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This paper discusses the development of a numerical solver for the Reynolds equation in aerodynamic lubricated 
bearings, utilizing a finite difference method with multigrid. The advantages of the numerical method are that 
the number of operations and the memory capacity needed are almost proportional to the number of gridpoints 
involved. It is second order accurate and can cope with various bearing geometries. A survey is also given 
of the implemented modifications of the Reynolds equation. The efficiency of the method is demonstrated by 
two examples, namely: the dynamic tracking of the centre of a herringbone grooved journal bearing and the 
equilibrium position of a hard disk slider. 

1. In t roduct ion  

An analytical solution of the Reynolds equa- 
tion for gas lubricated bearings is only available 
in some special situations. Therefore, in general, 
a numerical approach is required. 

During the last decades several methods have 
been proposed for discretising the Reynolds equa- 
tion. They may be divided in two groups, namely 
"finite element methods (FEMs)" and "finite dif- 
ference methods (FDMs)". An early survey of 
numerical methods was published by Castelli and 
Pirvics (1968). Recently, substantially improved 
methods have been introduced. Useful FEMs 
have been developed, among others, by Bonneau, 
Huitric and Tournerie (1993) and by Nguyen 
(1991). The advantage of the FEMs is that they 
can be applied to a large variety of geometries. 
Nevertheless, the FDM is still used; see for exam- 
ple Lipschitz, Basu and Johnson (1991). 

The numerical solution of the set of equations, 
constructed with the methods mentioned above, 
is quite expensive for a large number of points, 
i.e. the number of operations and the memory 
capacity needed are a t  least O ( n 2 ) ,  with n the 
number of grid points involved. The numerical 
simulation is further complicated by the nonlinear 
character of the Reynolds equation and the wide 
velocity range of gas bearings. However, a multi- 
grid solver in combination with a FDM decreases 

the number of operations and the memory capac- 
ity needed and makes them directly proportional 
to the number of grid points involved. Therefore, 
this method is applied for solving the Reynolds 
equation. 

A numerical method is presented that solves 
the Reynolds equation second order accurate, in 
arbitrarily shaped bearings. The grid points are 
equally spaced on the domain, but the location 
of these points is independent of the shape of the 
bearing surfaces. 

To begin with, the bearing model will be pre- 
sented and some possible modifications of the 
Reynolds equation are specified that extend its 
applicability. Next the numerical solver will be 
composed of a FDM and a multigrid solver. Fi- 
nally two applications will be shown, namely 
hard disk slider and a herringbone journal bear- 
ing. 

2. Bearing model 

Let us consider a model of a gas lubricated 
bearing of which the behaviour is to  be analysed. 

If the bearing is not defined in a rectangular 
domain, it has to be transformed onto it by a co- 
ordinate transformation. For instance, a journal 
bearing is unwrapped to a plain bearing and a 
thrust bearing is described in polar coordinates. 

Figure 1 shows a schematic representation of a 
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bearing on the  domain ((0, l z ) ,  (0 ,  ly)). The sur- 
faces may have waviness, pockets or alternative 
groove geomctries, like straight, herringbone or 
spiral grooves. The surfaces move in the tangen- 
tial direction with a constant velocity g.  

The bearing clearance ( h )  is a function of the 
given surface geometry and a global function with 
some degrees of freedom. Three combinations are 
of special interest, namely: 

0 the static solution; with no degrees of free- 
dom foi the clearance, 

0 the equilibrium solution; a steady state 
global function needs to solved for every de- 
gree of freedom of the clearance, 

0 the time dependent solution; a transient 
global function needs to solved for every de- 
gree of fieedom of the clearance. 

The boundary conditions complete the model. 
The values of the pressure ( p )  are known along the 
external boundary parallel to the r-axis (Dirich- 
let boundary). The boundary parallel to the y- 
axis can, respectively, be of the Neumann or the 
Dirichlet type: 

0 a cyclic bearing condition, i.e. p(x = 0, y) = 
P ( r = L , Y ) ,  

0 a slider bearing condition, i.e. the pressures 
p(z=O,y) and p(z=l,,y) are known. 

Algorithms have been derived for the six possible 
combinations. 

3. Lubrication model 

The Reynolds equation is generally used to de- 
scribe the behaviour of the lubricant film. It is 
derived from the Navier Stokes equations and the 
continuity equation by assuming very thin gaps. 
However, modifications can be made in order to 
extend the applicability of t  he Reynolds equation. 

