube we extend the computational domain by adding two empty
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Figure 3-7: A representative cross-section of the tube with inner diameter of 7.8 mm.

tube stretches of length D/6 which serve as inlet and outlet regions [30]. Including

the extensions, the total length of the tube becomes approximately 24.3 mm.

In this chapter, results are obtained on a grid nx = 512 and ny = nz = 128. A

detailed resolution study for the considered geometry and flow conditions was con-

ducted showing that this resolution is high enough to capture the dominant transport

characteristics [30]. We use this resolution to investigate the filtration characteristics

of the porous filter.

The lower streamwise resolution is motivated by the fact that the fibrous porous

material considered here is predominantly aligned with this axis. This representation

was obtained by projecting the original 2048 × (664)2 voxels onto this coarser reso-

lution, which allows for systematic investigation of filtration properties for a broad

range of particle sizes at acceptable computing times. At this spatial resolution, the

fluid flow can be computed reliably, as was established in [30]. Based on the reference

length scale taken as the diameter of the tube L = d = 7.8 mm = 7.8 ·10−3 m and ve-

locity scale of U = 0.28m (assuming a constant volumetric flow rate of Q = 1.75×104

mm3/s), we compute the fluid flow through the porous tube at Re = 145.

In Figure 3-8 and Figure 3-9 we present a visualisation of the computed veloc-

ity and the highly complex inner geometry of the porous domain. This result was

obtained in [30] and serves as point of departure for our further analysis of the fil-

tration efficiency of such a filter. We observe in the cross-section (Figure 3-8) that
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Figure 3-8: Contours of the dimensionless streamwise velocity-component in a repre-
sentative cross-section of the tube. Image courtesy of [30].

the streamwise velocity is rather low in most of the domain, apart from small regions

corresponding to the larger open pores contained in the structure. Hence, most of the

transport of the gas through the porous domain occupies only a relatively small part

of the entire volume. This is also observed in the streamwise cut through the domain

in Figure 3-9 in which the slenderness of the pore structure is readily appreciated.

Also in this cross-section one observes regions of relatively high velocity concentrated

in the larger pores through the domain. The numerical accuracy of this solution

was scrutinized in [30] in which it was shown that the immersed boundary method

converges as a first order method for the velocity, yielding accurate findings for the

permeability predictions agreeing better than 5% with experimental data obtained

on exactly the same porous structure.

Next, we detail the numerical experiment that uses this velocity field to investigate

filtration properties of the porous tube.

3.4.2 Numerical prediction of the filtration efficiency

First, we describe the numerical evaluation of the filtration efficiency, after which

we visualise the dispersion of the droplets in the domain, followed by a quantitative
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(a) Contours of the dimensionless streamwise
velocity-component.

(b) Black(solid) and white(void) rep-
resentation of the porous tube.

Figure 3-9: Representative cross-section in the streamwise direction. Image courtesy
of [30].
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analysis of the filtration.

The computational setup used for computing the filtration efficiency of the porous

filter is similar to that used for the circular tube. At the inlet of the porous tube,

approximately D/6 into the computational domain and ahead of the actual fibrous

plug, Nin = 104 particles are introduced into the domain, initially randomly located

in the cross-sectional plane defined by x = 0.125. Unless mentioned otherwise, the

simulation time corresponds to approximately 2/3 of the flow-through time.

In Figure 3-10 we present snapshots of the locations of the non-captured and the

captured particles. In this illustration, the particles have a diameter of dp = 0.1 μm.

As can be observed from these snapshots, there are apparent ‘channels’ through which

a large fraction of the particles manages to propagate without being hindered much

by the porous domain and even make it to the outflow boundary without getting

captured. We observe that the captured particles accumulate for short times onto

the leading face of the porous domain. At later times particles enter the pores and

the deposited particles trace-out the complicated boundaries of the larger pores that

make up the solid-fluid interface. Likewise, the non-captured particles move through

the centers of these pores. Intuitively, this corresponds with the earlier observations

of relatively high velocities in a small number of larger pores that pass through the

full length of the domain.

To quantify the particle propagation through the porous tube, we performed sim-

ulations for a range of particle sizes 0.06 μm ≤ dp ≤ 3 μm. For selected particle

sizes in Figure 3-11 penetration curves are plotted as a function of time computed for

Δt = 10−7 . Before we discuss the penetration curves, we briefly turn to the computa-

tional scheme used to compute the motion of particles. Comparing the computational

schemes given by (3.11) and (3.12) at Δt = 10−7 showed similar penetration trends,

however there is a slight quantitative difference in the actual penetration levels. In

order to get better agreement between the two numerical schemes a smaller Δt should

be considered, i.e., implying a smaller value of Δt/St.

Related to the initial positions of the particles it takes approximately until t = 0.1

before the first particles reach the porous plug and get captured. This explains the
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Figure 3-10: Particle dynamics for dp = 0.1μm in the realistic filter geometry. Ini-
tially, 104 particles are randomly distributed in y − z plane at x ≈ 0.125. Initial
velocity of the individual particles is taken equal to the interpolated fluid velocity at
the particle position. The locations of non-deposited (red - left figures) and deposited
(blue - right figures) particles are registered at times t = 0.04, t = 0.12, t = 0.16,
t = 0.24 and t = 0.8 (particle locations are projected onto x − y plane). The solid
lines indicate the start and the end of the porous part of the computational domain.
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Figure 3-11: Penetration of particles as a function of time for different particle diam-
eters at T = 300K and Nin = 104: dp = 0.06 μm (circle), dp = 0.1 μm (triangle),
dp = 0.6μm (plus) and dp = 3μm (square) .

flat initial part of the penetration curves. Compared to the validation case of a

circular tube, we observe that the capturing of particles is much more efficient with

the current fibrous porous material, compared to the empty tube case. While in the

empty and shorter tube case only a fraction of a percent could be captured, we observe

in this case a rapid increase of the number of captured particles to well above 90%

of the initial number of particles that was put in the system. The penetration curve

corresponding to a particle size of 0.1 μm is slightly above the rest of the curves,

indicating that particles with this size are captured less effectively compared to the

rest. Marked with a plus symbol is the penetration curve computed for a particle

size of 0.06 μm, the smallest particle size included in the study. Particles with this

size are captured most effectively, due to the considerable influence of diffusion on

the particle trajectories. Likewise, particles larger than 0.1 μm are captured more

accurately, reflecting the importance of inertia, which favours the particles to follow

straight lines, quite independent of the embedding flow. In contrast to the case of

the circular tube, here we observe a non-monotonous dependence of the filtration
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efficiency on particle size.

In the case of the circular tube, with decreasing particle size filtration becomes

more effective uniformly. This is explained by the increased effect of Brownian motion,

which takes particles away from the straight paths that would be followed under the

action of Stokes drag alone. In the case of flow through a porous tube the motion

of particles is influenced by the curved streamlines, corresponding to flow around the

fibers. This results into a much richer particle dynamics implying different filtration

regimes determined by the relative importance of forces acting on them.

The concept of removal coefficient can be used to describe the different filtration

regimes, i.e., diffusion dominated, inertia dominated and ‘mixed’ in which case both

contributions to the accelerations are dynamically relevant. In literature, filtration

efficiency is often associated with the so-called removal coefficient γ. If we assume that

the population of non-captured particles follows from a ‘multiplicative process’, and

initially the distribution of particles is uniform over the domain, then an exponential

decay would result. This assumes a homogeneous and isotropic porous medium with

equal capturing probability throughout and connects mainly to the idea of random

diffusive motion. If this would be a good approximation, then γ expresses the speed

of the decay, i.e.:

P (t) = exp(−γt) (3.17)

The exponential decay model is only approximate and motivated for homogeneous

porous media. As we deal with a porous plug with complex non-uniformities in the

porosity, only a rough agreement between the simulated P (t) and (3.17) was observed.

