A Nehari theorem for Continuous-time FIR systems

Gjerrit Meinsma Fac. of Applied Mathematics University of Twente 7500 AE, Enschede The Netherlands g.meinsma@math.utwente.nl Leonid Mirkin

Fac. of Mechanical Engineering Technion – IIT Haifa 32000, Israel mirkin@tx.technion.ac.il

Qing-Chang Zhong Imperial College London, UK zhongqc@ic.ac.uk

Abstract

Explicit formulae are derived for Nehari extensions of continuous time FIR systems.

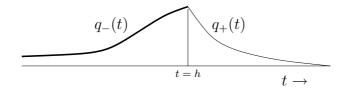


Figure 1: Nehari extension

1 Introduction

The Nehari problem is a problem in operator theory about optimal extension of functions or operators. The idea is depicted in Fig. 1. Given a function $q_{-}(t)$ for t < h the problem is to extend q(t) over t > h in such a way that the convolution operator

$$u \mapsto q * u, \quad (q * u)(t) = \int_{-\infty}^{\infty} q(t - \tau)u(\tau) \,\mathrm{d}\tau \tag{1.1}$$

has smallest possible $\mathcal{L}_2(-\infty,\infty)$ -induced norm

$$||q||_{\text{ind}} = \sup_{u \neq 0} \frac{||q * u||_{\mathcal{L}_2(-\infty,\infty)}}{||u||_{\mathcal{L}_2(-\infty,\infty)}}.$$
(1.2)

The standard lower bound for this induced norm is obtained by considering in the convolution (1.1) only t < h and $\tau > 0$. Indeed in that case $t - \tau < h$ so that the convolution mapping (1.1) is determined by the given q_{-} . Restricting t < h and $\tau > 0$ means that we only consider

the "past" of (q * u)(t) and the "future" of $u(\tau)$. A lower bound for the induced norm (1.2) hence is the induced norm $\|\Gamma_q\|$ of the operator restricted to this past and future,

$$\Gamma_q: \mathcal{L}_2(0,\infty) \to \mathcal{L}_2(-\infty,h), \qquad \Gamma_q(u) = q * u.$$

This operator is known as the Hankel operator and the famous Nehari theorem states that the lower bound $\|\Gamma_q\|$ can be attained, i.e., an extension q_+ exists such that $\|\Gamma_q\| = \|q\|_{\text{ind}}$, see (Nehari, 1957; Partington, 1988; Young, 1988).

For finite dimensional systems $q_{-}(t) = Ce^{At}B$ there is a well developed theory about Nehari extensions and the results are constructive, see e.g. (Glover, 1986; Green and Limebeer, 1995; Zhou et al., 1995). For general *infinite* dimensional systems however it is hard to come up with *computable* formulae for the optimal Nehari extension $q_{+}(t)$ and the suboptimal extensions $q_{+}(t)$ (these are extensions $q_{+}(t)$ for which $||q||_{ind} < \gamma$ for some given bound $\gamma > 0$, assuming any exist, i.e. assuming $\gamma > ||\Gamma_q||_{ind}$).

In this note we derive explicit formulae for the suboptimal extensions $q_+(t)$ for the case that $q_-(t)$ is a matrix function of compact support of the form

$$q_{-}(t) = C e^{-At} B \mathbb{1}_{[0,h]}(t)$$
(1.3)

with $A, B, C \in \mathbb{R}^{\times}$ of appropriate dimensions. Nehari extension problems of this type have turned up in recent results on \mathcal{H}_{∞} control problems for systems with delays, see Mirkin (2000). It is these results that motivated this research.

2 Preliminaries

This section introduces some notation and conventions that we use in this note.

For transfer matrices P(s) we use $P^{\sim}(s)$ to denote its adjoint $P^{\sim}(s) = [P(-\bar{s})]^*$. The right conformal mapping $C_{\rm r}(G,U)$ is defined as $C_{\rm r}(G,U) = (G_{11}U + G_{12})(G_{21}U + G_{22})^{-1}$. From the context it will be clear what partitioning of $G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$ is meant.

