A Nehari theorem for Continuous-time FIR systems

Gjerrit Meinsma
Fac. of Applied Mathematics
University of Twente
7500 AE, Enschede
The Netherlands
g.meinsma@math.utwente.nl

Leonid Mirkin
Fac. of Mechanical Engineering
Technion - IIT
Haifa 32000, Israel
mirkin@tx.technion.ac.il

Qing-Chang Zhong
Imperial College
London, UK
zhongqc@ic.ac.uk

Abstract

Explicit formulae are derived for Nehari extensions of continuous time FIR systems.

Figure 1: Nehari extension

1 Introduction

The Nehari problem is a problem in operator theory about optimal extension of functions or operators. The idea is depicted in Fig. 1. Given a function $q_{-}(t)$ for $t<h$ the problem is to extend $q(t)$ over $t>h$ in such a way that the convolution operator

$$
\begin{equation*}
u \mapsto q * u, \quad(q * u)(t)=\int_{-\infty}^{\infty} q(t-\tau) u(\tau) \mathrm{d} \tau \tag{1.1}
\end{equation*}
$$

has smallest possible $\mathcal{L}_{2}(-\infty, \infty)$-induced norm

$$
\begin{equation*}
\|q\|_{\text {ind }}=\sup _{u \neq 0} \frac{\|q * u\|_{\mathcal{L}_{2}(-\infty, \infty)}}{\|u\|_{\mathcal{L}_{2}(-\infty, \infty)}} . \tag{1.2}
\end{equation*}
$$

The standard lower bound for this induced norm is obtained by considering in the convolution (1.1) only $t<h$ and $\tau>0$. Indeed in that case $t-\tau<h$ so that the convolution mapping (1.1) is determined by the given q_{-}. Restricting $t<h$ and $\tau>0$ means that we only consider
the "past" of $(q * u)(t)$ and the "future" of $u(\tau)$. A lower bound for the induced norm (1.2) hence is the induced norm $\left\|\Gamma_{q}\right\|$ of the operator restricted to this past and future,

$$
\Gamma_{q}: \mathcal{L}_{2}(0, \infty) \rightarrow \mathcal{L}_{2}(-\infty, h), \quad \Gamma_{q}(u)=q * u
$$

This operator is known as the Hankel operator and the famous Nehari theorem states that the lower bound $\left\|\Gamma_{q}\right\|$ can be attained, i.e., an extension q_{+}exists such that $\left\|\Gamma_{q}\right\|=\|q\|_{\text {ind }}$, see (Nehari, 1957; Partington, 1988; Young, 1988).

For finite dimensional systems $q_{-}(t)=C \mathrm{e}^{A t} B$ there is a well developed theory about Nehari extensions and the results are constructive, see e.g. (Glover, 1986; Green and Limebeer, 1995; Zhou et al., 1995). For general infinite dimensional systems however it is hard to come up with computable formulae for the optimal Nehari extension $q_{+}(t)$ and the suboptimal extensions $q_{+}(t)$ (these are extensions $q_{+}(t)$ for which $\|q\|_{\text {ind }}<\gamma$ for some given bound $\gamma>0$, assuming any exist, i.e. assuming $\left.\gamma>\left\|\Gamma_{q}\right\|_{\text {ind }}\right)$.

In this note we derive explicit formulae for the suboptimal extensions $q_{+}(t)$ for the case that $q_{-}(t)$ is a matrix function of compact support of the form

$$
\begin{equation*}
q_{-}(t)=C \mathrm{e}^{-A t} B \mathbb{1}_{[0, h]}(t) \tag{1.3}
\end{equation*}
$$

with $A, B, C \in \mathbb{R}^{\cdot \times \cdot}$ of appropriate dimensions. Nehari extension problems of this type have turned up in recent results on \mathcal{H}_{∞} control problems for systems with delays, see Mirkin (2000). It is these results that motivated this research.

