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Abstract: Machining planning is an important task and requires experienced person­
nel and directly affects the cost of a product. Computer aided methods are increasingly 
being developed and used to assist in the planning task. We describe a new concept, the 
Maximum Turnable State of a part, and algorithms for its computation. The concept is 
intuitive and relates to an intermediate state of every turned part. By recognizing it ex­
plicitly, and using it in the machining planning, efficiency can be increased. We describe 
the concept, its use, algorithms for its determination and some examples. 

Keywords: machining planning, maximum turned state, mill-turns, computer-aided pro­
cess planning 

I. INTRODUCTION 

In this paper, we consider the Maximum Turnable State (MTS) - a novel concept in prod­
uct design and manufacturing process planning. This concept was recently introduced by 
Yip-Hoi and Dutta [Yip-Hoi et aI., 1998] and shown to be of practical use in the process 
planning tasks involving machining on mill-turn machines. Figure I illustrates a common 
mill/turn configuration. 

The concept of MTS is simple. Consider a generic final part (FP) that is composed 
of planar (i.e. milled) and non-planar (i.e. turned) surfaces. The MTS is that intermediate 
state of the part beyond which no more turning operations can be done (without gouging 
the milled surfaces). By definition, the MTS is a revolute intermediate state. We provide 
a mathematical definition: A three dimensional object is said to be a spherical cylinder, 
if it has a central axis which is a line segment, and every cross-section perpendicular to 
this axis is a circle with its center on the central axis . The diameters of the cross-sections 
may vary. Given a final part which is a three dimensional object, its Maximum Turnable 
state is defined to be the smallest volume spherical cylinder containing it. 

Knowing the MTS of any part can be of use in many instances. For example, by a 
boolean subtraction of the MTS from the initial workpiece (bar stock) one can obtain 
the total volume to be turned, and can directly generate the cutter path. Turning is more 
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efficient than milling (w.r.t material removal rates) and therefore this strategy leads to 
efficient fabrication. On the design side, the MTS can be used effectively to determine 
near "net-shaped" workpieces that correspond to several different parts. That is, for a part 
family consisting of say M different parts, the MTS can be used to determine N (N < < M) 
intermediate turned parts that can then be machined to yield the full part family (of M 
parts). This enables the effective utilization of turning resources, when unused, to turn the 
initial workpieces to the N intermediate states. As needed, the appropriate intermediate 
state can be further machined (possibly some additional turning and milling) to realize the 
final part. These N intermediate states/shapes can be produced either by turning or even 
by casting, depending upon the best utilization of the available resources. 

Manufacturing process planning under such an environment (of intermediate stages 
of a part) is quite different. Feature extraction for machining is now driven by the MTS 
and not by machinable volumes. 

The efficient determination of the MTS for a general part is quite complex. If one 
assumes a part axis (e.g. chosen by the designer), as in [1], the problem simplifies. How­
ever, for a complex part, it is not easy, or visually possible, to determine the best axis for 
a part. 

In this paper, we shall describe optimization methods for determining the best part 
axis for computing the MTS of a part. In Section 2 we formulate the problem explicitly 
and describe a conceptual algorithm for determining the MTS of a general FP (without 
holes). Section 3 deals with the case that the FP is a (convex) polyhedron. A numerical 
algorithm for the calculation of the MTS is given. Section 4 deals with non-convex ob­
jects and Section 5 with holed objects. Section 6 concludes with some remarks on the 
structure of the MTS-problem and comments on future developments. 
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MS: Main SpiJldle (PMLl) 
DS: Dual Spindle (PML2) 
TI: Turret #1 (MUI) 
T2: Turret #2 (MU2) 

A common MilllTum configuration 
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2. A GENERAL DESCRIPTION OF THE MTS-PROBLEM 

We begin with a more explicit description of the problem. 

MTS-problem: Let FP be a 3D final part. Consider the machine axis (of a Millffurn) 
and a 2D profile containing that axis such that the body obtained by revolving the profile 
around the axis contains the final part. We want to determine such a body with minimal 
volume. (A body with minimizing volume is called the MTS of FP.) 