Moreover, the level of agreement was dependent on the Stokes number of the droplets.

This was confirmed at a range of droplet sizes. The exponential fit to the filtration

curves did not allow a consistent level of approximation of the decay rate γ. However,

the simulated filtration curves do give an indication of the efficiency of the filtration

process and its dependency on the droplet size can be extracted, which can be used

to optimize the design of a filter.

Relatively small particles are affected by Brownian acceleration and their trajec-
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tories are no longer following the flow streamlines. For large size particles their inertia

is the main reason for deviation from streamlines. Moreover, an intermediate range

of droplet sizes is observed for which a more close agreement between trajectories

and streamlines arises. This yields a roughly V-shaped filtration characteristic (Cf.

[22, 43, 46] ) as a function of particle diameter, i.e,. a range of droplets is filtrated

much less efficiently compared to very small (diffusion dominated) or rather large

droplets (inertia dominated). We notice that an increase in the temperature from 300

K to 600 K leads to a shift to higher filtration efficiencies for the smaller droplets,

corresponding to the stronger contribution of the Brownian forcing. This establishes

the principal suitability of the Euler-Lagrange method to understand porous filtra-

tion characteristics in detail - further development of the method and the simulation

speed will be needed to make studies of realistic filtration feasible.

The V-shaped filtration efficiency is a result of the interplay of Stokes drag and

Brownian forcing. In order to characterise the relative importance of these contribu-

tions to the velocities we extract their probability distributions from the simulations.

We concentrate on the streamwise dynamics. The contributions to the velocity at

time tn from Stokes’ and Brownian forces (see equation 3.12) are denoted by Sn and

Bn, respectively:

Sn = vn−1
x (1 − Δt/St) + ux(x

n−1)Δt/St (3.18)

Bn =

√(2Δt

St

)√( kBT

mU2

)
gn (3.19)

To check the effect of gas temperature and particle size on the accelerations we

compare findings for two gas temperatures,i.e., T = 300 K and T = 600 K, and

two particle sizes, i.e., dp = 0.06 μm and dp = 0.1 μm. In Figures 3-12 particles’

velocity distributions in terms of Bn and Sn are shown for all considered cases. As it

can be observed, for all considered particle sizes the Brownian term remains smaller

than the Stokes term. By increasing the gas temperature from 300 K to 600 K

we essentially increase the Brownian term by a factor of
√

2. This, however, does

not effectively change the relative values of the two velocity terms. The increase

in temperature increases the span of the Brownian velocity term, however for the
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Figure 3-12: Particle velocity distribution for particle diameter dp = 0.06 μm (left
figures) and dp = 0.1 μm (right figures) for two different gas temperatures indicated
beneath the plots. Stokes velocity is shown in red and Brownian velocity term in
blue.
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Figure 3-13: Brownian term (Bn) of particle velocity (x-component) for particle di-
ameter dp = 0.06 μm for different gas temperatures: T = 300 K (red) and T = 600
K (blue).

majority of particles this term remains small relative to the Stokes term for both

particles with dp = 0.06 μm and dp = 0.1 μm. This can be better appreciated in

Figure 3-13 where we compare the distributions of Brownian term with increasing

temperature for dp = 0.06 μm. Only a substantial increase of the gas temperature

may result in more significant changes in the particle dynamics, even to the point

that the Brownian terms become dominant. However, this would require a physically

infeasible temperature range, to which we do not pay further attention.

3.5 Conclusions

The capability of predicting the complete flow, down to the pore scale, that arises in

realistic fibrous porous media was exploited to study the filtration characteristics of

such a filter. At different temperatures and particle sizes the capturing of droplets

onto the solid-fluid interface was simulated and the filtration efficiency recovered.

A classical ‘V-shaped’ filtration curve was observed as function of droplet size with

high likelihood of filtration both for sufficiently small (dominant diffusion) as well as
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for sufficiently large (dominant inertial effects) droplets. The droplet sizes for which

filtration is least effective were found to be in the sub-micron range, consistent with

the typical ranges found in other filters. This builds some confidence in the accuracy

of the model and motivates its use in the study and optimisation of mechanical filters.

Particularly, the recovery of information such as where in the domain the dominant

filtration takes place, is essential in case filtration characteristics need to be improved

for certain size classes. However, further research is needed to better understand the

dependence on parameters and to reach higher statistical reliability through the use

of more particles and more repetitions of the numerical experiments to allow proper

averaging.
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Chapter 4

Numerical simulation of aerosol

formation and growth in laminar

flow

Abstract

This chapter deals with an Euler-Lagrange model of the full set of processes of aerosol
nucleation, growth by condensation and evaporation, and motion governed by Stokes
drag as well as Brownian forces. This model is applied to laminar flow through a
channel. The flow contains dibutylphthalate (DBT) vapor at the inflow, which is
rapidly cooled at some location along the channel, thereby inducing droplet nucle-
ation. While work presented in literature mainly deals with an Euler-Euler formu-
lation, in this chapter we show results based on the Euler-Lagrange formulation in
which the trajectories of nucleated droplets are followed precisely in time. We may
predict the size distribution and other statistical properties of the aerosol inside the
channel and also at its exit, starting from a dispersed particle description.

4.1 Introduction

Nucleation plays an important role in atmospheric processes [45, 24] and it is a crucial

concept in the production of various polymer, alloy and ceramic materials [1, 25].

Nucleation is a key mechanism of phase transition in materials, e.g., it relates to

the process of formation of liquid droplets and solid particles from its vapor and
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liquid phases, respectively . Nucleation can be homogeneous as well as heterogeneous

[23, 17, 40]. In homogeneous nucleation the new phase emerges due to the deposition

of vapor on its own clusters, typically in the bulk of the domain, while heterogeneous

nucleation occurs in the presence of ‘foreign’ substances which serve as deposition

sites, either in the bulk of the domain or at its boundaries.

In this chapter, we present a computational method for studying homogeneous

nucleation of droplets from a supersaturated vapor and their subsequent growth due

to condensation. We consider gas-vapor two-phase laminar flow and initiate homo-

geneous nucleation by cooling down the hot gas carrying the vapor. Rapid cooling

of the gas-vapor mixture results in a supersaturated state of the system and homo-

geneous nucleation occurs. Properties of the generated droplets, such as size and

temperature, evolve depending on the local conditions in the flow domain. Relying

on the classical nucleation theory (CNT) [57, 3] that provides explicit calculation

of the nucleation rate as a function of supersaturation and temperature, we focus

on developing a computational technique that allows a detailed investigation of the

resulting aerosol evolution. We treat the gas-vapor mixture as a continuous phase,

i.e., adopt an Eulerian description for it, while the droplets are modeled using the

Lagrangian approach, i.e., the droplets are treated individually as dispersed point

masses in the domain and their trajectories are explicitly computed in response to

the flow in which the droplets are immersed [34, 5].

