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Abstract 

Attribute evaluation during top-down, bottom-up and left-comer parsing strategies is 
considered. For each of these parsing strategies, restrictions are given for L-attributed 
grammars that allow deterministic non-backtracking, one-pass evaluators to be used. 

1. Introduction 

Methods for attribute evaluation in conjunction with parsing make it possible to model a 
one-pass compiler as an attribute grammar. Such a model inherits the advantages of one-pass 
compilation: namely speed, simplicity, and small space requirements. Attribute values can be 
used to solve parsing conflicts and assist error recovery. Evaluation during parsing can also be 
applied to relieve the work of a general (multi-visit) evaluation method so that a part of the 
attributes are evaluated in conjunction with parsing. 

When evaluating attributes during parsing, the evaluation strategy depends on the pars- 
ing method used, because the order in which the productions are recognized determines the 
visit sequence of the nodes in an (imaginary) derivation tree. During LL parsing, a full top- 
down (depth-first, left-to-right) walk through a derivation tree is performed. During LL pars- 
ing, therefore, it is possible to evaluate all attributes for every attribute grammar that is LL 
parsable and L-attributed. 

LR parsing only allows a bottom-up traversal, in which every node is visited once. In 
general, there is insufficient information about the upper part of the tree during bottom-up 
parsing, to compute the attribute values of a node further down in the tree, at the time this 
node is (imaginary) constructed. Therefore, more restrictions on an L-attributed grammar are 
necessary, in order to make one-pass evaluation during bottom-up parsing possible. 

In LC parsing some parts of the derivation tree are recognized in a bottom-up way, and 
others are predicted like in top-down parsing. As a consequence, the evaluation of attributes 
during LC parsing is based on some combination of methods used for evaluation during LL 
parsing and LR parsing. 
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Basic notions and notations used in this paper are presented in section 2. In section 3 we 
present attribute evaluation during top-down LL parsing, suitable for L-attributed LL(1) 
grammars. In section 4, we consider attribute evaluation during bottom-up LR parsing and 
define the class of MLR-attributed grammars. In section 5 we present left-corner parsing, and 
show how for a restricted class of L-attributed left-corner grammars, all attributes can be 
evaluated during left-corner parsing. In section 6 we offer some conclusions. Section 7 men- 
tions some translator writing systems that generate processors which employ attribute evalua- 
tion during parsing. The bibliography at the end gives an overview of the literature in this 
area. 

2. Basic concepts and notations 

This section presents some basic concepts and notations concerning context-free gram- 
mars and attribute grammars. 

We denote a context-free grammar (CFG) by a four-tuple G =(N,E,P,Z).  The sets N 
of nonterminals and E of terminals form the vocabulary V =N  t3E. Elements of V are called 
grammar symbols and they are denoted by roman capitals towards the end of the alphabet. 
The letters A, B .... denote elements of N. The letters a ,  b .... denote elements of E, and u, v 
and w denote elements of E*. Greek letters ~,1~, �9 �9 �9 are used to denote the elements of V*, 
the set of strings over V. The symbol e denotes the empty string. P c_N • V* is the set of 
productions. A production p ~ P is written X ~ (x, where X ~ N is called the left-hand side 
of p ,  and o ~  V* is called the right-hand side o f p .  The symbol Z ~ N  is the start symbol 
which has only one production and which does not appear on the right-hand side of any pro- 
duction. We assume a CFG G is reduced, i.e. V does not contain useless symbols, and P 
does not contain useless productions. 

The derivation relation =~ is defined as follows. For any a,[3 ~ V*, ~ =~ 13 if o~=yiA 72, 
13=y1yoy2 and A --~yo ~ P where A e N and Yo,Y1,T2~ V*. I f y 2 e  E* we write (X~rm ~. If 
(X~r*m [3, we say that [~ is obtained by a rightmost derivation from o~ ( ~ *  denotes the 
reflexive and transitive closure of the relation ~ ) .  Strings in V* obtained by a rightmost 
derivation from the start symbol Z are called right sententialforms. A sequence p 1,P2 ..... Pk 
of productions is called a right parse of [3 to c~ in the grammar G, if ~ is obtained by a right- 
most derivation from (z by applying the productions in the reverse order. The set of terminal 
strings derived from the start symbol Z is denoted by L (G). 
A nonterminal A is left-recursive if A ~ A (x for some (~ e V*. If for some A a N there is 
a derivation A ~ A I ( Z l ~  . . .  ~Ano~n'""  oq,(n >1) with A n =A, then the productions 
A i --~ Ai+lO~i+ 1 are called left-recursive productions of the grammar. 

We define the set Firstk(T) for y e  V*, as follows. Firstk(y)={ x ~ E* [y=**xa  and 
Ix [=k, or y ~ * x  and Ix [< k }, where the length of a string ~ V* is denoted by I~1. 