A partitioned matrix with vertical and horizontal lines separating the entries, denotes the Schur complement of that matrix with respect to its upper-left block. So $\left[\frac{P}{R} \mid \frac{Q}{S}\right] = S - RP^{-1}Q$. This notation has proved useful. In particular we have that $\left[\frac{A-sI}{C} \mid \frac{B}{D}\right] = C(sI - A)^{-1}B + D$.

Borrowing from (Mirkin, 2000) we define the *truncation* and *completion* operators τ_h and π_h . These are operators that act on causal systems. The truncation operator truncates the system's impulse response beyond a given positive time-delay h. For finite dimensional causal systems with transfer matrix $P(s) = C(sI - A)^{-1}B + D$ the truncation operator equals

$$\tau_h(P) = \left[\begin{array}{c|c} A - sI & B \\ \hline C & D \end{array} \right] - e^{-sh} \left[\begin{array}{c|c} A - sI & e^{Ah}B \\ \hline C & 0 \end{array} \right].$$

The completion operator π_h "analytically completes" the impulse response of an *h*-delay system to a 0-delay system. The "analytic completion" for delayed systems of the form

 $e^{-sh}P(s) := e^{-sh}(C(sI - A)^{-1}B + D)$ is defined formally for h > 0 as

$$\pi_h(\mathrm{e}^{-sh}P) = \left[\begin{array}{c|c} A - sI & B \\ \hline C \mathrm{e}^{-Ah} & 0 \end{array}\right] - \mathrm{e}^{-sh} \left[\begin{array}{c|c} A - sI & B \\ \hline C & D \end{array}\right].$$

For finite dimensional P, the sum of $e^{-sh}P$ an its completion $\pi_h(e^{-sh}P)$ is again finite dimensional with the same state dimension as that of P.

3 A Nehari theorem for FIR systems

From now on we assume that $q_{-}(t)$ is given by (1.3) for some given h > 0 and matrices $A, B, C \in \mathbb{R}^{\times}$ of appropriate dimensions. We can see q_{-} as the truncation of the finite dimensional system $P(s) = C(sI - A)^{-1}B$. Because q_{-} has a finite impulse response (FIR) it follows that the Hankel norm $\|\Gamma_{q_{-}}\|$ equals the induced norm over the finite interval [0, h],

$$\|\Gamma_{q_{-}}\| = \sup_{u \in \mathcal{L}_{2}(0,h)} \frac{\|q_{-} * u\|_{\mathcal{L}_{2}(0,h)}}{\|u\|_{\mathcal{L}_{2}(0,h)}},$$

in which $(q_{-}*u)(t) = \int_{0}^{h} q_{-}(t-\tau)u(\tau) d\tau$. This norm has been studied in detail in the sampled data and dead-time literature, see e.g. Green and Limebeer (1995); Chen and Francis (1995); Gu et al. (1996) and by now there are various ways to express this norm in a more explicit form. For our purposes the following such form is important.

Theorem 3.1. Let $q_{-}(t) = Ce^{At}B \mathbb{1}_{[0,h]}(t)$. Then $\|\Gamma_{q_{-}}\|_{ind} < 1$ if and only if $\Sigma_{22}(t)$ is nonsingular for every $t \in [0,h]$. Here $\Sigma_{22}(t)$ is the lower-right block of the symplectic matrix $\Sigma(t)$ defined as

$$\Sigma(t) := \begin{bmatrix} \Sigma_{11}(t) & \Sigma_{12}(t) \\ \Sigma_{21}(t) & \Sigma_{22}(t) \end{bmatrix} := \exp\left(\begin{bmatrix} A & BB^{\mathrm{T}} \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} \end{bmatrix} t \right).$$
(3.4)

The following theorem characterizes all suboptimal Nehari extensions. This theorem is formulated in frequency domain, that is we seek $Q_+ \in \mathcal{H}_{\infty}$ such that $||Q_- + e^{-sh}Q_+||_{\mathcal{H}_{\infty}} < 1$. Now Q_- is the truncation of the causal $P := C(sI - A)^{-1}B + D$. Therefore $||Q_- + e^{-sh}Q_+||_{\mathcal{H}_{\infty}} < 1$ has a solution $Q_+ \in \mathcal{H}_{\infty}$ iff $||P + e^{-sh}K_+||_{\mathcal{H}_{\infty}} < 1$ has a causal solution K_+ . We use the latter formulation.

