09/0:58002 A 1 I} 1K 0 0 0P OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 May 2009 (07.05.2009)

(10) International Publication Number

WO 2009/058002 Al

(51) International Patent Classification:
GO5B 19/045 (2006.01)

(21) International Application Number:
PCT/NL2008/000243

(22) International Filing Date: 30 October 2008 (30.10.2008)

(25) Filing Language: Dutch
(26) Publication Language: English
(30) Priority Data:

1034599 30 October 2007 (30.10.2007) NL

(71) Applicant (for all designated States except US): UNIVER-
SITEIT TWENTE [NL/NL]; Drienerloolaan 5, NL-7522
NB Enschede (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GULESIR, Giircan
[TR/NL]; Jupiterstraat 103, NL-7521 JK Enschede (NL).
BERGMANS, Louis, Marie, Johannes [NL/NL]; De
Ijsvogel 10, NL-7491 ZG Delden (NL.). AKSIT, Mehmet
[NL/NL]; Reygershoftehoek 99, NL-7546 KD Enschede
(NL).

(74) Agents: LAND, Addick, Adrianus, Gosling et al.;
Arnold & Siedsma, Sweelinckplein 1, NL-2517 GK The
Hague (NL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CL CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: METHOD FOR AN EVENT-DRIVEN SYSTEM

Event-Driven Software
12

Control Calls /\/

14
16

s

Reactive Part

Non-Reactive Part

Event Ealls\/\

18

N

10

Fig. 1

& (57) Abstract: Method for an event-driven system with an initial state and at least one state transition from a source state to a
destination state and an input alphabet with at least one input symbol, wherein an input symbol from the input alphabet is associated
with a state transition, which state transition represents the transition from a source state to a destination state when the input symbol
associated with the state transition is received, wherein at least one state transition is associated with all input symbols not already
associated with one of the other state transitions sharing the same source state.

=

WO 2009/058002 A1 I} ND8YH0 AT 00000 01000 0

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

Method for an event-driven system

The present invention relates to a method for an
event-driven system[The present invention also relates to
software for specifying software for an event-driven system.
The present invention further relates to a system for
specifying software for an event-driven system; In addition,
the present invention relates to software specified as
according to such a method. The present invention also
relates to a data carrier comprising software according to
the invention.

Photolithographic techniques are used in- the
semiconductor industry for the production of semiconductor
products. During the photolithographic process patterns
which must be arranged on or in the semiconductor material,
wafer 21, are imaged on a light-sensitive layer on the
semiconductor surface in a lithographic projection apparatus
20, a so-called wafer scanner. For this purpose light 27
from a laser source 26-is shone through a mask 23 on which
the pattern for imaging is arranged, after which the light
27 incident through mask 23 is cast onto the light-sensitive
layer on the semiconductor surface using a lens 28. Because
simultaneous display of the fine structures of the pattern
on the whole semiconductor surface is not possible, the
semiconductor surface is divided into segments 29 which are
illuminated successively. Nor is the whole of a single
segment 29 illuminated simultaneously here, but a scanning
movement is performed over the segment surface in order to
eventually illuminate the whole segment surface. For this
purpose mask 23 and the semiconductor surface are moved
through light beam 27 in mutually opposite directions.
Figure 2 also shows mask table 24, wafer table 22 and the
pattern 25 to be imaged on mask 23.

Among other factors, the combination of the. fine
strﬁctpres to be imaged and the high speed at which wafer
scanner 20 operates in order to achieve the highest possible
productivity result in a complex control of wafer scanner

20. A wafer scanner 20 typically comprises about 400 sensors

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

and 300 actﬁators, and the software for controlling wafer
scanner 20 comprises about fifteen million lines of source
code. In order to keep the writing and maintaining of the
source code manageable, use is made of various methods for
structuring the source code and the writing and maintaining
of the source code.

A frequently used method for structuring such
extensive software systems is to sub-divide the software
into a reactive part and a non-reactive part. The reactive
part models different possible states of the system. This
part receives events from, among other parts, the sensors
and the non-reactive part. On the basis of these events the
reactive part determines which control calls must be sent to
the non-reactive part and into which new state the system
enters. The non-reactive part is responsible for performing
services which are called by the reactive part.

In most cases the reactive part can be modelled
using a state chart. The state chart comprises a number of
states corresponding with possible states of the system for
controlling. State transitions always connect a source state
to a destination state and have an associated input symbol
which represents an event. When an event is received the
state transition, which has the present state as source
state and which is associated with the input symbol which
represents the received event, determines the (destination)
state to which the system moves. The subject of state charts
itself will not be further elaborated here since the skilled
person is familiar with state charts.