2 Preliminaries

This section introduces some notation and conventions that we use in this note.
For transfer matrices $P(s)$ we use $P^{\sim}(s)$ to denote its adjoint $P^{\sim}(s)=[P(-\bar{s})]^{*}$. The right conformal mapping $\mathcal{C}_{\mathrm{r}}(G, U)$ is defined as $\mathcal{C}_{\mathrm{r}}(G, U)=\left(G_{11} U+G_{12}\right)\left(G_{21} U+G_{22}\right)^{-1}$. From the context it will be clear what partitioning of $G=\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$ is meant.

A partitioned matrix with vertical and horizontal lines separating the entries, denotes the Schur complement of that matrix with respect to its upper-left block. So $\left[\left.\frac{P}{R} \right\rvert\, \frac{Q}{S}\right]=$ $S-R P^{-1} Q$. This notation has proved useful. In particular we have that $\left[\begin{array}{cc}A-s I & B \\ \hline & \frac{D}{D}\end{array}\right]=$ $C(s I-A)^{-1} B+D$.

Borrowing from (Mirkin, 2000) we define the truncation and completion operators τ_{h} and π_{h}. These are operators that act on causal systems. The truncation operator truncates the system's impulse response beyond a given positive time-delay h. For finite dimensional causal systems with transfer matrix $P(s)=C(s I-A)^{-1} B+D$ the truncation operator equals

$$
\tau_{h}(P)=\left[\begin{array}{c|c}
A-s I & B \\
\hline C & D
\end{array}\right]-\mathrm{e}^{-s h}\left[\begin{array}{c|c}
A-s I & \mathrm{e}^{A h} B \\
\hline C & 0
\end{array}\right] .
$$

The completion operator π_{h} "analytically completes" the impulse response of an h-delay system to a 0-delay system. The "analytic completion" for delayed systems of the form
$\mathrm{e}^{-s h} P(s):=\mathrm{e}^{-s h}\left(C(s I-A)^{-1} B+D\right)$ is defined formally for $h>0$ as

$$
\pi_{h}\left(\mathrm{e}^{-s h} P\right)=\left[\begin{array}{c|c}
A-s I & B \\
\hline C \mathrm{e}^{-A h} & 0
\end{array}\right]-\mathrm{e}^{-s h}\left[\begin{array}{c|c}
A-s I & B \\
\hline C & D
\end{array}\right] .
$$

For finite dimensional P, the sum of $\mathrm{e}^{-s h} P$ an its completion $\pi_{h}\left(\mathrm{e}^{-s h} P\right)$ is again finite dimensional with the same state dimension as that of P.

3 A Nehari theorem for FIR systems

From now on we assume that $q_{-}(t)$ is given by (1.3) for some given $h>0$ and matrices $A, B, C \in \mathbb{R}^{\cdot \times}$ of appropriate dimensions. We can see q_{-}as the truncation of the finite dimensional system $P(s)=C(s I-A)^{-1} B$. Because q_{-}has a finite impulse response (FIR) it follows that the Hankel norm $\left\|\Gamma_{q_{-}}\right\|$equals the induced norm over the finite interval $[0, h]$,

$$
\left\|\Gamma_{q_{-}}\right\|=\sup _{u \in \mathcal{L}_{2}(0, h)} \frac{\left\|q_{-} * u\right\|_{\mathcal{L}_{2}(0, h)}}{\|u\|_{\mathcal{L}_{2}(0, h)}}
$$

in which $\left(q_{-} * u\right)(t)=\int_{0}^{h} q_{-}(t-\tau) u(\tau) \mathrm{d} \tau$. This norm has been studied in detail in the sampled data and dead-time literature, see e.g. Green and Limebeer (1995); Chen and Francis (1995); Gu et al. (1996) and by now there are various ways to express this norm in a more explicit form. For our purposes the following such form is important.

