
23-1 

Parallel algorithms for DNS of compressible flow 

Martin Streng, Hans Kuerten, Jan Broeze and Bernard Geurts 
Department of Applied Mathematics, University of Twente 

P.O.Box 217, 7500 AE Enschede, The Netherlands 

Abstract 

We indicate that the use of higher order accurate 
spatial discretization is necessary to obtain suffi­
ciently accurate DNS for the validation of subgrid 
models in LES. Furthermore, we pay attention to 
the efficiency of the implementation of these dis­
cretizations on several parallel platforms. In order 
to illustrate this, we consider compressible flow over 
a flat plate. We give a priori test results for LES of 
this flow. 

1 Introduction 

One of the most challenging problems in Com­
putational Fluid Dynamics (CFD) is the accurate 
and efficient simulation of turbulent flows for rel­
evant industrial applications. The behaviour of 
these flows is governed by the Navier-Stokes equa­
tions. However, because these applications usu­
ally involve complex geometries and flow-fields, the 
computational resources required for directly solv­
ing the Navier-Stokes equations are far beyond the 
resources which will be available in the foreseable 
future. In this paper we will focus on turbulent 
compressible flow-problems in simple geometries. 
In order to tackle these problems with presently 
available computers, three different aspects must 
be considered: the modelling of turbulent flows, 
the numerical methods used to perform calculations 
with these models, and the implementation of these 
methods on suitable computer platforms. 

As remarked above, direct solution of the Navier­
Stokes equations (DNS) is impossible for relevant 
industrial applications, due to the high computa­
tional requirements. Therefore, one might use in­
stead the Reynolds averaged Navier-Stokes (RaNS) 
equations in which only the statistically stationary 
flow is calculated and the effects of turbulence are 
modelled by a so-called turbulence model. How­
ever, this leads in general to quite inaccurate results 

since the presently available turbulence models are 
inadequate for more complicated flow phenomena 
like shock-boundary layer interaction and massive 
separation. A solution to this problem could be 
provided by Large Eddy Simulation (LES). In LES 
only the large eddies are calculated, while the effects 
of the smaller eddies, which are thought to be uni­
versal and not geometry-dependent, are described 
by a subgrid model. 

However, before LES can be used as a tool in flow 
simulation, the subgrid model has to be systemat­
ically validated. This validation is usually carried 
out by comparing LES results with filtered DNS re­
sults for simple geometries and fairly low Reynolds 
numbers. In Section 2 we present a priori test re­
sults for LES of compressible flow over a flat plate 
for various subgrid models, including eddy-viscosity 
models, the similarity model and dynamic models. 
In the future also a posteriori tests will be carried 
out fot this flow, as has been done e.g. by Vreman 
et al. [1] for the compressible mixing layer. 

The numerical methods to perform the DNS are 
discussed in Section 3. The a priori test results are 
based on DNS performed using a second-order fi­
nite volume spatial discretization. It is indicated 
that the use of higher order spatial discretizations 
makes it possible to obtain more accurate DNS re­
sults. However, the use of higher order central dif­
ferencing discretizations, without numerical dissi­
pation, is not without trouble. Besides the occur­
rence of stability problems, higher order discretiza­
tions lead to wide stencils, which, in combination 
with a domain-decomposition strategy, seriously af­
fects the parallel efficiency of the resulting algo­
rithm. 

In Section 4 the parallel efficiency will be il­
lustrated using some implementations of the DNS 
solver on various parallel platforms, including dis­
tributed as well as shared memory systems, and a 
mixture of these types. Since many parallel plat­
forms use cache-based processors, we consider some 
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aspects of implementation of the flow-solver on 
these processors. We show that careful use of cache 
in the implementation of our type of discretizations 
can lead to considerable performance gain. 

