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Abstract: The aim of the course signal conversion is to learn designing a hybrid
measurement and data processing system with a specified overall signal-to-noise
ratio. The noise is caused by various error sources in the measurement chain:
bandwidth limitation, sampling, quantisation and reconstruction. The education
method is based on simulation tools, used interactively by the students to learn
quickly the consequences of changing design parameters on the quality of the output
signal
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1.  INTRODUCTION
The main topic of this course is teaching students to choose the appropriate parameters values in a

measurement chain in order to guaranty the quality of the processed data in terms of power relations.
Figure 1 shows a general scheme of the signal processing functions, including errors provoked by the
system parts. The main subjects of the course are related with these functions [1].

Figure 1.  Signal propagation through the measurement chain. Dashed lines indicate errors added to
  the signal.

The aim is how to make estimations and recommendations for the best combination of anti-aliasing
filters, sampling rate, digital processing algorithms and reconstruction methods. The course consists of
an electronic textbook, working interactively with simulation toolboxes. We have developed these
toolboxes for this course, based on MathCad, as help tools for exploring graphically the subjects of the
course. In section 2 the education method is described shortly. In sections 3, 4 and 5, some subjects
of the course are described. Each of these sections starts with a short introduction, followed by
exercises in the corresponding simulation toolbox, and concluded with some theoretical aspects.

2.  EDUCATION METHOD
The education method is based on interactions between the course elements on one hand (shown

in the upper half of figure 2) and the corresponding toolboxes on the other hand as indicated in the
grey area of this figure. Vertical arrows symbolise these interactions.
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Figure 2. Scheme of the interactive education method. xn(t): measurement signal including noise;
yn(t): reconstructed signal including noise.
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Based on the analysis of stochastic measurement signals x(t), students learn to adjust the
parameters of the measurement chain functions in a correct way, in view of the accuracy requirements
of the final result. The resulting signal y(t) is analysed and compared with x(t). From the analysis of the
error signal y(t)-x(t), students may change particular parameters of the measurement chain, in order to
get a minimal error. The effect of each parameter change on the signal property can be explored
graphically and numerically using the corresponding toolboxes. These toolboxes are activated simply
by clicking the figures in the electronic text book. In this way, students can perform experiments by
changing parameters: the propagation of these changes to the output signal can be explored
immediately. Observing the simulated output y(t) (or its frequency spectrum), students learn to
evaluate the correctness of the chosen signal processing parameter values.

An anti-aliasing filter, for example, can suppress high frequency noise but, at the same time, also
high-frequency components in the measurement signal. So, interactively, students discover how to
choose the best parameters for a required signal-to-noise ratio. Moreover, the associated formal
expressions can be interpreted more easily.

3.  SUBJECT 1: STOCHASTIC SIGNALS
First, the students have to determine quantitatively the signal properties during propagation through

the measurement chain. They learn to estimate signal characteristics in terms of power spectral
densities and correlation functions, for a given realisation of a stochastic signal. With the simulation
box, such signal characteristics are displayed graphically, while numerical calculations can be made
too. In this box, a stochastic signal with a certain power frequency characteristic is supposed to be
generated by applying white noise to a so-called shape filter.

3.1 Using the stochastic signal box
Next figures are created using the stochastic signal analysis box. The box allows simple

adjustment of various signal parameters. The results of these changes are displayed in the time
domain as well as in the frequency domain.
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Figure 3. One realisation of normal distributed
white noise. Parameters to be adjusted:
mean µ (=0); standard deviation σ (=1)

Figure 4. Φs(f): power frequency characteristic;
ϕs(t): correlation function of the shape
filter

First, the parameters of a random number generator are defined, resulting in a white noise signal
with a specified distribution (figure 3). Next, by applying a shape filter with a certain order P and cut-off
frequency f0 (figure 4) a random signal with specified spectral characteristics is obtained. Such
exercises stimulate visual experience in the impact of stochastic signal parameters. Moreover, this
procedure of shaping stochastic signals allows the use of analytical expressions about power
densities. Figure 5 shows such a shaped signal in time domain, whereas figure 6 is the averaged
spectrum over 50 realisations.
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Figure 5. One realisation of noise, which is
shaped by the filter of figure 4.

Figure 6. Mean power frequency characteristic of
50 realisations.
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By comparing figures 6 and 4, students may observe that the power spectral density function of the
filtered white noise is, indeed, determined by the frequency characteristic of the shape filter. Using this
box, students will get a better understanding of the mathematical relations and their limited use in time
domain as well as in frequency domain.