The Reynolds equation is written in the diver- 
gence form, neglecting the external forces, and 
reads: 

Figure 1. Schematic presentation of a bearing. 

with g and h for the sum velocity of the bearing 
surfaces and the clearance, respectively. The time 
is t .  The pressure, the density and the viscosity 
are denoted by respectively, p ,  p and q. 

Further it is assumed that the flow is isoviscous 
and isothermal. Therefore the density p may be 
replaced by the pressure p according t o p  = pR,6, 
with 6 and R, for the temperature and the gas 
constant. 

Because a number of assumptions have been 
made during the derivation, restrictions are nec- 
essary in order to obtain an accurate approxima- 
tion for the flow in a clearance. 

Special attention is paid to the flow of gas in 
an ultra thin gap, like between a hard disk and a 
slider. The original Reynolds equation is restric- 
ted to flows where the molecular mean free path 
is negligible as compared to  the thickness of the 
gap. Whenever both lengths are comparable, slip 
between the gas and the wall produces an effect 
that is similar to a reduction of the viscosity. 

The Reynolds equation can be adopted to ultra 
thin gaps by applying well known theories. The 
characteristic parameter is the Knudsen number 
(Kn).  It represents the ratio between the mean 
free path (A )  and the gap (h ) :  

x 
Kn = -. 

h 
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A first order approximation of the molecular slip 
velocity may be derived from the kinetic gas the- 
ory. It was implemented in the Reynolds equation 
by Burgdorfer (1959): 

with A0 for the mean free molecular path at the 
pressure PO. 

Higher order approximations for the slip in the 
Reynolds equation were investigated by Hsia and 
Domoto (1983) and Mitsuya (1993). F'ukui and 
Kaneko (1988) derived a molecular gas equation 
which looks familiar to the Reynolds equation. 
This equation is specifically suited for very large 
Knudsen numbers. 

Other well known adaptations are the incor- 
poration of centrifugal effects (Pinkus and Lund, 
1981) and turbulence (Taylor and Dowson, 1974). 
These models were originally derived for incom- 
pressible flow, but may quite as well be used for 
compressible flow. 

All these modifications of the Reynolds equa- 
tion will be neglected in the construction of the 
numerical method. 

4. Numerical procedure 

A numerical procedure will now be presented 
that solves the Reynolds equation with second 
order accuracy. It is a combination of a FDM- 
discretisation and a multigrid method. 

Point of departure is the dimensionless Rey- 
nolds equation in Cartesian coordinates, a non- 
linear differential operator. Since velocity in one 
direction is assumed, this equation reads: 

The variable P represents the dimensionless pres- 
sure and needs to be solved. The diffusion coeffi- 
cient d and the advection coefficient a are known 
functions of the dimensionless bearing clearance 
H and the position in the bearing. y is the 
squared aspect ratio. A and o are the dimension- 
less velocity and the dimensionless squeeze num- 
ber. 

4.1. Discretisat ion 
The discretisation of the Reynolds equation 

is based on the filmthickness between two grid 
points ( d i h i  and ai,+), instead of coefficients in 
the grid points. These two discretisations lead to 
different solutions when an internal boundary is 
crossed. The first discretisation needs only one 
relaxation point to cross a boundary, while the 
second one invariably needs a number of points. 
Therefore the position of the discontinuity is pre- 
sented more accurately with the first method, re- 
sulting in a more accurate solution. 

A first and a second order accurate discre- 
tised Reynolds equation (in stencil notation: 
L(P)i,j,k = f i , j , k )  are presented in appendix A. 

4.2. Multigrid 
Multigrid has originally been introduced for an 

isotropic function P ,  with a smooth behaviour 
of V P .  The Reynolds equation for gas lubrica- 
tion can be non-isotropic and shows strongly dis- 
continuous coefficients across internal boundaries. 
This requires special measures for the solver. 

A number of so-called black box multigrid 
methods have been proposed that overcome the 
difficulties just mentioned. Two basic methods of 
adaptation of the solver are available that regain 
the desired convergence rate. 

