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ABSTRACT 
In this paper a novel algorithm is presented for the ef- 
ficient Two-Dimensional (2-D) symmetric noncausal 
Finite Impulse Response (FIR) filtering and Autore- 
gressive (AR) modeling. Symmetric filter masks of 
general boundaries are allowed. The proposed algo- 
rithm offers the greatest maneuverability in the 2-D 
index space in a computational efficient way. This 
flexibility can be taken into advantage if the shape 
of the 2-D mask is not a priori known and has to be 
dynamically configured. 

1. PROBLEM FORMULATION 

Let z(n1, nz) be the input of a linear, space invariant 
2-D FIR filter. The filter’s output y(n1, n2) is a linear 
combination of past input values ~ ( n l  - i1,nz - 22) 

weighted by the filter coeficients ci1,i2 over a convex 
support region, or filter mask, M 

y(n1,nz) = - cz1,a2.(n1 - i1,nz - iz) (1) 
(ii,ia)EM 

The filter is restricted to be linear-phase. Thus, the 
following conditions should be satisfied, [l], 

Mask symmetry V(i1,iz) E MI 3 (-ill -22) E M 

Given an input 2-D signal z(n1,nz) and a de- 
sired response 2-D signal z(n1, n ~ )  the optimal Mean 
Squared Error (MSE) 2-D FIR filter is obtained by 
minimizing the cost function 

Coeff. symmetry C i l , i 2  = C - i l , - i Z  

E[(z(n1,nz) - ~(nl lnz>>2]  (2) 
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E[ . ]  is the expectation operator. MSE 2-D linear 
prediction can be handled as a special case of fil- 
tering, setting z(n1, nz) = z(n1, nz) and excluding 
the origin { ( O , O ) }  from the filter mask, i.e., (i l ,  iz) E 
M - {(O,O)}. 

2. 2-D SYMMETRIC SUPPORT REGION 

Consider the support region depicted on Figure 1. 
More precisely M consists of a union of intervals 

M = Ukl q=-klm(h) 

m(i1) = ( ( i1 , i z )  : -kZ(-il) 5 i2 5 kz(i1)) 

kl = max{il : (i1,iz) E M} 

kz(i1) = max{iz : (i1,iZ) E m(il)} 

Clearly, 

Then, eq. (1) takes the form 

The above equation can be written as a linear regres- 
sion 

y(nl, nZ) = -xfh.l (nl, %)CM (3) 
where the regressor (data vector) and the filter coef- 
ficients vector are defined by 

0-8186-6950-0/94 $4.00 0 1994 IEEE 
595 



i l , - k 2 ( - i l )  i l ,  k2( i I 

-il,k2(-ii)> 1, -k2( i l )  . t "  
Figure 1: Symmetric support region 

The filter coefficients symmetry implies that 

C M  = 3C.M ( 6 )  

where ," is a matrix with ones in the antidiagonal, 
zeros elsewhere. Clearly, 33 = I. Minimization of 
(2), subject to the symmetry constraint (6), leads to 
the following linear system of equations, [3] 

( R M  + J R M J )  CM = -(DM + ,"vMJ) (7) 

where RM = E [ X ~ ( ( n l , n a ) X ~ ( ( n l , n z ) ]  is the in- 
put signal autocorrelation matrix, and V M  = € [XM 
(nl, nz)z(nl, nz)] is the crosscorrelation vector be- 
tween the input and the desired response signal. 

sense stationary 2-D signals will be considered. This 
implies that the autocorrelation between two samples 
depends on the difference of their coordinates 

In the sequel, real and homogeneous, random, wide- 

E [z (n l -  i1,nz - iz) z(n1-  j i ,w - j 2 ) ]  = 

P(i1 - h , i 2  - j 2 > ,  P ( i , d  = d-2, -d (8) 
The autocorrelation matrix RM is a block matrix of 
block order 2kl  + 1 

with entry Toeplitz matrices of the form 

VM is a block vector V M  = [d(il)]il=-kl,. .kl with 

where d(i1, iz) = €[z(nl - 21, n2 - 22)z(nl,nz)] 
In addition to the block Toeplitz structure, the 

autocorrelation matrix is perisymmetric, as it follows 
from the symmetry of the support region and eq. (8), 
i.e., 

entry subvectors d(il) = [d(zl,i2)]ia=-ka(-;l).,,k*(;l) 

R M  = 3 R M 3  ( 9 )  

Thus, the normal equations (7) take the form 

3. DATA PARTITIONS 

Efficient order recursive algorithms for 1-D, as well as 
for 2-D, MSE filtering are based on suitable partitions 
of the data parameters that utilize time, or spatial, 
shift invariance properties, [2]-[6]. 

Let us consider the increased order support region 

The passage from M to the increased order mask 
Ma' can be accomplished either by a double step as 
described above, or by a sequence of two single steps 
as 

M + L(ii) = M U {(ii, kz(ii) + 1)) 

Mi' = M + L(i1) + R(- i l )  = 

(M + L(ii)) U {(-ii, - h ( i i )  - 1)) 

L(i1) stand for a single step increment at the left hand 
side of the il-th row. R(-il) stand for a single step 
increment at the right hand side of the -il-th row. 

