
Query optimization for GIS using filters

Hein M. Veenhof
veenhof@cs.utwente.nl

Maurice A.W. Houtsma �
houtsma@cs.utwente.nl

Peter M.G. Apers
apers@cs.utwente.nl

University of Twente
Department of Computer Science
P.O. Box 217, 7500 AE Enschede

the NetherlandsAbstract
When viewing present-day technical applications that rely on

the use of database systems, one notices that new techniques

must be integrated in database management systems to be able

to support these applications efficiently. This paper views one

of these techniques in the context of supporting a Geographic

Information System. For efficient retrieval of geometric data,

we show that queries can be optimized by filtering data not

with just one but with several simple filters. A prototype

of a query optimizer/evaluator using this new technique is

described together with preliminary test results.1 Introduction
In the past, much research has been done on query optimiza-

tion techniques for (relational) databases [1]. Optimization

efforts mainly concentrated on queries stemming from admin-

istrative applications. Recently, databases are increasingly

used not only for administrative, but also for technical ap-

plications. Technical applications, e.g. CAD/CAM systems,

GIS, and multimedia systems, place a heavy burden upon a

database management system. This is caused by aspects such

as huge amounts of data, complex data structures, and the rel-

ative importance of other operations. Because of the different

characteristics of technical applications, query optimization

techniques need to be reconsidered. Also, new techniques

should be developed, especially for technical applications.

To reduce the heavy burden that operations in technical

applications place on the database management system, filters�The research of Maurice Houtsma has been made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences

are used [3]. A filter acts as a preprocessor for an operation.

The main idea of filters is to reduce the size of the operands.

Thus, a filter is used before an operation to reduce the size of its

operands (just like semi-joins are used to reduce join-operands

in relational queries [2]). With smaller operands, the cost of an

operation will be smaller; however, the cost of using a filter has

to be taken into account. In addition to using one filter, several

filters may be combined into a filter sequence. Each filter in

such a sequence will reduce the operand in size or simplify it.

We consider a Geographic Information System (GIS) as

a typical technical application. The important operations to

be supported, differ from those in traditional database systems

and some are very expensive (for instance, overlay and inter-

section). A GIS typically maintains thematic data, (e.g., street

names, soil type, area size), and geometric data, (e.g., geom-

etry of buildings, of land parcels, of mountains). Thematic

data can easily be supported by a database. The advantages of

databases, amongst others persistency, efficient retrieval, and

recovery, should also be exploited for geometric data.

The optimization techniques developed to access geometric

data concentrate on spatial indices [5, 10]. Here, we do not

concentrate as much on indices, as well as on filters. An

important reason for this, is that we expect queries in a GIS to

be composed of many spatial joins (n-way joins). We cannot

expect a spatial index to be present on every intermediate result,

so it is worthwhile studying techniques that go beyond a spatial

index. We propose a generic model for query optimization

using filter techniques.2 Using �lters in optimization
The spatial join, e.g., required for overlay operations, is one

of the most expensive database operations in a GIS. Various

spatial indices have been developed to decrease response times

of spatial joins. We will not discuss these indices here. Instead,

we focus on filters. An example of a spatial query composed

of many spatial joins is:



Retrieve all rural areas below sea level

having soil type equal to sand

within 3 miles of polluted lakes

With layers land use, soil, pollution, and elevation, several

spatial joins have to be calculated to construct the answer to

this query. A spatial join of, e.g., layers land use and elevation,

gives the intermediate result to the subquery: rural areas

below sea level. It are those intermediate results, to be

used as operands of successive spatial joins, that can effectively

be reduced in size by the use of filters. Building spatial indices

for these intermediate results is considered too expensive.

Without using indices, a spatial join of two relations can be

solved by calculating the spatial comparison operation for each

pair of spatial objects in a nested-loop strategy. For two spatial

relations R and S with cardinality n and m respectively, the

spatial comparison operation � is evaluated n �m times. To

speed up the evaluation process, a simple test can be performed

before evaluating the actual comparison operation. This test

indicates if, for a given pair of spatial objects, the comparison

operation can be avoided altogether.

An example of such a simple test, in case of e.g. an inter-

section operation, is whether the bounding boxes of the spatial

objects have any overlap at all. If they have no overlap, then

there is no need to calculate the overlap of the spatial objects

themselves. The bounding box of a spatial object is an ex-

ample of a simplification of the spatial object, often called

approximation [5, 9]

So, when using a filter, instead of evaluating �, a simple

test operation f� is performed for each pair of object approx-

imations. Operations on approximations are much cheaper

than on the spatial objects themselves. Following a nested-

loop strategy, this test is performed n �m times, resulting in a

set of k candidate pairs (with k � (n �m)). After the test has

been performed, � now has to be evaluated only k times.

We can extend this approach to using a sequence of filters.

The query optimizer, based on cost estimations, can decide to

use multiple filters in a sequence; each one reducing the set of

candidate pairs further. This is shown in Fig. 1. A sketch of

the architecture of the query optimizer is given in Fig. 2.

