
ABSTRACT1

Modeling engineering systems requires creativity and ingenu-
ity, and therefore involves steps that are hardly suitable for auto-
mation. However, these steps are complemented by a multitude
of routine tasks. Automation of these routine tasks, if tailored to
complement non-automated tasks, allows the modeler to focus
on the creative and innovative aspects of modeling and design.

To this end, three important principles for automated modeling
have been formulated and incorporated in the MAX (Modeling
and Analysis eXpert) system:

– The polymorphic modeling concept provides hierarchical
models, in which each subsystem consists of a type, defining
essential properties, and a specification, defining incidental
properties. Subsystem types can be organized hierarchically
in a library, and each type can have multiple specifications.

– Information about a model is processed using multiple
formulations. Different formulations of one model can be
used simultaneously. The task at hand determines which
formulation is appropriate for inspection and manipulation.

– By embedding equations in networks in an intuitively
appealing way, MAX provides the same kind of support for
network models and equation models.

The utility of these concepts is demonstrated in a case study
involving a fourth order servo system.

This work was supported in part by Unilever Research Laboratory,
Vlaardingen, Netherlands, and by the CEC ESPRIT–III project P6521
‘OLMECO’ (Open Library for Models of MEchatronic COmponents). In
the latter project, the Control Laboratory of the Electrical Engineering
Department of the University of Twente collaborates with PSA Peugeot
Citroën (France), BIM (Belgium), Fagor (Spain), Ikerlan (Spain), Imagine
(France) and ECN (Netherlands).

1 INTRODUCTION
Products that were traditionally purely mechanical are

becoming more and more ‘intelligent’, and yet their cost does
not increase as much as their performance. The recent
development of a design attitude known as mechatronics is an
important factor in this trend. The combined application of new
developments in control engineering, electronics, computer
science and other disciplines leads to improved performance for
a wide spectrum of products ranging from durable equipment
like assembly machines and automatic guided vehicles to
consumer products like CD-players and video cameras.

The ‘added value’ does not originate in the mere fact that the
systems become multidisciplinary. The power of mechatronics is
not so much in the decomposition of a system into single-
discipline subsystems, but rather in the emphasis on the inter-
dependence between the subsystems. Functional interaction and
spatial integration are exploited to obtain systems that are
‘more’ (in terms of performance and quality) than the sum of
their subsystems (Buur, 1990).

Communication about the system under design, or more pre-
cisely, about models thereof, is used to realize the cooperation
between designers, and to coordinate their work (Buur and
Andreasen, 1989). An obstacle in the communication is that the
members of a mechatronic design team do not share a common
‘language’, because they have different backgrounds and respon-
sibilities. Misunderstandings due to the mismatch in concepts
and terminology are likely to affect the result of the design effort
in a negative way. Consider for instance the design of an
autofocus lens. A different choice for the material of a lens to
obtain better optical properties implies a different mass for a
mechanical engineer, and a different time constant for a control
engineer. A message from the optical specialist that the lens
material has changed (if given at all) will probably not trigger
the control engineer. These interdependencies and their

MAXIMIZING IMPACT OF AUTOMATION ON MODELING AND DESIGN

Arno P.J. Breunese
Theo J.A. de Vries

Job van Amerongen
Peter C. Breedveld

Department of Electrical Engineering
University of Twente

Enschede
Netherlands

EL RT

EL RT

EL RT
Proc. ASME Dyn. Sys. & Control Div. '95 (San Francisco, USA),
DSC-57-1, T.E. Alberts (ed.), ASME, New York, pp. 421-430, 1995.

relevance for the design are not taken into account properly if
the design object is modeled by means of independent, single-
discipline models. Tools are required in order to maintain an
integrated and consistent set of models of the design object.
Modeling systems have been described for this purpose that
formulate models of the design object in terms of a single multi-
domain modeling language, often bond graphs (Rosencode,
1989; Broenink et al., 1992; Bidard and Favret, 1993; Sharpe
and Bracewell, 1993). These systems typically also support
simulation, and have shown to be useful for analysis purposes.
However, the use of such systems requires the designer to
describe the design object in unnatural terms, in a language that
he would otherwise probably not have used during synthesis. A
more effective approach is to allow each member of the design
team to work on the model of the design object in terms that are
relevant and familiar to him, and to provide translation and
coordination of the different models. This significantly enhances
communication and mutual understanding, as no one is forced to
sacrifice expressiveness. This type of modeling support is hardly
possible without automated tools. The amount of information
processed, and the knowledge required to do the information
processing, are too involved to be carried out manually by
designers.