Zeeuw (1990) has developed a multigrid solver 
based on matrix operations to obtain the coarse 
grid operator. Therefore this method can only 
be applied if the Reynolds equation has been lin- 
earised. It results in a nine-point relaxation sten- 
cil on coarse grids. The preliminary work needed 
for this method is quite extensive because matri- 
ces must be inverted. 

An alternative method was proposed by Al- 
couffe, Brandt, Dendy and Painter (1981). A 
multigrid solver was derived for a Laplace equa- 
tion with strongly discontinuous coefficients. The 
method did not include advection and a nonlinear 
equation. The advantage of the method is that it 
uses a five point relaxation stencil on coarse grids 
and does not need matrix inversions. 

The algorithm presented is based on the work 
of Alcouffe et al. (1981). It is implemented in 
the Full MultiGrid, Full Approximation Scheme 
(Brandt, 1984) for a nonlinear equation. 



526 

4.2.1. Relaxation 
The operator in  a milltigrid solver must be 

such that the relaxation is stable and an effective 
smoother. ”Stable” means that every frequency 
component is reduced by the relaxation process. 
For multigrid efficiency in addition, good smooth- 
ing properties are essential, i.e. all high frequency 
components need to be reduced fast. 

The preferred discretisation for the operator is 
the one with second order accuracy. However due 
to stability and smoothing requirements, its ap- 
plicability is limited to regions where the diffusion 
derivative is larger than the advection derivative. 
On the contrary, the relaxat,ion of the first order 
accurate scherrie is stable arid a good smoother. 
Therefore, when the second order scherrie is not 
stable or not a good smoother and if a second or- 
der solution is needed, the first order is used and 
the accuracy is increased from first to second by 
introducing: ”defect correction” (Khosla and Ru- 
bin, 1974). 

Caution is needed along and across internal 
boundaries. These discontinuities cause locally 
large pressure gradients, depending on the geom- 
etry of the bearing and the hearing velocity. The 
safest method is to use first order discretisation 
with, if necessary, defect correction. 

The type of relaxation depends on the ratio of 
the derivatives in  the X -  and Y-direction. If it is 
isotropic, a one point Gauss-Seidel relaxation can 
be iised. In non-isotropic regions, Gauss-Seidel 
line-relaxation should be used. 

4.2.2. Intergrid transfer 
The differences are described between the con- 

structed intergrid transfer procedures and the 
implementation of Alcouffe et al. (1981). The 
guiding principle is the smooth behaviour of: 
$ V P 2  - AnP, which represents the Inass flow. 

The interpolation and restriction operators 
must prevent that information is averaged when 
crossing internal boundaries. A common choice 
for the restriction operator is applying the inverse 
of the interpolation operator for internal bound- 
ary problems. This choice is very expensive. 
Whereas a coarse approximation also gives sat- 
isfying results. The latter is based on a weighting 
with the reciprocal of the diffusion coefficients. 
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Figure 2. Slider geometry 

The interpolation is based on the discretised op- 
erator. 

The coarse grid operator is based on the dis- 
cretisation of the fine grid operator. The method 
for calculating the advection and diffusion coeffi- 
cients a and d was based on Alcouffe et al. (1981). 

5. Applications 

Two applications will be presented which are 
usually solved with different methods, namely a 
hard disk slider and a herringbone grooved jour- 
nal bearing. 

5.1. Hard disk sliders 
The study of hard disk sliders has been stimu- 

lated by the minimisation of the hard disk dimen- 
sions. Several slider designs have been proposed, 
like the standard two rail slider (for example the 
IBM 3370) and the so-called ”negative pressure 
slider”. Sliders are often judged by their equilib- 
rium position. Three degrees of freedom must be 
solved to find the equilibrium position, namely 
the minimal filmthickness (hmzn), the pitch angle 
( a )  and the roll angle (p )  (Figure 2).  

The numerical method solves the pressure 
distribution with the equilibrium position of the 
slider. The degrees of freedom are solved most ef- 
ficiently on the coarsest grid of a multigrid cycle 
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Figure 3. Pressure distribution under a IBM 3370 
slider 

(Venner, 1991). The equilibrium position is found 
in two steps. During the first step, the pressure 
distribution and the load balance are matched, 
when the finest level is level two. If the multi- 
gridproces contains three or more levels, the load 
and momentum are balanced. 

The efficiency of the numerical procedure is 
demonstrated for an IBM 3370 slider, as well as 
for a negative pressure slider. 

