
Xspin/Project - Integrated ValidationManagement for XspinTheo C. RuysFaculty of Computer Science, University of Twente.P.O. Box 217, 7500 AE Enschede, The Netherlands.ruys@cs.utwente.nlAbstract. One of the di�culties of using model checkers \in the large"is the management of all (generated) data during the validation trajec-tory. It is important that the results obtained from the validation arealways reproducible. Without tool support, the quality of the validationprocess depends on the accuracy of the persons who conduct the vali-dation. This paper discusses Xspin/Project, an extension of Xspin, whichautomatically controls and manages the validation trajectory when usingthe model checker Spin.1 IntroductionIn the past years, we have been involved in several industrial projects concern-ing the modelling and validation of (communication) protocols [4, 19]. In theseprojects we used modelling languages and validation tools - like Promela andSpin [7, 9] - to specify and verify the protocols and their properties. During eachof these projects we encountered the same practical problems of keeping trackof various sorts of information and data, particularly:{ many documents, which describe parts of the system, often originating fromdi�erent parties;{ many versions of the same document;{ many versions of validation models, not only revisions but also variants (dif-ferent abstractions of the same system);{ validation data, including:� simulation traces;� directives and options to build particular veri�ers;� veri�cation results;� counterexamples; and� notes and remarks on the validation runs.The �rst two sources of information are mainly related to the modelling of asystem whereas the latter sources of information are prominent in the validationphase of a system. We experienced that apart from the inherent state spaceexplosion of the model of the system under validation, the validation engineer



has to deal with the data and version explosion of the modelling phase and thevalidation phase as well.In [18] we suggested to use literate programming techniques [12] to tackle themanagement problems in the modelling phase. We also suggested that SoftwareCon�guration Management [1, 11] tools are probably needed to manage the val-idation phase. This paper discusses Xspin/Project, an extension of Xspin, whichmanages and controls the validation trajectory when using the model checkerSpin.In Sect. 2 the management problems of the validation phase are discussed.Section 3 describes Xspin/Project and the paper is concluded with Sect. 4.In the literature on formal methods, the terms validation and veri�cation donot have a �xed meaning. In this paper both terms are used and the followinginterpretations are distinguished:{ With veri�cation we identify the veri�cation process using a model checker(e.g. Spin);{ We use the term validation to address the controlled, systematic analysis ofsystems. With respect to Spin, validation includes both the simulation andveri�cation activities.2 Validation ManagementThis section discusses the management of validation data. After brie
y discussingthe management problems of the validation phase, the current management sup-port within Xspin is discussed. Software Con�guration Management systems areproposed as the solution to the management problems.2.1 Validation dataIn current research on automatic veri�cation tools, much e�ort is being put intoe�cient veri�cation algorithms whereas control and management issues are - atbest - supported in a limited way. As long as nasty errors are being exposed,this may be satisfactory enough. However, when one is aiming at the systematicveri�cation of a system, one needs more than just a smart debugging tool.One of the practical problems when using model checkers is the managementof all (generated) data during the validation trajectory. It is important that thevalidation results obtained using a validation tool are always reproducible [8].Without tool support, the validation engineer has to resort to general engineer-ing practices and record all validation activities into a logbook. Consequently,the quality of the validation process depends on the accuracy of the validationengineer. This is clearly undesirable.When an error is found in (one of) the model(s) of the system under val-idation, the model(s) should of course be corrected. Furthermore, all modelswhich have been veri�ed previously and which are a�ected by the error shouldbe re-veri�ed. It is tedious and errorprone to re-validate all previous models andproperties manually. Both the logging and the re-veri�cation activities shouldbe automated and - ideally - be integrated into the validation tool.



