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ABSTRACT: A hardware implementation of a Backpropagation (BP) feedforward neural network has been designed. The
tool was proposed for reflectometric measurements integrated together with photosensor arrays. The intelligent
reflectometric sensor is being implemented in a multi-chip-module approach. A logarithmic input transformation is applied
for easing the misalignment and parameter scatter correction. It also allows for easy ratio calculation by subtraction for
normalisation with the reference value. The neural network was designed for complexities up to 100 inputs, 30 hidden
neurons and 5 outputs. The digital building blocks (neurons) utilise a logic approximation of the sigmoid nonlinearity and
the possibility of weight scaling. These hardware solutions result in a simultaneous area reduction and speed gain, at the cost
of slightly decreased performance. Simulations of the proposed neural system prove applicability for evaluation of optical
measurements. were performed for reflectometric and ellipsometric data thin porous layers. Hardware simulations showed
good correspondence to the optimum-case neural software simulations.
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1. MOTIVATION

In the framework of the EU Copernicus 'RESPECT' project our goal was to design a demonstrative setup for real-time
evaluation of spectroscopic measurements. We chose the Backpropagation type neural network as universal function
mapping tool as our candidate for the task. Firstly computer simulations of such networks must have been carried out. Since
a possible hardware realisation was concerned the reflectometric spectral analysis was chosen.

First of all reflection spectra of simple material structures were generated by optical simulation'. We used thin
electrochemically etched porous silicon layers modelled by a mixture of silicon and air. Porosity is the percentage of the air
in the layer. Effective porosity was changed by atmospheric oxidation'.

The database created this way was used for neural network training. In neural theory for the determination of the number
of necessary neurons there is still not reliable analytical method. Therefore simulations using different number of neurons
were performed and finally 30 hidden neurons were taken into the only hidden layer. The threat of overtraining (i.e. spiky
mapped function surface due to too numerous hidden neurons) was negligible as the training data bases contained 3000-5000
sample vectors. When our trained network was used in the recall mode with real-world samples which were not seen
previously by the network, we got estimated material parameters in good correspondence with the parameters yielded from
independent evaluation (Spectroscopic Ellipsometry' ) as it is seen in Table I. The encouraging results reinforced our
decision to design a hardware implementation for the same purpose.

Table I: Comparison of neural network approximations of material parameters from reflectometric spectra with
independent evaluation method. The eventual weak correspondences are due to optical model imperfections and are
being corrected. (aox: 300°C, box: 600°C oxidation in atmosphere)
Sample

'

956 956aox 956box 961 96laox 96box 970 97Oaox 97Obox

Calculated thickness (nm) 104 103 102 79 74 77 50 54 57

Neural approx. ofthickness (nm) 107 1 15 91 82 84 69 49 43 58

Calculated porosity (%) 61 67 72 62 66 70 62 69 74

Neural approx. ofporosity (%) 62 70 62 59 71 64 59 69 72

Sample 963 963aox 963box 969* 969*aox 969*box 969 969aox 969box

Calculated thickness (nm) 89 97 109 63 82 95 49 51 63

Neural approx. ofthickness (nm) 86 83 56 69 66 47 49 49 49
Calculated porosity (%) 7 1 75 8 1 6 1 74 80 72 76 85

Neural approx. ofporosity (%) 61 62 39 61 62 45 72 75 77
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2. MODIFICATION OF THE BP ALGORITHM

During our simulations it was found, that after successful simulation some samples still have extreme high error values.
This results from irregular behaviour of the non-linear function connecting the spectra and the material parameter values.
Traditional BP algorithm uses all the samples with equal probability for training. The outcome is optimum performance in
sense of root-of-mean-squares (RMSE). The statistically non-significant features of the input space, even though they can be
characteristic, are missed from learning. Authors already reported attempts to use modified presentation probabilities for
different samples in order to enhance learning speed2'3. However they suggested later abandoning the selected subset of
training samples to avoid overtraining. A trade-off is to use a subset of the training database containing those samples, that
have higher error than a selected threshold value. If that threshold is set continuously to a preset percentage of the highest
occurnng error level during training, the training subset can be selected also continuously. This avoids overtraining on one
subset, and allows for shrinking the maximum error value. As it can be seen in Fig. I the statistically non-significant feature
is much better learned by the modified algorithm. The W-C learning algorithm can be useful for example, when high
confidence level of the expected maximum error level is needed, because the training parameter range is to be partitioned for
successive neural parameter approximation. The introduced modification was used in simulations as it will be showed later.

