
Kamiel Cornelissen

Smoothed analysis of
belief propagation and

minimum-cost �ow algorithms

Algorithms that have good worst-case performance are not always the ones that
perform best in practice. The smoothed analysis framework is a way of analyzing
algorithms that usually matches practical performance of these algorithms much
better than worst-case analysis.

In this thesis we apply smoothed analysis to two classes of algorithms: mini-
mum-cost �ow algorithms and belief propagation algorithms. The minimum-cost
�ow problem is the problem of sending a prescribed amount of �ow through a
network in the cheapest possible way. It is very well known, and over the last half a
century many algorithms have been developed to solve it. We analyze three of
these algorithms (the successive shortest path algorithm, the minimum-mean cycle
canceling algorithm, and the network simplex algorithm) in the framework of
smoothed analysis and show lower and upper bounds on their smoothed
running-times.

The belief propagation algorithm is a message-passing algorithm for solving
probabilistic inference problems. Because of its simplicity, it is very popular in prac-
tice. However, its theoretical behavior is not well understood. To obtain a better
theoretical understanding of the belief propagation algorithm, we apply it to sever-
al well-studied optimization problems. We analyze under which conditions the
belief propagation algorithm converges to the correct solution and we analyze its
smoothed running-time.

CTIT
CTIT Ph.D. Thesis Series No. 16-385 ISSN: 1381-3617 ISBN: 978-90-365-4097-1

Sm
oothed analysis of belief propagation and m

inim
um

-cost �ow
 algorithm

s
Kam

iel Cornelissen

C

M

Y

CM

MY

CY

CMY

K

cover-v2_edit_kamiel.pdf 1 11-4-2016 12:55:13

Smoothed analysis of belief propagation

and minimum-cost flow algorithms

Kamiel Cornelissen

Graduation committee:

Chairman: Prof. dr. P.M.G. Apers Universiteit Twente
Supervisor: Prof. dr. M.J. Uetz Universiteit Twente
Co-supervisor: Dr. B. Manthey Universiteit Twente
Members: Prof. dr. R.J. Boucherie Universiteit Twente

Dr. N. Litvak Universiteit Twente
Prof. dr. H. Röglin Universität Bonn
Dr. T. Vredeveld Maastricht University
Prof. dr. G.J. Woeginger Technische Universiteit Eindhoven

CTIT Ph.D. Thesis Series No. 16-385
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, NL – 7500 AE Enschede

ISSN: 1381-3617 (CTIT Ph.D. Thesis Series No. 16-385)
ISBN 978-90-365-4097-1
DOI: 10.3990/1.9789036540971
http://dx.doi.org/10.3990/1.9789036540971

Typeset with LATEX. Printed by Ipskamp Printing, Enschede, the Netherlands.

Cover design: Jikke Bakker.

Copyright c© 2016, K. Cornelissen, Enschede, the Netherlands.

This research was financially supported by The Netherlands Organisation for
Scientific Research (NWO) grant 613.001.023.

SMOOTHED ANALYSIS OF
BELIEF PROPAGATION AND

MINIMUM-COST FLOW ALGORITHMS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 27 mei 2016 om 16.45 uur

door

Kamiel Cornelissen

geboren op 14 december 1980
te Utrecht, Nederland

Dit proefschrift is goedgekeurd door:
Prof. dr. M.J. Uetz (promotor)
Dr. B. Manthey (copromotor)

Acknowledgments

At the start of a Ph.D. project, you never know where it will take you. Though the
research plan for my project contained several paragraphs on the planned research
for the first two years, the plan for the last two years consisted of only a couple
of lines. Even this concise plan turned out to be too detailed, since some research
directions turned out to be less promising than expected, while other interesting
research opportunities appeared. This thesis is the result of all the research that I
did during the last four years. I look back at my time as a Ph.D. student as a very
enjoyable time, during which I learned many new things. Many people contributed
to this, and I would like to thank them here.

First of all, I would like to thank my supervisors. Marc, thank you for giving
me the opportunity to do research as a Ph.D. student in the DMMP group. Also,
thank you for writing praising recommendation letters for me, which allowed me
to participate in several interesting summer schools. Bodo, thank you for being
my daily supervisor. It was a pleasure to be the first Ph.D. student under your
supervision. Thank you for always having your door open for me and for coming to
look for me when I would not visit you often enough. In addition, I am grateful for
all the writing advice that you gave me to improve the quality of my papers.

While at the University of Twente, I had the pleasure to get to know many col-
leagues from the DMMP, SOR, and ‘floor 3’ groups of applied mathematics. Thank
you all for always being willing to discuss research with me. Also, thank you for the
fun times we had both at work and outside of work. Among others, I really enjoyed
our pub quizzes, escape rooms, movie nights, kart racing afternoons, department
outings, and games and beer nights at the Lunteren conferences. Thank you in par-
ticular to Ruben and Jasper, who were my office mates for most of my stay in the
DMMP group. I always enjoyed our conversations, both concerning work topics and
other topics (mostly games).

During my Ph.D. time I visited the University of Bonn several times. Heiko,
Tobias, Clemens, and Michael, thank you for always making me feel welcome in
Bonn and for the successful cooperation, from which two joint papers resulted.

Next to my scientific work at the University of Twente, I also had the opportunity
to participate in several leisure activities. One of these was playing in the internal
futsal league of the University of Twente. Thank you to all of my teammates of the
three teams that I played for. I had a great time playing with you. First of all,
the Tissue Regeneration team, which I joined when I performed the final project for
my master’s degree in the TR group and of which I was a member from (almost)
the foundation of the team until the eventual disbanding of the team. Second, Pi

vi Acknowledgments

Hard. It was an honor being your number (1 +
√

5)/2. Finally, the Muppets. I have
nice memories of all the times that we beat our opponents with our flawless passing
game.

Besides playing futsal, I was a member of several more sports clubs. I had a great
time and made many friends at these clubs. Thanks to all of you for making my
time enjoyable, both on and off the field. Messed Up, it is nice to see how you have
developed in the, by now, more than ten years after I had the pleasure to be involved
in the foundation of the club. Fake Flamingo’s, after so many years of trying, we
finally got that championship. Thanks to Jikke in particular for taking care of the
design of the cover of my thesis. Ludica, thank you for all the great matches, fun
tournaments, and legendary Tuesday nights.

Over the years that I lived at Carpe Noctem I have seen many housemates come
and go. One thing did not change, however. No matter the people that I lived with,
we always had a good time and we spent many memorable evenings at the house bar.
I fondly remember the Christmas dinners, Sinterklaas celebrations, house weekends,
and all our other activities.

Many thanks go out to my family. Hans, Marjon, Jesse, and Stijn, thank you for
always supporting me and for showing interest in my work, even though for most
of you my research was far outside your expertise area. Jesse and Stijn, thank you
for supporting me during the final hour of my time as a Ph.D. student by being
my paranymphs. Stijn, thank you for the many comments on how to present my
research more clearly. Your background in science communication was very helpful
to me.

Finally, Irina, thank you for always being there for me. I hope that soon you will
not be the only doctor in the house.

Contents

Acknowledgments v

1 Introduction 1
1.1 Smoothed Analysis . 3
1.2 Belief Propagation . 8

1.2.1 BP Applied to Combinatorial Optimization Problems 12
1.2.2 Computation Tree . 14

1.3 Minimum-Cost Flow Problem . 15
1.3.1 Minimum-Cost Flow Algorithms 16
1.3.2 Residual Network . 17

1.4 Other Combinatorial Optimization Problems 18
1.4.1 Maximum-Weight Matching 18
1.4.2 Maximum-Weight Independent Set 19
1.4.3 Minimum Spanning Tree . 20

1.5 Thesis Outline . 20

2 Smoothed Analysis of BP for Matching and Minimum-Cost Flow 23
2.1 Introduction . 23

2.1.1 Previous Results . 23
2.1.2 Our Model . 24
2.1.3 Our Results . 24

2.2 Description of the BP Algorithms . 25
2.2.1 BP for Maximum-Weight Matching 26
2.2.2 BP for Minimum-Cost Flow 27

2.3 Isolation Lemmas for Matching and Minimum-Cost Flow 27
2.3.1 Maximum-Weight Matching 27
2.3.2 Minimum-Cost Flow . 28

2.4 Upper Bound on the Number of Iterations 30
2.4.1 Maximum-Weight Matching 31
2.4.2 Minimum-Cost Flow . 32

2.5 Lower Bound on the Number of Iterations 33
2.5.1 Computation Tree and T -matchings 33
2.5.2 Average-Case Analysis . 34
2.5.3 Smoothed Analysis . 36

viii Contents

2.6 Concluding Remarks . 40

3 BP for Independent Set and Minimum Spanning Tree 43
3.1 BP for Independent Set . 43

3.1.1 Introduction . 43
3.1.2 Graphs for Which BP-MWIS Converges 45
3.1.3 Graphs for Which BP-MWIS Does Not Converge 48

3.2 BP for Minimum Spanning Tree . 51
3.2.1 Introduction . 51
3.2.2 Non-Convergence of BP-MST 53

3.3 Concluding Remarks . 56

4 Smoothed Upper Bounds for Minimum-Cost Flow Algorithms 57
4.1 Our Model . 57
4.2 Successive Shortest Path Algorithm 58

4.2.1 Introduction . 58
4.2.2 Terminology and Notation . 60
4.2.3 Outline of Our Approach . 61
4.2.4 Proof of the Upper Bound . 62
4.2.5 Smoothed Analysis of the Simplex Method 71

4.3 Minimum-Mean Cycle Canceling Algorithm 72
4.3.1 Introduction . 72
4.3.2 Proof of the Upper Bound . 74

5 Smoothed Lower Bounds for Minimum-Cost Flow Algorithms 77
5.1 Successive Shortest Path Algorithm 77

5.1.1 Smoothed Lower Bound . 77
5.1.2 Proof of the Lower Bound . 78

5.2 Minimum-Mean Cycle Canceling Algorithm 85
5.2.1 General Lower Bound . 86
5.2.2 Lower Bound for φ Dependent on n 89

5.3 Network Simplex Algorithm . 93
5.3.1 Introduction . 93
5.3.2 Proof of the Lower Bound . 96

5.4 Comparison of the Upper and Lower Bounds 101

Bibliography 103

Acronyms 109

Samenvatting 111

About the Author 113

CHAPTER 1

Introduction

For many optimization problems, there is a large collection of algorithms that can be
used to solve it. Suppose we have two algorithms A and B for a certain optimization
problem P . Which of the two should we use to solve an instance of problem P? There
can be many reasons to prefer one of the algorithms over the other. For example,
algorithm A could be easier to implement, while algorithm B is more intuitive. One
important aspect is the quality of the solution that an algorithm computes. Does
the algorithm always compute the optimal solution to the optimization problem? If
not, does it still provide a solution of reasonable quality?

Another important aspect is the time it takes an algorithm to compute a solution.
Clearly, a fast algorithm is preferable over a slower algorithm. Usually, the running-
time of an algorithm depends on the specific instance of the problem that is solved.
It might be the case that algorithm A is faster for some instance I1, while algorithm
B is faster for some other instance I2. Still, we would like to compare the speed of
the two algorithms. A traditional way to do so is to perform a worst-case analysis
of the running-time of the two algorithms.

In worst-case analysis of the running-time of an algorithm, we analyze the maxi-
mum time the algorithm requires for instances of a certain fixed size. A nice property
of worst-case analysis is that it provides a guarantee for the maximum running-time
of an algorithm. Given any instance, the size of the instance immediately gives an
upper bound on the time the algorithm requires to solve it. A big disadvantage
of worst-case analysis, however, is that it is often extremely pessimistic. A single
instance for which the algorithm performs badly, can cause a very bad bound on
the running-time. For most instances, the algorithm performs much better than
the worst-case bounds suggest. Typical instances of a problem that are solved in
practice often are very different from the artificial worst-case instances. For this
reason, it would be nice to analyze the running-time of algorithms in a way that bet-
ter matches the typical running-time of the algorithm, as opposed to the worst-case
running-time.

Since we want to analyze the running-time of an algorithm for typical instances,
the question rises what a typical instance of a problem looks like. This seems very
problem-specific and hard to define in general. However, one property that most
instances that are encountered in practice share, is that they are noisy. This noise
can come from many sources. For example, the instruments used for measuring the
data for the instance might be slightly inaccurate, or the computer used to process

2 1. Introduction

the data might have a limited numerical precision. Therefore, if it can be shown
that an algorithm A works well for all instances that are subjected to a little noise,
then A is also likely to work well for instances encountered in practice.

Smoothed analysis is a way of analyzing algorithms that is based on the above
ideas. An imaginary adversary specifies any instance I of the problem. Subsequently,
the instance I is slightly perturbed by adding a small amount of random noise to it
before its running-time is analyzed. The smoothed running-time of an algorithm is
the maximum expected running-time over all possible instances that the adversary
can specify. Note that the adversary can specify some worst-case instance IWC of
the problem. However, the small amount of random noise that is added to IWC is
often enough to dramatically reduce the (expected) running-time of the algorithm.
Many algorithms that have exponential worst-case running-time have polynomial
smoothed running-time. This means that many worst-case instances are fragile and
destroyed by adding a small amount of noise. Often, the smoothed running-time of
an algorithm matches the time that the algorithm requires for instances encountered
in practice much better than the worst-case running-time does.

In this thesis we rigorously analyze the performance of several algorithms. Most
of the analysis is of one of two kinds. First, we analyze the quality of the solutions
computed by the algorithms. We investigate whether an algorithm computes the
optimal solution for all possible instances. If not, we show this by providing a coun-
terexample. In addition, we investigate whether it does compute the optimal solution
for certain classes of instances. Second, we analyze the smoothed running-time of
the algorithms. We do so by proving lower and upper bounds for the smoothed
running-time. The algorithms that we analyze are from two classes of algorithms:
belief propagation (BP) algorithms and minimum-cost flow (MCF) algorithms.

The BP algorithm is a message-passing algorithm that can be used to solve
probabilistic inference problems. Many problems can be modeled as probabilistic
inference problems and BP has applications in lots of domains, such as machine
learning, image processing, error-correcting codes, and statistics. The BP algorithm
has recently enjoyed great popularity, since it is a simple and intuitive algorithm
and often works well in practice. However, not much is known about the theoretical
behavior of the BP algorithm. To get a better understanding of the BP algorithm, we
apply it to well-known optimization problems such as the maximum-weight matching
(MWM) problem, the MCF problem, the maximum-weight independent set (MWIS)
problem, and the minimum spanning tree (MST) problem. Since the BP algorithm
is an iterative algorithm, a natural question to ask is whether it always converges.
If so, does it always converge to the optimal solution? What are lower and upper
bounds for the running-time of the BP algorithm in the setting of smoothed analysis?
In Chapters 2 and 3 we address these questions in a rigorous way.

The MCF problem is a well-known optimization problem, which has been studied
for over half a century. The objective of the MCF problem is to send a certain
amount of flow through a network in the cheapest possible way. Many problems
can be modeled as an MCF problem, such as, for example, problems concerning
transportation and communication networks. Over the last 50 years many algorithms

1.1 Smoothed Analysis 3

have been developed that solve the MCF problem to optimality, and the running-time
of these algorithms has been analyzed extensively. However, something interesting
can be observed if we compare the worst-case running-time of these algorithms to
the time that the algorithms require to solve instances from practice. The minimum-
mean cycle canceling (MMCC) algorithm is strongly polynomial, while the successive
shortest path (SSP) algorithm and the network simplex (NS) algorithm require an
exponential number of iterations in the worst case. In sharp contrast with this, the
SSP algorithm and the NS algorithm completely outperform the MMCC algorithm
in experimental studies [37]. Since worst-case running-time bounds do not seem to
give a good indication for the time required in practice by these MCF algorithms,
we analyze them in the setting of smoothed analysis. In Chapters 4 and 5 we prove
lower and upper bounds for the smoothed running-times of these algorithms.

In the rest of the introduction we introduce smoothed analysis (Section 1.1), the
BP algorithm (Section 1.2), the MCF problem (Section 1.3), and the MWM, MWIS,
and MST problems (Section 1.4) in more detail.

1.1 Smoothed Analysis

In this section we introduce smoothed analysis. Since in this thesis we mainly use the
concept of smoothed analysis to analyze the smoothed running-time of algorithms,
we focus on this aspect in the introduction.

Usually, the time required by an algorithm is measured in the size of the input
instance. Larger instances typically require more computation time. Therefore, it
makes sense to analyze the running-time of an algorithm for instances of some fixed
size. The size of an instance can be, for example, the number n of nodes of the
input graph or the number m of edges of the input graph. The dependence of the
running-time of an algorithm on the size of the instance is often expressed using big
O notation. Big O notation is used to specify how a function scales with the size of
its arguments, omitting constant factors and lower-order terms. For an introduction
to big O notation we refer to Cormen et al. [17].

In this thesis we make the common assumption that elementary operations such
as adding, subtracting, multiplying, dividing, and comparing two numbers can be
performed in one time step, even when the numbers are irrational. The main reason
for having to make an assumption on the time required for performing elementary
operations on irrational numbers is that, as we will see later, smoothed analysis uses
a continuous perturbation model. This implies that with probability 1 the numbers
in the perturbed instance are irrational.

In the above paragraph we mentioned that the running-time of an algorithm
usually depends on the size of the instance, but we have left open how we define the
running-time. It may be the case that the algorithm is much faster for some instance
I1 than for some other instance I2, even though both have the same size. Therefore,
it is not clear how we should link the running-time of an algorithm to the size of
the instances. One choice one can make is to consider the worst possible instance
for the algorithm among all instances of a certain fixed size n. This type of analysis

4 1. Introduction

Figure 1.1: Typical dependence of the running-time of an algorithm on the input
instances. Most worst-case instances are very fragile and their running-time is not a
good indication for the running-time for most other instances.

is called worst-case analysis. In the following, let I be the set of all instances of a
certain problem, and let In be the set of all instances of size n. We denote by TA(I)
the running-time of algorithm A for instance I ∈ I (we usually omit the index A
for simplicity of notation). The worst-case running-time TWC

A (n) of algorithm A for
instances of size n is defined as

TWC(n) = max
I∈In

T (I).

Traditionally, worst-case analysis is the most popular way of analyzing the run-
ning-time of algorithms. An advantage of worst-case analysis is that it gives a
guarantee for the maximum running-time of an algorithm. This guarantee is very
strong if the worst-case running-time is low. However, for many algorithms the
guarantee is extremely pessimistic. In Figure 1.1 we sketch a typical dependence of
the running-time of an algorithm on the input instances. In the horizontal plane
are all the instances of a certain size and along the vertical axis their running-time
is plotted. Two things can be observed. First, for most instances the algorithm
is much faster than the worst-case running-time suggests. Second, the worst-case
instances are very fragile. A small perturbation of a worst-case instance suffices to
dramatically decrease the running-time of the algorithm. For instances encountered
in practice, there is usually no reason to assume that they are worst-case instances.
Also, practical instances are often subject to a small amount of noise caused by,
for example, measurement errors or rounding errors. Therefore, an algorithm is
generally much faster for practical problems than it is in the worst case. Worst-case
analysis is often not suitable to determine the usefulness of an algorithm in practice.

An alternative to worst-case analysis is average-case analysis. The average-case

1.1 Smoothed Analysis 5

running-time TAC
A (n) of algorithm A for instances of size n is defined as

TAC(n) = E
I∼Pn

(T (I)),

where the instance I is drawn at random according to some fixed probability dis-
tribution Pn on the set of instances In. In theory, the distribution Pn can be any
distribution. Usually, simple distributions that are easy to analyze are used, such
as the uniform distribution. Average-case analysis tries to capture how fast an al-
gorithm is on average. An advantage of the average-case running-time over the
worst-case running-time is that it is not completely determined by a small number
of very bad instances. A big problem with average-case analysis, however, is that it
is often not clear what distribution Pn to use to obtain typical instances of a problem
that resemble instances encountered in practice. As an illustration, let us consider
a problem that has a picture as its input. If we would construct an instance of this
problem by assigning each pixel of the picture a color drawn uniformly at random,
we obtain a picture similar to the image on the left in Figure 1.2. Almost everyone
would agree that the result is not a very typical picture. The image on the right in
Figure 1.2 is a much more typical example of a picture. Most pictures encountered in
practice have large groups of neighboring pixels that are colored similarly, while the
pictures generated using the uniform distribution usually lack such large groups. As
another example, consider a problem that has as its input the locations of a number
of cities on a map. If the locations of these cities are drawn uniformly at random,
they are likely to be reasonably well-spread over the map. In contrast, if we consider,
for example, the ten biggest cities in Canada, then we see that they are all located
in the very south of the country.

The reason that average-case instances of a problem usually do not look like
typical instances of the problem encountered in practice is that average-case instances
often have special properties (like the lack of large groups of similarly-colored pixels
in our picture example or the lack of large clusters of cities in our second example)
with high probability. These special properties are often exploited in average-case
analysis, where an algorithm is shown to work well for instances with these special
properties. However, in many cases practical instances do not have these special
properties. Therefore, the average-case running-time is not always a good indication
for the running-time of an algorithm for practical instances.

Smoothed analysis was introduced by Spielman and Teng in 2001 to circumvent
the problems of worst-case and average-case analysis [56]. They used smoothed anal-
ysis to explain the performance of the simplex method [22] for linear programming.
(Their analysis was later improved and simplified by Vershynin [61].) Though the
simplex method takes exponential time in the worst case [34], in practice it is about
as fast as polynomial-time interior-point methods [60] and much faster than the
polynomial-time ellipsoid method [9]. The reason for this is that worst-case linear
programs are contrived and unlikely to occur in practice. In general, the worst-case
running-time of an algorithm does not always provide a good indication for the speed
of the algorithm for practical instances. The smoothed analysis framework is a way
of analyzing algorithms that better matches performance in practice.

6 1. Introduction

Figure 1.2: On the left an image where every pixel has a color drawn uniformly at
random. On the right an image of ‘het Torentje van Drienerlo’ designed by Wim T.
Schippers.

Smoothed analysis is a hybrid of worst-case and average-case analysis and an
alternative to both. In the original model by Spielman and Teng, an adversary spec-
ifies an instance, and this instance is then slightly perturbed at random. In this
way, pathological instances do not dominate the analysis. The assumption that an
instance from practice is subject to some small perturbation is quite natural in many
cases. The perturbation can model, for instance, measurement errors, numerical im-
precision, or rounding errors. It can also model influences that cannot be quantified
exactly, but for which there is no reason to believe that they are adversarial. We
define the smoothed running-time T Sm

A (n) of algorithm A for instances of size n as

T Sm(n) = max
J∈In

E
I∼P (J,σ)

(T (I)).

Here, P (J, σ) is a probability distribution centered around the instance J with stan-
dard deviation σ, where σ is some small number. For example, P (J, σ) could be the
normal distribution with mean J and variance σ2. Note that we have left some of
the details of the above definition vague. These will be clarified in the rest of the
thesis. A potential problem of the above definition is that the instance I obtained
after perturbing J is not a valid instance of the problem anymore. To avoid this, in
most cases where smoothed analysis is applied the structure of the instance is left
intact. Only (a subset of) the numbers in the input is perturbed. For example, in
case an instance consists of a weighted graph G = (V,E), usually the node set V
and the edge set E are left untouched and only the edge weights are perturbed.

The definition of the smoothed running-time mitigates some of the problems
that we observed for worst-case and average-case analysis. The performance of
an algorithm for a worst-case instance often dramatically improves when a little
noise is added to the instance. Though the definition of the smoothed running-
time includes taking the maximum over all instances J , including some worst-case
instance JWC, this instance JWC is first perturbed before analyzing its (expected)
running-time. Therefore, a few worst-case instances do not dominate the analysis of
the smoothed running-time as much as they do for the worst-case running-time. A
worst-case instance is not even necessarily bad in the smoothed setting. In fact, the
instance J for which the expectation in the definition of the smoothed running-time is

1.1 Smoothed Analysis 7

0 1
x

ge(x)

1

0 1
x

ge(x)

φ

0 1
x

ge(x)

φ

x̂

1/φ

Figure 1.3: For the left image φ = 1 and the adversary has no choice but to specify a
uniform density. The middle image shows a valid choice for the density function when
φ is larger than 1. Note that the density is bounded by φ for all x ∈ [0, 1]. The right
image shows a density function that most resembles a worst-case choice. The value of
x is drawn for sure from an interval of width 1/φ around the value x̂.

maximized is often not a worst-case instance. For average-case analysis we remarked
that average-case instances often have some special property with high probability.
If we perturb an instance J from practice that does not have this special property, it
is likely to still not have this special property after perturbation, if the perturbation
is sufficiently small. Therefore, the smoothed running-time is lower-bounded by
the running-time for instances without the special property. This is in contrast to
the average-case running-time. There these instances are barely influential, since
they are vastly outnumbered by the instances with the special property. Good
performance bounds of an algorithm in the smoothed setting usually indicate good
performance for instances encountered in practice, since instances from practice are
usually subject to a certain amount of noise. For this reason, smoothed analysis has
been applied in a variety of contexts since its invention in 2001 [2, 6, 13,21,24,47].

In this thesis, we follow a model of smoothed analysis due to Beier and Vöcking [7]
that is slightly more general than the original model by Spielman and Teng [56]. In
the model by Spielman and Teng, the adversary is allowed to pick any instance and
each input parameter is subsequently perturbed according to a fixed distribution
(the normal distribution). This model is often referred to as the two-step model
of smoothed analysis. In the model by Beier and Vöcking, often referred to as the
one-step model of smoothed analysis, the adversary is even allowed to specify the
probability distribution of the perturbation. The power of the adversary is only
limited by the smoothing parameter φ. The parameter φ determines the maximum
density that the adversary can specify for the density functions that are used to draw
the values of the input parameters. The larger φ, the more power the adversary has.
In many settings it is natural to consider φ a constant. For example, consider an
algorithm that requires as its input numbers that are measured by a device that
typically makes measurement errors in the order of 1%. In this case, a value of
φ = 100 is reasonable.

For concreteness, consider a problem where an instance consists of a graph G =
(V,E) with costs ce ∈ [0, 1] on the edges and the perturbation is only on the edge

8 1. Introduction

costs. In our input model the adversary does not fix the edge costs ce ∈ [0, 1], but
he or she specifies for each edge e a probability density function ge : [0, 1] → [0, φ]
according to which the costs ce of the edge are randomly drawn independently of the
other edge costs. Figure 1.3 shows three valid density functions for the edge costs. If
φ = 1, then the adversary has no choice but to specify a uniform distribution on the
interval [0, 1] for each edge cost. In this case, our analysis becomes an average-case
analysis. On the other hand, if φ becomes large, then the analysis approaches a worst-
case analysis, since the adversary can specify a small interval Ie of width 1/φ (which
contains the worst-case costs) for each edge e from which the costs ce are drawn
uniformly at random. Another option for the adversary is to specify the density
function of a truncated normal distribution with standard deviation σ = O(1/φ),
resembling the original model by Spielman and Teng.

We refer to three recent surveys [38, 39, 57] for a broader picture of smoothed
analysis.

1.2 Belief Propagation

In this section we introduce the belief propagation (BP) algorithm. Since the BP
algorithm works on graphical models, we first introduce graphical models.

We start our introduction of graphical models with an example graphical model.
Suppose we want to model the probability of FC Barcelona winning a football match
(a match is decided by a penalty shoot-out if necessary, so draws are impossible).
We assume that there are two main factors that influence the probability of FC
Barcelona winning their match. First, is their star player Lionel Messi fit to play,
or is he injured? Second, do they play a home match in Camp Nou, or do they play
away? From previous experience we have some prior knowledge on these factors.
FC Barcelona play half of their matches at home and half of their matches away.
Also, Messi is injured 20% of the time. When Messi is playing, FC Barcelona win
90% of their matches, while they only win 75% when he is not playing. Finally, FC
Barcelona win 90% of their home matches and 80% of their away matches. Using the
prior knowledge, we can construct a joint probability distribution for this model. Let
the random variable R with possible states {win, loss} denote the result of the game
for FC Barcelona. Also, let the random variable F with possible states {fit, injured}
denote the fitness of Lionel Messi. Finally, let the random variable L with possible
states {home, away} denote the location where the game is played. We encode the
prior knowledge on the random variables in four functions ψF , ψL, ψF,R, and ψL,R.
We call these functions compatibility functions (even the functions concerning a single
variable). The functions ψF and ψL encode the a priori information about the fitness
of Messi and the location of the match, respectively. The function ψF,R encodes the
compatibility of the various combinations of the fitness of Messi and the result of the
match. The function ψL,R encodes the compatibility of the various combinations of
the location of the match and the result of the match. See Figure 1.4 for the values
of the compatibility functions for all possible values of the corresponding random
variables. The compatibility functions suggest the following factorization of the

1.2 Belief Propagation 9

Fitness Location

Result

ψF fit injured
0.8 0.2

ψL home away
0.5 0.5

ψF,R fit injured
win 0.9 0.75
loss 0.1 0.25

ψL,R home away
win 0.9 0.8
loss 0.1 0.2

Figure 1.4: The graphical model modeling the joint probability distribution of the
result of a FC Barcelona match, the fitness of Messi, and the location of the match.

joint probability distribution P of the random variables F , L, and R

P (F = f, L = `, R = r) =
1

Z
ψF (f)ψL(`)ψF,R(f, r)ψL,R(`, r).

Here Z is a normalization constant, which is used to ensure that P is a valid prob-
ability distribution.

We can also model the dependence of the random variables using a graph. We
call such a model a graphical model. In the graphical model, each node of the graph is
associated with a random variable. Between two nodes there is an edge if and only if
there is a compatibility function relating the corresponding variables. See Figure 1.4
for an illustration of the graphical model for the joint probability distribution P .
Note that there is no edge between the variables corresponding to the fitness of
Messi and the location of the match, since there is no prior knowledge that the two
are dependent. For the graphical model there are many natural questions to ask,
such as: What is the probability that FC Barcelona win their match? What is the
probability that FC Barcelona are playing an away match, given that they lose their
match? What is the most likely combination of values that the random variables
F , L, and R can take? These kind of problems are called probabilistic inference
problems.

Typically, a lot of computation time is required to solve these probabilistic infer-
ence problems. For example, even computing the value of the normalization constant
Z requires summing an exponential number of terms, and it is not clear how to do
this more efficiently. Many probabilistic inference problems are known to be NP-

10 1. Introduction

hard. For this reason, heuristics are often used to approximately solve probabilistic
inference problems. The belief propagation algorithm is such a heuristic. It was
proposed by Pearl in 1988 [45]. Belief propagation is a message-passing algorithm
that is used for solving probabilistic inference problems on graphical models. Re-
cently, BP has experienced great popularity. It has been applied in many fields, such
as machine learning, image processing, computer vision, and statistics. There are
two main reasons for the popularity of BP. First, it is widely applicable and easy
to implement because of its simple and iterative message-passing nature. Second, it
performs well in practice in numerous applications [58,64].

Before we describe the BP algorithm in more detail, we first provide the graphical
model that we consider in the rest of this introduction. Suppose we are given a graph
G = (V,E) with V = {1, 2, . . . , n} and for each u ∈ V an associated random variable
Xu that takes values in a finite set Xu. We define X = X1×X2× . . .×Xn. Consider
the probability distribution

P̂ (x) =
1

Z

(∏
u∈V

ψu(xu)

) ∏
(u,v)∈E

ψuv(xu, xv)

 , x = (xv)v∈V ∈ X . (1.1)

In the above, the ψu and ψuv are non-negative functions and Z is a normalization
constant. The graph G and the probability distribution P̂ together form a graphi-
cal model, in particular a pairwise Markov random field (MRF). Since most of the
problems considered in this thesis can be modeled as problems on pairwise MRFs,
we restrict ourselves to pairwise MRFs in this introduction. This is not a big re-
striction, since other graphical models such as Bayesian networks and factor graphs
can be converted to pairwise MRFs, though sometimes at the cost of introducing
new random variables with possibly large state spaces [65]. Therefore, for BP algo-
rithms defined on Bayesian networks and factor graphs, we can define equivalent BP
algorithms on pairwise MRFs.

There are several variants of the belief propagation algorithm. The two best-
known variants are the sum-product variant and the max-product (sometimes also
called min-sum) variant of belief propagation. The sum-product variant is used to
compute marginal distributions. In this thesis we consider the max-product variant
of BP and at all places where we refer to the BP algorithm we mean the max-product
variant of BP. The max-product variant of BP is used to compute maximum a
posteriori probability (MAP) estimates. A maximum a posteriori probability (MAP)
estimate of a probability distribution P is a most likely realization of the random
variables. That is, the MAP estimate x? of P (X) is defined as

x? ∈ argmaxP (x).

In the following we assume that the MAP estimate is unique. We call the value x?u
that xu takes in the MAP estimate the MAP assignment of u.

Computing the MAP estimate is NP-hard [55] for general probability distribu-
tions. The BP algorithm is a heuristic for computing the MAP estimate on graphical
models. It is a message-passing algorithm on the graph G representing the graphical

1.2 Belief Propagation 11

model. For the probability distribution P̂ (see Equation (1.1)), BP computes the
MAP estimate exactly when the graph G is a tree. In this case, the BP algorithm
is equivalent to dynamic programming and the algorithm terminates after a number
of iterations equal to the diameter of the tree. However, if G contains cycles, BP is
not guaranteed to compute the correct MAP estimate. The reason for this is that
messages sent by a node u can travel along a cycle to end up back at node u. This
causes u to receive back the information in the message that it sent itself, wrongly
increasing its conviction that this information is correct. But, even in the presence
of cycles in the graph G, the BP algorithm is still well-defined and in practice often
gives a good approximation of the MAP estimate.

In short, the BP algorithm works as follows. In each iteration k, each node u
sends a message vector

Mk
u→v =

(
mk
u→v(xv)

)
xv∈Xv

to each node v in its neighborhood N(u) = {v | {u, v} ∈ E} containing a message for
each possible value for Xv. A message mk

u→v(xv) can be interpreted as how “likely”
the sending node u thinks it is that the random variable Xv associated with the
receiving node v should take value xv in the MAP estimate. The greater the value
of the message mk

u→v(xv), the more likely it is according to node u in iteration k
that Xv should take value xv in the MAP estimate. The messages are initialized
neutrally, that is, in iteration 0 the messages are

M0
u→v = (1, 1, . . . , 1), for all u, v ∈ N(u).

In iterations k ≥ 1 the messages are computed from the messages in the previous
iteration as follows:

mk
u→v(xv) = max

xu∈Xu

ψu(xu) · ψuv(xu, xv) ·
∏

w∈N(u)\{v}

mk−1
w→u(xu)

 .