Theorem 3.2 (All suboptimal extensions). Let $P(s) = C(sI - A)^{-1}B$ and suppose h > 0. There exist causal K_+ such that $||P + e^{-sh}K_+||_{\mathcal{H}_{\infty}} < 1$ if and only if $||\Gamma_{\tau_h(P)}|| < 1$. In this case all suboptimal extensions K_+ are given by

$$K_{+} = \mathcal{C}_{r} \left(\begin{bmatrix} I & 0 \\ \Delta & I \end{bmatrix} Z_{r}, U \right)$$
(3.5)

where U satisfies $||U||_{\mathcal{H}_{\infty}} < 1$ but otherwise arbitrary. Here Δ is the FIR system defined as

$$\Delta = \pi_h(\mathrm{e}^{-sh}(P^{\sim}P - I)^{-1}P^{\sim})$$

and Z_r is the finite dimensional system

$$Z_r = \begin{bmatrix} A - sI & \Sigma_{22}^{-T}(h)\Sigma_{12}^{T}(h)C^{T} & \Sigma_{22}^{-T}(h)B \\ -C & I & 0 \\ -B^{T}\Sigma_{21}^{T}(h) & 0 & I \end{bmatrix}.$$

A proof is given in Section 4. It is interesting to see that Z_r is well defined precisely if $\Sigma_{22}(h)$ is invertible. The symplectic matrix Σ also shows up in the formulae for the FIR system Δ . Indeed, from the proof it follows that

$$\Delta = \pi_h \left(e^{-sh} \begin{bmatrix} A - sI & BB^{\mathrm{T}} & 0\\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & C^{\mathrm{T}}\\ \hline 0 & B^{\mathrm{T}} & 0 \end{bmatrix} \right) = \begin{bmatrix} A - sI & BB^{\mathrm{T}} & 0\\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & C^{\mathrm{T}}\\ \hline -B^{\mathrm{T}}\Sigma_{21}^{\mathrm{T}}(h) & B^{\mathrm{T}}(\Sigma_{11}^{\mathrm{T}}(h) - e^{-sh}I) & 0 \end{bmatrix}$$

Example 3.1. Suppose the given part of q is the indicator function with support [0, h]. That is, $q_{-}(t) = \mathbb{1}_{[0,h]}(t)$. To find the Nehari extension we use that $q_{-}(t) = Ce^{At}B \mathbb{1}_{[0,h]}(t)$, with (A, B, C) = (0, 1, 1). With this data the symplectic matrix defined in (3.4) becomes

$$\Sigma(t) = \exp\left(\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} t\right) = \begin{bmatrix} \cos(t) & \sin(t)\\ -\sin(t) & \cos(t) \end{bmatrix}.$$

Now $\Sigma_{22}(h) = \cos(h)$ and it follows from Thm. 3.1 that $\|\Gamma_{q_{-}}\| < 1$ iff $h < \pi/2$. In that case we may continue with Thm. 3.2 and we find for Δ and Z_{r} ,

$$\Delta(s) = \frac{\sin(h) + (\cos(h) - e^{-sh})s}{s^2 + 1}$$

and

$$Z_{\rm r} = \begin{bmatrix} -s & \tan(h) & \frac{1}{\cos(h)} \\ \hline -1 & 1 & 0 \\ \sin(h) & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - \frac{\tan(h)}{s} & -\frac{1}{\cos(h)s} \\ \frac{\sin^2(h)}{\cos(h)s} & 1 + \frac{\tan(h)}{s} \end{bmatrix}$$

(Note that the impulse response of Δ is $\cos(t-h) \mathbb{1}_{[0,h]}(t)$.) The "central extension" $K_+ = C_{\rm r}(\begin{bmatrix} 1 & 0 \\ \Delta & 1 \end{bmatrix} Z_{\rm r}, 0)$ then is

$$K_{+}(s) = \frac{-\frac{1}{\cos(h)}\frac{1}{s}}{-\frac{1}{\cos(h)}\frac{1}{s}\Delta(s) + 1 + \tan(h)\frac{1}{s}} = -\frac{s^{2} + 1}{\cos(h)s^{3} + \sin(h)s^{2} + se^{-sh}}.$$
 (3.6)