2 Modelling of turbulent flow 

by applying a spatial filter to these equations. A 
filter operation extracts the large scale part f from 
a quantity f: 

f(x) =in GLl(x, e)J(e)de (6) 

where n is the flow domain and fl denotes the fil-
The equations describing compressible flow are the ter width of the kernel G which is assumed to be 
well known Navier-Stokes equations, which repre- normalized, i.e. the integral of G over n equals 1 
sent conservation of mass, momentum and energy: independent of x. For compressible flow Favre [2] 

introduced a related filter operation J =pf/ p. 
The filtered Navier-Stokes equations contain so­

at(PUi) + aj(PUiUj) + aiP - ajTij = 0 

ate + aj((e + p)uj) - aj(TijUi - qj) = 0 

(1) called subgrid-terms, which cannot be expressed in 
the filtered flow variables, and have to be modelled 
with subgrid-models. In this paper we will mainly 
focus on the modelling of the subgrid-terms in the 
momentum equations, which can be expressed in 
the turbulent stress tensor, defined as 

Here the symbols at and ai are abbreviations of 
the partial differential operators a/ at and a/ ax j 
respectively. The components of the velocity vector 
are denoted by ui, while pis the density and p the 
pressure which is related to the total energy density 

(7) 

e by: where ii is the filtered velocity vector. This tur­
( 2) bulent stress tensor has several algebraic properties 

which can be used in the construction and qualifi­
cation of subgrid-models [3, 4]. Expressions for the 
subgrid-terms in the energy equation can be found 
in ref. [5]. They can be neglected in simulations 

in which I denotes the adiabatic gas constant. The 
viscous stress tensor Tij is a function of temperature 
T and velocity vector u 

at low Mach numbers, but have to be modelled at 
(3) high Mach numbers. 

where µ(T) is the dynamic viscosity for which we 
either use Sutherland's law for air or treat it as a 
constant. In addition qj represents the viscous heat 
flux vector, given by 

µ(T) a·T 
(!- l)RePrM2 1 (4) 

where Pr is the Prandtl number. Finally, the tem­
perature T is related to the density and the pressure 
by the ideal gas law 

In total six models for the turbulent stress ten-
sor Tij as it appears in the subgrid-terms in the 
momentum equations will be investigated and com­
pared in this paper. The first subgrid-model is the 
Smagorinsky model 

(8) 

where S2 = !Sfj with Sij the compressible strain 
rate, based on the Favre-filtered velocity. Cs is the 
Smagorinsky constant, which we choose equal to 

T=1M2'E_ 
p 

These governing equations have been made dimen­
sionless by introducing a reference length Lo, ve­
locity u 0 , density p0 , temperature To and viscos­
ity µo. The values of the Reynolds number Re = 

(pouoLo)/µo and the Mach number M = uo/ao, 
where ao is a reference value for the speed of sound, 
are given separately. 

0.17 as suggested in literature. fl denotes the filter 
width, which separates the resolved and subgrid­

(5) scales. The major short-coming of the Smagorinsky 
model is its excessive dissipation in regions where 
the flow is laminar [6]. The similarity model, formu­
lated by Bardina et al. [7], is based on a similarity 
assumption. Application of the definition of frrij to 
the filtered variables p and pui yields the similarity 
model [7]: 

A Direct Numerical Simulation (DNS) is based on 
a discretisation of (1) whereas the governing equa­
tions for large eddy simulation (LES) are obtained 

(9) 

The gradient model is derived with use of Taylor 
expansions of the filtered velocity [8]. The lowest 



order term in .6. in this expansion can be proposed 
as subgrid-model: 

- (3) 1-A2('7- )("'- ) 
PTij = 12PLJ. VUi VUj . (10) 

The similarity and gradient model correlate much 
better with the turbulent stress tensor than the 
Smagorinsky model (see [9] and section 2.1). How­
ever, while the Smagorinsky model is too dissipative 
in transitional regions, the similarity and gradient 
model are not sufficiently dissipative in turbulent 
regions. 

The dynamic procedure overcomes the excessive 
dissipation of the Smagorinsky model and adds suf­
ficient dissipation to the similarity and gradient 
models. We consider three dynamic models. The 
dynamic eddy-viscosity model [3] is obtained when 
the model constant Cs in the Smagorinsky model is 
replaced by a coefficient which is dynamically ob­
tained and depends on the local structure of the 
flow. In order to calculate the dynamic coefficient 
rg) is substituted in the Germano identity, which 
is a relation between the turbulent stress tensor 
for different filter widths [3]. The second dynamic 
model is the dynamic mixed model, in which a 
relatively accurate representation of the turbulent 
stress by the similarity model and a proper dissipa­
tion provided by the dynamic eddy-viscosity con­
cept are combined [10]. The dynamic model coeffi­
cient is obtained by substitution of the base mixed 
model, ri7) + rg), in the Germano identity. An­
other dynamic model is the dynamic Clark model 
[11]. In this case the base model is the Clark model, 
Ti~) +rg), and the model coefficient Cs is obtained 
by substitution of this model in the Germano iden­
tity. 

