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1 Introduction

In this paper we study the stabilizability problem for sys

tems whose open loop is governed by a unitary group

of strongly continuous operators . Unitary groups ap

pear naturally when studying conservative systems , for

instance undamped wave and beam equations . We as

sume here that the input operator is bounded and one

dimensional. It is know from the work of Jacobson &

Nett [6] and Nefedov & Scholokhovich [7] that such a

system is not stabilizable by a bounded linear feedback

operator . Furthermore , from Curtain [ 1 ] and Rebarber

[8] it is known that such a system is not stabilizable by

an unbounded but "admissible" feedback . However , this

does not imply that it will never be stabilizable by a feed- 4]

back which is unbounded and/or nonlinear . In this paper

we take a open-loop approach to stabilization : roughly

speaking, we ask whether for each initial condition there

exists a control so that the resulting state trajectory de

cays exponentially. If a system cannot be open loop sta

bilized , it cannot be closed loop stabilized , but there are

systems which are not closed loop stabilizable which are

open loop stabilizable .

In section 2 we give a detailed description of the prob

lem along with some preliminary results . In particular ,

we relate the problem of open loop stabilization to an

interpolation problem. In section 3 we give necessary

conditions for the system to be open loop stabilizable .

These conditions are given in terms of the eigenvalues of

the infinitesimal generator and the Fourier coefficients of

the input operator . In section 4 we give sufficient con

ditions for a system governed by a unitary group with a

with bounded one-dimensional input operator to be open

loop stabilizable . In the last section we illustrate these

results with a simple example . In this section we also

show that some results of Zwart in [ 11] are incorrect .

H.J. Zwart

University of Twente ,

Department of Applied Mathematics ,

P.O. Box 217 , 7500 AE Enschede ,

The Netherlands

e-mail: twhans@math.utwente.nl

In this paper we consider the following abstract differen

tial equation on a separable Hilbert space Z:

ż(t) = Az(t) + bu(t) , t≥ 0, (1)

z(0) = zo. (2)

We assume that zo Є Z, bЄ Z, and that A is the in

finitesimal generator of an strongly continuous unitary

group T(t) , so A is skew-adjoint . We denote this system.

by Σ(A, b) .

bounded or admissible feedback law, we are led to the

Since the system ( 1) , (2) is not stabilizable by a

natural question of whether it is possible to stabilize the

system , in the sense of Definition 2.1 below, by more gen

eral controls u(t) . From the work of Datko [3 , Theorem

it follows that if we restrict ourselves to controls in

have to use a larger class of controls . To insure generality,

L2(0, ∞ ) , then this will not be possible . Therefore , we

we choose the class of distributions . We first introduce

some notation .

• D' denotes the class of distributions , see Schwartz

[9] .

•

C+ = { s EC | Re(s) > a } .α

H2(Ct ; Z) will denote the Hilbert space of all holo

morphic functions from C to Z such that

sup /||ƒ(r + n ) | ² dn < ∞0 .
r>a 81

H2 (C ) denotes the Hardy space H2 (C† , C) .

• H₂ = H2(C† ) .H2

Since we are dealing with distributions , we have to de

fine the solution of the abstract equation ( 1) . We say
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that z (t) is the solution of ( 1 ) , ( 2 ) with input u if for Theorem 3.1 Let r < a. The system (A, b) is open

every wЄ Z the following holds : loop stabilizable , if and only iffor every zo there exists

~ € H₂(Ct) and & € H2(C+ ; Z) such thatα )

(w , z(t)) = (w , T(t) zo ) + ( w , T( · ) b ) ⋆ u(·) ,

1. the ( , w)-representation holds

where ( , ) is the inner product in Z , * denotes the con

volution product , and equality is in the sense of distri

butions . This formula is of course a generalization of the

familiar variation of constants formula .

Definition 2.1 The system (A, b) is open-loop stabi

lizable if there exists a < 0 such that for every zo Z

we can find u € D' with support in [0 , ∞ ) such that the

solution of (1 ) , ( 2) satisfies

-

In this definition we allow arbitrary distributions .

However, in the next theorem we see that there is no

loss of generality if we restrict the controls to derivatives

of L2(0, ∞ )-functions .

e−2at|| z (t) ||² dt < ∞.

Theorem 2.2 (Zwart [10]) The system (A , b ) is open

loop stabilizable if and only if then for every zo Є Z there

exists a § € H2(C† ; Z) and a scalar valued function w

such that

(3)zo = (sI – A)§(s) – bw(s) ,
-

sect

and w/(r . ) is in H2 (Ct) for every r < a.