Although Theorem 3.2 is about *sub*-optimal extensions only, it is readily seen that (3.6) remains valid for the optimal case $h = \pi/2$. In that case the above K_+ is the optimal Nehari extension, and it proves to be of an interesting form:

$$Q(s) := P(s) + e^{-s\frac{\pi}{2}}K_{+}(s) = \frac{1}{s} - e^{-s\frac{\pi}{2}}\frac{s^{2} + 1}{s^{2} + se^{-s\frac{\pi}{2}}}$$
$$= \frac{1 - se^{-s\frac{\pi}{2}}}{s + e^{-s\frac{\pi}{2}}} = \frac{1}{s} + \sum_{k=1}^{\infty} (-1)^{k}\frac{s^{2} + 1}{s^{k+1}}e^{-ks\frac{\pi}{2}}.$$
(3.7)

Equation (3.7) shows that Q is inner (as may be expected) and it also shows that the corresponding impulse response q(t) is the causal solution of the delay-differential equation $\dot{q}(t) + q(t - \pi/2) = \delta(t) - \delta^{(1)}(t - \pi/2)$. Alternatively we may determine the impulse response as the inverse Laplace transform of the last expression of Eqn. (3.7),

$$q(t) = \mathbb{1}_{(0,\infty)}(t) - \delta(t - \frac{\pi}{2}) - (t - \frac{\pi}{2}) \,\mathbb{1}_{(\frac{\pi}{2},\infty)}(t) + \sum_{k=2}^{\infty} (-1)^k \Big[\frac{(t - k\frac{\pi}{2})^{k-2}}{(k-2)!} + \frac{(t - k\frac{\pi}{2})^k}{k!}\Big] \,\mathbb{1}_{(k\frac{\pi}{2},\infty)}(t).$$

The result is depicted in Fig. 2. Note that the optimal Nehari extension is smooth at all t except at multiples of $\frac{\pi}{2}$. At $t = \frac{\pi}{2}$ the function has a delta-function component, at $t = \pi$ the function is discontinuous, at $t = 3\frac{\pi}{2}$ it is continuous but not differentiable, etcetera.

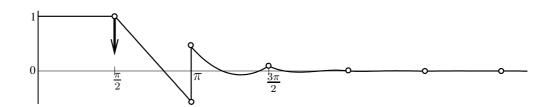


Figure 2: Optimal Nehari extension $1/s + e^{-s\frac{\pi}{2}}K_+$

4 Appendix: proof

This section describes a proof of Theorem 3.2. (The technical state space formulae are collected Subsection 4.1.) The aim is to find all causal K_+ for which $Q := P + e^{-sh}K_+$ is stable and contractive. First realize that Q equals

$$Q = \mathcal{C}_{\mathbf{r}}(G, K_{+}) \quad \text{for} \quad G := \begin{bmatrix} e^{-sh}I & P \\ 0 & I \end{bmatrix}.$$
(4.8)

In Subsection 4.1 we construct a bicausal solution W of the equation $G^{\sim}JG = W^{\sim}JW$ with the properties that $\lim_{s\to\infty} W(s) = I$ and such that $M_h := GW^{-1}$ is entire. (Here J is defined as $J = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ with the partitioning compatible with that of G.) By construction we then have that $\|Q\|_{\mathcal{L}_{\infty}} < 1$ iff $\|U\|_{\mathcal{L}_{\infty}} < 1$ for U defined as

$$U := \mathcal{C}_{\mathbf{r}}(W, K_+). \tag{4.9}$$

Now this U is causal iff K_+ is causal by the fact that $\lim_{s\to\infty} W(s) = I$. Yet the set of causal operators in \mathcal{L}_{∞} is in fact \mathcal{H}_{∞} , (Curtain and Zwart, 1995, A6.26.c, A6.27). So if K_+ solves Thm. 3.2 then necessarily $||U||_{\mathcal{H}_{\infty}} < 1$. This condition on U is also sufficient as we shall now see. The thing to note is that