Theorem 3.1. Let $q_{-}(t)=C \mathrm{e}^{A t} B \mathbb{1}_{[0, h]}(t)$. Then $\left\|\Gamma_{q_{-}}\right\|_{\text {ind }}<1$ if and only if $\Sigma_{22}(t)$ is nonsingular for every $t \in[0, h]$. Here $\Sigma_{22}(t)$ is the lower-right block of the symplectic matrix $\Sigma(t)$ defined as

$$
\Sigma(t):=\left[\begin{array}{ll}
\Sigma_{11}(t) & \Sigma_{12}(t) \tag{3.4}\\
\Sigma_{21}(t) & \Sigma_{22}(t)
\end{array}\right]:=\exp \left(\left[\begin{array}{cc}
A & B B^{\mathrm{T}} \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}
\end{array}\right] t\right)
$$

The following theorem characterizes all suboptimal Nehari extensions. This theorem is formulated in frequency domain, that is we seek $Q_{+} \in \mathcal{H}_{\infty}$ such that $\left\|Q_{-}+\mathrm{e}^{-s h} Q_{+}\right\|_{\mathcal{H}_{\infty}}<$ 1. Now Q_{-}is the truncation of the causal $P:=C(s I-A)^{-1} B+D$. Therefore $\| Q_{-}+$ $\mathrm{e}^{-s h} Q_{+} \|_{\mathcal{H}_{\infty}}<1$ has a solution $Q_{+} \in \mathcal{H}_{\infty}$ iff $\left\|P+\mathrm{e}^{-s h} K_{+}\right\|_{\mathcal{H}_{\infty}}<1$ has a causal solution K_{+}. We use the latter formulation.

Theorem 3.2 (All suboptimal extensions). Let $P(s)=C(s I-A)^{-1} B$ and suppose $h>0$. There exist causal K_{+}such that $\left\|P+\mathrm{e}^{-s h} K_{+}\right\|_{\mathcal{H}_{\infty}}<1$ if and only if $\left\|\Gamma_{\tau_{h}(P)}\right\|<1$. In this case all suboptimal extensions K_{+}are given by

$$
K_{+}=\mathcal{C}_{r}\left(\left[\begin{array}{ll}
I & 0 \tag{3.5}\\
\Delta & I
\end{array}\right] Z_{r}, U\right)
$$

where U satisfies $\|U\|_{\mathcal{H}_{\infty}}<1$ but otherwise arbitrary. Here Δ is the FIR system defined as

$$
\Delta=\pi_{h}\left(\mathrm{e}^{-s h}\left(P^{\sim} P-I\right)^{-1} P^{\sim}\right)
$$

and Z_{r} is the finite dimensional system

$$
Z_{r}=\left[\begin{array}{c|cc}
A-s I & \Sigma_{22}^{-\mathrm{T}}(h) \Sigma_{12}^{\mathrm{T}}(h) C^{\mathrm{T}} & \Sigma_{22}^{-\mathrm{T}}(h) B \\
\hline-C & I & 0 \\
-B^{\mathrm{T}} \Sigma_{21}^{\mathrm{T}}(h) & 0 & I
\end{array}\right]
$$

A proof is given in Section 4. It is interesting to see that Z_{r} is well defined precisely if $\Sigma_{22}(h)$ is invertible. The symplectic matrix Σ also shows up in the formulae for the FIR system Δ. Indeed, from the proof it follows that

$$
\Delta=\pi_{h}\left(\mathrm{e}^{-s h}\left[\begin{array}{cc|c}
A-s I & B B^{\mathrm{T}} & 0 \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & C^{\mathrm{T}} \\
\hline 0 & B^{\mathrm{T}} & 0
\end{array}\right]\right)=\left[\begin{array}{cc|c}
A-s I & B B^{\mathrm{T}} & 0 \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & C^{\mathrm{T}} \\
\hline-B^{\mathrm{T}} \Sigma_{21}^{\mathrm{T}}(h) & B^{\mathrm{T}}\left(\Sigma_{11}^{\mathrm{T}}(h)-\mathrm{e}^{-s h} I\right) & 0
\end{array}\right] .
$$