2.2 Current management support in XspinSince version 3.1.2, Xspin includes a \LTL Property Manager", which stores thefollowing information on a LTL veri�cation run into a single �le with extension.ltl:{ the never claim that is generated from the LTL property;{ de�nitions (#defines) of the propositions that are used in the LTL property(and in the corresponding never claim);{ user provided notes; and{ the output of the veri�cation run.The .ltl �le uses #ifdef constructs1 to isolate the Promela fragments from theuser provided notes and the veri�cation results. Consequently, the �le is liableto being updated every time a veri�cation run is executed: previous veri�cationresults will be overwritten unless the user saves each veri�cation run in a di�erent.ltl �le.Although the \LTL Property Manager" is clearly a step in the good directionwith respect to a controlled veri�cation trajectory, some essential ingredients ofthe veri�cation run are not recorded:{ the options to come to the veri�cation results:� options to Spin to generate the pan veri�er;� options to the C compiler to compile the pan veri�er; and� options to the pan veri�er to steer the veri�cation run.{ the Promela model on which the veri�cation was performed;{ the trace (trail) to the counterexample, in case the property was violated.The last aspect becomes even more apparent when the property that is beingchecked requires the existence of a counterexample to be satis�ed. This is thecase for all existential LTL properties of the type \does there exist an executionpath where P becomes true?". The reason for this is that when checking a LTLproperty Q, Spin will implicitly check Q for all execution paths. Consequently,a property like \does there exist an execution path where P becomes true" isnot expressible in LTL. Instead one has to resort to check that \for all executionpaths, P is always not true" (i.e. in LTL: 2!P ). If this transformed propertyis not valid, Spin will �nd a counterexample showing the execution path whereP will become true. In this case the counterexample is the proof of the originalproperty.Spin is appraised most for its model checking capabilities. Besides these ver-i�cation features, Spin includes a very helpful simulator, that can be used fordebugging, sanity checks, rapid prototyping, simulation of generated counterex-amples, etc. It is remarkable that Xspin has some limited support for veri�cationmanagement but has none for simulation.1 Promela source text is (by default) preprocessed by the standard C preprocessor,named cpp, before being parsed by Spin itself. The #ifdef directive is normally usedfor the conditional compilation of source text (i.e. C).



Although Xspin's \LTL Property Manager" is more than other validationtools have to o�er, it is too primitive to use in an extensive validation projectspanning more than a few days. Within such projects, we experienced that thevalidation process was seriously hampered by the fact that we had to record allour validation activities with Spin by hand. Instead of concentrating on the vali-dation process, we had to invent schemes to keep track of the various validationmodels, the simulation traces, the veri�cation results, etc. We also tried to useliterate techniques to structure the validation process [18], but had to concludethat these techniques do not scale up for larger projects.2.3 Software Con�guration ManagementThe problems of managing the data that is generated during the validation phaserelate to the maintenance problems found in software engineering [17]. This is notsurprising as, in a sense, validation using a model checker involves the analysis ofmany successive versions of the model of a system. To tackle these maintenanceproblems within software engineering a lot of research has been carried out inthe area of so called \Software Con�guration Management".Software Con�guration Management (SCM) [1, 11] is the software engineer-ing discipline of managing the evolution of large and complex software systems[21]. From the IEEE Standard Glossary of Software Engineering Terminology(Standard 729-1983 [10]):2Software Con�guration Management is the process of identifying andde�ning the items in a system, controlling the release and change ofthese items throughout the life-cycle, recording and reporting the sta-tus of items and change requests, and verifying the completeness andcorrectness of items.The items that comprise all information produced as part of the software engi-neering process are collectively called a software con�guration. A general SCMsystem has the following operational aspects to manage the software engineeringprocess [5, 10, 17]:{ Identi�cation. An identi�cation scheme re
ects the structure of the product,identi�es components and their type, making them unique and accessible insome form.{ Version control. Version control combines procedures and tools to managedi�erent versions of con�guration objects that are created during the soft-ware engineering process.{ Change control. Change control combines human procedures and automatedtools to provide a mechanism for the control of change.2 SCM is a widely used term, with an equally wide range of meanings. Seehttp://www.enteract.com/~bradapp/acme/scm-defs.html for an extensive list of alter-native SCM de�nitions.



