
Attribute Evaluation and Parsing

Rieks op den Akker
Department of Computer Science, University of Twente
P.O. Box 217, NL-7500 AE Enschede, the Netherlands

e-mail: infrieks@cs.utwente.nl

Bo[ivoj Melichar
Department of Computers, Czech Technical University

Karlovo n~rnfisti 13, 121 35 Prague, Czechoslovakia
e-mail: TEPMB@ csearn.bitnet

Jorma Tarhio
Depazlment of Computer Science, University of Helsinki

Teollisuuskatu 23, SF-00510 Helsinki, Finland
e-mail: tarhio@cs.Helsinki.fi

Abstract

Attribute evaluation during top-down, bottom-up and left-comer parsing strategies is
considered. For each of these parsing strategies, restrictions are given for L-attributed
grammars that allow deterministic non-backtracking, one-pass evaluators to be used.

1. Introduction

Methods for attribute evaluation in conjunction with parsing make it possible to model a
one-pass compiler as an attribute grammar. Such a model inherits the advantages of one-pass
compilation: namely speed, simplicity, and small space requirements. Attribute values can be
used to solve parsing conflicts and assist error recovery. Evaluation during parsing can also be
applied to relieve the work of a general (multi-visit) evaluation method so that a part of the
attributes are evaluated in conjunction with parsing.

When evaluating attributes during parsing, the evaluation strategy depends on the pars-
ing method used, because the order in which the productions are recognized determines the
visit sequence of the nodes in an (imaginary) derivation tree. During LL parsing, a full top-
down (depth-first, left-to-right) walk through a derivation tree is performed. During LL pars-
ing, therefore, it is possible to evaluate all attributes for every attribute grammar that is LL
parsable and L-attributed.

LR parsing only allows a bottom-up traversal, in which every node is visited once. In
general, there is insufficient information about the upper part of the tree during bottom-up
parsing, to compute the attribute values of a node further down in the tree, at the time this
node is (imaginary) constructed. Therefore, more restrictions on an L-attributed grammar are
necessary, in order to make one-pass evaluation during bottom-up parsing possible.

In LC parsing some parts of the derivation tree are recognized in a bottom-up way, and
others are predicted like in top-down parsing. As a consequence, the evaluation of attributes
during LC parsing is based on some combination of methods used for evaluation during LL
parsing and LR parsing.

188

Basic notions and notations used in this paper are presented in section 2. In section 3 we
present attribute evaluation during top-down LL parsing, suitable for L-attributed LL(1)
grammars. In section 4, we consider attribute evaluation during bottom-up LR parsing and
define the class of MLR-attributed grammars. In section 5 we present left-corner parsing, and
show how for a restricted class of L-attributed left-corner grammars, all attributes can be
evaluated during left-corner parsing. In section 6 we offer some conclusions. Section 7 men-
tions some translator writing systems that generate processors which employ attribute evalua-
tion during parsing. The bibliography at the end gives an overview of the literature in this
area.

2. Basic concepts and notations

This section presents some basic concepts and notations concerning context-free gram-
mars and attribute grammars.

We denote a context-free grammar (CFG) by a four-tuple G =(N,E,P,Z). The sets N
of nonterminals and E of terminals form the vocabulary V =N t3E. Elements of V are called
grammar symbols and they are denoted by roman capitals towards the end of the alphabet.
The letters A, B denote elements of N. The letters a , b denote elements of E, and u, v
and w denote elements of E*. Greek letters ~,1~, �9 �9 �9 are used to denote the elements of V*,
the set of strings over V. The symbol e denotes the empty string. P c_N • V* is the set of
productions. A production p ~ P is written X ~ (x, where X ~ N is called the left-hand side
of p , and o ~ V* is called the right-hand side o f p . The symbol Z ~ N is the start symbol
which has only one production and which does not appear on the right-hand side of any pro-
duction. We assume a CFG G is reduced, i.e. V does not contain useless symbols, and P
does not contain useless productions.

The derivation relation =~ is defined as follows. For any a,[3 ~ V*, ~ =~ 13 if o~=yiA 72,
13=y1yoy2 and A --~yo ~ P where A e N and Yo,Y1,T2~ V*. I f y 2 e E* we write (X~rm ~. If
(X~r*m [3, we say that [~ is obtained by a rightmost derivation from o~ (~ * denotes the
reflexive and transitive closure of the relation ~) . Strings in V* obtained by a rightmost
derivation from the start symbol Z are called right sententialforms. A sequence p 1,P2 Pk
of productions is called a right parse of [3 to c~ in the grammar G, if ~ is obtained by a right-
most derivation from (z by applying the productions in the reverse order. The set of terminal
strings derived from the start symbol Z is denoted by L (G).
A nonterminal A is left-recursive if A ~ A (x for some (~ e V*. If for some A a N there is
a derivation A ~ A I (Z l ~ . . . ~Ano~n'"" oq,(n >1) with A n =A, then the productions
A i --~ Ai+lO~i+ 1 are called left-recursive productions of the grammar.

We define the set Firstk(T) for y e V*, as follows. Firstk(y)={ x ~ E* [y=**xa and
Ix [=k, or y ~ * x and Ix [< k }, where the length of a string ~ V* is denoted by I~1.

Our definition of attribute grammars is based on [Knu68] and [Fi183].
An attribute grammar (AG) G over a semantic domain D is a CFG Go, the underlying CFG
of the AG, augmented with attributes and semantic rules. A semantic domain D is a pair
(~ ,~) , where f~ is a set of sets, the sets of attribute values, and �9 is a collection of mappings
of the form f :V lXV2 x...xVm --~Vo, where m > 0 and Vie ~, 0 < i < m.
The set of attribute symbols is denoted by A and partitioned into IA (inherited attribute sym-
bols) and SA (synthesized attribute symbols). For each attribute symbol b e A, a set
V (b) e f2 contains all possible values of the attributes corresponding to b. There is a fixed set
of attribute symbols associated with every grammar symbol. For X e V, A (X) denotes the
set of attribute symbols of X. An attribute is denoted X.a, where X a V and a ~ A (X).

189

Ia (B) (SA (B)) denotes the set of inherited (synthesized) attributes of B. We assume that no
inherited attribute symbols are associated with terminals and the start symbol. Attribute sets
of each grammar symbol are linearly ordered with the inherited attributes preceding the syn-
thesized attributes.
A production p:Xo-->X1X2"" "Xn has an attribute occurrence k.b, O<k <n, ifXk.b is an
attribute. An attribute occurrence k.b of p is called an input occurrence, if either b E IA and
k = 0, or b ~ SA and k > 0. Otherwise k.b is said to be an output occurrence. For each out-
put occurrence k.b of p , there is exactly one semantic rule k.b := f (j l .a 1 Jm .am), where
every ji.ai is an input occurrence of p and f is a function of the form
f : V I • V2 •215 Vm ---> Vo in �9 such that V0 = V (b) and V i : V (ai) for 1 < i < m. Notice that
attribute grammars are in Bochmann normal form.
An attribute grammar is L-attributed [LRS74], if for every semantic rule
k.b : = f (j l . a l jm.am),b ~ IA,Ji <k foreach i=1 m.

3. Attribute evaluation during LL parsing
In this section we present the construction of a non-backtracking one-pass evaluator for

the class LL-AG of L-attributed grammars that have an underlying CFG that is LL (1). First,
we select a kind of LL parser suitable for attribute evaluation. The classical LL (1) parser (cf.
[AhU72]) uses a parsing table and saves in the parsing stack suffixes of left sentential forms
of the left derivation being constructed. This parser is not suitable for attribute evaluation,
because it is necessary to use a separate stack for storing values of attributes. The reason is
that it is not possible to store values of attributes in the parsing stack, because attributes
evaluated during parsing arc; attributes of symbols which are already popped from the parsing
stack. Thus, the use of the classical LL parser as a basis of attribute evaluation leads to the
use of two stacks, which may cause implementation problems.

Another implementation technique for L-attributed LL (1) grammars is based on a recur-
sive descent parser [ASU], consisting of a set of (recursive) procedures, one for each nonter-
minal symbol of the grammar. It is easy to augment this parser in such a way that it can also
perform evaluation of attributes during parsing. The inherited attributes of nonterminal A
correspond with input parameters of the procedure for A, the synthesized attributes
correspond with output par~Lmeters. The values of the attributes are now kept on the run-time
parsing stack. Hence, a single stack is sufficient for storing both the syntactical symbols and
the attribute values. In order to show the similarities and the differences with the methods for
attribute evaluation during LR parsing and during LC parsing, which are discussed in the
next two sections, we show the stack implementation of the recursive descent method. With
each symbol stored in the parsing stack, the parser needs information about the rule to which
it belongs. The parsing stack will contain state symbols that have the form ([A ---> o~. 13], p).
The first component, [A ---> 0~. 13], of a state symbol is a state item, if A ---> o~[3 is a production
of the CFG. If a state symbol with this state item is on top of the parsing stack, then the part o~
before the position marker ~ has already been expanded, and the part 13 is the predicted part of
the corresponding production. The second component p of the state symbol is a pair (pi, Ps),
where i is (a pointer to) a sequence of values of inherited attribute instances, and Ps is (a
pointer to) a sequence of values of synthesized attribute instances. These sequences contain

�9 The values of inherited attribute instances of the nonterminal occurrence X following
the dot in the corresponding state item of the form [A ---> tx ~ 13].

190

�9 The values o f synthesized attribute instances o f all symbols in part o~ of the correspond-
ing state item [A ---> ~.13].