Example 3.1. Suppose the given part of q is the indicator function with support $[0, h]$. That is, $q_{-}(t)=\mathbb{1}_{[0, h]}(t)$. To find the Nehari extension we use that $q_{-}(t)=C \mathrm{e}^{A t} B \mathbb{1}_{[0, h]}(t)$, with $(A, B, C)=(0,1,1)$. With this data the symplectic matrix defined in (3.4) becomes

$$
\Sigma(t)=\exp \left(\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] t\right)=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

Now $\Sigma_{22}(h)=\cos (h)$ and it follows from Thm. 3.1 that $\left\|\Gamma_{q_{-}}\right\|<1$ iff $h<\pi / 2$. In that case we may continue with Thm. 3.2 and we find for Δ and Z_{r},

$$
\Delta(s)=\frac{\sin (h)+\left(\cos (h)-\mathrm{e}^{-s h}\right) s}{s^{2}+1}
$$

and

$$
Z_{\mathrm{r}}=\left[\begin{array}{c|cc}
-s & \tan (h) & \frac{1}{\cos (h)} \\
\hline-1 & 1 & 0 \\
\sin (h) & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1-\frac{\tan (h)}{s} & -\frac{1}{\cos (h) s} \\
\frac{\sin ^{2}(h)}{\cos (h) s} & 1+\frac{\tan (h)}{s}
\end{array}\right] .
$$

(Note that the impulse response of Δ is $\cos (t-h) \mathbb{1}_{[0, h]}(t)$.) The "central extension" $K_{+}=$ $\mathcal{C}_{\mathrm{r}}\left(\left[\begin{array}{ll}1 & 0 \\ \Delta & 1\end{array}\right] Z_{\mathrm{r}}, 0\right)$ then is

$$
\begin{equation*}
K_{+}(s)=\frac{-\frac{1}{\cos (h)} \frac{1}{s}}{-\frac{1}{\cos (h)} \frac{1}{s} \Delta(s)+1+\tan (h) \frac{1}{s}}=-\frac{s^{2}+1}{\cos (h) s^{3}+\sin (h) s^{2}+s \mathrm{e}^{-s h}} . \tag{3.6}
\end{equation*}
$$

Although Theorem 3.2 is about sub-optimal extensions only, it is readily seen that (3.6) remains valid for the optimal case $h=\pi / 2$. In that case the above K_{+}is the optimal Nehari extension, and it proves to be of an interesting form:

$$
\begin{align*}
Q(s) & :=P(s)+\mathrm{e}^{-s \frac{\pi}{2}} K_{+}(s)=\frac{1}{s}-\mathrm{e}^{-s \frac{\pi}{2}} \frac{s^{2}+1}{s^{2}+s \mathrm{e}^{-s \frac{\pi}{2}}} \\
& =\frac{1-s \mathrm{e}^{-s \frac{\pi}{2}}}{s+\mathrm{e}^{-s \frac{\pi}{2}}}=\frac{1}{s}+\sum_{k=1}^{\infty}(-1)^{k} \frac{s^{2}+1}{s^{k+1}} \mathrm{e}^{-k s \frac{\pi}{2}} \tag{3.7}
\end{align*}
$$