2.1 Results 
We consider flat plat flow at Re = 1000 based on the 
initial displacement thickness 8* and the other ref­
erence scales are equal to the initial far-field values. 
We choose M = 0.5 and consider a temporal simu­
lation in a cubic domain of size 30. A forcing term 
corresponding to the compressible similarity solu­
tion of the boundary layer equations is added. The 
mean initial field also equals this similarity solution, 
to which the dominant 2D mode and a pair of equal 
and oblique 3D modes are added with amplitude 
10-3 and amplitude-ratios (1/2, 1/4, 1/4) respec­
tively. For validation purposes the linear growth 
rates of the instabilities were recovered with a rela­
tive error well within 1 percent on a grid with 1283 
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cells, uniform in the stream- and spanwise direc­
tions and clustered near the isothermal, no-slip wall 
in the normal direction. A second order accurate fi­
nite volume method was used. 
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Figure 1: Modes of kinetic energy (a) [(1,0):solid, 
(2,0): dashed, (1,1): dotted, {2,2): dash-dotted] and 
shape-factor (solid), skin-friction (dashed) versus time 
t (b) 

Results from a DNS on 1283 cells are shown in 
Figure 1. The persisting symmetry in the span­
wise direction was exploited in order to reduce the 
computational effort. The evolution of the ampli­
tude of some modes of the kinetic energy {Fig. 1) 
clearly displays the initial linear regime with an 
exponential growth of the instabilities. The corre­
sponding large-scale structures which emerge sub­
sequently interact in the nonlinear regime and give 
rise to a rapid transition in which many modes be­
come simultaneously important. A broad spectrum 
is generated and a developed turbulent flow results 
in which the individual modes display an erratic 
time-dependence. To represent this scenario in a 
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different way, the shape-factor and the skin-friction 
are shown in Figure l. The resolution is adequate 
in the linear and transitional stages with a fall off 
of 10 decades or more in the spectrum of the kinetic 
energy. However, at the onset of turbulent flow and 
in the developed stages a fall off of no more than 6-7 
decades was observed. Hence, the results in the tur­
bulent regime are expected to be only qualitatively 
correct and further grid refinement is needed. 
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Figure 2: Dynamic coefficients : Germano (solid), 
dynamic mixed (dashed) and dynamic Clark (dash­
dotted). 

In order to obtain a first impression of the quality 
of the various subgrid models for this flow we focus 

3 Numerical method 

As has been remarked in the previous section, the 
DNS results in the turbulent regime are expected 
to be only qualitatively correct, and further grid 
refinement is needed. However, the number of grid­
cells used is already fairly large for presently avail­
able computer resources. Instead of refinement, we 
presently consider the use of higher order discretiza­
tion methods. The aim is to obtain a more accurate 
DNS with a moderate number of points. However, 
this is not without problems. One drawback is that 
high order methods lead to wide stencils, which de­
creases the parallel efficiency of the resulting code, 
as we will see in the next section. Another problem 
associated with these methods is that the discreti­
sation of the convective and the viscous flux must 
be carefully constructed in order to avoid instabili­
ties. This is especially present in central differenc­
ing methods, and is not only related to the occur­
rence of 7r-modes, but also to adequate damping of 
aliasing errors. 

3.1 Spatial discretization 

Consider an orthogonal grid with points Xi,j,k, 

which is uniform in x and z direction. We use the 
following central differencing discretization of the 
/jx -operator: 

d 

(af) _ '""' diff ax ijk - ~ wj,n ai+n,j,k, 

n=-d 

(11) 

on the correlation between jjT12 and the correspond- where 
ing modelled component of the turbulent stress ten-

d 
sor. We use a filter-width equal to four grid-cells 
and a special filtering near the wall which prevents 
the filter to extend inside the wall. The models are 
tested both in the transitional and in the turbulent 
regime. The similarity- and gradient model as well 
as the dynamic mixed and dynamic Clark model 
show a high correlation of about 0.9. The Smagorin­
sky and dynamic eddy-viscosity models show a poor 
correlation of about 0.3. The eddy-viscosity contri­
bution in the dynamic mixed and dynamic Clark 
model does not destroy the high correlation. In 
Figure 2 we compare the dynamic coefficients for 
the three dynamic models at t = 2700. The coef­
ficients are averaged over the homogeneous direc­
tions. We observe that the Germano coefficient is 
larger than the coefficient associated with the other 
two dynamic models. Moreover, all coefficients drop 
to zero in the near-wall region which is appropriate 
for wall-bounded shear layers. 