This means that the sending node u determines the likelihood that Xv should take
value xv by computing its own value xu that is most compatible with xv, taking into
account its local information ψu, the function ψu,v describing the compatibility of
values xu and xv, and the messages received from its neighbors other than v. The
message received from v is not used, since the information contained in this message
is already known by v and sending it back to v would cause the information to be
doubly counted.

The belief bku of node u in iteration k is defined as

bku(xu) = ψu(xu) ·
∏

v∈N(u)

mk−1
v→u(xu).

These beliefs can be interpreted as the “likelihood” that Xu should assume value
xu in the MAP estimate. The greater the value of bku(xu), the more likely that Xu

should take value xu in the MAP estimate. Node u computes its belief using its local

12 1. Introduction

information ψu and the messages received from its neighbors. Though the beliefs
indicate the likelihood that a random variable assumes a certain value in the MAP
estimate, they do not have a natural interpretation as a probability distribution. We
denote the best estimate (breaking ties arbitrarily) for the value of Xu in the MAP
estimate during iteration k by xku, that is,

xku = argmax{bku(xu) | xu ∈ Xu}.

The vector (xku)u∈V gives an estimate of the MAP estimate during iteration k. If,
for some k0, we have

(xk1u)u∈V = (xk0u)u∈V , for all k1 ≥ k0,

then BP has converged after k0 iterations. In general there are three possibilities:
BP converges to the MAP estimate, BP converges to an incorrect solution, or BP
does not converge at all. In particular, if the MAP estimate is not unique, then BP
usually does not converge. The reason for this is that a node u for which Xu does
not take the same value in all MAP estimates, does not know what to “believe”.
Typically, the estimate xku for this node switches between multiple values in this
case. Therefore, we assume in this thesis that the MAP estimate is unique.

We conclude our introduction of BP by considering BP applied to several combi-
natorial optimization problems (Section 1.2.1) and by introducing computation trees
(Section 1.2.2), which are a very useful tool to analyze the BP algorithm. For a more
elaborate introduction to BP and several of its applications, we refer to Yedidia et
al. [65] and Mooij [41].

1.2.1 BP Applied to Combinatorial Optimization Problems

As we remarked before, if the graphical model is tree-structured, BP computes exact
MAP estimates. However, if the graphical model contains cycles, then the conver-
gence and correctness of BP have been shown only for specific classes of graphical
models. To improve the general understanding of BP and to gain new insights about
the algorithm, it has recently been tried to rigorously analyze the performance of
BP as either a heuristic or an exact algorithm for several combinatorial optimization
problems. Amongst others, it has been applied to the maximum-weight match-
ing (MWM) problem [3, 5, 50, 51], the minimum spanning tree (MST) problem [4],
the minimum-cost flow (MCF) problem [28], the maximum-weight independent set
(MWIS) problem [52,53], and the 3-coloring problem [16]. In addition, Even and Ha-
labi [25] have applied BP to packing and covering problems, extending and unifying
some results obtained for the MWM and MWIS problems. The reason to consider
BP applied to these combinatorial optimization problems is that these optimization
problems are well understood. This facilitates a rigorous analysis of BP, which is
often difficult for other applications.

Many optimization problems can naturally be modeled as graphical models. Con-
sider, for example, the maximum-weight independent set problem (see also Sec-
tions 1.4.2 and 3.1). For each node u, we define a binary variable Xu. We encode

1.2 Belief Propagation 13

the objective function of the MWIS problem in the single-variable compatibility func-
tions, by setting ψu = ewuxu . In addition, we encode the constraint that two neigh-
boring nodes cannot both be in an independent set in the two-variable compatibility
functions ψu,v by setting ψu,v(1, 1) = 0 and ψu,v(xu, xv) = 1 for all (xu, xv) 6= (1, 1).

Now, the original input graph and the probability distribution P̂ (see Equation 1.1)
together form a graphical model for which the MAP estimate corresponds to the
optimal solution of the original MWIS problem.

Similarly, many optimization problems, including linear programming, can be
modeled as graphical models. Sometimes though, we have to allow continuous state
spaces for the random variables. We refer to Gamarnik et al. [28] for more details.

In the remainder of this section we summarize some results that have been ob-
tained for BP applied to combinatorial optimization problems. In addition, we state
our results which are contained in this thesis. For more details on the BP algorithms
for each of the problems and on the results we refer to Chapters 2 and 3.

Bayati et al. [5] have shown that the BP algorithm correctly computes the
maximum-weight matching (MWM) in bipartite graphs if the MWM is unique. Be-
lief propagation can also be used for finding maximum-weight perfect matchings in
arbitrary graphs and finding maximum-weight perfect b-matchings [3, 51]. In this
case, though, the BP algorithm only converges if the relaxation of the corresponding
linear program has an optimal solution that is unique and integral. In all cases, the
convergence of the BP algorithm takes pseudo-polynomial time and depends linearly
on both the weight of the heaviest edge and 1/δ, where δ is the difference in weight
between the best and second-best matching. In Chapter 2 we analyze the BP algo-
rithm for MWM in the setting of smoothed analysis. We show that the probability
that the BP algorithm needs more than k iterations is upper bounded by O(nmφ/k).
In addition, we show that there exist instances for which the probability that the
BP algorithm needs more than k iterations is lower bounded by Ω(nφ/k).

Gamarnik et al. [28] have shown that BP can be used to find a minimum-cost flow,
provided that the instance has a unique optimal solution. The number of iterations
until convergence is pseudo-polynomial and depends linearly on the reciprocal of
the difference in cost between the best and second-best integer flow. In Chapter 2
we analyze the BP algorithm for MCF in the smoothed setting and show an upper
bound of O(n2mφ/k) for the probability that the BP algorithm for MCF needs more
than k iterations. We also show that there exist instances for which the probability
that the BP algorithm needs more than k iterations is lower bounded by Ω(nφ/k).

Sanghavi et al. [53] have shown that the BP algorithm applied to the maximum-
weight independent set problem does not converge if the LP relaxation of the instance
has a non-integral optimal solution. Also, they have shown that even if the LP
relaxation of the problem has a unique integral optimal solution, the BP algorithm
is not guaranteed to converge. In Chapter 3 we extend this result by characterizing
precisely the graph structures for which the BP algorithm is guaranteed to converge
to the correct solution irrespective of the node weights (as long as the MWIS is
unique). We show that the graphs for which the BP algorithm converges to the
correct solution for all possible node weights are exactly those graphs that contain

14 1. Introduction

at most one even cycle and no odd cycles.

Bayati et al. [4] have shown that if the BP algorithm applied to the minimum
spanning tree problem converges, then it converges to the correct solution. However,
in Chapter 3 we show a small instance for which the BP algorithm does not converge.
In addition, the property of this instance that ensures that the BP algorithm does
not converge is quite general and carries over to many other instances. Therefore,
we believe that the BP algorithm does not converge for most instances of the MST
problem in practice.

1.2.2 Computation Tree

To show several of our results in Chapters 2 and 3, we need the notion of a computa-
tion tree. Computation trees have been used frequently to analyze the BP algorithm,
for example, in the context of the maximum-weight independent set problem [53] and
the maximum weight matching problem [3].

Let G = (V,E) be an arbitrary undirected graph. We denote the level-k com-
putation tree with the root labeled u ∈ V by T k(u). In the following we call the
root of a computation tree the CT-root, to distinguish it from the root of a directed
spanning tree, which we introduce in Chapter 3. The tree T k(u) is a labeled rooted
tree of height k + 1. Like Bayati et al. [4] we denote by [x, u] a node x in the com-
putation tree with label u. In the rest of this thesis we will use the term u-labeled
to denote that a node in the computation tree is labeled with node u ∈ V and the
term S-labeled to denote that a node in the computation tree is labeled with a node
from the subset S ⊂ V . Also, we will refer to an edge between a u-labeled node and
a v-labeled node in the computation tree as a {u, v}-labeled edge.

The CT-root in T 0(u) has label u, its degree is the degree of u in G, and its
children are labeled with the adjacent nodes of u in G. The tree T k+1(u) is obtained
recursively from T k(u) by attaching nodes to every leaf node in T k(u). To each
leaf node [y, v] in T k(u), a number of nodes equal to the degree of v in G minus 1
is attached. These nodes are labeled with the neighbors of v in G except for the
label of the parent of y in T k(u). If the nodes or edges of G are weighted, these
weights are copied to the computation tree. This means that a u-labeled node in
the computation tree has weight w(u) and a {u, v}-labeled edge in the computation
tree has weight w(u, v). Figure 1.5 shows an example of an edge-weighted graph and
computation tree.

The definition of the computation tree is such that each non-leaf node [x, u] in
the computation tree has neighbors with the same labels as the neighbors of u in
G. Also, the messages that the u-labeled CT-root of a level-k computation tree
receives after k iterations of the BP algorithm on the computation tree are exactly
the same as the messages that u receives after k iterations of the BP algorithm on
G. The behavior of the BP algorithm on trees is well understood, in contrast to the
behavior of the BP algorithm on graphs with cycles. Therefore, computation trees
form a useful tool for analysis of the BP algorithm on graphs with cycles.

On a computation tree T = (VT , ET) we can naturally define a probability dis-

1.3 Minimum-Cost Flow Problem 15

u5u1

u4

u2

u3

0

4

2
5

0

1

0

u2

u1 u3 u4

u4 u5 u4 u1 u3

u2 u3 u1 u2 u2 u5 u2

0 1 5

4 2 0 4 0

5 4 5 0 2 1

Figure 1.5: On the left an example edge-weighted graph and on the right the associated
level-2 computation tree T 2(u2) rooted at u2 with the node labels next to the nodes.

tribution PT using the node labels and the functions ψu and ψuv as defined for G
(see Equation (1.1)):

PT (x) =
1

Z

 ∏
[y,u]∈VT

ψu(xy)

 ∏
([y,u],[z,v])∈ET

ψuv(xy, xz)

 , x ∈ XT . (1.2)

In the above, analogously to Equation (1.1), we have VT = {1T , 2T , . . . , nT }, we
associate a random variable Xy with each [y, u] ∈ VT , which takes values in Xy = Xu,
and we define XT = X1T

×X2T
× . . .×XnT

.
It is well-known that if BP converges, then the MAP assignment (given by the

MAP estimate of PT) of all nodes in the computation tree that are sufficiently far
away from the leaves of the tree is according to the assignment that the BP algorithm
converged to (see, for example, the Periodic Assignment Lemma by Weiss [63]).
Nodes that are close to the leaves do not necessarily take the assignment that BP
converged to. (In the above we mean by ‘leaves’ only those leaves of the computation
tree that are in the lowest level of the computation tree, not the nodes in the higher
levels of the computation tree that are leaves only because the nodes that they are
labeled with have degree 1 in the original graph G. For example, the u5-labeled node
at distance 2 from the CT-root in the computation tree in Figure 1.5 is not considered
a leaf, while the u3-labeled node at distance 3 from the CT-root is considered a leaf.)

Theorem 1.2.1 (Weiss [63]). Assume that the BP algorithm converges after k0

iterations. Each node [x, v] in the computation tree T k(u) (k ≥ k0) that is at dis-
tance at most k − k0 from the CT-root of T k(u) has MAP assignment equal to the
assignment that v converged to.

1.3 Minimum-Cost Flow Problem

In this section we introduce the minimum-cost flow (MCF) problem. The MCF
problem consists of finding a cheapest flow that satisfies all capacity and budget
constraints in a flow network. A flow network is a simple directed graph G = (V,E)

16 1. Introduction

together with a capacity function u : E → R+. In principle we allow multiple edges
between a pair of nodes, but for ease of notation we consider simple directed graphs
without directed cycles of length two. In the MCF problem there are an additional
cost function c : E → [0, 1] and a budget function b : V → R indicating how much
of a resource some node v requires (bv < 0) or offers (bv > 0). A feasible b-flow
for such an instance is a function f : E → R+ that obeys the capacity constraints
0 ≤ fe ≤ ue for any edge e ∈ E and Kirchhoff’s law adapted to the node budgets,
i.e.,

bv +
∑

e=(w,v)∈E

fe =
∑

e′=(v,w)∈E

fe′ ,

for all nodes v ∈ V . (Even though b, u, c, and f are functions, we use the notation bv,
ue, ce, and fe instead of b(v), u(e), c(e), and f(e).) If

∑
v∈V bv 6= 0, then there does

not exist a feasible b-flow. We therefore always require
∑
v∈V bv = 0. The costs of a

feasible b-flow are defined as c(f) =
∑
e∈E fe · ce. In the minimum-cost flow problem

the goal is to find the cheapest feasible b-flow, a so-called minimum-cost b-flow, if
one exists, and to output an error otherwise.

Note that finding a perfect minimum-weight matching (see Section 1.4.1) in a
bipartite graph G = (U∪V,E) is a special case of the minimum-cost flow problem [1].
We refer to Ahuja et al [1] for more details about the MCF problem.

1.3.1 Minimum-Cost Flow Algorithms

Flow problems have gained a lot of attention in the second half of the twentieth
century to model, for example, transportation and communication networks [1, 26].
Plenty of algorithms have been developed over the last fifty years. The first pseudo-
polynomial (running-time polynomial in the size of the instance and the numeric
values in the instance, such as, for example, the maximum edge capacity or cost) algo-
rithm for the MCF problem was the Out-of-Kilter algorithm independently proposed
by Minty [40] and by Fulkerson [27]. The simplest pseudo-polynomial algorithms are
the primal Cycle Canceling algorithm by Klein [35] and the dual Successive Short-
est Path (SSP) algorithm by Jewell [32], Iri [31], and Busacker and Gowen [15].
By introducing a scaling technique Edmonds and Karp [23] modified the SSP algo-
rithm to obtain the Capacity Scaling algorithm, which was the first polynomial-time
(running-time polynomial in the size of the instance and polylogarithmic in the nu-
meric values) algorithm for the MCF problem.

The first strongly polynomial (running-time polynomial in the size of the instance
and independent of the numeric values) algorithms were given by Tardos [59] and by
Orlin [42]. Later, Goldberg and Tarjan [29] proposed a pivot rule for the Cycle Can-
celing algorithm to obtain the strongly polynomial Minimum-Mean Cycle Canceling
(MMCC) algorithm. The fastest known strongly polynomial algorithm up to now is
the Enhanced Capacity Scaling algorithm due to Orlin [43] and has a running-time
of O(m log(n)(m+ n log n)), where n and m denote the number of nodes and edges,
respectively. For an extensive overview of MCF algorithms we suggest the paper of

1.3 Minimum-Cost Flow Problem 17

Goldberg and Tarjan [30], the paper of Vygen [62], and the book of Ahuja, Magnanti,
and Orlin [1].

When we compare the performance of MCF algorithms in theory and in practice,
we see that algorithms that have good worst-case bounds on their running-time are
not always the ones that perform best in practice. Zadeh [66] showed that there exist
instances for which both the SSP algorithm and the NS algorithm have exponential
running-time. Conversely, the MMCC algorithm runs in strongly polynomial time,
as shown by Goldberg and Tarjan [29]. In practice however, the relative performance
of these algorithms is completely different. Kovács [37] showed in an experimental
study that the SSP algorithm and the NS algorithm are much faster than the MMCC
algorithm on practical instances. The NS algorithm is even the fastest algorithm of
all. This discrepancy can be explained by observing that the instances for which the
SSP algorithm and the NS algorithm need exponential time are very contrived and
unlikely to occur in practice. To better understand the differences between worst-
case and practical performance for the SSP algorithm, the MMCC algorithm, and
the NS algorithm we analyze these algorithms in the framework of smoothed analysis
in Chapters 4 and 5.

In Chapter 4 we prove upper bounds for the running-time of the algorithms and
in Chapter 5 we prove lower bounds. For the SSP algorithm we show an upper
bound of O(mnφ) for the expected number of augmentation steps that it requires in
the smoothed setting. This polynomial smoothed upper bound is in sharp contrast
to the exponential number of augmentation steps that the SSP algorithm needs in
the worst case. We also show an almost tight lower bound of Ω(m ·min{n, φ} ·φ) for
the number of augmentation steps that the SSP algorithm requires. The smoothed
upper bound for the SSP algorithm is joint work with Tobias Brunsch and Heiko
Röglin from the University of Bonn and appeared before in the PhD thesis by Tobias
Brunsch [10]. The smoothed lower bound is by Clemens Rösner, also from the
University of Bonn, and appeared before in his MSc thesis [49]. We include it here
for the sake of completeness. For the MMCC algorithm we show an upper bound of
O
(
mn(n log(n) + log(φ))

)
on the expected number of iterations that it requires in

the smoothed setting. For dense graphs, this is an improvement over the Θ(m2n)
iterations that the MMCC algorithm needs in the worst case. We also show a
lower bound of Ω

(
m log(φ)

)
for the smoothed number of iterations that the MMCC

algorithm requires. For φ = Ω(n2), we improve our lower bound to Ω(mn). For
the NS algorithm, we show a lower bound of Ω(m ·min{n, φ} · φ) iterations that it
requires in the smoothed setting.

For an introduction to the SSP algorithm, the MMCC algorithm, and the NS
algorithm, we refer to Sections 4.2.1, 4.3.1, and 5.3.1, respectively.

1.3.2 Residual Network

Many MCF algorithms use the concept of a residual network, which we introduce in
this section. For a pair e = (u, v), we denote by e−1 the pair (v, u). Let G be a flow
network, let c be a cost function, and let f be a flow. The residual network Gf is

18 1. Introduction

the directed graph with node set V , arc set E′ = Ef ∪ Eb, where

Ef =
{
e : e ∈ E and fe < ue

}
is the set of so-called forward arcs and

Eb =
{
e−1 : e ∈ E and fe > 0

}
is the set of so-called backward arcs, a capacity function u′ : E′ → R, defined by

u′e =

{
ue − fe if e ∈ E ,
fe−1 if e−1 ∈ E ,

and a cost function c′ : E′ → R, defined by

c′e =

{
ce if e ∈ E ,
−ce−1 if e−1 ∈ E .

The capacity u′e of an arc e in the residual network is also called the residual capacity
of e. To distinguish between edges in the original network and edges in the residual
network, we refer to edges in the original network as ‘edges’ and to edges in the
residual network as ‘arcs’ in this thesis.

We call any flow network G′ a possible residual network (of G) if there is a flow f
for G such that G′ = Gf . Paths and cycles in possible residual networks are called
possible paths and possible cycles, respectively.

1.4 Other Combinatorial Optimization Problems

In this section we introduce the maximum-weight matching problem, the maximum-
weight independent set problem, and the minimum spanning tree problem. These
three problems are among the most well-known and well-studied combinatorial op-
timization problems, and have lots of applications in practice. We keep our intro-
duction of the problems short, focusing mostly on the aspects that we need in the
rest of this thesis. For a more elaborate introduction to all three problems we refer
to Schrijver [54].

1.4.1 Maximum-Weight Matching

In this section we introduce the maximum-weight matching (MWM) problem. Con-
sider an undirected weighted graph G = (V,E) with V = {v1, . . . , vn}, and E ⊆{
{vi, vj} = eij | 1 ≤ i < j ≤ n

}
. Each edge eij has weight wij ∈ R+. A collection of

edges M ⊆ E is called a matching if each node in V is incident to at most one edge
in M . If each node is incident to exactly one edge in M , the matching M is called
a perfect matching. We define the weight of a matching M by

w(M) =
∑
eij∈M

wij .

1.4 Other Combinatorial Optimization Problems 19

The maximum-weight matching M? of G is defined as

M? = argmax{w(M) |M is a matching of G}.
The bipartite maximum-weight matching problem is defined analogously. The

only difference is that for this problem it is required that the graph G is bipartite,
i.e., its node set V can be partitioned in two sets V1 and V2 such that all edges in
its edge set E have exactly one endpoint in V1 and exactly one endpoint in V2.

A b-matching M ⊆ E in an arbitrary graph G = (V,E) is a set of edges such
that every node vi ∈ V is incident to at most bi edges from M , where bi ≥ 0. A
b-matching is called perfect if every node vi ∈ V is incident to exactly bi edges
from M . The weight of a b-matching M is defined analogously to the weight of a
matching.

1.4.2 Maximum-Weight Independent Set

In this section we introduce the maximum-weight independent set (MWIS) problem.
Let G = (V,E) be an undirected weighted graph. An independent set S is a subset
S ⊆ V of nodes such that for every edge {u, v} ∈ E at most one of u and v is in S.
The MWIS problem consists of finding an independent set of maximum weight. A
subset of nodes S? ⊆ V is an MWIS of G if and only if

S? ∈ argmax{w(S) | S is an independent set of G}.
It is straightforward to formulate the MWIS problem as an integer program by

identifying each node u ∈ V with a binary variable xu ∈ {0, 1}. Here xu = 0 can
be interpreted as x not being part of the independent set S, while xu = 1 can be
interpreted as x being part of S. The integer program contains constraints that
prevent two neighboring nodes from both being included in S. The integer program
(IP-MWIS) is as follows

max
∑
u∈V

w(u)xu

s.t. xu + xv ≤ 1 for all {u, v} ∈ E,

xu ∈ {0, 1}.

We obtain the LP relaxation of IP-MWIS by relaxing the constraint that the
variables xu should take an integer value. We denote this LP relaxation by LP-
MWIS.

max
∑
u∈V

w(u)xu

s.t. xu + xv ≤ 1 for all {u, v} ∈ E,

0 ≤ xu ≤ 1.

20 1. Introduction

The independent set polytope is given by all feasible solutions of LP-MWIS. It is well-
known that every extreme point of the independent set polytope has xu ∈ {0, 1

2 , 1}
for all u ∈ V .

1.4.3 Minimum Spanning Tree

In this section we define the minimum spanning tree (MST) problem. Let G = (V,E)
be an undirected graph. A spanning tree T of G is a connected subgraph T = (V, F)
of G, such that each node in V is incident to at least one of the edges in F and T is
a tree. That is, T does not contain any cycles. The MST problem consists of finding
a spanning tree of G of minimum total weight. A tree T ? is an MST of G if and
only if

T ? ∈ argmin{w(T) | T is a spanning tree of G}.

The MST problem can be solved in polynomial time using, for example, one of
the greedy algorithms by Prim and Kruskal (see, for example, Schrijver [54]).

1.5 Thesis Outline

The main content of this thesis can be divided into two parts. In the first part
(Chapters 2 and 3) we analyze the belief propagation algorithm applied to several
combinatorial optimization problems. In the second part (Chapters 4 and 5) we
analyze the running-time of three minimum-cost flow algorithms in the setting of
smoothed analysis.

In Chapter 2 we analyze the BP algorithm applied to the maximum-weight
matching (MWM) and minimum-cost flow (MCF) problems in the setting of smoothed
analysis. Bayati et al. [5] and Gamarnik et al. [28] have shown that the BP algo-
rithm requires a pseudo-polynomial number of iterations in the worst case when
applied to the MWM and MCF problems. We show that for both problems, in the
smoothed setting, the BP algorithm requires only a polynomial number of iterations
with high probability. In addition, we provide lower bound instances that show that
the smoothed number of iterations that the BP algorithm requires is not finite. The
results from this chapter are published as [11].

In Chapter 3 we consider the BP algorithm applied to the maximum-weight
independent set and minimum spanning tree problems. For both problems, we show
that for most instances BP does not work well. For the BP algorithm applied to the
MWIS problem we characterize exactly for which input graphs BP is guaranteed to
work well. We show that BP applied to the MWIS problem converges to the optimal
solution for all possible node weights when the input graph contains no odd cycles
and at most one even cycle. If the input graph contains an odd cycle or at least two
even cycles, there exist weights such that the BP algorithm does not converge to the
optimal solution. For the BP algorithm applied to the MST problem we construct a
simple input graph G for which the BP algorithm does not converge to the optimal
solution. The graph G is a tree plus one additional edge. Since BP is guaranteed

1.5 Thesis Outline 21

to converge to the optimal solution for trees, G is one of the simplest non-trivial
instances. We believe that the properties of G that ensure that the BP algorithm
does not converge to the optimal solution are shared by many other instances, and
that BP does not converge to the optimal solution for most instances of the MST
problem encountered in practice. The results from this chapter appear in [18].

In Chapters 4 and 5 we analyze several MCF algorithms in the setting of smoothed
analysis. We consider the successive shortest path (SSP) algorithm, the minimum-
mean cycle canceling (MMCC) algorithm, and the network simplex (NS) algorithm.
Our results are grouped such that the upper bounds on the smoothed running-time
of these algorithms appear in Chapter 4 and the lower bounds in Chapter 5. For
the SSP algorithm we show that is has polynomial smoothed running-time, in sharp
contrast with its exponential running-time in the worst case. We also show an al-
most tight lower bound on the smoothed running-time of the SSP algorithm. For the
MMCC algorithm we show a smoothed running-time that is an improvement over
the worst-case running-time for dense graphs. In addition, we show lower bounds
for the smoothed running-time of the MMCC algorithm. Finally, we show a lower
bound on the smoothed running-time of the network simplex algorithm. The in-
stance that we use to show our lower bound for the NS algorithm is based on the
instance that we use to show our lower bound for the SSP algorithm. The results in
Chapters 4 and 5 are published as [12] and [19].

Publications underlying this thesis:

[11] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and Heiko Röglin.
Smoothed analysis of belief propagation for minimum-cost flow and matching.
Journal of Graph Algorithms and Applications, 17(6):647–670, 2013. Prelimi-
nary version presented at the 7th International Workshop on Algorithms and
Computation (WALCOM 2013).

[12] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Röglin, and Cle-
mens Rösner. Smoothed analysis of the successive shortest path algorithm.
SIAM Journal on Computing, 44(6):1798–1819, 2015. Preliminary version
presented at the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA
2013).

[18] Kamiel Cornelissen and Bodo Manthey. Belief propagation for the maximum-
weight independent set and minimum spanning tree problems. Submitted,
2015.

[19] Kamiel Cornelissen and Bodo Manthey. Smoothed analysis of the minimum-
mean cycle canceling algorithm and the network simplex algorithm. In Dachuan
Xu, Donglei Du, and Dingzhu Du, editors, Proceedings of the 21st Inter-
national Computing and Combinatorics Conference (COCOON 2015), vol-
ume 9198 of Lecture Notes in Computer Science, pages 701–712. Springer,
2015. Invited to appear in Algorithmica. Full version available at http:

//arxiv.org/abs/1504.08251.

22 1. Introduction

CHAPTER 2

Smoothed Analysis of BP for Matching

and Minimum-Cost Flow

2.1 Introduction

In this chapter we analyze the BP algorithms for computing maximum-weight match-
ings and minimum-cost flows in the setting of smoothed analysis. We prove upper
and lower tail bounds for the number of iterations that the BP algorithms for the
MWM and MCF problems need to converge to the optimal solution in the smoothed
setting.

2.1.1 Previous Results

Bayati et al. [5] have proposed a variant of the BP algorithm for the maximum-
weight matching problem (see Section 1.4.1), which we denote with BP-MWM. We
introduce BP-MWM in short in Section 2.2.1. For a more elaborate introduction we
refer to the original work [5]. Bayati et al. [5] have shown that BP-MWM correctly
computes the maximum-weight matching in bipartite graphs if the MWM is unique.
Convergence of BP-MWM takes pseudo-polynomial time and depends linearly on
both the weight of the heaviest edge and 1/δ, where δ is the difference in weight
between the best and second-best matching.

Belief propagation has also been applied to finding maximum-weight perfect
matchings in arbitrary graphs and to finding maximum-weight b-matchings [3, 51].
For arbitrary graphs, BP-MWM does not necessarily converge [51]. However, Bayati
et al. [3] and Sanghavi et al. [51] have shown that BP-MWM converges to the optimal
matching if the relaxation of the corresponding linear program has an optimal solu-
tion that is unique and integral. The number of iterations needed until convergence
depends again linearly on the reciprocal of the parameter δ. Bayati et al. [3] have
also shown that the same result holds for the problem of finding maximum-weight
b-matchings that do not need to be perfect.

Gamarnik et al. [28] have shown that BP can be used to find a minimum-cost
flow, provided that the instance has a unique optimal solution. We denote their
algorithm by BP-MCF and introduce it in short in Section 2.2.2. The number of
iterations until convergence of BP-MCF is pseudo-polynomial and depends linearly
on the reciprocal of the difference in cost between the best and second-best integer

24 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

flow. In addition, they have proved a discrete isolation lemma [28, Theorem 8.1]
that shows that the edge costs can be slightly randomly perturbed to ensure that,
with a probability of at least 1/2, the perturbed MCF instance has a unique optimal
solution. Using this result, they constructed a fully polynomial-time randomized
approximation scheme (FPRAS) for solving the MCF problem using BP.

2.1.2 Our Model

We refer to Sections 1.4.1 and 1.3 for definitions of the MWM and MCF problems,
respectively. We slightly deviate from the definition of the MCF problem in Sec-
tion 1.3 by requiring the capacities and budgets to be integer. Note that we could
also have allowed rational capacities and budgets. Since the values of the budgets
and capacities do not appear in the bounds that we prove, our results are not affected
by scaling all capacities and budgets by the least common denominator.

The graph and (for MCF) the capacities of the edges and the budgets of the
nodes are adversarial. The costs or weights of the edges are random according to
the one-step model introduced by Beier and Vöcking [8] (see Section 1.1).

We consider the general probabilistic model described below.

• The adversary specifies the graph G = (V,E) and, in the case of minimum-cost
flow, the integer capacities of the edges and the integer budgets (both are not
required to be polynomially bounded). Additionally, the adversary specifies a
probability density function ge : [0, 1]→ [0, φ] for every edge e.

• The costs (for minimum-cost flow) or weights (for matching) of the edges are
then drawn independently according to their respective density functions.

2.1.3 Our Results

We prove upper and lower tail bounds for the number of iterations that BP needs to
solve maximum-weight matching problems and minimum-cost flow problems. Our
upper bounds match our lower bounds up to a small polynomial factor. While
previous bounds on the worst-case running-time for BP-MWM and BP-MCF are
pseudo-polynomial [3,5,28,51], we show that in the framework of smoothed analysis
with high probability BP only requires a polynomial number of iterations to converge
to the correct solution. This suggests that for instances encountered in practice, BP
is unlikely to require a superpolynomial number of iterations. In the following, n and
m are the number of nodes and edges of the input graph, respectively. In summary,
we prove the following results:

• For the minimum-cost flow problem, the probability that BP-MCF needs more
than k iterations to converge to the correct solution is upper bounded by
O(n2mφ/k) (Sections 2.3.2 and 2.4.2). There are smoothed instances for which
the probability that BP-MCF needs more than k iterations is lower bounded
by Ω(nφ/k) (Section 2.5.3).

2.2 Description of the BP Algorithms 25

• For the maximum-weight matching problem, the probability that BP-MWM
needs more than k iterations to converge to the correct solution is upper
bounded by O(nmφ/k) (Sections 2.3.1 and 2.4.1). There are smoothed in-
stances for which the probability that BP-MWM needs more than k iterations
is lower bounded by Ω(nφ/k) (Section 2.5.3).

The upper bound for matching problems holds for the variants of BP for the max-
imum-weight matching problem in bipartite graphs [5] as well as for the maximum-
weight (perfect) b-matching problem in general graphs [3, 51]. For the latter it is
required that the polytope corresponding to the relaxation of the matching LP is
integral.

To prove the upper tail bound for BP-MCF, we use a continuous isolation lemma
that is similar to the discrete isolation lemma by Gamarnik et al. [28, Theorem 8.1].
We need the continuous version since we do not only want to have a unique optimal
solution, but we also need to quantify the gap between the best and the second-best
solutions.

Though our upper tail bounds show that with high probability BP needs only
a polynomial number of iterations, our bounds are not strong enough to yield any
bound on the expected number of iterations. Indeed, using the lower bound of
Ω(nφ/k) for the probability that k iterations are insufficient to find a maximum-
weight matching in bipartite graphs, we show that this expectation is not finite.
The lower bound even holds in the average case, i.e., if φ = 1 (Section 2.5.2), and
it carries over to the variants of BP for the minimum-cost flow problem and the
minimum/maximum-weight (perfect) b-matching problem in general graphs men-
tioned above [3,5,28,51]. The lower bound matches the upper bound up to a factor
of O(m) for matching and up to a factor of O(nm) for minimum-cost flow (Sec-
tion 2.5.3). The smoothed lower bound even holds for complete (i.e., non-adversarial)
bipartite graphs.

Finally, let us remark that, for the minimum-cost flow problem, we bound only
the number of iterations that BP-MCF needs until convergence. The messages might
be super-polynomially long. However, for all matching problems, the length of the
messages is always bounded by a small polynomial.

2.2 Description of the BP Algorithms

In this section we introduce in short the BP algorithm for bipartite maximum-weight
matching (BP-MWM) used by Bayati et al. [5]. We also provide a short description of
the BP algorithm for minimum-cost flow (BP-MCF) by Gamarnik et al. [28]. For the
details of BP-MWM, BP-MCF, and the versions of BP for the (perfect) maximum-
weight b-matching problem, we refer to the original papers [3, 28, 51]. Note that in
order to understand the results and proofs that follow in the rest of this chapter,
it is not necessary to know the details of the BP algorithms. When necessary, we
discuss the differences between the various versions of BP in Sections 2.4 and 2.5.

26 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

2.2.1 BP for Maximum-Weight Matching

The BP-MWM algorithm used by Bayati et al. [5] is an iterative message-pass-
ing algorithm for computing maximum-weight matchings (MWMs). Bayati et al.
define their algorithm for complete bipartite graphs G = (U ∪ V,E) with U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. The weight of edge {ui, vj} is denoted
by wij . With each node ui they associate a random variable Xi that takes values
in the set V of all neighbors of ui. Similarly, with each node vj they associate a
random variable Yj that takes values in the set U of all neighbors of vj . Furthermore,
they introduce compatibility functions ψui

(vj) = ewij , ψvj (ui) = ewij , and pairwise
compatibility functions ψuivj (vp, uq). The pairwise compatibility functions enforce
that the random variables describe a proper matching. They are defined as

ψuivj (vp, uq) =

 0 if p = j and q 6= i,
0 if p 6= j and q = i, and
1 otherwise.

Let the probability distribution PMWM be given by

PMWM(x,y) =
1

Z

(∏
ui∈U

ψui(xi)

) ∏
vj∈V

ψvj (yj)

 ∏
{ui,vj}∈E

ψuivj (xi, yj)

 ,

xi ∈ V, yj ∈ U .

Note that the MAP estimate (see Section 1.2) of probability distribution PMWM

corresponds to the maximum-weight perfect matching on G. The reason for this is
that the pairwise compatibility functions ensure that only matchings have non-zero
probability and the single-variable compatibility functions ensure that the matching
of maximum weight has the greatest probability. Also, PMWM has the same form as
probability distribution P̂ in Equation (1.1). Therefore, the graph G and probability
distribution PMWM together form a pairwise MRF and we can use the BP algorithm
to compute the MAP estimate. Note that the restriction to bipartite graphs is not
necessary to model the MWM problem as a graphical model, but we choose to stay
close to the original model by Bayati et al. [5].