As a second consequence of the focus on interaction and inte-
gration between subsystems, the mechatronic design approach
requires parallel activity for the design of the subsystems. The
traditional, sequential approach (which typically designed the
mechanical structure first, then added the sensors and actuators,
and finally constructed a control system) is unable to provide the
interaction and integration which is typical for mechatronic
systems. The challenge that results from a parallel approach is
that the design of a subsystem is no longer based on complete
knowledge of other subsystems and on well-defined require-
ments. Ullman (1992) describes this ‘design process paradox’;
the understanding required to find a good solution can almost

only be gained in the course of the design process. However, the
knowledge may be acquired at a stage when the design is already
too constrained to be modified according to the latest insights.
This is illustrated in figure 1.

Models can be exploited to shift the knowledge curve in figure
1 to the left, by enabling rapid exchange of information about the
problem and the proposed solutions in an early stage, i.e. when
it still matters. For optimal results, structured modeling should
be part of the design process from the very beginning. In the
conceptual design phase, important decisions are taken that
determine a large number of properties of the final product. The
availability of information in that stage is important to avoid that
side effects of apparently minor decisions lead to failure of the
final product. Automated support in the form of knowledge bases
storing models that capture experiences from similar projects is
of great help (Konda et al., 1992). A major problem in this is
that knowledge bases of a size needed in practice become hard to
use and unmanageable due to a lack of structure.

When models are introduced early in the design process, they
are subject to considerable evolution. They form the framework
in which design refinements take place (Hoover et al., 1991). To
take full advantage of this, automated modeling tools should
allow the models to grow along with the design activities. Auto-
mated modeling tools should support the life cycle of the model,
and provide meaningful operations on the model for each stage
in the design. In this context, it is most important to be able to
start with fairly simple models, and add details as they become
available. In the automated modeling and AI community,
considerable attention has been given to the ‘hard’ modeling
problems of automatic abstraction (from detailed models to
simpler ones; e.g. Rinderle and Subramaniam, 1991; Wilson and
Stein, 1992; Weld, 1992; from concrete models to abstract ones;
e.g. Amsterdam, 1992), of automatic model synthesis (find a
simple model with a given behavior; Ulrich and Seering, 1989;
Redfield and Krishnan, 1992; Malmqvist, 1993) and of
automatic generation of behavior (equations generation and
simulation). However, automated support for refinement of
models, i.e., gradual addition and alteration of model properties
(e.g. shifting the system boundary, considering parasitic
behavior, etc.) has not been given attention, whereas it is the
most common step during design.

From the remarks above, we may conclude that models in a
wide sense are important in the context of mechatronic design.
Automated support for modeling can provide a major contribu-
tion, but it can not completely replace human skills and
creativity. Previous generations of modeling tools are not always
suitable for application in mechatronic design, due to the special
characteristics of design in general and mechatronics in
particular. In the remainder of this paper, we describe three
extensions to automated modeling that help to overcome the
problems we have identified in this section:

– To enhance communication between disciplines, an auto-
mated modeling tool should provide means to work with
multiple model formulations, while maintaining consistency
and coherence between formulations. Section 2 presents an
architecture for support of multiple formulations.

Figure 1: The design process paradox (adapted
from Ullman (1992), figure 1.8)

– Section 3 deals with polymorphic modeling, which is our
answer to the requirement that tools for automated modeling
should allow to update models as we learn about a design
problem. Furthermore, polymorphic modeling provides an
elegant way to integrate model libraries into automated
modeling tools.

– To extend the life cycle of models into the stage where
quantitative analyses are performed, we suggest to embed
equations in network models. Section 4 discusses how proper
integration and support can be achieved.