Our definition of attribute grammars is based on [Knu68] and [Fi183]. 
An attribute grammar (AG) G over a semantic domain D is a CFG Go, the underlying CFG 
of the AG, augmented with attributes and semantic rules. A semantic domain D is a pair 
(~ ,~ ) ,  where f~ is a set of sets, the sets of attribute values, and �9 is a collection of mappings 
of the form f :V lXV2 x...xVm --~Vo, where m > 0 and Vie  ~, 0 < i < m. 
The set of attribute symbols is denoted by A and partitioned into IA (inherited attribute sym- 
bols) and SA (synthesized attribute symbols). For each attribute symbol b e A, a set 
V (b) e f2 contains all possible values of the attributes corresponding to b. There is a fixed set 
of attribute symbols associated with every grammar symbol. For X e V, A (X) denotes the 
set of attribute symbols of X. An attribute is denoted X.a, where X a V and a ~ A (X). 
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Ia (B) (SA (B)) denotes the set of inherited (synthesized) attributes of B.  We assume that no 
inherited attribute symbols are associated with terminals and the start symbol. Attribute sets 
of each grammar symbol are linearly ordered with the inherited attributes preceding the syn- 
thesized attributes. 
A production p:Xo-->X1X2"" "Xn has an attribute occurrence k.b, O<k <n, ifXk.b is an 
attribute. An attribute occurrence k.b of p is called an input occurrence, if  either b E IA and 
k = 0, or b ~ SA and k > 0. Otherwise k.b is said to be an output occurrence. For each out- 
put occurrence k.b of p ,  there is exactly one semantic rule k.b := f  ( j l .a  1 ..... Jm .am), where 
every ji.ai is an input occurrence of p and f is a function of the form 
f : V I • V2 •215 Vm ---> Vo in �9 such that V0 = V (b) and V i : V (ai) for 1 < i < m. Notice that 
attribute grammars are in Bochmann normal form. 
An attribute grammar is L-attributed [LRS74], if for every semantic rule 
k.b : = f ( j l . a l  ..... jm.am),b ~ IA,Ji <k foreach i=1 ..... m. 

3. Attribute evaluation during LL parsing 
In this section we present the construction of a non-backtracking one-pass evaluator for 

the class LL-AG of L-attributed grammars that have an underlying CFG that is LL (1). First, 
we select a kind of LL parser suitable for attribute evaluation. The classical LL (1) parser (cf. 
[AhU72]) uses a parsing table and saves in the parsing stack suffixes of left sentential forms 
of the left derivation being constructed. This parser is not suitable for attribute evaluation, 
because it is necessary to use a separate stack for storing values of attributes. The reason is 
that it is not possible to store values of attributes in the parsing stack, because attributes 
evaluated during parsing arc; attributes of symbols which are already popped from the parsing 
stack. Thus, the use of the classical LL parser as a basis of attribute evaluation leads to the 
use of two stacks, which may cause implementation problems. 

Another implementation technique for L-attributed LL (1) grammars is based on a recur- 
sive descent parser [ASU], consisting of a set of (recursive) procedures, one for each nonter- 
minal symbol of the grammar. It is easy to augment this parser in such a way that it can also 
perform evaluation of attributes during parsing. The inherited attributes of nonterminal A 
correspond with input parameters of the procedure for A, the synthesized attributes 
correspond with output par~Lmeters. The values of the attributes are now kept on the run-time 
parsing stack. Hence, a single stack is sufficient for storing both the syntactical symbols and 
the attribute values. In order to show the similarities and the differences with the methods for 
attribute evaluation during LR parsing and during LC parsing, which are discussed in the 
next two sections, we show the stack implementation of the recursive descent method. With 
each symbol stored in the parsing stack, the parser needs information about the rule to which 
it belongs. The parsing stack will contain state symbols that have the form ([A ---> o~. 13 ], p). 
The first component, [A ---> 0~. 13 ], of  a state symbol is a state item, if A ---> o~[3 is a production 
of the CFG. If a state symbol with this state item is on top of the parsing stack, then the part o~ 
before the position marker ~ has already been expanded, and the part 13 is the predicted part of 
the corresponding production. The second component p of the state symbol is a pair (pi, Ps), 
where i is (a pointer to) a sequence of values of inherited attribute instances, and Ps is (a 
pointer to) a sequence of values of synthesized attribute instances. These sequences contain 

�9 The values of inherited attribute instances of the nonterminal occurrence X following 
the dot in the corresponding state item of the form [A ---> tx ~ 13 ]. 
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�9 The values o f  synthesized attribute instances o f  all symbols in part o~ of  the correspond- 
ing state item [A ---> ~.13 ]. 

Notice that we assume a fixed order o f  attributes o f  symbols that occur in the state items. 