While most treatments of aerosol nucleation and growth via condensation and

evaporation follow the Euler-Euler framework [17, 42, 26, 33], we developed an ap-

proach based on the Euler-Lagrange formulation, allowing a more ‘microscopic’ ac-

counting of the various mechanisms at the scale of individual droplets. The nucleation

rate which is key in the CNT is adopted in the Euler-Lagrange framework as the prob-

ability per unit of time and volume to generate a critical cluster. This link can be

readily implemented in a computational model in which the local vapor concentra-

tion and temperature are used to determine the possible degree of supersaturation

and correspondingly to evaluate the nucleation rate J . The number of critical clusters

that could then be actually generated per grid cell of volume ΔV and per time step Δt
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is then given by ξ = JΔV Δt. Well-resolved simulations imply ξ � 1, which is hence

interpreted as the probability of actually generating such a cluster at a randomly

chosen location in the grid cell.

We show results of simulation of flow in a simple channel and establish details of

the nucleation process associated with rapid cooling, as well as subsequent growth

of the droplets as these travel downstream. This illustrates a first application of

the Euler-Lagrange approach to aerosol formation and presents aspects such as the

evolving droplet size distribution and characteristics of the aerosol as it emanates

from the end of the channel. It is a basis for studying the dependence of the aerosol

formation process on important process parameters such as the temperature, the

cooling rate and the flow velocity, which are subject of ongoing research.

The chapter is organized as follows. Section 4.2 is devoted to the mathematical

modeling of two-phase gas-vapor flow coupled to nucleating liquid droplets. We start

with the mathematical description of the gas-vapor flow. Afterwards, the governing

equations for the generated liquid droplets are presented along with the coupling to

the gas-vapor phase. Further computational methods used for solving the resulting

system of equations are also described in this section. In Section 4.3 we apply the

computational method to a channel flow between two parallel plates where we employ

the classical theory of nucleation to simulate droplet formation in the Lagrangian

setting. We conclude with a short summary of our findings in Section 4.4.

4.2 Mathematical modeling

In this section we discuss in detail the governing equations for the gas-vapor mixture

and for the droplet phase. We also briefly describe the classical nucleation theory

used to compute nucleation rates. Afterwards, we turn to the numerical methods

used to solve the resulting system of equations. Throughout the chapter all the di-

mensional variables have the superscript ‘*’ while for the corresponding dimensionless

variables the superscript is dropped. In the numerical experiment discussed in this

chapter we consider a system of air and dibutylphthalate (DBT) vapor [40]. Further
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in discussions, we will refer to the air and vapor mixture as the carrier phase and to

the dispersed DBT droplets as the liquid phase.

4.2.1 Gas-vapor phase

We start with describing flow, mass and heat transfer of the gas-vapor phase. We

assume incompressible flow governed by the Navier-Stokes equations:

∇∗ · u∗ = 0 (4.1)

∂∗

t (ρ
∗

cu
∗) + u∗ · ∇∗(ρ∗

cu
∗) = −∇∗p∗ + ∇∗ · (μ∗

c∇∗u∗) (4.2)

with mass density of the carrier phase ρ∗

c and dynamic viscosity μ∗

c . This system

of equations is solved for the unknown velocity u∗ and pressure p∗. The governing

equation for the vapor reads:

∂∗

t (ρ
∗

cY ) + u∗ · ∇∗(ρ∗

cY ) = ∇∗ · (ρ∗

cD
∗∇∗Y ) + M∗

l→v (4.3)

where Y is the vapor mass fraction, defined as:

Y =
ρ∗

v

ρ∗

c

(4.4)

with ρ∗

v the vapor mass density. While ρ∗

c is considered constant in the domain, the

vapor mass density may vary considerably as a result of nucleation and condensation

processes. This approximation is justified in case of low vapor densities, i.e., in the

situation that the carrier phase is predominantly made up of air. Moreover, D∗ is

the diffusion coefficient of vapor and M∗

l→v is the rate at which mass is transferred

from the liquid phase to the vapor phase due to the possible formation of droplets

and evaporation/condensation. Finally, we consider advection-diffusion transport of

the energy in terms of the temperature equation, given by:

ρ∗

cc
∗

c(∂
∗

t T
∗

c + u∗ · ∇∗T ∗

c ) = ∇∗ · (λ∗

c∇∗T ∗

c ) + S∗

l→v (4.5)
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where c∗c is the specific heat capacity of the carrier phase, λ∗

c is the heat conductivity

and S∗

l→v is the heat flow rate due to phase transitions.

4.2.2 Droplet phase

We consider the so-called Lagrangian description of the droplet phase. The motion of

individual droplets is modeled, based on the simplified Maxey-Riley equations [34].

This approach is generalized to include diffusive motion of particles resulting from

Brownian forcing. The trajectories of individual, spherical particles are obtained

using the following system of equations:

dx∗

i

dt∗
= v∗

i (4.6)

and

dv∗

i

dt∗
=

3πμ∗

cd
∗

i

m∗

i

(u∗

i − v∗

i ) + A∗

i (t
∗) (4.7)

where we use the subscript i to indicate the properties of i-th droplet: x∗

i = {x∗

i , y
∗

i , z
∗

i }
is the location vector of the droplet, v∗

i = {u∗

i , v
∗

i , w
∗

i } is the velocity vector of the

droplet, d∗

i is the diameter of the droplet, m∗

i is its mass and u∗

i denotes the veloc-

ity of the carrier gas at particle position x∗

i . Moreover, A∗

i = {A∗

x, A
∗

y, A
∗

z} is the

random, time-dependent Brownian acceleration vector which is assumed to be inde-

pendent of v∗

i . It is assumed to fluctuate rapidly compared to the variations in v∗

i [5].

Substituting m∗

i = πρ∗

l (d
∗

i )
3/6 we get:

dv∗

i

dt∗
=

u∗

i − v∗

i

τ ∗

v,i

+ A∗

i (t
∗) (4.8)

with relaxation time

τ ∗

v,i =
Ccρ

∗

l (d
∗

i )
2

18μ∗

c

(4.9)
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where ρ∗

l is the density of the liquid droplets. The Cunningham correction factor is

essential when calculating the drag on small particles to account for non-continuum

effects and is given by [8]: .

Cc = 1 +
2λ∗

d∗

p

(1.257 + 0.4 exp(
−1.1d∗

p

2λ∗
)) (4.10)

where λ∗ is the free mean path of DBT vapor. The model for the Brownian acceler-

ations is identical to that used in the previous Chapter.

Conservation of total mass around a single spherical particle leads to the following

equation for the particle’s mass change due to evaporation and condensation [7]:

dm∗

i

dt∗
= −

(m∗

i Shi

3τ ∗

v,iSc

)
ln

(
1 − Yδ

1 − Y0

)
(4.11)

where Sc = μ∗

c/(ρ∗

cD
∗) is the Schmidt number and Shi = 2 + 0.552Re

1/2

r,i Sc1/3 is the

Sherwood number. The Reynolds number of the motion of the droplet relative to

the surrounding fluid is defined as Rer,i = (d∗

i |u(x∗

i ) − v∗

i |)/ν∗

c where ν∗

c = μ∗

c/ρ
∗

c is

the kinematic viscosity of the carrier phase. The vapor mass fraction Yδ stands for

the vapor mass fraction at distance δ from the surface of the droplet while Y0 is the

vapor mass fraction at the surface of the droplet. We compute Yδ by interpolation of

the vapor mass fraction field Y to the droplet location. The saturation mass fraction

Y0 at a given temperature T ∗ for the DBT vapor is obtained from its constitutive

relation [40]:

Y0 = exp(21.497 − 11497/T ∗) (4.12)

Considering convective heat transfer, the energy equation can be written as [7]:

m∗

i c
∗

l

dT ∗

i

dt∗
= (h∗

v − h∗

l )
dm∗

i

dt∗
+ Nu iπλ∗

cd
∗

i (T
∗

c,i − T ∗

i ) (4.13)

where the Nusselt number is given by Nui = 2+0.6Re
1/2

r,i Pr1/3 in terms of the relative

Reynolds number Rer,i and the Prandtl number Pr that will be specified momentarily

in connection with the selected reference scales for the non-dimensionalization. In
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addition, h∗

v and h∗

l are the specific enthalpy of the vapor and the droplet, respectively.