Notice that we assume a fixed order o f attributes o f symbols that occur in the state items.

The LL-evaluator for an LL-AG

type tstate =
record

st : { state item };
inh : {types of inherited attributes};
synt : [types of synthesised attributes };

end;

var $: tstate;

begin
configuration := (([Z' ---> .Z],e;e), a l " " a n $);
repeat

{ The configuration is (SOS1S2" '" S m ; a j a j + l " ' " a n $) }

action := M E c (Sm .s t ,a j);

case action of
Shift :

{ Sm.s t=[X --->ot.a)~] }

S.st := g (Sin .st);
S.synt := (synt-attr-from-Sm .synt; synt-attr-of-a/);
configuration := (SoS1Sz " . Sm_IS ;aj+l " " an$)

Expand by A ---> T:
{Sin .st = [X ~ a . A [3] }
Evaluate inherited attributes of A in rule X ---> c~A [3;
Sm .inh := inh-attr-of-A ;
S.st := [A ---> .Y];
configuration := (S oS1S 2 " " SmS ;aj "'" a , $)

Reduce by A --~ T :
{Sm .st = [A "--> T"] and Sm-I .st = [X ---> a .A 13] }
Evaluate synthesized attributes of A in rule A ---> T;
Sm-l.st : = g(Sm-l.St);
{ Sm_l.St = IX ----> ff.A .[~] }
Sm-l . syn t := (synt-attr-from-Sm_l.synt; synt-attr-of-A);
configuration := (S oS1S 2 " " �9 Sin-1 ;ay . . �9 a , $)

Error:
error := True

Accept:
accept := True

end

until accept or error

end LL-evaluator.

Fig. 1 The LL-eva lua to r for an L L - A G

191

The evaluator can perform the following three actions.

1. Shift. This action takes place if a terminal symbol follows the dot in the top state item.
The state symbol is replaced by a new state symbol, which, informally, means that the
dot in the old top state, symbol is shifted to the position immediately following the termi-
nal symbol. The values of synthesized attribute instances of the shifted terminal symbol
are stored in the new top state symbol.

2. Expand. This action takes place if the state item of the top state symbol of the stack has
the form [A ---)cx.X I~] and X is a nonterminal symbol. An X-production used for
expansion of X is selected using a parse table. The construction of this table will be
given later. The values of inherited attribute instances of the occurrence of X in the pro-
duction A ---) c~X 13 are computed, and stored in the top item of the stack. Then, a new
state symbol, that corresponds to the production rule selected for expansion, is pushed
on the stack.

3. Reduce by a particular rule. This action is performed if the state item of the state symbol
on top of the stack has the form [A ---)yo], i.e. the dot is at the end position. The syn-
thesized attributes of the nonterminal symbol A are evaluated. The top state symbol is
popped off the stack. The new top state symbol will have a state item of the form
[B ---)ct.A ~], i.e. the symbol immediately following the dot equals the left-hand side
symbol of the production used in the reduction. Then, informally, the dot is shifted in
the top state item to the position immediately following the nonterminal symbol A.
Synthesized attributes, that have just been evaluated, are stored in this new top state
symbol.

During parsing, the action to be performed by the parser is uniquely determined by the
state item of the top state symbol, and the look-ahead symbol. The construction of the pars-
ing table MEG for a given AG G is based on the usual construction of the LL (1) parsing table
Me0, for the underlying CFG Go of G. Instead of a pair (A ,t), consisting of a nonterminal
symbol A and a terminal symbol t, the table ME G has entries for each pair consisting of a
state item I and a terminal symbol t.

For the construction of the parser for a given LL(1) grammar G = (N , T , P ,Z), we aug-
ment this CFG, and obtain the grammar G' =(N ' ,T ,P ' ,Z ') , where N' =N t..){Z'}, and
P' =P u {z' ~ z } .

The parsing table MEG is defined as follows.

1. MEG (I, t) = Shift if and only if I has the form [A --~ ~. t l]], where t is a terminal sym-
bol.

2. MEG(I , t)=ExpandB- - -) y if and only if I has the form [A---)o~.B[3] and
MGo(B , t) = Expand B ~ ~.

3. MEG (l ,t) = Reduce A ---)y, i f l has the form [A ---)y.].

4. MEa(I ,$)=Accep t i f /has the form[Z ' --)Z.].

5. All other entries of the table are error entries.

Notice that the values of attributes that are stored in the sequence p do not influence the pars-
ing action. In our notation for state symbols, the sequence of attribute instance values, the
pointer p of this state symbol points at if this symbol resides in the parsing stack, is included.
The part of this sequence that contains the values of instances of inherited attributes of the
symbol following the dot, is followed by a semicolon, and the values of the synthesized attri-
bute instances of the expanded prefix of the right-hand side follow the semicolon. If we use a

192

Syntactic rule Semantic rules
Z --->A B A . i := 1

B. i :=A.s + 1

Z .s :=B.s + 1

A --->a A b A. i :=A.i +a . s

A . s := A . s + b.s

A --->e A . s :=A.i + 1

B - -)c B d B. i :=B.i + c.s

B . s :=B.s +d.s

B -->e B . s :=B.i + 1

Fig. 2 The rules for Example 1

phrase like "the item in the stack", we actually mean "the state item of the state symbol in
the stack", and by "the state in the stack" we mean the state symbol in the stack including
its associated pointer. Hence, the parsing stack now simply contains states.

The LL-eva lua tor shown in Figure 1 is an implementation of the parsing and evaluation
method described. A configurat ion of this LL-evaluator, when parsing a sentence a 1 " " " an,

is a pair (STC, w), in which S T C is the s tack contents of this configuration, i.e. a sequence
of states, and w is that part of the input a 1 " �9 " an that has not been consumed by the parser.
The init ial conf igurat ion of the parser with input w is (([Z' ---> .Z],e;e), w), where e denotes
the empty sequence of attribute values. The function g used by the LL-evaluator, when it
performs a shift or reduce action, gives for each state S with state item of the form
[A ---> ~x.X 13] the state with state item of the form [A ---> o0(. [3].

Example 1 Let G be the LL-AG with production rules and semantic rules, as shown in the
table in Figure 2. The underlying CFG of G is augmented with production 0: Z' ~ Z. Non-
terminal symbols A and B have inherited attribute i and synthesized attribute s. Nonterminal
symbol Z, and the terminal symbols a ,b ,c, and d all have a synthesized attribute, denoted s.
The shift and expand entries of the parsing table M E G for this example, are shown in Figure
3. []

Z
A
B
a

b
C

d

a b
Z ---> .AB
A ---> .aAb A -->.

shift
shift

Z---> oAB
A --->.
B ---> . c B d

shift

B --->.

shift

Z ---> . A B

A---->o

B--->o

Fig. 3 The (partial) parsing table for Example 1

193

Stack contents Rest of input
1 ([Z' ~ .Z],e;e), a [1]b [2]c [3]d [415

2 ([Z' ~ .Z],e;e)
([Z --) .AB],e;e), a [1]b [2]c [31d [4]$

3 ([7," ~ .Z],e;e)
([Z ---) .AB],A.i=l ;e)
([A ---) .aAb],e;e), a [1]b [2]c [3]d [4]$

4 ([Z' --..Z],e;e)
([Z .-) .AB],A.i =1 ;e)
([A ---) a .Ab],e;a.s=l), b [2]c [3]d [4]$

5 ([z" -~ .z],e;e)
([z ~ .AB],A.i=I;e)
([A --) a .Ab],A.i=2;a.s=l)
([A ~ .],e;e), b [2]c [3]d [415

6 ([Z' ~ .Z],e;e)
([Z --) .AB],A.i=I;e)
([A --) aA .b],A.i =2;a.s=l,A.s =3), b [2]c [3]d [4]$

7 ([z' -+ .z],e;e)
([Z -~ .AB],A.i=l;e)
([A ~ aAb .],e;a.s=l,A.s =3,b.s=2), c [3]d [4]$

8 ([z' -~ .z],~;e)
([z --)A .B],e;A.s=5), c [3]d [4]$

9 ([Z' -)oZ],e;e)
([Z ~ A .B],B.i =6;A.s =5)
([B --) .cBdl,e;e), c [3]d [4]$

10 ([Z' --) .Zl,e;e)
([Z ---) A .B],B.i =6;A.s=5)
([B --) c .Bd],e;c.s=3), d [4]$

11 ([z' --> .Zl,e;e)
([Z --+ A .B],B.i =6;A.s =5)
([B ---) c .Bd],B.i =9;c.s=3)
([B ~ .],e;e), d[415

12 ([Z" ~ .Z],e;e)
([Z --) A .B],B.i=6",A.s =5)
([B ---> c B . d],e;c.s =3,B.s=10), d [4]$

13 ([Z' --) .Z],e;e)
([Z . ~ A .B],B.i=6;A.s =5)
([B ---) cBd .],e;c.s =3,B,s = l O,d.s--4), $

14 ([Z' ---> .Z],e;e)
([Z ~ A B .],e;A.s=5,B.s =14), $

15 ([Z" --~Z.],e;Z.s =15), $

Fig. 4 T h e m o v e s of the L L . e v a l u a t o r for E x a m p l e 1

Notice that this table is indexed by g rammar symbols instead o f state items. W e can use
this condensed table form, because for all t ~ s the value M E G ([A ---> o~.X ~], t) is com-
pletely determined by X and t , i.e. this value does not depend on A , o~ or 13. This is true for

194

all LL (1) grammars. The LL(1) attribute evaluator performs the sequence of moves for the
input string: a [1] b [2] c [3] d[4] as shown in Figure 4.