aijk = L wj,1:i,mfi.Hn,k+m· (12) 
n,m=-d 

Here the weights wdif f are derivative weights, 
and wav are average weights. Due to the unifor­
mity in x and z direction they only depend on j. 
The quantities a represent the average of the func­
tion f over a stencil in j - k direction. For the con­
vective flux we use a stencil with Ne points, and the 
weights wav are constructed such that 7r modes in 
the j and k direction are filtered out, and moreover 
that polynomials up to degree Ne - 1 are invari­
ant under the averaging. The derivative weights 
wdif f are such that polynomials up to degree Ne 
are exactly differentiated. The resulting discretiza­
tion has order Ne on uniform grids. The 7r-modes 
in i-direction are damped by the viscous derivative. 
The viscous flux is discretized using repeated dif­
ferentiation. The inner derivative is calculated on a 



staggered grid. Both the inner and the outer deriva­
tives are discretized analogously as in the convec­
tive flux, on Nv points, except that now 7r-modes 
are not filtered out. Both derivatives are then of 
order Nv - 1, but due to symmetry, on a uniform 
grid, the viscous flux is discretized up to order Nv. 
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Due to the nonlinearity in the convective flux, 
high frequency modes arise from a low-frequency 
initial state. In physical reality, these are damped '>t 

by the viscous effects in the fluid. In the numeri-
cal simulation, however, two difficulties arise. The 
first is that both the convective and the viscous flux 
are calculated inaccurately. In our central differ­
encing discretisations, on relatively coarse grids, a 
situation may arise in which the numerical viscous 
terms do not have enough dissipation to damp the 
numerical convective terms, giving rise to instabil­
ities. The second difficulty is that due to the fi­
nite grid-spacing, there is a maximum wavenumber 
which can be represented on the grid. Modes with a 
higher wavenumber appear as low-frequency modes 
on the grid. Therefore, numerically, the effective 
energy contained in the low-frequency modes can 
be increased during the onset of turbulence. One 
remedy could be to take a grid that is sufficiently 
fine to represent the highest mode which due to 
physics would emerge in the simulation. Another 
possibility is to use upwind-biased discretizations 
of the convective flux, as has been done by Rai and 
Moin [12]. We have used a discretisation of the 
viscous flux with a wider stencil than necessary to 
achieve the desired order of accuracy. In this way 
we constructed a better approximation of the vis­
cous flux. As an example, we were able to calculate 
a full transition to turbulence on 963 points using 
a fourth order method on a 53-points stencil for 
the convective flux, and repeated application of a 
fourth order method on 63 points for the viscous 
flux, resulting in an 113-points stencil, whereas re­
peated application of a 43 points operator for the 
viscous flux on this grid failed. At this moment, 
further investigation is needed to understand this 
phenomenon more clearly. 

The DNS mentioned in the previous section has 
been calculated at Mach number 0.5. In the future 
we intend to perform DNS at higher Mach num­
bers. For that purpose we need to be able to capture 
shocks. This can be done by switching to upwind 
discretizations in the presence of a shock, which has 
been applied succesfully to the supersonic compress­
ible mixing layer, cf. ref. [13]. In that application 
a fourth order central difference operator has been 
used for the convective term, which was replaced by 
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Figure 3: Shock-capturing in 3D turbulent mixing­
layer. 

a third order accurate upwind scheme in the pres­
ence of a shock. See Figure 3. In this way it is possi­
ble to capture time-dependent shocks which appear 
spontaneously after the transition to turbulence. 

