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Abstract

A general definition of synchronization of dynami
cal systems is given capturing features of both self
synchronized systems and systems synchronized by
means of control. It has been demonstrated for impor
tant special cases of "master-slave" and coupled systems
that synchronizing control may be designed using feed
back linearization or passification methods.
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1 Introduction

Starting with the work of C.Huygens [13] synchro
nization phenomena attracted attention of many re
searchers. The development of small parameter and av
eraging methods by H.Poincare [23], B. Van der Pol [26],
N.N. Bogolyubov [9] in the first half of the 20th cen
tury allowed for a better understanding and theoretical
explanation of the mechanism of self-synchronization
[3, 4], phenomenon which has numerous applications,
see, e.g. [4, 15]. Motivated by the study of chaotic phe
nomena (see, e.g. [25],[16]) recent years have exhibited
an increase in the interest in synchronization. Synchro
nization in chaotic systems was discussed for instance
in [1, 22, 10, 5].
Recently, specialists from (nonlinear) control theory
turned attention to the study of controlled synchroniza
tion. Incomplete information about the system param
eters has been taken into account (adaptive and robust
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synchronization [11, 12, 18]) as well as incomplete infor
mation of the state of the system (observer-based syn
chronization [19, 20]). However, there is still a strong
need for unified definitions of synchronization which
would capture pecularities of both self-synchronization
and controlled synchronization and which also would
allow to rigorously pose and systematically solve vari
ous synchronization problems. Such definitions are pro
posed in Section 2 of the present paper and an example
of synchronization of two feedback linearizable oscilla
tors is considered. Section 3 deals with the problem
of coupled systems synchronization by means of linear
feedback.

2 Definitions of synchronization

Synchronization in its most general interpretation
means correlated or corresponding in time behavior of
two or more processes. According to [17]: "to synchro
nize" means to concur or agree in time, to proceed or to
operate at exactly the same rate. Below we formalize
the above description and also formulate a "controlled"
versIOn.

To this end consider k dynamical systems

Si = {T, Ui, Xi, Ii, rPi, h;}, i = 1, ... , k

where T is common set of time instances, Ui, Xi, Ii
are sets of inputs, states and outputs, respectively;
rPi : T x Xi X Ui ---'> Xi are transition maps, hi
T x Xi X Ui ---'> Ii are output maps. (vVe use one of
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the standard definitions of dynamical system, see e.g.
[21, 14]).
First consider the case when all Ui are just singletons,
i.e. inputs are not present and may be omitted from
formulations.

Suppose l functionals 9j : Y1 x Y2 X ... X Yk X T ---+

IR1
, j = 1, ... , l, are given. Here Yi are the sets of all

functions from T into Ii, i.e. Yi = {y: T ---+ Ii}.
In the sequel, we take as time set T either T = IR?:o
(continuous time) or T = Z?: a (discrete time). For
any T E T we then define (JT as the shifl operator, i.e
(JT : Yi ---+ Yi is given as ((JTy)(t) = y(t + T) for all
y E Yi and all t E T. vVe are now prepared to define
synchronization.

Definition 2.1 We call the solutions X1(·), ... , Xk(·)
of the systems ~1, ... , ~k with initial conditions
X1(O), ... , Xk(O) synchronized with respect to the func
tionals 91, ... ,9/ if

IS valid for all t E T and some T1, ... ,Tk E T, where
Yi (.) denotes the output function of the system ~i:

Yi(t) = h(Xi(t), t), t E T, i = 1, , k.
We say thal solutions X1(·), , Xk(·) of the systems
~1, ... , ~k with initial conditions X1(O), ... ,Xk(O) are
approximately synchronized with respect to the func
tionals 91, ... ,9/, if there are an € > °and T1, ... ,Tk E
T suchlhat

for all t E T.
The solutions Xl (.), ... ,Xk(·) of the systems ~1, ... ,~k

with initial conditions X1(O), ... , Xk(O) are asymptot
ically synchronized with respect to the functionals
91, ... ,.9t, if for some T1, ... ,Tk E T

varying shift operator defined as follows

where t; : T ---+ T, i = 1, ... , k are homeomorphisms
(continuous functions having continuous inverses) such
that

lim (t;(t) - t) = Ti (2.4)
t-+oo

In [1], instead of (2.4) the milder condition
limt-+oo t;(t)/t = 1 is proposed which, however allows
for infinitely large phase shifts.