In this paper we do not study the use of attribute values during parsing. If attribute
values are used to solve LL (1) parsing conflicts, the underlying CFG of an L -attributed gram-
mar need not be LL(1) for making a deterministic top-down parser. Notice that a parsing
conflict of an LL(1) parser always means that an occurrence of a nonterminal can be
expanded by more than one production. Let us call an AG ALL(I) if all LL(1) parsing
conflicts can be solved by using the values of the inherited attributes of the nonterminal that
has to be expanded. It is shown in [Mi177] that all recursively enumerable languages can be
generated by such an ALL(l) grammar. This implies that it is undecidable whether a sen-
tence is generated by an ALL(l) grammar. However, if we restrict the semantic attribute
domains to finite ones, then ALL(l) grammars generate exactly the class of deterministic
context-free languages, i.e. the class of languages generated by LR(1) grammars! (cf.
[Akk88]) This implies that LR (1) parsing can be simulated by deterministic non-backtracking
attributed LL (1) parsing, in which attributes are used to solve LL (1) parsing conflicts.

4. Attribute evaluation during LR parsing
The LR parsing method is the best known non-backtracking parsing method. LR parsers

can be constructed to recognize virtually all programming language constructs for which
context-free grammars can be written.

Because evaluation of attributes of an L-attributed grammar is very natural in conjunc-
tion with LL parsing, there has been a widely adopted misunderstanding that it is possible to
evaluate more grammars during LL parsing than LR parsing. However, LL parsing can be
easily emulated in LR parsing [Bro74]. If we insert a different marking nonterminal (generat-
ing only an empty string) in front of the right-hand side of every production, these nontermi-
rials are recognized in the same order, during LR parsing, as the corresponding productions
are applied in LL parsing. Because this transformation does not introduce LL parsing
conflicts, the transformed grammar is still LL and thus also LR. Hence, it is possible to
evaluate in conjunction with LR parsing, every attribute grammar that can be evaluated dur-
ing LL parsing. And because LL grammars are syntactically a genuine subclass of LR gram-
mars, we are able to evaluate more grammars during LR parsing.

We shall study a method for attribute evaluation during LR parsing presented by Jones
and Madsen [JoM80], and revised by Sassa et al. [SIN85]. Other methods have been proposed
by Watt [Wat77], Pohlman [Poh83], Melichar [Me186], and Tarhio [Tar90]. We refer to
[AMT90] for more information.

LR parsing is a form of shift-reduce parsing. In shift-reduce parsing a parse tree for an
input string is constructed beginning from the leaves and working upwards to the root. We
use the following model for a shift/reduce parser. The parser has an input buffer, a parsing
stack and a parsing table. In its primitive form the parser pushes symbols of the grammar
onto the stack. The main actions are the shift of a terminal symbol that is read from the input
to the top of the stack, and reduction, in which a top most substring T from the stack is
replaced by a nonterminal A. This reduce action can only take place if there is a production
A -->~/in the grammar. An LR parser is a special shift/reduce parser. It is an algorithm that
produces for an input string its right parse to the start symbol, or reports an error if the string
is not in L (G). An LR parser scans the input from left to right without any backtracking. For
LR (k) grammars, the decision whether to reduce or to shift a terminal symbol from the input,

195

is uniquely determined by the stack contents and the leading k symbols of the rest of the
input string (the look-ahead string). The information for making this decision is given by the
LR parsing table. It is well known from the theory of LR parsing that the necessary informa-
tion from the stack contents can be obtained from a finite automaton, the LR automaton.
Therefore, instead of storing grammar symbols, the LR parser stores the states of this automa-
ton in its parsing stack. The construction of the LR (k) parsing table for a given CFG is based
on the LR (k) automaton for that CFG.

We will consider in more detail the LR (0) case. The states of the finite LR (0) automa-
ton correspond to sets of LR (0) items. An LR(O) item of a context-free grammar
G = (N , Z , P , Z) is [A --->o~,,13] where A --o~13 is a production of G. The closure of a set of
LR (0) items I is a set of items CLOSURE (I), defined as follows:

�9 Every item in I is in CLOSURE (I).

�9 If [A ~ ~ .B ~] is in CLOSURE (I) and B --~'~ is a production of G , then add the item
[B ~ .Y] to CLOSURE(I), if it is not already there.

The set of items GOTO(I ,X) for a set of items I and a grammar symbol X is
CLOSURE (BASIS (I,X)), where BASIS (I ,X) = { [A --~ oOf . ~] I [A ~ ~ .X ~] ~ I }.
Using CLOSURE and GOTO operations, the collection of sets of LR (0) items, {I0,I1 In },
is constructed starting from the initial set of LR(O) items, Io=CLOSURE([Z' ~ .Z $]),
where we assume the CFG is augmented with a production Z" --->Z$ if the start symbol Z of
G occurs in the right-hand side of a production, or if this symbol is the left-hand side of more
than one production. We always assume the input is followed by the end marker $.

The sets Ij correspond to the states Sj of the LR(0) automaton. Thus, in particular, So
corresponds with set I0. The transition function 8 of the LR (0)-automaton corresponds with
GOTO , i.e. 8(Si ,X) =S i if and only if GOTO (Ij ,X) =lj. The final state Sf of the automaton
is the state GOTO (Io,Z).

Remark. If GOTO (I ,X)= GOTO (I', Y) then X = Y. Thus the grammar symbol leading to
some state in the LR (0) automaton is unique for that state. This implies that an LR parser that
stores the states on the stack, need not store the grammar symbols on the stack too. Let X be
the symbol that labels the entries to state S. We use BASIS (S) to denote the set of those
items in S that are in a set BASIS (S" ,X), for some state S'. []

There are three LR parsing methods, LR (k), LALR (k) and SLR (k), which use the same
parsing algorithm but employ different parsing tables [AhU72, ASU86]. For simplicity, we
now only consider SLR (1), also called simple LR(1). The simple LR (1) parser uses a table,
called the SLR parsing table. It is based on the LR (0) automaton and, it tells the simple
LR (1) parser what to do when the LR (0) automaton contains conflict states.

The basic actions of the simple LR (1) parser, shown in Figure 5, have the following
meaning.

�9 Shift. The current input symbol is read, and the state determined by the goto table is
placed on top of the stack.

�9 Reduce by a production A ~ ~. First, I ~ I states are popped off the stack. The goto
table gives the next state symbol q according to the state symbol on the top of the stack
and the nonterminal A. The state q is pushed on the stack. The production A -o ~ is
delivered as output.

�9 Accept. Parsing has been completed successfully.

196

The simple LR(1) parser/evaluator

Input:
A sentence a 1 " " " an $.

Output:
accept = True if and only if the sentence is correct.
If accept = True, the output contains the right-parse of the sentence.

begin
stack := (So,M (So),-);
evaluate attributes in IN (So) and store them in field M (So);
a :=read(input);
error := False;
accept := False;
repeat

state:= top(stack);
case action(state,a) of

Reduce A -~ t~:
make M (A) in temporary storage;
evaluate s-attributes of A and store them in A/(A);
pop It~l symbols from the stack;
state:=top(stack);
push goto(state, A) (= S) on the stack;
evaluate atwibutes in IN (S) and store them in field AJ (S);
copy A/(A) from temporary storage in field ,4/(A);
output A --r t~

Shift toS onX :
push S on the stack;
get the values of s-attributes of X from the
lexical analysis and store them in field AI (X);
evaluate attributes in IN (S) and store them in field A/(S);
a := read(input);

Accept :
accept := True;

Error :
error := True;

end;
until error or accept ;
end.

Fig. 5 SLR parser with at tr ibute evaluation

�9 Er ror . The input swing does not belong to L (G).

If [A -~ o~.B ~l] is an item in state S, then the inherited attributes of B are associated
with state S of the LR -automaton. Formally, the set IN(S) of inherited attributes of state S
is defined as

IN (S) = { B.a [a ~ I A (B) for some B such that [A --~ tz.B ~] in S }.

The inherited attributes in IN (S) are evaluated when a state S is pushed on the parsing stack.

197

If [A ---> c~. 13] ~ S then every attribute of every symbol in ~ is considered different, also in the
case that the same symbol occurs more than once in ~. It follows from the construction of
the LR-states that in an L-attributed grammar all attributes in IN (S) can be computed by
means of an expression in which only the input attributes of S occur as basic elements. Dur-
ing parsing, these attributes are stored in the (attributed) parsing stack.

We store values of atl~ibute instances with state symbols. Instead of state symbol Si we
actually store in stack a triple (Si ,AI (Si),AI (X i)), where AI (S i) contains the values of attri-
butes in IN (Si) (AI stands for attribute instances), and AI(X i) contains the values of syn-
thesized attributes of Xi, where Xi is the unique grammar symbol of transitions to Si. The
evaluation action connected with parsing actions are shown in Fig. 5.

Example 2 Consider the AG Gt shown in Figure 6.