3.2 Time integration 

For the time integration of the resulting discretized 
equations we use an explicit 4-stage Runge Kutta 
method. We also studied the use of a second-order 
accurate implicit method. The system of equa­
tions resulting from the implicit discretization is 
solved by means of pseudo-time stepping and ac­
celerated by local pseudo-time stepping and a non­
linear multigrid technique. Since we use central 
spatial discretizations and no artificial dissipation 
is added to the equations, the smoothing method is 
less effective than in the traditional use of multigrid 
in steady-state calculations. In the laminar regime 
and in the first stages of turbulence the implicit 
method provides a speed-up of a factor of 2 rela­
tive to the explicit method on a relatively coarse 
grid (643 ). At increased resolution this speed-up is 
enhanced correspondingly. See [14]. 
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4 Parallel implementation of 
the explicit solver 

In this section we consider some implementational 
aspects of the explicit solver. We use a simple 
domain-decomposition technique to obtain an im­
plementation on a parallel computer. This is ex­
plained in the first subsection. In the next sub­
section we discuss how the parallel efficiency of the 
resulting code depends on the spatial discretization. 
We distinguish between the intrinsic efficiency of an 
algorithm, and the hardware efficiency. The former 
is related to the algorithm only, whereas the lat­
ter tells us how good a certain algorithm performs 
on certain hardware. The quantity which is usually 
called the efficiency is the product of these efficien­
cies. We show that the intrinsic efficiency of the 
algorithm decreases as the order of the spatial dis­
cretization increases. We illustrate these concepts 
by some performance results obtained from imple­
mentations on 3 different parallel machines, viz. the 
Cray T3d, the Intel Paragon and the SGI Power 
Challenge array. Closely related to the concept of 
efficiency is the scalability. We discuss the scalabil­
ity in the sense of Amdahl and Gustafsson (see e.g. 
ref. [15]). 

4.1 Domain decomposition 

Suppose our computational domain consists of Nx x 
Ny x Nz gridpoints. This domain is divided into 
Bx x By x Bz blocks. For a distributed memory 
computer, we assume that each block is allocated 
on a separate processor. If the total size of the 
stencil used for the discretisation is (2d+1)3 (recall 
that we use central differences, cf. (11),(12)), then a 
point which has a distance less than d+ 1 grid-points 
from the boundary of a block not coinciding with 
the boundary of the physical domain, is called an in­
terior boundary point. This definition can easily be 
extended to other discretisation methods. For the 
computation of the fluxes for the interior boundary 
points, some values of the flow-quantities which re­
side on processors dealing with neighbouring blocks 
are needed. To store these quantities, each block 
is dressed with d dummy-layers. In order to retain 
the second-order accuracy of the time-integration 
method, at each stage in the Runge-Kutta time­
integration, these dummy-layers have to be trans­
ferred between the various processors. It may be 
clear that the amount of communication increases 
with the size of the stencil. 

Not only the amount of communication is affected 

by the size of the stencil, but also the number of 
floating point operations increases with increasing 
stencil-size. To see why, recall the general form of 
the fx-operator, eq. (11)-(12). This derivative is 
computed as a one-dimensional derivative acting on 
two-dimensional averages over y and z. For the 
derivative in an internal boundary point these aver­
ages have to be computed for points in the dummy­
layers as well. But these averages are also com­
puted by the processors dealing with the neighbour­
ing block in order to contribute to the fx derivative 
of some points in that block. For a discretization on 
a stencil with Nx x Ny x Nz points, careful counting 
reveals that the number of floating-point operations 
for the computation of one derivative is 

Note that this expression is not symmetric in 
Nx, Ny, Nz. For the other derivatives the discrete 
averaging and differentiation operators can be ap­
plied in such an order that the same expression is 
valid. In the case Nx = Ny = Nz = N, this reduces 
to 

(3N3 + 6N2d + 4d2 N)(2d - 1). (13) 

Now consider e.g. a given partition of the computa­
tional domain into B 3 equal blocks, each containing 
(N/ B)3 points. Then the total number of floating­
point operations to compute a %x for all grid-points 
is 

which is obviously greater than (13). 

4.2 Parallel efficiency 

To quantify the considerations of the previous para­
graph, we define the concept of intrinsic efficiency. 
Consider a given partition of the computational do­
main into Bx x By x Bz blocks. Denote the to­
tal number of floating point operations for a given 
number of timesteps by f(Bx, By, Bz)· Then the 
intrinsic efficiency crintr is given by 

f(l, 1, 1) 
(14) crintr = f(B B B ) . 