Equation (3.7) shows that Q is inner (as may be expected) and it also shows that the corresponding impulse response $q(t)$ is the causal solution of the delay-differential equation $\dot{q}(t)+q(t-\pi / 2)=\delta(t)-\delta^{(1)}(t-\pi / 2)$. Alternatively we may determine the impulse response as the inverse Laplace transform of the last expression of Eqn. (3.7),
$q(t)=\mathbb{1}_{(0, \infty)}(t)-\delta\left(t-\frac{\pi}{2}\right)-\left(t-\frac{\pi}{2}\right) \mathbb{1}_{\left(\frac{\pi}{2}, \infty\right)}(t)+\sum_{k=2}^{\infty}(-1)^{k}\left[\frac{\left(t-k \frac{\pi}{2}\right)^{k-2}}{(k-2)!}+\frac{\left(t-k \frac{\pi}{2}\right)^{k}}{k!}\right] \mathbb{1}_{\left(k \frac{\pi}{2}, \infty\right)}(t)$.
The result is depicted in Fig. 2. Note that the optimal Nehari extension is smooth at all t except at multiples of $\frac{\pi}{2}$. At $t=\frac{\pi}{2}$ the function has a delta-function component, at $t=\pi$ the function is discontinuous, at $t=3 \frac{\pi}{2}$ it is continuous but not differentiable, etcetera.

Figure 2: Optimal Nehari extension $1 / s+\mathrm{e}^{-s \frac{\pi}{2}} K_{+}$

4 Appendix: proof

This section describes a proof of Theorem 3.2. (The technical state space formulae are collected Subsection 4.1.) The aim is to find all causal K_{+}for which $Q:=P+\mathrm{e}^{-s h} K_{+}$is stable and contractive. First realize that Q equals

$$
Q=\mathcal{C}_{\mathrm{r}}\left(G, K_{+}\right) \quad \text { for } \quad G:=\left[\begin{array}{cc}
\mathrm{e}^{-s h} I & P \tag{4.8}\\
0 & I
\end{array}\right]
$$

In Subsection 4.1 we construct a bicausal solution W of the equation $G^{\sim} J G=W^{\sim} J W$ with the properties that $\lim _{s \rightarrow \infty} W(s)=I$ and such that $M_{h}:=G W^{-1}$ is entire. (Here J is defined as $J=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$ with the partitioning compatible with that of G.) By construction we then have that $\|Q\|_{\mathcal{L}_{\infty}}<1$ iff $\|U\|_{\mathcal{L}_{\infty}}<1$ for U defined as

$$
\begin{equation*}
U:=\mathcal{C}_{\mathrm{r}}\left(W, K_{+}\right) . \tag{4.9}
\end{equation*}
$$

Now this U is causal iff K_{+}is causal by the fact that $\lim _{s \rightarrow \infty} W(s)=I$. Yet the set of causal operators in \mathcal{L}_{∞} is in fact \mathcal{H}_{∞}, (Curtain and Zwart, 1995, A6.26.c, A6.27). So if K_{+}solves Thm. 3.2 then necessarily $\|U\|_{\mathcal{H}_{\infty}}<1$. This condition on U is also sufficient as we shall now see. The thing to note is that

$$
M_{h}:=G W^{-1}
$$

is not only stable and J-unitary (i.e., $M_{h}^{\sim} J M_{h}=J$) but in fact J-lossless (meaning that in addition $M_{h, 22}$ is bistable). Indeed, from $M_{h}^{\sim} J M_{h}=J$ it follows that $M_{h, 22} M_{h, 22} \geq I$, and as the M_{t} that we construct (see Subsection 4.1) is stable and is continuous as a function of $t \in[0, h]$, and $\left.M_{t, 22}\right|_{t=0}=I$ it follows that $M_{h, 22}$ is bistable. It is well known that for J-lossless M_{h} we have that $Q=\mathcal{C}_{\mathrm{r}}\left(M_{h}, U\right)$ is stable for any $\|U\|_{\mathcal{H}_{\infty}}<1$, see, e.g., (Meinsma and Zwart, 2000, Thm. 6.2). Hence any $\|U\|_{\mathcal{H}_{\infty}}<1$ yields a solution. Now (4.9) is invertible,

$$
K_{+}=\mathcal{C}_{\mathrm{r}}\left(W^{-1}, U\right)
$$

and the W constructed below is of the form $W=W_{\mathrm{r}}\left[\begin{array}{cc}I & 0 \\ -\Delta & I\end{array}\right]$ so that

$$
K_{+}=\mathcal{C}_{\mathrm{r}}\left(\left[\begin{array}{ll}
I & 0 \\
\Delta & I
\end{array}\right] Z_{\mathrm{r}}, U\right) \quad \text { where } \quad Z_{\mathrm{r}}:=W_{\mathrm{r}}^{-1} .
$$