The complexity and size of software for the
purpose of for instance controlling lithographic projection
equipment entails modifications being made during the
lifespan of the software, for instance in respect of
software maintenance or product improvement, wherein errors
may be made which result in defects in the software and the
system.

Examples of such defects are:

- an event call is defined but there is no

corresponding event;

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

- there is an event but the corresponding event
call is not defined; _

- the reactive part expects an event call which
never takes place;

- the target (function, method, procedure) of a
control call is absent;

- the non-reactive part does not provide a
required service.

It is self-evident that, as the software becomes larger
and more complex, manual correction of such defects becomes
an impossible task.

The present invention has for its object to
provide a method with which determining of the above'
described defects is simplified, and such defects can even
be prevented.

This object is achieved with the invention by
providing a method for an event-driven system with an
initial state and at least one state transition from a
source state to a destination state and an input alphabet
with at least one input symbol, wherein an input symbol from
the input alphabet is associated with a state transition,
which state transition represents the transition from a
source state to a destination state when the input symbol
associated with the state transition is received, wherein at
least one state transition is associated with all input
symbols not already associated with one of the other state
transitions sharing the same source state. The specifying of
the event-driven system on the basis of a state chart makes
it possible to formulate a precise specification of the
system. In traditional state charts only a single input
symbol is associated with a state transition. In the present
invention an extra symbol is introduced, the context-
sensitive wildcard, which can be associated with a state
transition and which represents one or more input symbols,
in contrast to the traditional method of a single input
symbol being associated with a state transition. Which
symbol is represented depends on the other state transitions

which share the same source state as the state transition

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

with the context-sensitive wildcard. The context-sensitive
wildcard represents (for this state transition) all input
symbols which are not already associated with one of these
other state transitions, including input symbols which at
the moment of specification did not (yet) form part of the
input alphabet. It hereby becomes possible to define state
transitions for input symbols which are introduced only a
later time into the life cycle of the software, for instance
as a result of the addition of new functionalities. A
greater expressivity is hereby obtained than in traditional
state charts.

The present invention further provides a method
wherein at least one output symbol is associated with a
state and wherein the method further comprises of:
generating an output which is represented by the output
symbol associated with the state of the event-driven system.
In this way the specification of the output corresponds with
a Moore machine. '

The invention also provides a method wherein at
least one output symbol is associated with a state
transition, and the method further comprises of: generating
an output which is represented by the output symbol
associated with the state transition from the source state
to the destination state when the event-driven system moves
from a source state to a destination state. The output is
now defined in a manner comparable to a Mealy machine.

The present invention provides a further method
wherein the event-driven system comprises at least one
sensor, and wherein at least one input symbol represents a
representation of a detection by the sensor. It is possible
in this manner for the system to react to measurements on
objects for processing and to input provided by operators.

The present invention also provides a method
wherein the event-driven system comprises at least one
actuator and wherein the output symbol represents a control
signal for the actuator. This extension enables the system'

to for instance manipulate objects for processing.

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

In a further embodiment of the invention an event-
driven system is provided, wherein the output symbol
represents a reproduction by means of a reproducing device.
The reproduction can be perceived by an operator who obtains
information about the event-driven system on the basis of
the reproduction information. Examples of such a
reproduction are an alert that the system has completed an
operation or a confirmation of an operating command.

Yet a further embodiment provides an event-driven

system wherein the output symbol comprises the graphic

" representation of a symbol on a reproducing device. In a

specific embodiment the reproducing device comprises a
screen. This screen can for instance show the progress of
the process executed by the event-driven system.

The present invention further provides a method
wherein the event-driven system is a lithographic projection
apparatus. Using sensors the position and orientation of the
wafer is for instance detected. Stepping motors are then for
instance used to correctly position and orient the wafer.
Another sensor makes it possible to establish whether
contaminants are present on the mask, while an actuator is
arranged to clean the mask if it is determined that the mask
is not clean.

According to the invention a method is also
provided wherein at least one input symbol represents a
function call. This makes it possible to specify the
sequence of activities. In another method a function call
must here be understood in a broad sense. Finally, the
source code of the function can alternatively by
incorporated directly in the calling function, whereby one
cannot speak of a function call. In this case function call
must be understood to mean a block of statements which
execute a clearly delimited task, such as for instance
cleaning of the mask or positioning of the wafer.