The LL-evaluator for an LL-AG 

type tstate = 
record 

st : { state item }; 
inh : {types of  inherited attributes}; 
synt : [types of synthesised attributes }; 

end; 

var $ : tstate; 

begin 
configuration := (([Z' ---> .Z ],e;e), a l " " a n  $);  
repeat 

{ The configuration is (SOS1S2" '"  S m ; a j a j + l " ' "  a n $ ) }  

action := M E c  (Sm .s t ,a j  ); 

case action of  
Shift : 

{ Sm.s t=[X --->ot.a)~] } 

S.st := g (Sin .st); 
S.synt := (synt-attr-from-Sm .synt; synt-attr-of-a/); 
configuration := (SoS1Sz " . Sm_IS ;aj+l " " an$  ) 

Expand by A ---> T: 
{Sin .st = [X ~ a . A [ 3 ]  } 
Evaluate inherited attributes of A in rule X ---> c~A [3; 
Sm .inh := inh-attr-of-A ; 
S.st := [A ---> .Y]; 
configuration := (S oS1S 2 " " SmS ;aj "'" a , $  ) 

Reduce by A --~ T : 
{Sm .st = [A "--> T" ] and Sm-I .st = [X ---> a .A  13] } 
Evaluate synthesized attributes of A in rule A ---> T; 
Sm-l.st : =  g(Sm-l.St); 
{ Sm_l.St = IX ----> ff.A .[~] } 
Sm-l . syn t  := (synt-attr-from-Sm_l.synt; synt-attr-of-A); 
configuration := (S oS1S 2 " " �9 Sin-1 ;ay . .  �9 a ,  $ ) 

Error: 
error := True 

Accept: 
accept := True 

end 

until accept or error 

end LL-evaluator. 

Fig. 1 The  LL-eva lua to r  for  an  L L - A G  
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The evaluator can perform the following three actions. 

1. Shift. This action takes place if a terminal symbol follows the dot in the top state item. 
The state symbol is replaced by a new state symbol, which, informally, means that the 
dot in the old top state, symbol is shifted to the position immediately following the termi- 
nal symbol. The values of synthesized attribute instances of the shifted terminal symbol 
are stored in the new top state symbol. 

2. Expand. This action takes place if the state item of the top state symbol of the stack has 
the form [A ---)cx.X I~] and X is a nonterminal symbol. An X-production used for 
expansion of X is selected using a parse table. The construction of this table will be 
given later. The values of inherited attribute instances of the occurrence of X in the pro- 
duction A ---) c~X 13 are computed, and stored in the top item of the stack. Then, a new 
state symbol, that corresponds to the production rule selected for expansion, is pushed 
on the stack. 

3. Reduce by a particular rule. This action is performed if the state item of the state symbol 
on top of the stack has the form [A ---)yo ], i.e. the dot is at the end position. The syn- 
thesized attributes of the nonterminal symbol A are evaluated. The top state symbol is 
popped off the stack. The new top state symbol will have a state item of the form 
[B ---)ct.A ~ ], i.e. the symbol immediately following the dot equals the left-hand side 
symbol of the production used in the reduction. Then, informally, the dot is shifted in 
the top state item to the position immediately following the nonterminal symbol A. 
Synthesized attributes, that have just been evaluated, are stored in this new top state 
symbol. 

During parsing, the action to be performed by the parser is uniquely determined by the 
state item of the top state symbol, and the look-ahead symbol. The construction of the pars- 
ing table MEG for a given AG G is based on the usual construction of the LL (1) parsing table 
Me0, for the underlying CFG Go of G. Instead of a pair (A ,t), consisting of a nonterminal 
symbol A and a terminal symbol t, the table ME G has entries for each pair consisting of a 
state item I and a terminal symbol t. 

For the construction of the parser for a given LL(1) grammar G = ( N , T , P  ,Z), we aug- 
ment this CFG, and obtain the grammar G' =(N ' ,T ,P ' ,Z ' ) ,  where N' =N t..){Z'}, and 
P' =P u {z' ~ z } .  

The parsing table MEG is defined as follows. 

1. MEG (I, t) = Shift if and only if I has the form [A --~ ~.  t l] ], where t is a terminal sym- 
bol. 

2. MEG(I , t )=ExpandB- - - ) y  if and only if I has the form [A---)o~.B[3] and 
MGo(B , t)  = Expand B ~ ~. 

3. MEG (l ,t ) = Reduce A ---)y, i f l  has the form [A ---)y.]. 

4. MEa( I ,$ )=Accep t  i f /has the form[Z '  --)Z.].  

5. All other entries of the table are error entries. 

Notice that the values of attributes that are stored in the sequence p do not influence the pars- 
ing action. In our notation for state symbols, the sequence of attribute instance values, the 
pointer p of this state symbol points at if this symbol resides in the parsing stack, is included. 
The part of this sequence that contains the values of instances of inherited attributes of the 
symbol following the dot, is followed by a semicolon, and the values of the synthesized attri- 
bute instances of the expanded prefix of the right-hand side follow the semicolon. If we use a 
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Syntactic rule Semantic rules 
Z --->A B A . i  := 1 

B. i  :=A.s + 1 

Z .s  :=B.s + 1 

A --->a A b A. i  :=A.i  +a . s  

A . s  := A . s  + b.s 

A --->e A . s  :=A.i  + 1 

B - - )c  B d B. i  :=B.i  + c.s 

B . s  :=B.s +d.s  

B -->e B . s  :=B.i  + 1 

Fig. 2 The rules for Example 1 

phrase like "the item in the stack", we actually mean "the state item of the state symbol in 
the stack", and by "the state in the stack" we mean the state symbol in the stack including 
its associated pointer. Hence, the parsing stack now simply contains states. 