3.2 Theory of stochastic signal characteristics
After the exercises of section 3.1 students should be able to understand the expressions about the

power spectral density function Φxx(iω) and the correlation function ϕxx(τ), which are mutually related
by the Fourier transforms:
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Physically, both functions reflect the rate of change of the time signals.

4.  SUBJECT 2: SAMPLING OF STOCHASTIC SIGNALS
In this part of the course, students learn to choose correct values for the sampling frequency and

the number of quantisation levels. To do so, estimations of sampling errors should be made first. In
this section, sampled signals are described in time and frequency domain. In order to estimate the
sampling errors in terms of power, a definition of aliasing errors is introduced. Using the sampling box,
students can simulate sampling of signals and display their frequency spectra.

4.1  Using the sampling box
In figure 7, a realisation of a sampled normally distributed stochastic signal is simulated. Figure 8

shows the associated frequency spectrum. The characteristics of the shape filter are: order 1, cut off
frequency 10 Hz; the sampling rate is100 Hz.
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Figure 7. Sampled stochastic signal. Bars
indicate the samples.

Figure 8. Amplitude spectrum of the sampled
signal.

Observing figure 7, students may notice that a correct reconstruction of the original signal from the
samples is rather difficult. The fine-structure of the signal shape is missing. Further, in figure 8, a
periodic frequency spectrum is observed, with a period equal to the sampling rate. The part around 0
Hz is equivalent to the original spectrum, whereas around n.fs AM versions of the original spectrum
appear. These frequency bands overlap each other, causing aliasing errors. Now, in this toolbox the
order of the shape filter of figure 4 can be increased, for instance to P=2, resulting in a smaller region
of overlap in the frequency domain (figure 10). The toolbox responds with a smoother stochastic signal
in the time domain (Figure 9).
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Figure 9. As figure 7, but now P=2 Figure 10. Amplitude spectrum of the sampled
signal from figure 9
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From these exercises it can be concluded that suppression of the higher frequency components in
the analogue signal results in a better separation of the aliases of the sampled signal.

After these experiments the theory can be understood more easily. This theory describes the
sampling process and the errors in terms of power.

4.2 Theory of sampled signals
Evaluating the exercises, students have seen graphically that the sampled signal xs(t) is a

multiplication of the analogue signal x(t) with the periodic sampling function D(t,Ts), where Ts is the
sampling time. The frequency spectrum is periodic with the sampling rate fs=1/Ts. After these
exercises students should be able to understand the sampling process analytically. The sampling
process is given by the expression:
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The sampled signal xs(t) can be written as an infinite sum of AM harmonic signals:
∑ π=
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In the frequency domain the power spectral density function )f(ss
xxΦ of a sampled signal is a

periodic function of Φxx(f), the power spectrum of the analogue signal x(t):
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The period equals fs=1/Ts.
In order to estimate the accuracy of the

sampled signal, the aliasing error PA is
introduced, defined as:
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Graphically, PA is the part of the surface
area under curve Φo from fs/2f0 (figure 11). A
second error is introduced by the tail of the first
alias Φ1, overlapping Φ0.

From these expressions it follows that the
error decreases with increasing order P of the power spectrum. Now, the simulation box can be
opened again to see the shape of the aliasing errors graphically.

4.3 Return to the sampling box.
With the sampling box both errors can be simulated to show their contribution in time domain. For

example, we consider a sampled square wave signal (figure 12). The original signal is reconstructed
by an ideal low pass filter of half the sampling rate. Figures 13 and 14 show the aliasing errors
separately, for this case. Frequency components above fs/2 are suppressed completely, but this
causes a lower rate of change (figure 13).
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Figure 12. Spectrum of a sampled 1 Hz square
wave. Sampling rate is fs=8 Hz.

Figure 13. Reconstruction result by ideal filter at
fs/2; the dashed line indicates the
original signal.

The error y1(t) due to the first alias (frequencies
below fs/2), is shown in figure 14. With the aid of this
simulation box, students get feeling for aliasing errors of
various types of signals for different signal-processing
situations. In this way, signal error estimations,
formula’s and graphics come close together.
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Figure 14. Error signal from first alias.
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Figure 11. Frequency images of a sampled first
order signal; cut-off frequency f0; sample
frequency fs=6.4 f0.
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5.  SUBJECT 3: RECONSTRUCTION ERRORS
In this section, the aim is to determine the best reconstruction filter. The final decision about the

best reconstruction can be made in relation with other system- and signal parameters. Using the
reconstruction simulation box, students learn to make good estimations of reconstruction errors and
find the best reconstruction with regard to the signal-to-noise ratio.