This formulation leads to the following conceptual method for solving the MTS-problem 
for the case that FP does not have holes (or holes are neglected). 

First, we choose a representation of the machine axis ax: Given a center point c = 
(CI, C2, C3) E IRJ and a direction de</>, cp) = (cos </>cos cp, sin </>cos cp, sin cp), </>, cp E [-f, f], 
the axis is defined by the line trough c along the direction de</>, cp) (see Figure 2), 

ax: ax(y) = c+ y(cos</>coscp, sin </>cos cp, sincp), y E IR. 

x3 

ax 

c ~---j--:";-___ ----J.___ X I 

x2 
Figure 2 The machine-axis ax. 

(1) 

Assume the axis, i.e. the vector (c, </>, cp), is fixed. The 2D profile of revolution of FP 
is calculated as follows. For fixed y we consider the plane pl(y) through the axis point 
ax(y), perpendicular to the direction de</>, cp). This plane is given by 

pl(y) = {x E IRJ I (x - c)T de</>, cp) = y} . (2) 

Here, for vectors x, Y E IR\ xT Y denotes the dotproduct, xT Y = XIYI + X2Y2 + X3Y3 and 
by Ilx - yll = J(XI - YI)2 + (X2 - Y2)2 + (X3 - Y3)2 we define the distance between x 
and y. 

The slice sl(y) is the intersection of the plane pl(y) with FP (see Figure 3). The value 
bey) of the 2D profile function is the maximum distance between the axis point ax(y) and 
the points in the slice sl(y), 

b(y)=maxlllx-ax(y)lllxEsl(y)} . (3) 
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In the sequel, Yb and Ye are the minimum and maximum values of y, respectively, such 
that the plane pl(y) intersects the final part. The value Yb can be calculated by solving 
the optimization problem 

min xT d(</J, cp) subject to x E FP . (4) 

Let x be a solution of (Pb), then Yb is given by Yb = (x - cl d(</J, cp). The value Ye is 
found by solving the problem (Pe) , obtained by replacing minimize by maximize in (Pb) . 

The final part is contained in the body obtained by revolving the profile function 
bey), Y E [Yb, Ye] around the axis ax (see Figure 4). In fact , this body is the maximum 
turnable state of FP for this fixed axis. Using the formula r2rr for the area of a circle with 
radius r, the volume vol(c, </J, cp) of this body (for fixed (c , </J , cp» is given by 

lY, 

vol(c, </J, cp) = rr (b(y»2 dy . 
Y/, 

(5) 

Solving the MTS-problem is equivalent with solving the following optimization problem. 

(PMTS): find c = (Cl ' C2 , C3 ) and </J, cp E [-~ , ~] such that vol(c, </J , cp) is minimal . (6) 

.... . 

Figure 4 a) The profile bey). b) The MTS for a fixed axis. 
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3. THE MTS OF A CONVEX POLYHEDRON 

In this section we discuss the computation of the MTS of a polyhedral part. We as­
sume that the surfaces of FP are defined by planes, xT a j = b j' j E J = {I, . .. , m}, with 
(normal) vectors a j E JR3 and b j E JR. Then, the part is given as the intersection of the 
corresponding half-spaces, 

(7) 

Such a body is called a polyhedron. A vertex v of the polyhedron FP is a point on the 
surface of FP defined as the intersection of three (independent) defining planes, i.e. 

with distinct j I , h , j3 E J and linearly independent vectors a jl ' a h, a h ' Let 
V = {v I, . . , , VI} be the vertices of FP. An edge of the polyhedron is a line segment on 
the surface of FP given by the intersection of two planes. Any edge can be represented as 
the line segment between two vertices Vi , V j of FP, 

Eij(t) = Vi + t(Vj - Vi), t E [0, 1] (abbreviation Vi Vj) . 

We give an example. 

Example 1 FP is given by the inequalities (see Figure 5): 

X2S 1 X3S 1 
-X2S 1 -X3S 1 

The vertices and edges of this object are: 

VI = (I, 1, 1) V2 = (2, \ , -1) V3 = (-1, -1,1) V4 = (-2, -I, -I) 
vs=(-l,l,l) v6=(-2,1,-1) v7=(l , -1,1) vs=(2,-1 , -1) 

(2,1.-1) 

Figure 5 A polyhedral final part. 