The LL-eva lua tor  shown in Figure 1 is an implementation of the parsing and evaluation 
method described. A configurat ion of this LL-evaluator, when parsing a sentence a 1 " " " an,  

is a pair (STC, w ), in which S T C  is the s tack  contents  of this configuration, i.e. a sequence 
of states, and w is that part of the input a 1 " �9 " an that has not been consumed by the parser. 
The init ial  conf igurat ion of the parser with input w is (([Z' ---> .Z],e;e), w), where e denotes 
the empty sequence of attribute values. The function g used by the LL-evaluator, when it 
performs a shift or reduce action, gives for each state S with state item of the form 
[A ---> ~x.X 13 ] the state with state item of the form [A ---> o0(. [3 ]. 

Example 1 Let G be the LL-AG with production rules and semantic rules, as shown in the 
table in Figure 2. The underlying CFG of G is augmented with production 0: Z' ~ Z. Non- 
terminal symbols A and B have inherited attribute i and synthesized attribute s. Nonterminal 
symbol Z,  and the terminal symbols a ,b ,c,  and d all have a synthesized attribute, denoted s. 
The shift and expand entries of the parsing table M E G  for this example, are shown in Figure 
3. [] 

Z 
A 
B 
a 

b 
C 

d 

a b 
Z ---> .AB 
A ---> .aAb A -->. 

shift 
shift 

Z---> oAB 
A --->. 
B ---> . c B d  

shift 

B --->. 

shift 

Z ---> . A B  

A---->o 

B--->o 

Fig. 3 The (partial) parsing table for Example 1 
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Stack contents Rest of input 
1 ([Z' ~ .Z],e;e), a [1]b [2]c [3]d [415 

2 ([Z' ~ .Z],e;e) 
([Z --) .AB ],e;e), a [1]b [2]c [31d [4]$ 

3 ([7," ~ .Z],e;e) 
([Z ---) .AB ],A.i=l ;e) 
([A ---) .aAb],e;e), a [1]b [2]c [3]d [4]$ 

4 ([Z' --..Z],e;e) 
([Z .-) .AB ],A.i =1 ;e) 
([A ---) a .Ab ],e;a.s=l), b [2]c [3]d [4]$ 

5 ([z" -~ .z],e;e) 
([z ~ .AB ],A.i=I;e) 
([A --) a .Ab ],A.i=2;a.s=l ) 
([A ~ .],e;e), b [2]c [3]d [415 

6 ([Z' ~ .Z],e;e) 
([Z --) .AB ],A.i=I;e) 
([A --) aA .b ],A.i =2;a.s=l,A.s =3), b [2]c [3]d [4]$ 

7 ([z' -+ .z],e;e) 
([Z -~ .AB ],A.i=l;e) 
([A ~ aAb .],e;a.s=l,A.s =3,b.s=2), c [3]d [4]$ 

8 ([z' -~ .z],~;e) 
([z --)A .B ],e;A.s=5), c [3]d [4]$ 

9 ([Z' -)oZ],e;e) 
([Z ~ A .B ],B.i =6;A.s =5) 
([B --) .cBdl,e;e), c [3]d [4]$ 

10 ([Z' --) .Zl,e;e) 
([Z ---) A .B ],B.i =6;A.s=5) 
([B --) c .Bd],e;c.s=3), d [4]$ 

11 ([z' --> .Zl,e;e) 
([Z --+ A .B ],B.i =6;A.s =5) 
([B ---) c .Bd ],B.i =9;c.s=3) 
([B ~ .],e;e), d[415 

12 ([Z" ~ .Z],e;e) 
([Z --) A .B ],B.i=6",A.s =5) 
([B ---> c B . d  ],e;c.s =3,B.s=10), d [4]$ 

13 ([Z' --) .Z],e;e) 
([Z . ~  A .B ],B.i=6;A.s =5) 
([B ---) cBd .],e;c.s =3,B,s = l O,d.s--4), $ 

14 ([Z' ---> .Z],e;e) 
([Z ~ A B  . ],e;A.s=5,B.s =14), $ 

15 ([Z" --~Z. ],e;Z.s =15), $ 

Fig. 4 T h e  m o v e s  of  the L L . e v a l u a t o r  for E x a m p l e  1 

Notice  that this table is indexed by g rammar  symbols  instead o f  state items. W e  can use 
this condensed  table form, because for all t ~ s  the value M E G  ([A ---> o~.X ~ ], t )  is com-  
pletely determined by  X and t ,  i.e. this value does not depend  on A ,  o~ or  13. This is true for  
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all LL (1) grammars. The LL(1) attribute evaluator performs the sequence of moves for the 
input string: a [1] b [2] c [3] d[4] as shown in Figure 4. 