The benefit of using a sequence of filters can be estimated

as follows. Assume a sequence of filters F1; : : : ; Fn, with a

resulting set of kn candidate pairs. The cost of the remaining

spatial comparison operation is knC�, plus the cost of reading

the kn-pairs from disk and writing the output back to disk. The

cost of applying the filters is given byCk1 + : : :+Ckn , where

each Cki is a function of the cost of the test operation and the

number of candidate pairs resulting from Fi�1.

filter

filter

filter

R S

UT

R S T U

Figure 1: Query tree and its optimized version.

controller

Evaluation

Evaluation

1

Θ3

Θ4

Θ2

Θ

Interpreter

Acces-plan
Query-Tree

Optimizer
Query

Parser

details

filter A

filter B

Empty
Filter

data

data

datadata

details
Operation

Filter
details

Figure 2: Architecture of (dynamic) query optimizer using
filters.

Not only may the use of filters result in a smaller number

of CPU-intensive spatial comparison operations, it may also

result in considerable savings on the number of disk accesses.

This, because approximations will occupy considerable less

space than the spatial objects. Of course, the query optimizer

also has to take into account the availability of spatial indices

on approximations.

We assume that the query optimizer generates a query tree

based on its particular cost model. For each filter included in

the query tree, it indicates the expected number of objects that

will result after applying the filter. If, during query evaluation

the actual number of candidate pairs differs significantly from

the estimation, new filters may be included in the query tree.

Because spatial operations are very expensive and we expect

estimations concerning spatial queries to be less accurate than

estimations for standard queries, dynamic query optimization

may actually pay off; whereas in relational systems it is usually

considered too complex and expensive.



3 Implementation overview
We are currently implementing a prototype of the query opti-

mizer/evaluator in C++ using the library LEDA [4]. It allows

us to check the effectiveness of filter techniques, and the use-

fulness of using several filters instead of just one.

The evaluator part of the prototype is in its present state able

to calculate the overlay of two maps using several or none of

the implemented filters. Among these filters are: the minimum

bounding box (MBB) which is the well known axes-parallel

rectangle fitted along the boundary of the object approximated.

The double minimum bounding box (DMBB), a derivative of

the MBB, where both boxes have the same center but the area of

the DMBB is about 50% larger. It is introduced to see whether

rough approximations, which sometimes can be constructed

almost for free, can be useful as part of a filter sequence. The 45

degrees rotated bounding box (RBB) which is in fact an axes-

parallel MBB of the rotated object. And finally, the minimum

bounding circle (MBC) [6]. Other filters not realised yet are,

e.g., convex hull [7], and n-corner. An n-corner is defined as

the optimal n-sided polygon circumscribing a convex polygon

[8].

As stated before, the test operation f� must be simple

compared to its associated spatial comparison operation �. In

the case of the three box filters MBB, DMBB, and RBB, the test

operation is a box intersection test. At most four coordinate

comparisons are used for this test. For the MBC, the test

operation is the circle intersection test. Two circles intersect

if the distance between their centers is smaller than the sum of

their radii. The circle intersection test is more expensive than

the box intersection test, since it involves calculating a distance

instead of simple coordinate comparisons. Intersection tests

for convex hulls and n-corners are even more expensive.

We implemented the overlay with a simple nested-loop join

algorithm (see Figure 3) adapted to the use of successive filters.

One of the maps is designated as the inner map, and the other

as the outer map. For each geometric object of the outer map,

all objects of the inner map are read and compared with the

object from the outer map. These comparisons are, of course

based on the filter techniques described in the previous section.

Whenever the join condition is satisfied the intersection of the

two objects is calculated and an intersection is placed in the

result map.

To get a feeling of the behavior of each filter, we decided

to look primarily at the reduction in the number of candidates

they can achieve. Furthermore, we looked at CPU costs of test

operations, intersection operations, and creation of approxima-

tions. We ran tests on objects already located in main memory;

costs for accessing the disk have not been taken into account

for each object a in map A dof for each object b in map B dof repeat
get approximation a0 from a, and b0 from b;
take filter F from filter sequence Fseq;
detect overlap by calculating f�(a0; b0);

until (Fseq has been exhausted or
no overlap is detected);

if overlap detected
then f determine intersection of objects a and b;

place the result (if any) in map C g g g
Figure 3: Nested-loop join algorithm for calculating the over-
lay of two maps adapted to the use of multiple filters.

in the current version of the prototype.

The implementation is such that approximations needed by

a filter are created and stored in memory the first time a filter

is used. When an approximation is needed again, it is already

available in memory. It is also possible to precalculate all

of the approximations and store them in main memory before

the actual test-run. This enables us to determine the cost of

constructing approximations during the query evaluation.4 Results
Some preliminary results of the tests are shown in Table 1 and

Table 2 for the overlay operation. They show that each filter

has its own precision; note, e.g., that the minimum bounding

box (MBB) filter reduces the number of candidate pairs more

than the double minimum bounding box (DMBB) filter, which

was to be expected. Results also show that a sequence of filters

may indeed reduce the number of candidate pairs more than

a single filter. For instance, MBB followed by 45 degrees

rotated bounding box (RBB) reduces the number of candidate

pairs from 263 to 238 (see Table 1). This also resulted in a

10% quicker response of the query compared to only using

MBB’s. This gain was only noticed when all approximations

were precalculated. In particular, when minimum bounding

circles had to be made during the test-run these constructions

dominated the run-time. Using more filters is no guarantee for

an extra reduction in the number of candidate pairs. For the first

overlay there is no reduction at all when an extra MBC filter is

used after the filters MBB, and RBB (567 versus 567 candidate

pairs in Table 2). A further reduction for this example is still

possible since the overlay operation is called 123 times too

many.