BP-MWM is defined analogously to the general BP algorithm, which we defined
in Section 1.2. In each iteration k, each node ui sends a message vector Mk

i→j to each
of its neighbors vj . The messages can be interpreted as how “likely” the sending node
thinks it is that the receiving node should be matched to a particular node in the
MWM. Similarly, each node vj sends a message vector Mk

i←j to each of its neighbors
ui. At the end of each iteration k, all nodes ui and vj compute their beliefs. These
beliefs can be interpreted as the “likelihood” that a node should be matched to a
particular neighbor. The greater the value of bkui

(j), the more likely it is that node
ui should be matched to node vj . The beliefs can be used to estimate the MWM.

We denote the estimated MWM in iteration k by M̂k. The estimated matching M̂k

matches each node ui to node vj , where j = argmax1≤r≤n{bkui
(r)}. Note that M̂k

does not always define a matching, since multiple nodes may be matched to the same

2.3 Isolation Lemmas for Matching and Minimum-Cost Flow 27

node. However, Bayati et al. [5] have shown that if the MWM is unique, then M̂k

is a matching and equal to the MWM for sufficiently large k.

2.2.2 BP for Minimum-Cost Flow

The BP-MCF algorithm for minimum-cost flow uses the same idea of iterative
message-passing as the BP-MWM algorithm for bipartite matching. However, the
messages sent between edges and their endpoints in the minimum-cost flow version
are piecewise linear convex functions instead of vectors. These functions represent
estimates of the costs of sending a certain amount of flow along the edge, taking into
account the cost of the edge, the capacity of the edge, the fact that flow has to be
conserved at the endpoints of the edge, and the messages received from neighboring
edges in the previous iteration. At the end of each iteration k, each edge e uses its
belief to estimate the optimal amount xke of flow on itself. Though in the first sev-
eral iterations these estimates do not necessarily describe a flow, Gamarnik et al [28]
have shown that after a sufficient number of iterations BP-MCF converges, and the
estimates describe the minimum-cost flow. For a detailed description of BP-MCF
we refer to the original work [28].

2.3 Isolation Lemmas for Matching and Minimum-
Cost Flow

Before we turn to proving the upper tail bounds for the number of iterations of the
BP algorithm in Section 2.4, we take a closer look at the quantity δ, which we defined
above as the difference in weight or cost between the best and second-best matching
or integer flow, respectively. The previous results discussed in Section 2.1.1 indicate
that in order for the BP algorithm to be efficient, δ must not be too small. While δ
can be arbitrarily small for weights or costs that are chosen by an adversary, it is
a well-known phenomenon that δ is with high probability not too small when the
weights or costs are drawn randomly. In this section we show two isolation lemmas,
bounding the probability that δ is small, both for the matching and minimum-cost
flow problem.

2.3.1 Maximum-Weight Matching

Beier and Vöcking [8, Section 2.1] have considered a general scenario in which an arbi-
trary set S ⊆ {0, 1}m of feasible solutions is given and to every x = (x1, . . . , xm) ∈ S
a weight w ·x = w1x1 + . . .+wmxm is assigned by a linear objective function. As in
our model, they assume that every coefficient wi is drawn independently according
to an adversarial density function gi : [0, 1] → [0, φ] and they define δ as the differ-
ence in weight between the best and the second-best feasible solution from S, i.e.,
δ = w · x?−w · x′ where x? = argmaxx∈S w · x and x′ = argmaxx∈S\{x?} w · x. They
prove a strong isolation lemma that, regardless of the adversarial choices of S and

28 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

the density functions gi, the probability of the event δ ≤ ε is bounded from above
by 2εφm for any ε ≥ 0.

If we choose S as the set of incidence vectors of all matchings or (perfect) b-
matchings in a given graph, Beier and Vöcking’s results yield for every ε ≥ 0 an
upper bound on the probability that the difference δ in weight between the best
and second-best matching or the best and second-best (perfect) b-matching is at
most ε. Combined with the results in Section 2.1.1, this can immediately be used
to obtain an upper tail bound on the number of iterations of the BP algorithm for
these problems. We prove this upper tail bound in Section 2.4.1.

2.3.2 Minimum-Cost Flow

The situation for the minimum-cost flow problem is significantly more difficult be-
cause the set S of feasible integer flows cannot naturally be expressed with binary
variables. If one introduces a variable for each edge corresponding to the flow on
that edge, then S ⊆ {0, 1, 2, . . . , umax}m where umax = maxe∈E ue. Röglin and
Vöcking [48] have extended the isolation lemma to the setting of integer, instead of
binary, vectors. However, their result is not strong enough for our purposes as it
bounds the probability of the event δ ≤ ε by εφm(umax+1)2 from above for any ε ≥ 0.
As this bound depends on umax it would only lead to a pseudo-polynomial upper
tail bound on the number of iterations of BP-MCF when combined with the results
of Gamarnik et al. [28]. Our goal is, however, to obtain a polynomial tail bound that
does not depend on the capacities. In the remainder of this section, we prove that
the isolation lemma by Röglin and Vöcking [48] can be significantly strengthened
when structural properties of the minimum-cost flow problem are exploited.

As all capacities and budgets are integers, there is always a minimum-cost flow
that is integral. An additional property of our probabilistic model is that with
probability 1 there do not exist two different integer flows with exactly the same costs.
This follows directly from the fact that all costs are continuous random variables.
Hence, without loss of generality we restrict our presentation in the following to the
situation that the minimum-cost flow is unique.

In fact, Gamarnik et al. [28] have not used δ, the difference in cost between the
best and second-best integer flow, to bound the number of iterations needed for
BP-MCF to find the unique optimal solution of MCF, but they have used another
quantity ∆. They have defined ∆ as the length of the cheapest cycle in the residual
network of the minimum-cost flow f?. Note that ∆ is always non-negative. Other-
wise, we could send one unit of flow along a cheapest cycle. This would result in a
feasible integral flow with lower costs. With the same argument we can argue that ∆
must be at least as large as δ because sending one unit of flow along a cheapest cycle
results in a feasible integral flow different from f? whose costs exceed the costs of f?

by exactly ∆. Hence any lower bound for δ is also a lower bound for ∆ and so it
suffices for our purposes to bound the probability of the event δ ≤ ε from above.

The isolation lemma we prove is based on ideas that Gamarnik et al. [28, Theo-
rem 8.1] have developed to prove that the optimal solution of a minimum-cost flow

2.3 Isolation Lemmas for Matching and Minimum-Cost Flow 29

problem is unique with high probability if the costs are randomly drawn integers
from a sufficiently large set. We provide a continuous counterpart of this lemma,
where we bound the probability that the second-best integer flow is close in cost to
the optimal integer flow.

Lemma 2.3.1. The probability that the costs of the optimal and the second-best
integer flow differ by at most ε ≥ 0 is bounded from above by 2εφm.

Proof. We apply the principle of deferred decisions. Consider any fixed edge e, and
let the costs of all other edges be fixed by an adversary. The cost ce of e is drawn
according to its probability distribution, whose density is bounded by φ.

For e ∈ E, let Eeε be the event that there exist two different integer flows f? and
f ′ with the following properties:

(i) f? is optimal.

(ii) c · f? and c · f ′ differ by at most ε, i.e., c · f ′ ≤ c · f? + ε.

(iii) f?e = 0 and f ′e > 0.

In the above c is the vector of edge costs and f? and f ′ are the vectors corresponding
to the respective flows. Let E

e

ε be analogously defined, except for Condition (iii) being
replaced by f?e = ue and f ′e < ue.

Claim 2.3.2. Let e ∈ E be arbitrary. Assume that all costs except for ce are fixed.
Let I ⊆ [0, 1] be the set of real numbers such that I = {ce | Eeε}. Then I is a subset
of an interval of length at most ε.

Proof. If I 6= ∅, let α = min(I) and let f? be an optimal integer flow for ce = α
with f?e = 0. Due to the choice of α it is clear that I ⊆ [α,∞) We claim that
I ⊆ [α, α + ε]. If ce = α + η for some η > 0, then f? stays optimal, and, for any
feasible integer solution f with fe > 0, we have

c · f =
∑
ê 6=e

cêfê + (α+ η)fe ≥
∑
ê 6=e

cêfê + αfe + η as fe ≥ 1

≥ c · f? + η as f?e = 0 and f? is optimal.

Thus, for η > ε, the event Eeε does not occur.

The proof of the following claim is omitted as it is completely analogous to the
proof of the previous claim.

Claim 2.3.3. Let e ∈ E be arbitrary. Assume that all costs except for ce are fixed.
Let I ⊆ [0, 1] be the set of real numbers such that I = {ce | E

e

ε}. Then I is a subset
of an interval of length at most ε.

The following claim shows that, provided no event Eeε or E
e

ε occurs, the second-
best integer flow is more expensive than the best integer flow by at least an amount
of ε.

30 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

Claim 2.3.4. Assume that for every edge e ∈ E neither Eeε nor E
e

ε occurs. Let f?

be a minimum-cost flow and let f ′ 6= f? be a minimum-cost integer flow that differs
from f?, i.e., a second-best integer flow. Then c · f ′ ≥ c · f? + ε.

Proof. We prove the claim by contradiction. Assume to the contrary that for every
edge e ∈ E neither Eeε nor E

e

ε occurs, but that f? and f ′ differ less than ε in cost.
First, we prove that under our assumption that the minimum-cost flow is unique
some edge e exists such that f?e ∈ {0, ue} and f ′e 6= f?e . Suppose that no such
edge e exists and let d = f? − f ′. Then de > 0 only if f?e < ue (otherwise event
E
e

ε occurs) and de < 0 only if f?e > 0 (otherwise event Eeε occurs). From this, we
can conclude that there exists a λ > 0 such that f? + λd is a feasible flow. Let
λ0 = max{λ | f? + λd is feasible} and f̌ = f? + λ0d. From the assumption that
the minimum-cost flow is unique it follows that c · d = c · f? − c · f ′ < 0. Hence,
c · f̌ < c · f?, contradicting the choice of f? as minimum-cost flow.

This argument shows that there always exists an edge e such that f?e ∈ {0, ue}
and f ′e 6= f?e . As none of the events Eeε and E

e

ε occurs for this edge e, it follows that
c · f ′ ≥ c · f? + ε, contradicting our assumption at the start of the proof that f? and
f ′ differ less than ε in cost.

From Claims 2.3.2 and 2.3.3, we obtain P(Eeε) ≤ εφ and P(E
e

ε) ≤ εφ: We fix all
edge costs except for ce and then Eeε can only occur if ce falls into an interval of
length at most ε. Since the density function of ce is bounded from above by φ, this
happens with a probability of at most εφ. The same holds for any E

e

ε. Since for
Claim 2.3.4 we need that none of the events Eeε and E

e

ε occur, the lemma follows by
a union bound over all 2m events Eeε and E

e

ε.

The isolation lemma (Lemma 2.3.1) together with the discussion about the rela-
tion between δ, the difference in cost between the best and second-best integer flow,
and ∆, the length of the cheapest cycle in the residual network of the minimum-cost
flow f?, immediately imply the following upper bound on the probability that ∆ is
small.

Corollary 2.3.5. For any ε > 0, we have P(∆ ≤ ε) ≤ 2εφm.

2.4 Upper Bound on the Number of Iterations

In this section we prove an upper bound on the probability that BP needs a large
number of iterations to compute maximum-weight matchings and minimum-cost
flows. We show that in the smoothed analysis framework, with high probability a
polynomial number of iterations is sufficient, both for MWM and MCF. This result
can be interpreted as an indication that instances encountered in practice are unlikely
to require a superpolynomial number of iterations.

2.4 Upper Bound on the Number of Iterations 31

2.4.1 Maximum-Weight Matching

We first consider the BP-MWM algorithm of Bayati et al. [5], which computes
maximum-weight matchings in complete bipartite graphs G in O(nw∗/δ) iterations
on all instances with a unique optimum. Here w∗ denotes the weight of the heaviest
edge and δ denotes the difference in weight between the best and the second-best
matching. Even though it is assumed that G is a complete bipartite graph, this is
not strictly necessary. If a non-complete graph is given, missing edges can just be
interpreted as edges of weight 0.

With Beier and Vöcking’s isolation lemma (see Section 2.3.1), we obtain the
following tail bound on the number of iterations needed until convergence when
computing maximum-weight perfect matchings in bipartite graphs using BP-MWM.

Theorem 2.4.1. Let τ be the number of iterations until BP-MWM [5] converges.
Then P(τ ≥ k) = O(nmφ/k).

Proof. The number of iterations until BP-MWM converges is bounded from above
by O(nw∗/δ) [5]. The weight of each edge is at most 1, so w∗ ≤ 1. The upper bound
exceeds k only if δ ≤ O(n/k). By Beier and Vöcking’s isolation lemma, we have
P(δ ≤ O(n/k)) ≤ O(nmφ/k), which yields the bound claimed.

This tail bound is not strong enough to yield any bound on the expected running-
time of BP-MWM. But it is strong enough to show that BP-MWM has smoothed
polynomial running-time with respect to the relaxed definition adapted from average-
case complexity [8], where it is required that the expectation of the running-time to
some power α > 0 is at most linear. However, a bound on the expected number of
iterations is impossible, and the tail bound proved above is tight up to a factor of
O(m) (Section 2.5).

As discussed in Section 2.1.1, BP has also been applied to finding maximum-
weight (perfect) b-matchings in arbitrary graphs [3, 51]. The result is basically that
BP converges to the optimal matching if the optimal solution of the relaxation of
the corresponding linear program is unique and integral. The number of iterations
needed until convergence depends again on “how unique” the optimal solution is.
For Bayati et al.’s variant [3], the number of iterations until convergence depends
on 1/δ, where δ is again the difference in weight between the best and the second-
best matching. For Sanghavi et al.’s variant [51], the number of iterations until
convergence depends on 1/c, where c is the smallest rate by which the objective
value will decrease if we move away from the optimal solution.

However, the technical problem in transferring the upper bound for bipartite
graphs to arbitrary graphs is that the adversary can achieve that, with high prob-
ability or even with a probability of 1 (for larger φ), the optimal solution of the
LP relaxation is not integral. In this case, BP does not converge. Already in the
average-case, i.e., for φ = 1, where the adversary has no power at all, the optimal
solution of the LP relaxation has some fractional variables with high probability.

Still, we can transfer the results for bipartite matching to both algorithms for
arbitrary matching if we restrict the input graphs to be bipartite, since in this case

32 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

the constraint matrix of the associated LP is totally unimodular.

Theorem 2.4.2. Let τ be the number of iterations until Bayati et al.’s [3] or Sang-
havi et al.’s [51] BP for general matching, restricted to bipartite graphs as input,
converges. Then P(τ ≥ k) = O(nmφ/k).

Proof. For Bayati et al.’s BP algorithm, this follows in the same way as Theo-
rem 2.4.1 from their bound on the number of iterations until convergence, which is
O(n/δ) [3, Theorem 1].

Sanghavi et al. prove that their variant of BP for general graphs converges af-
ter O(1/α) iterations, provided that the LP relaxation has no fractional optimal
solutions. Here, α is defined as

α = min
x̂ 6= x? is a vertex of P

w · (x? − x̂)

‖x? − x̂‖1
,

where x? is the (unique) optimal solution to the relaxation and P is the matching
polytope [51, Remark 2].

For any x̂ 6= x?, we have ‖x? − x̂‖1 ≤ n. Furthermore, w · (x? − x̂) is just the
difference in weights between x? and x̂. Since the input graph is bipartite, all vertices
of P are integral. Thus, w · (x? − x̂) ≥ δ, where (again) δ is the difference in weight
between the best and the second-best matching. Thus, α ≥ δ/n, which proves the
theorem.

Bayati et al. [3] and Sanghavi et al. [51] have also shown how to compute b-
matchings with BP. If all bi are even, then the unique optimum to the LP relaxation
is integral. Thus, we circumvent the problem that the optimal solution might be
fractional. Hence, following the same reasoning as above, the probability that BP for
b-matching, where all bi are even, runs for more than k iterations until convergence
is also bounded by O(mnφ/k).

Theorem 2.4.3. Let τ be the number of iterations until Bayati et al.’s [3] or Sang-
havi et al.’s [51] BP for (perfect) b-matching, where all bi are even, converges. Then
P(τ ≥ k) = O(nmφ/k).

Proof. The theorem follows directly from Beier and Vöcking’s isolation lemma and
the bounds on the number of iterations of BP by Bayati et al. [3, Theorems 2 and 3]
and Sanghavi et al. [51, Theorem 3], as in the proof of Theorem 2.4.2.

2.4.2 Minimum-Cost Flow

The bound on the probability that ∆ is small (Corollary 2.3.5) and the pseudo-
polynomial bound by Gamarnik et al. [28] directly yield a tail bound on the number
of iterations that BP-MCF needs until convergence.

Theorem 2.4.4. Let τ be the number of iterations until BP-MCF [28] converges.
Then P(τ ≥ k) = O(n2mφ/k).

2.5 Lower Bound on the Number of Iterations 33

Proof. The number of iterations until BP-MCF converges is bounded from above
by κLn/∆ for some constant κ, where L is the maximum cost of a simple directed
path in the residual network for the optimal flow [28, Theorem 4.1]. The cost of
each edge is at most 1, so L ≤ n. The upper bound exceeds k only if ∆ ≤ κn2/k.
By Corollary 2.3.5, we have P(∆ ≤ κn2/k) ≤ 2κn2mφ/k, which yields the bound
claimed.

2.5 Lower Bound on the Number of Iterations

We show that the expected number of iterations necessary for the convergence of
BP-MWM is unbounded. To do this, we prove a lower bound on the probability
that BP-MWM needs a large number of iterations that matches the upper bound
as described in Section 2.4 up to a small polynomial factor. For our lower bounds
we use bipartite graphs since for non-bipartite graphs the convergence of BP-MWM
is not guaranteed. Our lower bound holds even for a two-by-two complete bipartite
graph with edge weights drawn independently and uniformly from the interval [0, 1].
In the following analysis, we consider the BP variant introduced by Bayati et al [5].
However, our results can be extended to other versions of BP for matching and
minimum-cost flow [3, 28, 51] in a straightforward way. We discuss such extensions
in Section 2.6.

We first discuss the average case, i.e., φ = 1. We consider the average case sepa-
rately since for our lower bounds in the smoothed setting we need that φ is sufficiently
large (φ ≥ 26). For the average case we obtain a lower bound of Ω(n/k) for the prob-
ability that more than k iterations are needed for convergence (Section 2.5.2). For
this lower bound, we use a simple adversarial graph. We leave it as an open prob-
lem whether or not the lower bound also holds for the (non-adversarial) complete
bipartite graph on n nodes. After that, we consider (non-adversarial) complete bi-
partite graphs with smoothed weights and prove a lower bound of Ω(nφ/k) for the
probability that more than k iterations are needed for convergence (Section 2.5.3).
We conclude this section with a discussion of how to extend our results to the other
variants of BP for matching and minimum-cost flow (Section 2.6).

2.5.1 Computation Tree and T -matchings

For proving the lower bounds, we need the notion of a computation tree, which we
defined in Section 1.2.2. We call a collection Λ of edges in the computation tree
T k(x) a T -matching if no two edges of Λ are adjacent in T k(x) and each non-leaf
node of T k(x) is the endpoint of exactly one edge from Λ. Leaves can be the endpoint
of either one or zero edges from Λ. (Here ‘leaves’ are again only those leaves in the
lowest level of the computation tree, see Section 1.2.2.) We define tk(vi; vr) as the
weight of a maximum weight T -matching in T k(vi) that uses the {vi, vr}-labeled
edge at the root.

34 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

u1

u2

v1

v2

w11 ∈
[
7
8
, 1
]

w12 ∈
(
1
2
, 5
8

]
w21 ∈

(
5
8
, 3
4

]

w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11)

Figure 2.1: If event Eε occurs, then the weight of the dashed matching M2 = {e12, e21}
is greater than the weight of the solid matching M1 = {e11, e22} and the weight
difference is at most ε. In addition w11 is greater than w12 and the weight difference
is at least 1

4
.

2.5.2 Average-Case Analysis

Consider the undirected weighted complete bipartite graph K2,2 = (U ∪V,E), where
U = {u1, u2}, V = {v1, v2}, and {ui, vj} ∈ E for 1 ≤ i, j ≤ 2. Each edge {ui, vj} =
eij has weight wij drawn independently and uniformly at random from [0, 1]. We
define the event Eε for 0 < ε ≤ 1

8 as the event that w11 ∈
[

7
8 , 1
]
, w12 ∈

(
1
2 ,

5
8

]
,

w21 ∈
(

5
8 ,

3
4

]
, and w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11). Consider the two

possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eε occurs, then
the weight of M2 is greater than the weight of M1 and the weight difference is at
most ε. In addition, w11 is greater than w12 and the weight difference is at least 1/4.
See Figure 2.1 for a graphical illustration of the graph K2,2 and the event Eε.

Lemma 2.5.1. The probability of event Eε is ε/83.

Proof. The intervals in which w11, w12, and w21 have to assume values in order for
event Eε to occur all have a length of 1/8. The interval in which w22 has to take a
value in order for event Eε to occur, has a length of ε and it is contained completely
in the interval

(
0, 1

2

]
, since

w12 + w21 − w11 − ε >
1

2
+

5

8
− 1− 1

8
= 0

and

w12 + w21 − w11 ≤
5

8
+

3

4
− 7

8
=

1

2
.

Now the probability that w11, w12, w21, and w22 all take values in the intervals
necessary for event Eε to occur is ε/83.

Lemma 2.5.2. If event Eε occurs, then the belief of node u1 of K2,2 at the end of
the 4k-th iteration is incorrect for all integers k ≤ 1

8ε − 1.

2.5 Lower Bound on the Number of Iterations 35

u1

v1

u2

v2

u1

v1

v2

u2

v1

u1

v2

w11

w21

w22

w11

w12

w22

w21

w12

Figure 2.2: The computation tree T 4k(u1).

Proof. Consider the computation tree T 4k(u1) (see Figure 2.2). According to Bay-
ati et al. [5, Lemma 1], the belief of node u1 of K2,2 after 4k iterations is given by the
two-dimensional vector b4ku1

=
(
2t4k(u1; v1) 2t4k(u1; v2)

)
. This means that, after 4k

iterations, the belief of node u1 that it should be matched to v1 is equal to twice
the weight of the maximum-weight T -matching of T 4k(u1) that selects the {u1, v1}-
labeled edge at the root. Analogously, after 4k iterations, the belief of node u1

that it should be matched to v2 is equal to twice the weight of the maximum-
weight T -matching of T 4k(u1) that selects the {u1, v2}-labeled edge at the root. The
maximum-weight T -matching Λ̂ that matches the root node to its v2-labeled child
matches each u1-labeled node to a v2-labeled node and each u − 2-labeled node to
a v1-labeled node, since this is the only possible T -matching that matches the root
node to its v2-labeled child. Define Λ? as the T -matching that matches each u1-
labeled node to a v1-labeled node and each u2-labeled node to a v2-labeled node.
We show that Λ? has larger weight than Λ̂, which implies that the belief at node u1

after 4k iterations is incorrect. We have

w(Λ?)− w(Λ̂) = (2k + 1)w11 + 2kw22 − (2k + 1)w12 − 2kw21

= 2k(w11 + w22 − w12 − w21) + w11 − w12

≥ −2kε+ 1/4.

Now −2kε+ 1/4 is greater than zero if k ≤ 1
8ε − 1.

Theorem 2.5.3. The probability that BP-MWM requires at least k iterations to
converge for K2,2 with edge weights drawn independently and uniformly from [0, 1]
is at least 1

κk for some constant κ > 0.

36 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

Proof. We denote the number of iterations necessary for convergence of BP-MWM
by τ . Using Lemma 2.5.1 and Lemma 2.5.2, we have

P(τ ≥ k) ≥ P(τ ≥ 4dk/4e) ≥ P
(
E 1

8(dk/4e+1)

)
=

1

84(dk/4e+ 1)
≥ 1

κk

for some constant κ > 0.

Corollary 2.5.4. There exist bipartite graphs on n ≥ 4 nodes, where n is a multiple
of 4, with edge weights drawn independently and uniformly from [0, 1], for which
the probability that BP-MWM needs at least k iterations to converge is Ω

(
n
k

)
for

k ≥ n/κ′ for some constant κ′ > 0.

Proof. The bipartite graph G consists of n/4 copies of K2,2 and there are no edges
between nodes in different copies of K2,2. If BP-MWM does not converge in fewer
than k iterations for at least one of the n/4 copies of K2,2, then BP-MWM does not
converge in fewer than k iterations for G. This holds since a run of BP-MWM on
G corresponds to n/4 parallel runs of BP-MWM on the n/4 copies of K2,2. Using
Theorem 2.5.3, we have that a constant κ > 0 exists such that

P(τ < k) =
(
1− P

(
BP-MWM needs at least k iterations to converge for a

particular copy of K2,2

))n/4
≤
(

1− 1

κk

)n/4
≤ exp

(
− n

4κk

)
≤ 1− n

8κk
,

where the second inequality follows from 1 − x ≤ exp(−x) and the final inequality
follows from exp(−x) ≤ 1 − x

2 for x ∈ [0, 1] and from n
4κk ≤ 1 which holds if

k ≥ n
4κ .

2.5.3 Smoothed Analysis

In this section we consider (non-adversarial) complete bipartite graphs Kn,n in the
smoothed setting. We denote by X ∼ U [a, b] that random variable X is uniformly
distributed on interval [a, b]. In the following, we assume both that φ ≥ 26 and n ≥ 2
and even. Similarly to the average case (Section 2.5.2), we define the event Eφε for
K2,2 and for 0 < ε ≤ 1/φ as the event that w11 ∈

[
1 − 1

φ , 1
]
, w12 ∈

(
23
26 ,

23
26 + 1

φ

]
,

w21 ∈
(

23
26 ,

23
26 + 1

φ

]
, and w22 ∈ [w12 +w21 −w11 − ε, w12 +w21 −w11). Consider the

two possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eφε occurs,
then the weight of M2 is greater than the weight of M1 and the weight difference is
at most ε. In addition, w11 is greater than w12 and the weight difference is at least
3
26 − 2

φ .

Lemma 2.5.5. There exist probability distributions on [0, 1] for the weights of the
edges, whose densities are bounded by φ ≥ 26, such that the probability of event Eφε
is at least εφ/4.

2.5 Lower Bound on the Number of Iterations 37

Proof. The intervals in which w11, w12, and w21 have to assume values in order for
event Eφε to occur all have a length of 1

φ . We choose the corresponding probability
distributions such that they have density φ on the corresponding interval and density
0 elsewhere. The interval in which w22 has to assume a value in order for event Eφε to
occur has a length of ε and it is contained completely in the interval

[
20
26− 1

φ ,
20
26 + 3

φ

]
,

since

w12 + w21 − w11 − ε >
23

26
+

23

26
− 1− 1

φ
=

20

26
− 1

φ

and

w12 + w21 − w11 ≤
(

23

26
+

1

φ

)
+

(
23

26
+

1

φ

)
−
(

1− 1

φ

)
=

20

26
+

3

φ
.

We choose the probability distribution for w22 such that it has density φ
4 on the

interval
[

20
26 − 1

φ ,
20
26 + 3

φ

]
and 0 elsewhere. Now the probability that w11, w12, and

w21 take values in the interval necessary for event Eφε to occur is 1. For w22, this
probability is εφ/4. This completes the proof of Lemma 2.5.5.

Lemma 2.5.6. If event Eφε (φ ≥ 26) occurs, then the belief of node u1 at the end of
the 4k-th iteration is incorrect for all integers k ≤ 1

52ε − 1.

Proof. As in Lemma 2.5.2, a maximum-weight T -matching that selects the {u1, v1}-
labeled edge at the root has greater weight than a maximum-weight T -matching that
selects the {u1, v2}-labeled edge at the root for these values of k.

Analogously to the proof of Theorem 2.5.3, Lemmas 2.5.5 and 2.5.6 above im-
mediately yield a lower bound of Ω(φ/k) for the probability that BP-MWM will run
for at least k iterations for K2,2.

Our goal in the remainder of this section is to prove an Ω(nφ/k) lower bound
for the complete bipartite graph. Thus, let us consider the complete bipartite graph
Kn,n = (U ∪ V,E) with U =

{
ujp | p ∈ {1, 2}, j ∈ {1, . . . , n/2}

}
and V =

{
vjq | q ∈

{1, 2}, j ∈ {1, . . . , n/2}
}

. Let Hj denote the subgraph induced by {uj1, uj2, vj1, vj2}
for j ∈ {1, . . . , n/2}. The role of the subgraphs Hj is the same as the role of the
copies of K2,2 in the proof of Corollary 2.5.4. Let ejpq be the edge connecting ujp and

vjq (p, q ∈ {1, 2}, j ∈ {1, . . . , n/2}). The weight of this edge is wjpq. We draw edge
weights according to the probability distributions

wj11 ∼ U
[
1− 1

φ
, 1

]
, wj12 ∼ U

(
23

26
,

23

26
+

1

φ

]
,

wj21 ∼ U
(

23

26
,

23

26
+

1

φ

]
, wj22 ∼ U

[
20

26
− 1

φ
,

20

26
+

3

φ

]
,

wab ∼ U
[
0,

1

φ

]
if ua ∈ Hj and vb ∈ H` with j 6= `.

(2.1)

We call the edges between nodes in the same induced subgraph Hj heavy edges.
Edges between nodes in different subgraphs Hj and H` we call light edges. By

38 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

assumption, we have φ ≥ 26. Thus, the weight of any light edge is at most 1/26,
while every heavy edge weighs at least 19/26.

In contrast to the proof of Corollary 2.5.4, we now have to make sure that light
edges are not used in any computation tree. This allows us to prove the lower bound
in a similar way to that in Theorem 2.5.3 and Corollary 2.5.4.

Lemma 2.5.7. Let Λ? be the maximum-weight T -matching on the computation tree
T k(u). Then Λ? does not contain any light edges.

Proof. Assume to the contrary that Λ? contains a light edge {x, y}. In that case, x
and y are in different subgraphs. The idea of the proof is to construct a path P from
one leaf of the computation tree to another leaf that includes edge {x, y}. Path P
alternately consists of edges that are in Λ? and edges that are not. We show that
a new T -matching of greater weight can be constructed by removing from Λ? the
edges in P ∩ Λ? and adding the edges in P \ Λ?.

We include the {x, y}-labeled edge in P and extend P on both sides. We start
with node z0 = x and node z0 = y, respectively, and construct the corresponding
part of P as follows:

1. for i = 1, 3, 5, . . . do

2. if zi−1 is a leaf node then terminate.

3. Let H` be the subgraph that zi−1 belongs to.

4. Let ei = {zi−1, zi} be the edge incident to zi−1 that belongs to the optimal
matching with respect to H`.

5. Add ei to P .

6. if zi is a leaf node then terminate.

7. Let ei+1 = {zi, zi+1} be the (unique) edge incident to zi that belongs to Λ?.

8. Add ei+1 to P .

It is clear that the procedure can only terminate if it finds a leaf. Moreover, the
constructed sequence is alternating. Now we can show that no node will be visited
twice. Otherwise, there is an index i such that zi−1 = zi+1 since P is a path in
a tree. However, this can not happen since the sequence is alternating. Therefore,
the procedure terminates. Using the previous properties we also obtain that both
paths constructed starting with z0 = x and z0 = y, respectively, are disjoint since
z1 /∈ {x, y} in both cases. Consequently, we obtain one simple path P connecting
two distinct leaf nodes and containing edge {x, y}.

We now show that the weight of the edges in P \ Λ? is strictly larger than the
weight of the edges in P ∩Λ?. For this, let P be of the form P = (p0, . . . , pt), where t
is even and where {p0, p1} ∈ Λ?. Let I ⊆ {1, . . . , t} be the set of indices i for which
{pi−1, pi} is a light edge. Clearly, {pi−1, pi} ∈ Λ? for each i ∈ I by construction
(see Line 4). Since the light edge {x, y} belongs to P we have I 6= ∅. For i ∈ I,
let Pi = (pi−1, pi, pi+1) be the subpath of P of length 2 starting at node pi−1. As
{pi, pi+1} is a heavy edge, wpipi+1

−wpi−1pi ≥
(

20
26 − 1

φ

)
− 1
φ = 20

26 − 2
φ . Therefore, the

2.5 Lower Bound on the Number of Iterations 39

difference in weight between the edge of Pi that belongs to Λ? and the other edge is
significant.

Now remove all paths Pi from P and consider the subpaths of P (connected
components) that remain. There are at most |I| + 1 such subpaths P ′; each has
even length, and they only consist of heavy edges, i.e., all their edges lie in one
subgraph H` where ` depends on P ′. Consider such a subpath P ′ and partition it
into subpaths P̃j of length 4 and, if the length of P ′ is not a multiple of 4, into one

subpath P̂ of length 2. The Λ?-edges of P̃j form the non-optimal matching on H`,
whereas the other two edges form the optimal matching on H`. Hence, the total
weight of P̃j ∩ Λ? is at most the total weight of P̃j \ Λ?. Only for P̂ might we have

the case that the weight of P̂ ∩ Λ? is larger than the weight of P̂ \ Λ?, but since
both edges are heavy, the difference is at most 1 −

(
20
26 − 1

φ

)
= 6

26 + 1
φ . Hence, the

difference between the total weight of P \ Λ? and the total weight of P ∩ Λ? is at
least

|I| ·
(

20

26
− 2

φ

)
− (|I|+ 1) ·

(
6

26
+

1

φ

)
= |I| ·

(
14

26
− 3

φ

)
−
(

6

26
+

1

φ

)
≥ 4

26
> 0,

since |I| ≥ 1 and φ ≥ 26.
We can now construct a T -matching with higher weight than Λ? by removing

the edges in P ∩ Λ? from Λ? and adding the edges in P \ Λ?. This contradicts the
assumption that the maximum weight T -matching includes a light edge and proves
the lemma.

Theorem 2.5.8. There exist probability distributions on [0, 1] for the weights of the
edges, whose densities are bounded by φ ≥ 26, such that the probability that BP-
MWM requires at least k iterations to converge for Kn,n is Ω(nφ/k) for k ≥ nφ/c
for some constant c > 0.

Proof. We choose the probability distributions for the edge weights according to (2.1).
Let ε = 1

52(k′+1) for k′ = 4dk/4e and assume that event Eφε occurs for subgraph Hj .