The proposed concepts are illustrated by the modeling of a
small, yet typical mechatronic system. This modeling is per-
formed using the MAX system, an automated modeling tool for
mechatronic systems. Conclusions are summarized in section 5.

2 MULTIPLE MODEL FORMULATIONS
The representation of a model determines the information that

can be expressed, and how accessible this information is with
respect to inspection and interpretation. The question which
representation to use does not have a unique answer. An iconic
diagram is suitable for giving an overview of the decomposition
into subsystems, whereas a block diagram is a more useful
representation when selecting a control scheme. In a context
with different people, with different backgrounds, and with
different interests, it should be possible to simultaneously
formulate one model in multiple ‘languages’. It should also be
possible to manipulate the model in any of the formulations.
This concept is called multiple model formulations.

Automation is crucial for the application of multiple model
formulations, because the concept can only then be fruitful if the
formulations are consistent. This involves a considerable mainte-
nance effort, which cannot be performed by hand for non-trivial
cases. In figure 2, we present an architecture that structures the
operation of a system with multiple model formulations. The
lowest layer in the model is the core model. The core model is a
repository of all information required by the formulations
supported by the system, and it acts as a coordinating agent
between the various formulations. The core model is linked to a
number of formulations. Each formulation consists of two layers.
The layer closest to the core model is the language specific
description. The descriptions are coupled to the core model by
means of bi-directional transformations. A language specific
description is a formal description (typically in textual form) of
those parts of the core model that are of importance for the
formulation at hand. The description is linked to a
representation by a visualization process. The representation can
be textual (e.g. equation models) or network-based (e.g. block
diagrams or bond graphs). The editors of the modeling tool allow
the user to perform manipulations that have a directly observable
effect in the representation used by the editor.

When a model is manipulated, each layer in the formulation
propagates the changes from the next higher layer. Upon recep-
tion of a change, the core model will notify all other
formulations of the change, and the propagation takes place in
the reverse direction.

The feasibility of this architecture has been shown for iconic
diagrams and bond graphs (De Vries, 1994). The architecture
was specifically designed to be scaleable, i.e. to allow the
addition of extra formulations without disproportional effort.

We illustrate the use of multiple model formulations by
showing the entry of the initial model of our case study into the
MAX modeling system. The system to be modeled is a setup for
gaining practical experience in the design and implementation of
controllers for mechatronic systems. This electro-mechanical
device is to be used in the education of third year master
students at the Control Laboratory of the University of Twente.
The initial proposal for the system is sketched in figure 3.

Expected dynamic features that make this setup attractive are
that it may have variable stiffness and load, that the system

Figure 2: Architecture of a system featuring
multiple model formulations

Figure 3: Initial proposal for the practical setup

Figure 4: Initial model in iconic diagram formulation

exhibits non-linear behavior and that there will be a clearly
observable difference between controlled and non-controlled
performance for various types of controllers. These aspects will
be investigated in the case study.

As shown in figure 4, the model is entered into the IPM
Editor. The iconic diagram formulation is preferred for initial
model entry, because it closely resembles the sketch drawn in
figure 3. The control loop is omitted in the first version, because
we first want to obtain an impression of the open loop behavior
of the system. The editor used for the entry of the model is more
than a simple drawing tool. The iconic diagram editor for
instance refuses to make connections between incompatible
terminals: it is impossible to connect the (electrical) terminals of
the source to the (rotation) terminals of a load. If a connection
causes a ‘short circuit’ this is also reported.

Furthermore, the editors provide formulation-specific func-
tions. For instance, the Bond Graph Editor provided in the MAX
system can export models to the bond graph-oriented CAMAS
modeling and simulation environment (Broenink et al., 1992),
and it can also import models from the CAMAS environment.
The MAX Bond Graph Editor also features powerful algorithms
for causality assignment. This is shown in figure 5, where causa-
lity is assigned to the bond graph formulation of the initial
proposal.

The structure of the bond graph is automatically generated
from the original IPM model. The causality assignment shows
that the left load does not represent an independent state in the
model. The causal stroke is emphasized by the editor to indicate
that a situation requiring further attention has been detected.
The help function of the MAX system explains that a derivative
causality is a typical symptom of an oversimplified model. This
message is not completely unexpected.