In this paper we do not study the use of attribute values during parsing. If attribute 
values are used to solve LL (1) parsing conflicts, the underlying CFG of an L -attributed gram- 
mar need not be LL(1) for making a deterministic top-down parser. Notice that a parsing 
conflict of an LL(1) parser always means that an occurrence of a nonterminal can be 
expanded by more than one production. Let us call an AG ALL(I) if all LL(1) parsing 
conflicts can be solved by using the values of the inherited attributes of the nonterminal that 
has to be expanded. It is shown in [Mi177] that all recursively enumerable languages can be 
generated by such an ALL(l) grammar. This implies that it is undecidable whether a sen- 
tence is generated by an ALL(l) grammar. However, if we restrict the semantic attribute 
domains to finite ones, then ALL(l) grammars generate exactly the class of deterministic 
context-free languages, i.e. the class of languages generated by LR(1) grammars! (cf. 
[Akk88]) This implies that LR (1) parsing can be simulated by deterministic non-backtracking 
attributed LL (1) parsing, in which attributes are used to solve LL (1) parsing conflicts. 

4. Attribute evaluation during LR parsing 
The LR parsing method is the best known non-backtracking parsing method. LR parsers 

can be constructed to recognize virtually all programming language constructs for which 
context-free grammars can be written. 

Because evaluation of attributes of an L-attributed grammar is very natural in conjunc- 
tion with LL parsing, there has been a widely adopted misunderstanding that it is possible to 
evaluate more grammars during LL parsing than LR parsing. However, LL parsing can be 
easily emulated in LR parsing [Bro74]. If we insert a different marking nonterminal (generat- 
ing only an empty string) in front of the right-hand side of every production, these nontermi- 
rials are recognized in the same order, during LR parsing, as the corresponding productions 
are applied in LL parsing. Because this transformation does not introduce LL parsing 
conflicts, the transformed grammar is still LL and thus also LR. Hence, it is possible to 
evaluate in conjunction with LR parsing, every attribute grammar that can be evaluated dur- 
ing LL parsing. And because LL grammars are syntactically a genuine subclass of LR gram- 
mars, we are able to evaluate more grammars during LR parsing. 

We shall study a method for attribute evaluation during LR parsing presented by Jones 
and Madsen [JoM80], and revised by Sassa et al. [SIN85]. Other methods have been proposed 
by Watt [Wat77], Pohlman [Poh83], Melichar [Me186], and Tarhio [Tar90]. We refer to 
[AMT90] for more information. 

LR parsing is a form of shift-reduce parsing. In shift-reduce parsing a parse tree for an 
input string is constructed beginning from the leaves and working upwards to the root. We 
use the following model for a shift/reduce parser. The parser has an input buffer, a parsing 
stack and a parsing table. In its primitive form the parser pushes symbols of the grammar 
onto the stack. The main actions are the shift of a terminal symbol that is read from the input 
to the top of the stack, and reduction, in which a top most substring T from the stack is 
replaced by a nonterminal A. This reduce action can only take place if there is a production 
A -->~/in the grammar. An LR parser is a special shift/reduce parser. It is an algorithm that 
produces for an input string its right parse to the start symbol, or reports an error if the string 
is not in L (G). An LR parser scans the input from left to right without any backtracking. For 
LR (k) grammars, the decision whether to reduce or to shift a terminal symbol from the input, 
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is uniquely determined by the stack contents and the leading k symbols of the rest of the 
input string (the look-ahead string). The information for making this decision is given by the 
LR parsing table. It is well known from the theory of LR parsing that the necessary informa- 
tion from the stack contents can be obtained from a finite automaton, the LR automaton. 
Therefore, instead of storing grammar symbols, the LR parser stores the states of this automa- 
ton in its parsing stack. The construction of the LR (k) parsing table for a given CFG is based 
on the LR (k) automaton for that CFG. 

We will consider in more detail the LR (0) case. The states of the finite LR (0) automa- 
ton correspond to sets of LR (0) items. An LR(O) item of a context-free grammar 
G = ( N , Z , P , Z )  is [A --->o~,,13] where A --o~13 is a production of G. The closure of a set of 
LR (0) items I is a set of items CLOSURE (I), defined as follows: 

�9 Every item in I is in CLOSURE (I). 

�9 If [A ~ ~ .B  ~] is in CLOSURE (I) and B --~'~ is a production of G ,  then add the item 
[B ~ .Y] to CLOSURE(I), if it is not already there. 

The set of items GOTO(I ,X)  for a set of items I and a grammar symbol X is 
CLOSURE (BASIS (I,X)), where BASIS (I ,X ) = { [A --~ oOf . ~] I [A ~ ~ .X ~ ] ~ I }. 
Using CLOSURE and GOTO operations, the collection of sets of LR (0) items, {I0,I1 ..... In }, 
is constructed starting from the initial set of LR(O) items, Io=CLOSURE([Z'  ~ .Z $]), 
where we assume the CFG is augmented with a production Z" --->Z$ if the start symbol Z of 
G occurs in the right-hand side of a production, or if this symbol is the left-hand side of more 
than one production. We always assume the input is followed by the end marker $. 