09

08
07

06

Fig. 1 : Effect of worst-case (W-C) training on the approximation quality of a statistically non-characteristic feature.
The target function is depicted in a); b) and c) are the attempts of neural networks for approximating it after
training with traditional BP algorithm and the developed modification (W-C) respectively.

3. HARDWARE DESCRIPTION

After successful neural simulations a 100 input, 30 hidden neuron and 5output neural reflectometric analysis system was
designed. Input scaling and non-ideal behaviour concerns were taken into account as well as weight storage precision
questions. After considering both analog and digital implementation46 for easy redesign and precision reasons the digital
approach was applied for implementation. This assumes A/D conversions from the analog optical input signals.

156

06

C,

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Feb 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.1 INPUT UNIT

The input unit of the reflectometry tool is simply an array of large photodiodes. Actually two identical arrays were
designed for the system, one for measurement signals and the other one for reference signal. As the information in
reflectometry is a relative intensity value, the measured light intensity signal (photocunent) must be divided by the reference
signal. In linear domain this implies complex computation in the digital circuitry.

For that reason a logarithmic input transformation is suggested. A chain of forward biased diodes are to transform the
current signal into logarithmic voltage, which is readily lends itself for AID conversion. That also eases multiplicative
compensation for current deviations or fixed pattern noise. The corrective action is a pure addition. 10-bit AID converters
are used for digitalizing the inputs. The voltage margins are set so, that the difference between the two 10-bit values never
exceeds the 8-bit range (i.e. 255). This way reasonable intensity resolution is obtained while 8-bit integer computational
scheme is sustainable throughout the whole network.

3.2 NEURON ARCHITECTURE

The hidden neurons contain non-linear activation function. The output neurons are linear but otherwise their
computational scheme is the same. As it can be seen in Fig. 2 the neurons have 8-bit signed integer weights. The first bit
shows the sign and the rest seven bits store the value. The input of the neurons is an 8-bit unsigned integer. In each neuron
there is a so-called shift value stored for virtually extending the weight resolution. Neural network simulations showed, that
sometimes different neurons have the average of their weights in different order of magnitude. The shift value is used to
scale the neurons weight sets separately. After a computer simulation the obtained weight values can be scaled to storable
integer values this way.
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Fig. 2: Architecture of the digital neuron. The sign and
overflow control signals are generated from the highest
bit and those bits of the accumulator, which are above
the shifted argument segment, respectively.

The non-linear Sigmoid function of the hidden neurons is implemented by combinational logic gate circuitry. The half-
Sigmoid between 0 and 7.9375 independent values was mapped to the 127-255 8-bit integer range. The independent values
were multiplied by 16 in order to fill the 0-127 integer range. The function values were rounded to integer values. The scaled
integer haif-sigmoid was approximated by random combinational logic circuits. The optimalisation of the random logic
circuits were performed by using a genetic algorithm. The minimizable cost function for the genetic algorithm was the sum
of differences for all the 128 input combinations. Finally the algorithm found a combinational logic, which produces a
monotonous stepwise approximation of 1 6 steps of the haif-Sigmoid. The gain is in area consumption and therefore speed
enhancement due to parallelism. If a 256x8 bit RAM look-up table should have been added to each neuron, it could
incredibly enlarge the neuron area. The solution in which a commonly used look-up table was used could result in saving
silicon area, but also a reduction in speed. The haif-Sigmoid contains about 200 transistors, and can be added to each hidden
neuron. The silicon area saving can be significant in case of few weights, i.e. if the size of the weight memory is not the main
part of the neuron size. It is inherently fast too, since it is asynchronous. The next section proves the applicability of the
suggested simplifications.