Syntactic rules Semantic rules
Z --,L L.iplot :=true

L.ipos := (0,0)

L --,LS L2.ipos :=Ll.ipos
S.ipos := L2.spos
L 1.spos := S.spos
L2.iplot := L l.iplot
S.iplot := L2.splot
L 1.splot := S.splot

L --~S S.ipos :=L.ipos
L.spos := S.spos
S.iplot := L.iplot
L.splot := S.splot

S ~.(L) L.ipos :=S.ipos
S.spos := S.ipos
L.iplot := true
S.splot := S.iplot

S 4, C S.spos :=f 1 (C.id,S.ipos)
S.splot := f 2 (C.id,S.iplot)

Fig. 6 The example AG Gt

Grammar Gt describes a language for simple turtle graphics. Terminal C is a command with
six alternatives: north, south, east, west, plot and unplot. Attributes ipos (inherited) and spos
(synthesized) convey the coordinates of the plotter head, and attributes iplot (inherited) and
splot (synthesized) indicate whether the plotter head is up or down. In order to make the
grammar not too big, most of the semantics of the commands are hidden in the semantic func-
tions f 1 and f 2. A command sequence between parentheses is interpreted as follows: put
plotting on, perform the command sequence, and return to the state preceding the sequence.
First, we consider the construction of a parser for Gt, later we will also study evaluation of its
attributes. Figure 7 shows the LR (0) item sets for grammar Gt. Figure 8 shows the simple
LR (1) parsing table based on the LR (0) automaton for this example AG. An entry r2 means
reduce using the second prc>duction in Figure 6. An entry s 3 means shift and push state $3 on
the stack. The entry Ac means accept, and an entry 6 means push state $6 on the stack.

198

So: Z' ---> .Z $
Z ~ .L
L --> .LS
L--->.S
S -~ .(L)
S ~ . C

$1: Z ----> L .
L --->L .S
S ---> .(L)
S ~ . C

$2: L ~ L S ~

$3: S ---> (.L)
L --> .LS
L -->.S
S ~ .(L)
S ~ . C

$4: S ----> (Z ~
L --->L~
S ~ . (L)
S---> .C

$5: S ~ (L) .

$6: L ---> S �9

$7: S ----) C �9

$8: Z'-->Z.$

Fig. 7. The LR(0) item sets for Gt

Empty entries in this table are error entries. []

State

So s7 s3
S 1 s7 s3
$2 r2 r2 r2
$3 s7 s3
$4 s7 s3 s5
$5 r4 r4 r4
$6 r3 r3 r3
$7 r5 r5 r5

$8

action goto
C () $ Z L S

8 1
r l
r2

r 4
r3
r5
Ac

6
2

4 6
2

Fig. 8 The SLR parsing tables for the example grammar

The problem how to refer to the right attribute occurrences in the attribute stack is not solved
satisfactory by Jones and Madsen in [JoM80] and [Mad80]. The problem is solved, however,
by Sassa and others (cf. [SIN85] or [SIN87]). We follow their exposition with some minor
modifications. We distinguish occurrences of an attribute of a nonterminal symbol at dif-
ferent positions in the attribute stack. An occurrence of attribute A.a in the stack is a pair
(A.a ,offset(A.a)) where the second element indicates the position in the attribute stack rela-
tive to the top of this stack.

Consider the parsing configuration

(S o X 1 " ' " X m _ k Sin_ k "'" X m Sm, aj . . . an $).

199

The offset of an attribute in the stack is defined as follows. If a is a synthesized attribute of
Xm-k or if a is an inherited attribute of state Sm-k then offset(a) = k .
Let [A ~ X m - p "" "Xm-i Xm .B 13] be an item in state Sm on top of the stack. It follows
from the nature of LR parsing that if a is an inherited attribute of A then offset(a) is p +1. If
a is a synthesized attribute of Xm-i then offset(a) is i.

The set INP (S) of input attribute occurrences of state S is defined as follows.

INP (S) =
{ (A.a, k) [a e S A (A) for some A s.t. [B ---> ixlA ix2. [~] in S and k = offset(A.a) } u
{ (A.a, k) [a e I A (A) for some A s.t. [A ---> ix. 13] in BASIS (S) and k = offset(A.a) }.

We use numbers as superscripts of nonterminal symbols to distinguish occurrences of a non-
terminal symbol following the dot in different items in a particular state S. (e.g. A 1, A 2,...)
In the same way we distinguish occurrences of an inherited attribute A.a of these occurrences
ofA by A l.a , A 2.a
We define Fs (A t .a), the set of semantic expressions for the occurrence A t .a of A.a e IN (S).
It is defined in terms of attribute occurrences in INP (S).

For each state S and for each A.a e IN (S), let Es (A.a) denote the set of semantic expressions
of A.a .

Es (A .a) = U F s (A t . a) ,
l_<T<_p

where p is the number of items in state S in which A occurs at the position following the dot.
Fs (A t .a) is defined for all occurrences of inherited attributes in S, simultaneously, as fol-
lows:

F S (A t .a) is the smallest set such that:

�9 i f [B ---) Ix.A t [3] e BASIS (S) and the semantic rule for A.a associated with production
B ---> c~4 [3 is A.a ~ expr (a 1 an), and a i = (ai ,k) with k is the offset of the occurrence
of ai in this item, then e.xpr (a 1 an) E F S (A t .a).

�9 if [B ~ . A t ~]e S is an item directly derived from item [C---) Ix.B v T] e S, and the
semantic rule for A.a associated with production B --->A 13 is A.a ~--expr(al an),
then expr (e 1 en) e F S (A t .a), for all ei e F s (B v .ai) (1 <i <n).

Definition 3 An attribute grammar G is MLR-attributed, if

�9 G is L-attributed.

�9 The underlying CFG of G is simple LR (1).

�9 For all states S of the LR (0) automaton of G, for all attributes a in IN (S), the set Es (a)
of semantic expressions of a contains one element. []

If an attribute grammar is MLR-attributed, the attribute a in IN (S) of a state S can be
evaluated when this state is pushed on the parsing stack using the semantic expression in
E s (a). Synthesized attribute, s are computed during reduce and shift actions of the parser.

Example 4 This continues F!xample 2. The sets Es of semantic expressions of the inherited
attributes of the states of the LR (0) automaton are shown in Figure 9. Grammar Gt is clearly
MLR-attributed, because every set of expressions Es contains only one expression. In Fig. 9b
the history of parsing configurations is given for input north north (west) east. Only values
of the attribute instances associated with the topmost state symbol are shown (99 denotes
coordinates (9,9) and t denolles true). []

200

A.a in lN (S) E s (A.a)
So L.ipos (0,0)

L.iplot true
S.ipos (0,0)
S.iplot true

$1 S.ipos (L.spos ,O)
S.iplot (L.splot,O)

$2 -
$3 L.ipos (S.ipos , 1)

L.iplot true
S.ipos (S.ipos , 1)
S.iplot true

$4 S.ipos (L.spos ,0)
S.iplot (L.splot,O)

$5 -
$6 -
$7 -
$8 -

Fig. 9 The semantic expressions of the inherited attributes of Gt

Stack contents Input
(So, (O0,t,OO, t),-)
S o(S 7,-, north)
So(S6,-,(OI,t))
So(S l, (Ol,t),(Ol,t))
Sos l(S7,-,north)
SOS1($2,-,(02,t))
S o(S I, (02, t), (02, t))
SoS 1($3, (02, t ,02, t),-)
SoS 1S 3(S T,-, west)
SoS1S3($6.-,(-12,t))
SoS1S3(S4, (-12,t),(-12,t))

north north (west) east$
north (west) east$
north (west) east$
north (west) east$
(west) east$
(west) east$
(west) east$
west) east$
) castS
) castS
)east$

SoS 1S3S4(35,-, -)
SoS 1($2 -(02,t))
S o(S l, (02,t), (O2,t))
SoS l(S7,-,east)
SoS1($2,-,(12,t))
So(S l, (12,t),(12,t))
So($8,-,-)

east$
east$
east$
$
$
$
$

Fig. 9b Evaluation of input 'north north (west) east'

201

In our example, the semantic expressions are very simple. A general expression is of the
form f (xl xn), where each xi is either an input attribute occurrence or an expression.
Every time a state symbol is pushed on the stack, the inherited attributes of that state are
evaluated. The offsets of input attribute occurrences determine where the corresponding
values can be found.

Evaluation of synthesized attributes associated with nonterminals is straightforward.
Consider an attributed parsing configuration (SoX a S1 . . . X m Sm ;aj " " a k $), where Si
represents a triple (Si,AI(Si),AI(Xi)). Suppose that a reduction by Ao--->Aa.-. An is the
next parsing action. In this situation, synthesized attributes of A 0 are evaluated using the
values of synthesized atmtbutes of A 1 An, found in AI (Xm-n+l) AI (Xm), and the values
of inherited attributes of A 0, found in AI (S,n-n).

Not all L-attributed LR grammars can be evaluated during parsing. For example, if the
grammar has function rule A 2.x := f (A 1.x), associated with a left-recursive production
A ---~Aa, a n d f is not the identity function, no evaluation method is able to evaluate attributes
during LR parsing. We finally present in this section an example of another grammar that is
not MLR-attributed.

Example 5 The attribute grammar G is given by the following productions and semantic
rules.