In this case, the weight of matching M2 = {ej12, e
j
21} is higher than the weight of

matching M1 = {ej11, e
j
22}, but at most by the small amount of ε. Consider the

computation tree T̂ = T 4k′(uj1). As in the proof of Lemma 2.5.2 we know that if the

maximum weight T -matching Λ? on T̂ does not include the ej12-labeled edge at the
root, then BP-MWM has not yet converged within the first 4k′ ≥ k iterations (see
Bayati et al. [5, Lemma 1]).

We show that Λ? does not include the ej12-labeled edge at the root. Assume to
the contrary that it does. We know from Lemma 2.5.7 that Λ? does not contain light
edges. Now we use the same procedure as in Lemma 2.5.7 to create a path P from
one leaf of T̂ to another leaf, such that P contains the ej12-labeled edge at the root

and alternates between edges from Λ? and edges from T̂ \ Λ?. Since T̂ has height
4k′+1 and since uj1 is the root of T̂ , path P contains exactly 8k′+2 edges, 2k′+1 of

which are ej12-labeled, 2k′ + 1 of which are ej11-labeled, 2k′ of which are ej22-labeled,

and 2k′ of which are ej21-labeled. The ej12-labeled and ej21-labeled edges are exactly

40 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

the edges of P ∩Λ?. As in Lemma 2.5.2, the difference of weight between edges from
P \ Λ? and P ∩ Λ? is at least

wj11 − wj12 − 2k′ε ≥
((

1− 1

φ

)
−
(

23

26
+

1

φ

))
− 2k′

52(k′ + 1)

>
3

26
− 2

φ
− 1

26
≥ 0

since φ ≥ 26. This contradicts the fact that Λ? is optimal since removing from Λ?

the edges in P ∩ Λ? and adding the edges in P \ Λ? yields a T -matching of heavier
weight for T̂ .

We have shown that BP-MWM does not converge within the first k iterations if
event Eφε occurs for some subgraph Hj . Since there are n/2 such subgraphs, we find
that the probability that BP-MWM needs at least k iterations to converge for Kn,n

is Ω
(
nφ
k

)
since

P(τ ≤ k) ≤ P
(
Eφε does not occur for any subgraph Hj

)
≤
(

1− εφ

4

)n/2
≤ exp

(
−εnφ

8

)
= exp

(
− nφ

8 · 52 · (4 · dk/4e+ 1)

)
≤ 1− nφ

2 · 8 · 52 · (4 · dk/4e+ 1)

where the second inequality follows from Lemma 2.5.5. The third inequality is due to
the fact that 1−x ≤ exp(−x), whereas the last inequality stems from exp(−x) ≤ 1−x

2

for x ∈ [0, 1]. If x = nφ
8·52·(4·dk/4e+1) is at most 1, which holds for k ≥ nφ

8·52 , then the

correctness follows.

Note that the lower bound on the probability that BP-MWM converges within
k iterations only differs by a factor O(m) from the upper bound as proved in Sec-
tion 2.4.1.

2.6 Concluding Remarks

The lower bounds presented in Sections 2.5.2 and 2.5.3 also hold for other ver-
sions of belief propagation for minimum/maximum-weight (perfect) b-matching and
minimum-cost flow [3, 28, 51] applied to the matching problem on bipartite graphs.
The number of iterations until convergence differs by no more than a constant fac-
tor between these versions of BP. We omit the technical details but provide some
comments on how the proofs need to be adjusted.

Some of the versions of BP consider minimum-weight perfect matching [3] or
minimum-cost flow [28] instead of maximum-weight perfect matching. For these
versions, we obtain the same results if we have edge weights w̃e = 1 − we for all
edges e.

2.6 Concluding Remarks 41

For some versions of BP [28, 51], the root of the computation tree is an edge
rather than a node. If we choose the root of this tree suitably, then we have that the
difference in weight between the two matchings M1 and M2 of at most ε not only
has to “compensate” the weight difference ∆w(e1, e2) between an edge e1 in M1 and
an edge e2 in M2, but the entire weight we of an edge e in M1 or M2. However, the
probability distributions for the edge weights described in Sections 2.5.2 and 2.5.3
are chosen such that ∆w(e1, e2) and we do not differ more than a constant factor.

Note that our lower bounds for the number of iterations until convergence of BP-
MWM in the average case (see Section 2.5.2) do not contradict the results reported
by Salez and Shah [50]. They consider complete bipartite graphs instead of the
adversarial graphs that we use. Roughly speaking, Salez and Shah have proved that
BP for bipartite matching requires only a constant number of iterations. However,
they allow that in expectation a small constant fraction of the nodes are matched to
incorrect nodes. It might even be the case that multiple nodes are matched to the
same node. In our analysis, we require convergence of the BP algorithm, i.e., each
node should be matched to the unique node to which it is matched in the optimal
matching.

Even though the graphs we consider in Section 2.5.2 are different from the graphs
Salez and Shah consider, and even though they consider upper bounds on the number
of iterations of BP required and we consider lower bounds, some of our results are
similar in flavor to their results. Theorem 2.5.3 only provides a constant lower bound
on the number of iterations required to achieve any fixed probability of convergence
of BP for a single K2,2. By linearity of expectation, we only obtain a constant lower
bound on the number of iterations required for convergence of any fixed fraction of
the (independent) copies of K2,2’s in expectation, as in the paper by Salez and Shah.
On the other hand, Corollary 2.5.4 shows that a constant number of iterations is not
sufficient to have convergence for all of the copies of K2,2’s.

42 2. Smoothed Analysis of BP for Matching and Minimum-Cost Flow

CHAPTER 3

BP for Independent Set and Minimum

Spanning Tree

3.1 BP for Independent Set

3.1.1 Introduction

Sanghavi et al. [53] have introduced a variant of BP for the MWIS problem (see
Section 1.4.2), which we denote by BP-MWIS. They have shown that BP-MWIS
does not converge to the correct independent set if the LP relaxation of the problem
has a non-integral optimal solution. Also, they have shown that even if the LP
relaxation of the problem has a unique integral optimal solution, BP-MWIS is not
guaranteed to converge. In this section we characterize precisely the graph structures
for which BP-MWIS is guaranteed to work well. This means that we characterize
the graph structures for which BP-MWIS is guaranteed to converge to the correct
solution irrespective of the node weights, as long as the MWIS is unique. We show
that the graphs for which BP-MWIS converges to the correct solution for all possible
node weights are exactly those graphs that contain at most one even cycle and no
odd cycles. In other words, BP-MWIS is only guaranteed to work well for bipartite
graphs that are trees plus at most one additional edge.

Previous Results

BP-MWIS is a variant of the BP algorithm for the MWIS problem developed by
Sanghavi et al. [53]. For a graph G = (V,E) they associate with each node u ∈ V a
random variable Xu that takes values from the set {0, 1}. A value of ‘0’ for Xu can
be interpreted as u not being part of independent set S, while a value of ‘1’ can be
interpreted as u being part of S. They define ψu(xu) = ew(u)xu , ψuv(xu, xv) = 0 if
xu + xv > 1, and ψuv(xu, xv) = 1 otherwise. Let the probability distribution PIS be
given by

PIS(x) =
1

Z

(∏
u∈V

ψu(xu)

) ∏
(u,v)∈E

ψuv(xu, xv)

 , x ∈ {0, 1}|V |.

44 3. BP for Independent Set and Minimum Spanning Tree

For distribution PIS, only x corresponding to independent sets of G have positive
probability. Since the MAP estimate of PIS corresponds to the MWIS of G, BP
can be used as a heuristic for computing the MWIS of G. BP-MWIS is the BP
algorithm by Sanghavi et al. for the graphical model given by graphG and probability
distribution PIS. In each iteration of BP-MWIS each node sends two messages
mu→v(0) and mu→v(1) to each of the nodes v in its neighborhood N(u). These
messages can be interpreted as the likelihood according to the sending node u that
the receiving node should not be in the MWIS (mu→v(0)) or should be in the MWIS
(mu→v(1)), respectively. Since the exact structure of the messages does not play a
role in our analysis, we will not further specify them and refer to the original paper.
At the end of each iteration each node estimates whether it should be in the MWIS.
We denote the estimate of node u in iteration k by xku ∈ {0, 1, ?}. An estimate of ‘0’
can be interpreted as u believing that it should not be in the MWIS, an estimate of
‘1’ can be interpreted as u believing that it should be in the MWIS, and an estimate
of ‘?’ as u considering it equally likely that it is part of the MWIS or not.

Sanghavi et al. have shown that fixed points of BP-MWIS correspond to vertices
of the polytope P described by LP relaxation LP-MWIS (see Section 1.4.2). The
fixed point that BP-MWIS converges to depends on the initialization of the messages
and does not necessarily correspond to the vertex of P corresponding to the optimal
solution of LP-MWIS. However, if BP-MWIS is started with neutral initial messages
(the setting that we consider here, see Section 1.2), then it converges to the optimal
solution of LP-MWIS, if it converges at all. For more details we refer to the original
work.

In our analysis we use several results by Sanghavi et al. [53] which we list below.

Theorem 3.1.1 (Sanghavi et al. [53]). If LP-MWIS has a non-integral optimal
solution, then BP-MWIS does not converge to the correct solution.

Just like for the original graph G, we can consider maximum-weight independent
sets of a computation tree T k(u) (see Section 1.2.2 for an introduction to computation
trees). The estimates xku of BP-MWIS can be directly related to whether or not the
CT-root of the computation tree T k(u) is part of a MWIS of T k(u).

Theorem 3.1.2 (Sanghavi et al. [53]). For any node u ∈ V and any number of
iterations k we have

• xku = ‘1’ if and only if the CT-root of T k(u) is a member of every MWIS of
T k(u);

• xku = ‘0’ if and only if the CT-root of T k(u) is not a member of any MWIS of
T k(u);

• xku = ‘?’ otherwise.

Our Results

In Sections 3.1.2 and 3.1.3 we characterize the graphs G for which BP-MWIS con-
verges to the correct solution for all possible node weights (assuming that the MWIS

3.1 BP for Independent Set 45

is unique). We show that BP-MWIS is only guaranteed to work well for bipartite
graphs that are trees plus at most one additional edge. In Section 3.1.2 we show
that BP-MWIS converges to the correct solution for all possible node weights for
all G that contain no odd length cycles and at most one even length cycle. In Sec-
tion 3.1.3 we show that if G contains an odd length cycle or at least two even length
cycles, there exist node weights for which BP-MWIS does not converge to the correct
solution.

3.1.2 Graphs for Which BP-MWIS Converges

In this section we show that BP-MWIS converges to the correct solution for all
possible node weights for graphs that contain no odd cycles and at most one even
cycle.

Theorem 3.1.3. Let G = (V,E) be a graph that contains no odd cycle and at most
one even cycle. Then BP-MWIS converges to the correct solution for all possible
node weights w for which the MWIS of G is unique.

Proof. If G is a tree, then after at most n iterations, the computation tree T is equal
to G. Since the MWIS of G is unique, the MWIS of T is unique as well and according
to Theorem 3.1.2 BP-MWIS converges to the correct solution.

Next we consider the case that G contains exactly one even cycle C = (W,F) and
no odd cycles. Let q = |W |. We denote the nodes in C by v0, v1, v2, . . . , vq = v0 such
that {vi, vi+1} ∈ F . Furthermore, we define sets V1, V2, . . . , Vq where Vi consists of
node vi plus all nodes u that are not on the cycle C and for which the shortest path
from u to the cycle ends in vi. We also define weights

w+
i = max{w(B) | vi ∈ B,B ⊂ Vi, B is an independent set of G} and

w−i = max{w(B) | vi /∈ B,B ⊂ Vi, B is an independent set of G}.

We denote by V +
i ⊂ Vi and by V −i ⊂ Vi the subsets for which the weights w+

i and
w−i are obtained, respectively, breaking ties arbitrarily. Using the above definitions,
the problem of finding the MWIS of G can be reduced to finding the independent
set D ⊂W for which ∑

i:vi∈D
w+
i +

∑
i:vi /∈D

w−i is maximized.

We denote the MWIS of G by I. Also, we denote by I ′ an arbitrary second-heaviest
independent set, that is

I ′ ∈ argmax{w(S) | S ⊂ V, S 6= I, S is an independent set of G}.

Since the MWIS of G is unique, there is a strictly positive difference between the
weight of I and the weight of I ′. We define δ = w(I) − w(I ′) > 0. We denote the
weight of the heaviest node of G by w∗.

46 3. BP for Independent Set and Minimum Spanning Tree

Let T = (VT , ET) be a computation tree for G and let R ⊂ VT be a subset of
W -labeled nodes of the computation tree. In the following we denote by M [R] the
subgraph of T that is induced by R plus all nodes u in T that are not W -labeled
and for which a path from u to some v ∈ R exists for which all nodes except for v
are not W -labeled.

Note that from the above definitions we immediately obtain

w+
i ≤ w−i + w∗, (3.1)

since B = V +
i \ {vi} is an independent set of G, B ⊂ Vi, and vi /∈ B. Also, we have

w+
i ≥ w−i if vi ∈ I, (3.2)

because otherwise, we can improve I by removing the nodes in V +
i and then adding

the nodes in V −i .
We first show that BP-MWIS converges to the correct solution for nodes v ∈

W ∩ I. Assume to the contrary that BP-MWIS does not converge to the correct
solution for v. We define k∗ = n(nw

∗

δ). Then, according to Theorem 3.1.2 there
exists a k > k∗ + 3n such that the CT-root of the computation tree T = T k(v) is
not a part of every MWIS of T . Let J be an MWIS of T that does not include
the CT-root. We now define sets S+ and S− on T recursively. We start by adding
the CT-root to S+. Each time we add a node to S+, we add to S− each of its
neighbors in the computation tree that is W -labeled, in J , and at distance at most
k∗+2n+1 from the CT-root. Each time we add a node to S−, we add to S+ each of
its neighbors in the computation tree that is W -labeled, I-labeled, and at distance
at most k∗ + 2n from the CT-root.

Note that the nodes in S+ ∪ S− induce a path P that starts at a vi-labeled
node, continues to a vi+1-labeled node, etc., and ends in a vj-labeled node. We
can partition this path into shorter paths, such that p parts P1, . . . , Pp are equal to
(vi, vi+1, . . . , vi−1), that is, every P` is equal to cycle C with edge {vi−1, vi} removed.
In addition, the partition consists of at most one part P ∗ of length less than |W |
which is equal to (vi, vi+1, . . . , vj).

Next we show that we can construct an independent set J̃ on T of weight greater
than w(J) as follows. We set J̃ = J . For each node [u, vi] in S+ we first remove from
J̃ all nodes in M [{u}], then add to J̃ all V +

i -labeled nodes in M [{u}]. In addition,
for each node [u, vi] in S− we first remove from J̃ all nodes in M [{u}], then add to J̃
all V −i -labeled nodes in M [{u}]. Note that J̃ is again an independent set on T , since
the W -labeled neighbors of each node [u, vi] ∈ S+ are either in S− and therefore
not in J̃ , or they are not in J (otherwise they would have been added to S−) and
therefore not in J̃ either.

Now we consider one path P` and the graph M` = (VM`
, EM`

) = M [P`]. Note
that M` is a copy of G, except for the missing edge {vi−1, vi}. The set of labels of
the nodes in VM`

∩ J̃ is exactly equal to I. Also, the set of labels of the nodes in

VM`
∩ J is equal to some other independent set Î of G. Since I is at least δ heavier

then any other independent set of G, we have that

3.1 BP for Independent Set 47

w(VM`
∩ J̃) ≥ w(VM`

∩ J) + δ. (3.3)

In the following we denote by M∗ = (VM∗ , EM∗) = M [P ∗]. We now distinguish
two cases.

Case 1: |P | > k∗ + n. Since |P | > k∗ + n, we have p ≥ k∗/n + 1. By Equa-
tion (3.3), we have w(VM`

∩J̃) ≥ w(VM`
∩J)+δ for all `. By Equations (3.1) and (3.2)

we have w(VM∗ ∩ J) ≤ w(VM∗ ∩ J̃) + (n − 1)w∗. Combining these two inequalities
yields

w(J̃)− w(J) ≥ pδ − (n− 1)w∗ > 0.

Since J̃ is heavier than J , our assumption that BP-MWIS does not converge to
the correct solution for node v, graph G, and weights w was incorrect.

Case 2: |P | ≤ k∗ + n. Let [x, vi] and [y, vj] be the endpoints of P . Suppose
x ∈ S+. Since x ∈ S+, we have vi ∈ I by definition and therefore vi−1 /∈ I. Suppose
now x ∈ S−. Since the vi−1-labeled neighbor u of x was not added to S+, u cannot
be I-labeled by definition, so vi−1 /∈ I. Similarly, the vj+1-labeled neighbor of y
that is not in P cannot be I-labeled, so vj+1 /∈ I. Consider now P ∗. Suppose that

J ∩ VM∗ is at least as heavy as J̃ ∩ VM∗ . Since neither vi−1 nor vj+1 is in I, we can

define a new independent set Ĩ of G of weight at least w(I). We set Ĩ = I. Next, we
remove from Ĩ all nodes in the sets Vi for which vi is used to label one of the nodes
in P ∗. By doing so, w(Ĩ) decreases by w(J̃ ∩ VM∗). Then we add to Ĩ all nodes
that are used to label one of the nodes in J ∩ VM∗ . By doing so, w(Ĩ) increases
by w(J ∩ VM∗). Since the nodes in J ∩ VM∗ are at least as heavy as the nodes in
J̃ ∩ VM∗ , we have that Ĩ is at least as heavy as I. This contradicts the fact that I is
the unique MWIS of G. Therefore, our assumption that J ∩VM∗ is at least as heavy
as J̃ ∩ VM∗ was wrong. Since also J̃ ∪ VM`

is heavier than J ∪ VM`
for all `, we have

that J̃ is heavier than J .
Since J̃ is heavier than J , our assumption that BP-MWIS does not converge to

the correct solution for node v, graph G, and weights w was incorrect.

We have shown convergence of BP-MWIS to the correct solution for nodes
v ∈ W ∩ I. Next we consider nodes v ∈ W\I. The proof that BP-MWIS converges
to the correct solution for these nodes is very similar to the proof for nodes that are
in I. Assume that BP-MWIS does not converge to the correct solution for v. Then,
according to Theorem 3.1.2, there exists a k > k∗+ 3n such that the CT-root of the
computation tree T = T k(v) is part of some MWIS J on T . We now define sets S+

and S− analogously to the proof for v ∈ I and start the recursive definition of these
sets by including the CT-root in S−. We can then show that J is not an MWIS of
T , so the assumption that BP-MWIS does not converge to the correct solution for
v ∈W, v /∈ I was wrong. We omit the rest of the proof, since it is very similar to the
proof for v ∈ I.

48 3. BP for Independent Set and Minimum Spanning Tree

Finally, we show that BP-MWIS converges to the correct solution for nodes
v /∈ W . Assume w.l.o.g. that v ∈ V1 and let d be the length of the shortest path
from v to v1 in G. Note that T = T k+d(v) is exactly the same as T̂ = T k(v1) for
k ≥ n (except that the CT-root is different). Since these two computation trees are
the same, also the MWISs on these trees are the same. We denote the v1-labeled
node that is closest to the CT-root in T by u. Since u corresponds to the CT-root of
T̂ , v1 ∈W , and BP-MWIS converges to the correct solution for nodes in W , node u
is in every MWIS of T if v1 ∈ I and it is in no MWIS of T if v1 /∈ I. Let M = M [{u}].
We now consider the case where u is in every MWIS of T . In computation tree T , all
nodes in M \ {u} are only connected to other nodes in M . Therefore, every MWIS
J on T with u ∈ J includes each [x, y] ∈ M if and only if y ∈ V +

1 . If y ∈ V +
1 and

v1 ∈ I, then also y ∈ I. On the other hand, if y /∈ V +
1 and v1 ∈ I, then also y /∈ I.

This holds in particular for the CT-root. It will be in every MWIS of T if v ∈ I and
in no MWIS of T if v /∈ I. The case that u is in no MWIS of T is similar and we
therefore omit the proof.

3.1.3 Graphs for Which BP-MWIS Does Not Converge

In Section 3.1.2 we have shown that BP-MWIS converges to the correct solution for
all possible node weights for graphs with at most one even cycle and no odd cycles. In
this section we show that these are the only graphs for which BP-MWIS converges to
the correct solution for all possible node weights. First we show that there exist node
weights such that BP-MWIS does not converge to the correct solution for graphs
that contain an odd cycle and then we show that there exist node weights such that
BP-MWIS does not converge to the correct solution for graphs that contain two or
more even cycles.

In our proofs we use the concept of heavy nodes and light nodes. We denote the
set of heavy nodes by H and the set of light nodes by L. The heavy nodes all have
weight at least 1. We do not specify the exact weights of the light nodes, but they
all have weight from the interval]0, 1/9n2[such that the weights of all subsets of L
are different, that is, w(S) = w(T) ⇒ S = T for all S, T ⊂ L. We choose the node
weights like this to ensure that the MWIS is unique.

First we consider graphs with at least one odd cycle. For these graphs our result
follows directly from Theorem 3.1.1 and the fact that for graphs with an odd cycle
we can choose node weights such that LP-MWIS does not have an integral optimal
solution.

Theorem 3.1.4. Let G = (V,E) be a graph that contains at least one odd cycle
C = (W,F). Then there exist weights for the nodes such that the MWIS of G is
unique, but BP-MWIS does not converge to the correct solution.

Proof. Let q = |W |. We denote the nodes in C by v0, v1, v2, . . . , vq = v0 such
that {vi, vi+1} ∈ F . We choose the node weights such that the nodes in S =
{v1, v3, v5, . . . , vk−4, vq−2} have weight 1 + 1/(2n), the nodes in W \ S have weight

3.1 BP for Independent Set 49

1, and all nodes in V \W are light nodes. We show that the optimal solution of
LP-MWIS is non-integral.

The MWIS of G consists of the nodes in S plus some light nodes. This is because
we can include at most (q − 1)/2 nodes from W and including a node from W \ S
instead of a node in S costs us 1/(2n), while we can gain at most (n− q)(1/(9n2)) <
1/(9n) by including more of the light nodes. The weight of the MWIS of G is
therefore bounded by ((q − 1)/2)(1 + 1/(2n)) + (n − q)(1/(9n2)) < q/2. By our
assumption on the weights of the light nodes, the MWIS is unique.

Let x be the solution of LP-MWIS with xi = 0 if i /∈ W and xi = 1/2 if i ∈ W .
The objective value for x is clearly greater than q/2. This shows that LP-MWIS
cannot have an integral optimal solution and according to Theorem 3.1.1 BP-MWIS
does not converge to the correct solution.

Next we consider graphs with at least two even cycles.

Theorem 3.1.5. Let G = (V,E) be a graph that contains at least two even cycles
C1 = (W1, F1) and C2 = (W2, F2). There exist node weights such that the MWIS of
G is unique, but BP-MWIS does not converge to the correct solution.

Proof. If G contains an odd cycle, then the theorem follows from Theorem 3.1.4.
We therefore assume in the following that G is bipartite. We now define a set X
of nodes and a set Y of edges as follows. If C1 and C2 have at least one node in
common, we define X = W1 ∪W2 and Y = F1 ∪ F2. If C1 and C2 have no nodes in
common, let P = (WP , FP) be an arbitrary path from W1 to W2. In this case we
define X = W1 ∪W2 ∪WP and Y = F1 ∪ F2 ∪ FP . Note that all nodes in X have
degree at least 2 in the graph M = (X,Y), since either they are on one of the two
cycles, or they are a non-leaf node of the path P .

Since M is a connected bipartite graph, we can uniquely partition the nodes in
X into two sets X1 and X2 such that there are no edges {x1, x2} in Y between a
node x1 ∈ X1 and an node x2 ∈ X2. We now distinguish two cases.

Case 1: |X1| 6= |X2|. Assume w.l.o.g. that |X1| > |X2|. We define weights w̃
for the nodes in X as follows. Each node x1 ∈ X1 has weight w̃(x1) = 1 and each
node x2 ∈ X2 has weight w̃(x2) = 1 + 1/(2n). Let S ⊂ X be an arbitrary MWIS
of M . Since G is bipartite, S is an independent set of G as well. We now define
weights w on the nodes V of G as follows. All nodes in V \X are light nodes. Each
node x ∈ S has weight w(x) = w̃(x) + 1/(4n). Finally, each node x ∈ X \ S has
weight w(x) = w̃(x). By choosing the weights w like this, we ensure that the MWIS
J of G is unique and consists of the nodes in S plus the heaviest subset L̂ of light
nodes such that nodes in L̂ are not incident to nodes in S or other nodes in L̂. The
MWIS is unique, since the nodes in S have total weight at least 1/(4n) greater than
any other subset of X and the total weight of all light nodes is at most 1/(9n).

Note that at least one of the nodes in X1 is part of J , since X1 is an independent
set of M and it has total weight greater than any subset of nodes D ⊂ X2, because
of |X1| > |X2|. Let x1 ∈ X1 be part of J . Assume that BP-MWIS converges to the

50 3. BP for Independent Set and Minimum Spanning Tree

correct solution in k0 iterations. We consider the computation tree T = T k(x1) for
some even k ≥ k0. Since BP-MWIS converges to the correct solution by assumption
and because of Theorem 3.1.2, the CT-root of T is a member of every MWIS of T .
We now show by induction that this is not the case and that our assumption that
BP-MWIS converges to the correct solution is wrong. In particular, we show that
all X1-labeled nodes are in no MWIS of T , while all X2-labeled nodes are in every
MWIS of T . Note that a node u in T that is heavier than all of its neighbors together
is in every MWIS of T , since we can always improve independent sets of T that do
not include u by including u and removing all neighbors of u.

As the basis step, we consider the leaves of T . Since the leaves are at an odd
distance from the CT-root, they cannot be X1-labeled. If they are X2-labeled, they
are in every MWIS of T , since they have greater weight than their parent node.

As the induction step, we consider the nodes at distance t from the CT-root.
We assume that for all nodes at distance greater than t from the CT-root it holds
that they are part of no MWIS of T if they are X1-labeled and that they are part
of every MWIS of T if they are X2-labeled. For even t, nodes cannot be X2-labeled.
X1-labeled nodes u at distance t from the CT-root have at least one X2-labeled
neighbor v which is at distance t + 1 from the CT-root. Since v is part of every
MWIS of T by assumption, u is part of no MWIS of T . For odd t, nodes cannot be
X1-labeled. An X2-labeled node u at distance t from the CT-root is in every MWIS
of T , since its X1-labeled neighbors at distance t + 1 from the CT-root are in no
MWIS of T by assumption and its parent plus its light neighbors in T have total
weight less than w(u).

Case 2: |X1| = |X2|. The only connected graphs for which all nodes have
degree at most 2 are paths and cycles. Since M is connected and is neither a path
nor a cycle, it must contain at least one node with degree at least 3. Assume w.l.o.g.
that node x ∈ X1 has degree at least 3. We define weights w̃ for the nodes in X as
follows. Node x has weight w̃(x) = 5/3. Each node x1 ∈ X1\x has weight w̃(x1) = 1
and each node x2 ∈ X2 has weight w̃(x2) = 1 + 1/(2n). Let S ⊂ X be an arbitrary
MWIS of M . We now define weights w on the nodes V of G as follows. All nodes in
V \X are light nodes. Each node x ∈ S has weight w(x) = w̃(x) + 1/(4n). Finally,
each node x ∈ X \ S has weight w(x) = w̃(x). Again, this way we ensure that the
MWIS J of G is unique and consists of the nodes in S plus the heaviest subset L̂ of
light nodes such that nodes in L̂ are not incident to nodes in S or other nodes in L̂.
The MWIS is unique, since the nodes in S have total weight at least 1/(4n) greater
than any other independent set on M and the total weight of all light nodes is at
most 1/(9n).

Note that at least one of the nodes in X1 is part of J , since X1 is an independent
set on M and it has total weight greater than any subset of nodes D ⊂ X2. Let
x1 ∈ X1 be part of J . Assume that BP-MWIS converges to the correct solution in
k0 iterations. We consider the computation tree T = T k(x1) for some even k ≥ k0.
Since BP-MWIS converges to the correct solution and by Theorem 3.1.2, the CT-
root of T is a member of every MWIS of T . We now show by induction that this

3.2 BP for Minimum Spanning Tree 51

is not the case and that our assumption that BP-MWIS converges to the correct
solution is wrong. In particular, we show that all X1-labeled nodes are in no MWIS
of T , while all X2-labeled nodes are in every MWIS of T .

As the basis step, we consider the leaves of T . Since the leaves are at an odd
distance from the CT-root, they cannot be X1-labeled. The X2-labeled leaves that
do not have an x-labeled node as their parent are in every MWIS of T , since they
have greater weight than their parent node. Now consider an X2-labeled leaf u that
has an x-labeled node v as its parent. Since x has degree at least 3 in M , v has
at least two heavy leaves as its children. Therefore, v cannot be in any MWIS of
T , since we can improve any independent set of T containing v by removing v and
adding its children in T . Since v is the only neighbor of u and v is in no MWIS of
T , node u is in every MWIS of T .

As the induction step, we consider the nodes at distance t from the CT-root. We
assume that for all nodes at distance greater than t from the CT-root it holds that
they are part of no MWIS of T if they are X1-labeled and that they are part of every
MWIS of T if they are X2-labeled. For even t, nodes cannot be X2-labeled. X1-
labeled nodes u at distance t from the CT-root have at least one X2-labeled neighbor
v which is at distance t+1 from the CT-root. Since v is part of every MWIS of T by
assumption, u is part of no MWIS of T . For odd t, nodes cannot be X1-labeled. For
X2-labeled nodes u at distance t from the CT-root we again distinguish two cases.
If the parent of u is not x-labeled, u is in every MWIS of T , since its X1-labeled
neighbors at distance t + 1 from the CT-root are in no MWIS of T by assumption
and its parent plus its light neighbors in T have total weight less than w(u). If the
parent v of u is x-labeled, it has at least two heavy X2-labeled nodes as its children.
Node v cannot be in any MWIS of T , since we can improve any independent set of
T containing v by adding all its heavy children C in T and removing all neighbors of
nodes in C (since X1-labeled neighbors at distance greater than t from the CT-root
are in no MWIS this always leads to an improvement), leading to a contradiction.
Since v is in no MWIS of T and all X1-labeled neighbors of u at distance t+ 1 from
the CT-root are in no MWIS of T by assumption, u is in every MWIS of T .

3.2 BP for Minimum Spanning Tree

3.2.1 Introduction

Bayati et al. [4] introduced a variant of the BP algorithm for the MST problem (see
Section 1.4.3), which we denote by BP-MST. The MST problem is easily solvable
in polynomial time using a variety of algorithms (see, for example, Schrijver [54]).
Still, it is interesting to analyze the performance of the BP algorithm applied to the
MST problem, since the MST problem has a global connectivity constraint. This is
in contrast to, for example, the MWM, MCF, and MWIS problems, which only have
local constraints. Therefore, a message-passing algorithm like BP seems unsuitable
to solve the MST problem. Bayati et al. have shown the following positive result
for BP-MST: if BP-MST converges, then it converges to the correct solution. In

52 3. BP for Independent Set and Minimum Spanning Tree

contrast, we provide a negative result for BP-MST. In Section 3.2.2 we show a small
instance for which BP-MST does not converge. In addition, the property of this
instance that ensures that BP-MST does not converge is quite general and carries
over to many other instances. Therefore, we believe that BP-MST does not converge
for most instances encountered in practice.

Previous Results

BP-MST is a variant of the BP algorithm for the MST problem developed by Bayati
et al. [4]. We give a short description of their algorithm below. Also, we state their
results that we use in Section 3.2.2 to show that BP-MST does not converge for all
instances of the MST problem. For a more elaborate description of the algorithm
we refer to the original paper.

Bayati et al. model a spanning tree of an undirected graph G = (V,E) as a
rooted directed tree. One of the nodes in V is designated as the root of the tree. To
distinguish the root of a rooted spanning tree from the root of a computation tree,
we call the former the MST-root. Each node u ∈ V has an associated parent node
pu ∈ N(u) and an associated depth du ∈ {0, 1, . . . , n− 1}. (Though Bayati et al. [4]
did not specify the value dmax for the maximum depth of a node, we make the natural
choice of dmax = n − 1.) The MST-root has (by definition) itself as its parent and
depth 0. For each other node u it has to hold that {u, pu} ∈ E and that dpu = du−1.
Note that every spanning tree of G can be modeled in this way and that each set
{(pu, du)u∈V } that satisfies the above conditions provides a spanning tree of G. For
an example of an undirected spanning tree modeled as a directed spanning tree, we
refer to the right image of Figure 3.1.

In each iteration of BP-MST each node u sends a message mu→v(pv, dv) to each
of the nodes v in its neighborhood N(u) for all the possible combinations of values
for pv and dv. Such a message mu→v(pv, dv) can be interpreted as the likelihood
according to the sending node u that the receiving node v should have parent pv and
depth dv in the MST of G. Since the exact structure of the messages does not play a
role in our analysis, we will not further specify them and refer to the original paper.
At the end of each iteration, each node u uses the incoming messages to estimate
its parent pu and depth du in the MST. Bayati et al. have shown that if BP-MST
converges, it finds the MST.

Theorem 3.2.1 (Bayati et al. [4]). If BP-MST converges to (pu, du)u∈V , then the
set of edges

{
{u, pu}u∈V \{MST-root}

}
is the minimum spanning tree of G.

For another result by Bayati et al. that we use in our analysis, we need the
notion of an Oriented Spanning Tree (OST) on the computation tree T k(u) (see
Section 1.2.2) for BP-MST. We assign to each node [x, v] in T k(u) a depth dx ∈
{0, 1, . . . , n − 1}. To each non-leaf node [y, v] in T k(u) we assign a parent py in
its neighborhood N([y, v]) (or [y, v] itself in case v is the MST-root of G). Here
‘leaves’ are again only those leaves in the lowest level of the computation tree, see
also Section 1.2.2. We call such an assignment valid if it satisfies two properties:

3.2 BP for Minimum Spanning Tree 53

• Every non-leaf node [y, v] of T k(u) for which v is the MST-root of G has itself
as its parent and depth dy = 0.

• For every non-leaf node [y, v] of T k(u) for which v is not the MST-root of G,
it has to hold that dpy = dy − 1.

Every such valid assignment gives an OST{
([y, v], py) |[y, v] is not a leaf in the lowest level of T k(u) and

v is not the MST-root of G
}
.

Among all OSTs on the computation tree, we call the one of minimum weight the
Minimum-Weight Oriented Spanning Tree (MWOST) and we call the problem of
computing it the MWOST problem. Bayati et al. have shown that BP-MST solves
the MWOST problem on the computation tree.