4. COMPARISON OF SYSTEM SIMULATION TO COMPUTER SIMULATION

The neural system was ftilly simulated from input scaling and transformation to weight treatment and resolution matters.
Weights were obtained from computer simulated training of a BP neural network. The training spectra were generated by a
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software using optical modelling. The logarithmic input transformation and appropriate scaling to the 8-bit integer range was
done as a preparation of the training data. Computer simulation of an ideal (floating-point calculation and ideal sigmoid)
neural network was performed using the given weights to approximate material parameters in a one layer porous silicon
structure, as it was done in Section 1.

The same weights were scaled for each neuron into the 7-bit signed integer range, and the scaling factors were also
determined. The system parameters were then used in the system simulation. The results are summarised in Table II. It is
clear, that the absolute error introduced by the compromises in the designed hardware is acceptable. For some applications it
can be regarded as good. Only the NNNbox, highly oxidized samples are badly approximated, probably due to the simple,
two-parameter (thickness, effective porosity) optical model. Silicon, silicon-oxide, air model would be better.

It was also tested by computer simulation how positively the scaling affects the performance. Simulations were carried
out without different scaling factors for individual neurons. When using more bits to represent the previously got floating-
point weights, naturally we got approximation values closer to the floating-point case. According to our recall results on the
training set the neuron-scope weight scaling affects the performance as if we had used 10-bit weight representation without
scaling. The silicon area consumption is however different. In neuron-scope weight scaling we used eight more bits in each
neuron to store the shift value, while 10-bit weight storage would have resulted in two hundred additional bits to store, and
would have enlarged the fixed-point computation circuitry as well.

Table II: Results coming from the modified worst-case algorithm using global region and sub-region training data,
and the corresponding simulated hardware responses (IC). The simulated IC responses are in good correspondence
with the neural software simulations. (aox: 300°C, box: 600°C oxidation in atmosphere)

Sample thickness [rim] porosity [%]
global w-c reg. w-c reg. w-c(IC) SR global w-c reg. w-c reg. w-c(IC) SR

956ref 101 107 109 105 68 62 62 61

956aox 92 115 116 103 71 70 69 67

956box 88 91 91 103 66 62 61 72

96lref 77 81 84 79 59 59 59 62

96laox 65 84 85 74 69 71 73 66

96lbox 59 69 71 77 61 64 64 70

97Oref 41 49 50 48 61 59 61 60

97Oaox 56 43 43 54 68 69 70 69

97Obox 63 58 58 57 64 72 72 74

963ref 82 86 88 91 60 61 59 69
963aox 80 83 86 97 56 62 60 75
963box 45 56 52 109 8 39 43 81

969*ref 63 69 69 79 60 61 61 67
969*aox 59 66 65 82 66 62 63 74
969*box 43 47 44 95 39 45 44 80
969ref 56 49 50 49 64 72 72 72
969aox 53 49 49 51 68 75 76 76

969box 43 45 49 63 74 75 78 84

5. CONCLUSION, RECOMMENDATIONS

It was shown in our work, that compromises in digital design can make neurons more area-effective, while decrease the
performance only slightly. Combinational logic function approximation prove to be a good alternative for look-up tables
both in silicon area and speed aspects. Neuron-scope weight scaling is also an effective means of economic design. A digital
neuron using the sketched ideas and having one hundred 8-bit weights was designed in the ES2 0.7tm standard CMOS
silicon process. The achieved area is 1mm2, halfofwhich is the size ofthe static RAM block. The chip is under fabrication.

The neuron chip testing will show the real practical value of our work. We furthermore recommend considering
combinational logic utilisation for function approximations. Genetic algorithms can be effective in finding suitable
approximators.
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