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Abstract: When a process is subject to reproducible disturbances, Learning Feed-Forward
Control (LFFC) can be used to obtain accurate tracking. Until recently, LFFCs were
designed by means of trial and error. In this paper, a design procedure is formulated,
according to which a LFFC can be designed in a structured way. The design is based on
qualitative knowledge of the process and the disturbances. This design procedure will result
in a shorter design phase and better performing LFFC. As an example, the design procedure
will be used to construct a LFFC for a linear motor. Simulations show that that the resulting
LFFC is able to obtain  accurate control.
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1 Introduction

Learning Feed-Forward Control (LFFC) is a
control strategy that is able to accurately control
processes that are subject to reproducible
disturbances [1]. The LFFC consists of a
compensator (C) and a neural network that is
incorporated in the feed-forward path (fig. 1).
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Figure1: Learning feed-forward control

During operation, the feed-forward controller is
trained by the output, uC, of the compensator, in
such way that the tracking error, e, decreases. When
fully trained, the feed-forward part generates a
steering signal, uF, that is needed to track the
reference path. The feedback controller
compensates all random disturbances. When the
random disturbances are small compared to the
reproducible disturbances, a high tracking
performance will be obtained [2]. In our research,
we specifically consider motions systems, i.e.,
systems where the task is to let an end-effector of

the plant P move according to specifications. The
input of the feed-forward controller consists either
of the reference position, r [m], and derivatives
thereof, or of the periodic motion time, t [s], in case
of repeating motions.

The type of neural network that is used is a B-
spline network (BSN) [3]. A BSN utilises piece-
wise polynomial basis functions, known as B-
Splines. A B-Spline of order n consists of piece-
wise polynomial function of order n-1. In this
research we will only consider B-Splines of order 2.
To create an input-output mapping, B-Splines are
distributed on the input domains of the BSN. This is
done in such way that at each point of the input
space, the sum of the B-Spline evaluations equals 1.
The output of a BSN, uF, is a weighted sum of the
B-Spline basis functions (fig. 2).
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Figure 2: 2nd order B-spline network
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Where Pi is the evaluation of the i-th B-spline and
wi is its weight.

Training the BSN is done by adapting the
weights of the network. This can be done either
online, i.e. after each sample, or offline, i.e. after a
specific motion has been completed. In this research
we will only consider off-line training. The learning
rule according to which the weights are adapted at
the end of a motion is given in (1) [4]:
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Where T is the motion time, h is the sample time,
'wi  is the adaptation of weight i and γ is the
learning rate.

In the design of a LFFC, the following
parameters have to be chosen: the compensator, the
structure of the BSN, the distribution of the B-
splines and the learning rate. Until recently, these
parameters were chosen by rule of thumb. This may
result in a long design phase and a non-optimal
performing LFFC. To design a LFFC in a more
structured way, a design procedure is formulated in
section 2. Next, the design procedure is used in the
design of a LFFC for a linear motor set-up. Finally,
conclusions will be drawn.

2 Design procedure

Step 1: Design the compensator
Compensators are generally designed on the

basis of a process model. Therefore, the first part of
this step is to make a model the process that is
suited for the design of the compensator.

As stated in the previous section, tracking
performance is obtained by the feed-forward
controller, while the compensator is used to
compensate random disturbances. This implies that
the compensator does not need to have a high
performance and can be designed in such way that it
features a robust stability. Note that the
compensator preferably should not feature an I-like
action, since the BSN already acts as one.

Step 2: Choose the structure of the BSN

Repetitive motions
In case of repetitive motions, all reproducible

disturbances, either state or time dependent, are
related to the periodic motion time. Therefore a 1-
dimensional BSN that has the periodic time as input
is sufficient.

Non-repetitive motions
To create a network structure for non-repetitive

motions, qualitative knowledge of the process
dynamics and the reproducible disturbances is
needed. This qualitative knowledge is used to
construct a model as shown in figure 2. When the
process is linear, this implies that it can be written
as:

�x Ax Bu= � (2)

Figure 3: Non-linear system representation

The state vector is chosen such that it consists of
positions and their corresponding velocities. This
gives:
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In addition, we consider additive non-linear
dynamics h(·). If for example a process has both a
velocity and a position dependent non-linearity, h(·)
would have the following form:
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Note that we only use the qualitative knowledge to
define the structure of each element in (3) and (4),
not the precise realisation.