Syntactic rule Semantic rules
Z . -) B A

Ao---~C A1B

Ao- -)AIB d

C ----) c
A ---) a
B .--~ b

A.x := B.s
B.y := 1
B.y :=A 0.x
A 1.x :=C.s
B.y :=A 0.x
A I.X :=Ao.x
C.s :=2

B.s := 1

G is not MLR-attributed. The problem concerns the offset of the inherited attribute of A.
The LR automaton for G has a state which contains items [A ~ CA ,B] and [A ---> A .Bd].
If this state is pushed on the parsing stack it is not known how far from the top we find the
inherited attribute of A from which we have to copy the inherited attribute value of B. This
depends on whether the B is in the right-hand side of the second or the third production. This
problem can be solved by splitting the production A ---> CAB in two productions, A --->CH and
H --->AB (H is a new nonterminal). The conflicting productions are then in different item
sets. []

5. Attribute evaluation during left-corner parsing.
In this section we consider a one-pass attribute evaluator based on the left-comer parsing

method, and we define a class of LC-attributed grammars. This class is related to the one-
pass left-corner evaluator, just as the class of LL-AG is related to LL -parsing (see section 3).
The left-corner of a production of the form A --->X r is the symbol X, the left-most symbol of
the right-hand side of the production. In left-comer parsing left-comers of applied produc-
tions are recognized in a bottom-up way, where the remaining part of the right-hand side is
predicted, like in a top-down parsing method. A left-corner parser for a CFG G uses an input

202

buffer and a parsing stack. Its actions are determined by a parsing table, the left-corner parse
table constructed for the CFG G. If the sentence w to be parsed is a correct sentence of G,
the leTt-comer parser delivers the left-corner parse of w.

To define the left-corner parse of a string with respect to a given CFG, we need the fol-
lowing homomorphism. Let A be a set of symbols and Z ~ A . The Z-erasing homomorphism
on A , h z : A * - -) A * is defined by h z (a) = a if a ~ Z and h~,(a)=e if a e Z . Moreover,
h x (0~++ 13) = h z (o0 ++ h z (13), where ++ denotes string concatenation, i.e. ct ++ [3 is txl]. For a
language L, we define hE(L)= { hE(x) Ix e L }. Let G = (N , Z , P , Z) be a CFG, [P I=m, A a
set {Pl Pm} of production labels, such that Zc'~A=O, and ~,6 :P --->A a labeling function
that associates with each production in P a unique symbol in A. We will omit the subscript
G and simply write ~. instead of ~'G. To a CFG G, a label set A, and a labeling function ~,
we associate the CFG Glc = (N,Y-~A,Ptc ,Z), in which Pie is defined as follows.

Plc= { a "")Pi [A -* e e P , ~.(A ---) e) =Pi } k)

{ A ~ Xpio~ I A ~ x ~ e e , ~,(A ---) X t~)=pi }.

It will be clear that ha(L(Gtc))=L(G) . We use the grammar G/c in order to define the left-
comer parse of a string x e L (G) with respect to G.

Definition 6 Let G be a CFG, x e L (G) and A, and Gtc as defined above. The sequence of
labeling symbols ~ e A* is a left-corner parse of x with respect to G if there is a string
y e L(Gtc), such that h z (y) = ~ and h A (y) = x . []

Example 7 Let G be the underlying CFG of the AG of Example 1 (see Figure 2). Figure 10
shows the productions of this grammar, and the productions of the CFG Glc associated with
G and the set of production labels A = {Pl,P 2,P 3,P 4,P 5 }.

1. Z --~A B Z --~A p l B
2. A ~ a A b A ~ a p2A b
3. A ~ A -*P3
4. B -~c B d B - . c p4B d
5. B --) e B ---) P 5

Fig. 10. The left-corner parse grammar of Example 7

Let x =a p2P3b p l c p4P5d . Clearly x e L(Glc), h~,(x)=P2P3PlP4P5, and
hA(X)=abed. Hence, the left-corner parse of the sentence abed is P2P3P IP4Ps. []

The left-corner parser is shown in Figure 11. The parser pushes symbols on the stack
that are either from V, the grammar alphabet, or items of the form [A ,X], where A e N and
X e V. The first component of such an item is the goal symbol, and the second component is
the left-corner symbol of this item. We assume a CFG is augmented with start production
Z' ---)Z$, and each sentence ends with $. The initial stack contents is the symbol Z' . The
kinds of actions the left-comer parser performs are Left-corner found, Shift, Expand by some
production of the grammar (t~ r in the Expand case in Figure 11 denotes the reversal of the
string ~), Reduce, Accept and Error.

In order to define the left-corner parsing table MLCG for a CFG G, we need some
definitions.

Definition 8 Let G = (N , Z , P , S) be a grammar. For each symbol X ~ V=NuY., we define the
set of chains CH (X) of X (with respect to G) as follows:

203

�9 I fXeEthenCH(X)={<X>}.

�9 I f X e N then <X>eCH(X) and if X---re in P then <X ,e>e CH (X).

�9 I f<p>eCH(Y) fo r someYeV , andX-- ,Y ' l inP, then<X,p>eCH(X) []

Hence, a chain in CH (X) is a sequence of symbols, starting with X. Moreover, Y follows Z
in a chain, if there is a production Z ---> Ycr for some cte V*. Elements of CH(X) are called
chains of X and denoted by t~. The last element of a chain o is denoted by l (o). Notice that
CH (X) is an infinite set if and only if there is a derivation X ~ + Xz, z E Z*, in G.

Let chain o=<X0,X1 Xn >e CH(Xo), with n>l . It follows from the definition of a chain
that there is a derivation

X 0 ~ f l X l ~ / l ~ P 2 " ' " ~"Xn~n, "~ieV *, (l_<i_<n) (*)

in G. The sequence of productions p 1P 2 " " " Pn used in derivation (*) is called a production
sequence associated with the chain o. The production sequence associated with chains of the
form <X > is the empty sequence. The string Yn is called an r-string of chain t~, or the r-
string of the sequence n=plp2" '" Pn of productions. Notice that a chain may have more
than one r-string. The length of a sequence of productions n is denoted by [n[. The last ele-
ment of a sequence n or 0 is denoted by l (n) and I (t~), respectively.

Let G=(N,E,P,Z) be a CFG. For A e N and X e V , let CH(A,X) be the set
{t~e CH (A) I l (o)=X }, i.e. the set of chains of A that end with symbol X. Moreover, let
PS (A ,X) be the set { n [n is a production sequence of a chain o e CH (A ,X) and [Ttl_> 1 }.

Definition 9 For all A a N, X e V and u e Z, the partial set of production sequences compati-
ble with look-ahead symbol u, PPS(A ,X,u), is defined as follows: ne PPS(A ,X,u), if and
only if:

�9 nePS(A ,X)

�9 There is a production B ---> aA 5 with a c e and u e First l(y&Follow (B)), where y is an
r-string of n. []

We define the left-comer parsing table for a CFG G as follows.

1. MLCG (A ,u)=Left-cornerfound, if CH(A ,u)~O.

2. MLGG (u ,u) = Shift.

3. MLCG (A,u)=ExpandbyB - ~ , i fPPS(A ,B ,u)~O andB --~e~ P .

4. MLCG ([A,X],u)=Expandbyp,i fp =l (n) , f o r s o m e n ~ PPS(A,X,u).

5. MLC6 ([,4 ,A], u) =Reduce, if u ~ Follow (A).

6. MLCG ([Z ' ,Z] ,$) =Accept.

7. All entries of the table; MLCG not defined in 1-6 are Error entries.

For an arbitrary CFG G the left-corner parsing table may contain multiply-defined entries. If
this is indeed so, then the left-comer parser has a parsing conflict. The following conflicts are
possible.

I. An expand e-rule/expand e-role conflict. In this case, there are two distinct e-roles for
which the conditions in part 3 of the definition of the table are satisfied.

2. A shift/expand conflict. In this case there is a pair (A ,u) such that MLCa (A ,u) is
defined in part 1 as a Left-corner found-entry, and in part 3 as an Expand entry.

3. An expand/expand conflict. In this case there is a pair ([A ,X] ,u) such that two distinct
productions can be used in the Expand action.

204

4. An expand/reduce conflict. In this case there is a pair ([A ,A] ,u) such that part 4 in the
definition of the table prescribes an Expand action and part 5 defines this entry as a
Reduce action. This conflict can only occur i fA is a left-recursive nonterminal.

Of these conflicts the first two are also LR (1) conflicts. They do not occur if G is LR (1),
The second two conflicts are typical lef t -comer conflicts.

The left-corner parser using a left-corner parsing table

begin
config := (Z';al "" �9 an$);
accept := False;
error := False;
repeat

{ The confgurat ion is (I01112""Im ;ajaj+l �9 "" an$) }
action := MLCG (Ira ,aj);
case action of

LcFound :
{ I r a = A }
config := (10/112 . . . In_ 1 [A ,aj] ;aj+l �9 �9 �9 an$);

Shift :
{Ira =a j }
config := (/0/112" �9 �9 Ira-1 ;aj+l �9 �9 �9 an$);

Expand by B ~ e :
{ I r a = A }
config := (101112... Ira-1 [A ,B] ; aj . . . an$);

Expand by B ~ X tz :
{Ira = [A,X] }
config := (101112"" Ira-1 [A ,B] o~ r ; aj " " an $);

Reduce :
{Ira = [A,A] }
config := (101112"" "/m-1 ;aj " " an$)

Error:

Accept:
error := True

{ Ira = [Z',Z] andre = 0 }
accept := True

end
until accept o r error
end Left comer parser.

Fig. 11 T h e le f t -corner parser

A parsing configuration (STC,w) of the left-corner parser identifies the state of the
parser at a particular moment while parsing an input sentence x . It consists o f the stack con-
tents STC, which is a sequence of stack symbols (the last symbol is the top most stack sym-
bol), and the unread part w of the input string x . The left-corner parsing table for the gram-
mar G of Example 7 is shown in Figure 12. The meanings of the entries in this table are as
follows. Lc f means Left-corner found, s means a Shift action, e 3 indicates an Expand action
using production P3 of the grammar, Red means a Reduce action, and Ac indicates that the

205

action is Accept. The empty entries in the table are Error entries.

a

b
C

d
Z'
A
B
[Z',a]
[Z',A]
[A ,a]
[A,A]
[B,c]
[B ,B]
[z ,z ']

a b c d
S

S

S

S

Lcf e3 e3
Lcf e3 e 3

Lcf e5 e5
e2 e2

e l e l
e2 e2

Red
e4 e4

Red Red
Ac

Fig. 12 The left-corner parsing table for Example 7

Figure 13 shows the configurations of the left-corner parser and the output, for this example
grammar, for the input string abcd$.