3 POLYMORPHIC MODELING
Ward (1989) states that a design object is not a collection of

descriptions of single artifacts, but a collection of sets of
equivalent artifacts instead. The same is true for the model used
to describe the design object. Reasoning in terms of sets is an
excellent way to handle the large ‘solution space’ that occurs in
the early stages of modeling or design. Classes of similar

solutions can be treated as if they were a single solution, and
evaluation of such classes is a powerful instrument to select or
reject solution classes. Specific features of individual elements
in the classes are left unspecified. At the time these features
become relevant, the sets can subdivided on the basis of
additional features. This process continues until a small number
of fully detailed models are obtained.

In order to have automated support for this approach, a
modeling tool should provide means to describe model
fragments as specific instances of a class of models (i.e. as
elements of a set of artifacts). To do so, it must be possible to
distinguish essential properties of a subsystem from incidental
properties. The essential properties are those properties of a
subsystem that are required to properly classify the subsystem.
The incidental properties are those properties that can be used to
discriminate between elements within a set, but that are not
relevant for the classification. If we consider the example of a
DC motor, the fact that it converts DC electrical energy into
mechanical energy is an essential property, whereas the specific
parameters of the motor are incidental properties; they are not
needed for a proper classification.

In computer science the term modularization is used for a
comparable separation. A good example of modularization can
be found in the Modula programming language (Wirth, 1982). In
a modeling context, modularization means that a model is
divided into two parts: a type that defines the essential
properties, and a specification that defines the incidental
properties. The modularization of subsystem definitions is used
to allow gradual refinement of the model in two ways:

– In a model library, types can be organized in a kind-of
hierarchy using subtyping. Each type is specified as a special
kind of its supertype, inheriting all the essential properties of
the supertype and adding additional properties. By changing
the type of a submodel to the supertype (generalization) or to
one of the subtypes (specialization), the model can be
refined step by step. Subtyping is also an important means to
obtain a well-organized library; the possibility for
incremental definition of the type properties leads to a
coherent, practical structure.

Figure 5: Bond graph of the initial proposal

– One type may have multiple specifications. By choosing
another specification for a submodel of a particular type,
incidental properties of the model can be easily modified,
while keeping intact the information defined by the type. In
fact, the subsystem type becomes polymorphic. This is illus-
trated in figure 6. Model polymorphism has been exploited
by other modeling and design support systems as well
(Malmqvist, 1993; Sharpe and Bracewell, 1993; Stein and
Louca, 1995).

The combination of subtyping and modularization in a model
building system is called polymorphic modeling (De Vries et al.,
1993; De Vries, 1994). The use of these principles results in a
hierarchical subsystem library that has a well defined, concep-
tually clear structure. Polymorphic modeling facilitates the
structured manipulation of a model, for instance creation of
alternative solutions and variations in the level of detail
provided in models. Polymorphic modeling also supports
hierarchical models. The specification of a type can be built from
submodels of various types.

Recent projects like the OLMECO project (Top et al., 1995)
show industrial and academic interest for libraries for mecha-
tronic models. In order to quickly build complete models from
predefined components, the concept of realizations has been
introduced. Realizations are specifications for which a (part of
the) model hierarchy has been specified. We foresee that compo-
nent suppliers will more and more provide models with their
components, as is already common in the electronics industry.
Realizations are ideally suited for this purpose.

In MAX, modularization and subtyping are used to set up a
hierarchical library of types, with realizations for most types.
The library is accessible through the Library Browser. This

browser shows a taxonomy of model types. Four taxonomies are
currently available:

– Signal blocks: Models of information processing elements,
including controllers. These models are typically
encountered in block diagrams, and block diagram-like parts
of models in other formulations.

– Elements: Models of basic physical phenomena, as recog-
nized in physical systems theory. The taxonomy is based on
the classification of models used in the bond graph commu-
nity. These models are typically used in bond graph models,
and (given a particular domain) as idealized components in
iconic diagrams.

– Components: Models of physical devices, using the main
function of the component as a criterion for classification. A
large share of the library content can be found in this
taxonomy.