{ Audit and review. Validating the completeness of a product and maintainingconsistency among the components by ensuring that the product is a well-de�ned collection of components.{ Reporting. Recording and reporting the status of components and changerequests, and gathering vital statistics about components in the product.Naturally, a SCM system should be supported by automated tools. Tools for ver-sion control and build management are essential. Furthermore, SCM tools shouldprovide the developer with a \sandbox" environment: a consistent, 
exible andreproducible environment to compile, edit and debug software [13]. SCM toolshave greatly evolved over the last twenty years. Tools have gone from �le orientedversioning utilities to full blown repository-based systems that manage projectsand support team development environments, even across geographic locations.In this paper, a discussion on particular SCM tools is clearly out of scope. Theinterested reader, however, is invited to visit the \Con�guration ManagementYellow Pages" page on Internet [22] or consult the Proceedings of the AnnualWorkshops on Software Con�guration Management. Conradi and Westfechtel [3]give an extensive overview of the current state of art of SCM and SCM systems.De�nitions Below we de�ne the conceptual framework for the rest of this paper,borrowing terminology from the SCM community, in particular [3, 21].{ object. An object (or item) is any kind of identi�able entity put under SCMcontrol.{ version. A version represents a state of an evolving object.{ revision. A version intended to supersede its predecessor is called a revision(historical versioning).{ variants. Versions intended to coexist are called variants (parallel version-ing).{ con�guration. A con�guration is a consistent and complete version of a com-posite object, i.e. a set of object versions and their relationships.{ product space. The product space is composed of the objects and their rela-tionships. The product space is organized by relationships between objects,e.g. composition relationships and (build) dependency relationships.{ version space. The version space is composed of the set of versions. Theversion space is often organized into a version graph or version grid.2.4 SCM and XspinIt is clear that the functionality of SCM systems and tools can be of considerablevalue to control and manage the validation phase. For the validation trajectoryusing Xspin we are mainly interested in the identi�cation of validation objects,version control over these validation objects and reporting facilities on theseobjects. The change control functionality and the support for audit and reviewsupported by SCM seem less applicable to validation.



During the validation phase, a validation object records the results of a val-idation activity. For validation using Xspin, three validation objects can be dis-tinguished: the Promela model, the property and the validation result. Of theseobjects, several versions exist during the validation phase.{ Model M .M is the model of the system under validation.Mi denotes the i-thversion of model M . A version can either be a variant or a revision. Withinthe validation framework, variants correspond to di�erent abstractions ofthe same model M , whereas revisions are di�erent versions of the sameabstraction.{ Property �. A property � is a property which should hold for the model Munder veri�cation.{ Validation results R. R is a set of validation results. The set Ri denotes theset of validation results obtained by executing the validation tool on themodel Mi. An element from the set Ri is denoted by ri;j . Every element ri;jcontains the outcome (e.g. a �le) of the j-th validation onMi and additionalinformation that depends on the type of validation. For instance, when ri;jcorresponds to a simulation run, the simulation goal and observations onthe simulation should be added to ri;j . Whereas for a veri�cation run, apartfrom the veri�cation goal (e.g. a LTL property), the directives and optionsto obtain the veri�er should be added to ri;j .The versioned product space of the validation phase now consists of all versionsof all validation objects during the validation of the model M .3 Xspin/ProjectIn this section the Xspin/Project tool is discussed. Xspin/Project is an extensionof Xspin using the version control system PRCS [15]. Xspin/Project controls andmanages the validation activities when using Xspin. First the choice for theunderlying version control system PRCS is motivated. Then the architectureand the functionality of Xspin/Project are discussed.3.1 PRCSTo integrate management facilities into a validation tool like Xspin, the func-tionality of full-blown state-of-the-art SCM tools is not needed. For a controlledand reproducible validation phase, version control and build-management aremost important. A �le based version control tool like RCS [20] in combinationwith a basic build-management tool like make [6] appeared to be su�cient for aprototype version of Xspin/Project.Concurrent Version System (CVS) [2] - the de-facto version control systemamong free systems - seemed to be unnecessarily complex with respect to oper-ation, administration and user interface to be easily integrated into Xspin. Theauthor was attracted by the simplicity of PRCS and decided to use this versioncontrol system for a �rst prototype version of Xspin/Project.