5
6
7
8
9

10
11
12
13

stack input output
Z

f

[Z' ,a]
[Z',A] b A

[Z',A]b [A,A]
[Z',A] b

[Z',A]
[Z',ZlB

[Z',Z] [B ,c]
[Z' ,Z][B,Bld B

[Z',Z] [B,B] d [B,B]
[z ' , z] [B ,B] d

[Z',Z] [B ,B]
[Z',Z]

abcd$
bcas
bcd$
bcd$
bcd$

cd$
cd$
,IS
aS
aS
aS

$
$

P 2

P2P3
P2P3
P2P3
P2P3Pl
P2P3Pl
P2P3PlP4
P2P3PlP4P5
P2P3PlP4P5
P2P3PlP4P5
P2P3PlP4P5

Fig. 13 The moves of the left-corner parser

We now present a definition of LC (k) grammars. In order to clarify the difference
between and the similarity to the LR (k) grammars, we first present the definition of LR (k)
grammars.

Definition 10 A CFG G is said to be LR (k) grammar, k > O, if the three conditions

1. Z ~r~n cxAw ~rm r

206

2. Z =::~r*m yBx ==~rm O~y, and

3. Firstk (w) = Firstk (y)

imply that txAy = TBx.

A production A --> 13 of G is said to satisfy the LR(k) condition if the conditions 1, 2 and 3
always imply ctAy= yBx . []

Definition 11 A CFG G is said to be LC (k), k > O, if each e-production satisfies the LR (k)-
condition (see Definition 10), and if for each production A --->X 13, the conditions

1. Z ~r*rn flag 1 ~rrn ff.~ ~z 1 :=~r*m ffXy 1 z 1

2. Z ~*m o(Bz2 ~rrn O~'(~'X'~z2 ~*rn O~'O~"Xy2z2

3, ~'t~" = o~ and Firstk (y lZ 1) = Firstk (y 2z 2),

always imply that cxA = ogB and 13 = y. []

This form of the definition of LC (k) grammars is from Soisalon-Soininen and Ukkonen
[SOU76]. Other characterizations of the left-comer grammars can be found in [Akk88]. It is
shown in [SOS77] that LL(k) grammars are L C (k) and that LC(k) grammars are LR(k).
These inclusions are proper. From a practical point it is interesting to notice that LC (k)
grammars may be left-recursive, although the class of LC(k) languages (k >0) coincides
with the class o fLL (k) languages. For readers interested in the precise extension of the class
of LC (0) languages we refer to [Akk89].

Here, we will only consider LC (1) parsing, i.e. only one symbol look-ahead is used.
The left-comer parsing table constructed for a CFG G, does not contain multiply-defined
entries if and only if G is LC (1). A full proof of this statement is tedious and long, and can
be found in [Akk88].

We now define the class of LC-attributed grammars and present the LC-
parser/evaluator, based on the left-corner parser. Let S be a set PPS (A ,X ,u) associated with
a CFG G. We define the set of inherited attributes of S as follows

IN (S)={ a I a ~ I A (B), B is left-hand side of l (~), for some ~za S }.

If G is an LC(1) grammar, then for any two production sequences ~] and ~2 in S,
l (~1) = l (~2). Thus, the inherited attributes in IN(S) are inherited attributes of a nonterminal
symbol of the grammar, namely the nonterminal symbol that is the left-hand side of l (~1).

Let 7z be a production sequence in S. If ~ has length one, then the left-hand side of I 0z) is A,
and the inherited attributes of S are the inherited attributes o f A . Let r e = p i p 2 . . . Pn with
n > 1, Pi: Xi-1 -'->XiYi (l</_<_n), Xo=A, and Xn=X. Let a ~ IN(S) . This means that a is an
inherited attribute of symbol Xn-1.
Suppose that G is the underlying CFG of an L-attributed grammar. Then the inherited attri-
butes of symbols Xi only depend on inherited attributes of the symbol Xi-1. Thus, inherited
attribute a depends (via a sequence of semantic functions associated with the productions that
occur in re, excluding the last production) on the inherited attributes of A.

For each attribute a e IN (S), we define the set of semantic expressions Es (a) as follows.

�9 If ~ in S and I 1-- 1 then a is the semantic expression associated with ~, and a is an ele-
ment of Es (a).

�9 If x in S equals x'q where q is the production B ---~Xy, and the semantic rule for X.a
associated with q is X.a ~--expr (al an), then expr(e l en) is an element of Es(a).
This is the semantic rule associated with ~, in which ei is the semantic expression of

207

B.ai associated with ~'. (Notice that all ai are inherited attributes of B).

Definition 12 An attribute grammar G is LC-anributed, if

�9 G is L -attributed.

�9 The underlying CFG of G is LC (1).

�9 For all partial sets of production sequences S, for all attributes a in IN(S) , the set
Es (a) of semantic expressions of a contains one element. []

It can be shown that it is decidable whether an AG is LC-attributed (cf. [Akk88]).
Notice that, if an LC-attributed grammar has a left-recursive production, then the semantic
rules for the inherited attributes of the left-comer symbol of this production must be copy-
rules. In case of a copy-rule X.a ~---B.b, the semantic expression for X.a is obtained from the
semantic expression of B.b by a simple substitution. The condition that these semantic rules
are copy-rules is not sufficient for an AG to be LC-attributed. The copy-rules should also
preserve an ordering of inherited attributes, because the semantic expressions expr (A.x,A.y)
and expr (A.y ,A.x) are, of course, different.

Example 13 Consider the; attribute grammar given in Figure 14.

Syntactic rule
E' --->E

E ---~E +T

E --~ T

T -§ * F

T -§

F -->(E)

F -§ a

Semantic rules
E.i := e ; E'.s := E.s

E2.i := El. i ; T.i := E2.s ++Pl
E I.S := T.s

T.i :=E.i ; E.s :=T.s ++p2

T2.i := Tl.i ; F.i := T2.s ++P3
T l.S := F.s

F.i := T.i ; T.s :=F.s-t-+p 4

E.i := F.i ++ P 5 ; F.s := E.s

F.s := F.i ++ P 6

Fig. 14 The productions and semantic rules for Example 13

If t is a derivation tree of this AG with yield w, and ~ is the value of the attribute s of the
unique node of t that has label E ' , then ~ is the left-corner parse of w. In general, this AG
defines the translation from the input sentence into its left-corner parse. It will be clear that
this AG is LC-attributed. []

The LC-parser/evaluator (see Figure 15) is based on the left-comer parser of Figure 11.
An attributed parsing configuration is similar to the parsing configuration but instead of the
stack symbols of the form B and [B ,C] used by this parser, we have attributed items of the
form

�9 ([A ---> cz .B 13], inh (A),syn (oO,inh (B)) (instead of stack symbols of the form B), and

�9 ([A --~o~.B~;C],inh(A),syn(oO,inh(B),syn(C)) (instead of stack symbols of the form
[B,C]).

These attributed items are comparable to those used by the LL parser/evaluator of section 3.
In the attributed configurations of the left-corner evaluator, inh (A) is a sequence of values of

208

the inherited attribute instances of A in the stack. The sequence of values of synthesized
attributes of C is denoted by syn (C). The notation syn (00, where o~ =X 1 " " " Xn, denotes the
sequence that consists of the sequences syn (X i).

The syntactic actions of the evaluator are determined by its Action table and its associ-
ated table M, that prescribes the stack changes. These tables are derived from the left-comer
parsing table MLCG in the following way. The attribute part of an attributed item does not
influence the parsing actions to be performed by the evaluator. Therefore, they are not men-
tioned in the definition of the tables.

1. If item X has the form [A ---)tx.B [~], with et ~ e, or A =Z', and MLCG (A, u)=Left-
corner found, then Action (X , u) =LcFound, and
M (X,a)=[A ---)ct.B~;u].

2. If item X hastheform[A-~oq.uo~z],withoq~eandA~Z' ,andMLGG(U,u)=Shif t ,
then Action (X,u)=Shift-term, andM (X,u) = [A ---) ~lU .tx2].

3. If item X has the form [A~oq.Bcr with txl~e or A=Z' , and
MLCG (B,u) =Expand by D ---) e, then Action (X,u) =Expand by D ---)e, and
M (X,u)=[D -~ .][A --> (Zl.B ~2;D].

4. If item X has the form [A -~ Ctl.B Ct2 ;Y], and MLCc ([B ,Y],u)=Expand by D --~ Y ~,
then Action (X ,u) =Expand by D --~ Y ~, and
M (X,u)=[D ---)Y .~] [A ---)oq.Bct2;D].

5. If item X has the form [A---)oq.Bot2;B], and MLC a ([B ,B],u)=Reduce, then
Action (X ,u) = Shift-nont, and M (X ,u) = [A ---) oqB .ct2].

6. Ifi temX has the form [A ~ o~.], thenAction (X ,u) = Reduce, and M (X,u) =e.

7. IfX is the item [Z' ~ Z . $], then Action (X ,$) = Accept.

8. All entries of the tables not defined in 1-7 are Error entries.

I fM(X,u)=Y1Y~, then itemX on top of the stack is replaced by items Y1 and Y2 (with
Y1 on the top and Y2 below it). It will be clear from the definition of these tables that they do
not contain multiply-defined entries if and only if the table MLCa does not contain them.