4.1 State space formulae

The rest of the subsection documents the more gory state space details.
To find a suitable W we first extract the infinite dimensional part from

$$
G^{\sim} J G=\left[\begin{array}{cc}
I & \mathrm{e}^{s h} P \\
\mathrm{e}^{-s h} P^{\sim} & P^{\sim} P-I
\end{array}\right]
$$

To this end define the FIR system $\Delta:=\pi_{h}\left(\mathrm{e}^{-s h}\left(P^{\sim} P-I\right)^{-1} P^{\sim}\right)$. Then Θ defined as

$$
\Theta:=\left[\begin{array}{cc}
I & \Delta^{\sim} \tag{4.10}\\
0 & I
\end{array}\right] G^{\sim} J G\left[\begin{array}{cc}
I & 0 \\
\Delta & I
\end{array}\right]
$$

is rational

$$
\Theta=\left[\begin{array}{cc}
I-P\left(P^{\sim} P-I\right) P^{\sim}+R^{\sim}\left(P^{\sim} P-I\right) R & R\left(P^{\sim} P-I\right) \\
\left(P^{\sim} P-I\right) R & P^{\sim} P-I
\end{array}\right] .
$$

Given a realization of $P(s)=C(s I-A)^{-1} B+D$ and with G defined in (4.8) we get the realization

$$
G^{\sim} J G=\left[\begin{array}{cc|cc}
A-s I & 0 & 0 & \mathrm{e}^{s h} B \tag{4.11}\\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & -C^{\mathrm{T}} & 0 \\
\hline C & 0 & I & 0 \\
0 & \mathrm{e}^{-s h} B^{\mathrm{T}} & 0 & -I
\end{array}\right]
$$

The construction of a realization of Θ requires several steps. A first step is to associate with $G^{\sim} J G$ the equation $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=G^{\sim} J G\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$. This equation may be rearranged as

$$
\left[\begin{array}{c}
y_{1} \\
-u_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
I-P\left(P^{\sim} P-I\right)^{-1} P^{\sim} & \mathrm{e}^{s h} P\left(P^{\sim} P-I\right)^{-1} \\
\mathrm{e}^{-s h}\left(P^{\sim} P-I\right)^{-1} P^{\sim} & -\left(P^{\sim} P-I\right)^{-1}
\end{array}\right]}_{\Omega}\left[\begin{array}{l}
u_{1} \\
y_{2}
\end{array}\right]
$$

This defines Ω. Rearranging the realization of $G^{\sim} J G$ similarly gives a realization of Ω :

$$
\Omega=\left[\begin{array}{cc|cc}
A-s I & B B^{\mathrm{T}} & 0 & -\mathrm{e}^{s h} B \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & -C^{\mathrm{T}} & 0 \\
\hline C & 0 & I & 0 \\
0 & -\mathrm{e}^{-s h} B^{\mathrm{T}} & 0 & I
\end{array}\right] .
$$

Looking at the lower left block of Ω we see that

$$
\Delta:=\pi_{h}\left(\mathrm{e}^{-s h}\left(P^{\sim} P-I\right)^{-1} P^{\sim}\right)=\pi_{h} \Omega_{21}=\pi_{h}\left(\mathrm{e}^{-s h}\left[\begin{array}{cc|c}
A-s I & B B^{\mathrm{T}} & 0 \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & -C^{\mathrm{T}} \\
\hline 0 & -B^{\mathrm{T}} & 0
\end{array}\right]\right)
$$