PRCS - the Project Revision Control System [15] - is a version-control systemfor collections of �les with a simple operational model, a clean user interface andhigh performance. PRCS is freely available from [14]. The current version ofPRCS is implemented using RCS [20] as its back-end storage mechanism.PRCS has some additional features which makes it well suited for integrationinto Xspin:{ Conceptually close to validation objects. PRCS de�nes a project version asa labeled snapshot of a group of �les, and provides operations on projectversions as a whole. Thus a project version naturally relates to a speci�cvalidation model and all its validation results.{ Version naming scheme. PRCS' version naming scheme (see below) corre-sponds closely to the version concepts from the validation framework: ab-straction and revisions of these abstractions.{ Simple operational model. In PRCS, each project version is identi�ed by asingle distinguished �le, the version descriptor; this �le contains a descriptionof the �les included in that particular version. Adding �les (i.e. validationresults) only involves adding the �lename to this version descriptor �le.Terminology A project in PRCS is a collection of (project) versions.3 A versionis a snapshot of a set of �les arranged into a directory tree. Every version has aname of the form m:n, where m is the major version name and n is the minorversion name. A major version name m is a string chosen by the user, whereasthe minor version name n is a positive integer, assigned consecutively by thesystem. A PRCS repository contains a group of projects. Two basic operationsare available to save and load versions to and from the repository respectively:{ checkin: a complete version is put into the repository;{ checkout : reconstructs a complete version, identi�ed by the project and ver-sion name.The PRCS concepts correspond nicely with the concepts from the validationframework. A project corresponds with the complete validation trajectory of asystem. Each version of the project is a Promela model Mi together with itsvalidation results Ri. In a version m:n, the major version name m correspondswith the particular abstraction of the model M and the minor version name ncorresponds with the n-th revision of the particular abstraction. The fact thatthe major version name m in PRCS is an arbitrary string can be used to giveappropriate names to the di�erent abstraction models.3.2 ArchitectureFigure 1 shows the architecture of Xspin/Project. Xspin/Project is an extension ofXspin. The Project-part of Xspin/Project is responsible for collecting the Promela3 A PRCS project corresponds to the term con�guration of SCM.



PRCS

Project

Xspin

PRCS repository

description.log

validation results
Promela models

Tcl/Tk

Fig. 1. Architecture of Xspin/Project.models and validation results from Xspin and passing them to PRCS. Further-more, the Project-part integrates a visual front end to PRCS into Xspin. TheProject-extensions are written in Tcl/Tk [16].Every PromelamodelMi can be saved into the PRCS repository. Furthermore,the contents of any message box of Xspin which is the result of some validationrun (i.e. ri;j) can be saved into the PRCS repository. Xspin/Project uses a special�le, i.e. description.log in which it stores additional information about thevalidation �les (e.g. validation goals, options, directives, timestamps) into thecurrent version of the project.Xspin/Project needs PRCS version 1.2 [14] to be installed. PRCS on its turnneeds RCS version 5.7 as its underlying version control system. Xspin/Project isavailable from http://www.cs.utwente.nl/~ruys/xspin-project.3.3 OverviewIn a nutshell the current version of Xspin/Project can be characterized as follows:{ Xspin/Project implements a visual front end to PRCS into Xspin. To theuser, Xspin/Project is presented as a conceptual database of Promela modelstogether with their validation results.{ The user of Xspin/Project can save all its validation activities into the PRCSdatabase. Furthermore, the user is given the possibility to annotate thesevalidation activities.{ All essential veri�cation data such as directives and options to the C compilerand the pan veri�er are automatically saved into the PRCS repository.{ Xspin/Project ensures the integrity of the Promelamodels and their validationmodels.Xspin/Project uses plain PRCS as its underlying con�guration management tool.This means that all additional powerful features (like diff and merge) of PRCS



Fig. 2. Screen capture of a validation session with Xspin/Project.are also available to the user. However, these advanced features of PRCS are not(yet) available from within Xspin/Project. To exploit these features, one shoulduse PRCS' command-line options.3.4 User awarenessFigure 2 captures a screenshot of a validation session with Xspin/Project. Theadded functionality of Xspin/Project provides the user with a \sandbox" environ-ment: a consistent, 
exible and reproducible environment to edit and validatePromela models. The user should not be unnecessarily hampered during thevalidation trajectory. Below we discuss the user awareness with respect to thefeatures added by Xspin/Project on top of the original Xspin.{ Accessing PRCS. An extra toplevel menu has been added to Xspin: Project.This menu can be used to access most Xspin/Project functions, like:� Starting a new project.� Opening an existing project.� Loading (checking out) a particular Promela model (i.e. an explicit ver-sion of the project).� Saving (checking in) a particular Promela model and all its recordedvalidation results.