$$M_h := GW^{-1}$$

is not only stable and J-unitary (i.e., $M_h^{\sim} J M_h = J$) but in fact J-lossless (meaning that in addition $M_{h,22}$ is bistable). Indeed, from $M_h^{\sim} J M_h = J$ it follows that $M_{h,22} M_{h,22} \geq I$, and as the M_t that we construct (see Subsection 4.1) is stable and is continuous as a function of $t \in [0, h]$, and $M_{t,22}|_{t=0} = I$ it follows that $M_{h,22}$ is bistable. It is well known that for J-lossless M_h we have that $Q = C_r(M_h, U)$ is stable for any $||U||_{\mathcal{H}_{\infty}} < 1$, see, e.g., (Meinsma and Zwart, 2000, Thm. 6.2). Hence any $||U||_{\mathcal{H}_{\infty}} < 1$ yields a solution. Now (4.9) is invertible,

$$K_+ = \mathcal{C}_{\mathbf{r}}(W^{-1}, U)$$

and the W constructed below is of the form $W = W_r \begin{bmatrix} I & 0 \\ -\Delta & I \end{bmatrix}$ so that

$$K_{+} = \mathcal{C}_{\mathbf{r}}(\begin{bmatrix} I & 0\\ \Delta & I \end{bmatrix} Z_{\mathbf{r}}, U) \quad \text{where} \quad Z_{\mathbf{r}} := W_{\mathbf{r}}^{-1}$$

4.1 State space formulae

The rest of the subsection documents the more gory state space details.

To find a suitable W we first extract the infinite dimensional part from

$$G^{\sim}JG = \begin{bmatrix} I & \mathrm{e}^{sh}P \\ \mathrm{e}^{-sh}P^{\sim} & P^{\sim}P - I \end{bmatrix}.$$

To this end define the FIR system $\Delta := \pi_h(e^{-sh}(P^{\sim}P - I)^{-1}P^{\sim})$. Then Θ defined as

$$\Theta := \begin{bmatrix} I & \Delta^{\sim} \\ 0 & I \end{bmatrix} G^{\sim} J G \begin{bmatrix} I & 0 \\ \Delta & I \end{bmatrix}$$
(4.10)

is rational

$$\Theta = \begin{bmatrix} I - P(P^{\sim}P - I)P^{\sim} + R^{\sim}(P^{\sim}P - I)R & R(P^{\sim}P - I) \\ (P^{\sim}P - I)R & P^{\sim}P - I \end{bmatrix}$$

Given a realization of $P(s) = C(sI - A)^{-1}B + D$ and with G defined in (4.8) we get the realization

$$G^{\sim}JG = \begin{bmatrix} A - sI & 0 & 0 & e^{sh}B \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & -C^{\mathrm{T}} & 0 \\ \hline C & 0 & I & 0 \\ 0 & e^{-sh}B^{\mathrm{T}} & 0 & -I \end{bmatrix}.$$
 (4.11)

The construction of a realization of Θ requires several steps. A first step is to associate with $G^{\sim}JG$ the equation $\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = G^{\sim}JG\begin{bmatrix} u_1\\ u_2 \end{bmatrix}$. This equation may be rearranged as

$$\begin{bmatrix} y_1 \\ -u_2 \end{bmatrix} = \underbrace{\begin{bmatrix} I - P(P^{\sim}P - I)^{-1}P^{\sim} & e^{sh}P(P^{\sim}P - I)^{-1} \\ e^{-sh}(P^{\sim}P - I)^{-1}P^{\sim} & -(P^{\sim}P - I)^{-1} \end{bmatrix}}_{\Omega} \begin{bmatrix} u_1 \\ y_2 \end{bmatrix}$$

This defines Ω . Rearranging the realization of $G^{\sim}JG$ similarly gives a realization of Ω :

$$\Omega = \begin{bmatrix} A - sI & BB^{\mathrm{T}} & 0 & -\mathrm{e}^{sh}B \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & -C^{\mathrm{T}} & 0 \\ \hline C & 0 & I & 0 \\ 0 & -\mathrm{e}^{-sh}B^{\mathrm{T}} & 0 & I \end{bmatrix}$$