The enthalpy difference (h∗

v −h∗

l ) is the enthalpy associated with the change of phase

at the droplet temperature, i.e., the latent heat of evaporation. The second term in

the right hand side of (4.13) denotes conductive the heat transfer. We can rewrite

(4.13):

dT ∗

i

dt∗
=

(h∗

v − h∗

l )

m∗

i c
∗

l

dm∗

i

dt∗
+

Nu

2

1

τ ∗

T,i

(T ∗

c,i − T ∗

i ) (4.14)

with τ ∗

T,i the thermal response time, defined as:

τ ∗

T,i =
c∗l ρ

∗

l (d
∗

i )
2

12λ∗

c

(4.15)

Apart from the motion of the droplets and their response in terms of mass and

temperature, it is essential to actually generate droplets. In order to nucleate a droplet

the so-called saturation Sr should be sufficiently larger than unity. This saturation

is the ratio of the partial pressure of the vapor P ∗

v,par in the gas-vapor mixture to the

saturation vapor pressure at the temperature of the mixture:

Sr =
P ∗

v,par

P ∗

v,sat

(4.16)

When the saturation ratio is greater than 1, the gas-vapor mixture is supersaturated,

when the ratio equals 1, then the mixture is saturated and if the saturation ratio

is less than 1, then the mixture is unsaturated. The partial vapor pressure P ∗

v,par is

computed using the ideal gas law [54]:

P ∗

v,par =
k∗

BT ∗ρ∗

vY

M∗
(4.17)

where T ∗ and Y are to be evaluated at the location of the droplet via interpolation.

Moreover, k∗

B = 1.3806488 ·10−23 (m2 ·kg)/(s2 ·K) denotes the Boltzmann’s constant

and M∗ is the molecular mass of the vapor. We use (4.12) and the ideal gas law to

compute the corresponding saturation vapor pressure at the local temperature T ∗.
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Summarizing we get the following system of equations:

∇∗ · u∗ = 0 (4.18)

∂∗(ρ∗

cu
∗)

∂t
+ u∗ · ∇∗(ρ∗

cu
∗) = −∇∗p∗ + ∇∗ · (μ∗

c∇∗u∗) (4.19)

ρ∗

cc
∗

c(∂
∗

t T
∗

c + u∗ · ∇∗T ∗

c ) = ∇∗ · (λ∗

c∇∗T ∗

c ) + S∗

l→v (4.20)

∂∗

t (ρ∗

cY ) + u∗ · ∇∗(ρ∗

cY ) = ∇∗ · (ρ∗

cD
∗∇∗(Y )) + M∗

l→v (4.21)

dx∗

i

dt∗
= v∗

i (4.22)

dv∗

i

dt∗
=

u∗

i − v∗

i

τ ∗

v,i

+ A∗

i (t
∗) (4.23)

dm∗

i

dt∗
= −

(m∗

i Shi

3τ ∗

v,iSc

)
ln

(
1 − Yδ

1 − Y0

)
(4.24)

dT ∗

i

dt∗
=

(h∗

v − h∗

l )

m∗

i c
∗

l

dm∗

i

dt∗
+

Nu

2

1

τ ∗

T,i

(T ∗

c,i − T ∗

i ) (4.25)

The following scaling is applied to the dimensional formulation to obtain the final

non-dimensional formulation of (4.18) - (4.25).

u∗ = U∗

refu, x∗ = L∗

refx, t∗ = t∗ref t (4.26)

p∗ = p∗refp, T ∗

c = T ∗

refTc, ρ∗

c = ρ∗

refρc, (4.27)

μ∗

c = μ∗

refμc, c∗c = c∗refcc, λ∗

c = λ∗

refλc (4.28)

S∗

l→v = S∗

refSl→v, M∗

l→v = M∗

refMl→v, D∗ = D∗

refD (4.29)
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The resulting non-dimensional formulation reads:

∇ · u = 0 (4.30)

∂(ρcu)

∂t
+ u · ∇(ρcu) = −∇p +

1

Re
∇ · (μc∇u) (4.31)

ρccc(∂tTc + u · ∇Tc) =
1

Re

1

Pr
∇ · (λc∇Tc) + Sl→v (4.32)

∂t(ρcY ) + u · ∇(ρcY ) = ∇ · (ρcD∇Y ) + Ml→v (4.33)

dxi

dt
= vi (4.34)

dvi

dt
=

ui − vi

τv,i

+ Ai(t) (4.35)

dmi

dt
= −

( miShi

3τv,iSc

)
ln

(
1 − Yδ

1 − Y0

)
(4.36)

dTi

dt
= E

(hv − hl)

micl

dmi

dt
+

Nu

2

1

τT,i
(Tc,i − Ti) (4.37)

where the several reference scales are interrelated through the following relations:

U∗

ref t
∗

ref

L∗

ref

= 1, p∗ref = ρ∗

ref (U∗

ref)
2 (4.38)

D∗

ref t
∗

ref

(L∗

ref )2
= 1, M∗

ref =
ρ∗

ref

t∗ref

, (4.39)

S∗

ref =
ρ∗

refc
∗

refT
∗

ref

t∗ref

(4.40)

The non-dimensional parameters Re, Pr , τv,i, τt,i and E are defined as:

Re =
ρ∗

refU
∗

refL
∗

ref

μ∗

ref

, Pr =
c∗refμ

∗

ref

λ∗

ref

(4.41)

τv,i = τ ∗

v,i/t
∗

ref , τT,i = τ ∗

T,i/t
∗

ref (4.42)

E =
h∗

ref

T ∗

refc
∗

ref

(4.43)

Finally, the dimensionless mass mi is related to the actual mass of a droplet m∗

i using

as unit of mass the weight of the critical cluster m∗

nut as will be specified in the next

subsection.

In the next subsection we describe in more details the source terms in the above
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system of equations.

4.2.3 Coupling the discrete and the continuous phases

Due to the fluid-droplet interaction mass and energy transfer between the phases

occurs expressed by the source terms in the temperature and vapor mass fraction

equations for the carrier phase. Below we describe these source terms.

We start with the mass flow rate from the liquid to the vapor phase M∗

l→v per unit

volume. This contains two contributions: the nucleation mass flow rate M∗

nuc and the

mass flow rate due to evaporation minus that due to condensation M∗

e−c.

M∗

l→v = −M∗

nuc + M∗

e−c (4.44)

The source term expressing the mass coupling due to evaporation/condensation M∗

e−c

accounts for the local change in vapor concentration field due to evaporation/condensation:

M∗

e−c = −
∑

i

dm∗

i

dt∗
δ(x − xi) (4.45)

Here δ is the Dirac delta-function. The nucleation mass rate per unit volume is

specified as the product of the mass of a droplet at nucleation and the nucleation

(formation) rate J∗

N :

M∗

nuc = m∗

nucJ
∗

N (4.46)

Considerable literature is available providing expressions for the nucleation rate as a

function of supersaturation and temperature. Here, we employ the classical theory

which allows to compute nucleation rates in terms of local or microscopic properties.