In many practical synchronization problems the spaces
Yi are identical Yi = Y and the functionals {9jsr} are
chosen to compare similar characteristics of different
systems, e.g.:

where r,s = 1, ... ,k, j = 1, ... ,l and Jj : Y ---+ :fj,
are some mappings (synchronization indices) which map
the (output) trajectory Yi(·) of each system ~1, ... , ~k,

into some metric space :fj. In this case we will talk
about synchronization with respect to the indices {Jj }

The specific choice of the synchronization indices de
pends on the essence of the mathematical, physical or
engineering problem. The same is valid for the phase
shifts Ti which may be fixed in some problems and may
be arbitrary in others. Naturally, the possibility of effi
cient solution of the synchronization problems depends
crucially on the chosen functionals and/or indices.

Remark 1. Note that instead of the set of the func
tionals it is always possible to take one functional which
expresses the same synchronization phenomenon, for ex
ample one can take the functional G as follows

/

G(Y1(), ... , Yd·),t) = L9](Y1(·), ... ,Yk(·),t),
j=l

In many practical cases the sets Ui , Xi, Ii are finite
dimensional vector spaces and the systems Si can be
described by ordinary differential equations. First con
sider the simpliest case of disconnected systems without
inputs:

dXi
Si· dt = Fi(Xi, t), (2.5)

where Fi' i = 1, ... , k are some vector fields. Some
times synchronization may occur in disconnected sys
tems (2.5) (e.g. all precise clocks are synchronized in
the freequency sense). This case will be refered to as
natural synchronization. The most interesting and im
portant case, however, seems synchronization of inter
connected systems. In this case the system models are
augmented with interconnections and look as follows:

If the synchronization phenomena is achieved for all ini
tial conditions X1(O), ... , xdO) it is possible to say that
the systems ~1, ... ,~k are synchronized (in the appro
priate sense with respect to the given functionals). In
the case of asymptotic synchronization it is also possi
ble to define the basins of the initial conditions which
yield synchronization. In the sequel, we will only con
sider the case when the synchronism is achieved for all
initial conditions.

Although this definition is rather general, it can be fur
ther generalized. For example in many practical prob
lems the time shifts Ti, i = 1, ... , k are not constant but
tend to constant values, so called "asymptotic phases" .
In this case, instead of the shift operator for each out
put function Yi (.), it is convenient to consider the time

{
~ = Fi(Xi, t) + Fi(xo, Xl, ... , Xk, t),
~ = Fo(xo, Xl, ... , Xk, t)

i = 1, ... , k

(2.6)
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Ys, s=I, ... ,T,

The simpliest form of feedback is static feedback where
the controller equation is as follows

for some function U : IRna x IRnl, ... , IRnk x IR ---7 IRm

A more general form is dynamic state feedback:

(2.9)

(2.13)

(2.14)

(2.15)

(2.12)

(2.10)

(2.11)

vV(XO, Xl, ... , Xk, W, t)

U(Xo, Xl, ... , Xk, W, t)

W (Y1, ... I Yr , w, t)

U(Y1,···,Yr,w,t)

u(t) =U(XO,X1, ... ,Xk,t)

dw
dt

u(t)

dw
dt

u(t)

(or with dynamic equation:

with w E IRv
, W : IRna x IRn, x ... x IRnk x IRv x IR ---7

IRv , U : IRna x IRn, x ... x IRnk x IRv x IR ---7 IRm ,

Now the problem of state feedback synchronization can
be posed as follows.

Find a control law (2.9), (or (2.10), (2.11)) ensuring
the asymptotic synchronization (2.3) in the closed loop
system (2.8), (2.9) (or respectively, (2.8), (2.10), (2.11)).

with w E IRI/, Ys E IRPe W : IRPI x ... x IRPe x IRI/ X IR ---7

IRv, U : IRPI x ... x IRP' x IRv x IR ---7 IRm, such that
the goal (2.3) in system (2.8), (2.12) (or (2.8), (2.13),
(2.14)) is achieved.

To illustrate the previous definition we will discuss a
simple, but instructive example of static state feedback
synchronization.

Example 1. Feedback synchronization of two ar
bitrary second order oscillators.

Consider a second order system

Remark 2. Since it is worth speaking about controlled
synchronization only in cases when (self-) synchroniza
tion (2.1) does not occur, the inclusion of a static or
dynamic state feedback (2.9) or (2.10), (2.11) will only
lead after some transient behavior to (2.1). We there
fore will only be concerned with the feedback (asymp
totic) synchronization (2.3).
In a variety of practical problems complete informa
tion about the states of the systems 5 0 ,51, ... ,5k IS

not available and only some output variables

are available for using in the control law. In case when
the 5 i are smooth finite-dimensional systems the prob
lem of output feedback synchronization can be posed as
follows: find controller equations

A remarkable and widely used observation is that the
synchronization may exist, i.e. identity (2.1) may be
valid in the interconnected system (2.6) without any
external action, i.e. without inputs. In this case the sys
tem (2.6) is called self-synchronized with respect to the
funetionals gl, ... , g/. Similar definitions are introduced
for approximate and asymptotic self-synchronization.
Usually in this case the systems 51, ... , 5k are au
tonomous.