Consequently

$$
R:=\Delta+\mathrm{e}^{-s h}\left(P^{\sim} P-I\right)^{-1} P^{\sim}=\left[\begin{array}{cc|c}
A-s I & B B^{\mathrm{T}} & \Sigma^{-1}\left[\begin{array}{c}
0 \\
-C^{\mathrm{T}}
\end{array}\right] \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & \Sigma^{2} \\
\hline 0 & -B^{\mathrm{T}} & 0
\end{array}\right]
$$

Based on this we now combine the various blocks and obtain the realization

$$
\left[\begin{array}{cc}
I-P\left(P^{\sim} P-I\right) P^{\sim} & R^{\sim} \\
R & -\left(P^{\sim} P-I\right)^{-1}
\end{array}\right]=\left[\begin{array}{cc|cc}
A-s I & B B^{\mathrm{T}} & \Sigma^{-1}\left[\begin{array}{c}
0 \\
-C^{\mathrm{T}}
\end{array}\right] & -B \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & 0 \\
\hline\left[\begin{array}{ll}
C & 0] \Sigma \\
& I \\
0 & -B^{\mathrm{T}}
\end{array}\right. & 0 & I
\end{array}\right]
$$

As a final step we associate with this the equation

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
I-P\left(P^{\sim} P-I\right) P^{\sim} & R^{\sim} \\
R & -\left(P^{\sim} P-I\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

and we rewrite it as

$$
\left[\begin{array}{l}
y_{1} \\
u_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
I-P\left(P^{\sim} P-I\right) P^{\sim}+R^{\sim}\left(P^{\sim} P-I\right) R & R\left(P^{\sim} P-I\right) \\
\left(P^{\sim} P-I\right) R & P^{\sim} P-I
\end{array}\right]}_{\Theta}\left[\begin{array}{c}
u_{1} \\
-y_{2}
\end{array}\right] .
$$

Here we recognize Θ. In terms of state space manipulations we similarly obtain

$$
\Theta=\left[\begin{array}{cc|cc}
A-s I & 0 & \Sigma^{-1}\left[\begin{array}{c}
0 \\
-C^{\mathrm{T}}
\end{array}\right] & \begin{array}{c}
B \\
0 \\
-C^{\mathrm{T}} C
\end{array}-A^{\mathrm{T}}-s I \tag{4.12}
\end{array}\right] .
$$

Then

$$
\Theta^{-1}=\left[\right]
$$

With Θ and Θ^{-1} in this form there is a standard procedure to find a factorization $W_{\mathrm{r}}^{\sim} J W_{\mathrm{r}}=$ Θ : Let X be any solution of the Riccati equation

$$
\left[\begin{array}{ll}
-X & I
\end{array}\right] \Sigma^{-1}\left[\begin{array}{cc}
A-s I & B B^{\mathrm{T}} \\
0 & -A^{\mathrm{T}}-s I
\end{array}\right] \Sigma\left[\begin{array}{c}
I \\
X
\end{array}\right]=0 .
$$

Then

$$
\left.\left.W_{\mathrm{r}}=\left[\right] \quad B\right] .\right]
$$

does the job. For any X, the poles of W_{r} are the eigenvalues of A. The freedom in choice of X may be used to choose the zeros W_{r}. If we choose $X=-\Sigma_{21}^{\mathrm{T}} \Sigma_{22}^{-\mathrm{T}}$, that is, if

$$
\left[\begin{array}{c}
I \\
X
\end{array}\right]=\Sigma^{-1}\left[\begin{array}{c}
\Sigma_{22}^{-\mathrm{T}} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{22}^{\mathrm{T}} & -\Sigma_{12}^{\mathrm{T}} \\
-\Sigma_{21}^{\mathrm{T}} & \Sigma_{11}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
\Sigma_{22}^{-\mathrm{T}} \\
0
\end{array}\right]
$$

then

$$
\Sigma^{-1}\left[\begin{array}{cc}
A-s I & B B^{\mathrm{T}} \\
0 & -A^{\mathrm{T}}-s I
\end{array}\right] \Sigma\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right] \Sigma_{22}^{\mathrm{T}} A \Sigma_{22}^{-\mathrm{T}}
$$