The desired feed-forward signal, ud, that makes
x1 track the desired states, x1,d,  is given by:

B x A x A x h u2
1− − − − ⋅ =�� �, , ,1 22 1 21 1d d d d �� � (5)

To enable the LFFC to accurately control the
process for any type of motion, a BSN should be
used that has each of the states given in (5) as an
input. This often leads to BSNs that have multiple
inputs (e.g. both the reference acceleration and the
reference position).

However, in a BSN the number of network
weights depends on the dimension of the input
space in an exponential way. When high-
dimensional BSN’s are used, a large number of
network weights and poor learning may result. This
is known as the curse of dimensionality [5]. To
prevent this, a network structure should be chosen
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that consist of several low-dimensional BSN’s in
stead of 1 high-dimensional BSN. This is known as
a parsimonious network structure. A parsimonious
network structure is created by constructing one
BSN for each collection of terms in (5) that depend
on a common state.

Step 3: Choose the B-Spline distribution
 Now that a network structure has been created
the B-Spline distribution should be chosen. The
width or support of the B-Splines (fig. 2) determines
the accuracy with which a BSN is able to
approximate an input-output relation. If the width is
chosen small, the BSN is able to accurately
approximate high-frequent signals. A large width
will result in a more crude approximation.

Time indexed feed-forward controller
Intuitively one would choose B-Splines which

have a small width. In that case the BSN is able to
accurately learn any feed-forward signal. However,
a stability analysis [6] showed that B-Splines that
have a small width may result in unstable behaviour.
The minimum width of the B-Splines for which the
system remains stable, can be determined on the
basis of a Bode plot of the closed loop transfer
function. When Zmax  is the frequency for which the
phase shift of the closed loop system exceeds 1.556
[rad] for the first time, the minimum width of the B-
Splines is given by:

min
max

2
[s]d

π
ω

=  (6)

The Bode-plot can be obtained by using a model
of the closed loop system, or can be determined by
means of experiments. In the first case the model of
the closed loop system should at least be accurate
up to the frequency at which the phase shift of the
negative closed loop system is equal to 1.556 rad.
The higher order dynamics of the system do not
need to be modelled accurately.

Now that the minimum width of the B-splines
has been determined, the distribution of the B-
splines can be chosen. When possible, prior
knowledge of the process and the disturbances
should be used to predict the shape of the desired
feed-forward signal. On the basis of this signal, an
initial B-Spline distribution is chosen. The width of
the B-Splines should be chosen such that the BSN is
just able to learn the desired feed-forward signal.
This is done to keep the memory requirements of
the BSN to a minimum and to guarantee fast
learning. However, the initial B-Spline distribution
may not result in a satisfactory tracking
performance. To optimise the tracking performance,
the B-Spline distribution can be adapted in an
iterative way during the training phase. This is done

by decreasing the width of the  B-Splines at those
positions where the tracking performance is poor.

The B-Spline distribution can also be obtained
in an automated way using fuzzy clustering
techniques [7]. These techniques analyse the signals
the BSN is to learn and adapt the B-Spline
distribution in such way that an optimal
approximation results. The disadvantage of fuzzy
clustering is that it is computational expensive.

Reference path indexed feed-forward controller
B-Splines that are defined on the reference path

also cause unstable behaviour when they have a too
small width. Their minimum width can be
determined with the help of the minimum width of
B-Splines defined on the periodic motion time, dmin.
The main idea is that in case a B-Spline that is
defined on the reference path, contributes to the
output for less than dmin seconds, its width is too
small.

For a 1-dimensional state-indexed BSN, a stable
B-Spline distribution can be chosen in 2 ways. The
first method starts with defining a BSN that has the
time as input. On the time domain B-Splines with an
appropriate width are defined. Next, knowledge of
the reference path is used to transform the positions
of the B-Splines on the time domain to the
corresponding position on the reference trajectory
(fig. 4). What results are B-Splines which are active
for at least dmin seconds. This method assumes that
the reference trajectories are known in advance.
However, this may not always be the case. The
second method overcomes this problem.

Figure 4: Conversion of B-splines

In stead of using full knowledge of the reference
path, the second method uses prior knowledge of
the reference trajectories, in terms of the maximum
velocity, acceleration and jerk. Using the maximum
reference jerk/acceleration/velocity and the value of
dmin, we can calculate the minimum width of B-
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splines defined on the reference acceleration /
velocity / position respectively, such that they are
active for at least dmin seconds for any type of
motion. Consider for example B-splines that are
defined on the reference position. We choose the
width such that the B-Spline is active for dmin

seconds when the process moves at maximum
velocity, namely d vmin max . This implies that such a
B-Spline is active for more than dmin seconds for
any motion slower than vmax .