5.1.1. IBM 3370 slider 
The IBM 3370 slider is a standard two rail 

slider, with flat tapers. The area between the 
rails does not contribute to the lifting capacity. 

Choi and Yoon (1994) developed a method for 
the prediction of the equilibrium position of a 
hard disk slider by using an optimization tech- 
nique. Three standard sliders are discussed in 
their article, the results for the IBM 3370 will be 
compared with the present results. The notation 
and the equations of Choi are employed. 

The method of Choi solves first the static pres- 
sure distribution. It needs 4 till 8 times more 
iterations to solve the pressure distribution with 
the equilibrium position. 

The present method solves the standard slider 
on 7 succeeding levels. The coarsest grid has 
per rail 1 x 10 nodes, the finest has 127 x 703 
nodes. The area between the rails is not discre- 

level a![,urad] P[pradl h m i n [ p 4  
1 300.0 0.00 0.100 
2 300.0 0.00 0.500 
3 146.5 8.67 0.566 
4 144.8 7.93 0.568 
5 144.2 7.49 0.569 
6 146.1 7.30 0.571 
7 146.0 7.19 0.571 

Ruiz 143. 7.1 0.55 
Choi 145. 7.2 0.56 

Table 1 
Results for a IBM 3370 slider on 7 levels. 

tised. The multigrid method needs two V-cycles 
with two pre and two post relaxations per level 
to solve the pressure distribution. Four cycles in 
total are needed to find the equilibrium position. 
This means that 16 relaxation of the finest grid 
are needed. However, on levels two and three, 
more cycles are needed, depending on the initial 
condition. The computational costs are very low 
for the low level cycles. Therefore these can be ne- 
glected when more than three levels are involved. 
The pressure distribution is given in Figure 3. 
Only one out of 64 gridpoints is shown. 

The solution of the proposed method and the 
results of Choi and Yoon (1994) are listed in ta- 
ble 1. They compared their results with Ruiz and 
Bogy (1990). Excellent agreement of the minimal 
filmthickness hmin, the pitch angle a! and the roll 
angle p, is seen between the three methods. On 
the finest level, level seven, the most accurate re- 
sults are obtained. It is obvious that the differ- 
ences between the solutions on succeeding levels 
become less when the level is finer. However the 
convergence of the solution is not exactly second 
order. This is caused by the switch from taper 
to rail, which in general does not coincide with a 
gridline. This reduces the convergence rate. 

5.1.2. Negative pressure slider 
The so-called "negative pressure slider" con- 

sists of two rails with a threshold in between. Be- 
hind the threshold is a recessed area with a sub 
ambient pressure. This sucks the slider to the 
disk. 

The negative pressure slider can be solved 
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level F, [N] Fy [N] 
1 -109.9 56.5 

Figure 4. Pressure distribution under a negative 
pressure slider 

2 145.0 7.20 1.176 
3 298.5 11.80 1.117 
4 308.3 11.91 1.133 
5 304.6 11.96 1.141 
6 304.7 11.99 1.146 

Table 2 
Results for negative pressure slider on 6 levels. 

with the same efficient method. The number of 
operations is a bit larger because multigrid W- 
cycles are needed instead of V-cycles. The com- 
plete slider is discretised, i.e. also the area be- 
tween the rails. The coarsest level has l l  x 14 
nodes, the finest 383 x 479 nodes. The pressure 
distribution is presented in Figure 4. Only one 
out of 64 points is plotted. 

Geometries have not been published and there- 
fore the results can not be compared. Table 2 
presents the results on the six levels. The con- 
vergence of the solution is first order because the 
inaccurate description of the internal boundaries 
dominates the error in the solution. 

2 -147.3 56.7 
3 -165.7 52.7 
4 -174.9 49.0 
5 -178.3 47.2 
6 -180.6 46.0 
7 -181.5 45.6 

Table 3 
Static results of a herringbone bearing. 

5.2. Herringbone grooved journal bearing 
Herringbone grooved journal bearings are ap- 

plied in rotating machinery such as audio and 
video equipment. For gas bearings in particular, 
uncontrolled whirl can cause fatal damage to the 
bearing. Therefore the prediction of whirl is im- 
portant for the designer. The stability of a bear- 
ing is simulated by solving the Reynolds equation 
and the equations of motion. The result is a tran- 
sient prediction of the journal centre locus. 