In this theorem open loop stabilizability is rewritten in

the frequency domain, where w is the Laplace transform

of u . The condition that w/ (r . ) be in H2 (C†) is equiv

alent to u being the derivative of a function in L2(0, ∞)

when multiplied by e-α..

Theorem 2.3 If the system (A, b) is open loop stabiliz

able, then the spectrum of A is pure point spectrum with

multiplicity one. Furthermore, the eigenfunctions { n }

form an orthonormal basis for Z.

Proof That the spectrum of A is pure point spectrum

follows from Theorem 3.5 in Zwart [ 10] . Now A is skew

adjoint , this implies that the eigenfunctions form a or

thonormal basis . Since open-loop stabilizability implies

that the (unstable) eigenvalues are controllable , and since

the input space is one-dimensional and A is skew-adjoint ,

we have that the multiplicity is one.

3

This theorem shows that if a conservative system is

open loop stabilizable , then the resolvent of A must be

compact.

Necessary conditions for open

loop stabilizability

Let { n } be the eigenvalues of A and { n } be the associ

ated eigenvectors of A. The following theorem shows the

relationship between the problem of open loop stabiliz

ability and an interpolation problem.

(sI – A)§(s) – (r− s)bŵ (s) , s
-

2. there exist constant M1 , M2 > 0 such that

||E ||H₂(C+ ;z) ≤ M1 || zo || ,

||~|| H₂ (Ct ) ≤ M2||zo||; and

3. the following interpolation holds

(zo, on)

(r — λn ) (b, On) '
-

20 =

(7)

Proof 1. This follows directly from Theorem 2.2 by

defining = w/(r — ·) .
-

w(λn) =

and

2. This follows easily from the Baire Category Theorem .

3. Taking the inner product of (4) with on and substi

tuting s = An gives

(20 , On) = − (r− λn) (b , On)ŵ(λn ) .

Since this holds for every zo we conclude that (b , on) ‡ 0 ,

and hence (7) holds .

inf An Am = 8 ;

n‡m

2. the following holds for bn : = ( b , on) :

inf | λnbn | > 0 ,
n

With this last theorem we can prove one of the main

results of this paper.

Theorem 3.2 IfΣ(A , b) is open loop stabilizable, then

1. there exists a 8 > 0 such that

-

s € C+ ; (4)

bn

sup
-

n‡m (Am – An)bm

for all n.

Δ
Ι

(5)

(6)

< ∞.

M₁'

(10)

Proof 1. Taking zo = m and s =Om and sλn , n m in (4) and‡

using (7) gives :

Om = (\nI – A)§(\n) .

-Hence 1 = (Pm , 4m) = (\n — Am) (§ (^n) , $m) , and thus

An - Aml
=

| (§ (^n) , Om) | —¹

> √2a || (§ (·) , $m) || (C )

-1

since & Є H2(C+; Z)

√2α

(8)

by Theorem 3.1.b.

(9)
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2. Taking zo = &m and s =Om and s = Am in (4) and using (7) gives Proof In order to show that Σ(A, b ) is open loop stabi

lizable , we need to show that the interpolation problem

(7) , (6) is solvable , and that (5) holds for & given by (4) .

For a given zo € Z , let zn = ( zo , Pn).

Let a < 0 . It follows from the interpolation results

in Garnett [4] that if m≤ Anbn , then the interpolation

problem

Om = (λmI - A)§ (λm) — bФт

Hence for nm, there holds

1

(b, pm)

0 = ($m , On) = (Am — An ) (§ (Am) , On)
- -

4

Using an argument similar to the proof of part a. we can

prove (10) . (9) follows from (10) by taking n fixed .

(b , on )

(b, &m)

Hence , if the system is open loop stabilizable , then the

poles have to be separated , and the Fourier coefficients

of b go to zero at least as fast as ¹ .

In this section we have seen that the property of open

loop stabilizability imposes strong conditions on our sys

tem . In the next section we give sufficient conditions for

the open loop stabilizability of a class of systems.

inf Im( nm) | = 8 > 0 .

n‡m

Sufficient conditions for open

loop stabilizability

Before we can prove Theorem 4.2 we need the following

lemma.

■

H₂(C+)
is solvable by an ✩ Є H2(Ct ) with ||~ || 2

M2Σ | zx | ² = M2 || zo || 2 for some M2 independent of zo ·

Now we shall use the condition that nbn ≤ M to

show that (5) is true with this . Note that έ ( s ) in (4)

can be written as

Lemma 4.1 Let a ЄR and { k } satisfy, for some real

Y1 and 72,

a < 71 < Re(nk) < 72 ,

Then there exists M3 > 0 such that for all ~ € H2(C ),

Σ |~(1x) |² ≤ M3||~||H₂(C±)
(11)

k

Proof We shall use the Carleson measure theorem (see

Ho and Russell [5] ) . Define the following measure on the

Borel subsets of C+ :

μ(nk) = 1,

μ({s | Re(s) > a } ) \ { nk }) = 0 .