X> Yl Z 

Note that, on a shared memory machine, if we use 
fine-grained parallellism (on do-loop level), we could 
define crintr = l. 

We can estimate the dependence of the intrinsic 
efficiency on the size of the stencil just by counting 
the number of floating-point operations for various 



block-sizes (by using expressions like (13)). In Fig­
ure 4 this has been done for several central differenc­
ing discretizations, using equal shapes and sizes for 
all blocks. From the pictures it can be seen that the 
efficiency decreases rapidly if the stencil-size grows. 
Due to the wider stencil, application of higher-order 
discretizations results in more floating-point oper­
ations, but this performance penalty is even more 
severe on distributed memory systems, where also 
a decrease of parallel performance occurs. As an 
example, consider a central differencing second or­
der %x operator on a 3-point stencil as compared 
to a central differencing fourth order %x operator 
on a 5-point stencil. To compute the former deriva­
tive on a single-cpu machine costs approximately 
5/9 ~ 0.56 times of the time to compute the latter, 
whereas on e.g. a 64 x 64 x 32 grid and 128 proces­
sors on a distributed memory machine this ratio is 
approximately 0.33. 
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In general, due to the finite communications band­
width of the machine, the simulation will last 
longer, say T(Bx, By, Bz) seconds. Then the 
hardware-efficiency ahw is 

T(l, 1, 1) 
ah = . 

w T(Bx, By, Bz)BxByBzaintr(Bx, By, Bz) 
(15) 

The traditional (total) efficiency a is the product 

(16) 

Note that, in general, these efficiencies not only de­
pend on the number of blocks in each direction, but 
also on the number of points per block in each di­
rection, i.e. on the actual shape of the blocks. This 
is not only due to the ratio of interior boundary 
points as compared to the interior points of each 
block, but also because many processors perform 
better on long inner loops in the code, due to vec­
torisation or pipelining. 

The efficiency a is related to scalability in the 
sense of Amdahl, meaning that a problem which 
is solved on one processor in T1 seconds is solved 
on P processors in Ti/ Pa seconds. We define one 
notion of efficiency related to scalability in the sense 
of Gustafson. Suppose we solve a problem with N 
gridpoints on one processor in T1 seconds, and a 
problem with P N gridpoints in Tp seconds. Then 
the efficiency a a is 

(17) 

These concepts are illustrated in Figure 5. Here 
we performed 5 timesteps on a 64 x 64 x 32 grid, 

20 40 60 80 100 120 
#blocks (processors) 

140 with a 5 point central differencing discretization of 
the convective flux, and a repeated application of a 
four-point central differencing for the viscous flux, 
resulting in a total stencil containing 7x 7x 7 points. 

Figure 4: Intrinsic efficiency for various spatial dis­
cretizations 

The intrinsic efficiency deals with the paralleliz­
ability of a given algorithm, regardless of any ma­
chine. In fact it gives the maximum speed-up that 
can be achieved for the algorithm. In a real im­
plementation the speed-up will be less, due to e.g. 
the finite bandwidth of the machine. To quantify 
this, we now define the hardware efficiency ahw· 
Suppose the CPU time to perform a certain num­
ber of timesteps on one processor using one block 
is T(l, 1, 1). Then, using BxByBz processors, the 
CPU time cannot be shorter than 

T(l, 1, 1) 

Plotted are the intrinsic efficiency and the total ef­
ficiency. Because it was not possible to execute the 
program on 1 or 2 CPUs on the Paragon, the effi­
ciencies are based on the timings for the 4-processor 
run. We used 2 different distributed memory ma­
chines, viz. the Cray T3d and the Intel Paragon. 
On these machines, explicit message-passing has 
been employed. The actual CPU-times for the runs 
are tabulated in Table 1. A dash indicates that it 
had not been possible to perform the run on the 
indicated number of processors, either because the 
processors do not have enough memory (in the case 
of 1 and 2 processors on the Paragon) or because 
the indicated number of processors was not avail­
able on that machine. The CPU times are depen-
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# proc. T3d Paragon 
1 207.5 
2 109.6 
4 58.3 90.6 
6 42.7 65.2 
8 33.4 50.3 
12 23.8 36.8 
16 17.1 27.4 
24 13.5 20.4 
32 9.9 15.7 
48 7.5 11. 7 
64 6.0 11.1 
96 4.8 7.6 