) The invention further provides a method, further
comprising of: specifying an event by specifying a condition
under which the event occurs, comprising of defining at

least one state and a state transition from a source state

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

to a destination state with an input symbol from the input
alphabet associated with the state transition; and of
linking an event call to a state which represents a state of
the event-driven system in which the event call takes place.
The condition for the event comprises for instance a
required series of operations which must be executed in a
fixed sequence. In another example the condition comprises
of a single detection by a sensor. In yet another example
the condition comprises of a combination of detections by
sensors and operations which must occur or take place in a
determined sequence. This method has the additional
advantage that the specification specifies the states in
which an event call must be generated, whereby it becomes
possible to have the implementation of the event call in the
source code take place automatically. As will be shown later
in this description with reference to the figures, a
specific part of the source code of software can be
associated with each state. This association also provides
the option of determining the location in the source code
where the event call must be generated. On the basis of the
specification it is thus possible, without any contribution
from a developer, to determine the location of the event
call, and to actually insert this event call. The chance of
an implementation which differs from the specification is
hereby reduced, which decreases the risk of errors in the
software.

The invention further provides a method wherein at
least one state is defined as the final state, the method
further comprising of: verifying whether a source code meets
the given specification, comprising of: determining all
possible flows of control of the source code; running
through the state charts for each flow of control of the
source code in order to determine whether the flow of
control results in a state defined as a final state; and
detefmining whether a state defined as final state is
reached for all possible flows of control. Source code is
here understood to mean one or more series of related

statements, irrespective of whether they implement a full

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

application, a single module, a single library or a single
function or routine.

According to this method, not only is a system
specified but whether the given source code meets the
specification is also verified. Possible variations from the
specification can then be submitted to a developer in order
to determine the problem: is the specification incorrect or
is the implementation incorrect. The developer can then
correct the specification or the source code, after which
the source code is once again checked on the basis of the
specification. This method has the advantage that the chance
of detecting errors in the software is considerably
increased.

The present invention also provides a method
wherein the possible flows of control of the source code are
modelled by a simplified control flow graph (SCFG). The
advantage of the SCFG modelling the possible flows of
control is that this model does not depend on the
programming language used to implement the system. It is
hereby possible to make the algorithm for verifying the
source code independently of the implementation language,
whereby the algorithm can be used for more than a single
implementation language.

The present invention further provides a method
wherein the simplified control flow graph is constructed by
first constructing an abstract syntax tree (AST) of the
source code. In contrast to the SCFG, the AST is not
implementation-independent but assists in the construction
of the SCFG by providing a systematic, hierarchical division
of the source code, on the basis of which the construction
of the SCFG is facilitated.

The present invention also provides a method
wherein the verification further comprises of constructing a
mapping of a state with which an event is associated at a
position in the source code for verifying; and of inserting
an event call of the associated event at the mapped
position. Use is preferably made in this step of the SCFG
and the AST for finding the relation between the states from

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

the specifications and the associated positions in the
source code. On the basis of this relation the event call of
an event is inserted in the source code, whereby the event
calls establishes a link between the non-reactive part of
the software and the reactive part. In a preferred
embodiment of the invention this step is executed
automatically in order to obviate the chance of an error by
the developer.

In a preferred embodiment the present invention
provides software for specifying software which, if run on a
processor, executes a method as described above.

In another embodiment the present invention
provides a system for specifying software according to a
method as described.

In an alternative embodiment the present invention
provides software specified according to a method as
described.

In yet another embodiment the invention provides a
device comprising software specified according to a method
as described.

The present invention further provides a data
carrier comprising such software.

Further advantages and embodiments of the present
invention will become apparent on the basis of the following
description with reference to the figures, in which:

Figure 1 shows a schematic representation of
software to which a method according to the present
invention can be applied;

Figure 2 shows a schematic view of a wafer
scanner, to the control software of which a method according
to the present invention can be applied;

Figure 3 shows a simplified control flow graph of
the wafer scanner to which a method of the present invention
can be applied;

. Figure 4 shows a schematic representation of a
method according to the present invention;

Figure 5 shows a specification in accordance with

a method according to the present invention;

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243

Figure 6 shows a specification in accordance with
a method according to the present invention;

Figure 7 shows another specification in accordance
with a method according to the present invention;

Figure 8 shows yet another specification in
accordance with a method according to the present invention;

Figure 9 shows an abstract syntax tree and a
simplified control flow graph of a simplified function of
control software of the wafer scanner to which a method
according to the present invention can be applied; and

Figure 10 shows another abstract syntax tree of a
simplified function of control software of the wafer scanner
to which a method according to the present invention can be
applied.

Figure 11 shows yet another abstract syntax tree
of a simplified function of control software of the wafer
scanner to which a method according to the present invention
can be applied.