Therefore the zeros of W_{r} are the eigenvalues of $\Sigma_{22}^{\mathrm{T}} A \Sigma_{22}^{-\mathrm{T}}$ i.e., of A. The formulae for W_{r} and its inverse W_{r}^{-1} may be simplified to

$$
W_{\mathrm{r}}=\left[\begin{array}{c|cc}
A-s I & \Sigma_{12}^{\mathrm{T}} C^{\mathrm{T}} & B \\
\hline C \Sigma_{22}^{-\mathrm{T}} & I & 0 \\
B^{\mathrm{T}} \Sigma_{21}^{\mathrm{T}} \Sigma_{22}^{-\mathrm{T}} & 0 & I
\end{array}\right]
$$

and then $Z_{\mathrm{r}}:=W_{\mathrm{r}}^{-1}$ is as in Thm. 3.2.
Now G and $W:=W_{\mathrm{r}}\left[\begin{array}{cc}I & 0 \\ -\Delta & I\end{array}\right]$ have the same zeros and poles, and because $\left[\begin{array}{c}I \\ 0 \\ 0 \\ I\end{array}\right] G^{\sim} J G\left[\begin{array}{l}I \\ 0 \\ \Delta\end{array}\right]$ $=W_{\mathrm{r}}^{\sim} J W_{\mathrm{r}}$ also the directions of these zeros and poles are the same. It therefore follows that all zeros and poles are canceled in $G W^{-1}=G\left[\begin{array}{cc}I & 0 \\ \Delta & I\end{array}\right] W_{\mathrm{r}}^{-1}$. Indeed it may be shown (via some not very enlightening manipulations) that $M_{h}:=G\left[\begin{array}{ll}I & 0 \\ \Delta & I\end{array}\right] W_{\mathrm{r}}^{-1}$ is entire, in fact it is a truncation:

$$
M=\left[\begin{array}{cc}
\mathrm{e}^{-s h} I & 0 \\
0 & I
\end{array}\right]+\tau_{h}\left(\left[\begin{array}{cc|cc}
A-s I & B B^{\mathrm{T}} & 0 & B \\
-C^{\mathrm{T}} C & -A^{\mathrm{T}}-s I & \Sigma_{22}^{-1} C^{\mathrm{T}} & -\Sigma_{22}^{-1} \Sigma_{21} B \\
\hline C & 0 & 0 & 0 \\
0 & B^{\mathrm{T}} & 0 & 0
\end{array}\right]\right)
$$

References

T. Chen and B. Francis. Optimal Sampled-Data Control Systems. Springer Verlag, London, 1995.
R.F. Curtain and H. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Number 21 in Texts in applied mathematics. Springer-Verlag, 1995.
K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their \mathcal{L}_{∞}-error bounds. Int. Journal of Control, 39(6):1115-1193, 1986.
M. Green and D. J. N. Limebeer. Linear Robust Control. Prentice Hall, Englewood Cliffs, 1995.
G. Gu, J. Chen, and O. Toker. Computation of $\mathcal{L}^{2}[0, h]$ induced norms. In Proc. of the 35th IEEE conference of Decision and Control, pages 4046-4051, 1996.
G. Meinsma and H. Zwart. On \mathcal{H}_{∞} control for dead-time systems. IEEE Trans. Aut. Control, 45(2):272-285, 2000.
L. Mirkin. On the extraction of dead-time controllers from delay-free parametrizations. In Proc. LTDS'2000, pages 157-162, 2000.
Z. Nehari. On bounded bilinear forms. Annals of Mathematics, 15(1):153-162, 1957.
J. R. Partington. An introduction to Hankel operators. Cambridge University Press, 1988.
N. Young. An introduction to Hilbert space. Cambridge University Press, 1988.
K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Englewood Cliffs, 1995. ISBN 0-13-456567-3.