� Adding �les explicitly to the current version. This may be useful whennon-Xspin �les are relevant to a validation run or when one has forgottento save a Xspin �le into the repository.� Cleaning up the directory. Using this function all �les that have beensaved previously in the repository are removed from the current direc-tory.{ Saving validation results. To every dialog box containing validation output(e.g. simulation traces, message sequence charts) an extra button has beenadded: \Save into Repository". When this button is pressed, Xspin/Projectshows a dialog box where the user can annotate the particular �le with somenotes on the particular validation run. The �le and the (optional) notes aresubsequently saved into the repository. Furthermore, for veri�cation runs,Xspin/Project saves all options that are needed to build and run the panveri�er into the description.log �le.{ Forcing version integrity. When the user has saved the results of a validationrun into the current version of the project, the corresponding Promela modelwill be locked: the user can only perform additional validation runs on themodel. Only when the complete version has been saved (checked in) intothe repository, the Promela model will be unlocked again for user edits. Thisstrategy of Xspin/Project is necessary to keep all models and their validationresults accurate.4Software development vs. validation When using a SCM tool to control the soft-ware development process, a version of the `product' consists of several �les andrules to construct the product. Older versions correspond to inferior or less stableversions (containing bugs) or to versions of the product with fewer features.In Xspin/Project, PRCS is used as a database to store and log all validationactivities. Each di�erent Promela model is stored together with the validationresults on that particular model. In contrast with software development, earlierversions of the model are not inferior or less stable versions, but should beconsidered as di�erent abstractions of the same model.4 ConclusionsThe success of model checking tools is mainly based on the bugs and errorsthat those veri�cation tools have exposed in (existing) systems and standards.Now that model checking tools are becoming more widespread, the applicationof model checkers is slowly shifting from debugging to veri�cation.4 This strict behaviour does not restrain the user when constructing a new Promelamodel. During the development of a Promela model, one usually performs severalsanity checks (mostly simulation runs) on intermediate models before actual veri-�cation runs are tried. Naturally, these sanity runs do not have to end up in thevalidation repository. Therefore, the user is not forced to save all validation �les butmay only optionally do so.



This paper discusses the need for systematic control and management overthe (generated) data when using an analysis tool like Spin for the validation oflarge systems. The strength of SCM systems and tools has brie
y been discussed.We have concluded that the full power of SCM systems is not needed to managethe validation activities; a 
exible version control mechanism is su�cient tomanage the validation phase when using Xspin.We have presented Xspin/Project, an integration of the version control systemPRCS into Xspin. The current version of Xspin/Project presents the user with aconceptual database for Promela models and their validation results. To guidethe veri�cation engineer even further, we are currently working on the followingextensions to Xspin/Project:{ Reporting : adding reporting facilities to generate a detailed overview of thecomplete validation trajectory.{ Reveri�cation: when a Promela model has been altered, all previous veri�-cation runs on the model should be automatically re-veri�ed.{ Reuse: reusing veri�cation options of previous veri�cation runs to verify newversions of Promela models.{ Compare: comparing di�erent versions of Promela models (using PRCS' diffcommand) to get information on the abstractions and revisions made duringthe validation trajectory.But even without these additions the current version of Xspin/Project alreadypromises to be a great help in managing the version space explosion.References[1] Wayne A. Babich. Software Con�guration Management: Coordination for teamproductivity. Addison-Wesley, Reading, MA, 1986.[2] Brian Berliner. CVS II: Parallelizing Software Development. In Proceedings of theWinter 1990 USENIX Conference, January 22-26, 1990, Washington DC, USA,pages 341{352, Berkeley, CA, USA, January 1990. USENIX.[3] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Con�gu-ration Management. ACM Computing Surveys, 30(2):232{282, June 1998.[4] Pedro R. D'Argenio, Joost-Pieter Katoen, Theo C. Ruys, and G. Jan Tretmans.The Bounded Retransmission Protocol must be on time! In Ed Brinksma, editor,Proceedings of the Third International Workshop on Tools and Algorithms for theConstruction and Analysis of Systems (TACAS'97), number 1217 in Lecture Notesin Computer Science (LNCS), pages 416{431, University of Twente, Enschede,The Netherlands, April 1997. Springer Verlag, Berlin.[5] Susan Dart. Concepts in Con�guration Management Systems. In P.H. Feiler,editor, Proceedings of the Third International Workshop on Software Con�gura-tion Management (SCM'91), pages 1{18, Trondheim, Norway, June 1997. ACMSIGSOFT, ACM Press, New York.[6] Stuart I. Feldman. Make { A Program for Maintaining Computer Programs.Software { Practice and Experience, 9(3):255{265, March 1979.[7] Gerard J. Holzmann. Design and Validation of Computer Protocols. PrenticeHall, Englewood Cli�s, New Jersey, 1991.