In the control of wafer scanner 20 (figure 2) the
successive positioning and scanning of each wafer segment 29
are the actual processing steps (processing) of wafer 21.
Before these processing steps can actually begin, a number
of preprocessing steps must be executed. Due to the great
precision required in the production of the semiconductor
products, relatively small irregularities and disruption can
gquickly result in defective products. In order to reduce the
chance of defective products the mask 23 must be as clean as
possible and the shape imperfections of wafer 21 must be
known as well as possible. For this purpose preprocessing
steps are executed, such as cleaning the mask and measuring
the shape imperfections of wafer 21.

In order to produce the highest possible number of
operating semiconductor products, the preprocessing steps
are steps which must necessarily be carried out before the
actual processing steps may be executed. This relation can
be expressed in a state chart (figure 3).

The wafer scanner begins initially 31 by
transposing 32 to a state of readiness READY 33. In the

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
' 10

state of readiness READY 33 the wafer scanner waits until a
start event is received, which event can for instance be
initiated by operating personnel pressing a button.
Receiving the start event causes the wafer scanner to move
34 from the state of readiness READY 33 to the preprocessing
state PREPROCESSING 35. As soon as the preprocessing is
completed, a preprocessed event (preprocessed) ensures that
transition 36 to the processing state PROCESSING 37 is
initiated. As soon as the processing steps are also
completed a processed event (processed) is generated,
whereby wafer scanner moves 38 to the final state 39 and
stops.

The most extensive method according to the
invention basically comprises four steps (figure 4).

Step I: The software developer derives and
specifies the compatibility constraints on the basis of,
among other things, the software requirements, the state
charts and the implementations of the various tasks of the
software.

Step II: The developer specifies the events and
links the event calls.

Step III: A source code analyser analyses the
source code on the basis of the specifications from steps I
and II and produces inter alia a specification of the
determined compatibility errors. The developer repairs the
defect on the basis of this specification of a compatibility
error. The source code analyser also produces a list of
event points with corresponding event calls.

Step IV: On the basis of the source code and the
list of event points with corresponding event calls produced
by the source code analyser a source code to source code
converter inserts the corresponding event call at each event
point in the source code.

Once steps I and II have been executed, steps III
and IV can be executed repeatedly after modification of the
source code so as to guarantee that the software does not
have the above stated defects. The four steps are discussed

in more detail hereinbelow.

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
11

Step I, the specification of the conditions, will
be discussed in the following paragraphs.

Figure 5 shows an example of a specification of a
compatibility constraint. The shown exemplary compatibility
constraint Cl requires that the wafer be measured during the

- preprocessing of the wafer. The specification specifies the

order of acceptable sequences of function calls. A large
rectangle 50 represents the source code, designated with
label 52 in this example of the preprocessing function
preprocess. The label «from» is a specific example of a
designation for the range of the applicability of the
specification. In this case the label indicates that the
specification applies to all calls from the preprocessing
function preprocess. The preprocessing function has two
states g0, gl. A first state g0 is the initial state of the
preprocessing function, this being designated with label
«initial» 53. The state transition measureWafer 54
specifies a call to the measureWafer function. If the
preprocessing function preprocess 52 calls the function
measureWafer, state gl is then reached. The specification
further shows two state transitions 56, 57 which are
provided with a dollar sign ($). The dollar sign is the
context-sensitive wildcard which indicates that all symbols
(function calls) are associated with this state transition,
with the exception of the symbols already associated with a
state transition which shares the same source state as the
state transition with which the context-sensitive wildcard
is associated. In this embodiment all function calls, except
for the call to measureWafer, are thus associated with state
transition 56 because measureWafer is already associated
with state transition 54. All function calls are without
exception further associated with state transition 57.

State gl is further provided with label «final»
55, which indicates that this state is a valid state for the
fundtipn preprocess to end in. All function call sequences
from the function preprocess which do not end in state gl do
not therefore meet the specification of figure 5 because

only state gl is a valid final state, i.e. provided with the

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
12

label «final». The valid function call sequences in the
function preprocess are all sequences in which the function
measureWafer is called at least once. Possible other
function calls in the sequence correspond with either state
transition 56, if they precede the (first) function call
measureWafer 54, or state transition 57 if they take place
after the (first) function call.

A second compatibility constraint C2 for the
preprocessing function is that the mask is optionally
cleaned, for instance if a sensor, such as for instance a
camera, has determined that mask 23 comprises contaminants,
but that this cleaning may not take place after measuring of
wafer 21. In the sequence of function calls this translates
into the preprocessing function preprocess not being allowed
(any longer) to call the cleaning mask function cleanReticle
after the measure wafer function measureWafer has been
called.