The sets Ij correspond to the states Sj of the LR(0) automaton. Thus, in particular, So 
corresponds with set I0. The transition function 8 of the LR (0)-automaton corresponds with 
GOTO , i.e. 8(Si ,X ) =S i if and only if GOTO (Ij ,X ) =lj.  The final state Sf  of the automaton 
is the state GOTO (Io,Z). 

Remark. If GOTO (I ,X)= GOTO (I', Y) then X = Y. Thus the grammar symbol leading to 
some state in the LR (0) automaton is unique for that state. This implies that an LR parser that 
stores the states on the stack, need not store the grammar symbols on the stack too. Let X be 
the symbol that labels the entries to state S. We use BASIS (S) to denote the set of those 
items in S that are in a set BASIS (S" ,X), for some state S'.  [] 

There are three LR parsing methods, LR (k), LALR (k) and SLR (k), which use the same 
parsing algorithm but employ different parsing tables [AhU72, ASU86]. For simplicity, we 
now only consider SLR (1), also called simple LR(1). The simple LR (1) parser uses a table, 
called the SLR parsing table. It is based on the LR (0) automaton and, it tells the simple 
LR (1) parser what to do when the LR (0) automaton contains conflict states. 

The basic actions of the simple LR (1) parser, shown in Figure 5, have the following 
meaning. 

�9 Shift. The current input symbol is read, and the state determined by the goto table is 
placed on top of the stack. 

�9 Reduce by a production A ~ ~. First, I ~ I states are popped off the stack. The goto 
table gives the next state symbol q according to the state symbol on the top of the stack 
and the nonterminal A. The state q is pushed on the stack. The production A -o ~ is 
delivered as output. 

�9 Accept. Parsing has been completed successfully. 
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The simple LR(1) parser/evaluator 

Input: 
A sentence a 1 " " " an $. 

Output: 
accept = True if and only if the sentence is correct. 
If accept = True, the output contains the right-parse of the sentence. 

begin 
stack := (So,M (So),-); 
evaluate attributes in IN (So) and store them in field M (So); 
a :=read(input); 
error := False; 
accept := False; 
repeat  

state:= top(stack); 
case action(state,a ) of 

Reduce A -~ t~: 
make M (A) in temporary storage; 
evaluate s-attributes of A and store them in A/(A ); 
pop It~l symbols from the stack; 
state:=top(stack); 
push goto(state, A ) (= S) on the stack; 
evaluate atwibutes in IN (S) and store them in field AJ (S); 
copy A/(A ) from temporary storage in field ,4/(A ); 
output A --r t~ 

Shift toS  onX : 
push S on the stack; 
get the values of s-attributes of X from the 
lexical analysis and store them in field AI (X); 
evaluate attributes in IN (S) and store them in field A/(S);  
a := read(input); 

Accept : 
accept := True; 

Error : 
error := True; 

end; 
until error or accept ; 
end. 

Fig. 5 SLR parser  with at tr ibute evaluation 

�9 Er ror .  The input swing does not belong to L (G). 

If [A -~ o~.B ~l] is an item in state S, then the inherited attributes of B are associated 
with state S of the LR -automaton. Formally, the set IN(S )  of inherited attributes of  state S 
is defined as 

IN (S) = { B.a [ a ~ I A (B) for some B such that [A --~ tz.B ~] in S }. 

The inherited attributes in IN (S) are evaluated when a state S is pushed on the parsing stack. 
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If [A ---> c~. 13] ~ S then every attribute of every symbol in ~ is considered different, also in the 
case that the same symbol occurs more than once in ~. It follows from the construction of 
the LR-states that in an L-attributed grammar all attributes in IN (S) can be computed by 
means of an expression in which only the input attributes of S occur as basic elements. Dur- 
ing parsing, these attributes are stored in the (attributed) parsing stack. 

We store values of atl~ibute instances with state symbols. Instead of state symbol Si we 
actually store in stack a triple (Si ,AI (Si),AI (X i )), where AI (S i ) contains the values of attri- 
butes in IN (Si) (AI stands for attribute instances), and AI(X i) contains the values of syn- 
thesized attributes of Xi, where Xi is the unique grammar symbol of transitions to Si. The 
evaluation action connected with parsing actions are shown in Fig. 5. 

Example 2 Consider the AG Gt shown in Figure 6. 