The test presented in both tables were done on real world

and randomly generated data. For each generated map we

produced a number of convex polygons without holes. We

then performed an overlay of two maps, to give us all objects

formed by the intersection of an object on map A with an



filter(s) used no of cand. pairs
none 25750
DMBB 542
MBB 263
MBB, RBB 238
MBB, MBC 246
MBB, RBB, MBC 236

Table 1: Result of using (multiple) filters on number of re-
maining candidate pairs. Overlay of two maps with artificial
data.

filter(s) used no of cand. pairs
none 60000
DMBB 1442
MBB 772
MBB, RBB 567
MBB, MBC 760
MBB, RBB, MBC 567

Table 2: Result of using (multiple) filters on number of re-
maining candidate pairs. Overlay of two maps with real world
data.

object on map B. For the results of Table 1 we used a map of

Europe containing 515 polygons, each having between 4 and

1932 vertices. The other map in this test contained 50 convex

polygons of which none had more than 30 vertices. See also

Figure 4 for a part of these maps and the resulting overlay. For

the second test of Table 2 we used two maps containing 150

and 400 generated objects, respectively. The first map only

contained polygons with four vertices, while the second map

was filled with triangles.5 Conclusions
The technique of using multiple filters in a row to reduce the

number of calls of an expensive operation can be beneficial

when certain conditions are satisfied. The bounding box filter

is already very good and responsible for a huge gain in response

time; it should be used as the first filter in a sequence. Test

operations must be very simple in comparison to the operation

replaced; nothing is gained when expensive filters are used to

avoid calculating a relatively simple operation. A cheap test is

preferred to a costly test for obtaining the same answer, and a

filter with a test operation being more expensive than another

must precede the latter one in the filter sequence. Successive

filters should use approximations fitting objects increasingly

narrow, avoiding that the filters at the end of the sequence have

no filter effect at all. Approximation data needed by the test

operations must either be available when needed or it must

be cheap to calculate them on the spot. Calculating bounding

circles, or even convex hulls and n-corners, during the query

Figure 4: Real world test data combined with generated poly-
gons.

evaluation process is too costly. Especially, when an approxi-

mation of an intermediate result is needed, deriving such data

from the approximation of the objects it was built from, is, al-

though rough, much cheaper in the end. For example, a rough

approximation of the intersection of two simple polygons is

the intersection of their bounding boxes.6 Future work
In the future we will extend the prototype with better fitting

approximations, e.g., convex hull, and, n-corner. We will also

try to come up with several simple filters. Building approxi-

mations from existing approximations is also a topic of further

research. A comparison must be made between building a new

spatial access tree for an intermediate result or using filters.

Further, we must keep in mind that disk accesses for objects

could play a major role in technical applications. Therefore,

we must also take into account costs for disk-I/O. Extensive

testing should bring more insights in the specific aspects of this

multi-filter approach. We are now running more tests on real

world spatial data. A report of these tests will appear in a full

version of this paper.References
[1] Jarke, M. and Koch, J., “Query optimization in database

systems”, Computing Surveys, 16(2):111–152, June

1984.



[2] Ceri, S. and Pelagatti, G., Distributed databases, Mc-

GrawHill, 1984.

[3] Orenstein, J.A., “Redundancy in spatial databases”, Proc.

SIGMOD 89.

[4] Näher, S., “LEDA User Manual, version 3.0,” Max-

Planck-Institut für Informatik, Saarbrücken, Germany.

[5] Brinkhoff, T. and Kriegel, H-.P. and Seeger, B., “Effi-

cient Processing of Spatial Joins Using R-trees”, Proc.

SIGMOD 93.

[6] Skyum, S., “A simple algorithm for computing the small-

est enclosing circle”, Information Processing Letters,

37(1991):121–125, February 1991.

[7] Preparata, F.P. and Shamos, M.I. , Computational Geom-

etry; an introduction, Springer–Verlag, 1985.

[8] Dori, D. and Ben–Bassat, M., “Circumscribing a con-

vex polygon by a polygon of fewer sides with minimal

area addition”, Computer Vision, Graphics and Image

Processing, 24(1983):131–159, 1983.

[9] Brinkhoff, T. and Kriegel, H-.P. and Schneider, R., “Com-

parison of Approximations of Complex Objects Used

for Approximation-based Query Processing in Spatial

Database Systems,” Proc. 9th Int. Conf. on Data En-

gineering, Vienna, Austria, 1993.

[10] Samet, H., “Spatial Data Structures,” To appear in

Database Challenges in the 1990’s, W. Kim, ed., Addison

Wesley/ACM Press, Reading, MA, 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/2677455