– Special: Model parts that are specific for a certain formu-
lation, including models for ports. This hierarchy is rather
static; it only changes when new formulations or physical
domains are added.

The MAX Library Browser is shown in figure 7. The top left
pane in the window shows the taxonomy of electrical motors,
indicating how the taxonomy in the MAX system resembles the
component taxonomy that is formulated by domain experts.

In our case study, we exploit the Library Browser and the
information contained therein for the selection of an alternative
for the flexible shaft, because it appears that a simple flexible
shaft can not easily satisfy the requirement of varying stiffness.
A promising alternative is the specification of the transmission
that uses a translation spring and two transformers to realize the

Figure 6: Polymorphic modeling: model in terms of modular, classified components

desired function. This specification is already available in the
MAX library, and can be installed in the model by selecting the
‘specify’ option for the spring component in one of the graph
editors. Subsequently, the ‘explode’ function is selected, and the
editor now shows the newly installed specification (figure 8).
The iconic diagram formulation is a good choice for the
representation, because it hints at a possible implementation.

The new proposal can be realized as two pulleys coupled by
means of an elastic belt. By providing pulleys with different
radii or by varying the number of elastic belts, this solution
satisfies the requirements for which the initial proposal failed.

To make the model more realistic, the specification of the spring
in this transmission model is changed to include damping. The
default (linear) damping model can be used for a preliminary
analysis. The model of the motor needs some refinement before
proceeding with the analysis, as it has a large influence on the
behavior of the system. The type of the initial model of the
motor is that of a generic DC motor. This is reflected by the icon
used for the representation of this type in the iconic diagram
editor (figure 9a). The model of the motor is refined by
repeatedly specializing the model type into one of the subtypes
of the current type, thereby suggesting sensible options for the
choice of the actual motor. This operation is supported by the
MAX graphical editors. The first specialization leads us to the
commutated DC motor. In the iconic diagram editor, this change
is visualized by the change of the icon for the model. The icon is
now the one shown in figure 9b. A further specialization leads to
the permanent-magnet DC motor. Once more, the icon changes,
this time to the one shown in figure 9c.

At this point, we find that the realization ‘Maxon2260815’ (as
shown in figure 7) provides an adequate model of the device we
want to use in the setup.

So far, the model of the setup has been an open loop model
only. It is prepared to become a controlled process by adding
sensors, and by changing the source into an amplifier. The initial
model of the sensor is an ideal velocity transducer. If desired, a
more detailed model can be specified later by refining the type
and/or the realization of the sensor model.

The complete model now has signal ports: an input for the
steering, and outputs for the measurements. When storing this
model, MAX prompts the user to select an appropriate type for
the model, thereby suggesting ‘Process’ as one of the options.
This suggestion is made on the basis of the ports and attributes
of the model.

Next the model ‘ControlledSystem’ (provided by the library as
a template for rapid model construction) is opened, and the sub-
system ‘Process1’ is specified as the realization we just made for
our setup. The structure of the resulting model is shown in figure
10.

The above sequence of operations demonstrates that a lot of
information can be added to the model with minimal effort.
Because the manipulations are highly structured, and checked by
the system, there is a relatively high assurance that we have
obtained a high quality model.

4 EMBEDDING EQUATIONS IN NETWORKS
Equations are needed to describe knowledge of quantitative

behavior of the smallest subsystems, which is in turn used to
determine the performance of the system. The performance is
typically expressed as a performance index, or set of goal para-
meters. In general, these goal parameters are not directly
available from the model (because they can not be influenced
directly by design decisions). Settling time and overshoot are
typical goal parameters for a controlled system. These
parameters are in general determined by physical parameters
(masses, stiffnesses) and controller parameters (gain factors and
integration constants). For simple cases, an analytical expression
may be available to derive the goal parameters from the

Figure 7: MAX Library Browser
Top left: hierarchically organized subsystem types
Top right: list of realizations of the selected type

Bottom right: available representations of the selected type
Bottom: comment for the selected type and realization

Figure 8: Alternative solution for the flexible transmission,
obtained by selecting another specification

a b c

Figure 9: Iconic diagram representation of the electromotor:
(a) generic DC motor (b) commutated DC motor

(c) permanent-magnet DC motor

parameters available in the model. For more complex models,
other means are required to obtain the goal parameters for a
given set of model parameters. Simulation is a commonly used
technique for this purpose.