Note that this compatibility constraint C2 does
not require wafer 21 having to be measured without
limitation (irrespective of whether the mask is cleaned).
This requirement is after all already set in compatibility
constraint Cl. The specification of compatibility constraint
C2 described hereinbelow will therefore not include this
constraint, since compatibility constraint Cl is specified
by its own specification. The skilled person will however
appreciate that it is also unconditionally possible to
construct a single specification in which both compatibility
constraints Cl and C2 are specified.

Compatibility constraint C2 is specified as
follows (figure 6): The specification once again specifies
function call sequences «from» (label 51) the preprocessing
function preprocess (label 52). The initial state is (label
63) state g0, this state also being a valid final state. As
long as the measure wafer function measureWafer has not yet
been called from the preprocessing function preprocess, any
random function can be called (including the cleaning mask
function cleanReticle), as indicated by state transition 65,

with which the context-sensitive wildcard is associated. As

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
13

indicated above, this specification does not require the
presence of a call to the measure wafer function
measureWafer in the function call sequence, since state g0
is a valid final state. If the preprocessing function
preprocess does however call the measure wafer function
measureWafer, state gl is then reached via state transition
66. If the cleaning mask function cleanReticle is called
after the measure wafer function measureWafer has been
called, state g2 is then reached via state transition 68.

This state is not a valid final state, nor can a
valid final state be reached from this state. Calling the
cleaning mask function cleanReticle after calling the
measure wafer function measureWafer thus produces a function
call sequence which does not meet this specification. It is
however permissible to call a function other than the
cleaning mask function cleanReticle after the measure wafer
function measureWafer has been called, as specified by state
transition 57 with which the context-sensitive wildcard is
associated. '

In the example of the prepfocessing function
preprocess the preprocessed event preprocessed is generated
by calling the event call preprocessed() once the
preprocessing function has been completed. How this event is
specified in step II and how the event call is linked will
be described hereinbelow.

The preprocessed event preprocessed is only
generated if the final function call in preprocessing
function preprocess is the call to the function measureWafer
(figure 7). An initial start is made in the initial state
g0. The label «initial-final» 73 specifies that state g0 is
the initial state, but also a valid final state.

Note that states are specific to a single
specification. States with the same designation in different

specifications (and here different figures) are not

necessarily the same identical states.

All function call sequences are valid sequences in
this example, since all conditions, i.e. g0 and gl, are all

final states. The intention of the specification in figure 7

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
14

is not to specify the valid function call sequences but only
to specify when and in which state the preprocessed event
call preprocessed() is called. This is specified by coupling
this event to state gl by means of specifying the function
call preprocessed() 79 as output symbol in state gl. Figure
7 now specifies that, each time state gl is reached,
preprocessed event preprocessed is generated by calling
preprocessed() . This is the case if the function
measureWafer is called via state transitions 74 or 78. Any
other random function call corresponds with the context-
sensitive wildcard ($) and results, via one of the two state
transitions 76 and 77, in state g0 in which no event is
generated. ’

The above described compatibility constraints Cl
and C2 and the specification of preprocessed event
preprocessed can also be specified in a single specification
(figure 8). Function call sequences are once again shown
«from» (label 51) the preprocessing function preprocess
(label 52). The initial state is g0, as specified by label
83. State transition 84 specifies that all functions other
than the measure wafer function measureWafer (but including
cleaning mask function cleanReticle) may be called from goO,
wherein there is a return in each case to state g0. State g0
is however not a valid final state (label 83) and in order
to reach a valid final state measure wafer function
measureWafer must be called (state transition 85). In state
gl the preprocessed event preprocessed is then generated by
event call preprocessed(); label 86. Through further calls
to the measure wafer function measureWafer and calls to
functions other than the cleaning mask function cleanReticle
and the measure wafef function measureWafer the respective
states ql and g2 are reached, both of which are valid final
states and therefore produce function call sequences which
are in accordance with the specification. State g3 is
however reached by a call to the cleaning mask function
cleanReticle after the measure wafer function measureWafer
has already been called. This state is not a valid final
state and no valid final states can be reached from this

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
15

state. A call to the cleaning mask function cleanReticle
after the measure wafer function measureWafer has been
called thus produces a call sequence which does not meet the
specification. According to the specification the function
call sequence must at least comprise a call to the measure
wafer function measureWafer and no further calls to the
cleaning mask function cleanReticle may take place after
this function call. After each call to the measure wafer
function measureWafer a preprocessed event preprocessed is
further generated by calling the preprocessing function
preprocessed() ;.