Theorem 3.2.2 (Bayati et al. [4]). BP-MST solves the MWOST problem on the
computation tree. That is, the MAP assignment of all nodes in the computation tree
is such that it corresponds to the MWOST on the computation tree. In particular,
for all u ∈ V , the estimates pku and dku at the end of iteration k are equal to the
values of pCT-root and dCT-root in the MWOST of T k(u).

Our Results

Theorem 3.2.2 shows that BP-MST actually computes the MWOST of the compu-
tation tree and not the MST of G. Nevertheless, according to Theorem 3.2.1, if
BP-MST converges, then it finds the MST of G. However, convergence of BP-MST
is not guaranteed. In Section 3.2.2 we show a small example graph G for which
BP-MST does not converge, and we explain why we believe that BP-MST does not
converge for most graphs encountered in practice.

3.2.2 Non-Convergence of BP-MST

In this section we provide an instance of the MST problem for which BP-MST does
not converge to the correct solution. The instance G = (V,E) is as follows (see
Figure 3.1):

• V = {u1, u2, u3, u4, u5, u6, u7};

• E =
{
{u1, u2}, {u1, u3}, {u1, u4}, {u1, u5}, {u5, u6}, {u5, u7}, {u6, u7}

}
;

• The weights of the edges are w(u1, u5) = 2, w(u5, u6) = 1, and the rest of the
edges have weight 0.

As can easily be observed, the MST T ? of G consists of all edges except for the
edge {u5, u6}. Modeled as a directed spanning tree rooted at u1, the set S of parents
and depths corresponding to T ? is given by

54 3. BP for Independent Set and Minimum Spanning Tree

u5

u6

u7

u1

u4

u2

u3

0

0

0

0

0

1

2
u5

u6

u7

u1

u4

u2

u3

0

0

0

0

0

1

2

d = 1

d = 1

d = 1

d = 0 d = 1

d = 3

d = 2

Figure 3.1: The left image shows the instance for which BP-MST does not converge.
The right image shows the MST (dashed edges) for this instance, modeled as a directed
tree rooted at u1.

S = {(pu1
= u1, du1

= 0), (pu2
= u1, du2

= 1), (pu3
= u1, du3

= 1),

(pu4
= u1, du4

= 1), (pu5
= u1, du5

= 1), (pu6
= u7, du6

= 3),

(pu7
= u5, du7

= 2)}. (3.4)

Before we formally prove that BP-MST for G does not converge to T ?, we give
an intuitive explanation of why this is the case. Note that in any spanning tree of
G the expensive edge {u1, u5} has to be included, since this is the only edge that
connects the nodes {u1, u2, u3, u4} with the nodes {u5, u6, u7}. However, copies of
the edge {u1, u5} in the computation tree are not necessarily included in an oriented
spanning tree (OST). In fact, for any u5-labeled node in the computation tree it is
cheaper to have either its u6-labeled neighbor or its u7-labeled neighbor as its parent
than its u1-labeled neighbor.

We show that BP-MST does not converge for G by proof by contradiction. As-
sume to the contrary that BP-MST for G converges. According to Theorems 1.2.1,
3.2.1, and 3.2.2, if we consider a sufficiently large computation tree T , the MWOST
T̂ on T should consist of copies of T ? close to the root of T . Therefore, T̂ contains
several (u5, u1)-labeled edges. We show that we can construct an OST on T with
lower costs than T̂ by replacing an (expensive) (u5, u1)-labeled edge by a (cheaper)
(u5, u6)-labeled edge, changing the node depths where necessary. This contradicts
the optimality of T̂ . We conclude that BP-MST does not converge for G.

We proceed with the formal proof.

Lemma 3.2.3. If BP-MST converges for G, then it converges to the set S (see
Equation (3.4)).

Proof. Assume that BP-MST converges for G after k0 iterations. First we show that
BP-MST converges to the correct parents pv as given by S. For u1 this is clear,
since it is the MST-root and its parent is u1 by definition. Now assume that for
some nodes BP-MST does not converge to the correct parents. Among all these
nodes, let v be one of minimum depth dSv as given by S and let pSv be the parent of
v as given by S. Since S is a rooted spanning tree, pSv has smaller depth as given

3.2 BP for Minimum Spanning Tree 55

by S than v and, therefore, BP-MST converges to the correct parent for pSv . This
means that we have neither ppSv = v, nor pv = pSv . Therefore, the edge {v, pSv } is not

in the set
{
{v, pv}v∈V \{MST-root}

}
, contradicting Theorem 3.2.1. We conclude that

BP-MST converges to the correct parents for all nodes.

Finally, we show that BP-MST converges to the correct depths dv. For u1 this
is again true by definition. Assume that for some nodes, BP-MST converges to the
incorrect depths. Among all these nodes, let v be one of minimum depth dSv as
given by S and let pSv be the parent of v as given by S. Consider the computation
tree T k0+1(v). According to Theorem 1.2.1 and the above, the neighbor [x, pSv] of
[CT-root, v] has depth dx = dSpSv

. Since pCT-root = x and v takes the incorrect depth,

we have dCT-root = dv 6= dSv = dSpSv
+ 1 = dx + 1, contradicting Theorem 3.2.2. We

conclude that BP-MST converges to the correct depths for all nodes.

Theorem 3.2.4. BP-MST does not converge for G.

Proof. Assume to the contrary that BP-MST converges for G after k0 iterations.
According to Lemma 3.2.3, BP-MST converges to the set S. We now consider the
computation tree T = T k0+4(u5). According to Theorem 1.2.1, all nodes in T that
are at distance at most 4 from the CT-root [root, u5] take MAP assignment according
to S. We denote the OST that corresponds to the MAP assignment on T by T1.
We now show that we can change the parents and depths for some nodes in T such
that we obtain another OST T2 of weight less than the weight of T1. Consider all
nodes in T at distance at most 4 from the CT-root and all edges between them (see
Figure 3.2). We make the following changes to the assignments of the nodes. We
change proot to [x2, u6]. We change droot to 4, dx3

to 5, and dx8
to 6. Note that

the new assignment is valid. For the nodes at distance 4 or less from the CT-root
this can easily be checked and for nodes further away from the CT-root it follows
since we did not change their parents and depths, and also the parents and depths
of nodes at distance exactly 4 from the CT-root were not changed.

The new assignment corresponds to another OST T2. The new tree T2 contains
exactly the same edges as T1, except that it contains an extra (u5, u6)-labeled edge
and it does not contain one of the (u5, u1)-labeled edges (see Figure 3.2). Since edge
{u5, u6} weighs less than edge {u5, u1}, T2 weighs less than T1. Therefore, BP-MST
did not compute the MWOST on T , contradicting Theorem 3.2.2. We conclude that
our initial assumption was incorrect and that BP-MST does not converge for G.

The graph G shows that BP-MST does not converge for all graphs. Since com-
puting the MST on a tree is trivial, G is one of the simplest non-trivial instances.
Bayati et al. [4] have shown that BP-MST is correct if it converges. However, the
graph G shows that there exist simple instances for which BP-MST does not con-
verge. We believe that BP-MST does not converge for most instances encountered in
practice. The reason for this is that to form the MWOST of the computation tree it
is often not optimal to use copies of the MST of the input graph H. Even if the MST
of H contains only one somewhat expensive edge e, an OST on the computation tree

56 3. BP for Independent Set and Minimum Spanning Tree

[root, u5] d = 1

[x2, u6]
d = 3 [x3, u7] d = 2

[x7, u7]
d = 2

[x8, u6]
d = 3

[x9, u5]
d = 1

[x10, u5] d = 1

[x13, u7]
d = 2

[x12, u6]
d = 3 [x14, u1]

d = 0
[x11, u1]

d = 0

[x1, u1]

d = 0

[x6, u4]
d = 1

[x5, u3]
d = 1

[x4, u2]

d = 1

[root, u5] d = 4

[x2, u6]
d = 3 [x3, u7] d = 5

[x7, u7]
d = 2

[x8, u6]
d = 6

[x9, u5]
d = 1

[x10, u5] d = 1

[x13, u7]
d = 2

[x12, u6]
d = 3 [x14, u1]

d = 0
[x11, u1]

d = 0

[x1, u1]

d = 0

[x6, u4]
d = 1

[x5, u3]
d = 1

[x4, u2]

d = 1

Figure 3.2: Both images show all nodes in the computation tree T k0+4(u5) that are
at distance at most 4 from the CT-root [root, u5], and all edges between these nodes.
The left image shows (dashed edges) the OST T1 and the right image shows the OST
T2.

consisting of copies of the MST of H can usually be improved by leaving out a copy
of edge e and adding a cheaper edge, like we showed for graph G.

3.3 Concluding Remarks

In contrast to BP-MWM and BP-MCF, which we analyzed in Chapter 2, we did
not analyze BP-MWIS and BP-MST in the smoothed setting. The reason for this is
that both BP-MWIS and BP-MST do not work well for many instances, and that
adding a small amount of noise to the node or edge weights does not solve this.
For example, consider a cycle consisting of three nodes which all have weight 1.
The optimal solution to LP-MWIS for this instance is fractional, and therefore BP-
MWIS does not converge to the correct solution. Even when we add a small amount
of noise to the node weights, the optimal solution of LP-MWIS remains fractional,
and BP-MWIS still does not converge to the correct solution. Now, consider the
graph G for which we showed that BP-MST does not converge. When we add a
small amount of noise to the weights of the edges of G, tree T ? remains optimal, the
proof of Theorem 3.2.4 goes through, and BP-MST still does not converge.

CHAPTER 4

Smoothed Upper Bounds for

Minimum-Cost Flow Algorithms

In this chapter we show upper bounds for the running-time of the successive shortest
path (SSP) algorithm and the minimum-mean cycle canceling (MMCC) algorithm in
the setting of smoothed analysis. The smoothed upper bound for the SSP algorithm
is joint work with Tobias Brunsch and Heiko Röglin from the University of Bonn
and appeared before in the PhD thesis by Tobias Brunsch [10]. Before we start our
analysis, we first introduce the model that we use for the smoothed instances of the
minimum-cost flow problem in Section 4.1. We also introduce the SSP algorithm in
Section 4.2.1 and the MMCC algorithm in Section 4.3.1. In addition to the upper
bounds, we show lower bounds for the smoothed running-time of the SSP and MMCC
algorithm. These can be found in Chapter 5, where we also show a lower bound on
the smoothed running-time of the network simplex algorithm. In this chapter and
the next all logarithms are to the base 2, unless stated otherwise.

4.1 Our Model

For the definition of the minimum-cost flow problem we refer to Section 1.3. We use
the following model of smoothed analysis. As in worst-case analysis, the network
graph, the edge capacities, and the node budgets are chosen adversarially. The
edge costs are random according to the one-step model introduced by Beier and
Vöcking [8] (see Section 1.1).

We consider the general probabilistic model described below.

• The adversary specifies the graph G = (V,E), the edge capacities and the node
budgets. Additionally, the adversary specifies a probability density function
ge : [0, 1]→ [0, φ] for every edge e.

• The edge costs are then drawn independently according to their respective
density functions.

58 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

4.2 Successive Shortest Path Algorithm

4.2.1 Introduction

The successive shortest path (SSP) algorithm is an algorithm that solves the MCF
problem. The idea behind the algorithm is to repeatedly send flow along shortest
paths from a node with positive budget to a node with negative budget, until the
total outflow minus the total inflow equals the budget for every node. Since the SSP
algorithm is very intuitive and easy to implement, it is very popular in practice.
However, in the worst case the SSP algorithm has an exponential running-time,
as shown by Zadeh [66] (see also Section 1.3.1). In this section we show that in
the framework of smoothed analysis the SSP algorithm has polynomial expected
running-time, in sharp contrast to its exponential worst-case running-time. Before
we prove our upper bound on the smoothed running-time of the SSP algorithm, we
first give a definition of the algorithm. For a more elaborate introduction to the SSP
algorithm we refer to Ahuja et al. [1].

Definition of the SSP Algorithm

In practice, the simplest way to implement the SSP algorithm is to transform the
instance to an equivalent instance with only one supply node (a node with positive
budget) and one demand node (a node with negative budget). For this, we add two
nodes s and t to the network which we call master source and master sink, edges
(s, v) for any supply node v, and edges (w, t) for any demand node w. The capacities
of these auxiliary edges (s, v) and (w, t) are set to bv > 0 and −bw > 0, respectively.
The costs of the auxiliary edges are set to 0. Now we set bs = −bt = z where z is the
sum of the capacities of the auxiliary edges incident with s (which is equal to the
sum of the capacities of the auxiliary edges incident with t due to the assumption
that

∑
v∈V bv = 0 (see Section 1.3)). All other node budgets are set to 0.

This is a well-known transformation of an arbitrary minimum-cost flow instance
into a minimum-cost flow instance with only a single source s, a single sink t, and bv =
0 for all nodes v ∈ V \ {s, t}. Nevertheless, we cannot assume without loss of
generality that the flow network we study has only a single source and a single
sink. The reason is that in the probabilistic input model introduced above it is
not possible to insert auxiliary edges with costs 0 because the costs of each edge
are chosen according to some density function that is bounded from above by φ.
Therefore, we consider the auxiliary edges with costs 0 explicitly and separately
from the other edges in our analysis.

The SSP algorithm run on the transformed instance computes the minimum-cost
b-flow for the original instance. In the remainder of Section 4.2 we use the term
flow to refer to a feasible b-flow for an arbitrary b with bs = −bt and bv = 0 for
v /∈ {s, t}. We will denote by |f | the amount of flow shipped from s to t in flow f ,
i.e., |f | = ∑e=(s,v)∈E fe −

∑
e=(v,s)∈E fe.

The SSP algorithm for a minimum-cost flow network with a single source s, a
single sink t, and with bs = −bt = z > 0 is given as Algorithm 1. Here Gf is the

4.2 Successive Shortest Path Algorithm 59

Algorithm 1 SSP algorithm for single-source-single-sink minimum-cost flow net-
works with bs = −bt = z > 0.

1: start with the empty flow f0 = 0
2: for i = 1, 2, . . . do
3: if Gfi−1 does not contain a (directed) s-t path then
4: output that there does not exist a flow with value z
5: end if
6: find a shortest s-t path P i in Gfi−1 with respect to the arc costs
7: augment the flow as much as possible∗ along path P i to obtain a new flow f i

8: if |f i| = z then
9: output f i

10: end if
11: end for

∗ Since the value |f i| of flow f i must not exceed z and the flow f i must obey all capacity
constraints, the flow is increased by the minimum of min{ue−f i−1

e | e ∈ P i∩E}, min{f i−1
e−1 |

e ∈ P i and e−1 ∈ E} and z − |f i−1|.

residual network for flow f .

Theorem 4.2.1. In any round i, flow f i is a minimum-cost bi-flow for the budget
function bi defined by bis = −bit = |f i| and biv = 0 for v /∈ {s, t}.

Theorem 4.2.1 is due to Jewell [32], Iri [31], and Busacker and Gowen [15]. We
refer to Korte and Vygen [36] for a proof. As a consequence, no residual network Gfi

contains a directed cycle with negative total costs. Otherwise, we could augment
along such a cycle to obtain a bi-flow f ′ with smaller costs than f i. In particular, this
implies that the shortest paths in Gfi from s to nodes v ∈ V form a shortest path
tree rooted at s. Since the choice of the value z only influences the last augmentation
of the algorithm, the algorithm performs the same augmentations when run for two
different values z1 < z2 until the flow value |f i| exceeds z1. We will exploit this
observation in Lemma 4.2.8.

Note that one could allow the cost function c to have negative values as well.
As long as the network does not contain a cycle with negative total costs, the SSP
algorithm is still applicable. However, as we cannot ensure this property if the
edge costs are random variables, we made the assumption that all edge costs are
non-negative.

Our results

We show that the SSP algorithm has polynomial smoothed running-time. In Sec-
tion 4.2.4 we prove the following upper bound on the running-time of the SSP algo-
rithm in the setting of smoothed analysis.

Theorem 4.2.2. The SSP algorithm requires O(mnφ) augmentation steps in expec-
tation and its smoothed running-time is O(mnφ(m+ n log n)).

60 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

Even though the SSP algorithm has exponential running-time in the worst case,
Theorem 4.2.2 suggests that one is unlikely to encounter instances for which the SSP
algorithm requires an exponential amount of time. In Chapter 5 we show an almost
tight lower bound of Ω(m ·min{n, φ} ·φ) for the number of augmentation steps that
the SSP algorithm requires in the smoothed setting.

In Section 4.2.5 we point out some connections between our smoothed analysis
of the SSP algorithm and the smoothed analysis of the simplex method with the
shadow vertex pivot rule by Spielman and Teng [56].

A Connection to the Integer Worst-case Bound

We can concentrate on counting the number of augmenting steps of the SSP al-
gorithm since each step can be implemented to run in time O(m + n log n) using
Dijkstra’s algorithm (see, for example, Korte and Vygen [36]). Let us first consider
the case that all edge costs are integers from {1, . . . , c∗}. In this case the length of
any path in any residual network is bounded by nc∗. We will see that the lengths
of the augmenting paths are monotonically increasing. If there is no unique shortest
path to augment flow along and ties are broken by choosing one with the fewest num-
ber of arcs, then the number of successive augmenting paths with the same length is
bounded by O(mn) (this follows from the analysis of the Edmonds-Karp algorithm
for computing a maximum flow [17]). Hence, the SSP algorithm terminates within
O(mn2c∗) augmentation steps.

Now let us perturb the edge costs of such an integral instance independently by,
for example, uniform additive noise from the interval [−1, 1]. This scenario is not
covered by bounds for the integral case. Nevertheless, an immediate consequence of
Theorem 4.2.2 is that, in expectation, the SSP algorithm terminates within O(mnc∗)
augmentation steps on instances of this form.

4.2.2 Terminology and Notation

Consider the run of the SSP algorithm on the flow network G. We denote the set{
f0, f1, . . .

}
of all flows encountered by the SSP algorithm by F0(G). Furthermore,

we set F(G) = F0(G) \
{
f0
}

. (We omit the parameter G if it is clear from the
context.)

Let us remark that we have not specified in Algorithm 1 which path is chosen if
the shortest s-t path is not unique. This is not important for our analysis because we
will see in Section 4.2.4 that this happens only with probability 0 in our probabilistic
model. We can therefore assume F0(G) to be well-defined.

By f0 and fmax, we denote the empty flow and the maximum flow, i.e., the flow
that assigns 0 to all edges e and the flow of maximum value encountered by the SSP
algorithm, respectively.

Let f i−1 and f i be two consecutive flows encountered by the SSP algorithm and
let P i be the shortest path in the residual network Gfi−1 , i.e., the SSP algorithm
augments along P i to increase flow f i−1 to obtain flow f i. We call P i the next path
of f i−1 and the previous path of f i. As mentioned in Section 1.3.2, to distinguish

4.2 Successive Shortest Path Algorithm 61

between edges in the residual network and edges in the original network, we refer
to the edges in the residual network as ‘arcs’, whereas we refer to the edges in the
original network as ‘edges’.

For a given arc e in a residual network Gf , we denote by e0 the corresponding
edge in the original network G, i.e., e0 = e if e ∈ E (i.e. e is a forward arc) and
e0 = e−1 if e /∈ E (i.e. e is a backward arc). An arc e is called empty (with respect
to some residual network Gf) if e belongs to Gf , but e−1 does not. Empty arcs e
are either forward arcs that do not carry flow or backward arcs whose corresponding
edge e0 carries as much flow as possible. We say that an arc becomes saturated
(during an augmentation) when it is contained in the current augmenting path, but
it does not belong to the residual network that we obtain after this augmentation.

In the remainder, a path is always a simple directed path. Let P be a path, and

let u and v be contained in P in this order. By u
P
 v, we refer to the sub-path

of P starting from node u going to node v, by
←
P we refer to the path we obtain

by reversing the direction of each edge of P . We denote by
←→
G = (V,E ∪ E−1)

for E−1 =
{
e−1 : e ∈ E

}
the flow network that consists of all forward arcs and

backward arcs.

4.2.3 Outline of Our Approach

Our analysis of the SSP algorithm is based on the following idea: We identify a
flow f i ∈ F0 with a real number by mapping f i to the length `i of the previous
path P i of f i. The flow f0 is identified with `0 = 0. In this way, we obtain a
sequence L = (`0, `1, . . .) of real numbers. We show that this sequence is strictly
monotonically increasing with probability 1. Since all costs are drawn from the
interval [0, 1], each element of L is from the interval [0, n]. To count the number of
elements of L, we partition the interval [0, n] into small sub-intervals of length ε and
sum up the number of elements of L in these intervals. By linearity of expectation,
this approach carries over to the expected number of elements of L. If ε is very
small, then – with sufficiently high probability – each interval contains at most one
element. If this is the case then it suffices to bound the probability that an element
of L falls into some interval (d, d + ε] because this probability equals the expected
number of elements in (d, d+ ε].

To do so, we assume for the moment that there is an integer i such that `i ∈
(d, d + ε]. By the previous assumption that for any interval of length ε there is at
most one path whose length is within this interval, we obtain that `i−1 ≤ d. We
show that the augmenting path P i uses an empty arc e. Moreover, we will see that
we can reconstruct the flow f i−1 and the path P i without knowing the costs of
edge e0 that corresponds to arc e in the original network. This allows us to use the
principle of deferred decisions: to bound the probability that `i falls into the interval
(d, d+ ε], we first reveal all costs ce′ with e′ 6= e0. Then P i is known and its length,
which equals `i, can be expressed as a linear function κ+ ce0 or κ− ce0 for a known
constant κ. Consequently, the probability that `i falls into the interval (d, d + ε] is
bounded by εφ, as the probability density of ce0 is bounded by φ. Since the arc e

62 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

is not always the same, we have to apply a union bound over all 2m possible arcs.
Summing up over all n/ε intervals the expected number of flows encountered by the
SSP algorithm can be bounded by roughly (n/ε) · 2m · εφ = 2mnφ.

There are some parallels to the analysis of the smoothed number of Pareto-
optimal solutions in bicriteria linear optimization problems by Beier and Vöcking [8],
although we have only one objective function. In this context, we would call f i the
loser, f i−1 the winner, and the difference `i − d the loser gap. Beier and Vöcking’s
analysis is also based on the observation that the winner (which in their analysis
is a Pareto-optimal solution and not a flow) can be reconstructed when all except
for one random coefficients are revealed. While this reconstruction is simple in the
setting of bicriteria optimization problems, the reconstruction of the flow f i−1 in our
setting is significantly more challenging and a main difficulty in our analysis.

4.2.4 Proof of the Upper Bound

Before we start with the analysis, note that due to our transformation of the general
minimum-cost flow problem to a single-source-single-sink minimum-cost flow prob-
lem the cost perturbations only affect the original edges. The costs of the auxiliary
edges are not perturbed but set to 0. Thus, we will slightly deviate from what we
described in the outline by treating empty arcs corresponding to auxiliary edges
separately.

The SSP algorithm is in general not completely specified, since at some point
during the run of the algorithm there could exist multiple shortest s-t paths in the
residual network of the current flow. The SSP algorithm then allows any of them to
be chosen as the next augmenting path. Due to Lemma 4.2.3 and Property 4.2.4 we
can assume that this is not the case in our setting and that the SSP algorithm is com-
pletely specified. In the following we use the concepts of possible residual networks,
possible paths, and possible cycles. For their definitions we refer to Section 1.3.

Lemma 4.2.3. For any real ε > 0 the probability that there are two nodes u and v
and two distinct possible u-v paths whose lengths differ by at most ε is bounded from
above by 2n2nεφ.

Proof. Fix two nodes u and v and two distinct possible u-v paths P1 and P2. Then
there is an edge e such that one of the paths – without loss of generality path P1

– contains arc e or e−1, but the other one does not. If we fix all edge costs except
the cost of edge e, then the length of P2 is already determined whereas the length
of P1 depends on the cost ce. Hence, ce must fall into a fixed interval of length 2ε in
order for the path lengths of P1 and P2 to differ by at most ε. The probability for
this is bounded by 2εφ because ce is chosen according to a density function that is
bounded from above by φ. A union bound over all pairs (u, v) and all possible u-v
paths concludes the proof.

The proof also shows that we can assume that there is no s-t path of length 0 and
according to Lemma 4.2.3 we can assume that the following property holds since it
holds with a probability of 1.

4.2 Successive Shortest Path Algorithm 63

Property 4.2.4. For any nodes u and v the lengths of all possible u-v paths are
pairwise distinct.

Lemma 4.2.5. Let di(v) denote the distance from s to node v and d̄i(v) denote
the distance from node v to t in the residual network Gfi . Then the sequences
d0(v), d1(v), d2(v), . . . and d̄0(v), d̄1(v), d̄2(v), . . . are monotonically increasing for ev-
ery v ∈ V .

Proof. We only show the proof for the sequence d0(v), d1(v), d2(v), The proof
for the sequence d̄0(v), d̄1(v), d̄2(v), . . . can be shown analogously. Let i ≥ 0 be an
arbitrary integer. We show di(v) ≤ di+1(v) by induction on the depth of node v
in the shortest path tree Ti+1 of the residual network Gfi+1 rooted at s. For the
root s, the claim holds since di(s) = di+1(s) = 0. Now assume that the claim
holds for all nodes up to a certain depth k, consider a node v with depth k + 1,
and let u denote its parent. Consequently, di+1(v) = di+1(u) + ce for e = (u, v).
If arc e has been available in Gfi , then di(v) ≤ di(u) + ce. If not, then the SSP
algorithm must have augmented along e−1 in step i+1 to obtain flow f i+1 and, hence,
di(u) = di(v) + ce−1 = di(v) − ce. In both cases the inequality di(v) ≤ di(u) + ce
holds. Applying the induction hypothesis for node u, we obtain di(v) ≤ di(u) + ce ≤
di+1(u) + ce = di+1(v).

Definition 4.2.6. For a flow f i ∈ F0, we denote by `G−(f i) and `G+(f i) the length of
the previous path P i and the next path P i+1 of f i, respectively. By convention, we
set `G−(f0) = 0 and `G+(fmax) =∞. If the network G is clear from the context, then
we simply write `−(f i) and `+(f i). By C we denote the cost function that maps
real numbers x from the interval

[
0, |fmax|

]
to the costs of the cheapest flow f with

value x, i.e., C (x) = min {c(f) : |f | = x}.

The lengths `−(f i) correspond to the lengths `i mentioned in the outline. The
apparent notational overhead is necessary for formal correctness. In Lemma 4.2.8,
we will reveal a connection between the values `−(f i) and the function C . Based on
this, we can focus on analyzing the function C .

Lemma 4.2.5 implies in particular that the distance from the source s to the
sink t is monotonically increasing, which yields the following corollary.

Corollary 4.2.7. Let f i, f j ∈ F0 be two flows with i < j. Then `−(f i) ≤ `−(f j).

Lemma 4.2.8. The function C is continuous, monotonically increasing, and piece-
wise linear, and the break points of the function are the values of the flows f ∈ F0

with `−(f) < `+(f). For each flow f ∈ F0, the slopes of C to the left and to the
right of |f | equal `−(f) and `+(f), respectively.

Proof. The proof follows from Theorem 4.2.1 and the observation that the costs of
the flow are linearly increasing when gradually increasing the flow along the shortest
path in the residual network until at least one arc becomes saturated. The slope of
the cost function is given by the length of that path.

64 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

Example 4.2.9. Consider the flow network depicted in Figure 4.1. The cost ce and
the capacity ue of an edge e are given by the notation ce, ue. For each step of the SSP
algorithm, Figure 4.3 lists the relevant part of the augmenting path (excluding s, s′,
t′, and t), its length, the amount of flow that is sent along that path, and the arcs that
become saturated. As can be seen in the table, the values |f | of the encountered flows
f ∈ F0 are 0, 2, 3, 5, 7, 10, and 12. These are the breakpoints of the cost function C ,
and the lengths of the augmenting paths equal the slopes of C (see Figure 4.2).

s

u

v

w

1, 4

5, 5

6, 6

1, 2

1, 3

7, 6

1, 3

3, 50, 12 0, 12s′ t′

bs = 12
t

bt = −12

Figure 4.1: Minimum-cost flow network with
master source s and master sink t.

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

70

80

90

100

0
x

C (x)

4
6

7

8

9

12

c

Figure 4.2: Cost function C .

step 1 2 3 4 5 6
path u, v, w w w, v u v v, u
path length 4 6 7 8 9 12
amount of flow 2 1 2 2 3 2
saturated arcs (u, v) (w, t′) (w, v) (s′, u) (v, t′) (v, u)

Figure 4.3: The augmenting paths for Example 4.2.9.

With the following definition, we lay the foundation for distinguishing between
original edges with perturbed costs and auxiliary edges whose costs are set to 0.

4.2 Successive Shortest Path Algorithm 65

Definition 4.2.10. Let f ∈ F0 be an arbitrary flow. An empty arc e in the residual
network Gf that does not correspond to an auxiliary edge is called a good arc. We
call f a good flow if f 6= f0 and if the previous path of f contains a good arc in the
previous residual network. Otherwise, f is called a bad flow.

Before we can derive a property of good arcs that are contained in the previous
path of good flows, we need to show that for each flow value the minimum-cost flow
is unique with probability 1.

Lemma 4.2.11. For any real ε > 0 the probability that there exists a possible cycle
whose costs lie in [0, ε] is bounded from above by 2n2nεφ.

Proof. Assume that there exists a cycle K whose costs lie in [0, ε]. Then K contains

two nodes u and v and consists of a u-v path P1 and a v-u path P2. Then P1 and
←
P2

are two distinct u-v paths. Since K has costs in [0, ε], the costs of P1 and
←
P2 differ

by at most ε. Now Lemma 4.2.3 concludes the proof.

According to Lemma 4.2.11 we can assume that the following property holds
since it holds with a probability of 1.

Property 4.2.12. There exists no possible cycle with costs 0.

With Property 4.2.12 we can show that the minimum-cost flow is unique for each
value.

Lemma 4.2.13. For each value B ∈ R+ there either exists no flow f with |f | = B
or there exists a unique minimum-cost flow f with |f | = B.

Proof. Assume that there exists a value B ∈ R+ and two distinct minimum-cost
flows f and f ′ with |f | = |f ′| = B. Let E∆ := {e ∈ E | fe 6= f ′e} be the set of
edges on which f and f ′ differ. We show in the following that the set E∆ contains
at least one undirected cycle K. Since f and f ′ are distinct flows, the set E∆ cannot
be empty. For v ∈ V , let us denote by f−(v) =

∑
e=(u,v)∈E fe the flow entering v

and by f+(v) =
∑
e=(v,w)∈E fe the flow going out of v (f ′−(v) and f ′+(v) are defined

analogously). Flow conservation and |f | = |f ′| imply f−(v)−f ′−(v) = f+(v)−f ′+(v)
for all v ∈ V . Now let us assume E∆ does not contain an undirected cycle. In this
case there must exist a node v ∈ V with exactly one incident edge in E∆. We will
show that this cannot happen.

Assume f−(v)− f ′−(v) 6= 0 for some v ∈ V . Then the flows f and f ′ differ on at
least one edge e = (u, v) ∈ E. Since this case implies f+(v) − f ′+(v) 6= 0, they also
differ on at least one edge e′ = (v, w) ∈ E and both these edges belong to E∆. It
remains to consider nodes v ∈ V with f−(v) − f ′−(v) = f+(v) − f ′+(v) = 0 and at
least one incident edge in E∆. For such a node v there exists an edge e = (u, v) ∈ E
(or e = (v, w) ∈ E) with fe 6= f ′e. It follows

∑
e′=(u′,v)∈E,e′ 6=e fe′ − f ′e′ 6= 0 (or∑

e′=(v,w′)∈E,e′ 6=e fe′ − f ′e′ 6= 0) which implies that there exists another edge e′ =

(u′, v) 6= e (or e = (v, w′) 6= e) with fe′ 6= f ′e′ .

66 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

For the flow f ′′ = 1
2f + 1

2f
′, which has the same costs as f and f ′ and is

hence a minimum-cost flow with |f ′′| = B as well, we have f ′′(e) ∈ (0, ue) for all
e ∈ E∆. The flow f ′′ can therefore be augmented in both directions along K. Due
to Property 4.2.12, augmenting f ′′ in one of the two directions along K will result
in a better flow. This is a contradiction.

Now we derive a property of good arcs that are contained in the previous path of
good flows. This property allows us to bound the probability that one of the lengths
`−(f i) falls into a given interval of length ε.

Lemma 4.2.14. Let f ∈ F0 be a predecessor of a good flow for which `G−(f) < `G+(f)
holds. Additionally, let e be a good arc in the next path of f , and let e0 be the edge
in G that corresponds to e. Now change the cost of e0 to c′e0 = 1 (c′e0 = 0) if e0 = e
(e0 = e−1), i.e., when e is a forward (backward) arc. In any case, the cost of arc e
increases. We denote the resulting flow network by G′. Then f ∈ F0(G′). Moreover,
the inequalities `G

′

− (f) ≤ `G−(f) < `G+(f) ≤ `G′+ (f) hold.

Proof. Let C and C ′ be the cost functions of the original network G and the modified
network G′, respectively. Both functions are of the form described in Lemma 4.2.8.
In particular, they are continuous and the breakpoints correspond to the values of
the flows f̃ ∈ F0(G) and f̂ ∈ F0(G′) with `G−(f̃) < `G+(f̃) and `G

′

− (f̂) < `G
′

+ (f̂),
respectively.

We start by analyzing the case e0 = e. In this case, we set C ′′ = C ′ and observe
that increasing the cost of edge e0 to 1 cannot decrease the costs of any flow in G.
Hence, C ′′ ≥ C . Since flow f does not use arc e, its costs remain unchanged, i.e.,
C ′′(|f |) = C (|f |).

If e0 = e−1, then we set C ′′ = C ′ + ∆e0 for ∆e0 = ue0 · ce0 . This function is also
piecewise linear and has the same breakpoints and slopes as C ′. Since the flow on
edge e0 cannot exceed the capacity ue0 of edge e0 and since the cost on that edge
has been reduced by ce0 in G′, the costs of each flow are reduced by at most ∆e0

in G′. Furthermore, this gain is only achieved for flows that entirely use edge e0

like f does. Hence, C ′′ ≥ C and C ′′(|f |) = C (|f |).

x

C (x)

c

|f |

C ′′(x)

Figure 4.4: Cost function C and function C ′′.

4.2 Successive Shortest Path Algorithm 67

Algorithm 2 Reconstruct(e, d).