The latter method can also be applied in the
multi-dimensional case. The resulting B-Spline
distribution will be very conservative though, which
will result in a loss of tracking performance.

Step 4: Choose the learning rate
Like a too small B-Spline width, also a too large

learning rate can cause unstable behaviour. In [4]
the maximum value of the learning rate for which
the system remains stable has been determined,
namely:

0
2< <

∞

γ
ωH j �

(7)

Where ( )H jw  is the closed loop transfer function.

The value of the learning rate determines to what
extent the weights are adapted. Setting

( )1/ H jγ ω
∞

=  causes instantaneous learning. All

previously learned information will be forgotten.

When setting ( )0 1/ H jγ ω
∞

< < , the weights of

the BSN are not fully adapted. The information that
is stored will partly consists of previously learned
information and partly of the last presented learning

information. When ( ) ( )1/ 2 /H j H jω γ ω
∞ ∞

< ≤ ,

the weights of the network are adapted too strong.
The value of the weights show an oscillatory
behaviour. Eventually they converge to a fixed

point. When  ( )2 / H jγ ω
∞

>  the weights also

show an oscillatory behaviour, however their values
diverge. We recommend to set J close to 0.

Step 5:Training the LFFC

Time indexed feed-forward controller
In case of time indexed LFFC, training the BSN

is straightforward.

Reference path indexed feed-forward controller
When the network structure consists of 1 BSN

only, no special training strategy is needed.
However, when additive networks are used,
simultaneous training of all BSN’s does guarantee
that each BSN learns the feed-forward signal it is
intended for. It may for example occur that a BSN
that has the reference position as an input learns to

compensate disturbances that depend on the
velocity. To prevent this, a series of training
experiments should be performed, in which one
network is trained at a time. In the experiments, the
reference trajectories should be chosen such that the
influence of one specific disturbance is dominant.
Only the BSN that is to compensate that disturbance
is trained.

Step 6: Design an optional learning filter
In some situations, the minimum width

determined in step 3 may not be small enough to
obtain an acceptable tracking performance. To
further increase the tracking performance a smaller
B-Spline width would be needed. However when
this is done unstable behaviour results. This
problem can be overcome in 2 ways. Firstly, by
improving the performance of the feedback
controller. Namely, in step 3 it was stated that the
frequency at which the phase shift of the closed
loop system exceeds 1.556 [rad] for the first time
determines the minimum B-Spline width. Improving
the performance of the feedback controller causes
this to happen at a higher frequency, thus allowing
more narrow B-Splines. However, improving the
performance of the feedback controller often
decreases the robustness. Varying process
parameters may easily destabilise the system.

Another approach is to add a learning filter (L)
to the LFFC (fig. 5). The learning filter is designed
in such way that it corrects the phase shift of the
closed loop transfer function. This  allows a smaller
width of the B-splines. Since the learning filter is
not contained in the closed loop system, it has no
influence on the robustness.

Figure 5: Learning filter

3 Simulations

In this section an LFFC will be designed on the
basis of the previous guidelines. The process under
control is a Linear Motion Motor System (LiMMS).
The LiMMS is designed by Philips to perform
linear motions for applications such as scanning and
pick-and-place tasks. The motor configuration
consists of a base plate on which permanent
magnets are placed, and a translator, which contains
the coils. The thrust force is generated by applying a
3-phase current to the coils.
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During operation the translator experiences a
sine-shaped disturbance force, which is caused by
the strong magnetic interaction between the
permanent magnets on the base plate and the iron
cores that are mounted in the coils of the translator.
This phenomenon is known as cogging. The
cogging forces depend on the position of the
translator. Furthermore, the LiMMS is subject to
viscous friction. The model that is used in the
following simulations is given in figure 6.

Figure 6: Model of the LiMMS

Where d=10 [Ns/m] represents the viscous friction,
m=37 [kg] is the mass of the translator and x is its
position. The cogging force has a magnitude of 10
[N] and has a period of 0.016 [m]:

( ) [ ]0.016
10sin N

2coggF x x
π

 =   
 (8)

Step 1: Design the compensator
The compensator that is used is of the PD-type:
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The values of the parameters is obtained by means
of an auto-tuning mechanism, resulting in
K p  275280  W Ed   0 02 0 1. , . .

Step 2: Choose the structure of the BSN
From figure 6 and (8), we can derive that the

desired feed-forward signal is given by:

37 10 10
0 016

2
�� � sin

.
x x x ud d d d+ + �

�
�
� =

π
 (10)

We can thus conclude that the network structure
should consist of three BSNs, that have the
reference position, velocity and acceleration as
input, respectively.