In step III the source code is analysed on the
basis of the specifications of steps I and II. For this
example use is made of the following source code for the

preprocessing function preprocess in programming language C:

1 void preprocess()

2|

3 if (!reticleClean)

4 {

5 cleanReticle () ;
6 }

7 measureWafer () ;

8

The source code analyser analyses the
preprocessing function preprocess and constructs an abstract
syntax tree (AST) (upper part of figure 9). The node FDef
represents a function definition. The nodes FCall represent
function calls.

_ If the compatibility constraints and the events
can be specified on the basis of function calls and the
possible flow of control, only a part of the data from the
AST is then necessary and on the basis of the AST a simpler
model can be constructed which models only the funéiion
calls and the flow of control between the calls, i.e. a
simplified control flow graph (SCFG) (lower part of figure
9) . An additional advantage of the SCFG compared to the AST
is that the SCFG is not dependent on the chosen

implementation language.

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
16

The SCFG is derived by traversing the AST
according to the depth-first search. The broken arrows
indicate the corresponding points between the AST and the
SCFG. The black dot to the left in the SCFG is the initial
node, which represents the start of the implementation of
the preprocessing function preprocess. The cleaning mask
node cleanReticle 95 represents the call to the cleaning
mask function cleanReticle. The measure wafer node
measureWafer 97 represents the function call to the measure
wafer function measureWafer. Finally, the black dot to the
right represents the end of the implementation of
preprocessing function preprocess. This dot is circled in
order to indicate that it is an end node. The SCFG thus
specifies the possible function call sequences which are
possible on the basis of the source code.

Once the SCFG has been constructed, the source
code analyser generates a list of possible function call
sequences from the function for analysing, in this case
preprocessing function preprocess. For this purpose the SCFG
is traversed in accordance with the depth-first search. It
can be readily appreciated in this case that there are only
two possible sequences, i.e. the call to only the measure
wafer function measureWafer and the call to the cleaning
mask function cleanReticle followed by the call to the
measure wafer function measureWafer. By running through the
specifications on the basis of these two function call
sequences (figure 8) the source code analyser determines
that a valid final state is reached for all function call
sequences, i.e. in this case state gl. The source code
analyser concludes herefrom that the source code meets the
compatibility constraints Cl and C2. If the source code
analyser has found function call sequences which did not
comply with one of the compatibility constraints (this being
concluded because a valid final state is not reached in the
spediﬁication), an error message is then generated having
therein the function call sequence(s) which does not comply
with the constraints.

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
17

For the purpose of the following step (step IV) a
mapping of the states in the specification (figure 8) to the
nodes in the SCFG is constructed during the comparison of
the function call sequences possible on the basis of the
SCFG. In the embodiment discussed here, state g0 from the

‘specification is reproduced at node cleanReticle 95 and

state gl is (according to both function call sequences)
reproduced at node measureWafer 97.

In step IV a source code to source code
transformation is executed in order to incorporate into the
source code the event calls specified in step III. The event
specifications specify (step II) for all event calls in
which state these calls must take place. The location in the
source code where the relevant event call must be inserted
can be determined on the basis of the mapping of states to
nodes in the SCFG determined in step III.

According to the specification of figure 8, the
event call for the preprocessed event preprocessed() 86 is
associated with state gl. In step III is determined that
state gl corresponds with node measureWafer 97 in the SCFG
(lower part of figure 9). Node measureWafer 97 in the SCFG
corresponds with the function call measureWafer() in the AST
(upper part of figure 9). The event call for the
preprocessed event preprocessed() (figure 10) must thus be
incorporated in the AST (figure 11) after the function call
measureWafer (). This results in the event call for the
preprocessed event preprocessed() also having to be
incorporated in the source code after the function call

measureWafer (). Step IV hereby produces the following source

code:

1 void preprocess ()

2

3 if (!reticleClean)

4

5 } cleanReticle() ;
6 }

7 measureWafer () ;

8 preprocessed() ;

10

15

20

WO 2009/058002 PCT/NL2008/000243
18

With this final step the process is completed. A
specification is formulated of the conditions which the
preprocessing function preprocess must satisfy. An event has
been specified. The source code is then verified on the
basis of these specifications, and an event call for the
specified event is finally added to the source code.