Quantitative simulation cannot be performed without quanti-
tative relations (equations) between variables in the model. Even
if a tool seems to work without equations, there will always be a
level in which equations are added. We advocate the use of an
explicit link between equations and non-equation formulations.
An explicit link emphasizes the role of equations, and makes the
tool more open towards the addition of user-specified equations.
In MAX, we use the property that network-type models are inter-
connected by means of ports (power ports and/or signal ports).
This port can be used to connect to another network-type model,
but it can also be used to connect to a set of variables in an
equation model. This is illustrated in figure 11.

By decomposing the network structure to a sufficient depth,
the individual equation sets can be small. The typical use of
embedded equations is to specify a single (physical) process in
less than five equations. The connection with the network
provides a well-defined context for the equations. Together, this
makes that the modeler can easily formulate correct equations,
and quickly understand the meaning of equations made by others
(e.g. those provided by the library).

For proper integration of network-type models and equations,
the automated system must offer a comparable level of support
and model analysis and verification for both types of models. For
instance, if the tool reports unconnected elements in a network,
it must also report variables and parameters that are not used in
a set of equations.

There is an important difference between graph editors and
equation editors: in graph editors, the presentation of the model
to the user is relatively close to the representation in the
computer’s memory. Therefore, a graph editor can give imme-
diate feedback during model editing. In an equation editor, the
presentation of the model to the user is done in textual form. The
transformation of the text to the representation in computer
memory requires compilation. Hence, it is not possible to

provide immediate feedback. Typically, feedback is provided
after the user indicates that he is ready. This implies that the
reports generated by an equation editor should be accurate in
reporting the location and the nature of the errors.

The MAX Equation Editor follows these guidelines. The upper
half of the Equation Editor window (see figure 13) contains
information that can be derived from the type for which the
equations are being specified. This information can not be edited
immediately by the user (the Type Editor should be used instead
for that purpose). The actual equations are specified in the lower
half of the window. The equations are formulated in SIDOPS++,
a language especially designed for the description of physical
systems (Breunese, 1993). Models are specified in a-causal form
in this language. The equations represent equality of two expres-
sions, not a computer program or algorithm. Based on our view
of automated modeling, the conversion from equations to simu-
lation code is a task that should be performed by the computer.

When the user has finished typing the equations and gives the
command to save the equations, the first step in the analysis is a
compilation of the equations from the textual format into a data
structure in the computer’s memory that is more suitable for the
actual analysis. In this phase, syntax errors are detected and
reported. If this compilation is successful, it is by no means
certain that the equations are valid and meaningful. For instance,
the equation ‘1 = 2’ is syntactically correct, but it is not valid.
The MAX system checks a wide range of aspects of the equa-
tions. The simpler checks include a check that all identifiers
(names of variables, etc.) are declared before use, and a check
that the arithmetic type matches for operators and functions,
whereas more advanced checks determine whether it is possible
to compute all unknowns on the basis of the given equations,
and what the causality restrictions of the equation set are. These
causality restrictions are matched with the restrictions defined
for the type selected for the equation set, and incompatibility is
reported. A more detailed overview of the analysis of equation
models can be found in (Breunese and Breedveld, 1995). If an
equation model passes all checks, it is assumed to be correct and
suitable for simulation or analysis.

Figure 10: Model hierarchy of the controlled system

The Equation Editor is also used in our case study. We have
observed that the motor amplifier is unable to provide the
desired output voltage if the controller requests a large value.
The characteristic of the amplifier is shown in figure 12.

In figure 13, we see how the initial model is formulated in the
Equation Editor. Since we do not want to fix the bounds for the
amplifier to a numerical value, we use the symbols min and max.
The symbol p.e identifies the effort variable of port p defined by
the type of the amplifier. If we attempt to store these equations
in the library, the Equation Editor reports that the symbols min
and max are not declared. After querying the user for the desired
type (local variable, parameter, etc.) for the symbols, the
Equation Editor gives the opportunity to specify additional
information for the parameters. After the user has entered the
information he chooses to provide, the Equation Editor will
automatically generate correct code for the declaration of min
and max. After the system has checked that the equations can
indeed be used to describe an amplifier, the adjusted model is
stored in the library. To install the newly created model into the
overall model of our system, we can simply change the
realization of the amplifier into ‘clipping’.