The mass of a droplet at nucleation is related to the diameter d∗

nuc of the nucleated

droplets, which is the diameter of the so-called ‘critical’ cluster. A nucleus with a

critical diameter is in unstable equilibrium with the surrounding vapor having an

equal probability of 50% for growth and for disappearance. It is common to adopt

a ‘safety margin’ for the diameter of the droplets at nucleation that is larger by a

factor of 21/3, resulting in a twice as large mass of nucleated droplets [23]. The critical
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diameter is specified as:

d∗

nuc = 21/3 4σ∗V ∗

m

ln (Sr)k
∗

BT ∗
(4.47)

with σ∗ the surface tension of the critical cluster droplet, assuming that the critical

cluster has the same properties as a macroscopic liquid drop. Moreover, V ∗

m the

molecular volume, i.e, the volume occupied by one molecule of the vapor. The mass

of a droplet at nucleation is then computed as:

m∗

nuc =
π(d∗

nuc)
3ρ∗

l

6
(4.48)

According to the classical theory of nucleation, the nucleation rate J∗

N in a super-

saturated state depends on the temperature and the supersaturation as follows:

J∗

N =

⎧⎨⎩ γ∗Y 2 exp (−α ln−2 (Sr)), Sr > 1

0, Sr ≤ 1
(4.49)

with combined ‘material’ parameters

γ∗ =

√
2σ∗

πM∗
V ∗

m

(
ρ∗

c

M∗

)2

(4.50)

and

α =
16π(V ∗

m)2(σ∗)3

3(k∗

BT ∗)3
(4.51)

The surface tension of the fluid-vapor interface depends on the temperature:

σ∗ =
κ∗(T ∗

cr − T ∗)

(V ∗

mol)
2/3

(4.52)

with κ∗ = 2.1×10−7 J ·K−1mol−2/3 a constant valid for many liquids, V ∗

mol the molar

mass of DBT vapor, T ∗

cr the critical temperature for which the surface tension reaches

the value of zero. For DBT we use σ∗ = 0.001(35.3 − 0.0863(T ∗ − 273.15)) J · m−2

[40]. For an arbitrary volume and in an arbitrary time interval the total number of
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nucleated droplets is:

N =

∫
ΔV ∗

dV ∗

∫
Δt∗

dt∗J∗

N (4.53)

If we specify this to an elementary volume ΔV ∗ and time interval Δt∗, then:

N = Δt∗ΔV ∗J∗

N (4.54)

This is a crucial connection in order to translate the nucleation rate to its consequence

in the Euler-Lagrangian framework.

Similar to the case of mass flux, the total heat flow rate S∗

l→v is composed of

two components: heat flow rate due to nucleation S∗

nuc and heat flow rate due to

evaporation and condensation S∗

e−c

S∗

l→v = S∗

nuc − S∗

e−c (4.55)

The heat flow rate due to nucleation is related to the mass flow rate M∗

nuc using the

enthalpy of vaporization ΔH∗ in the following way:

S∗

nuc = ΔH∗M∗

nuc (4.56)

The heat rate due to evaporation and condensation is given by:

S∗

e−c =
∑

i

(
c∗l

d

dt∗
(m∗

i T
∗

i )

)
δ(x − xi) =

∑
i

(
c∗l m

∗

i

dT ∗

i

dt∗
+ c∗l T

∗

i

dm∗

i

dt∗

)
δ(x − xi)

(4.57)

Since we follow the trajectories of the droplets in detail as well as the evolution of

their mass and temperature, all terms in this expression are directly available from

the dispersed phase description. Recalling the definition of S∗

ref , this leads to the

contribution Se−c =
S∗

e−c

S∗

ref

to the source term Sl→v:

Se−c =
∑

i

(
clmi

dTi

dt
+ clTi

dmi

dt

)
δ(x − xi) (4.58)
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Having described the set of equations next we turn to the numerical approaches

applied for solving it.

4.2.4 Numerical treatment

The system of equations formulated in the previous sections is solved numerically.

Below we address the main numerical schemes and methods that were adopted.

We first consider the numerical solution of the Navier-Stokes equations. For the

simulation of incompressible flow a finite-volume discretization of the equations (4.30)

- (4.31) is used. Here, we consider a staggered storage of variables, which helps avoid-

ing unphysical pressure fields that might result from the pressure-velocity coupling

step in solving the Navier-Stokes equations. In the 3D case the scalar variables, such

as pressure, are stored in the middle of the grid cell, while the velocity components

are stored in the center of the corresponding face of the grid cell.

Discretization of the Navier-Stokes equations requires approximation of the dif-

ferential operators appearing in the equations. The skew-symmetry of the differential

operators (u · ∇) and ∇ implies that the total energy of the flow is conserved when

the flow is inviscid. It only decreases when there is dissipation. To achieve this on the

discrete level a discrete skew-symmetric approximation of the operator (u · ∇) and a

positive-definite approximation of −∇ · ∇ are developed in [56] which we employ in

the simulations presented in the next Section.

We next discuss the method to simulate the motion of the droplets. For sake of

simplicity, we drop the subscript ‘i’ whenever referring to the i-th droplet. Given the

droplet’s position and velocity at time tn−1 its velocity at tn = tn−1 +Δt is computed

using the model for the Brownian motion as specified in the previous Chapter. For

the x-component of the motion this implies:

vn = vn−1 exp(−Δt/τn−1
v ) + ux(x

n−1)(1 − exp(−Δt/τn−1
v ))

+

√
k∗

BT ∗

refT (xn−1)

m∗

refm
n−1U∗

ref
2

√
1 − exp(−2Δt/τn−1

v )gn

(4.59)
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with gn a random number drawn from N(0, 1). The Stokes number is time-dependent

because of the changing mass of the droplet in the course of time. It is equal to the

droplet relaxation time according to its actual instantaneous weight, made dimension-

less by the reference time-scale. For the Brownian part of this model to be valid, the

time step Δt is assumed to be large compared to the expectation value for the length

of the time interval between successive collisions of a droplet with the gas molecules.

This implies that we only incorporate the ‘average’ motion due to accumulated effects

of the Brownian motion due to molecular agitation. On the other hand, the time step

is much smaller than the particle relaxation time. This implies, that Δt/τn
v � 1. For

this limit, by approximating exp(−Δt/τn
v ) = 1−Δt/τn

v , we can rewrite (4.59) in the

form of an Euler-forward scheme, which we also apply to compute particle’s position,

mass and temperature. For the x-direction this is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn = xn−1 + Δtvn−1
x

vn = vn−1(1 − Δt/τn−1
v ) + ux(x

n−1)Δt/τn−1
v +

√
2Δtk∗

BT ∗

refT (xn−1)

m∗

refm
n−1U∗

ref
2τn−1

v

gn

mn = mn−1

(
1 − ΔtShn

3τn−1
v Sc

ln

(
1 − Yδ

1 − Y0

))
T n = T n−1 + E

(hv − hl)

mn−1cl
(mn − mn−1) +

ΔtNu

2

1

τn−1

T

(Tc − T n−1)

(4.60)

In order to propagate the particle position, velocity, mass and temperature over a

time step the velocity of the gas, vapor mass concentration and temperature at the

particle position have to be computed. This requires interpolation of latter fields at

the particle position. We use trilinear interpolation.