128 3.8 

Table 1: CPU times in seconds (averaged over several 
block-divisions). 

dent on the actual shape of the blocks. Therefore 
in Table 1 we averaged over some block-divisions 
which give roughly the same (approximately best) 
CPU-time. This dependency is illustrated in Table 
2 for the case of 8 blocks. All timings are accurate 
to about 5 3. It can be seen that subdivisions with 
an equal number of blocks in all directions are op­
timal. In general, better subdivisions are obtained 
by using fewer blocks in x-direction. This is partly 
due to the algorithm, since an asymmetry is intro­
duced by the sequence of averaging-operators in the 
derivative-calculations, and partly due to software­
pipelining in the processors, which is reflected in 
the megaflop-rates (between parentheses). 

Bx x By x Bz T3d Paragon 
1x1 x 8 34.9 (77) 58.0 ( 47) 335 
1x8x1 34.3 (82) 54.4 ( 52) 353 
8xlx8 39.2 (77) 67.3 ( 45) 378 
1 x 2 x 4 32.4 (80 ) 50.9 (52) 323 
1 x 4 x 2 31.6 (83 ) 50.0 (53) 328 
2xlx4 33.0 (79 ) 52.9 (50) 327 
2x4xl 31.7 (84 ) 51.5 (53) 335 
4x2xl 32.9 (80 ) 54.6 (50) 327 
4 x 1 x 2 32.9 (82 ) 55.4 (49) 339 
2 x 2 x 2 31.1 (84 ) 50.3 (53) 325 

Table 2: CPU times for various subdivisions into 8 
blocks. Between parentheses the Mflop-rates. The 
last column is the number of millions of floating point-
operations to be performed for each block. 

From the pictures it can be seen that on the T3d 
and the Paragon, the machine efficiency is some­
what lower than the algorithmic efficiency. This 
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Figure 5: Efficiency for the T3d (dashed) and the 
Paragon (dotted). The solid line is the intrinsic effi­
ciency. 

means that increasing the algorithmic efficiency by 
e.g. exchanging information between the processors 
after every calculation of averages will not result in 
a substantially faster execution of the code. Fur­
ther, all efficiencies eventually approach zero as the 
number of processors approaches infinity. It can be 
shown (using expressions like (13)) that the intrin­
sic efficiency drops as B-2/ 3 , where B is the to­
tal number of blocks. However, (J'G remains nearly 
constant, as is shown in Table 3. Here each block 
contains 32 x 16 x 16 points. From this table it 
follows that, using this algorithm, doubling the size 
of the problem and the number of processors re­
sults in equal computation times. This can also be 
shown if in (17) the times Tp and T1 are calculated 
as ideal, i.e. assuming no communications delays. 
Then (J'G = 1. 

Bx X B'!!. X Bz T3d Paragon 
1x2x1 16.2 (21.1 ) 26.9 (12.7) 
1x4x1 16.3 (42.l ) 27.0 (25.4) 
lx4x2 16.4 (83.6) 27.3 (50.2) 
2x4x2 16.5 (166) 27.6 (99.4) 
2x8x2 16.5 (332) 27.4 (200) 
2x8x4 16.6 (661) 27.7 (396) 
2x8x6 16.6 (991) 27.8 (592) 
4x8x4 16.6 (1322 ) 

Table 3: CPU times and Megaflop-rates (between 
parentheses) for increasing domain-sizes illustrating 
that (J'Q remains approximately constant. 

From the above results it can be concluded that 



the T3d and the Paragon show comparable efficien­
cies for this algorithm, the T3d being about 40 % 
faster. 