To perform a simulation of the complete, controlled model, we
load the model into the Bond Graph Editor, and export it to the
CAMAS environment. The exported model consists of the model
structure and the model parameters defined in MAX. CAMAS is
then used to perform the actual simulation. The results of this
simulation are shown in figure 14.

5 CONCLUSIONS
Modeling engineering systems involves tasks that are best per-

formed by humans, and tasks that are suitable for automated
support. Ideally, these tasks should complement each other.
Presently, most modeling tools do not yet provide the level of
support that is desirable, and worse, the support they offer is not
tailored to practical use for multidisciplinary design.

In this paper, we describe the role of modeling in the context
of mechatronic design. This leads to three proposals for
automated modeling tools that do support the mechatronic
design process:

– It should be possible to simultaneously formulate one model
in multiple languages, in such a way that the model can be
manipulated in any of the formulations. This concept is
called multiple model formulations. We have devised an
architecture that enables multiple model formulations and
yet keeps different formulations of the model consistent and
tractable.

– Automated modeling tools should support the evolution of a
model over time. It is important that sets of alternatives can
be considered effectively, and that increasing levels of detail
of the model can be evaluated. As a solution, we propose
modularization of submodel descriptions into a type
(defining essential properties) and a specification (defining
incidental properties), and the subtyping of submodel types,
i.e. expressing a type as a specialization of a more general
type. The combination of modularization and subtyping in
model building is called polymorphic modeling.

Figure 11: Equation models as the leaves of a
hierarchical model tree

Figure 12: Characteristic for the motor amplifier

Figure 13: Equation Editor with the model for the amplifier

– Equations are needed for quantitative analysis of a model.
By providing a tight link with the graphical formulations,
consistency is improved, and the explicit context makes
understanding easier. Equation editors should allow model
entry in a user-friendly and intuitive fashion. However, the
format should be formal enough to allow thorough checks.

The implementation of these three concepts is introduced by
means of an example session with MAX. The example demon-
strates the utility of the concepts in a mechatronic context.
Multiple model formulations enable a convenient way to inspect
the model, and the transformation between formulations
provides additional insight in the properties of the model. The
polymorphic modeling concept enables the evolution of the
model when knowledge about the details of the design increases,
and also allows for simple evaluation of alternative solutions.
Finally, embedding equations in network descriptions helps to
describe detailed (physical) behavior of model parts in a
consistent way. The construction of simulation models is made
easy by automated procedures for the derivations of the
aggregated set of equations for a complete model.

REFERENCES
Amsterdam, J., 1992, “Automated modeling of physical sys-

tems”, in (Falkenhainer and Stein, 1992), pp. 31–36.
Bidard, C., and Favret, F., 1993, “SCRIBT.MODELISATION,

bond graph modelling core for technical systems CAD”, Proc.
Int. Conf. Bond Graph Modeling and Simulation ’93, Granda,
J.J., and Cellier, F.E., eds., SCS, San Diego, CA, pp. 179-184.

Breunese, A.P.J., 1993, “Preliminary design of SIDOPS++”,
Internal report 93R199, Control Laboratory, University of
Twente, Enschede, Netherlands.

Breunese, A.P.J., and Breedveld, P.C., 1995, “Automatic deri-
vation of causality restrictions and verification of bond graph

submodels”, accepted for publication in J. Mathematical
Modelling of Systems.

Broenink, J.F., Bekkink, J.W., and Breedveld, P.C., 1992,
“Multibond-graph version of the CAMAS modeling and simu-
lation environment”, Bond graphs for engineers, Breedveld,
P.C., and Dauphin-Tanguy, G., eds., Elsevier, Amsterdam,
Netherlands, pp. 253–262.