(8) 
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We now explain how the profile function bey) can be calculated in the polyhedral case. 
For fixed y, we have to consider the slice sl(y). In the polyhedral case, the slice is a 
2 dimensional (convex) polygon (see Figure 3), the vertices of which are given by the 
intersections of the edges of FP with the plane pl(y). For a given edge ViVj we have to 
proceed as follows: Compute the intersection point of the line Vi + t(v) - Vi), t E IR with 
pl(y), 

(Vi + t(v) - Vi) - c)T d(¢, cp) = y or 
_ y - (Vi - c)T d(¢, cp) 
t = -'--------:"...---'---'--

(V) - V;)T d(¢, cp) 

If (lies in the interval [0, 1] then, p := Vi + (V) - Vi) is a vertex of the polygon sl(y). 

(For the case that (v) - Vi) is perpendicular tod(¢, cp) and Vi E sl(y), the whole edge Vi V) 

makes part of the slice sl (y) and both vertices V j and Vi are vertices of the polygon.) 
Let P = {PI, ... , pd, k = key), be the set of vertices of the two dimensional polygon 

sl(y). Then, the maximum distance bey) in (3) is given by 

bey) = max (II Pi - ax(y) III . 
i=I, .. "k 

The values Yb and Ye are calculated as follows. For polyhedral FP the solutions of the op­
timization problems Pb and Pe (cf. (4» are attained at vertices ofFP. Hence, to determine 
Yb (and similarly Ye), we compute a solution Vb of 

min vT d(¢, cp) 
VEV 

and put Yb:= (Vb - c)T d(¢, cp) . (9) 

Finally, we give an algorithm for calculating the volume vol(c, ¢, cp) numerically for 
fixed (c, ¢, cp): Choose a natural number N, a mesh size D.. = Y'~Yb and define the grid 
points Ys = Yb + D.. . s, s = 0, ... , N. Then, calculate the values bey,) and approximate 
the profile b (y) on any interval [y" Ys+ 11 by the line segment joining b (y,) and b (Ys+ I) 
(piecewise linear interpolation). An approximation of the volume vol(c, ¢, cp) (cf. (5» is 
given by 

N-,1y.'+1 ( b() b( ) )2 
vol"(c, ¢, cp) = rr L bey,) + YS+I;- Ys (y - Ys) dy. 

s=o y.~ 

(10) 

The algorithm for finding the MTS of a polyhedral FP can now be summarized as follows. 

Algorithm 1 (Calculation of the MTS of a polyhedral FP) 

1. Compute the set V of vertices and the set E of edges of FP. 

2. The problem of finding the MTS is the problem of finding the values (c, ¢, cp) that 
minimizes the function vol"(c, ¢, rp). For any given (c, ¢, rp) we have described 
above how to compute this function approximately. Using it as the function evalu­
ation subroutine, an appropriate algorithm can be used to find (c, ¢, cp) that mini­
mizes vol"(c, ¢, cp) . 
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4. MTS OF NON-CONVEX OBJECTS 

In general, machined parts are non-convex. This section deals with non-convex bodies 
without holes. Again we restrict ourselves to parts with (finitely many) planar surfaces. 
Such an object can be described as the union of finitely many polyhedra, where each 
polyhedron is of the form (7). For brevity, we assume that FP is given as the union of two 
polyhedra Fpl and FP2, 

FP= Fpl U Fp2 . h F pi = {x E 1R3 I xT a~ :::: b}, j = 1, ... ,ml} 
Wit Fp2 _ { 1R3 I T 2 < b2 • - 1 } - x E x aj _ j' ] - , ... , m2 

The MTS of FP can be calculated by modifying the method in Section 3 as follows. (The 
generalization to the case of more polyhedra will be evident.): For fixed axis ax (I), i.e. 
for fixed (c, </J, cp), we can calculate the values yt , y~ and y~, y; as well as the profile 
functions b l (y) and b2(y) for Fpl and Fp2 as in Section 3. Then, the corresponding 
values Yb, Ye and the profile function bey) for FP = Fpl U Fp2 are defined by 

. {I 2} {I 2} Yb = mm Yb' Yb ' Ye = max Ye' Ye ' 

Here, it is assumed that b l (y) is defined as zero for Y ¢ [y~, y~] and similarly b2(y). With 
these modifications the MTS of FP can be computed similar to Algorithm 1. 