Syntactic rules Semantic rules 
Z --,L L.iplot :=true 

L.ipos := (0,0) 

L --,LS L2.ipos :=Ll.ipos 
S.ipos := L2.spos 
L 1.spos := S.spos 
L2.iplot := L l.iplot 
S.iplot := L2.splot 
L 1.splot := S.splot 

L --~S S.ipos :=L.ipos 
L.spos := S.spos 
S.iplot := L.iplot 
L.splot := S.splot 

S ~.(L) L.ipos :=S.ipos 
S.spos := S.ipos 
L.iplot := true 
S.splot := S.iplot 

S 4, C S.spos :=f 1 (C.id,S.ipos) 
S.splot := f 2 (C.id,S.iplot ) 

Fig. 6 The example AG Gt 

Grammar Gt describes a language for simple turtle graphics. Terminal C is a command with 
six alternatives: north, south, east, west, plot and unplot. Attributes ipos (inherited) and spos 
(synthesized) convey the coordinates of the plotter head, and attributes iplot (inherited) and 
splot (synthesized) indicate whether the plotter head is up or down. In order to make the 
grammar not too big, most of the semantics of the commands are hidden in the semantic func- 
tions f 1 and f 2. A command sequence between parentheses is interpreted as follows: put 
plotting on, perform the command sequence, and return to the state preceding the sequence. 
First, we consider the construction of a parser for Gt, later we will also study evaluation of its 
attributes. Figure 7 shows the LR (0) item sets for grammar Gt. Figure 8 shows the simple 
LR (1) parsing table based on the LR (0) automaton for this example AG. An entry r2  means 
reduce using the second prc>duction in Figure 6. An entry s 3 means shift and push state $3 on 
the stack. The entry Ac means accept, and an entry 6 means push state $6 on the stack. 
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So: Z' ---> .Z $ 
Z ~ .L 
L --> .LS 
L--->.S 
S -~ .(L ) 
S ~ . C  

$1: Z ----> L .  
L --->L .S 
S ---> .(L ) 
S ~ . C  

$2: L ~ L S  ~ 

$3: S ---> ( .L )  
L --> .LS 
L -->.S 
S ~ .(L ) 
S ~ . C  

$4: S ----> (Z ~ 
L --->L~ 
S ~ . ( L )  
S---> .C 

$5: S ~ ( L ) .  

$6: L ---> S �9 

$7: S ----) C �9 

$8: Z'-->Z.$ 

Fig. 7. The LR(0) item sets for Gt 

Empty entries in this table are error entries. [] 

State 

So s7 s3 
S 1 s7 s3 
$2 r2 r2 r2 
$3 s7 s3 
$4 s7 s3 s5 
$5 r4 r4 r4 
$6 r3 r3 r3 
$7 r5 r5 r5 

$8 

action goto 
C ( ) $ Z L S 

8 1 
r l  
r2  

r 4  
r3  
r5  
Ac 

6 
2 

4 6 
2 

Fig. 8 The SLR parsing tables for the example grammar 

The problem how to refer to the right attribute occurrences in the attribute stack is not solved 
satisfactory by Jones and Madsen in [JoM80] and [Mad80]. The problem is solved, however, 
by Sassa and others (cf. [SIN85] or [SIN87]). We follow their exposition with some minor 
modifications. We distinguish occurrences of an attribute of  a nonterminal symbol at dif- 
ferent positions in the attribute stack. An occurrence of attribute A.a in the stack is a pair 
(A.a ,offset(A.a)) where the second element indicates the position in the attribute stack rela- 
tive to the top of  this stack. 

Consider the parsing configuration 

( S o X  1 " ' "  X m _  k Sin_ k "'" X m Sm,  aj . . .  an $ ). 
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The offset of an attribute in the stack is defined as follows. If a is a synthesized attribute of 
Xm-k or if a is an inherited attribute of state Sm-k then offset(a ) = k .  
Let [A ~ X m - p  "" "Xm-i .... Xm .B 13] be an item in state Sm on top of the stack. It follows 
from the nature of LR parsing that if a is an inherited attribute of A then offset(a ) is p +1. If 
a is a synthesized attribute of Xm-i then offset(a ) is i. 

The set INP (S) of input attribute occurrences of state S is defined as follows. 

INP ( S ) = 
{ (A.a, k ) [ a e S A (A) for some A s.t. [B ---> ixlA ix2. [~ ] in S and k = offset(A.a ) } u 
{ (A.a, k ) [ a e I A (A)  for some A s.t. [A ---> ix. 13 ] in BASIS (S) and k = offset(A.a ) }. 

We use numbers as superscripts of nonterminal symbols to distinguish occurrences of a non- 
terminal symbol following the dot in different items in a particular state S. (e.g. A 1, A 2,...) 
In the same way we distinguish occurrences of an inherited attribute A.a of these occurrences 
ofA by A l.a , A 2.a ..... 
We define Fs (A t .a ), the set of semantic expressions for the occurrence A t .a of A.a e IN (S). 
It is defined in terms of attribute occurrences in INP (S). 

For each state S and for each A.a e IN (S), let Es (A.a) denote the set of semantic expressions 
of A.a . 