In many cases important for applications the intercon
nections between the systen1s 51, ... , 5k are weak, for
instance when (2.6) can be represented as follows

{

dx ~dt. = Fi(Xi,t)+/-lFi(xo,X1"",Xk,t), i=I, ... ,k
~ = FO(XO,X1, ... ,Xk,t)

(2.7)
where /-l is a small parameter. Therefore finding con
ditions for self-synchronization in systems with small
interactions is of special interest. Such conditions were
found for a large class of dynamical systems (2.7) with
time-periodic functions Fi in the right hand sides [3,4].
However, in many cases self-synchronization is not ob
served and the question arises: is it possible to affect,
i.e. to control the systems in such a way that the goal
(2.2) or (2.3) can be achieved?
The above definitions do not yet include the possibility
of controlling the system. Assume for simplicity that
all 5i, i = 0, ... , k are smooth finite dimensional sys
tems, described by differential equations with a finite
dimensional input, i.e.

{
d:fti = Fi (x i , t) + Pi (x 0, Xl, ... , xk, u, t), i = 1, ... , k
cJ:r:.sJ.. - TO ( t)dt - ro XO,X1,···,Xk,U,

(2.8)
where u = u(t) E IRm is the input (control variable)
which has physical meaning.

The problem of controlled synchronization with respect
to the funetionals gj, j = 1, ... , I (respectively, con
trolled asymptotic synchronization with respect to the
funetionals gj, j = 1, ... , I) is to find a control u as a
feedback function of the states Xo, Xl, ... , Xn and time
providing that (2.1) (respectively, (2.2), (2.3)) hold for
the closed loop system.

Sometimes the goal can be ensured without measur
ing any variables of the systems, for instance by time
periodic forcing. In this case control function u does
not depend on system states and the problem of finding
such a control is called an open loop controlled (asymp
totic) synchronization problem.

However, the most powerful approach assumes the pos
sibility of measuring the states or some function of the
system variables. Finding a control function in this case
is called a closed loop or feedback (asymptotic) synchro
nization problem.

where the vector field Fa describes the dynamics of the
interconnection system, Pi are vector fields of the inter
connections.
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together with a controlled second order system

Typically 51 and the uncontrolled version of 52 could
represent the dynamics of a pendulum, or a periodically
forced Duffing equation, or a periodically forced Van
der Pol equation. Assume it is desirable to have that
the system 52 asymptotically synchronizes with the first
system 51, that is we require

~ f------,,-------.::z----....-------,-------.t""lm:::-a,I>

-is

(2.16)

Consider the following linear output feedback controller;

Figure 1: Synchronization of two Lorenz systems. Com
parision of time histories obtained from 1st and 2nd
system, ..\2 = 0.2

by means of a well chosen feedback controller fo u. Note
that in this setting it is logical to look for asymptotic
- preferably even exponential - synchronization since
we may not have that 51 and 52 would start at the
initial time t = 0 in the same initial states. A static
state feedback controller that solves the above problem
is given by

u = !l(X1, ,t)- h(X2, X2, t)-kd(X2-X1)-kp(X2-X1)
(2.18)

The error dynamics, with e = X2 - Xl then reads as

to the functions:

gl(X1, X2)

g2(Y1,Y2)
g3(Zl,Z2)

II X1- X 211

IIY1 - Y211

Il z1- Z211

(2.19)

which is exponentially stable for all positive kd , kp . The
feedback controller (2.18) thus achieves the synchroniza
tion goal (2.17), no matter what the original systems
51 and 52 were: for instance we may achieve synchro
nization of a forced Van der Pol oscillator and a forced
Duffing oscillator.
Obviously, the controller (2.18) might not be feasible
if the part of state information of both 51 and 52 is
missing. In that case more subtle control schemes have
to be designed - like observer-controller combinations
developed in [19, 20] or alternative methods may be
invoked.