The semantic actions of the parser/evaluator are computations of attributes of the new
top most stack symbol which use only attribute values of the actual top most stack symbol.

We will now show that the LC parser/evaluator can parse LC (1) grammars and evaluate
all LC-attributed grammars. Suppose that in a parsing configuration, the stack symbol
[A ~o~.B ~;C] is on top of the parsing stack. Then the associated item fields for attribute
values will contain the inherited attributes of A, the synthesized attributes of symbols in t~,
the inherited attributes of B (the active goal), and the synthesized attributes of C (the recog-
nized left-corner). A symbol of this form appears on the top of the stack after a Reduce
action with a C-production. Now, either a Shift-nont or an Expand by D ---)C ~ action can
occur. In the case of a Shift-nont action, the active goal symbol B must equal the recognized
left-comer symbol C. The synthesized attributes of C are then copied in the field of the
semantic stack for the synthesized attributes of symbols before the dot in the top most item.
The inherited attributes of the first symbol following the dot are computed from the inherited
attributes of A and the synthesized attributes of tx and C. In the case of an Expand action, the
inherited attributes of D, which is the left-hand side of the recognized production, are com-
puted from the inherited attributes of B, which is the active goal symbol. If the grammar is
LC-attributed this is always possible, using for inherited attribute D.a the semantic expres-
sion in Es (a) where S is the set PPS (B ,D ,u) and u is the look-ahead symbol. Furthermore,

209

LC parser/evaluator for an LC-attributed grammar

begin
accept := False;
error := False;
stack :=([Z' --~ .Z $],e,e,e);
a := read(input) { input contains a 2" �9 " an $, and a = a 1 }
repeat

{ attributed config, is ([Z' ---) .Z $],e,e,e, �9 �9 �9 X ; aj . . - an $);
case Action (X ,a) of

LcFound :
{X=[A ---)a.B~];M(X,a)=[A ----)~.B~;a] }
pop; push (M(X,a));
a := read(input);

Expand by D ---) YI] :
{ X=[A --) al .B~2;Y] }
{M(X,a)=[D --~Y.~][A ---) a l .B ~2;D] }
pup; push (M(X,a));
compute inh(D); copy syn(Y);
if l:l~eN then compute inh(l:13) end;

Expand by D ---) lz :
(X=[A ~ a l .B a2] }
{ M (X,a)=[D .--).][A ---) a l .B a2;D] }
pop; push (M(X,a)); compute inh(D);

Shift-term :
{ X=[A --> al.a~z]; M (X ,a)=[A ---> ala .a2] }
pop; push M (X,a);
a := read(input);
if 1 :a2~ N then compute inh(1 :~2) end;

Shift-nont :
{ X=[A -->~I.BoGB] andM(X,a)=[A ---)alB .~2] }
pop; push (M(X,a)); copy syn(B);
if l :~2~N then compute inh(l:~/) end;

Reduce :
{X=[A --> a .] }
pop; compute syn(A);

Accept : accept := True
Error : error := True

end
until accept or error
end LC parser/evaluator.

Fig. 15 The LC parser/evaluator

the synthesized attributes of C are copied into the field for the synthesized attributes of C of
the new top most stack symbol and the inherited attributes of the first symbol after C in the
production that has just been recognized, are computed. After a Reduce action with the pro-
duction A ---> ~, the synthesized attributes of A are computed f rom the synthesized attributes
of a and the inherited attributes of A. All these attributes are on the top of the semantic
stack. After the pop action on the parsing stack, the new top most stack symbol has the form
[B --) c~.[3 ;A].
Just as in the LL-evaluator of section 3, a pointer can be associated with each i tem in the

210

stack that refers to the list of values of attribute instances.

We know that the LL(1) grammars are a proper subset of the LC(1) grammars. Does
this proper inclusion also hold for the corresponding classes of one-pass attribute grammars;
is LL-AG a subclass of the LC-attributed grammars? If G is an LL (1) grammar then for all
A , X a N and u~Z, the set PPS(A ,X ,u) contains at most one element. From this we may
conclude that an LL-AG is indeed LC-attributed.

There are MLR -attributed grammars that are not LC-attributed, because there are simple
LR (1) grammars that are not LC (1). The class LL-AG is not a subclass of the class of MLR -
attributed grammars defined in section 4. Hence, the class of LC-attributed grammars is also
incomparable with the class of MLR-attributed grammars. The problem with the offset of
attributes in the stack doesn't occur for LC -attributed grammars, if we use left-comer parsing.
This is obvious, because the production is recognized as soon as its left-comer symbol is
recognized. The grammar shown in Example 5 (see section 4) is not MLR-attributed, but it is
LC-attributed. One should notice that this does not contradict the fact that all LC-attributed
grammars can be evaluated by some one-pass LR parser/evaluator. But the definition of a
class of LR-attributed grammars that contains the class of LC-attributed grammars, and
hence the class LL-AG, is less restrictive than the definition of MLR-attributed grammars.
The reader is referred to [AMT90] for these larger classes of LR -attributed grammars.

It is possible to transform an LC(1) grammar G into an LL(1) grammar, say x(G), in
such a way that L (x (G)) is the same language as L (G). In order to define such a transfor-
mation we need the following relation. (A E denotes the set A u {e}.)

Definition 14 The relation >tic with respect to a CFG G is defined as follows:

,= >Fc_c__N xV~,

* (X,Y)e>ffci fandonlyi fX---)o~isaproduct ionofG and Y = l:tx. []

We write X >tc Y instead of (X, Y)~ >tic, and >~c denotes the transitive closure of >lc.

Let G = (N,Z,P ,Z) be a CFG and let N be the set {A ~N [A = z or there is a production in
P of the form B --) ~4 ~, where ctc-e}. (Thus A E/V ifA is the start symbol of G or A occurs
in the right-hand side of a production of G of which it is not the left-corner). Let N be
ordered: N = {At ,A 2 A n }. The grammar x (G) is the CFG (N' ,Z ,P ' ,Z) . N' is a superset
of N that contains all symbols of the form [A ,Y] (A ~ N and Y~Ve) that appear in the pro-
ductions of x(G). The set of productions P ' is defined as follows.

Initially, P ' = O. P ' will contain only those productions that are added to P ' in one of the fol-
lowing three steps.

1. For all i , l<i <n, for all a ~ Z E add to P" the production A i ---)a [A i,a], if A i ~ N and
Ai >~c a.

2. For all [Ai ,Y], where Y ~ VE, which occur in the right-hand side of a production in P ' ,
for all productions in P of the form B ~ YI], such that Ai >Pc B , add the production
[Ai, Y] --~ ~ [A i ,B] to P ' , if it is not already in P ' .

I �9

Add [Ai ,Ai] --o e to P , if A i ~ N . ~

The CFG x(G) is reduced, and L (G) =L (x (G)).

The following example illustrates this transformation.

Example 15 Consider the CFG G given by the
T ---)T • and T ---~id.

productions: Z ---)Z + T , Z ---)T,

211

Symbols id, + and x are terminal symbols.
x (G) are shown in Figure 16.

Z .---> id [Z, id]
[Z ,T] ---> [Z,Z]
[Z,Z] .--->+ T [Z,Z]
T ---> id [T ,id]
[T,T] ~ e

The productions of the transformed grammar
[]

[Z ,id] ---> [Z ,T]
[Z,T] ---> x id [Z,T]
[Z,Z] --->e
[T,id] ---> [T,T]
[T,T] -.-> x id IT,T]

Fig. 16 The productions of the transformed grammar

Notice that the nonterminal symbols of x(G) are the stack symbols used by the left-
corner parser. Transformation x has the following property. From the left-parse of each sen-
tence w ~ L (G), with respect to the CFG x(G), it is possible to obtain the left-corner parse of
w with respect to the original CFG G.

Suppose that G is an LC-attributed AG. If the semantic rules for the inherited attributes
of left-comer symbols of G are copy-rules, then it is easy to augment the transformation x
and obtain an attributed transformation that results in an L-attributed LL (1) grammar. By an
implementation of this augmented transformation, we can extend a compiler writing system
for LL-AG and obtain a compiler writing system for LC-attributed grammars. The reader is
invited to produce an LL-AG from the LC-attributed grammar of Example 13. For more
details concerning the tran:fformation "r, we refer to [Akk88].

6. Concluding remarks

One-pass compilation based on attribute grammars has several advantages over more
general methods. One of the advantages is that it is not necessary to store the complete parse
tree for evaluation of the attributes. Another advantage is that attribute values can be used to
solve parsing conflicts, so that the underlying CFG of an AG does not have to be deterministi-
cally parsable by the parsing method used. We have presented three classes of attribute
grammars for which attribute evaluation can be performed during parsing. We have shown
that a parser/evaluator for the class of LC-attributed grammars can be defined using concepts
and techniques that are inherited from the implementation of L-attributed LL (1) grammars,
and the implementation techniques used for the evaluation of inherited attributes during LR
parsing.

7. Existing systems

We give a list of some existing translator writing systems that generate processors which
employ attribute evaluation during parsing. We consider only systems with one-pass evalua-
tion of both inherited and synthesized attributes in conjunction with parsing. This list is cer-
tainly not exhaustive. More systems are described in [DJL88].