5.1 Using the signal reconstruction box
Figure 15 shows one realisation of a low frequent stochastic signal. Again, the bars represent the

analogue signal. |Xsf| in figure 16 displays the amplitude frequency characteristic of a realisation of a
sampled signal; in the same figure, the characteristic Hr(f) of a possible reconstruction filter has been
drawn: its parameters are order Pr=2 and cut-off frequency fr=0.5f0. The student has to find out
whether this is a proper choice.
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Figure 15. Line presentation: stochastic signal;
shape filter has order Ps=2.

Figure 16. Amplitude frequency characteristic of
the sampled signal from figure 15

Obviously, from figure 16, the low pass filter suppresses the frequency components around the
sampling frequency; however, also part of the original signal band will be suppressed: its cut-off
frequency fr

 is chosen too low. The resulting error of omission εo is the rms value of the difference
between the original xr(t) and the reconstructed signal y(t).
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Figure 17. Result of the reconstruction filter of
figure 16.
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Figure 18. A too wide band reconstruction filter. Figure 19. “Ripple” caused by insufficient
suppression of the first alias.

Increasing the filter bandwidth fr will decrease the error of omission and increase the error of
commission. Based on these considerations, students can estimate the optimal reconstruction filter,
given the stochastic signal parameters and the sampling rate. In this way, formulas and estimations
can be connected to the physical reality.

5.2 Theory of optimisation of  reconstruction errors
The choice of the optimal reconstruction can also be found theoretically, based on the power

spectrum density of the sampled stochastic signal. In the next figures two situations are drawn. Figure
20 shows the power transfer function PHr(f) of a reconstruction filter with order 2 and cut-off frequency
fr=5f0; the  sampling rate fs=5f0. Figure 21 shows a filter with a lower cut-off frequency.

The error of omission could also be estimated by
directly applying the analogue signal to the
reconstruction filter.

Another error, the error of commission εc, is
caused by insufficient second alias suppression,
that occurs when the cut-off frequency of the
reconstruction filter is chosen too high (figure
18). Its effect is a “ripple” on the time signal, as
shown in figure 19.
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Figure 20. Power spectrum Φxs(f) of 2nd order
data with cut-off frequency f0.

Figure 21. Application of the reconstruction filter
with fr=f0 /2.

Based on the experiments with the reconstruction box students can expect a too large error of
commission in case of the filter of figure 20. On the other hand, the filter of figure 21 suppresses the
high frequencies of the original signal too much. The power of the total reconstruction error depends
on the cut-off frequency fr, the parameters of the reconstruction filter Hr(f,fr) and the power spectral
density Φyy(f,fr) of the reconstructed signal y.

The power of the interference noise is:

∫ ∑ −Φ
π

=ε
+∞

∞−

∞

=
df)kfsf(.)fr,f(Hr

2

1
)fr(

1k
xx

22
c

The power of the error of omission is:

( ){ } ( )dff)fr,fHrRe2)fr()fr( xx
2
y

2
x

2
o Φ∫−σ+σ=ε

∞+

∞−

The power of the total error is:
2
o

2
c

2
r ε+ε=ε

Using these expressions in the reconstruction box,
students can find the best reconstruction filter.

In figure 22 both errors are given as a function of
the filter cut-off frequency relative to the signal cut-off
frequency. Obviously, the optimum is at fr=3.5f0.

6.  CONCLUSION
Using several MathCad simulation boxes, students can look for the best combination of stochastic

signal parameters, sampling rate and reconstruction parameters. Sometimes it will be unavoidable to
limit the bandwidth of the stochastic signal before sampling. This will result in a lower reconstruction
error. At the other hand, bandwidth limitation will also attenuate the high frequencies of the original
signal. The method of signal conditioning before sampling is effective in case of a low frequency signal
and high frequency noise.

This interactive method provides a course which can be done in the class room as well as on an
individual base. The preparation time for the examination appears to be decreased significantly,
because experience and knowledge of theory go together. This method gives students more feeling
for the relationship between the signal processing parameters and the estimated conversion noise.
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Figure 22. Φyy(f,fr): relative errors and
relative total reconstruction error
as function of the relative cut-off
frequency fr/f0 at a given sampling
frequency.
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