Looking at the lower left block of Ω we see that

$$\Delta := \pi_h (e^{-sh} (P^{\sim} P - I)^{-1} P^{\sim}) = \pi_h \Omega_{21} = \pi_h \left(e^{-sh} \begin{bmatrix} A - sI & BB^{\mathrm{T}} & 0\\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & -C^{\mathrm{T}} \\ \hline 0 & -B^{\mathrm{T}} & 0 \end{bmatrix} \right)$$

Consequently

$$R := \Delta + e^{-sh} (P^{\sim}P - I)^{-1} P^{\sim} = \begin{bmatrix} A - sI & BB^{\mathrm{T}} \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI \end{bmatrix} \begin{bmatrix} 0 \\ -C^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} 0 \\ -C^{\mathrm{T}} \end{bmatrix}$$

Based on this we now combine the various blocks and obtain the realization

$$\begin{bmatrix} I - P(P^{\sim}P - I)P^{\sim} & R^{\sim} \\ R & -(P^{\sim}P - I)^{-1} \end{bmatrix} = \begin{bmatrix} A - sI & BB^{\mathrm{T}} & \Sigma^{-1} \begin{bmatrix} 0 \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & \Sigma^{-1} \begin{bmatrix} 0 \\ -C^{\mathrm{T}} \end{bmatrix} & 0 \\ \hline \begin{bmatrix} C & 0 \end{bmatrix} \Sigma & I & 0 \\ 0 & -B^{\mathrm{T}} & 0 & I \end{bmatrix}$$

As a final step we associate with this the equation

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} I - P(P^{\sim}P - I)P^{\sim} & R^{\sim} \\ R & -(P^{\sim}P - I)^{-1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

and we rewrite it as

$$\begin{bmatrix} y_1 \\ u_2 \end{bmatrix} = \underbrace{\begin{bmatrix} I - P(P^{\sim}P - I)P^{\sim} + R^{\sim}(P^{\sim}P - I)R & R(P^{\sim}P - I) \\ (P^{\sim}P - I)R & P^{\sim}P - I \end{bmatrix}}_{\Theta} \begin{bmatrix} u_1 \\ -y_2 \end{bmatrix}.$$

Here we recognize Θ . In terms of state space manipulations we similarly obtain

$$\Theta = \begin{bmatrix} A - sI & 0 & \Sigma^{-1} \begin{bmatrix} 0 & B \\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & \Sigma^{-1} \begin{bmatrix} 0 & B \\ -C^{\mathrm{T}} \end{bmatrix} & 0 \\ \hline \begin{bmatrix} C & 0 \end{bmatrix} \Sigma & I & 0 \\ 0 & B^{\mathrm{T}} & 0 & -I \end{bmatrix}.$$
 (4.12)

Then

$$\Theta^{-1} = \begin{bmatrix} \Sigma^{-1} \begin{bmatrix} A - sI & BB^{\mathrm{T}} \\ 0 & -A^{\mathrm{T}} - sI \end{bmatrix} \Sigma & ? \\ \hline ? & ? & ? \end{bmatrix}$$

With Θ and Θ^{-1} in this form there is a standard procedure to find a factorization $W_{\rm r}^{\sim} JW_{\rm r} = \Theta$: Let X be any solution of the Riccati equation

$$\begin{bmatrix} -X & I \end{bmatrix} \Sigma^{-1} \begin{bmatrix} A - sI & BB^{\mathrm{T}} \\ 0 & -A^{\mathrm{T}} - sI \end{bmatrix} \Sigma \begin{bmatrix} I \\ X \end{bmatrix} = 0$$

Then

$$W_{\rm r} = \begin{bmatrix} A - sI & \left[\begin{bmatrix} I & 0 \end{bmatrix} \Sigma^{-1} \begin{bmatrix} 0 \\ -C^{\rm T} \end{bmatrix} & B \end{bmatrix} \\ J \begin{bmatrix} C & 0 \end{bmatrix} \Sigma & \left[I \\ 0 & B^{\rm T} \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} & \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \end{bmatrix}$$

does the job. For any X, the poles of W_r are the eigenvalues of A. The freedom in choice of X may be used to choose the zeros W_r . If we choose $X = -\Sigma_{21}^T \Sigma_{22}^{-T}$, that is, if