4.3 Droplet formation and growth in a channel

flow

In this section we consider a numerical experiment to demonstrate the above devel-

oped computational technique to study aerosol droplet formation and evolution. We

consider an air-DBT vapor mixture flowing at a constant rate between two parallel
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Figure 4-1: Two parallel plates forming a channel. The temperature of the plates at
the left of the origin is T1 and to the right of the origin is T2. The inflow boundary
is at the left at x = −L at which gas and vapor enter at temperature T1 and vapor
mass fraction Y0 which yields an unsaturated condition at the inflow. At the out-
flow a convective outflow boundary condition is adopted while at the walls Dirichlet
conditions for the temperature are imposed, no-slip conditions for the velocity and
no-penetration Neumann conditions for the vapor.

plates. We initiate homogeneous nucleation of droplets by cooling down the hot gas

mixture. Under suitable process conditions, rapid cooling of the gas-vapor mixture re-

sults in a supersaturated state of the system and homogeneous nucleation may occur.

We will illustrate this process with simulations based our our model and concentrate

on temperature and size distributions of the aerosol droplets which move in the flow

and propagate through the channel while undergoing condensation/evaporation.

4.3.1 Numerical experiment

The numerical experiment requires two steps. First, we set up a ‘pre-cursor simula-

tion’ without any vapor, in which we compute the fully developed laminar Poiseuille

flow through the channel subject to a uniform temperature T1 at the inflow and at

the walls. Subsequently, a temperature drop in the channel is applied through the

boundary conditions at the walls of the channel. In particular, the right half x > 0 of

the channel wall is given a temperature T2 < T1 (see Figure 4-1). At the same time,

at the inlet of the channel DBT vapor is introduced into the system at constant mass

fraction. The aim is to follow the development of the temperature, vapor and droplet

phase as the system evolves, following the imposition of the temperature drop.

The pre-cursor simulation for the velocity uses no-slip boundary conditions at the
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walls and periodic conditions in the stream-wise x-direction. Moreover, to maintain

a fixed mass flow through the domain a constant pressure gradient is added to the

momentum equation in the x-direction. The flow in the wall-normal y and the span-

wise z directions is set to zero. The flow is simulated until a well-developed steady

state is obtained which compares well with Poiseuille flow. For this we monitored the

residual for the stream-wise velocity and continued the simulation until the residual

no longer decreases. The Reynolds number Re = 100 of the computed flow is based

on the length and velocity scales L∗

ref = 2H = 0.01 m and U∗

ref = 0.21 m/s. We

adopt constant values for Sc = 3.8, Sh = 2.8 and Nu = 2.6 considering air properties

at T = 100 C, namely, ρ∗

c = 0.946 kg/m3, μ∗

c = 2.2× 10−5 kg/(m · s) . For the vapor

diffusivity we use D∗ = 0.0398(T/273.16)3/2 cm2/s while the DBT liquid density

is computed from ρ∗

l = 1.063 − 0.000826(T ∗ − 273.16) g cm−3. Moreover, for the

dimensionless Prandtl number we assume Pr = 1.

The problem for the temperature and vapor mass fraction is two-dimensional, the

initial and boundary conditions for the temperature can be expressed as follows:

T (x, y, 0) = T1, − L < x < L,−H < y < H

T (−L, y, t) = T1, − H < y < H, t > 0

∂xT (L, y, t) = 0, − H < y < H, t > 0

T (x,±H, t) =

⎧⎨⎩ T1, − L < x < 0, t > 0

T2, 0 < x < L, t > 0

(4.61)

i.e., initially the temperature is set at T1, which is maintained throughout at the

inflow and in the first half (−L < x < 0) at the walls of the flow domain. In the

second half (L > x > 0) the walls are kept at T2 < T1 while at the outflow the solution

is approximated as independent of the stream-wise coordinate. For the vapor mass

concentration we assume initially a situation without any vapor. At the inflow, vapor

can enter at a value Yin, which can not leave the domain through the walls. Finally,

near the outflow, the solution is assumed independent of the stream-wise coordinate.
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(a) t = 0.0002 (b) t = 0.07

(c) t = 0.17 (d) t = 0.58

Figure 4-2: Evolution of the temperature distribution at T1 = 1 and T2 = 0.7 com-
puted at resolution of {64 × 32}. The situation at t = 0.58 is a good approximation
of the steady solution.

Mathematically, this is expressed by:

Y (x, y, 0) = 0, − L < x < L,−H < y < H

Y (−L, y, t) = Yin, − H < y < H, t > 0

∂xY (L, y, t) = 0, − H < y < H, t > 0

∂yY (x,±H, t) = 0, − L < x < L, t > 0

(4.62)

Figure 4-2 shows the evolution of the temperature field in response to the imposed

temperature drop for t > 0 at the walls in the second half of the domain, i.e., 0 <
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(a) t = 0 (b) t = 0.07

(c) t = 0.17 (d) t = 0.58

Figure 4-3: Vapor mass distribution at different simulation times corresponding to
an inflow vapor mass fraction Yin = 7 × 10−3 computed at resolution of {64 × 32}.

x < L. The temperature contrast used in this illustration is T1 = 1 and T2 = 0.7.

As a result of this cooling we observe a gradual establishment of a characteristic

temperature profile where during the earlier stages ‘fronts’ of colder temperature

diffuse into the domain and establish a smooth temperature distribution with a rather

sharp gradient in the stream-wise direction around x = 0.

Figure 4-3 shows the evolution of the vapor mass fraction. The gas-vapor mixture

is allowed to flow into a domain that initially does not contain any vapor. The vapor

is seen to penetrate smoothly into the domain, carried by the flow and occupies the

domain. is cooled by the walls as the vapor gradually propagates through the channel.

As the vapor propagates into the colder regions of the channel the saturation builds

up and at some moment small areas of supersaturated vapor emerge. This initiates
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the nucleation of droplets, which subsequently are carried further downstream by the

flow. As a result of condensation of vapor onto the droplets their sizes will change.

This will be considered in the following subsection.

4.3.2 Droplet generation and growth

We focus on the size and temperature distribution of the droplets in the domain and

as they exit at the outflow. In realistic cases a very large number of droplets can

form, which would be impossible to handle with the current algorithm. Therefore, we

selected a case in which nucleation is not quite as strong and considered the generation

of up to 104 droplets. Once this number was reached, no further nucleation was

allowed and this ‘puff’ of droplets was tracked in the domain while their properties

were allowed to evolve. The evolution of droplet properties in such a limited puff

approximates the evolution of a realistic number of droplets since we consider only

rather low concentrations in which flow and dispersed phase are only mildly coupled.

At each time step the probability to generate a droplet in a grid cell of volume

ΔV is computed using (4.54). A droplet with diameter d∗

nuc, given by (4.47), may

then be generated in that cell. The droplet is initialized at a random location within

the grid cell. The initial velocity and temperature of the droplet are taken as the

gas velocity and temperature at the droplet’s location. We adhere to well-resolved

situations in which the probability to actually generate a new droplet in a cell is well

below unity, implying the use of sufficiently small time steps in order to capture the

first stages of nucleation.

After the nucleation, the position, velocity, mass and temperature of the individual

droplets are tracked as a function of time. For this we use (4.60). Results in this

section are based on T ∗

ref = 393 K (120 C) and Yin = 7·10−3. In Table 4.3.2 properties

of DBT vapor are summarized which are used to compute the nucleation rate J∗

N .

Snapshots of droplet locations are shown in Figure 4-4. The majority of the

droplets are formed in the near wall region where cooling leads to the highest super-
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(a) t = 0.58005.
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(b) t = 0.585.
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(c) t = 0.85.
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(d) t = 1.66.