Systems for attribute evaluation during top-down parsing include CWS2 [BOW78],
MUG1 [GRW76], MIRA (LILA) [LDH83], APARSE [MKR79], SUPER [Set82], and TCGS
[Sch91]. APARSE was the first system where the values of attributes were used to influence
parsing. TCGS, the Twente Compiler Generator System, is a compiler writing system for L -
attributed LL (1) grammars in Extended BNF-notation. It produces a scanner and a recursive
descent parser/evaluator.

212

MUG1 [GRW76], Rie [SIS90], Poco [Eu185], Metauncle [Tar89] and Haripriyan's sys-
tem [HSS88] are translator writing systems for attribute evaluation during LR parsing. Rie is
a system that can produce parser/evaluators for the class of LR-attributed grammars defined
in [SIN85]. Metauncle, developed in the HLP project at the University of Helsinki, generates
evaluators for uncle-attributed grammars [Tar90]. Haripriyan's system implements
Pohlmann's evaluation method [Poh83]. The system SABLE from Twente University gen-
erates an LALR (1) parser/evaluator that can use attribute values to solve parse conflicts. The
input grammar can be syntactically ambiguous [Ve188].

There appear to be very few compiler writing systems that generate a parser/evaluator
based on left-corner parsing. Programmar is a system that generates a backtracking
parser/evaluator for affix grammars, based on left-corner parsing [Mei86].

Acknowledgements
We are grateful to Albert Nijmeijer for critically reading a draft of this paper.

Bibliography
The following list contains papers and books that cover attribute evaluation and parsing.

They are either referred to in this paper, or they arc included because they are not mentioned
in the bibliography [DJL88].

[ASU86] Aho, A.V., Sethi, R. and Ullman, J.D. Compilers, Principles, Techniques and Tools.
Addison-Wesley PUN., Reading, Mass., 1985.

[AhU72] Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation and Compiling. Vol. 1 and
Vol.2, Prentice Hall, Englewood Cliffs, N.J., 1972.

[Akk88] op den Akker, R. Parsing attribute grammars. Doctoral dissertation, Dept. Comput. Sci.,
University of Twente, The Netherlands, 1988.

[Akk89] op den Akker, R. On LC(0) grammars and languages. Theoretical Comput. Sei. 66 (1989)
65-85.

[AMT90] op den Akker, R., Melichar, B. and Tarhio J. The hierarchy of LR-attributed grammars. In:
Proc. of Intemational Conference WAGA on Attribute Grammars and their Applications (ed. P.
Deransart and M. Jourdan), Lect. Notes Comput. Sci. 461, Springer-Verlag, Berlin, 1990, 13-28.

[Bea82] Beatty, J.C. On the relationship between the LL(1) and LR(1) grammars, Journal of the ACM
29 (1982) 1007-1022.

[BOW78] Bochman, G. and Ward, P. Compiler writing system for attribute grammars. The Computer
Journal 21, 2 (1978), 144-148.

[Bro74] Brosgol, B.M. Deterministic translation grammars. Ph.D. Thesis, TR-74, Harvard Univer-
sity, Cambridge, Mass., 1974.

[DJL88] Deransart, P., Jourdan, M. and Lorho, B. Attribute Grammars - Definitions, Systems and
Bibliography. Lectu. Notes Comput. Sci. 323, Springer-Verlag, Berlin, 1988.

[Eu185] Eulenstein, M. POCO - Compiler generator user manual. Techn. Bericht A2/85, Universitat
des Saarlandes, 1985.

[Fi183] Filr, G. The theory of attribute grammars. Doctoral dissertation, Twente University of Tech-
nology, Enschede, The Netherlands, 1983.

[GRW76] Ganzinger, H., Ripken, K. and Wilhelm, R. MUG1 - an incremental compiler-compiler. In:
ACM 1976 Annual Conference, 415-418.

[Hal87] Hall, M. The optimization of automatically generated compilers. Ph.D. thesis, Dept. Comput.
Sci., University of Colorado, 1987.

213

[HSS88] Haripriyan, H., Srikant, Y. and Shankar, P. A compiler writing system based on affix gram-
mars. Comp. Lang. 13 (1988), 1-11.

[JoM80] Jones, N.D. and Madsen, C.M. Attribute-influenced LR parsing. In: Proc. of the Aarhus
Workshop on Semantics-Directed Compiler Generation, N.D. Jones (ed.) Springer-
Veflag,Berlin, 1980, 393-407.

[Knu68] Knuth, D.E. Semantics of context-free languages, Mathematical Systems Theory 2 (1968)
127-145. Correction in: Mathematical Systems Theory 5 (1971) p.95.

[LDH83] Lewi, J.,De Vlaeminck, K., Huens, J. and Steegmans, E. The language implementation
laboratory LILA: an overview. In: Microcomputers; developments in industry, business and
education (eds. D. Wilson and C. van Spronsen), Elsevier, 1983, 11-21.

[LRS74] Lewis, P.M., Rosenkrantz, D.J. and Steams, R.E. Attributed translations, J. Comput. System
Sci. 9 (1974) 279-307.

[Mad80] Madsen, C.M. Parsing attribute grammars. M. Sc. thesis. Dept. Comput. Sci., University of
Aarhus, Aarhus, 1980.

[Mei86] Meijer, H. Programmar: a translator generator. Doctoral dissertation, University of Nijmegen,
The Netherlands, 1986.

[Mel86] Melichar, B. Attributed translation directed by LR parser and its implementation. In: Proc. of
the Bautzen Workshop on Compiler Compilers and Incremental Compilation, Informatik
Reporte 1989: 12, Akademie der Wissenschaften der DDR, GDR, 1986, 273-290.

[Mi177] Milton, D. Syntactic specification and analysis with attributed grammars. Technical report
#304, Comput. Sci. Dept., University of Wisconsin-Maddison, Wisconsin, 1977.

[MKR79] Milton, D., Kirchoff, L. and Rowland, B. An ALL(l) compiler generator. In: ACM SIG-
PLAN '79, Symposium on Compiler Construction, SIGPLAN Notices 17, 10 (1979), 152-157.

[NaS86] Nakata, I and Sassa, M. L-attributed LL(1)-grammars are LR(1)-attributed, Information Pro-
cessing Letters 23 (1986) 325-328.

[Poh83] Pohlmann, W. LR parsing of affix grammars, Acta lnformatica 20 (1983) 283-300.

[Row77] Rowland, B.R. Combining parsing and evaluation for attribute grammars. Technical Report
#308, Comput. Sci. Dept., University of Wisconsin-Madison, Madison, Wisconsin, 1977.

[Sas88] Sassa, M. Incremental attribute evaluation and parsing based on ECLR-attributed grammars.
Technical Report ISE-TR-88-66, Institute of Information Sciences and Electronics, University of
Tsukuba, 1988.

[S/N85] Sassa, M., Ishizuka, H. and Nakata, I. A contribution to LR-attributed grammars, Journal of
Information Processing 8 (1985) 196-206.

[SIN87] Sassa, M., Ishizuka, H. and Nakata, I. ECLR-attributed grammars: a practical class of LR-
attributed grammars, Information Processing Letters 24 (1987) 31-41.

[SIS90] Sassa, M., Ishizuka, H, Sawatani, M. and Nakata, I. Rie - intrtxluction and user's manual.
Technical Report ISE- TR-90-82, Institute of Information Sciences and Electronics, University
of Tsukuba, 1990.

[Sch91] Schepers, W.J.M. Twente Compiler Generator System, user's guide, Memoranda Informatica
91-aa, Dept. Comput. ScL, University of Twente, The Netherlands, 1991.

[Ser82] Serebryakov, V. Principal features of the input language and implementation of the translator
design system SUPER. Prog. and Comput. Softw. 8, 1 (1982), 52-56.

[SOS77] Soisalon-Soininen, E. Characterization of LL(k) languages by restricted LR(k) grammars,
Report A-1977-3. Dept. Comput. Sci., University of Helsinki, Finland, 1977.

[SOU76] Soisalon-Soininen, E. and Ukkonen, E. A characterization of LL(k) languages. In: Auto-
mata, Languages and Programming, S. Michaelson and R. Milner (eds.), Edinburgh University

214

Press, Edinburgh, 1976, 20-30.

[StT89] B. Stiefel and P. Thiel: Application of attributed grammar for syntax and attribute-directed
bottom-up translation. In: Proc. of the Second Workshop on Compiler Compiler and High Speed
Compilation (ed. D. Hammer), Informatik Reporte 1989: 3, Akademie der Wissenschaften der
DDR, GDR, 1989, 222-238.

[Tar88] Tarhio, J. Attribute grammars for one-pass compilation. Report A-1988-11, Ph.D Thesis,
Dept. Comput. Sci., University of Helsinki, Finland, 1988.

[Tar88b] J. Tarhio: The compiler writing system Metauncle~ Report C-1988-23, Dept. Comput. Sci.,
University of Helsinki, Finland, 1988.

[Tar89] Tarhio, J. A compiler generator for attribute evaluation during LR parsing. In: Proc. of the
Second Workshop on Compiler Compiler and High Speed Compilation (ed. D. Hammer), Lect.
Notes Comput. Sci. 371, Springer-Verlag, Berlin, 1989, 146-159.

[Tar90] Tarhio, J. Uncle-attributed grammars. BIT 30 (1990) 437-449.

[Ve188] Veldhuijzen van Zanten, G.E. SABLE: a parser generator for ambiguous grammars.
Memorandum Informatica 88-62, Dept. Comput. Sci., University of Twente, The Netherlands,
1988.

[Wat77] Watt, D.A. The parsing problem of affix grammars, Acta lnformatica 8 (1977) 1-20.