In a transient analysis, the previous solution is 
applied as an estimation for the next time step 
by the numerical method. The multigrid method 
is called ’IF-cycle”. On the coarsest level 16 x 3 
nodes are used, on the finest level (level 7) 1024 x 
255 nodes. Three V-cycles, each with four relax- 
ations at the finest level, are needed for the static 
solution. During the begin of the transient analy- 
sis, just two V-cycles within a F-cycle suffice; and 
when the high frequency oscillations have disap- 
peared one V-cycle suffices. 

The herringbone bearing under consideration 
has 8 grooves with a groove angle of 30 degrees 
and a land- groove ratio of 1. The groove depth is 
1 [pm,] and the maximum eccentricity is 5 [pm] .  
The grooved bearing is stationary and the smooth 
journal rotates with 100 [rps]. The attached rotor 
mass is 0.5 [kg]. The dimensions of the bearing 
are a diameter of 4 [cni] and a length of 3 [cm]. 

First, the static solution is solved for the di- 
mensionless eccentricity (ez, fy) = (0.75,O) of the 
herringbone bearing. The resulting forces F on 
the journal are given in table 3 for the seven lev- 
els. The convergence is reduced by the inaccurate 
description of the internal boundaries. This static 
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Figure 5. Journal centre path 

solution is the departure point for the transient 
simulation of the loaded journal. I ts  centre path 
is given in figure 5. AT is equal to AX. In or- 
der to arrive at  the limit cycle, thousands of time 
steps are needed, which is no problem for this 
efficient algorithm. 

6. Conclusion 

An efficient numerical method is derived for the 
static, equilibrium, and time dependent solution 
of a gas lubricated bearing. The method is based 
on a second order finite difference discretisation 
scheme and a multigrid solver. The efficiency of 
the method is demonstrated by the fact that the 
number of operations and the memory capacity 
needed are almost proportional to the number of 
gridpoints involved. 

The method has been shown to be well suited 
for taking into account compressibility and com- 
plex geometries. The gridpoints are equally 
spaced on the domain. A geometry that is not 
smooth is therefore represented with first order 
accuracy because the exact location of the dis- 
continuity can not be represented by the discreti- 
sations. 

The method is applied to two examples, namely 
a hard disk slider and a herringbone grooved jour- 
nal bearing. The equilibrium position of the slider 
is obtained with the same efficiency, independent 
of the geometry. The equilibrium of a slider re- 
quires the double amount of work of the static 

solution. In a transient simulation of a herring- 
bone bearing, the previous pressure distribution 
is applied as an estimation for the next distribu- 
tion. In combination with a multigrid ’IF-cycle”, 
this reduces substantially the number of opera- 
tions per timestep as compared to  a static solu- 
tion. 
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Nomenclature 

advection coefficient 
diffusion coefficient 
right hand side term 
force 
finite difference method 
finite element method 
clearance(h = hoH) 
Knudsen number 
length 
relaxation operator 
number of gridpoints 
pressure(p = po P )  
gas constant 
time ( t  = %) 
sumvelocity 
Cartesian coordinates 
(x = 1,x,y = 1,Y) 
st  epsizes 
pitch angle 
roll angle 
eccentricity 
squared aspect ratio (= 3)  
viscosity 
molecular mean free path 
bearing velocity number 

density 
temperature 
squeeze number(= w) 

l 2  

U 

(= 3) 
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Sub- and superscripts 

m,in 

Y 
i 
j 
k 
0 
1 
2 

X 

minimum value 
index in x direction 
index in y direction 
index in X direction 
index in Y direction 
index in T direction 
reference value 
first order accurate 
second order accurate 

A. Discretisation 

The discrctisation of the operators ‘ L (  P)i,j,k 
and L( P)i,3,k is given only in X -  and T-direction, 
with X = iA.4’. and T = kAT. The second order 
accurate operator is: ‘ L ” ( P ) % , ~  = 

d,+g(Pi$1 - P:) - d,_+(F‘,’ - P;”_1) 

2(AX)2 
k 

k 

(5) 

Alternatively the operator Lh(P)i,k is used: 

The advection and diffusion coefficients a and d 
are functions of the dimensionless hearing clear- 
ance: 

(7) 
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