Figure 4-4: Snapshots of droplet locations at different simulation times. The total
number of nucleated droplets is kept up to Ntotal = 104.
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Molecular weight of DBT (M = g mole−1) 278.35

Density of DBT ( g cm−3) ρ∗

l = 1.063 − 0.000826(T ∗ − 273.16)

Surface tension of DBT (J m−2) σ∗ = 0.001(35.3 − 0.0863(T ∗ − 273.15))

Diffusivity of DBT vapor (cm2s−1) D∗ = 0.0398(T ∗/273.16)3/2

Saturation mole fraction Y0 = exp(21.497 − 11497/T ∗)

Mean free path of DBT vapor (cm) λ∗ = 5.04 · 10−4

Table 4.1: Properties of dibutylphthalate (DBT) vapor [40].

saturation. The initial size of newly formed droplets depends on the actual location

where the droplet is generated. Local conditions, such as the saturation ratio Sr,

temperature T ∗ and surface tension σ∗ (Cf. equation (4.47)), influence the initial size

of the generated droplets. The local values are obtained from linear interpolation and

lead to d∗

nuc on the order of O(10−3μm). The nucleated droplets initially have a very

small size and their motion is mainly driven by the Brownian forcing. As a result

a fraction of the generated droplets gets deposited at the walls quite shortly after

nucleation. Droplets that do not get deposited at the walls, gradually increase in size

and become less sensitive to the Brownian forcing. The mean size of the generated

droplets increases as the droplets travel through the channel and vapor condenses on

them. The small droplet size of newly generated droplets implies very small time steps

such that Δt � τv. We adopted Δt = 10−8 in case the Stokes number τv ∼ O(10−7)

corresponding to d∗

nuc ∼ O(10−3μm) and computed from (recalling the definition of

τv):

τv = τ ∗

v /t∗ref =
Ccρ

∗

l (d
∗

i )
2

18μ∗

ct
∗

ref

(4.63)

where μ∗

c = 2.2×10−5 kg/(m ·s) and ρ∗

l = 1.063−0.000826(T ∗−273.16) g cm−3. This

results in Δt/τv ∼ O(10−1). With increasing droplet size the time step was increased

at some restarts during the simulation as well retaining the condition Δt < τv to

ensure a stable solution of the numerical scheme given in (4.60).
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Figure 4-5: Histograms of droplet temperature (left figures) and droplet sizes (right
figures) at different simulation times. The total number of nucleated droplets is
Ntotal = 104.
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Figure 4-6: Evolution of droplet size as a function of time for droplets that exit the
computational domain. This is expressed in terms of percentile p of particle size
distribution for p = 10% (dash-dot), p = 50% (dash) and p = 90% (solid).

The particle temperature and size distributions are characterized in Figure 4-

5. Directly after the first droplets get nucleated (t = 0.58005) the average droplet

temperature is quite close to T2, indicating that the droplets predominantly nucleate

close to the wall at the stream wise location where cooling was applied. At this

moment the nucleated droplet population has sizes close to d∗

nuc. Later in time the

temperature shifts to slightly warmer droplets and their sizes are seen to grow quite

rapidly. In the well-developed regime, e.g., at t = 0.85, the temperature of the

droplets has settled into a skewed temperature distribution, with a large number

of droplets apparently having temperatures quite close to that of the cooling wall.

This is consistent with the physical location of the plume of droplets as was shown

in Figure 4-4. The sizes have developed to the sub-micron range, i.e., in the time

between nucleation and the moment when the first droplets leave the domain the

sizes have grown by a factor of about 200.

A major interest is with the properties of the droplets as these leave the domain.

In Figure 4-6 we show the evolution of the mean particle sizes. We observe that the

first particles leave the domain at the outlet around t ≈ 0.75. Subsequently, the
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droplets that arrive at the outflow are larger on average with a time-dependence that

looks somewhat similar to a square-root dependence. Also the variation in the sizes at

the outflow is seen to grow with time, as is quantified by the 10% and 90% percentile

lines based on simulation results carried out till t = 9. For statistically reliable results

a larger number of droplets in the system needs to be considered which is a subject

for future work.

4.4 Conclusions

In this chapter, we described a new computational approach for simulating aerosol

droplet formation and growth in a supersaturated system of a gas-vapor mixture.

While most treatments of aerosol nucleation and growth via condensation and evap-

oration follow the Euler-Euler approach, we developed a framework based on the

Euler-Lagrange formulation. The nucleation rate which is key in the CNT is adopted

in the Euler-Lagrange framework to generate the probability per unit of time and

volume to generate a critical cluster. This probability is directly linked to the su-

persaturation level of the system through the local vapor mass concentration and

the temperature. This model was presented in a setting of a laminar flow of air and

DBT vapor mixture in a rectangular channel. A supersaturated state of the system

was obtained by rapid cooling of the mixture, and property evolution of the gener-

ated droplets was monitored. While tracking the droplets exiting the computational

domain, under considered conditions a systematic increase of the average droplet di-

ameter from ≈ 0.2μm to ≈ 2.3 μm was observed. Provided improved computational

capabilities in terms of CPU time, this numerical model can be directly extended to

complex geometries, different flow conditions, different temperature and vapor mass

concentration fields to study in details droplet formation and growth for a wide range

of application areas.
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Chapter 5

Conclusions and Recommendations

In this thesis, a computational model was presented for the simulation of aerosol

formation and filtration. The model was formulated in the Euler-Lagrange framework

in which the trajectories, as well as the heat and mass transfer of individual droplets

with their surroundings, were computed time-accurately in velocity, temperature and

species concentration fields that were obtained by applying the immersed boundary

method to flow in complex domains. By computing the aerosol dynamics as it evolves

in a fully resolved background flow field, a detailed understanding of the relevance of

the various processes of nucleation, evaporation, condensation and filtration due to

Stokes drag and Brownian forcing can be achieved. This allows to extract macroscopic

predictions of effective heat and mass transfer as well as effective filtration efficiencies

with which future engineering models can be improved. In this final chapter, we draw

conclusions and give recommendations for further research.

Filtration

The problem of filtration of small droplets as these move through the fluid-filled

part of a complex porous domain can be formulated conveniently in the Euler-

Lagrange framework. In this case the trajectories of individual droplets can be com-

puted accurately, given the flow field of the carrier gas. We restricted ourselves to

rather dilute situations in which the so-called ‘one-way’ coupling approximation may

be adopted [10]. Such situations hold to good approximation for typical situations
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involving the transport of an aerosol such as in the atmospheric boundary layer. For

steady flows the one-way coupling allows to separate the problem of determining the

flow field from the problem of tracking the motion of inertial droplets in that flow

field, which is exactly the approach followed in Chapters 2 and 3.

Filtration in practice often involves the passage of droplets and particles through a

complex domain consisting of the fluid-filled part ‘cut out’ from a solid material. Such

domains can take very complex shapes, e.g, in case the solid consists of fibrous mate-

rial. Due to the inertia of the droplets their trajectories deviate from the streamlines

of the carrier gas. As a result, the droplets may collide with the solid-fluid interface,

which is the basic step in any mechanical filtration. We followed this approach and

treated the filtration of a single droplet in terms of the occurrence of such a collision.

If the trajectory of a droplet intersects with the fluid-solid interface, the droplet is

considered ‘captured’ and taken out of the flow. Such simulations can yield the filtra-

tion efficiency of a given domain at given flow conditions as function of the droplet

size and other parameters. Moreover, the locations at which most of the droplets get

deposited can be extracted from such a simulation, potentially to be used in further

improvement of designs for mechanical filters.