5. THE MTS OF HOLED OBJECTS 

In this section we briefly discuss the calculation of the MTS for objects with holes. We are 
referring to objects with holes that possess at least one approach direction, from outside, 
for machining, as shown in Figure 7. For simplicity we assume that the final part FP is 
given as the 'set-valued' difference of an outer polyhedron Fpl and an polyhedron Fp2 
representing the hole, 

F pi = {x E 1R3 I xT a~ :::: b}, j = I, ... ,md FP2 Fpl 
FP2 - { 1R3 I T 2 < b2 . - 1 }' c - x E x a j _ j' ] - , ... , m2 

For holed objects we have to calculate two different profile functions. A function bl (y) 
corresponding to Fpl and the profile function b2(y) for the hole FP2. We describe how 
this can be done. 

Again, let the axis ax be fixed, i.e. the vector (c, </J, cp) is fixed. We calculate the 
values yt, y~ for Fpl as in (9). Let Y E [yt, y~] be fixed. Again, we define the slices 
si(y) = pi(y) n F P, si l (y) = pi(y) n F pi and sP(y) = pi(y) n F p2. For the calcula­
tion of the function values bI(y), b2(y) we have to distinguish between different cases. 
For simplicity we will only discuss one of them. 
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The Case that ax(y) ¢ FP and the slice sl(y) is given by two (piecewise linear) closed 
curves (sl(y) is double-connected) such that ax(y) E FP2 (see Figure 6): In contrast to 
b l (y) (cf. (3» the value b2(y) is given by the minimum distance, 

b2(y) = min{llx - ax(y)111 x E sz2(y)}. 

In the polyhedral case, this value can be calculated explicitly. Let p~, . . . , P~2' k2 = 
k2(y), be the vertices of the 2D polygon sz2(y) calculated according to Section 3. We 
assume that these vertices are numbered in such a way that the segments 

PT+I PT = {PT + t(P7+1 - P7), t E [0, I]} 

i = I, ... , k2 define the boundary of SI2(y) (put P~2+1 := pD. Now we calculate the 

projections qi ofax(y) onto the segments PT+I PT (points of minimal distance): 

-._ (PT - ax(y)l(P7+1 - PT) d , '- { PT + t(PT+1 - pf) in E [0, 1] 
t.- ( 2 2)T( 2 2) an q,.- 2 otherwise 

Pi+1 - Pi Pi+1 - Pi Pi 

Then, with the vertices P:, ... , pt, kl = kl (y), of Sll (y) we have 

b2(y) =, min {llqi - ax(y)11l and bl(y) =, max {lip: - ax(y)11l (11) 
,=1 , ", ,k2 ,=1, ,., ,k! 

sf( y) 

• 

sl ( y) 

axe y) 

Figure 6 The slice sl(y) of a holed object 

To calculate the volume of the MTS for a given axis (c, ¢, cp), we distinguish between 
two different cases. The case A that the axis does not have any access to the hole FP2 and 
the case B that ax enters or leaves the part Fp l via FP2. 