Step 3: Choose the distribution of the B-Splines
Next, a Bode-plot of the closed loop system is

needed to determine the minimum width of the B-
splines defined on the periodic time, see figure 7. It
can be seen that a 90 degree phase shift occurs at
approximately 230 rad/sec. Therefore:

dmin sec  
2

230

S
0.0273sec  (11)

The BSN that has the reference position as input
has to compensate the cogging forces. To be able to
do this accurately we have chosen to define 10 B-
Splines per cogging period of 0.016 [m], which
results in a width of 3.5e-3 [m].

Figure 7: Bode plot of the closed loop system

To ensure that learning converges, this network
must be trained at a maximum velocity of:

3
1

max
3.5 [ ]

0.13 [ ]
0.0273 [ ]

e m
v ms

s

−
−= =  (12)

The viscous friction is compensated by the BSN
that has the reference velocity as input. Since this is
a linear phenomenon only few B-Splines are
needed. We choose 3 B-Splines that have a width of
2 [m/s]. The centres of the B-Splines are chosen at
the following positions: {-2 [m/s], 0 [m/s], 2 [m/s]}.
In the simulations the maximum reference
acceleration will be 2 [m/s2]. This would allow a
minimum width of 2 [m/s2] * 0.0274 [s] = 0.0548
[m/s]. We may thus conclude that for any motion
this BSN will be stable.
 The acceleration term is also linear. Therefore
we choose 3 B-Splines that have a width of 3 m/s2

and which are placed at {-3 [m/s2], 0 [m/s2], 3
[m/s2]}. The maximum reference jerk is 10 [m/s3].
This would allow a minimum width of 10 [m/s3] *
0.0274 [s] = 0.274 [m/s2]. This BSN will thus also
remain stable.

Step 4: Choose the learning rate
In figure 7 it can be seen that ( ) 1.3H jω

∞
= .

To ensure that learning is stable we choose 0.1γ = .

Step 5: Training the LFFC
 Since the network structure consists of multiple

BSNs, a special training phase will be needed. In
the training phase 2 series of experiments will be
performed. In the first series of experiments the
BSN that has the reference position as input will be
trained. To ensure that the position related
phenomenon are dominant, the training motion will
have a low velocity and a low acceleration. Next the
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weights of this network are fixed and the BSNs that
have the reference velocity and acceleration will be
trained. This is done while performing high velocity
/ high acceleration motions. When these experi-
ments are finished the weights of these networks are
also fixed. To test its performance, the LFFC is
used to track the motion shown in figure 8.

Figure 8: Reference position

In figure 9, the tracking error of LFFC before and
after the training phase is shown. It can be seen that
the LFFC is able to considerably improve upon the
tracking performance of the feedback controller.

Figure 9: Reference position

4 Conclusions

In this paper, a design procedure is formulated
that can be used to design a LFFC in a structured
way. The procedure comprises the following steps:

1. Design a compensator. The compensator can be
designed for a robust stability only. This can be
done on the basis of a crude process model.
2. Choose a network structure. For repetitive
motions a BSN is used that has the periodic motion
time as input. For other motions a parsimonious
network structure, consisting of several low-
dimensional BSN’s, is constructed on the basis of
qualitative knowledge of the process and the
disturbances.
3. Choose the B-Spline distribution. Firstly, the
minimum width of the B-splines will be determined
on the basis of a Bode plot of the closed loop
system. This to guarantee that the LFFC will remain
stable. Next, the B-Spline distribution is chosen on
the basis of qualitative process knowledge or by
means of fuzzy clustering.

4. Choose the learning rate.
5. Perform training experiments. In case the
network structure consists of 1 BSN training does
not need special attention. In case of several BSN a
series of training experiments should be performed
in which 1 BSN is trained at a time.
6. Design an optional learning filter. In case the
minimum width of the B-Splines is not small
enough to obtain the desired tracking performance,
a learning filter can be added. The learning filter
decreases the minimum width of the B-Splines,
which results enables more accurate tracking.

This design procedure was used in the design of
an LFFC for a linear motor. The LFFC consists of 3
BSNs that each compensate for one specific
disturbance. This implementation gives a low
number of weights, which is memory efficient and
has a positive effect on the learning behaviour [3].
In simulations, the resulting LFFC showed to be
able to accurately control the linear motor.

When looking at the design procedure, it can be
seen that only qualitative knowledge of the process
and the disturbances is needed in the design of an
LFFC. Since qualitative process knowledge is often
available, LFFC may be applicable to a wide range
of applications.
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