1: let e0 be the edge that corresponds to arc e in the original network G
2: change the cost of edge e0 to c′e0 = 1 if e is a forward arc or to c′e0 = 0 if e is a

backward arc
3: start running the SSP algorithm on the modified network G′

4: stop when the length of the shortest s-t path in the residual network of the
current flow f ′ exceeds d

5: output f ′

Due to C ′′ ≥ C , C ′′(|f |) = C (|f |), and the form of both functions, the left-hand
derivative of C ′′ at |f | is at most the left-hand derivative of C at |f | (see Figure 4.4).
Since |f | is a breakpoint of C , this implies that |f | is also a breakpoint of C ′′ and
that the slope of C ′′ to the left of |f | is at most the slope of C to the left of |f |. For
the same reasons, the right-hand derivative of C ′′ at |f | is at least the right-hand
derivative of C at |f | and the slope of C ′′ to the right of |f | is at least the slope
of C to the right of |f |. These properties carry over to C ′. Hence, F0(G′) contains
a flow f ′ with |f ′| = |f |. Since f is a minimum-cost flow with respect to c, f ′ is a
minimum-cost flow with respect to c′, we have c′(f) = c(f) and c′(f∗) ≥ c(f∗) for all
possible flows f∗, Lemma 4.2.13 yields f = f ′ and therefore f ∈ F0(G′). Recalling
the fact that the slopes correspond to shortest s-t path lengths, the stated chain of
inequalities follows.

Lemma 4.2.14 suggests Algorithm 2 (Reconstruct) for reconstructing a flow f
based on a good arc e that belongs to the shortest path in the residual network Gf
and on a threshold d ∈

[
`−(f), `+(f)

)
. The crucial fact that we will later exploit is

that for this reconstruction the cost ce0 of edge e0 does not have to be known. (Note
that we only need Reconstruct for the analysis in order to show that the flow f can
be reconstructed.)

Corollary 4.2.15. Let f ∈ F0 be a predecessor of a good flow, let e be a good
arc in the next path of f , and let d ∈

[
`−(f), `+(f)

)
be a real number. Then

Reconstruct(e, d) outputs flow f .

Proof. By applying Lemma 4.2.14, we obtain f ∈ F0(G′) and `G
′

− (f) ≤ d < `G
′

+ (f).
Together with Corollary 4.2.7, this implies that Reconstruct(e, d) does not stop before
encountering flow f and stops once it encounters f . Hence, Reconstruct(e, d) outputs
flow f .

Corollary 4.2.15 is an essential component of the proof of Theorem 4.2.2 but it
only describes how to reconstruct predecessor flows f of good flows with `−(f) <
`+(f). In the next part of this section we show that most of the flows are good
flows and that, with a probability of 1, the inequality `−(f) < `+(f) holds for any
flow f ∈ F0.

Lemma 4.2.16. In any step of the SSP algorithm, any s-t path in the residual
network contains at least one empty arc.

68 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

Proof. The claim is true for the empty flow f0. Now consider a flow f i ∈ F ,
its predecessor flow f i−1, the path P i, which is a shortest path in the residual
network Gfi−1 , and an arbitrary s-t path P in the current residual network Gfi . We
show that at least one arc in P is empty.

For this, fix one arc e = (x, y) from P i that is not contained in the current residual
network Gfi since it became saturated by the augmentation along P i. Let v be the

first node of P that occurs in the sub-path y
P i

 t of P i, and let u be the last node in

the sub-path s
P
 v of P that belongs to the sub-path s

P i

 x of P i (see Figure 4.5).

By the choice of u and v, all nodes on the sub-path P ′ = u
P
 v of P except u

and v do not belong to P i. Hence, the arcs of P ′ are also available in the residual
network Gfi−1 and have the same capacity in both residual networks Gfi−1 and Gfi .

s tx yu v

P

P i

P ′

C

e

Figure 4.5: Paths P and P i in the residual network Gfi .

In the remainder of this proof, we show that at least one arc of P ′ is empty.
Assume to the contrary that none of the arcs is empty in Gfi and, hence, in Gfi−1 .
This implies that, for each arc e ∈ P ′, the residual network Gfi−1 also contains
the arc e−1. Since P i is the shortest s-t path in Gfi−1 and since the lengths of all

possible s-t paths are pairwise distinct, the path s
P i

 u
P
 v

P i

 t is longer than P i.

Consequently, the path P ′ = u
P
 v is longer than the path u

P i

 v. This contradicts

the fact that flow f i−1 is optimal since the arcs of path u
P i

 v combined with the
reverse arcs e−1 of all the arcs e of path P ′ form a directed cycle C in Gfi−1 of
negative costs.

We want to partition the interval [0, n] into small sub-intervals of length ε and
treat the number of lengths `−(f i) that fall into a given sub-interval as a binary
random variable. This may be wrong if there are two possible s-t paths whose lengths
differ by at most ε. In this case whose probability tends to 0 (see Lemma 4.2.3) we
will simply bound the number of augmentation steps of the SSP algorithm by a
worst-case bound according to the following lemma.

Lemma 4.2.17. The number |F0| of flows encountered by the SSP algorithm is
bounded by 3m+n.

Proof. We call two possible residual networks equivalent if they contain the same
arcs. Equivalent possible residual networks have the same shortest s-t path in com-
mon. The length of this path is also the same. Assume that for two distinct flows

4.2 Successive Shortest Path Algorithm 69

f i, f j ∈ F0 with i < j, the residual networks Gfi and Gfj are equivalent. We
then have `−(f i+1) = `+(f i) = `+(f j) = `−(f j+1) and due to Corollary 4.2.7,
`−(f i+1) = `−(fk) = `−(f j+1) for all i < k ≤ j + 1. Property 4.2.4 then implies
P i+1 = P k for all i < k ≤ j+1 and especially P i+1 = P i+2, which is a contradiction.
Therefore the number of equivalence classes is bounded by 3m+n since there are m
original edges and at most n auxiliary edges. This completes the proof.

Lemma 4.2.18. There are at most n bad flows f ∈ F .

Proof. According to Lemma 4.2.16, the augmenting path contains an empty arc e in
each step. If e is an arc that corresponds to an auxiliary edge (this is the only case
when e is not a good arc), then e is not empty after the augmentation. Since the
SSP algorithm does not augment along arcs e−1 if e is an arc that corresponds to an
auxiliary edge, non-empty arcs that correspond to auxiliary edges cannot be empty
a second time. Thus, there can be at most n steps where the augmenting path does
not contain a good arc. This implies that there are at most n bad flows f ∈ F .

We can now bound the probability that there is a flow f i ∈ F whose previous
path’s length `−(f i) falls into a given sub-interval of length ε. Though we count
bad flows separately, they also play a role in bounding the probability that there is
a good flow f i ∈ F such that `−(f i) falls into a given sub-interval of length ε.

Lemma 4.2.19. For a fixed real d ≥ 0, let Ed,ε be the event that there is a flow f ∈ F
for which `−(f) ∈ (d, d+ ε], and let Bd,ε be the event that there is a bad flow f ′ ∈ F
for which `−(f ′) ∈ (d, d+ε]. Then the probability of Ed,ε can be bounded by P(Ed,ε) ≤
2mεφ+ 2 · P(Bd,ε).

Proof. Let Ad,ε be the event that there is a good flow f ∈ F for which `−(f) ∈
(d, d+ε]. Since Ed,ε = Ad,ε∪Bd,ε, it suffices to show that P(Ad,ε) ≤ 2mεφ+P(Bd,ε).
Consider the event that there is a good flow whose previous path’s length lies in the
interval (d, d+ε]. Among all these good flows, let f̂ be the one with the smallest value

`−(f̂), i.e., f̂ is the first good flow f encountered by the SSP algorithm for which

`−(f) ∈ (d, d+ε], and let f∗ be its previous flow. Flow f∗ always exists since f̂ cannot

be the empty flow f0. Corollary 4.2.7 and Property 4.2.4 yield `−(f∗) < `−(f̂).
Thus, there can only be two cases: If `−(f∗) ∈ (d, d+ε], then f∗ is a bad flow by the

choice of f̂ and, hence, event Bd,ε occurs. The interesting case, which we consider
now, is when `−(f∗) ≤ d holds. If this is true, then d ∈ [`−(f∗), `+(f∗)) due to

`+(f∗) = `−(f̂).

As f̂ is a good flow, the shortest path in the residual network Gf∗ contains a good
arc e = (u, v). Applying Corollary 4.2.15 we obtain that we can reconstruct flow f∗

by calling Reconstruct(e, d). The shortest s-t path P in the residual network Gf∗ is

the previous path of f̂ and its length equals `−(f̂). Furthermore, P is of the form

s
P
 u → v

P
 t, where s

P
 u and v

P
 t are shortest paths in Gf∗ from s to u and

from v to t, respectively. These observations yield

Ad,ε ⊆
⋃
e∈E

Re,d,ε ∪
⋃
e∈E

Re−1,d,ε ∪Bd,ε ,

70 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

where Re,d,ε for some arc e = (u, v) denotes the following event: The event Re,d,ε
occurs if ` ∈ (d, d + ε], where ` is the length of the shortest s-t path that uses
arc e in Gf , the residual network of the flow f obtained by calling the procedure
Reconstruct(e, d). Therefore, the probability of event Ad,ε is bounded by

∑
e∈E

P(Re,d,ε) +
∑
e∈E

P(Re−1,d,ε) + P(Bd,ε) .

We conclude the proof by showing P(Re,d,ε) ≤ εφ. For this, let e0 be the edge
corresponding to arc e = (u, v) in the original network. If we fix all edge costs except
cost ce0 of edge e0, then the output f of Reconstruct(e, d) is already determined.
The same holds for the shortest s-t path in Gf that uses arc e since it is of the form
s u → v t where P1 = s u is a shortest s-u path in Gf that does not
use v and where P2 = v t is a shortest v-t path in Gf that does not use u. The
length ` of this path, however, depends linearly on the cost ce0 . To be more precise,
` = `′ + ce = `′ + sgn(e) · ce0 , where `′ is the length of P1 plus the length of P2 and
where

sgn(e) =

{
+1 if e0 = e ,

−1 if e0 = e−1 .

Hence, ` falls into the interval (d, d+ε] if and only if ce0 falls into some fixed interval
of length ε. The probability for this is bounded by εφ as ce0 is drawn according to
a distribution whose density is bounded by φ.

Corollary 4.2.20. The expected number of augmentation steps the SSP algorithm
performs is bounded by 2mnφ+ 2n.

Proof. Let X = |F| be the number of augmentation steps of the SSP algorithm. For
reals d, ε > 0, let Ed,ε and Bd,ε be the events defined in Lemma 4.2.19, let Xd,ε be
the number of flows f ∈ F for which `−(f) ∈ (d, d+ ε], and let Zd,ε = min {Xd,ε, 1}
be the indicator variable of event Ed,ε.

Since all costs are drawn from the interval [0, 1], the length of any possible s-t
path is bounded by n. Furthermore, according to Corollary 4.2.7, all lengths are
non-negative (and positive with a probability of 1). Let Fε denote the event that
there are two possible s-t paths whose lengths differ by at most ε. Then, for any
positive integer k, we obtain

X =

k−1∑
i=0

Xi·nk ,
n
k

=
k−1∑
i=0

Zi·nk ,
n
k

if Fn
k

does not occur ,

≤ 3m+n if Fn
k

occurs .

4.2 Successive Shortest Path Algorithm 71

Consequently,

E(X) ≤
k−1∑
i=0

E(Zi·nk ,
n
k

) + 3m+n · P(Fn
k

)

=

k−1∑
i=0

P(Ei·nk ,
n
k

) + 3m+n · P(Fn
k

)

≤ 2mnφ+ 2 ·
k−1∑
i=0

P(Bi·nk ,
n
k

) + 3m+n · P(Fn
k

)

≤ 2mnφ+ 2n+ 3m+n · P(Fn
k

) .

The second inequality is due to Lemma 4.2.19 whereas the third inequality stems
from Lemma 4.2.18. The claim follows since P(Fn

k
) → 0 for k → ∞ in accordance

with Lemma 4.2.3.

Now we are almost done with the proof of our main theorem (Theorem 4.2.2).

Proof of Theorem 4.2.2. Since each step of the SSP algorithm runs in time O(m +
n log n) using Dijkstra’s algorithm (see, e.g., Korte and Vygen [36] for details), ap-
plying Corollary 4.2.20 yields the desired result.

4.2.5 Smoothed Analysis of the Simplex Method

In this section we describe a surprising connection between our result about the SSP
algorithm and the smoothed analysis of the simplex method for linear programming.
Spielman and Teng’s original smoothed analysis [56] as well as Vershynin’s [61] im-
proved analysis are based on the shadow vertex method. To describe this pivot
rule, let us consider a linear program with an objective function zTx and a set
of constraints Ax ≤ b. Let us assume that a non-optimal initial vertex x0 of the
polytope P of feasible solutions is given. The shadow vertex method computes an
objective function uTx that is optimized by x0. Then it projects the polytope P onto
the 2-dimensional plane that is spanned by the vectors z and u. If we assume for the
sake of simplicity that P is bounded, then the resulting projection is a polygon Q.

The crucial properties of the polygon Q are as follows: both the projection of x0

and the projection of the optimal solution x? are vertices of Q, and every edge of Q
corresponds to an edge of P . The shadow vertex method follows the edges of Q
from the projection of x0 to the projection of x?. The aforementioned properties
guarantee that this corresponds to a feasible walk on the polytope P .

To relate the shadow vertex method and the SSP algorithm, we consider the
canonical linear program for the maximum-flow problem with one source and one
sink. In this linear program, there is a variable for each edge corresponding to the
flow on that edge. The objective function, which is to be maximized, adds the flow
on all outgoing edges of the source and subtracts the flow on all incoming edges of
the source. There are constraints for each edge ensuring that the flow is non-negative

72 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

and not larger than the capacity, and there is a constraint for each node except the
source and the sink ensuring Kirchhoff’s law.

The empty flow x0 is a vertex of the polytope of feasible solutions. In particular,
it is a feasible solution with minimum costs. Hence, letting u be the vector of edge
costs is a valid choice in the shadow vertex method. For this choice every feasible
flow f is projected to the pair (|f |, c(f)). Theorem 4.2.1 guarantees that the cost
function depicted in Figure 4.2 forms the lower envelope of the polygon that results
from projecting the set of feasible flows. There are two possibilities for the shadow
vertex method for the first step: it can choose to follow either the upper or the lower
envelope of this polygon. If it decides for the lower envelope, then it will encounter
exactly the same sequence of flows as the SSP algorithm.

This means that Theorem 4.2.2 can also be interpreted as a statement about the
shadow vertex method applied to the maximum-flow linear program. It says that
for this particular class of linear programs, the shadow vertex method has expected
polynomial running-time even if the linear program is chosen by an adversary. It
suffices to perturb the costs, which determine the projection used in the shadow
vertex method. Hence, if the projection is chosen at random, the shadow vertex
method is a randomized simplex method with polynomial expected running-time for
any flow linear program.

In general, we believe that it is an interesting question to study whether the strong
assumption in Spielman and Teng’s [56] and Vershynin’s [61] smoothed analyses that
all coefficients in the constraints are perturbed is necessary. In particular, we find
it an interesting open question to characterize for which class of linear programs it
suffices to perturb only the coefficients in the objective function or just the projection
in the shadow vertex method to obtain polynomial smoothed running-time.

Brunsch and Röglin have studied a related question [14]. They have proved that
the shadow vertex method can be used to find short paths between given vertices of

a polyhedron. Here, short means that the path length is O(mn
2

δ2), where n denotes
the number of variables, m denotes the number of constraints, and δ is a parameter
that measures the flatness of the vertices of the polyhedron. This result is proved by
a significant extension of the analysis presented here. Dadush and Hähnle [20] have
in turn improved and generalized the results by Brunsch and Röglin.

4.3 Minimum-Mean Cycle Canceling Algorithm

4.3.1 Introduction

In this section we show an upper bound on the smoothed running-time of the
minimum-mean cycle canceling (MMCC) algorithm. The MMCC algorithm is based
on the well-known optimality criterion that a flow f is optimal if and only if there
is no cycle in the corresponding residual network Gf with negative total weight.
The MMCC algorithm first computes any feasible starting flow, and then repeatedly
augments flow along cycles of minimum-mean cost, until no negative-cost cycles re-
main. The choice to augment along minimum-mean cost cycles is made, since this

4.3 Minimum-Mean Cycle Canceling Algorithm 73

guarantees strongly polynomial running-time. When, for example, flow is instead
augmented along the cycle of minimum total costs, the running-time of the algo-
rithm is not guaranteed to be polynomial. Before we proof our upper bound on the
smoothed running-time of the MMCC algorithm, we first give a definition of the
algorithm. For a more elaborate introduction to the MMCC algorithm we refer to
Ahuja et al. [1].

Definition of the Algorithm

Before we define the MMCC algorithm, we first introduce some notation. For an
introduction to the MCF problem and the residual network we refer to Section 1.3.
Consider a flow network G = (V,E). Let C be a cycle in a residual network Gf for
some flow f . We define the mean costs µ(C) of cycle C as

µ(C) =

(∑
e∈C

ce

)
/|C|.

Also, we define the minimum-mean cost cycle for flow f as the cycle C? in the
residual network Gf that has minimum-mean cost. That is,

C? = argmin{µ(C) | C ∈ C},

where C is the set of all cycles in residual network Gf . Finally, we denote the mean
costs of the cycle of minimum-mean cost in the residual network Gf by µ(f) = µ(C?).

We are now ready to define the MMCC algorithm (Algorithm 3).

Algorithm 3 MMCC algorithm.

1: if a feasible flow exists then
2: find a feasible flow f0 using any maximum-flow algorithm
3: else
4: output that no feasible flow exists
5: end if
6: for i = 1, 2, . . . do
7: if Gfi−1 does not contain a negative cycle then
8: output f i−1

9: end if
10: Find a cycle C in Gfi−1 of minimum-mean cost and maximally∗ augment flow

along C to obtain f i

11: end for

∗ Since the flow f i must obey all capacity constraints, the flow is increased by the minimum
of min{ue − f i−1

e | e ∈ C ∩ E} and min{f i−1
e−1 | e ∈ C and e−1 ∈ E}.

74 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

Known Bounds on the Number of Iterations

Goldberg and Tarjan [29] proved in 1989 that the MMCC algorithm runs in strongly
polynomial time. Five years later Radzik and Goldberg [46] slightly improved this
bound on the running-time and showed that it is tight. In the following we will
focus on the number of iterations the MMCC algorithm needs, that is, the number
of cycles that have to be canceled. A bound on the number of iterations can easily
be extended to a bound on the running-time, by noting that a minimum-mean cycle
can be found in O(nm) time, as shown by Karp [33]. The tight bound on the number
of iterations that the MMCC algorithm requires is as follows.

Theorem 4.3.1 (Radzik and Goldberg). The number of iterations required by
the MMCC algorithm is bounded by O(nm2) and this bound is tight.

To prove our smoothed upper bound on the running-time of the MMCC algorithm
we use another result, which states that the absolute value of the mean costs of the
cycle that is canceled by the MMCC algorithm, |µ(f)|, decreases by at least a factor
1/2 every mn iterations.

Theorem 4.3.2 (Korte and Vygen [36, Corollary 9.9]). Every mn iterations
of the MMCC algorithm, |µ(f)| decreases by at least a factor 1/2.

Our Results

In Section 4.3.2 we prove the following upper bound on the expected number of
iterations that the MMCC algorithm requires in the setting of smoothed analysis.

Theorem 4.3.3. The expected number of iterations that the MMCC algorithm re-
quires is O

(
mn(n log(n) + log(φ))

)
.

For dense graphs, this is an improvement over the Θ(m2n) iterations that the
MMCC algorithm needs in the worst case, if we consider φ a constant (which is
reasonable if it models, for example, numerical imprecision or measurement errors).
In Section 5.2 we show lower bounds for the smoothed number of iterations that the
MMCC algorithm requires.

4.3.2 Proof of the Upper Bound

In this section we prove Theorem 4.3.3. In the proofs in this section we use the
concepts of possible residual networks and possible cycles. For their definitions we
refer to Section 1.3. As we remarked at the start of this chapter, all logarithms in
the following are to the base 2. Let Gf0 be the starting initial residual network for
some feasible starting flow f0 for flow network G = (V,E). Like in Section 4.2, we
bound the probability that a possible cycle exists with costs very close to 0.

Lemma 4.3.4. For any real ε > 0 the probability that there exists a possible cycle
whose costs lie in [−ε, 0] is bounded from above by 2n2nεφ.

4.3 Minimum-Mean Cycle Canceling Algorithm 75

Proof. The proof is analogous to the proof of Lemma 4.2.11.

The bound on the probability that a possible cycle has negative total costs close
to 0 allows us to bound the probability that a possible cycle has negative mean costs
close to 0.

Lemma 4.3.5. For any real ε > 0 the probability that there exists a possible cycle
whose mean costs lie in [−ε, 0] is bounded from above by 2n2n+1εφ.

Proof. Follows directly from Lemma 4.3.4 and the fact that the mean costs of a
possible cycle C can lie in the interval [−ε, 0] only if the total costs of C lie in
[−nε, 0].

We now show that we can bound the number of iterations that the MMCC
algorithm requires, if no possible cycle has negative costs close to 0.

Lemma 4.3.6. If no possible residual network Gf contains a cycle C with µ(C) ∈
[−ε, 0[, then the MMCC algorithm requires at most mndlog(1/ε)e iterations.

Proof. Assume to the contrary that no possible residual network contains a cycle
C with µ(C) ∈ [−ε, 0[, but the MMCC algorithm needs more than mndlog(1/ε)e
iterations. Let f0 denote the starting flow found using any maximum-flow algorithm.
Since all edge costs are drawn from the interval [0, 1], we have that |µ(f0)| ≤ 1.
According to Theorem 4.3.2, after i = mndlog(1/ε)e iterations, it holds for the
current flow f i that |µ(f i)| ≤ ε. Now either µ(f i) ≥ 0 contradicting the assumption
that the MMCC algorithm requires more than mndlog(1/ε)e iterations, or µ(f i) ∈
[−ε, 0[contradicting the assumption that no possible residual network Gf contains
a cycle C with µ(C) ∈ [−ε, 0[.

To complete the proof of Theorem 4.3.3 we now use Lemma 4.3.6 to bound the
expected number of iterations that the MMCC algorithm requires in the smoothed
setting.

Proof of Theorem 4.3.3. Let T be the number of iterations that the MMCC algo-
rithm requires and, for compactness, let β = mn

(
(2n + 1)dlog(n)e + dlog(φ)e + 1

)
.

We have

E(T) =

∞∑
t=1

P(T ≥ t)

≤
∞∑
t=1

P(some Gf contains a cycle C with µ(C) ∈ [−2−b(t−1)/mnc, 0[) (4.1)

≤ β +

∞∑
t=β+1

2n2n+1φ2−b(t−1)/mnc (4.2)

≤ β +

∞∑
t=0

2−bt/mnc = β +mn

∞∑
t=0

2−t = O
(
mn(n log(n) + log(φ))

)
. (4.3)

76 4. Smoothed Upper Bounds for Minimum-Cost Flow Algorithms

Here Equation (4.1) follows from Lemma 4.3.6. Equation (4.2) follows by bounding
the probability for the first β terms of the summation by 1 and the probability for
the other terms using Lemma (4.3.5). Finally, the first inequality in Equation (4.3)
follows from the equality log(2n2n+1φ) = (2n+ 1) log(n) + log(φ) + 1.

CHAPTER 5

Smoothed Lower Bounds for

Minimum-Cost Flow Algorithms

In this chapter we show lower bounds for the running-time of the successive shortest
path (SSP) algorithm, the minimum-mean cycle canceling (MMCC) algorithm, and
the network simplex (NS) algorithm in the setting of smoothed analysis. These
lower bounds complement the upper bounds for the smoothed running-time of the
SSP algorithm and the MMCC algorithm that we have proved in Chapter 4. We
show these lower bounds by constructing for each algorithm an instance for which
the algorithm requires a running-time equal to the lower bound. The smoothed lower
bound for the SSP algorithm (Section 5.1) is by Clemens Rösner from the University
of Bonn, and appeared before in his MSc thesis [49]. We include it here for the sake of
completeness. An introduction to the model that we use for the smoothed instances
of the minimum-cost flow problem can be found in Section 4.1. Introductions to the
SSP algorithm and the MMCC algorithm can be found in Sections 4.2.1 and 4.3.1,
respectively. We introduce the NS algorithm in Section 5.3.1. We conclude this
chapter (Section 5.4) with a discussion of all the upper and lower bounds that we
showed for the smoothed running-time of the SSP algorithm, the MMCC algorithm,
and the NS algorithm. Like in the previous chapter, all logarithms in this chapter
are to the base 2, unless stated otherwise.

5.1 Successive Shortest Path Algorithm

5.1.1 Smoothed Lower Bound

In this section we provide a lower bound on the number of augmentation steps that
the successive shortest path (SSP) algorithm requires in the setting of smoothed
analysis. For an introduction to the SSP algorithm we refer to Section 4.2.1. We
prove the following result.

Theorem 5.1.1. For given positive integers n, m ∈ {n, . . . , n2}, and φ ≤ 2n there
exists a minimum-cost flow network with O(n) nodes, O(m) edges, and random
edge costs with smoothing parameter φ for which the SSP algorithm requires Ω(m ·
min {n, φ} · φ) augmentation steps with probability 1.

78 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

The lower bound from Theorem 5.1.1 and the upper bound from Section 4.2 for
the smoothed number of augmentation steps required by the SSP algorithm differ
only a small factor. In case φ = Ω(n), the lower bound is even tight.

5.1.2 Proof of the Lower Bound

This section is devoted to the proof of Theorem 5.1.1. For given positive inte-
gers n, m ∈ {n, . . . , n2}, and φ ≤ 2n let k = blog φc − 5 = O(n) and M =
min

{
n, 2blog φc/4− 2

}
= Θ(min{n, φ}). In the following we assume that φ ≥ 64,

such that we have k,M ≥ 1. If φ < 64, the lower bound on the number of augmen-
tation steps from Theorem 5.1.1 reduces to Ω(m) and a simple flow network like the
network G1 (as explained below, which we will use as initial network in case φ ≥ 64)
with O(n) nodes, O(m) edges, and uniform edge costs proves the lower bound.

We construct a flow network with 2n+2k+2+4M = O(n) nodes, m+2n+4k−
4 + 8M = O(m) edges, and smoothing parameter φ for which the SSP algorithm
requires m · 2k−1 · 2M = Θ(m ·φ ·min{n, φ}) augmentation steps in expectation. To
be exact, we show that for any realization of the edge costs for which there do not
exist multiple paths with exactly the same costs (Property 4.2.4) the SSP algorithm
requires that many iterations. Since this happens with probability 1, we will assume
in the following that Property 4.2.4 holds without further mention.

For the sake of simplicity we consider edge cost densities ge : [0, φ] → [0, 1] in-
stead of ge : [0, 1] → [0, φ]. This model is equivalent to the smoothed input model
introduced in Section 4.1, because both types of densities can be transformed into
each other by scaling by a factor of φ and because the behavior of the SSP algorithm
is invariant under scaling of the edge costs. Furthermore, our densities ge will be
uniform distributions on intervals Ie with lengths of at least 1. In the remainder
of this section we only construct these intervals Ie. Also, all minimum-cost flow
networks constructed in this section have a unique source node s and a unique sink
node t, which is always clear from the context. The node budgets are defined as
bv = 0 for all nodes v /∈ {s, t} and −bt = bs =

∑
e=(s,v) ue =

∑
e=(w,t) ue, that is,

each b-flow equals a maximum s-t-flow.
The construction of the desired minimum-cost flow network G consists of three

steps, which we sketch below and describe in more detail thereafter. Given Prop-
erty 4.2.4, our choice of distributions for the edge costs ensures that the behavior
of the SSP algorithm is the same for every realization of the edge costs. In the
following we say that the SSP algorithm encounters a path P on a flow network G′

if it augments along P when run on G′.

1. In the first step we define a simple flow network G1 with a source s1 and a
sink t1 for which the SSP algorithm requires m augmentation steps.

2. In the second step we take a flow network Gi, starting with i = 1, as the basis
for constructing a larger flow network Gi+1. We obtain the new flow network
by adding a new source si+1, a new sink ti+1, and four edges connecting the
new source and sink with the old source and sink. Additionally, the latter two

5.1 Successive Shortest Path Algorithm 79

nodes are downgraded to “normal” nodes (nodes with a budget of 0) in Gi+1

(see Figure 5.2). By a careful choice of the new capacities and cost intervals
we can ensure the following property: First, the SSP algorithm subsequently
augments along all paths of the form

si+1 → si
P
 ti → ti+1 ,

where P is an si-ti path encountered by the SSP algorithm when run on the
network Gi. Then, it augments along all paths of the form

si+1 → ti

←
P si → ti+1 ,

where P is again an si-ti path encountered by the SSP algorithm when run
on the network Gi. Hence, by adding two nodes and four edges we double the
number of iterations that the SSP algorithm requires. For this construction to
work we have to double the maximum edge cost of our flow network. Hence,
this construction can be repeated k − 1 ≈ log φ times, yielding an additional
factor of 2k−1 ≈ φ for the number of iterations required by the SSP algorithm.

3. In the third step we add a global source s and a global sink t to the flow
network Gk constructed in the second step, and add four directed paths of
length M ≈ min{n, φ}, where each contains M new nodes and has exactly one
node in common with Gk. The first path will end in sk, the second path will
end in tk, the third path will start in sk, and the fourth path will start in tk.
We also add an arc from s to every new node in the first two paths and an arc
from every new node in the last two paths to t (see Figure 5.3). We call the
resulting flow network G. By the right choice of the edge costs and capacities
we ensure that for each sk-tk path P in Gk encountered by the SSP algorithm
on Gk the SSP algorithm on G encounters M augmenting paths having P as

a sub-path and M augmenting paths having
←
P as a sub-path. In this way,

we gain an additional factor of 2M for the number of iterations of the SSP
algorithm.

Construction of G1. For the first step, consider two sets U = {u1, . . . , un} and
W = {w1, . . . , wn} of n nodes and an arbitrary set EUW ⊆ U × W containing
exactly |EUW | = m edges. The initial flow network G1 is defined as G1 = (V1, E1)
for V1 = U ∪W ∪ {s1, t1} and

E1 = ({s1} × U) ∪ EUW ∪ (W × {t1}) .

The edges e from EUW have capacity 1 and costs from the interval Ie = [7, 9].
The edges (s1, ui), ui ∈ U have a capacity equal to the out-degree of ui, the edges
(wj , t1), wj ∈ W have a capacity equal to the in-degree of wj and both have costs
from the interval Ie = [0, 1] (see Figure 5.1). (Remember that we use uniform
distributions on the intervals Ie.)

80 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

EUW

[0, 1] [7, 9] [0, 1]

G1

s1

u1

u2

u3

w1

w2

w3

t1

2

3

2

2

2

3

Figure 5.1: Example for G1 with n = 3 and m = 7 with capacities different from 1
shown next to the edges and the cost intervals shown below each edge set.

Lemma 5.1.2. The SSP algorithm requires exactly m iterations on G1 to obtain
a maximum s1-t1-flow. Furthermore all augmenting paths it encounters have costs
from the interval [7, 11].

Proof. First we observe that the SSP algorithm augments only along paths that are
of the form s1 → ui → wj → t1 for some ui ∈ U and wj ∈W : Consider an arbitrary
augmenting path P the SSP algorithm encounters and assume for contradiction
that P is not of this form. Due to the structure of G1, the first two arcs of P are
of the form (s1, ui) and (ui, wj) for some ui ∈ U and wj ∈ W . The choice of the
capacities ensures that the arc (wj , t1) cannot be fully saturated if the arc (ui, wj) is
not. Hence, when the SSP algorithm augments along P , the arc (wj , t1) is available
in the residual network. Since this arc is not used by the SSP algorithm, the sub-

path wj
P
 t1 has smaller costs than the arc (wj , t1). This means that the distance

of wj to the sink t1 in the current residual network is smaller than in the initial
residual network for the zero flow. This contradicts Lemma 4.2.5.

Since every path that the SSP algorithm encounters on G1 is of the form s1 →
ui → wj → t1, every such path consists of two arcs with costs from the interval [0, 1]
and one arc with costs from the interval [7, 9]. This implies that the total costs of
any such path lie in the interval [7, 11].

The choice of capacities ensures that on every augmenting path of the form s1 →
ui → wj → t1 the arc (ui, wj) is a bottleneck and becomes saturated by the aug-
mentation. As flow is never removed from this arc again, there is a one-to-one
correspondence between the paths that the SSP algorithm encounters on G1 and the
edges from EUW . This implies that the SSP algorithm encounters exactly m paths
on G1.

Construction of Gi+1 from Gi. Now we describe the second step of our con-
struction more formally. Given a flow network Gi = (Vi, Ei) with a source si and a

5.1 Successive Shortest Path Algorithm 81

sink ti, we define Gi+1 = (Vi+1, Ei+1), where Vi+1 = Vi ∪ {si+1, ti+1} and

Ei+1 = Ei ∪ ({si+1} × {si, ti}) ∪ ({si, ti} × {ti+1}) .

Let Ni = 2i−1 · m, which is the value of the maximum si-ti flow in Gi. The new
edges e ∈ {(si+1, si), (ti, ti+1)} have capacity ue = Ni and costs from the interval
Ie = [0, 1]. The new edges e ∈ {(si+1, ti), (si, ti+1)} also have capacity ue = Ni, but
costs from the interval Ie = [2i+3 − 1, 2i+3 + 1] (see Figure 5.2).

Gi+1

si

ti

si+1 ti+1Gi

[0,1]

≈ 2i+3

≈ 2i+3

[0,1]

Figure 5.2: Gi+1 with Gi as sub-graph with edge costs next to the edges.

Next we analyze how many iterations the SSP algorithm requires to reach a
maximum si+1-ti+1 flow when run on the network Gi+1. Before we can start with
this analysis, we prove the following property of the SSP algorithm.

Lemma 5.1.3. After augmenting flow via a cheapest v-w-path P in a network with-

out a cycle with negative total costs,
←
P is a cheapest w-v-path.

Proof. Since we augmented along P , all arcs of
←
P will be part of the residual network.

←
P will therefore be a feasible w-v-path. Assume that after augmenting along P there

exists a w-v-path P ′ that is cheaper than
←
P . Let us take a look at the multi-set

X = P ∪ P ′, which contains every arc e ∈ P ∩ P ′ twice. The total costs of this
multi-set are negative because

c(P) + c(P ′) = −c(
←
P) + c(P ′) < 0

by the assumption that P ′ is cheaper than
←
P . Furthermore, for each node the number

of incoming and outgoing arcs from X is the same. This property is preserved if we
delete all pairs of a forward arc e and the corresponding backward arc e−1 from X,
resulting in a multi-set X ′ ⊆ X. The total costs of the arcs in X ′ are negative
because they equal the total costs of the arcs in X.