$$\begin{bmatrix} I \\ X \end{bmatrix} = \Sigma^{-1} \begin{bmatrix} \Sigma_{22}^{-T} \\ 0 \end{bmatrix} = \begin{bmatrix} \Sigma_{22}^{T} & -\Sigma_{12}^{T} \\ -\Sigma_{21}^{T} & \Sigma_{11}^{T} \end{bmatrix} \begin{bmatrix} \Sigma_{22}^{-T} \\ 0 \end{bmatrix}$$

then

$$\Sigma^{-1} \begin{bmatrix} A - sI & BB^{\mathrm{T}} \\ 0 & -A^{\mathrm{T}} - sI \end{bmatrix} \Sigma \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \Sigma_{22}^{\mathrm{T}} A \Sigma_{22}^{-\mathrm{T}}$$

Therefore the zeros of W_r are the eigenvalues of $\Sigma_{22}^T A \Sigma_{22}^{-T}$ i.e., of A. The formulae for W_r and its inverse W_r^{-1} may be simplified to

$$W_{\rm r} = \begin{bmatrix} A - sI & \Sigma_{12}^{\rm T}C^{\rm T} & B \\ \hline C\Sigma_{22}^{-{\rm T}} & I & 0 \\ B^{\rm T}\Sigma_{21}^{\rm T}\Sigma_{22}^{-{\rm T}} & 0 & I \end{bmatrix}$$

and then $Z_{\rm r} := W_{\rm r}^{-1}$ is as in Thm. 3.2.

Now G and $W := W_r \begin{bmatrix} I & 0 \\ -\Delta & I \end{bmatrix}$ have the same zeros and poles, and because $\begin{bmatrix} I & \Delta^{\sim} \\ 0 & I \end{bmatrix} G^{\sim} JG \begin{bmatrix} I & 0 \\ \Delta & I \end{bmatrix}$ = $W_r^{\sim} JW_r$ also the directions of these zeros and poles are the same. It therefore follows that all zeros and poles are canceled in $GW^{-1} = G \begin{bmatrix} I & 0 \\ \Delta & I \end{bmatrix} W_r^{-1}$. Indeed it may be shown (via some not very enlightening manipulations) that $M_h := G \begin{bmatrix} I & 0 \\ \Delta & I \end{bmatrix} W_r^{-1}$ is entire, in fact it is a truncation:

$$M = \begin{bmatrix} e^{-sh}I & 0\\ 0 & I \end{bmatrix} + \tau_h \left(\begin{bmatrix} A - sI & BB^{\mathrm{T}} & 0 & B\\ -C^{\mathrm{T}}C & -A^{\mathrm{T}} - sI & \Sigma_{22}^{-1}C^{\mathrm{T}} & -\Sigma_{22}^{-1}\Sigma_{21}B\\ \hline C & 0 & 0 & 0\\ 0 & B^{\mathrm{T}} & 0 & 0 \end{bmatrix} \right)$$

References

T. Chen and B. Francis. *Optimal Sampled-Data Control Systems*. Springer Verlag, London, 1995.

- R.F. Curtain and H. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Number 21 in Texts in applied mathematics. Springer-Verlag, 1995.
- K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their \mathcal{L}_{∞} -error bounds. Int. Journal of Control, 39(6):1115–1193, 1986.
- M. Green and D. J. N. Limebeer. *Linear Robust Control*. Prentice Hall, Englewood Cliffs, 1995.
- G. Gu, J. Chen, and O. Toker. Computation of $\mathcal{L}^2[0,h]$ induced norms. In Proc. of the 35th IEEE conference of Decision and Control, pages 4046–4051, 1996.
- G. Meinsma and H. Zwart. On \mathcal{H}_{∞} control for dead-time systems. *IEEE Trans. Aut. Control*, 45(2):272-285, 2000.
- L. Mirkin. On the extraction of dead-time controllers from delay-free parametrizations. In Proc. LTDS'2000, pages 157–162, 2000.
- Z. Nehari. On bounded bilinear forms. Annals of Mathematics, 15(1):153–162, 1957.
- J. R. Partington. An introduction to Hankel operators. Cambridge University Press, 1988.
- N. Young. An introduction to Hilbert space. Cambridge University Press, 1988.
- K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Englewood Cliffs, 1995. ISBN 0-13-456567-3.