A key complication in the numerical prediction of filtration of droplets is the

potential contamination of the numerically generated trajectories by discretisation

errors. In particular for small droplets, i.e., very low Stokes numbers, the difference

between actual collision with the surface and collision due to numerical errors is

rather small. This could even lead to unphysical filtration of massless particles. For

this reason, we developed in Chapter 2 a new near-wall treatment of the motion

of droplets which is made consistent with the requirement that massless droplets

are certain not to collide with any fluid-solid interface. This treatment was made

consistent with the no-slip condition at the interfaces. It was applied to the case that

the flow field is obtained from a simple low-order immersed boundary method based

on the so-called ‘staircase’ approximation of the fluid-solid interface. With the help

of this approach, the filtration efficiency of a porous medium consisting of a staggered

arrangement of square beams was investigated. It was shown that neglecting the no-
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slip consistency in the near-wall particle treatment can result in an overprediction of

the filtration efficiency by more than 15 % at practical spatial resolutions. Moreover,

the new near-wall treatment was applied to determine the role of droplet inertia in

the filtration and a striking non-uniformity of the filtration efficiency as function of

the droplet size was found. This was interpreted in terms of specific flow patterns

developing within the porous medium and provides a convenient design criterion with

which the specificity of the filter for droplets of certain sizes can be improved.

Application to realistic porous media

In order to predict the overall filtration characteristics of realistic porous media

for a wide range of droplet sizes it is important to also incorporate Brownian forcing

of the motion of the droplets. This forcing is particularly important for small droplets

at high temperatures. In fact, the strength of the Brownian forces is proportional to√
kT/(mU2) where T and U denote typical temperature and velocity scales and k is

Boltzmann’s constant while m denotes the droplet’s mass. In Chapter 3 such a com-

bined model including Stokes drag forcing and Brownian forcing was presented and

analysed. The simulation approach was first adopted to flow in a straight cylindrical

tube and important dependencies on temperature and droplet sizes were assessed.

In particular, Brownian forcing becomes stronger with increasing temperature and

decreasing particle size. The filtration efficiency was found to depend uniformly on

the particle size, increasing with decreasing particle size. This case of Poiseuille flow

served for validation of the computational approach.

The capability of predicting the complete flow, down to the pore scale, that arises

in realistic fibrous porous media was exploited to study the filtration characteristics

of such a filter. At different temperatures and particle sizes the capturing of droplets

onto the solid-fluid interface was simulated and the filtration efficiency recovered.

A classical ‘V-shaped’ filtration curve was observed as function of droplet size with

high likelihood of filtration both for sufficiently small (dominant diffusion) as well as

for sufficiently large (dominant inertial effects) droplets. The droplet sizes for which

filtration is least effective were found to be in the sub-micron range, consistent with
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the typical ranges found in other filters. This builds confidence in the accuracy of

the model and motivates its use in the study and optimisation of mechanical filters.

Particularly, the recovery of information such as where in the domain the dominant

filtration takes place is essential in case filtration characteristics need to be improved

for certain size classes. In the example of the fibrous filter we found considerable

non-uniformity in the deposition of droplets onto the solid with higher concentrations

mainly in the larger pores in the domain.

Aerosol Formation

Filtration of already formed aerosol droplets is an indirect way of controlling some

aspects of the aerosol that eventually emanates from the process. A more direct way

involves control over the conditions at which the aerosol actually forms, in an at-

tempt to determine composition and size of the droplets, which is relevant in various

consumer products from the food and cosmetics industry and in several medical ap-

plications dealing with the respiratory system. This involves a direct coupling of

the fluid flow in a certain domain with processes of nucleation, evaporation and con-

densation. We restricted ourselves to single-species aerosols. Typically, nucleation

is treated on the basis of so-called classical nucleation theory (CNT) which requires

locally a supersaturated vapour state as condition for the nucleation of so-called ‘criti-

cal clusters’, as the first step in the formation of larger droplets. Such critical clusters

arise from statistical fluctuations in a sufficiently dense vapour and are treated as

having a certain size at the very onset. A ‘virgin’ aerosol droplet emerges in CNT

at scales of a few nano-meters, which implies that its dynamics is largely dominated

by Brownian forces. Subsequent growth of the size of such a droplet can arise from

further condensation of vapour molecules onto the droplet, thereby also depleting

the local vapour concentration and ultimately implying a mechanism that will stop

further nucleation and condensation if the local conditions equilibrate.

While most treatments of aerosol nucleation and growth via condensation and

evaporation follow the Euler-Euler framework, we developed a more fundamental

approach based on the Euler-Lagrange formulation. The nucleation rate which is key
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in CNT is adopted in the Euler-Lagrange framework as the probability per unit of

time and volume to generate a critical cluster. This link can be readily implemented in

a computational model in which the local vapour concentration and temperature are

used to determine the degree of supersaturation and correspondingly to evaluate the

nucleation rate J . The number of critical clusters that would be actually generated

per grid cell of volume ΔV and per time step Δt is then given by ξ = JΔV Δt.

Well-resolved simulations imply ξ � 1, which is hence interpreted as the probability

of actually generating such a cluster at a randomly chosen location in the grid cell.

Application to aerosol nucleation, evaporation and condensation

The new Euler-Lagrange model for aerosol formation in a supersaturated vapour

was adopted to flow in a straight cylinder. For that purpose laminar flow was sim-

ulated in a domain into which a vapour flows at sub-critical conditions becoming

supersaturated somewhere downstream as a result of rapid cooling of the cylinder

wall. This canonical setting was simulated in detail, including both Stokes drag forc-

ing and Brownian forcing of the droplets that were actually formed in the domain.

In addition, the droplets were allowed to exchange heat and mass with the surround-

ing, as a result of which the balance between Stokes and Brownian influences changes

with ‘maturity’ of the aerosol droplets. The interplay of these mechanisms results in a

detailed balance expressed in terms of the size distribution of the droplets emanating

from the end of the cylindrical domain. Through simulation we were able to com-

pute the properties of the aerosol at the end of the tube for a prototype situation in

which the temperature drop associated with the cooling was 1 : 0.7. This establishes

the relevance of the Euler-Lagrange framework for aerosol simulations in case fully

resolved conditions are available.

Recommendations

At the end of this thesis, we briefly review main directions into which further

research is required to develop the complete simulation strategy to the level that it

could become relevant to industrial fluid engineering involving aerosol formation and
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filtration. We list some key elements and give motivations for each.

• Improvement of immersed boundary method to second order: the current im-

mersed boundary method adopts the ‘staircase’ approximation for the fluid-solid

interface. While this is acceptable for the prediction of the fluid flow, more

subtle aspects such as heat and mass transfer across the interface can not be

predicted reliably. It is required to improve this aspect so that more accurate

results can be obtained at lower resolutions and, more importantly, that a wider

range of processes, among which conjugate heat and mass transfer, can be dealt

with. A possible route towards this could be the inclusion of sub-grid forcing

or an approximate cut-cell method.

• Parallel processing of Euler-Lagrange model in real geometries: a clear restric-

tion in the current computational model is the fact that parallel processing is

not yet realised. This is a technical improvement that would make it possible to

use larger computational resources to simulate more detailed pore-scale models

and flows.

• Application of simulation for filtration optimisation. The method developed

in Chapters 2 and 3 holds promise toward simulation support for improved

designs of mechanical filters. Specific configurations of fibers were shown to

display characteristic filtration properties. It appears natural to then adopt

this approach and address the ‘inverse’ problem of finding a fiber configuration

with optimal properties with respect to filtration of certain size classes.

• An extensive parameter study should be performed to identify the main pa-

rameters playing a role in the aerosol generation, evolution and filtration. For

example, quantify the dependency of the filtration rate on flow speed, on vapour

mass fraction at the inflow, on the size and inner shape of the filter and on the

temperature cooling rate.
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