For every arc e ∈ X that did not have positive residual capacity before augment-
ing along P , the arc e−1 must be part of P and therefore be part of X as well. This
is due to the fact that only for arcs e with e−1 ∈ P the residual capacity increases
when augmenting along P . Since all such pairs of arcs are deleted, the set X ′ will

82 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

only contain arcs that had a positive residual capacity before augmenting along P .
Since each node has the same number of outgoing and incoming arcs from X ′, we
can partition X ′ into subsets, where the arcs in each subset form a cycle. Since the
total costs of all arcs are negative at least one of these cycles has to have negative
costs, which is a contradiction.

Since during the execution of the SSP algorithm all residual networks do not
contain negative cycles, Lemma 5.1.3 always applies.

Lemma 5.1.4. Let i ≥ 1. All si-ti-paths that the SSP algorithm encounters when
run on the network Gi have costs from the interval [7, 2i+3−5]. Furthermore the SSP
algorithm encounters twice as many paths on the network Gi+1 as on the network
Gi.

Proof. We prove the first half of the lemma by induction over i. In accordance with
Lemma 5.1.2, all paths the SSP algorithm encounters on G1 have costs from the
interval [7, 11] = [7, 24 − 5].

Now assume that all paths that the SSP algorithm encounters on Gi, for some i ≥
1, have costs from the interval [7, 2i+3 − 5]. We distinguish between three different
kinds of si+1-ti+1-paths in Gi+1.

Definition 5.1.5. We classify the possible si+1-ti+1-paths P in Gi+1 as follows.

1. If P = si+1 → si ti → ti+1, then P is called a type-1-path.

2. If P = si+1 → si → ti+1 or P = si+1 → ti → ti+1, then P is called a
type-2-path.

3. If P = si+1 → ti si → ti+1, then P is called a type-3-path.

For any type-2-path P we have

c(P) ∈ [0 + (2i+3 − 1), 1 + (2i+3 + 1)] = [2i+3 − 1, 2i+3 + 2] ⊆ [7, 2i+4 − 5] .

Since due to Lemma 4.2.5 the distance from ti to ti+1 does not decrease during
the run of the SSP algorithm, the SSP algorithm will only augment along a type-
3-path P once the arc (ti, ti+1) is saturated. Otherwise, the ti-ti+1-sub-path of P
could be replaced by the arc (ti, ti+1) to create a cheaper path. Once the arc (ti, ti+1)
has been saturated, the SSP algorithm cannot augment along type-1-paths anymore.
Therefore, the SSP algorithm will augment along all type-1-paths that it encounters
before it augments along all type-3-paths that it encounters.

Since during the time the SSP algorithm augments along type-1-paths no other
augmentations alter the part of the residual network corresponding to Gi, the corre-
sponding sub-paths P ′ are paths in Gi that the SSP algorithm encounters when run
on the network Gi. Using the induction hypothesis, this yields that all type-1-paths
that the SSP algorithm encounters have costs from the interval

[0 + 7 + 0, 1 +
(
2i+3 − 5

)
+ 1] = [7, 2i+3 − 3] ⊆ [7, 2i+4 − 5] .

5.1 Successive Shortest Path Algorithm 83

Since all of these type-1-paths have less costs than the two type-2-paths, the SSP
algorithm will augment along them as long as there still exists an augmenting si-ti-
sub-path P ′. Due to the choice of capacities this is the case until both arcs (si+1, si)
and (ti, ti+1) are saturated. Therefore, the SSP algorithm will not augment along
any type-2-path.

When analyzing the costs of type-3-paths, we have to look at the ti-si-sub-paths.
Let ` be the number of si-ti-paths that the SSP algorithm encounters when run on
the network Gi and let P1, P2, . . . , P` be the corresponding paths in the same order,
in which they were encountered. Then Lemma 5.1.3 yields that for any j ∈ {1, . . . , `}
after augmenting along the paths P1, P2, . . . , Pj the cheapest ti-si-path in the residual

network is
←
Pj . Property 4.2.4 yields that it is the only cheapest path. Also, the

residual network we obtain if we then augment via
←
Pj is equal to the residual network

obtained, when only augmenting along the paths P1, P2, . . . , Pj−1. Starting with
j = ` this yields that the ti-si-sub-paths corresponding to the type-3-paths that the

SSP algorithm encounters are equal to
←
P`, . . . ,

←
P1. By induction the costs of each

such path Pj lie in [7, 2i+3 − 5]. This yields that every type-3-path that the SSP
algorithm encounters has costs from the interval

[(2i+3 − 1)− (2i+3 − 5) + (2i+3 − 1), (2i+3 + 1)− 7 + (2i+3 + 1)]

= [2i+3 + 3, 2i+4 − 5] ⊆ [7, 2i+4 − 5] .

The previous argument also shows that the SSP algorithm encounters on Gi+1

twice as many paths as on Gi because it encounters ` type-1-paths, no type-2-path,
and ` type-3-paths, where ` denotes the number of paths that the SSP algorithm
encounters on Gi.

Since the SSP algorithm augments along m paths when run on the network G1,
it will augment along 2i−1 ·m paths when run on the network Gi. Note, that at the
end of the SSP algorithm, when run on Gi for i > 1, only the 4 arcs incident to si
and ti carry flow.

Construction of G from Gk. Let Nk = 2k−1·m, which is the value of a maximum
sk-tk flow in Gk. We will now use Gk to define G = (V,E) as follows (see also
Figure 5.3).

• V := Vk ∪A ∪B ∪C ∪D ∪ {s, t}, with A := {a1, . . . , aM}, B := {b1, . . . , bM},
C := {c1, . . . , cM}, and D := {d1, . . . , dM}. E := Ek ∪ Ea ∪ Eb ∪ Ec ∪ Ed.

• Ea contains the edges (ai, ai−1), i ∈ {2, . . . ,M}, with cost interval [2k+5 −
1, 2k+5] and infinite capacity, (s, ai), i ∈ {1, . . . ,M}, with cost interval [0, 1]
and capacity Nk, and (a1, sk) with cost interval [2k+4 − 1, 2k+4] and infinite
capacity.

84 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

• Eb contains the edges (bi, bi−1), i ∈ {2, . . . ,M}, with cost interval [2k+5 −
1, 2k+5] and infinite capacity, (s, bi), i ∈ {1, . . . ,M}, with cost interval [0, 1]
and capacity Nk, and (b1, tk) with cost interval [2k+5 − 1, 2k+5] and infinite
capacity.

• Ec contains the edges (ci−1, ci), i ∈ {2, . . . ,M}, with cost interval [2k+5 −
1, 2k+5] and infinite capacity, (ci, t), i ∈ {1, . . . ,M}, with cost interval [0, 1]
and capacity Nk, and (sk, c1) with cost interval [2k+5 − 1, 2k+5] and infinite
capacity.

• Ed contains the edges (di−1, di), i ∈ {2, . . . ,M}, with cost interval [2k+5 −
1, 2k+5] and infinite capacity, (di, t), i ∈ {1, . . . ,m}, with cost interval [0, 1]
and capacity Nk, and (tk, d1) with cost interval [2k+4 − 1, 2k+4] and infinite
capacity.

tk

sk

s t

a1a2a3a4a5 c1 c2 c3 c4 c5

b1b2b3b4b5 d1 d2 d3 d4 d5 capacity ∞

capacity ∞

capacity F

capacity F

Gk

2k+5 2k+5 2k+5 2k+5 2k+4

2k+5 2k+5 2k+5 2k+5 2k+5

2k+5 2k+5 2k+5 2k+5 2k+5

2k+4 2k+5 2k+5 2k+5 2k+5

00000

00000

0 0 0 0 0

0 0 0 0 0

Figure 5.3: G with Gk as sub-graph with approximate edge costs on the edges.

Theorem 5.1.6. The SSP algorithm encounters m · 2k−1 · 2M paths on the net-
work G.

Proof. We categorize the different s-t-paths that the SSP algorithm encounters on
G by the node after s and the node before t. Each such s-t-path can be described
as an {ai, cj}-, {ai, dj}-, {bi, cj}-, or {bi, dj}-path for some i, j ∈ {1, . . . ,M}.

All sk-tk-paths encountered by the SSP algorithm, when run on Gk, have costs
from the interval [7, 2k+3 − 5] in accordance with Lemma 5.1.4. For any i ∈
{1, . . . ,m}, the costs of the s-ai-sk-path and the tk-di-t-path lie in [αi, αi + (i+ 1)]
with αi = 2k+5i− 2k+4 − i and the costs of the s-bi-tk-path and the sk-ci-t-path lie
in [βi, βi + (i+ 1)] with βi = 2k+5i− i. Furthermore i < M + 1 < 2k+3.

Therefore, the SSP algorithm will only augment along {ai, cj}-paths if no {ai, dj}-
paths are available. Also, any {ai, di}-path is shorter than any {bi, ci}-path and

5.2 Minimum-Mean Cycle Canceling Algorithm 85

any {bi, ci}-path is shorter than any {ai+1, di+1}-path. Finally, any {bi, cj}-path is
shorter than any {ai+1, cj}-path or {bi, dj+1}-path. Therefore, the SSP algorithm
will start augmenting along {a1, d1}-paths. After augmenting along {ai, di}-paths
it will augment along {bi, ci}-paths and after augmenting along {bi, ci}-paths it will
augment along {ai+1, di+1}-paths. Due to the choice of the capacities we can see that
once the SSP algorithm starts augmenting along an {ai, di}-path it keeps augmenting
along {ai, di}-paths until there is no sk-tk-path in the residual network that lies
completely in the sub-network corresponding to Gk. Also, once the SSP algorithm
starts augmenting along an {bi, ci}-path it keeps augmenting along {bi, ci}-paths
until there is no tk-sk-path in the residual network that lies completely in the sub-
network corresponding to Gk. After the SSP algorithm augmented along the last
{ai, di}-path the residual network in the sub-network corresponding to Gk is equal to
the residual network of a maximum flow in Gk. After the SSP algorithm augmented
along the last {bi, ci}-path the residual network in the sub-network corresponding to
Gk is equal to Gk. We can see that the SSP algorithm augments along an {ai, di}-
path for every path P it encounters on Gk and along an {bi, ci}-path for the reverse

path
←
P of every path P it encounters on Gk. Therefore, the SSP-algorithm will

augment M times along paths corresponding to the paths it encounters on Gk and
M times along paths corresponding to the reverse paths of these paths and therefore
augment along 2M times as many paths in G as in Gk.

We now complete the proof of Theorem 5.1.1 using Theorem 5.1.6 and the defi-
nitions of k and M .

Proof of Theorem 5.1.1. To show that G contains 2n + 2k + 2 + 4M nodes and
m+ 2n+ 4k−4 + 8M edges, we observe that G1 has 2n+ 2 nodes and m+ 2n edges,
the k − 1 iterations to create Gk add a total of 2k − 2 nodes and 4k − 4 edges and
the construction of G from Gk adds 4M + 2 nodes and 8M edges. This gives a total
of 2n+ 2 + 2k − 2 + 4M + 2 = 2n+ 2k + 2 + 4M nodes and m+ 2n+ 4k − 4 + 8M
edges. Since k,M = O(n) and m ≥ n, G has O(n) nodes and O(m) edges and forces
the SSP algorithm to encounter m · 2k−1 · 2M = Ω(mφM) = Ω(m · φ · min{n, φ})
paths on G.

For φ = Ω(n) this lower bound shows that the upper bound of O(mnφ) augmen-
tation steps in Theorem 4.2.2 is tight.

5.2 Minimum-Mean Cycle Canceling Algorithm

In this section we show a lower bound on the number of iterations that the minimum-
mean cycle canceling (MMCC) algorithm requires in the setting of smoothed anal-
ysis. For an introduction to the MMCC algorithm we refer to Section 4.3.1. In
Section 5.2.1 we prove the following result.

Theorem 5.2.1. For every n, every m ∈ {n, n+ 1, . . . , n2}, and every 64 ≤ φ ≤ 2n,
there exists an instance with Θ(n) nodes and Θ(m) edges for which the MMCC

86 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

algorithm requires Ω(m log(φ)) iterations, independent of the realization of the edge
costs.

Note that Theorem 5.2.1 only holds for φ ≥ 64. We did not try to optimize this
bound on φ, but some lower bound on φ is necessary to show that our result holds
independent of the realization of the edge costs. This is because if we have φ = 1
(that is, all edge costs are drawn uniformly at random from the interval [0, 1]), there
exist realizations of the edge costs for which the starting flow is already optimal
and no cycles have to be canceled. We do believe that even in the case φ = 1,
instances can be constructed for which the expected number of iterations required
by the MMCC algorithm is Ω(m).

If φ is sufficiently large, namely φ = Ω(n2), we can improve our lower bound. In
Section 5.2.2 we prove the following result.

Theorem 5.2.2. For every n ≥ 4 and every m ∈ {n, n+ 1, . . . , n2}, there exists an
instance with Θ(n) nodes and Θ(m) edges, and φ = Θ(n2), for which the MMCC
algorithm requires Ω(mn) iterations, independent of the realization of the edge costs.

Note that this is indeed a stronger lower bound than the bound for general φ,
since we have m log(φ) = Θ(m log(n)) for φ = Θ(n2).

5.2.1 General Lower Bound

In this section we prove Theorem 5.2.1. We describe a construction that, for every n,
every m ∈ {n, n+1, . . . , n2}, and every φ ≤ 2n, provides an instance with Θ(n) nodes
and Θ(m) edges for which the MMCC algorithm requires Ω(m log(φ)) iterations. For
simplicity we describe the initial residual network Gf0 , which occurs after a flow f0

satisfying all the budgets has been found, but before the first minimum-mean cycle
has been canceled. For completeness, we will explain at the end of the description of
Gf0 how to choose the network G, the budgets, and the starting flow f0 such that
Gf0 is the initial residual network.

We now describe how to construct Gf0 given n, m, and φ. As mentioned at the
start of Chapter 4, all logarithms are to the base 2. We define kw = b 1

2 (log(φ)− 4)c
and kx = b 1

2 (log(φ)−5)c. Note that this implies that either kx = kw, or kx = kw−1.
For the edge costs we define intervals from which the edge costs are drawn uniformly
at random. We define Gf0 = (V, E) as follows (see Figure 5.4).

• V = {a, b, c, d} ∪ U ∪ V ∪W ∪X, where U = {u1, . . . , un}, V = {v1, . . . , vn},
W = {w1, . . . , wkw}, and X = {x1, . . . , xkx}.

• E = Euv ∪ Ea ∪ Eb ∪ Ec ∪ Ed ∪ Ew ∪ Ex.

• Euv is an arbitrary subset of U × V of cardinality m. Each arc (ui, vj) has
capacity 1 and cost interval [0, 1/φ].

• Ea contains the arcs (a, ui), Eb contains the arcs (ui, b), Ec contains the arcs
(c, vi), and Ed contains the arcs (vi, d) (i = 1, . . . , n). All these arcs have
infinite capacity and cost interval [0, 1/φ].

5.2 Minimum-Mean Cycle Canceling Algorithm 87

• Ew contains the arcs (d,wi) and (wi, a) (i = 1, . . . , kw). An arc (d,wi) has
capacity m and cost interval [0, 1/φ]. An arc (wi, a) has capacity m and cost
interval [−22−2i,−22−2i + 1/φ].

• Ex contains the arcs (b, xi) and (xi, c) (i = 1, . . . , kx). An arc (b, xi) has
capacity m and cost interval [0, 1/φ]. An arc (xi, c) has capacity m and cost
interval [−21−2i,−21−2i + 1/φ].

Note that all cost intervals have width 1/φ and therefore correspond to valid
probability densities for the edge costs, since the costs are drawn uniformly at random
from these intervals. The arcs (wi, a) and (xi, c) have a cost interval that corresponds
to negative arc costs. The residual network Gf0 with these negative arc costs can
be obtained by having the following original instance G (before computing a flow
satisfying the budget requirements): All nodes, edges, costs and capacities are the
same as in Gf0 , except that instead of the arcs (wi, a) we have edges (a,wi) with
capacity m and cost interval [22−2i − 1/φ, 22−2i] and instead of the arcs (xi, c) we
have edges (c, xi) with capacity m and cost interval [21−2i−1/φ, 21−2i]. In addition,
node a has budget kwm, node c has budget kxm, nodes wi and xi have budget −m
and all other nodes have budget 0. If we now choose as the initial feasible flow the
flow f0 that sends m units from a to each node wi and from c to each node xi, then
we obtain the initial residual network Gf0 .

We now show that the MMCC algorithm needs Ω(m log(φ)) iterations for initial
residual network Gf0 . First we make some basic observations. A minimum-mean
cycle C never contains the path Pj = (d,wj , a) if the path Pi = (d,wi, a) has
positive residual capacity for some i < j, since the mean costs of C can be improved
by substituting Pj by Pi in C. Analogously, C never contains the path Pj = (b, xj , c)
if the path Pi = (b, xi, c) has positive residual capacity for some i < j. Also, since all
cycles considered have mean costs strictly less than −1/φ, the mean costs of a cycle
do not decrease when an extra arc with costs at least −1/φ is added to the cycle.
In addition, since the arcs (wi, a) and (xi, c) are saturated in the order cheapest to
most expensive, none of these arcs will ever be included in reverse direction in the
minimum-mean cycle. The above observations lead to three kinds of candidates for
the minimum-mean cycle: cycles (d,wi, a, u, v, d), cycles (b, xi, c, v, u, b), and cycles
(d,wi, a, u, b, xj , c, v, d). Here u and v are arbitrary nodes in U and V , respectively.
In the following series of lemmas we compare the mean costs of these cycles. Here
u and v are again arbitrary nodes in U and V , possibly different for the cycles that
are compared. In our computations we always assume worst-case realization of the
edge costs, that is, if we want to show that a cycle C1 has lower mean costs than a
cycle C2, we assume that all arcs in C1 take the highest costs in their cost interval,
while all arcs in C2 take the lowest costs in their cost interval (an arc that appears
in both C1 and C2 can even take its highest costs in C1 and its lowest costs in C2 in
the analysis).

Lemma 5.2.3. The cycle C1 = (d,wi, a, u, v, d) has lower mean costs than the cycle
C2 = (b, xi, c, v, u, b).

88 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

Proof. Since the cycles have equal length, we can compare their total costs instead
of their mean costs. We have

c(C1)− c(C2) ≤
(
−22−2i + 5/φ

)
−
(
−21−2i − 1/φ

)
≤ −64/φ+ 6/φ < 0

Here the second inequality holds since i ≤ kx ≤ 1
2 (log(φ)− 5).

Lemma 5.2.4. The cycle C1 = (b, xi, c, v, u, b) has lower mean costs than the cycle
C2 = (d,wi+1, a, u, v, d).

Proof. Since the cycles have equal length, we can compare their total costs instead
of their mean costs. We have

c(C1)− c(C2) ≤
(
−21−2i + 4/φ

)
−
(
−22−2(i+1)

)
≤ −64/φ+ 4/φ < 0

Here the second inequality holds since i+ 1 ≤ kw ≤ 1
2 (log(φ)− 4).

Lemma 5.2.5. The cycle C1 = (d,wi, a, u, v, d) has lower mean costs than the cycle
C2 = (d,wi, a, u, b, xi, c, v, d).

Proof. We have

c(C1)

|C1|
− c(C2)

|C2|
≤
(
−22−2i + 5/φ

)
5

−
(
−22−2i − 21−2i

)
8

≤ −8

5φ
+

1

φ
< 0

Here the second inequality holds since i ≤ kx ≤ 1
2 (log(φ)− 5).

Lemma 5.2.6. The cycle C1 = (b, xi, c, v, u, b) has lower mean costs than the cycle
C2 = (b, xi, c, v, d, wi+1, a, u, b).

Proof. We have

c(C1)

|C1|
− c(C2)

|C2|
≤
(
−21−2i + 4/φ

)
5

−
(
−21−2i − 22−2(i+1)

)
8

≤ −8

5φ
+

4

5φ
< 0

Here the second inequality holds since i+ 1 ≤ kw ≤ 1
2 (log(φ)− 4).

The above observations and lemmas allow us to determine the number of itera-
tions that the MMCC algorithm requires for initial residual network Gf0 .

Theorem 5.2.7. The MMCC algorithm requires m(kw + kx) iterations for initial
residual network Gf0 , independent of the realization of the edge costs.

5.2 Minimum-Mean Cycle Canceling Algorithm 89

Proof. For the first iteration only cycles (d,wi, a, u, v, d) and (d,wi, a, u, b, xi, c, v, d)
are available. According to Lemma 5.2.5, all cycles (d,wi, a, u, v, d) have lower
mean costs than all cycles (d,wi, a, u, b, xi, c, v, d) and therefore the first iteration
will augment along a cycle (d,w1, a, u, v, d). After the first iteration, an arc from
V to U will become available, and therefore cycles (b, xi, c, v, u, b). According to
Lemma 5.2.3 these cycles have higher mean costs than cycles (d,wi, a, u, v, d) how-
ever, and therefore in the first m iterations the MMCC algorithm will augment along
cycles (d,w1, a, u, v, d).

After the first m iterations, the arc (d,w1), the arc (w1, a), and all arcs
in Euv will be saturated. The available cycles are now (b, xi, c, v, u, b) and
(b, xi, c, v, d, wi+1, a, u, b). According to Lemma 5.2.6, all cycles (b, xi, c, v, u, b)
have lower mean costs than all cycles (b, xi, c, v, d, wi+1, a, u, b). The next itera-
tion will therefore augment along a cycle (b, x1, c, v, u, b). After this iteration, an
arc from U to V becomes available and therefore a cycle (d,w2, a, u, v, d), but ac-
cording to Lemma 5.2.4 all cycles (b, xi, c, v, u, b) have lower mean costs than cycles
(d,wi+1, a, u, v, d) and therefore in iterations m + 1, . . . , 2m the MMCC algorithm
augments along cycles (b, x1, c, v, u, b).

After 2m iterations, we again obtain Gf0 , except that now arcs (d,w1), (w1, a),
(b, x1), and (x1, c) are saturated and that there is some flow on the infinite capacity
arcs (a, ui), (ui, b), (c, vi), and (vi, d). The MMCC algorithm will keep augment-
ing among m cycles (d,wi, a, u, v, d) followed by m cycles (b, xi, c, v, u, b) until all
arcs (wi, a) and (xi, c) are saturated and no negative-cost cycles remain. The total
number of iterations the MMCC algorithm needs is therefore m(kw + kx).

The instance G, initial flow f0, and Theorem 5.2.7 allow us to complete the proof
of Theorem 5.2.1.

Proof of Theorem 5.2.1. Follows directly from the instance G, initial flow f0, Theo-
rem 5.2.7, and the definitions of kw and kx.

5.2.2 Lower Bound for φ Dependent on n

This section is devoted to the proof of Theorem 5.2.2. In Section 5.2.1 we considered
the setting where φ is arbitrary. In this setting we showed that the MMCC algorithm
needs Ω(m log(φ)) iterations. We can improve the lower bound if φ is much larger
than n. In this section we consider the case where φ = Ω(n2). In particular, we
describe a construction that for every n ≥ 4 and every m ∈ {n, . . . , n2} provides
an instance with Θ(n) nodes, Θ(m) edges, and φ = Θ(n2) for which the MMCC
algorithm needs Ω(mn) iterations.

As in Section 5.2.1, we construct a flow network H and a feasible flow f0 on H,
which together provide an initial residual network Hf0 . The residual network Hf0

that we use to show our bound is very similar to the initial residual network Gf0 that
was used to show the bound for general φ in Section 5.2.1. Below we describe the
differences (see Figure 5.5 for an illustration). We set φ = 400000n2. The constant

90 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

u1 u2 u3 u4

v1 v2 v3 v4

a b

cd

w2w1 x1 x2

0

0

0

0 0

0 0−1 −1
4

−1
2 −1

8

Figure 5.4: The initial residual network Gf0 for which the MMCC algorithm needs
O(m log(φ)) iterations for n = 4, m = 9, and φ = 64. Next to the arcs are the
approximate arc costs.

of 400000 is large, but for the sake of readability and ease of calculations we did not
try to optimize it.

• The node set W now consists of n nodes {w1, . . . , wn} and the node set X now
consists of n nodes {x1, . . . , xn}.

• Node a is split into two nodes a1 and a2. From node a1 to a2 there is a directed
path consisting of n arcs, all with infinite capacity and cost interval [0, 1/φ].
arcs (a, ui) are replaced by arcs (a2, ui) with infinite capacity and cost interval
[0, 1/φ]. arcs (wi, a) are replaced by arcs (wi, a1) with capacity m and cost

interval [−(n−3
n)

2i−2
,−(n−3

n)
2i−2

+ 1
φ].

• Node c is split into two nodes c1 and c2. From node c1 to c2 there is a directed
path consisting of n arcs, all with infinite capacity and cost interval [0, 1/φ].
arcs (c, vi) are replaced by arcs (c2, vi) with infinite capacity and cost interval
[0, 1/φ]. arcs (xi, c) are replaced by arcs (xi, c1) with capacity m and cost

interval [−(n−3
n)

2i−1
,−(n−3

n)
2i−1

+ 1
φ].

Note that this is a valid choice of cost intervals for the arcs (wi, a1) and (xi, c1)
and that they all have negative costs, since (xn, c1) is the most expensive of them
and we have

−
(
n− 3

n

)2n−1

+
1

φ
≤ −

(
1− 3

n

)2n

+
1

400000n2
≤ −(e−6)2 +

1

6400000
< 0,

5.2 Minimum-Mean Cycle Canceling Algorithm 91

where the second inequality follows from −
(
1− 3

n

)n ≤ −e−6 for n ≥ 4.
As in Section 5.2.1, there are three kinds of candidate cycles for the mini-

mum-mean cost cycle: cycles (d,wi, a, u, v, d), cycles (b, xi, c, v, u, b), and cycles
(d,wi, a, u, b, xj , c, v, d). Here u and v are arbitrary nodes in U and V , respectively.
Also, a stands for the path from a1 to a2 and c stands for the path from c1 to c2.
Again we assume worst-case realizations of the edge costs and compare the mean
costs of the cycles in a series of lemmas.

Lemma 5.2.8. The cycle C1 = (d,wi, a, u, v, d) has lower mean costs than the cycle
C2 = (b, xi, c, v, u, b).

Proof. Since the cycles have equal length, we can compare their total costs instead
of their mean costs. We have

c(C1)− c(C2) ≤
(
−
(
n− 3

n

)2i−2

+
n+ 5

φ

)
−
(
−
(
n− 3

n

)2i−1

− 1

φ

)

≤ −3e−12

n
+
n+ 6

φ
< 0

Here the second inequality holds since i ≤ n and −
(
n−3
n

)2n ≤ −e−12 for n ≥ 4.

Lemma 5.2.9. The cycle C1 = (b, xi, c, v, u, b) has lower mean costs than the cycle
C2 = (d,wi+1, a, u, v, d).

Proof. Since the cycles have equal length, we can compare their total costs instead
of their mean costs. We have

c(C1)− c(C2) ≤
(
−
(
n− 3

n

)2i−1

+
n+ 4

φ

)
−
(
−
(
n− 3

n

)2(i+1)−2
)

≤ −3e−12

n
+
n+ 4

φ
< 0

Here the second inequality holds since i + 1 ≤ n and −
(
n−3
n

)2n ≤ −e−12 for n ≥
4.

Lemma 5.2.10. The cycle C1 = (d,wi, a, u, v, d) has lower mean costs than the
cycle C2 = (d,wi, a, u, b, xi, c, v, d).

Proof. We have

c(C1)

|C1|
− c(C2)

|C2|
≤

(
−
(
n−3
n

)2i−2
+ n+5

φ

)
n+ 5

−

(
−
(
n−3
n

)2i−2 −
(
n−3
n

)2i−1
)

2n+ 8

≤ −e−12

(
n+ 15

(n+ 5)(2n+ 8)n

)
+

1

φ
< 0

Here the second inequality holds since i ≤ n and −
(
n−3
n

)2n ≤ −e−12 for n ≥ 4.

92 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

Lemma 5.2.11. The cycle C1 = (b, xi, c, v, u, b) has lower mean costs than the cycle
C2 = (b, xi, c, v, d, wi+1, a, u, b).

Proof. We have

c(C1)

|C1|
− c(C2)

|C2|
≤

(
−
(
n−3
n

)2i−1
+ n+4

φ

)
n+ 5

−

(
−
(
n−3
n

)2i−1 −
(
n−3
n

)2(i+1)−2
)

2n+ 8

≤ −e−12

(
n+ 15

(n+ 5)(2n+ 8)n

)
+

n+ 4

(n+ 5)φ
< 0

Here the second inequality holds since i + 1 ≤ n and −
(
n−3
n

)2n ≤ −e−12 for n ≥
4.

The above lemmas allow us to determine the number of iterations that the MMCC
algorithm requires for initial residual network Hf0 .

Theorem 5.2.12. The MMCC algorithm requires 2mn iterations for initial residual
network Hf0 , independent of the realization of the edge costs.

Proof. The proof is similar to the proof of Theorem 5.2.7. Because cycles
(d,wi, a, u, v, d) have lower mean costs than both cycles (b, xi, c, v, u, b) and cycles
(d,wi, a, u, b, xi, c, v, d) according to Lemma 5.2.8 and Lemma 5.2.10, the first m it-
erations will augment flow along cycles (d,w1, a, u, v, d). After these m iterations,
arcs (d,w1) and (w1, a1) are saturated and the arcs in Euv have positive residual
capacity only in the direction from V to U .

Cycles (b, xi, c, v, u, b) have lower mean costs than both cycles (d,wi+1, a, u, v, d)
and cycles (b, xi, c, v, d, wi+1, a, u, b) according to Lemma 5.2.9 and Lemma 5.2.11.
Thus, the next m iterations will augment flow along cycles (b, x1, c, v, u, b). After
the first 2m iterations, the residual network is the same as Hf0 , except that arcs
(d,w1), (w1, a1), (b, x1), and (x1, c1) are saturated and there is some flow on several
arcs of infinite capacity. The MMCC algorithm will keep augmenting along m cycles
(d,wi, a, u, v, d) followed bym cycles (b, xi, c, v, u, b), until all arcs (wi, a1) and (xi, c1)
are saturated. At this point no negative cycles remain in the residual network and
the MMCC algorithm terminates after 2mn iterations.

Initial residual network Hf0 and Theorem 5.2.12 allow us to complete the proof
of Theorem 5.2.2.

Proof of Theorem 5.2.2. Follows directly from the instance H, initial flow f0, and
Theorem 5.2.12.

5.3 Network Simplex Algorithm 93

u1 u2 u3 u4

v1 v2 v3 v4

a1 b

c1d

w4w1 x1 x4

0

0

0

0 0

0 0−1 −(n−3n)6

−(n−3n) −(n−3n)7

a2
0 0 0 0

0

c2

0

.

0 0 0 0

Figure 5.5: The initial residual network Hf0 for which the MMCC algorithm needs
Ω(mn) iterations for n = 4, m = 9, and φ = 400000n2. Next to the arcs are the
approximate arc costs.

5.3 Network Simplex Algorithm

5.3.1 Introduction

In this section we show a lower bound on the number of iterations that the net-
work simplex (NS) algorithm needs in the setting of smoothed analysis. The NS
algorithm is an adaptation of the simplex method for linear programming [22] that
takes advantage of the special structure of the minimum-cost flow problem. The
NS algorithm maintains a spanning tree T of edges on which flow is allowed to be
different from 0 or the edge capacity. On all other edges the flow is either equal to
0 or equal to the edge capacity. In every iteration an edge is added to T , creating
a unique cycle with negative costs. Flow is maximally augmented along this cycle
to decrease the costs of the flow. Because of this flow augmentation at least one
arc gets saturated and the edge corresponding to this arc is removed from T , such
that T is again a spanning tree. The NS algorithm terminates when no edge can be
added to T to form a cycle with negative costs. Before we prove our smoothed lower
bound on the number of iterations required by the NS algorithm, we first introduce
the algorithm. For a more elaborate introduction to the NS algorithm we refer to
Ahuja et al. [1].

Definition of the Algorithm

The NS algorithm starts with an initial spanning tree structure (T 0, L0, U0) and as-
sociated flow f0. It maintains such a spanning tree structure (T i, Li, U i) throughout

94 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

the execution of the algorithm. In each iteration i of the NS algorithm, each edge in
E is included in exactly one of T i, Li, and U i, and it holds that

• f ie = 0 for all edges e ∈ Li,

• f ie = ue for all edges e ∈ U i,

• 0 ≤ f ie ≤ ue for all edges e ∈ T i, and

• the edges in T i form a spanning tree of G (if we consider the undirected version
of both the edges of T i and the graph G).

If the MCF problem has a feasible solution, such an initial spanning tree structure
(T 0, L0, U0) can always be found by first finding any feasible flow and then aug-
menting flow along cycles in the residual network consisting of only arcs that are not
saturated, but have a non-zero amount of flow on them, until no such cycles remain.
Note that the structure (T i, Li, U i) uniquely determines the flow f i, since the edges
in T i form a tree. In addition to the spanning tree structure, the NS algorithm also
keeps track of a set of node potentials πiv for all nodes v ∈ V . The node potentials
are defined such that the potential of a specified root node is 0 and that the potential
for other nodes is such that the reduced cost rciuv = cuv − πiu + πiv of an edge (u, v)
equals 0 for all edges (u, v) ∈ T i.

In each iteration i + 1, the NS algorithm tries to improve the current flow by
adding an edge to T i that violates its optimality condition. An edge in Li violates
its optimality condition if it has strictly negative reduced cost, while an edge in U i

violates its optimality condition if it has strictly positive reduced cost. One of the
edges e that violates its optimality condition is selected, which creates a unique cycle
C in T i ∪ {e} (if we consider the undirected version of the edges in T i and edge e).
Flow is maximally augmented along C in the direction that decreases the costs of
the flow, until one of the arcs e′ ∈ C gets saturated. The new spanning tree T i+1 is
obtained by adding edge e to T i and removing the edge corresponding to e′. Next,
we update the sets Li and U i, the flow, and the node potentials. This completes the
iteration. If any edges violating their optimality condition remain, another iteration
is performed. One iteration of the NS algorithm is also called a pivot. The edge e
that is added to T i is called the entering edge and the edge e′ that leaves T i is called
the leaving edge. Note that in some cases the entering edge can be the same edge as
the leaving edge (when the arc corresponding to the entering edge has the smallest
residual capacity of all arcs in the cycle C). Also, if one of the arcs in the cycle C
has 0 residual capacity, the flow is not changed in that iteration, but the spanning
tree T i still changes. Such an iteration we call degenerate.