The embodiments according to the invention
described and shown in the description and figures are only
exemplary embodiments. The skilled person will appreciate
that many changes and modifications are possible which fall
within the present invention. It will thus be apparent to
the skilled person that the sequences of activities do not
necessarily have to be defined by function calls, but that
any other indication of delimitation of activities can be
used for this purpose, such as for instance a comment
designated in accordance with a predetermined convention.
The protection sought is therefore not limited by the
exemplary embodiments given here, but is defined by the

following claims.

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
19

Claims

1. Method for an event-driven system with an
initial state and at least one state transition from a
source state to a destination state and an input alphabet
with at least one input symbol,

wherein an inputvsymbol from the input alphabet is
associated with a state transition, which state transition
represents the transition from a source state to a
destination state when the input symbol associated with the
state transition is received,

wherein at least one state transition is
associated with all input symbols not already associated
with one of the other state transitions sharing the same

source state.

2. Method as claimed in claim 1, wherein at least
one output symbol is associated with a state and wherein the
method further comprises of:

generating an output which is represented by the
output symbol associated with the state of the event-driven

system.

3. Method as claimed in claim 1, wherein at least
one output symbol is associated with a state transition, and
the method further comprises of:

generating an output which is represented by the
output symbol associated with the state transition from the
source state to the destination state when the event-driven

system moves from a source state to a destination state.

4. Method as claimed in claim 1, 2 or 3, wherein
the event-driven system comprises at least one sensor, and
wherein at least one input symbol represents a

representation of a detection by the sensor.

5. Method as claimed in claim 2, 3 or 4, wherein

the event-driven system comprises at least one actuator, and

10

15

20

25

30

35

WO 2009/058002 PCT/NL2008/000243
20

wherein the output symbol represents a control

signal for the actuator.

6. Method as claimed in any of the claims 1-5,
wherein the event-driven system is a lithographic projection

apparatus (20).

7. Method as claimed in any of the claims 1-6,
wherein at least one input symbol represents a function
call.

8. Method as claimed in any of the claims 1-7,
further comprising of:

specifying an event by specifying a condition
under which the event occurs, comprising of defining at
least one state and a state transition from a source state
to a destination state with an input symbol from the input
alphabet associated with the state transition; and

linking an event call to a state which represents
a state of the event-driven system in which the event call

takes place.

9. Method as claimed in claim 8, wherein at least
one state is defined as final state, the method further
comprising of: verifying whether a source code meets the
specification given as according to claim 8, comprising of:

determining all possible flows of control of the
source code; _

running through the state charts for each flow of
control of the source code in order to determine whether the
flow of control results in a state defined as a final state;
and

determining whether a state defined as final state
is reached for all possible flows of control.

10. Method as claimed in claim 9, wherein the
possible flow of control of the source code is modelled by a
simplified control flow graph (SCFG).

10

15

20

25

30

WO 2009/058002 PCT/NL2008/000243
21

11. Method as claimed in claim 10, wherein the
simplified control flow graph is constructed by first
constructing an abstract syntax tree of the source code.

12. Method as claimed in claim 9, 10 or 11,
wherein the verification further comprises of constructing a
mapping of a state with which an event is associated at a
position in the source code for verifying; and

inserting an event call of the associated event at

the mapped position.

13. Software for specifying software which, if run
on a processor, executes a method as claimed in any of the
claims 1-12.

14. System for specifying software according to a
method as claimed in any of the claims 1-12.

15. Software specified according to a method as
claimed in any of the claims 1-12.

-

16. Device comprising software as claimed in claim

15.

17. Data carrier comprising software as claimed in
claim 13. ‘

18. Data carrier comprising software as claimed in
claim 15.

WO 2009/058002 PCT/NL2008/000243

1/9

Event-Driven Soffware 1

/12 Control Calls // ;}e

Reactive Part Non-Reactive Part

i

Event Caus\v/’\\

18

PCT/NL2008/000243

WO 2009/058002

2/9

ﬂ\cmmmuoua_>L+cm

ﬁr ONISS3304d

—\ 1

6& 9t

()sse@doddadd :Asjus

DONISS3304ddddd L AQV3d

FAS [AS €

1 .\\\\ 133
0t

PCT/NL2008/000243

WO 2009/058002

3/9

(S)e] JusA]

9%
fampy yo ~

uoljejuswajduj

p— |

v— |

Al

+ Kjinpay Jo

=1

uoljejuswa)duw

P

LY

1JBYIBRLS |a—

JawJojsuedj

S

Jadojaas(

:J(./

l

JuswaJinbay |=-——r

O
SMouY

Jo443 Ayiigieduo) _

11e) JUSA] +

'T

julod yusA3 [

K Il

1B JUSAT + JUBAT
10 uol}eaysds

jutesysuo) A4niqiyedwo)
JO uo01}e314113dS

3\/\

PCT/NL2008/000243

WO 2009/058002

L/9

S DI

s A 4 N
Lb //\\\)/ ob
¢ <<|eulj>> ,Emsm.smmw/%ﬁm__,_:_vv ;
/\/mm £
LS 99
75— ~__— Ssa30J4daud
LS ™ — <<Woli>> y
\§