[8] Gerard J. Holzmann. The Theory and Practice of a Formal Method: NewCore. InProceedings of the IFIP World Congress, Hamburg, Germany, August 1994. Alsoavailable from URL: http://cm.bell-labs.com/cm/cs/doc/94/index.html.[9] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on SoftwareEngineering, 23(5):279{295, May 1997. See also URL:http://netlib.bell-labs.com/netlib/spin/whatispin.html.[10] IEEE. IEEE Standard Glossary of Software Engineering Terminology: IEEE Stan-dard 729-1983. IEEE, New York, 1983.[11] IEEE. IEEE Guide to Software Con�guration Management: ANSI/IEEE Std1042-1987. IEEE, New York, 1987.[12] Donald E. Knuth. Literate Programming. The Computer Journal, 27(2):97{111,May 1984.[13] David B. Leblang and Paul H. Levine. Software Con�guration Management: Whyis it needed and what should it do? In Jacky Estublier, editor, ICSE SCM-4 andSCM-5 Workshops { Selected Papers, number 1005 in Lecture Notes in ComputerScience (LNCS), pages 53{60. Springer Verlag, Berlin, 1995.[14] Josh MacDonald. PRCS { Project Revision Control System. Available from URL:http://www.xcf.berkeley.edu/~jmacd/prcs.html.[15] Josh MacDonald, Paul N. Hil�nger, and Luigi Semenzato. PRCS: The ProjectRevision Control System. In B. Magnusson, editor, Proceedings of the ECOOP'98SCM-8 Symposium on Software Con�guration Management (SCM'98), number1439 in Lecture Notes in Computer Science (LNCS), pages 33{45, Brussels, Bel-gium, July 1998. Springer Verlag, Berlin.[16] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Com-pany, Reading, Massachusetts, 1994.[17] Roger S. Pressman. Software Engineering { A Practioner's Approach. McGraw-Hill, New York, third edition, 1992.[18] Theo C. Ruys and Ed Brinksma. Experience with Literate Programming in theModelling and Validation of Systems. In Bernhard Ste�en, editor, Proceedings ofthe Fourth International Conference on Tools and Algorithms for the Constructionand Analysis of Systems (TACAS'98), number 1384 in Lecture Notes in ComputerScience (LNCS), pages 393{408, Lisbon, Portugal, April 1998. Springer Verlag,Berlin.[19] Theo C. Ruys and Rom Langerak. Validation of Bosch' Mobile CommunicationNetwork Architecture with SPIN. In Proceedings of SPIN97, the Third Inter-national Workshop on SPIN, University of Twente, Enschede, The Netherlands,April 1997. Also available from URL:http://netlib.bell-labs.com/netlib/spin/ws97/ruys.ps.Z.[20] Walter F. Tichy. RCS { A System for Version Control. Software { Practice andExperience, 15(7):637{654, July 1985.[21] Walter F. Tichy. Tools for Software Con�guration Management. In J.F.H. Win-kler, editor, Proceedings of the International Workshop on Software Version andCon�guration Control, pages 1{20, Grassau, Germany, January 1988. TeubnerVerlag.[22] Andr�e van der Hoek. Con�guration Management Yellow Pages. Available from:http://www.cs.colorado.edu/users/andre/con�guration management.html, 1999.