Wenowfollow the proof of Corollary 2.5 in Ho and Russel

[5 ] to see that μ is a Carleson measure and that ( 11) is

therefore true.

Now we can give some sufficient conditions for a uni

tary system to be open loop stabilizable . We shall assume

that (A, b) is open loop stabilizable , so the conclusions

of Theorem 2.3 hold , and { n } satisfies (8) .

Theorem 4.2 Let Σ(A , b ) be open loop stabilizable, and

let the bn satisfy m≤ nbn | ≤ M for some positive m

and M. Then the system (A, b) is open loop stabilizable.

w(λn) =
=

¿(s) = (sI — A) ¯¹ [zo + ( r — A)bŵ ( s)] – bw(s) . ( 12)
- -

By construction of @ we see that

||bŵ(s ) || H₂(C÷) ≤ || b||M2||20||

Now note that

-Zn

(r – λn) bn
-

(sI - A) ¹ [zo + (r – A)bw(s)]
-

=

I2 :=

Σ

k

Since A is on the imaginary axis , we can write it as

jw with wл Є R. Fix ɛ € (0 , −a) such that ɛ < 8 , where

8 is given in the statement of Lemma 4.1 . Define the

following:

wk-ε

~~[]+])

:=

Σ

)1

k
wxtε

zk
zx + (r − λx)bxŵ(s) px.

-

s- Xx

I1

wk- ε ∞

Σ‹Ï + Ï
k

wktε

=

Zk

B + 1(y - wk)

wxtε

-

zk + (r − jwx )bxŵ(ß +14) | ² dy

13 : = Σ / 1 =B + 1(y - wk )ΣΤ
k
wk-ε

-

)1

(r − jwk)bkŵ (B + 1y) |² dy,

B + J(y - wk )

for ẞ > a If we can show that

I1 + I2 + I3 < C²|| zo ||² (14)

for some C > 0 independent of B > a, then it follows

from the orthonormal basis property of { n } and Fubini's

Theorem that

12 dy ,

-
|| ( s I — A)− ¹ [zo + (r− A) bw (s ) ] || H₂(Ct ) ≤ C|| zo || - ( 15)

To analyze I₁ , note that

Σ√ +√°°)1

V
I

(13)

Zkzk_12 dy

B + JY

≤ C₁Σ| zx |² = C₁ || zo || ² ,Σlzx12

k

(16)
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where

SO

G₁ =[+ Pdv

dy.

To analyze I2 , note that since Anbn | ≤M ,

|(r - jwk)bx | ² ≤ [2r²|| b || ² + 2M²] : = M4,

I2 M4≤

k

V
I

E

MA([00+√00)
ΤΣ

[
81

k

< M4(

E ∞

MAC[+1W&P
12

Σlw(B + j(y + wx)) |² dy.

k

Using Lemma 4.1 we see that for every y Є R,

Σlw(B + 1(y + wx) ) | ² dy ≤ M3||~ ||H₂(Ct)

ه

ا

zx + (r− jwx)bxŵ(ß + j¥)

B + J(y - wk)

so we can conclude that

12 +
<≤ M₁M3||~||H₂(Ct )

√ ) 1]
∞

< M₁M3M2C1 || zo || 2 .

To analyze Iз, note that since satisfies the interpo

lation problem (7) ,

= (r− jwx)bk

and let

13 ≤ ΜΑΣ

V
I

Therefore, by the hypothesis on { bx }

•whtε

ŵ(B + 3(y + wk)) |² dy

B + JY

−ŵ(jwk) + ŵ(B + 1Y)

B + J(y - wk)

≤
2EMAΣ

k

Case 1: B² + ε² < a² .

In this case let

80 € (√B² +ε², -α),

-

ŵ(jwx ) — ŵ(B + j¥k ) | 2

B + J(Yk — wk)
-

(18)

for some yk Є [wx - ε , wx + ε] . We now need to consider

two cases .

}}² dy

-

w(jwx) = w(B + 34) |² dy
12

B + 1(y - wk)

r = { d。e¹º | 0 € [0 , 2π)} ,

Ik = {jwx + Soe¹º | 0 € [0,2π) } .Γκ

(17)

VSince B + (yk wk ) | < √ B² + ε2 < So , the term under

the summation sign in (18) becomes

1

(B+ J(Yk − wk))
-

1

127)/ (17)1,17- jwk

2π1

V
I

=

1
1

-

1

n - B - Jyk

w(n)

127 √r₂ (171 - Jwk) (17 — 8 — 3312 )
-2π − JYk)

w(n + jwx)

2π r n(n + jwk − B − JYk)
-

2πδο(δο

1

бо

=
Now we note that for n € г, | nl So and (using (19))

In + jwk - B - JYk | > So - √ẞ² + ε2 . Therefore , (20) is
-

1

--

*

-

علا
تا

B2 + ε2

Case 2: B² + ε² > a².