P

05

PCT/NL2008/000243

WO 2009/058002

5/9

TN wo//z\)/ 4 N
_— b
l 3]3143YuUes)d <<jeul>>

P,

19 $
19—~

99
/\/ - - N

J3jemadnsesu (<<eulj-jei4iul>>

€9

P

$
mo\/\

76— ~__ SsaloJdsud
—‘MI\I/\ AAEO.._%VV

09

P

PCT/NL2008/000243

WO 2009/058002

6/9

61 L Ol

\

x/ ™~ ?/\/ '\

ﬁ uc_ummmm/uoh_m,_@ "

AA._mCCVV k

Yl
b - TN ob

|
§
/

J3jeM3JNSEaW N\~ g/

J3jemadnsesu | <<jeury-jeliu>>

\¢

Q\K
I $

76—~__ Sss30J4daud
LG N\ <<W0d}>>

0L

PCT/NL2008/000243

WO 2009/058002

1/9

~

N_u - _
¢b

<<leul>> 9II43YuUES

\

.._m%mzmr_zmmmE
98 $

3)2143yues)d

j
uc_ummmmuo._n_m.:@

|/

S8 a
_,U et ﬂ /u\/ o_u

AA._mC_n_.VV r_m%mzw.::.mmw:._ AAﬂm_.:C_VV

/)
Jajemadnseau qm\/\ $

om/\l

76— ~__— Ssaj0u4daud
LG~ N — <<Wod]>>

WO 2009/058002 PCT/NL2008/000243

N—0uo 8/9
D AST

FDef preprocess

S

void | | preprocess | | (g {

/) | | if Flall ~— |} [~

NN

! reticlelsClean - FCall /) /

/A / /

c[eﬁnRe‘rlcle /

— ———

/
— FIG. 9
FCall
preprocessed (;

)| FlG. 10

PCT/NL2008/000243

WO 2009/058002

9/9

0Ll

\./I\
7
A
u) 3)3143yues)d
A (] fnead | | (| vesndsiEpy
~) passadoudaud Jajemadnsesu | | })
{ 11eJd 11834 H A
D —
}) ssadoJdadd | | PIOA
mmmuo,am.a._.m.q 1304

INTERNATIONAL SEARCH REPORT

International application No

PCT/NL2008/000243

CLASSIFICATION 7 SUBJECT MATTER
9/045

A
INV. GOBB1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO5B

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 170 024 B1 (WAKELAND CARL K [US] ET 1,8,
AL) 2 January 2001 (2001-01-02) 13-18
Y figure 3 2-7
A column 8, lines 48-51 9-12
Y US 2004/193290 Al (OTT MICHAEL [US] ET AL) 2-7
30 September 2004 (2004-09-30)
column 4, 1ine 35 — column 8, Tine 52
X US 5 905 902 A (O’CONNOR DENNIS [US]) 1
18 May 1999 (1999-05-18)
paragraphs [0030] - [0032]
A WO 2004/021181 A (VIHANA INC [USI; 1-18
SHARANGPANI HARSHVARDHAN [USI)
11 March 2004 (2004-03-11):
the whole document

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general stale of the art which is not
considered to be of patticular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

e

e

e

g

later document published after the international filing date
or priority date and not in conilict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m?rr]ﬂs, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international search

16 March 2009

Date of mailing of the intemnational search report

20/03/2009

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31~70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Groen, Fokke

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/NL2008/000243
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6170024 Bl 02-01-2001 NONE
US 2004193290 Al 30-09-2004 CN 1534420 A 06-10-2004
DE 102004014747 Al 18-11~-2004
GB 2400190 A 06~-10-2004
HK 1069642 Al 11-05-2007
JP 2004303247 A 28-10-2004
US 5905902 A 18-05-1999 NONE
WO 2004021181 A 11-03-2004 AU 2003270044 Al 19-03-2004
EP 1532496 A2 25-05-2005
JP 2005537550 T 08-12-2005
KR 20050083667 A 26-08-2005

US 2004059443 Al 25-03-2004

Form PCT/ISA/210 (patent family annex) (April 2005)

	Bibliography
	Claims
	Drawings
	Description
	Abstract
	Search-Report