To decide which case occurs we determine the points aX(Yb) and aX(Ye) where the 
axis enters and leaves FPI by solving the (one-dimensional linear) problem 

A • 

Yb mm I T I I· 
A:= {y I ax(y) E FP } = {y I (c+ yd(¢, cp» aj :::: bj ,} = 1, ... , md 
Ye max 

Finally vola(c, ¢, cp) is calculated according to the Cases A or B. 
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Case A, ax(h) fj: FP2 and aX()!e) fj: Fp2: In this case the profile function bl(y) is 
calculated for the polyhedron Fpl as in Section 3 and the volume is approximated by 
formula (10) with b replaced by b l • 

Case B, ax(h) E Fp2 or aX()!e) E FP2 (or both): Then, we determine the profile 
functions b l (y), b2(y) (as e.g. in (11)) on a discretization of [yt , y;] and we calculate 
the volumes vol~(c, </>, cp) , vol~(c , </> , cp) for these functions b l (y), b2 (y) using formula 
(10). The MTS of the holed object is given approximately by the formula 

vola(c, </> , cp) = vol~(c , </>, cp) - vol~(c, </>, cp) . 

The calculation of the MTS of holed objects of a more complex structure is a topic of 
ongoing research and will be presented elsewhere. 

(3 , O,ll 

(3,2,0 ) 

Figure 7: Holed object 

6. FINAL REMARKS AND RECOMMENDATIONS 

We comment on the structure of the MTS-problem. One could guess that for convex 
parts the optimal axis defining the MTS passes through the center of gravity of the object. 
In general this is not the case as is clear from the following example. 

Example 2 Let FP be the half-cylinder, 

F p = {(XI, X2, X3) 10:::: XI :::: 10, X2 :::: 0, x~ + x~ :::: I} 

It is easy to see that the XI-axis is the optimal axis (i.e. for example c = 0 and </> = cp = 0.) 
In fact, any plane intersecting the object (without intersecting the surfaces corresponding 
to XI = 0 and XI = 10) leads to a slice sl(y) with value bey) greater than or equal to 1. 
This value is minimal (equal 1) only for the XI axis . Hence, the optimal axis does not only 
avoid the center of gravity (5, - ~ , 0) but does not even meet an inner point of FP. 

In Section 2 we have parameterized all possible axes by (CI, C2, C3, </> , cp) (cf. (1 )). Con­
sequently, we regard the MTS-problem (6) as a minimization problem in 5 variables. 
However the problem is only 4-dimensional. To see this, consider an (optimal) axis given 
by (CI ' C2, C3, 4>, cp). Then it is obvious that any center point c on this axis will lead to the 
same profile and the same MTS (only Yb, Ye are shifted). So, in this parameterization, the 
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optimal value is never unique and this parameterization can not be used to solve (PMTS ) 
by some continuous method (e.g. steepest descent-, Newton-type methods). To indicate 
that the problem is actually a 4 dimensional problem we can argue as follows. Any axis 
(which is a candidate for an optimal one) can be seen as a line intersecting the surface 
of FP at two points. These two points can vary independently on the two-dimensional 
surface of FP, i.e. we have a 4 dimensional problem. To parameterize the (PMTs)-problem 
by 4 parameters we can restrict ourselves to center points c in a fixed plane. However, this 
plane has to be chosen in such a way that the optimal axis (to be determined) is not 'paral­
lel' to this plane (i.e. the optimal axis is not perpendicular to the normal vector de</>, cp». 
Nearly 'parallel' situation would lead to a bad condition of the optimization problem. 

We end up with comments on future developments. 

1. The method as described in this paper has been implemented and examples have 
been calculated in [Wilharms, 1998]. However until now, the minimization pro­
cedure has been implemented as a simple discretization method. To make the al­
gorithm more efficient, the minimization problem (PMTS ) should be solved by some 
continuous method using derivatives (e.g. a conjugate gradient method). A diffi­
culty here is the fact, that the profile function bey) as a function of (c, </>, cp) need 
not be differentiable at all parameter points (c, </>, cp). Note, that even in the poly­
hedral (convex) case the function voIU(c, </>, cp) is not a convex function in general. 
In particular, local (non-global) minima may occur. 

2. Further investigations are necessary in the case of holed objects. In particular, FP's 
with different holes should be considered. 

3. In a next step, the algorithm could be extended to the case of objects bounded by 
spherical and ellipsoidal surfaces. 

4. The following generalization could be of interest (MTS of k axes). In this paper, 
we have used that FP was only machined once. What will happen if FP can be 
machined k times? i.e. what is the MTS of FP when k different axis can be used? 
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