Buur, J., 1990, “A theoretical approach to mechatronics
design”, PhD thesis, Institute for Engineering Design, Technical
University of Denmark, Lyngby, Denmark.

Buur, J., and Andreasen, M.M., 1989, “Design models in
mechatronic product development”, Design Studies, Vol. 10, pp.
19–34.

Falkenhainer, B., and Stein, J.L., eds., 1992, Automated
Modeling, DSC-41, ASME, New York, NY.

Hoover, S.P., Rinderle, J.R., and Finger, S., 1991, “Models
and abstractions in design”, Proc. Int. Conf. on Engineering
Design ICED ’91, Heurista, Zurich, Switzerland.

Konda, S., Monarch, I., Sargent, P., and Subrahmaniam, E.,
1992, “Shared memory in design: a unifying theme for research
and practice”, Research in Engineering Design, Vol. 4, pp. 23–
42.

Malmqvist, J., 1993, “Computer aided conceptual design of
energy transforming technical systems”, Proc. Int. Conf.
Engineering Design ’93, Roozenburg, N.F.M., ed., Heurista,
Zurich, Switzerland, pp. 1541–1550.

Rosencode Associates, 1989, “The ENPORT reference
manual”, Lansing, MI.

Sharpe, J.E.E., and Bracewell, R.H., 1993, “Application of
bond graph methodology to concurrent conceptual design of
interdisciplinary systems”, Proc. Int. Conf. on Systems, Man and
Cybernetics, P. Borne et al., eds., IEEE, Piscataway, NJ, Vol. 1,
pp. 7–13.

Figure 14: Results of the simulation for the controlled model constructed in the case study

Stein, J.L., and Louca, L.S., 1995, “A component-based
modeling approach for system design: theory and implemen-
tation”, Proc. Int. Conf. Bond Graph Modeling and Simulation
’95, Granda, J.J., and Cellier, F.E., eds., SCS, San Diego, CA,
pp. 109–115.

Redfield, R.C., and Krishnan, S., 1992, “Towards automated
conceptual design of physical dynamic systems”, J. Engineering
Design, Vol. 3, No. 3, pp. 187–204.

Rinderle, J.R., and Subramaniam, B. L., 1991, “Bond graph
modeling and simplification to support design”, Automated
Modeling, DSC-34, Stein, J.L., ed., ASME, New York, NY, pp.
45–68.

Top, J.L, Breunese, A.P.J., Broenink, J.F., and Akkermans,
J.M., 1995, “Structure and use of a library for physical systems
models”, Proc. Int. Conf. Bond Graph Modeling and Simulation
’95, Granda, J.J., and Cellier, F.E., eds., SCS, San Diego, CA,
pp. 97–102.

Ullman, D.G., 1992, The mechanical design process,
McGraw-Hill, New York.

Ulrich, K.T., and Seering, W.P., 1989, “Synthesis of schematic
descriptions in mechanical design”, Research in Engineering
Design, Vol. 1, pp. 3–18.

Vries, T.J.A. de, 1994, “Conceptual design of controlled
electro-mechanical systems”, PhD thesis, University of Twente,
Enschede, Netherlands.

Vries, T.J.A. de, Breedveld, P.C., and Meindertsma, P., 1993,
“Polymorphic modelling of engineering systems”, Proc. Int.
Conf. Bond Graph Modeling and Simulation ’93, Granda, J.J.,
and Cellier, F.E., eds., SCS, San Diego, CA, pp. 17–22.

Ward, A.C., 1989, “A theory of quantitative inference for arti-
fact sets, applied to a mechanical design compiler”, PhD thesis,
Artificial Intelligence Laboratory, MIT, Cambridge, MA.

Weld, D.S., 1992, “Generating simplified models with confi-
dence”, in (Falkenhainer and Stein, 1992), pp. 21–30.

Wilson, B.H., and Stein, J.L., 1992, “An algorithm for
obtaining minimum-order models of distributed and discrete
systems”, in (Falkenhainer and Stein, 1992), pp. 47–58.

Wirth, N., 1982, Programming in Modula-2, Springer Verlag,
Berlin, Germany.

View publication statsView publication stats

https://www.researchgate.net/publication/238266217