In this case

B² + ε²)

-] dnl²

Iз ≤ M5(B)Σw(8。e3°* + jwx) |² .

k

dn²

-) ² √√ lw (n + 3wx ) | ² | dn |

for some 0 E [0,2 ] . Therefore , from (18) we see that

there exists M5(ẞ) such that

k

dn\². (20)

=) ² |~ ( 80e3® + jwx) | ²

×

Using Lemma 4.1 , we see that there exists M6 (B) such.

that

1B + 3(3k - wk)| ≥ B² > a²- ε²,

13 ≤ M6(B) ||~||H , (Ct) ≤ M6(8)M²|| zo || ² .M6(B)M2||z0||² .I3

so we see that (see (18)

4ε2M4
-

Is ≤ 12_c3 —< Σlw(jwx) − ŵ(B + j¥k ) |² .
a2 ε2

I3
--

(21)

Using Lemma 4.1 , we see that in this case

13 ≤ M7||||H₂ (Ct) < M7M2||zo|| 2 (22)

is true . Let Mg = max( { M6 (B) | | B | < a } U { M7 } ) Then

(22) is true with M7 replaced by Ms.

Putting together ( 16) , ( 17) and (22) , we see that ( 14)

(19) is true, proving (15) . Combining ( 15) and ( 13) we get

(5) , finishing the proof.

If b is not in the class defined by m≤ |λnbn | ≤ M,

it is possible that the system might not be open-loop

stabilizable . This is illustrated by Example 5.1 in the

next section .
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5 Open loop stabilizability for

the wave equation

We can now apply Theorem 4.2 to this system to show

that the wave equation can be open loop stabilizable with

for certain choices of bЄ L2 [0 , 1].E

We consider the following model for the undamped wave Theorem 5.2 Suppose b₂ = (õ( · ) , sin(në ·) ) satisfies

equation :

m≤n| bn | ≤ M

for some positive m and M. Then the undamped wave

equation (23) is open loop stabilizable.

22w82ພ

at2
·(x , t ) = (x , t) + b(x)u(t) ,

მ 2

0 < x < 1, t≥ 0,

w(0 , t) = w(1 , t) = 0 ,

D(Ao) = {h Є H²(0 , 1 ) | h ( 0 ) = 0 = h (1 ) } .

where we assume that I Є L2 (0 , 1) .

This equation can be rewritten in the abstract form

( 1 ) with state space Z = D (AŽ ) – L2 (0 , 1 ) , where A。h =

d2h

for h in the domain of Ao given by

dx2

The system operator A is given by

0 I

4 ()= (- ) ()

A

Z2

0

Su-(ix).=(

bu =

bu

{ n(x) :

(24)

with D(A) = D(A。) – D(A ) . The input operator b is [5] L.F. Ho and D.L Russell ; Admissible input elements

given by

for systems in Hilbert space and a Carleson measure

criterion , SIAM J. Control and Optimization , 21 , pp .

614-639 , 1983 .

=

sup

n

This system operator is the infinitesimal generator

of a strongly continuous unitary group T(t) on Z =

D(A‡ ) – L2 (0,1 ) (see , for instance , [2 ] ) . A simple cal

culation shows that A is skew adjoint , and has the eigen

values {λn = înî, n = ± 1 , ±2 , ...} with associated eigen

vectors

1/1(In

sin(nπx)

λn sin(nлx)

Z1

| k | −1
= { 14/~!

|

bn

Z2

k | - 323

),n=

It is easy to see that b₂ : = (b , on ) z = (õ( · ) , sin( në ·)) L₂ ·

In Zwart [11 ] it was claimed that the system is open

loop stabilizable if and only if equation (9) was satisfied .

In the next example we show that this is not true.

Example 5.1 Assume that the Fourier coefficients of b

are given by

(23)

± 1 , ±2 , ...} .

for n = 2k + 1 ,

for n = 2k.

It is easy to see that bЄ Z, and that (9) is satisfied . For

this b we see that for n = 2k

bn

= sup | k | 1/4 = ∞ . (25)

(An+ 1 − An)bn+1
-

k

This contradicts ( 10) , which is a necessary condition for

open loop stabilizability, so this system is not open loop

stabilizable .
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