Let us consider the increased order data vector 
corresponding to the augmented support region M". 
It is partitioned as 

I z(n1 + i1,nz + kz(i1) + 1) 

z(n1 - 21, n2 - kz(i1) - 1) 
XM(nl, nZ) 

(11) 

XM.1 (n1, nZ) = wjz 
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Alternatively, it can be partitioned in two steps as 

XM+L(i,) (nl ,  %) = 

] (13) s&il) [ z(nl - i1,nz - kz(i1) - 1) 
XM (nl,  nZ) 

Wi,, 7 R ( - i l )  and S L ( i l )  are suitable permutation ma- 
trices. The increased order masks considered so far, 
correspond to a single order increment of the filter 
configuration, along the 21-th row of the filter mask. 
It is necessary to consider block step increments of 
the filter mask. Indeed, let 

M + L = M {(ii, kz(ii) + 1)) (14) 

The corresponding data vector is partitioned as 

1 
Vectors xf(n1, nz) and xp, (nl ,  n ~ )  are defined as 

4. THE ALGORITHM 

Consider the increased order system (10) ,correspond- 
ing to the augmented support region Ma' , 

RMilCM31 = -Vbil 

Taking into account the data partition (ll), we obtain 

.fo G l t  rM 

RM.i.1 =wF, [ F& :; G] Wil (16) 

where do = p ( O , O ) ,  rbo = p(2i1,2kz(il) + 2), and 

r k  E [XM(nl, n2)2(?21 -i l ,nz -k2(il) - I)] (17) 

?A = E [XM(nl, n2)z(nl+ 21 7 nZ + kZ(i1) + I)] (18) 

Clearly, = Jrk.  Moreover, 

VL,, = wit, 

where d'((i1, kz(i1) + 1) = 1/2(d(i1, kz(i1) + 1)+ 
d(-i1, -kz(i1) - 1)) 

Application of the matrix inversion lemma for par- 
titioned matrices leads to a recursive estimation of the 
increased order filter, eqs. (1)-(5) of Table 1. A d -  
iary vector q> is defined as 

RMqk = -(rL + JrL) (20) 

or 

To be able to develop an order recursive algorithm 
for the determination of the optimum filter CM, re- 
cursions for updating q h ,  or equivalently b h ,  l = 
-kl . . . kl ,  are required. 

Let us consider the increased order linear system 
corresponding to the augmented mask M" 

RMa1 bAx1 = -rA,l, e = -kl . . . kl  

where rh, ,  = 

E [XM*1(n1, n2)z(nl - e,%! - h ( f )  - 1 - 6 ( l  - d l ) ) ]  

S(n) is the discrete time Dirac function, i.e., 6(n) = 1 
for n = 0 and S(n) = 0 for n # 0. 

Parameters can be partitioned using eq. (12) as 

- 
& + L ( i l )  - 

E [XM+L(il) (n1, n2)2(nl-e, ?2-k2(e)-1-6(e-d,))] 

Application of the matrix inversion lemma results to 
the eqs. (19)- (21) of Table 1. 
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Moreover, 

and 

and for C # i l ,  

Thus, eqs. (15)- (16) and (7)- (8) of Table 1 are ob- 
tained. 

Indeed, 
using (15) we obtain 

The case C = i l  is treated separately. 

where 

Rf" = 

pf = [p(' - i l ,  - k z ( - c )  - k 2 ( i 1 )  - ')] l = - k l , , , k l  

f#*l 

The above partitions yield eqs. (10)- (17) of Table 1. 
The order recursive equations developed so far, 

are tight together to form a powerful true order re-  
cursive 2-D algorithm for symmetric filtering and lin- 
ear prediction. Indeed, let M f i "  be the support re- 
gion within the search for the optimum mask will be 
conducted. Let k i i n  = max(i1 : ( i 1 , i z )  E Mfan}.  
Then, for all i l  E [ - k l ,  k l ] ,  kl 5 @', anyone of the 
increased order filters corresponding to a symmetric 
increment along the il and the -21 rows of M can be 
estimated as CM + CM.l. The update of param- 
eters to a mask that contains extra rows, i.e. going 

Figure 2: Example 

from [ - k l , k l ]  + [ -k l  - 1 ,k l  + 11, can be accom- 
plished only for the points laying across the vertical 
axis. Once the increased order filter that corresponds 
to M U ((0, -IC1 - 1)) U((0, IC1 + 1)) is determined, 
further recursions along that row can be performed. 

The computational complexity of the algorithm is 
O(2klP) operations per recursion, where P = 

dim(CM) = C::='=02kz(il)  + 1. For a 2-D filter of 

a final mask shape M f i n ,  O(k l in (Pf in ) ' )  opera- 
tions are required. For the special case of rectangular 
shaped masks this amount equals to the complexity 
of the multichannel LWR algorithm, [3]. The non- 
rectangular mask case cannot be handled by the LWR 
algorithm, unless overparametrization is utilized. A 
great advantage the proposed algorithm offer against 
conventional LWR based counterparts, is the accom- 
modation of masks of general boundaries and the es- 
timation of lower order parameters. Thus, it is estab- 
lished that in all cases the proposed highly efficient 
order recursive 2-D algorithm performs better than 
any existing scheme. 

The order updating procedure is illustrated using 
a simple but important support region depicted in 
Figure 2. Suppose that the MSE filter corresponding 
to M1 is known. The estimation of the increased or- 
der MSE filter corresponding to M z  is accomplished 
following the updating scheme 
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5. CONCLUSIONS 

A highly efficient, order recursive algorithm for sym- 
metric 2-D FIR filtering and 2-D system identification 
has been developed. Symmetric support regions with 
arbitrary convex shape can be handled. The proposed 
algorithm offers the greatest possible maneuverability 
in the 2-D index space. It allows for recursive esti- 
mation of the 2-D filter mask shape. The implicit 
flexibility of the algorithm enables for a dynamical 
reconfiguration of the mask shape in a computational 
efficient way. 
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ENDFOR L 

ENDFOR L 
Table 1 The Algorithm 
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