Note that in each iteration, there can be multiple edges violating their optimality
condition. There are multiple possible pivot rules that determine which edge enters
T i in this case. In our analysis we use the (widely used in practice) pivot rule that
selects as the entering edge, from all edges violating their optimality condition, the
edge for which the absolute value of its reduced cost |rcie| is maximum. In case
multiple edges corresponding to arcs in C are candidates to be the leaving edge, we

5.3 Network Simplex Algorithm 95

choose the one that is most convenient for our analysis. We are now ready to define
the NS algorithm (Algorithm 4).

Algorithm 4 Network simplex algorithm.

1: if a feasible flow exists then
2: find an initial spanning tree structure (T 0, L0, U0) and compute the corre-

sponding flow f0 and node potentials π0
v

3: else
4: output that no feasible flow exists
5: end if
6: for i = 1, 2, . . . do
7: if for spanning tree structure (T i−1, Li−1, U i−1) no edge violates its optimality

condition then
8: output f i−1

9: end if
10: find edge e that maximally violates its optimality condition and maximally∗

augment flow along the unique cycle C in T i−1 ∪ {e} in the direction that
decreases the costs of the flow

11: let e′ be the edge corresponding to the arc that gets saturated by augmenting
along C

12: set T i = T i−1 ∪ {e}\{e′}
13: update Li, U i, f i, and πiv
14: end for

∗ Since the flow f i must obey all capacity constraints, the flow is increased by the minimum
of min{ue − f i−1

e | e ∈ C ∩ E} and min{f i−1
e−1 | e ∈ C and e−1 ∈ E}.

Known Bounds on the Number of Iterations

If a strongly feasible spanning tree structure [1] is used, it can be shown that the
number of iterations that the NS algorithm needs is finite. However, Zadeh [66] has
shown that there exist instances for which the NS algorithm (with the pivot rule
stated above) needs an exponential number of iterations. Orlin [44] has developed a
strongly polynomial version of the NS algorithm, which uses cost-scaling. However,
this algorithm is rarely used in practice and we will not consider it in the rest of this
chapter. For a more elaborate discussion of the NS algorithm we refer to Ahuja et
al. [1].

Our Results

We show a lower bound on the number of iterations that the NS algorithm requires
in the setting of smoothed analysis. In Section 5.3.2 we prove the following result.

Theorem 5.3.1. For every n, every m ∈ {n, . . . , n2}, and every 64 ≤ φ ≤ 2n there
exists a flow network with Θ(n) nodes and Θ(m) edges, and an initial spanning

96 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

tree structure for which the network simplex algorithm requires Ω(m ·min{n, φ} · φ)
non-degenerate iterations with probability 1.

As for our lower bound on the smoothed number of iterations required by the
MMCC algorithm (Theorem 5.2.1), we require that φ is sufficiently large in Theo-
rem 5.3.1. Again, this is because we show our result independent of the realization
of the edge costs, and in the average case (φ = 1) there are realizations of the edge
costs for which the starting flow is already optimal.

Note that our lower bound for the NS algorithm is the same as our lower bound
on the smoothed number of iterations of the SSP algorithm (Section 5.1). This is no
coincidence, since we use essentially the same instance (with some minor changes) to
show our lower bound. We show that with the proper choice of the initial spanning
tree structure for the NS algorithm, we can ensure that the NS algorithm performs
the same flow augmentations as the SSP algorithm and therefore needs the same
number of iterations (plus some degenerate ones).

5.3.2 Proof of the Lower Bound

In this section we prove Theorem 5.3.1. The instance H of the minimum-cost flow
problem that we use to show this lower bound is very similar to the instance G that
we used in Section 5.1 to show a lower bound on the number of iterations that the
successive shortest path algorithm needs in the smoothed setting. The differences
are that we add an extra path from node s to node t and that the budgets of the
nodes are defined slightly differently. For the construction of G and the definition of
the parameters k and M , we refer to Section 5.1. In the following we describe how
to construct H, using G as a sub-graph. As in Section 5.1, we consider scaled edge
cost density functions ge : [0, φ] → [0, 1]. In the analysis, we assume that all paths
from s to t have pairwise different costs, which holds with probability 1, since the
edge costs are drawn from continuous probability distributions.

Let V and E be the node and edge sets of flow network G, respectively, as defined
in Section 5.1. We construct a flow network H = (VH , EH) = (V ∪ Q,E ∪ Eq) by
adding to G a set of nodes Q and a set of edges Eq. Here,

• Q := {q1, q2, . . . , q2M}.

• Eq contains the edges (qi−1, qi), i ∈ {2, . . . , 2M}, with cost interval [2k+5 −
1, 2k+5] and infinite capacity; (s, q1), with cost interval [2k+5 − 1, 2k+5] and
infinite capacity; and (q2M , t) with cost interval [2k+5 − 1, 2k+5] and infinite
capacity.

The budgets of all nodes are 0, except for node s and t, which have budgets
b(s) = 2MNk and b(t) = −2MNk. Here Nk is the value of a maximum sk − tk
flow, as defined in Section 5.1. We choose as the initial spanning tree T 0 for the NS
algorithm the edges

• (s1, ui) (i = 1, . . . , n) and (wi, t1) (i = 1, . . . , n),

5.3 Network Simplex Algorithm 97

EUW

[0, 1] [7, 9] [0, 1]

G1

s1

u1

u2

u3

w1

w2

w3

t1

2

3

2

2

2

3

Figure 5.6: Example for G1 with n = 3 and m = 7 with capacities different from 1
shown next to the edges and the cost intervals shown below each edge set. Dashed
edges are in the initial spanning tree for the network simplex algorithm, while solid
edges are not.

• (si+1, si) (i = 1, . . . , k − 1) and (ti, ti+1) (i = 1, . . . , k − 1),

• (s, a1), (ai, ai−1) (i = 2, . . . ,M), and (a1, sk),

• (sk, c1) and (ci−1, ci) (i = 2, . . . ,M),

• (bi, bi−1) (i = 2, . . . ,M) and (b1, tk),

• (d1, t), (tk, d1), and (di−1, di) (i = 2, . . . ,M),

• (s, q1), (qi, qi+1) (i = 1, . . . , 2M − 1), and (q2M , t).

In addition, we define L0 = EH\T 0 and U0 = ∅. The spanning tree structure
(T 0, L0, U0) corresponds to the flow that sends 2MNk units of flow on the path
(s, q1, . . . , q2M , t) and does not send any flow on other edges. For an illustration of the
subnetworks G1 and Gi+1, and the complete network H, we refer to Figures 5.6, 5.7,
and 5.8. In these figures, the edges that are in the initial spanning tree T 0 are drawn
dashed.

To prove our lower bound on the number of iterations that the NS algorithm needs
for flow network H, we link the non-degenerate iterations of the NS algorithm to the
iterations of the SSP algorithm for flow network G. According to Theorem 5.1.6,
the SSP algorithm needs Ω(m · min{n, φ} · φ) iterations for flow network G. We
show that each non-degenerate iteration of the NS algorithm on H corresponds with
an iteration of the SSP algorithm on G and that therefore the NS algorithm needs
Ω(m · min{n, φ} · φ) iterations for flow network H as well. In our analysis we use

98 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

Gi+1

si

ti

si+1 ti+1Gi

[0, 1]

≈ 2i+3

≈ 2i+3

[0, 1]

Figure 5.7: Gi+1 with Gi as a sub-graph with edge costs next to the edges. Dashed
edges are in the initial spanning tree for the network simplex algorithm, while solid
edges are not.

tk

sk

s t

a1a2a3a4a5 c1 c2 c3 c4 c5

b1b2b3b4b5 d1 d2 d3 d4 d5

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

capacity ∞

capacity ∞

capacity F

capacity F

capacity ∞

2k+5 2k+5

Gk

2k+5 2k+5 2k+5 2k+5 2k+4

2k+5 2k+5 2k+5 2k+5 2k+5

2k+5 2k+5 2k+5 2k+5 2k+5

2k+4 2k+5 2k+5 2k+5 2k+5

00000

00000

0 0 0 0 0

0 0 0 0 0

2k+5 2k+5 2k+5 2k+5 2k+5 2k+5 2k+5 2k+5 2k+5

Figure 5.8: H with Gk as a sub-graph with approximate edge costs next to the edges.
Dashed edges are in the initial spanning tree for the network simplex algorithm, while
solid edges are not.

many results on the costs of paths in G from Section 5.1. We will not prove these
results again, but refer to the original proofs.

We now first show that path (s, q1, . . . , q2M , t) is the most expensive path from
s to t in H. Since paths from sk to tk have costs less than 2k+3 (Lemma 5.1.4), the
most expensive s − t paths that do not use the nodes qi are (s, aM , . . . , cM , t) and
(s, bM , . . . , dM , t). Both those paths have the same distribution for their costs. If
we arbitrarily choose path (s, aM , . . . , cM , t) and compare its costs with the costs of

5.3 Network Simplex Algorithm 99

path (s, q1, . . . , q2M , t), assuming worst case edge-cost realizations, we have

c(s, q1, . . . , q2M , t)− c(s, aM , . . . , cM , t)

≥ (2M + 1)

(
2k+5 − 1

φ

)
−
(

(2M − 1)2k+5 + 2k+4 + 2

φ

)
=

3 · 2k+4 − 2M − 3

φ
> 0,

by the definition of k and M and φ ≥ 64. This shows that path (s, q1, . . . , q2M , t) is
the most expensive path from s to t in G.

Since PQ = (s, q1, . . . , q2M , t) is the most expensive s − t path, we can obtain a

negative cycle K by combining path
←
PQ with another s − t path P . Clearly, the

cheaper P is, the cheaper is K. In addition, if all edges corresponding to the arcs
of K except for one edge (u, v) ∈ Li are in the current spanning tree T i, then edge
(u, v) has reduced cost equal to the costs of K, since all edges in T i have reduced cost
0. Similarly, in case (u, v) ∈ U i, the reduced cost of (u, v) is instead equal to −K.
Using these two observations, we can conclude that as long as all negative cycles
that can be formed using arcs corresponding to edges in the current spanning tree
T i plus one arc that has positive residual capacity in the current residual network

consist of path
←
PQ plus an s − t path P , then the NS algorithm will choose as the

entering edge the edge that together with some of the edges in T i forms the cheapest
s− t path.

In Section 5.1 we have shown that the SSP algorithm encounters 2MNk paths
on G. Let P 1, . . . , P 2MNk be the paths encountered on G by the SSP algorithm,
ordered from cheapest to most expensive. We refer the reader to Section 5.1 for a
description of these paths. In the following we show that in the ith non-degenerate

iteration of the NS algorithm on H, flow is sent along cycle
←
PQ ∪P i. We will not

provide all the calculations needed to compare the reduced cost of the candidate
edges for addition to the spanning tree in each iteration, but it can be checked by
tedious computation that the claimed edge is indeed the edge that maximally violates
its optimality condition. If flow is sent over one of the edges in EUW , that edge is
always a candidate leaving edge, since edges in EUW have capacity 1 and all other
capacities are integral. For simplicity we assume that in cases where multiple arcs
in the cycle become saturated simultaneously by the flow augmentation, it is always
the edge from EUW that leaves the spanning tree.

In the first iteration of the NS algorithm on H, all edges in EUW have negative
reduced cost and positive residual capacity, and the edge (ui, wj) that together with
the initial spanning tree T 0 contains path P 1 is added to T 0, flow is augmented along

cycle
←
PQ ∪P 1, and (ui, wj) becomes saturated and leaves T 0 again. The spanning

tree structure is updated to (T 1, L1, U1). For the second iteration, edge (ui, wj) is
saturated and therefore the edge that together with T 1 contains P 2 will be added
to T 1. This will continue for the first m iterations.

At this point, the cheapest s−t path using arcs corresponding to edges in Tm plus

100 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

one arc with positive residual capacity is the path that is obtained by using either arc
(s2, t1) or arc (s1, t2) (depending on the realization of the edge costs). The next two
iterations will therefore be degenerate. In one of these iterations (s2, t1) is added
to the spanning tree, but edge (t1, t2) is saturated, prevents any flow from being
sent along the cycle, and is therefore removed from the spanning tree. In the other
iteration (s1, t2) is added to the spanning tree and (s2, s1) is removed. After these
two iterations the edges in EUW become eligible for augmenting flow in backward

direction and the next m iterations augment flow along the cycles
←
PQ ∪Pm+1, . . . ,

←
PQ ∪P 2m.

Analogously to the above, every time an edge (si+1, si) gets saturated, two de-
generate iterations take place in which edges (si, ti+1) and (si+1, ti) are added to the
spanning tree. This allows flow to be sent through Gi in backward direction, that
is, from ti to si. Similarly, every time an arc (ti+1, si) (that is, the backward arc
corresponding to an original edge (si, ti+1)) in the residual network gets saturated,
two degenerate iterations take place in which edges (ti, ti+1) and (si+1, si) are added
to the spanning tree.

After Nk non-degenerate iterations, there are no paths with positive residual
capacity from sk to tk. At this point another two degenerate iterations take place.
In one of them edge (c1, t) is added to the spanning tree, but no flow is sent since
(s, a1) has zero residual capacity, and therefore (s, a1) leaves the spanning tree. In
the other degenerate iteration (s, b1) is added to the spanning tree and (di, t) leaves.
Now the edges in EUW can be added to the spanning tree again and flow is augmented
along them in backward direction during the next m iterations. In particular, in the

next iteration flow is augmented along cycle
←
PQ ∪PNk+1.

Analogously to the above, every time an edge (s, ai) gets saturated, two degen-
erate iterations take place. In one of them (ci, t) enters the spanning tree and (s, ai)
leaves. In the other (s, bi) enters the spanning tree and (d1, t) leaves. Also, every
time an edge (s, bi) gets saturated, two degenerate iterations take place. In one of
them (di+1, t) enters the spanning tree and (s, bi) leaves. In the other (s, ai+1) enters
the spanning tree and (ci, t) leaves.

Finally, after 2MNk non-degenerate iterations none of the edges violate their op-
timality conditions, and therefore the NS algorithm terminates. From the above dis-
cussion we can conclude that the NS algorithm on H requires 2MNk non-degenerate
iterations plus several degenerate ones.

Theorem 5.3.2. For flow network H and initial spanning tree structure (T 0, L0, U0),
the NS algorithm requires 2MNk non-degenerate iterations with probability 1.

Proof. Follows immediately from the discussion above.

We complete the proof of Theorem 5.3.1 using Theorem 5.3.2 and the definitions
of M and Nk.

Proof of Theorem 5.3.1. Follows directly from Theorem 5.3.2 and the definitions of
M and Nk.

5.4 Comparison of the Upper and Lower Bounds 101

5.4 Comparison of the Upper and Lower Bounds

In Section 5.3 we have shown a smoothed lower bound of Ω(m · min{n, φ} · φ) for
the number of iterations that the NS algorithm needs. This bound is the same as
the smoothed lower bound for the SSP algorithm that we have shown in Section 5.1.
For the SSP algorithm this lower bound is even tight in case φ = Ω(n). Still, the NS
algorithm is usually much faster in practice than the SSP algorithm. We believe that
the reason for this difference is that the time needed per iteration is much less for
the NS algorithm than for the SSP algorithm. In practical implementations of the
NS algorithm, the entering edge is usually picked from a small subset (for example
of size Θ(

√
m)) of the edges, which removes the necessity of scanning all edges for

the edge which maximally violates its optimality condition. Also, the spanning tree
structure allows for fast updating of the flow and node potentials, in particular when
the flow changes on only a small fraction of the edges. For the SSP algorithm, an
iteration consists of finding a shortest path, which takes O(m+ n log(n)) time. The
experimental results of Kovács [37] seem to support this claim, since on all test
instances the SSP algorithm is slower than the NS algorithm, but never more than a
factor m. To allow a better comparison of the SSP algorithm and the NS algorithm
in the smoothed setting, it would be useful to have a smoothed upper bound on the
running-time of the NS algorithm. Finding such an upper bound is our main open
problem. Note that the smoothed upper bounds for the running-time of the simplex
method for linear programming by Spielman and Teng [56] and by Vershynin [61] do
not apply to the NS algorithm. In their models the coefficients and the right-hand
side of the constraints of the linear program are perturbed. This is in contrast to our
model (Section 4.1), where we perturb the coefficients of the objective function (that
is, the edge costs), but not the coefficients and the right-hand side of the constraints.
We make this choice because perturbing the coefficients and right-hand side of the
constraints would change the structure of the problem. Flows that are feasible for
the original problem could be infeasible for the perturbed problem, and vice versa.
It might even be the case that the original problem is feasible, but the perturbed
problem does not have any feasible solutions. In contrast, perturbing only the edge
costs ensures that the feasible solutions for the original problem are the same as the
feasible solutions for the perturbed problem.

There is a gap between our smoothed lower bound of Ω(m log(φ)) (Section 5.2.1)
for the number of iterations that the MMCC algorithm requires and our smoothed
upper bound of O

(
mn(n log(n) + log(φ))

)
. Since our lower bound for the MMCC

algorithm is weaker than the lower bound for the SSP algorithm, while the MMCC
algorithm performs worse on practical instances than the SSP algorithm, we believe
that our lower bound for the MMCC algorithm can be strengthened. Our stronger
lower bound of Ω(mn) in case φ = Ω(n2) (Section 5.2.2) is another indication that
this is likely possible.

102 5. Smoothed Lower Bounds for Minimum-Cost Flow Algorithms

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

[2] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the
k-means method. Journal of the ACM, 58(5), 2011.

[3] Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Riccardo Zecchina.
Belief-propagation for weighted b-matching on arbitrary graphs and its relation
to linear programs with integer solutions. SIAM Journal on Discrete Mathe-
matics, 25(2):989–1011, 2011.

[4] Mohsen Bayati, Alfredo Braunstein, and Riccardo Zecchina. A rigorous analysis
of the cavity equations for the minimum spanning tree. Journal of Mathematical
Physics, 49(12):125206, 2008.

[5] Mohsen Bayati, Devavrat Shah, and Mayank Sharma. Max-product for maxi-
mum weight matching: Convergence, correctness, and LP duality. IEEE Trans-
actions on Information Theory, 54(3):1241–1251, 2008.

[6] René Beier and Berthold Vöcking. Random knapsack in expected polynomial
time. Journal of Computer and System Sciences, 69(3):306–329, 2004.

[7] René Beier and Berthold Vöcking. Random knapsack in expected polynomial
time. Journal of Computer and System Sciences, 69(3):306–329, 2004.

[8] René Beier and Berthold Vöcking. Typical properties of winners and losers in
discrete optimization. SIAM Journal in Computing, 35(4):855–881, 2006.

[9] Robert G. Bland, Donald Goldfarb, and Michael J. Todd. The ellipsoid method:
A survey. Operations Research, 29(6):1039–1091, November 1981.

[10] Tobias Brunsch. Smoothed analysis of selected optimization problems and algo-
rithms. PhD thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2014.

[11] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and Heiko Röglin.
Smoothed analysis of belief propagation for minimum-cost flow and matching.
Journal of Graph Algorithms and Applications, 17(6):647–670, 2013. Prelimi-
nary version presented at the 7th International Workshop on Algorithms and
Computation (WALCOM 2013).

104 Bibliography

[12] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Röglin, and Clemens
Rösner. Smoothed analysis of the successive shortest path algorithm. SIAM
Journal on Computing, 44(6):1798–1819, 2015. Preliminary version presented
at the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA 2013).

[13] Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multiobjec-
tive optimization. In Proc. of the 44th Ann. ACM Symp. on Theory of Com-
puting (STOC), pages 681–690. ACM, 2012.

[14] Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the
shadow vertex algorithm. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science,
pages 279–290. Springer, 2013.

[15] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family
of miminum-cost network flow patterns. Technical Report Technical Paper 15,
Operations Research Office, 1960.

[16] Amin Coja-Oghlan, Elchanan Mossel, and Dan Vilenchik. A spectral approach
to analysing belief propagation for 3-colouring. Combinatorics, Probability and
Computing, 18(6):881–912, 2009.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[18] Kamiel Cornelissen and Bodo Manthey. Belief propagation for the maximum-
weight independent set and minimum spanning tree problems. Submitted, 2015.

[19] Kamiel Cornelissen and Bodo Manthey. Smoothed analysis of the minimum-
mean cycle canceling algorithm and the network simplex algorithm. In
Dachuan Xu, Donglei Du, and Dingzhu Du, editors, Proceedings of the
21st International Computing and Combinatorics Conference (COCOON
2015), volume 9198 of Lecture Notes in Computer Science, pages 701–712.
Springer, 2015. Invited to appear in Algorithmica. Full version available at
http://arxiv.org/abs/1504.08251.

[20] Daniel Dadush and Nicolai Hähnle. On the shadow simplex method for curved
polyhedra. In Lars Arge and János Pach, editors, 31st International Symposium
on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The
Netherlands, volume 34 of LIPIcs, pages 345–359. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2015.

[21] Valentina Damerow, Bodo Manthey, Friedhelm Meyer auf der Heide, Harald
Räcke, Christian Scheideler, Christian Sohler, and Till Tantau. Smoothed analy-
sis of left-to-right maxima with applications. ACM Transactions on Algorithms,
8(3), 2012.

Bibliography 105

[22] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In T. C. Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. Wiley, New York, 1951.

[23] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[24] Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and proba-
bilistic analysis of the 2-Opt algorithm for the TSP. In Proc. of the 18th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1295–1304. SIAM,
2007.

[25] Guy Even and Nissim Halabi. Analysis of the min-sum algorithm for packing
and covering problems via linear programming. IEEE Transactions on Infor-
mation Theory, 61(10):5295–5305, 2015.

[26] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[27] Delbert R. Fulkerson. An out-of-kilter method for minimal cost flow problems.
Journal of the SIAM, 9(1):18–27, 1961.

[28] David Gamarnik, Devavrat Shah, and Yehua Wei. Belief propagation for
min-cost network flow: Convergence and correctness. Operations Research,
60(2):410–428, 2012.

[29] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations
by canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

[30] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations
by successive approximation. Mathematics of Operations Research, 15(3):430–
466, 1990.

[31] Masao Iri. A new method for solving transportation-network problems. Journal
of the Operations Research Society of Japan, 3(1,2):27–87, 1960.

[32] William S. Jewell. Optimal flow through networks. Operations Research,
10(4):476–499, 1962.

[33] Richard M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309 – 311, 1978.

[34] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha,
editor, Inequalities – III, pages 159–175. Academic Press, 1969.

[35] Morton Klein. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science, 14(3):205–220,
1967.

106 Bibliography

[36] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer, 4th edition, 2007.

[37] Péter Kovács. Minimum-cost flow algorithms: An experimental evaluation.
Optimization Methods Software, 30(1):94–127, January 2015.

[38] Bodo Manthey. Smoothed analysis of local search algorithms. In Frank Dehne,
Jörg-Rüdiger Sack, and Ulrike Stege, editors, Proc. 14th Algorithms and Data
Structures Symposium (WADS), volume 9214 of Lecture Notes in Computer
Science, pages 518–527. Springer, 2015.

[39] Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms
beyond worst case. it – Information Technology, 53(6):280–286, 2011.

[40] George J. Minty. Monotone networks. In Proceedings of the Royal Society of
London A, pages 194–212, 1960.

[41] Joris M. Mooij. Understanding and Improving Belief Propagation. PhD thesis,
Radboud University Nijmegen, May 2008.

[42] James B. Orlin. Genuinely polynomial simplex and non-simplex algorithms for
the minimum cost flow problem. Technical report, Sloan School of Management,
MIT, Cambridge, MA, 1984. Technical Report No. 1615-84.

[43] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
Operations Research, 41(2):338–350, 1993.

[44] James B. Orlin. A polynomial time primal network simplex algorithm for min-
imum cost flows. Mathematical Programming, 77:109–129, 1997.

[45] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[46] Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of
minimum-mean cycle cancellations and related results. Algorithmica, 11(3):226–
242, 1994.

[47] Heiko Röglin and Shang-Hua Teng. Smoothed analysis of multiobjective opti-
mization. In Proc. of the 50th Ann. IEEE Symp. on Foundations of Computer
Science (FOCS), pages 681–690. IEEE, 2009.

[48] Heiko Röglin and Berthold Vöcking. Smoothed analysis of integer programming.
Mathematical Programming, 110(1):21–56, 2007.

[49] Clemens Rösner. Smoothed analysis of the SSP algorithm and local search.
Master’s thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2014.

[50] Justin Salez and Devavrat Shah. Belief propagation: An asymptotically opti-
mal algorithm for the random assignment problem. Mathematics of Operation
Research, 34(2):468–480, 2009.

Bibliography 107

[51] Sujay Sanghavi, Dmitry M. Malioutov, and Alan S. Willsky. Belief propagation
and LP relaxation for weighted matching in general graphs. IEEE Transactions
on Information Theory, 57(4):2203–2212, 2011.

[52] Sujay Sanghavi and Devavrat Shah. Tightness of LP via max-product belief
propagation. Technical Report 0508097v2 [cs.DS], arXiv, 2008.

[53] Sujay Sanghavi, Devavrat Shah, and Alan S. Willsky. Message passing for
maximum weight independent set. IEEE Transactions on Information Theory,
55(11):4822 –4834, 2009.

[54] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Algorithms and Combinatorics. Springer, 2003.

[55] Solomon Eyal Shimony. Finding MAPs for belief networks is NP-hard. Artificial
Intelligence, 68(2):399–410, 1994.

[56] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004.

[57] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An attempt to
explain the behavior of algorithms in practice. Communications of the ACM,
52(10):76–84, 2009.

[58] Marshall F. Tappen and William T. Freeman. Comparison of graph cuts with
belief propagation for stereo, using identical MRF parameters. In Proc. of the
9th IEEE International Conference on Computer Vision (ICCV 2003), pages
900–907. IEEE Computer Society, 2003.

[59] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Com-
binatorica, 5(3):247–256, 1985.

[60] Michael J. Todd. The many facets of linear programming. Mathematical Pro-
gramming, 91(3):417–436, February 2002.

[61] Roman Vershynin. Beyond hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method. SIAM Journal on Computing,
39(2):646–678, 2009.

[62] Jens Vygen. On dual minimum cost flow algorithms. Mathematical Methods of
Operations Research, 56(1):101–126, 2002.

[63] Yair Weiss. Correctness of local probability propagation in graphical models
with loops. Neural Computation, 12(1):1–41, 2000.

[64] Chen Yanover and Yair Weiss. Approximate inference and protein-folding. In
Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in
Neural Information Processing Systems (NIPS 2002), pages 84–86. MIT Press,
2002.

108 Bibliography

[65] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding be-
lief propagation and its generalizations. In Gerhard Lakemeyer and Bernhard
Nebel, editors, Exploring Artificial Intelligence in the New Millennium, chap-
ter 8, pages 239–269. Morgan Kaufmann, 2003.

[66] Norman Zadeh. A bad network problem for the simplex method and other
minimum cost flow algorithms. Mathematical Programming, 5(1):255–266, 1973.

Acronyms

BP Belief propagation
BP-MST BP algorithm for the MST problem by Bayati et al. [4]
BP-MWIS BP algorithm for the MWIS problem by Sanghavi et al. [53]
CT-root Root of a computation tree
IP-MWIS Integer program for the MWIS problem
LP Linear Program(ming)
LP-MWIS LP relaxation of the integer program for the MWIS problem
MAP Maximum a posteriori probability
MCF Minimum-cost flow
MMCC algorithm Minimum-mean cycle canceling algorithm
MRF Markov random field
MST Minimum(-weight) spanning tree
MST-root Root of an MST represented as a directed tree
MWIS Maximum-weight independent set
MWM Maximum-weight matching
MWOST Minimum-weight oriented spanning tree
NS algorithm Network simplex algorithm
OST Oriented spanning tree
SSP algorithm Successive shortest path algorithm

110 Acronyms

Samenvatting

De traditioneel meest gebruikte manier om de prestaties van een algoritme te ana-
lyseren is worstcase-analyse. Hierbij worden de prestaties van het algoritme geana-
lyseerd in het geval dat de invoer van het algoritme bestaat uit de meest ongunstige
instantie van het probleem, een zogenaamde worstcase-instantie. Echter, algoritmen
die in theorie goed presteren voor worstcase-instanties, zijn niet altijd de algoritmen
die ook in de praktijk het beste presteren. Dit komt doordat worstcase-instanties
vaak erg kunstmatig zijn en in de praktijk niet of nauwelijks voorkomen. Hierdoor
geeft worstcase-analyse vaak een te pessimistisch beeld van de prestaties van een
algoritme in de praktijk.

Smoothed analysis is een manier om algoritmen te analyseren die vaak veel
beter aansluit bij de praktijkprestaties van deze algoritmen dan worstcase-analyse.
Smoothed analysis werkt als volgt. Voordat de prestaties van een algoritme voor
een bepaalde instantie worden geanalyseerd, wordt deze instantie eerst willekeurig
veranderd door een kleine hoeveelheid ruis toe te voegen aan de instantie. Ver-
volgens worden de verwachte prestaties van het algoritme na het toevoegen van de
ruis geanalyseerd. Het toevoegen van een kleine hoeveelheid ruis aan worstcase-
instanties zorgt er vaak voor dat de prestaties van het algoritme dramatisch ver-
beteren. Worstcase-instanties zijn namelijk vaak erg fragiel. De reden dat smoothed
analysis goed aansluit bij prestaties van een algoritme in de praktijk is dat instanties
van een probleem die zijn verkregen uit de praktijk vaak ook onderhevig zijn aan een
kleine hoeveelheid ruis. Deze ruis kan bijvoorbeeld bestaan uit onnauwkeurigheid
van de meetapparatuur of de precisie van de computer die wordt gebruikt om de
gegevens op te slaan.

In dit proefschrift passen we smoothed analysis toe op twee klassen van al-
goritmen: minimum-cost flow algoritmen en belief propagation algoritmen. Het
minimum-cost flow probleem is het probleem om een voorgeschreven hoeveelheid
goederen door een netwerk te sturen op een zo goedkoop mogelijke manier. Het
minimum-cost flow probleem is erg bekend en gedurende de afgelopen halve eeuw
zijn er vele algoritmen ontwikkeld die het probleem oplossen. In dit proefschrift ge-
bruiken we smoothed analysis om drie van deze algoritmen (het successive shortest
path algoritme, het minimum-mean cycle canceling algoritme en het network simplex
algoritme) te analyseren en bewijzen we onder- en bovengrenzen voor de looptijd van
deze algoritmen.

Het belief propagation (BP) algoritme (in dit proefschrift analyseren we de zo-
genaamde max-product variant van belief propagation) is een algoritme voor het
oplossen van probabilistische inferentieproblemen. Probabilistische inferentieproble-

112 Samenvatting

men bestaan uit het afleiden van bepaalde eigenschappen van kansverdelingen. Voor-
beelden zijn het bepalen van de marginale verdeling van een stochastische variabele
of het bepalen van een maximum-a-posteriori-schatter (de meest waarschijnlijke si-
multane realisatie van een collectie stochastische variabelen) van een kansverdeling.
Het BP algoritme is een zogenaamd message passing algoritme. Elke stochastische
variabele probeert zijn optimale waarde te bepalen door te communiceren met zijn
buurvariabelen door middel van het uitwisselen van berichten. Het BP algoritme is
erg populair aangezien het eenvoudig is en vaak goed presteert in de praktijk. Er is
echter nog weinig bekend over het theoretische gedrag van het BP algoritme. Om de
werking van het BP algoritme beter te begrijpen vanuit theoretisch oogpunt, passen
we het toe op enkele bekende optimalisatieproblemen. In dit proefschift onderzoeken
we onder welke condities het BP algoritme convergeert naar de correcte oplossing en
passen we smoothed analysis toe om de looptijd van het BP algoritme te analyseren.

About the Author

Kamiel Cornelissen was born in Utrecht, the Netherlands, on December 14, 1980.
Soon after, he moved to Nijmegen, where he received his gymnasium diploma (sec-
ondary education) from the NSG in 1999. Afterwards, he moved to Enschede, where
he obtained a master’s degree (cum laude) in Applied Mathematics at the Univer-
sity of Twente in 2009. During his studies, he performed an internship at Paragon
Decision Technology, where he developed a game to introduce new users to the
AIMMS software. His final project “Algorithmic feature generation for microscale
topographies” was a cooperation of the Tissue Regeneration group and the Discrete
Mathematics and Mathematical Programming (DMMP) group of the University of
Twente. After obtaining his master’s degree, he continued the research done for his
final project as an academy assistant for the Royal Netherlands Academy of Arts
and Sciences (KNAW).

In 2011 Kamiel Cornelissen started his Ph.D. research under the supervision of
dr. Bodo Manthey and prof. dr. Marc Uetz in the DMMP group at the University of
Twente. The topics of his research were smoothed analysis, belief propagation, and
minimum-cost flow algorithms. His Ph.D. research culminates with this thesis and
the defense on May 27, 2016.

While performing his master’s and Ph.D. work, Kamiel Cornelissen competed in
the professional tournament circuit of the strategy card game Magic: The Gathering.
In 2009 he was inducted in the Magic: The Gathering Pro Tour Hall of Fame as a
recognition of his performance.

Kamiel Cornelissen

Smoothed analysis of
belief propagation and

minimum-cost �ow algorithms

Algorithms that have good worst-case performance are not always the ones that
perform best in practice. The smoothed analysis framework is a way of analyzing
algorithms that usually matches practical performance of these algorithms much
better than worst-case analysis.

In this thesis we apply smoothed analysis to two classes of algorithms: mini-
mum-cost �ow algorithms and belief propagation algorithms. The minimum-cost
�ow problem is the problem of sending a prescribed amount of �ow through a
network in the cheapest possible way. It is very well known, and over the last half a
century many algorithms have been developed to solve it. We analyze three of
these algorithms (the successive shortest path algorithm, the minimum-mean cycle
canceling algorithm, and the network simplex algorithm) in the framework of
smoothed analysis and show lower and upper bounds on their smoothed
running-times.

The belief propagation algorithm is a message-passing algorithm for solving
probabilistic inference problems. Because of its simplicity, it is very popular in prac-
tice. However, its theoretical behavior is not well understood. To obtain a better
theoretical understanding of the belief propagation algorithm, we apply it to sever-
al well-studied optimization problems. We analyze under which conditions the
belief propagation algorithm converges to the correct solution and we analyze its
smoothed running-time.

CTIT
CTIT Ph.D. Thesis Series No. 16-385 ISSN: 1381-3617 ISBN: 978-90-365-4097-1

Sm
oothed analysis of belief propagation and m

inim
um

-cost �ow
 algorithm

s
Kam

iel Cornelissen

C

M

Y

CM

MY

CY

CMY

K

cover-v2_edit_kamiel.pdf 1 11-4-2016 12:55:13