Besides the implementation on the T3d and the 
Paragon, we have made a preliminary implemen­
tation on the SGI Power Challenge Array. This 
machine consists of 4 nodes each comprised of a 16-
CPU shared memory parallel machine. We used 
explicit message-passing between the nodes. On 
each node, fine-grained parallelism has been em­
ployed using the vendor-supplied parallelizing com­
piler. The combination of fine-grained parallelism 
and explicit message passing is not entirely triv­
ial. On the one hand, using fine-grained paral­
lelism results in an algorithmic efficiency of 1, since 
no additional floating-point operations are intro­
duced. Therefore, this form of parallelism seems to 
be promising at first sight. On the other hand, how­
ever, parallelizing a do-loop containing only a few 
iterations (in the order of magnitude of the num­
ber of grid-points in one directions) causes much 
system-overhead, and seriously affects pipelining ef­
ficiency. Moreover, suboptimal speedup can arise 
due to the cache-coherency mechanism. The use 
of explicit message-passing has two disadvantages, 
namely an algorithmic efficiency less than one, and 
usually a slow data-transfer. The advantage of ex­
plicit message-passing as compared to fine-grained 
parallelism is that parallelization takes place on a 
(much) higher level, leading to less system over­
head. 

As an example, consider a problem with 64 x 64 x 
32 grid-points (the same as discussed above). With 
4 processors on one node working on one block, this 
yields an execution time of 23 seconds for 5 Runge­
K utta timesteps, whereas on 4 nodes with 4 blocks 
(1x2 x 2) and one processor per node the execution 
time is 18 seconds. As another example, we com­
pare the subdivision into 1 x 2 x 2 and 2 x 4 x 2 
blocks, both running on 4 nodes. In the first case, 
each node deals with 1 block, and in the second case 
each node does the computations for 4 blocks, and 
uses 2 processors for each block. So in that case the 
distributed memory model is adopted also within 
each single node. It appears that the latter case 
has a shorter execution time. It may be clear that 
some restructuring of the code is necessary in order 
to obtain reasonable performance. This will be the 
subject of another paper [16]. 
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4.3 Optimization for cache-machines 

In many parallel machines the processors use a hi­
erarchical memory structure, consisting of a small 
amount of memory with a short access time (the 
cache) and a large amount of main memory with 
much longer access time. This long access time is 
the main reason why the performance of these ma­
chines is way below their (often impressive) peak. 
In the implementation of a numerical algorithm, it 
is essential to use the cache efficiently. Therefore, 
the number of load and store operations should be 
kept to a minimum, and quantities which are loaded 
from main memory should be reused as much as 
possible before being restored. Further, since el­
ements from main memory are loaded into cache 
in chunks of a few consecutive elements, do-loops 
should be arranged such that main memory is tra­
versed linearly (as is also necessary for efficient use 
of traditional vector-processors). Moreover, it will 
enable software-pipelining on RISC-processors, re­
sulting in substantially faster execution. 

To illustrate this, we compare two different ways 
to calculate the viscous flux. In the first method 
(method A) the various derivatives of the velocity 
fields and the temperature are calculated consec­
utively, and the viscous stress tensor and viscous 
heat flux are assembled and stored. Then the outer 
derivatives of the viscous flux are calculated, again 
consecutively. The resulting code is very well vec­
torizable and consists of very simple do-loops. In 
the second method (method B), we use the follow­
ing observation. In the calculation of the deriva­
tives, some averages can be used to contribute to 
various derivatives. Moreover, for all derivatives, 
the averaging weights in one direction are equal. 
Therefore we calculate all inner derivatives simul­
taneously, which also has the advantage that e.g. a 
vector u1 needs to be loaded only once for the calcu­
lation of all its derivatives. An analogous fact holds 
for the weights. Further, the derivatives are not 
stored, but directly used to assemble the stress ten­
sor and the heat flux. After that, all outer deriva­
tives are calculated simultaneously. This results in 
about 30% less floating point operations, and sub­
stantially less load and store operations, resulting 
in better memory-performance. The drawback is 
the occurrence of (much) more complicated do-loop 
bodies, which puts a severe demand on the compiler 
in order to obtain suitable pipelining. It appears 
that on the T3d and the Paragon there is hardly 
any performance gain, and the performance is only 
about 20 % of peak. On one R8000 processor in 
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the SGI Power Challenge (coupled to 4 MBytes of [9] 
cache), the CPU-time of method B is half that of 
method A, with a performance of about 37 % of 
peak (110 Mflops). More details are to be found in 

S. Liu, C. Meneveau and J. Katz, "On the proper­
ties of similarity subgrid-scale models as deduced 
from measurements in a turbulent jet," J. Fluid 
Mech. 275, 83 (1994). 

ref. [17]. 
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