3 Synchronization of two cou
pled Lorenz systems

where , > 0 is a synchronization gain also refered In

the literature to as a coupling constant. Let us prove
that the overall system can be synchronized if, exceeds
some threshold value.
First let us show that all trajectories of the overall sys
tem are bounded. Consider the following scalar func
tion:

Calculate its time derivative;

w -(,+())xr-Yr

b (z1 + (); r) 2+ b(() + r)2 /2 + 2,X1 X2

? 2 ( 0"+r)2(, + ())X§ - Y2 - b Z2 + -2-

+ b(0"+1»2/2

{

Xl = ()(Y1 - Xl) + u
~1 - rX1 - Y1 - X1 Z1
Zl = -bz1 + X1Y1

Let us discuss the synchronization phenomenon between
two coupled Lorenz systems. Consider the following
system:

{

X2 = ()(Y1 - X2) - u
~2 - rX2 - Y2 - X2 Z2
Z2 = -bz2 + X2Y2

(3.1)
where u E IR is the control input which has to be chosen.
We pose the synchronization problem in the following
way: find the control u as a function of measurable
variables which, as we assume here, are Xl and X2 and
that ensures asymptotic synchronization with respect

Notice that -,xi + 2,X1X2 - ,x~ ~ 0 for all Xl, X2
as long as , ~ O. Notice also that if , ~ 0 then the
equation W = 0 determines an ellipsoid in IR6 outside
which W ~ O. Therefore all trajectories of the compos
ite system are bounded. Moreover all trajectories tend
to the following sphere:

xr+x~+Yr+Y~+(zl-0"-r)2+(z2-0"-r)2= J{2(()+r)2
(3.2)

Indeed, to prove this pick some J{ such that inside of
sphere (3.2) we have TV ~ 0, that is

T2 1 b 1
!, =4+4 max{;;:,1}
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20 'Y

time,s

Figure 2: Synchronization of the two Lorenz systems.
Adjustment of the synchronization gain" '\2 = 0.2

Using (3.2) we can easily calculate upper bounds of the
following values:

Introduce error vector in the standard manner: e =
(ex, ey, ez)T = (X1-X2, Y1-Y2, Zl-Z2r and consider
the following Lyapunov function:

1 2 2 2V(e x ,ey, ez) = 2(exlcr + ey + ez)

practical point of view this result is not always satisfac
tory since determination of the threshold value of the
coupling constant requires to know parameters of the
two Lorenz systems. Thus it is interesting to find an
adaptive algorithm which tunes, until synchronization
occurs. In order to achieve adaptive synchronization
the following adaptation algorithm can be applied:

where '\1 ~ 0''\2 > 0. To prove that this algorithm en
sures synchronization one can calculate the time deriva
tive of the following scalar function:

We carried out a computer simulation to show synchro
nization effect between two Lorenz systems. Parame
ters of simulation were chosen as follows: cr = 10, b =
8/3, r = 28, '\1 = 0''\2 = 0.2, Xl (0) = 10, Y1 (0) =
2, Zl(O) = 20, X1(0) = -10, Y1(0) = -2, Zl(O) = 0,,0 = 0. Fig. 1 shows the transient process in the cou
pled system. Obviously the goal of synchronization is
achieved. Figure 2 shows how the adaptive algorithm
changes the synchronization gain,.

Its derivative along trajectories of the overall system
satisfies: 4 Conclusion

V -(1 + 2,lcr)e; + (1 + r - Z2)e xey - e; + Y2exez
be;

Since we have already proved that Z2(t) and Y2(t) are
bounded it is seen. that it is possible to choose, large
enough such that V is negative definite as a function of
the error vector, therefore limt--+oo V(ex(t), ey(t), ez(t))
exists. Furthermore, from the integrability of V on the
infinite time interval, continuity of V in e and uniform
continuity of e(t) in t (this continuity is uniform in view
of the boundedness of the error vector) and applying
Barbalat's lemma [24], we obtain that the composite
system is asymptotically synchronized with respect to
function V provided that, is greater than some thresh
old value:

It is also clear that asymptotic synchronization with
respect to function V is equivalent to the asymptotic
synchronization with respect to the set of functions
gl, g2, g3 and therefore we have solved the problem as it
has been stated.

We have proved that the asymptotic synchronization
can be achieved if one take , large enough. From a

An attempt is made to give a fairly general definition of
synchronization corresponding to intuition encompass
ing most of the known definitions and applications, and
capturing peculiarities of both self-synchronization and
controlled synchronization. The general definition was
illustrated by a number of examples.

Based on the introduced definitions a practical problem
of synchronization of vibrating actuators [6, 7] including
cases of both self-synchronization and controlled syn
chronization also can be considered, see [8].
The presented general control synchronization problem
allows to formulate and solve the control design problem
for various dynamical systems. Note that using for in
stance a speed-gradient method for nonlinear adaptive
control [11, 12] the above problems can also be solved
in an adaptive setting when some or all parameters of
the controlled system are unknown. In a similar way a
robustness analysis in the spirit of [18] is possible.
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