Es (A .a )  = U F s ( A t . a ) ,  
l_<T<_p 

where p is the number of items in state S in which A occurs at the position following the dot. 
Fs (A t .a )  is defined for all occurrences of inherited attributes in S, simultaneously, as fol- 
lows: 

F S ( A  t .a  ) is the smallest set such that: 

�9 i f  [B ---) Ix.A t [3 ] e BASIS (S) and the semantic rule for A.a associated with production 
B ---> c~4 [3 is A.a ~ expr (a 1 . . . . .  an ), and a i = (ai ,k)  with k is the offset of the occurrence 
of ai in this item, then e.xpr (a 1 ..... an ) E F S (A t .a  ). 

�9 if [B ~ . A t ~  ]e S is an item directly derived from item [C---) Ix.B v T] e S, and the 
semantic rule for A.a associated with production B --->A 13 is A.a ~--expr(al  ..... an), 
then expr ( e 1 ..... en ) e F S (A t .a ), for all ei e F s (B v .ai ) (1 <i <n). 

Definition 3 An attribute grammar G is MLR-attributed, if 

�9 G is L-attributed. 

�9 The underlying CFG of G is simple LR (1). 

�9 For all states S of the LR (0) automaton of G,  for all attributes a in IN (S),  the set Es (a) 
of semantic expressions of a contains one element. [] 

If an attribute grammar is MLR-attributed, the attribute a in IN (S) of a state S can be 
evaluated when this state is pushed on the parsing stack using the semantic expression in 
E s (a). Synthesized attribute, s are computed during reduce and shift actions of the parser. 

Example 4 This continues F!xample 2. The sets Es of semantic expressions of the inherited 
attributes of the states of the LR (0) automaton are shown in Figure 9. Grammar Gt is clearly 
MLR-attributed, because every set of expressions Es contains only one expression. In Fig. 9b 
the history of parsing configurations is given for input north north ( west ) east.  Only values 
of the attribute instances associated with the topmost state symbol are shown (99 denotes 
coordinates (9,9) and t denolles true). [] 
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A.a in lN (S ) E s (A.a ) 
So L.ipos (0,0) 

L.iplot true 
S.ipos (0,0) 
S.iplot true 

$1 S.ipos (L.spos ,O) 
S.iplot (L.splot,O) 

$2 - 
$3 L.ipos (S.ipos , 1) 

L.iplot true 
S.ipos (S.ipos , 1) 
S.iplot true 

$4 S.ipos (L.spos ,0) 
S.iplot (L.splot,O) 

$5 - 
$6 - 
$7 - 
$8 - 

Fig. 9 The semantic expressions of the inherited attributes of Gt 

Stack contents Input 
(So, (O0,t,OO, t ),-) 
S o(S 7,-, north ) 
So(S6,-,(OI,t)) 
So(S l, (Ol,t ),(Ol,t )) 
Sos l(S7,-,north ) 
SOS1($2,-,(02,t)) 
S o(S I, (02, t), (02, t)) 
SoS 1($3, (02, t ,02, t),-) 
SoS 1S 3(S T,-, west ) 
SoS1S3($6.-,(-12,t)) 
SoS1S3(S4, (-12,t ),(-12,t )) 

north north (west) east$ 
north (west) east$ 
north (west) east$ 
north (west) east$ 
(west) east$ 
(west) east$ 
(west) east$ 
west) east$ 
) castS 
) castS 
)east$ 

SoS 1S3S4(35,-, -) 
SoS 1($2 -(02,t)) 
S o(S l, (02,t ), (O2,t ) ) 
SoS l(S7,-,east ) 
SoS1($2,-,(12,t)) 
So(S l, (12,t ),(12,t )) 
So($8,-,-) 

east$ 
east$ 
east$ 
$ 
$ 
$ 
$ 

Fig. 9b Evaluation of input 'north north (west) east' 
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In our example, the semantic expressions are very simple. A general expression is of the 
form f (xl ..... xn), where each xi is either an input attribute occurrence or an expression. 
Every time a state symbol is pushed on the stack, the inherited attributes of that state are 
evaluated. The offsets of input attribute occurrences determine where the corresponding 
values can be found. 

Evaluation of synthesized attributes associated with nonterminals is straightforward. 
Consider an attributed parsing configuration (SoX a S1 . . .  X m Sm ;aj " " a k  $), where Si 
represents a triple (Si,AI(Si),AI(Xi)).  Suppose that a reduction by Ao--->Aa.-.  An is the 
next parsing action. In this situation, synthesized attributes of A 0 are evaluated using the 
values of synthesized atmtbutes of A 1 ..... An, found in AI (Xm-n+l) ..... AI  (Xm), and the values 
of inherited attributes of A 0, found in AI (S,n-n). 

Not all L-attributed LR grammars can be evaluated during parsing. For example, if the 
grammar has function rule A 2.x := f  (A 1.x), associated with a left-recursive production 
A ---~Aa, a n d f  is not the identity function, no evaluation method is able to evaluate attributes 
during LR parsing. We finally present in this section an example of another grammar that is 
not MLR-attributed. 

Example 5 The attribute grammar G is given by the following productions and semantic 
rules. 

Syntactic rule Semantic rules 
Z . - ) B  A 

Ao---~C A1B 

Ao- - )AIB  d 

C ----) c 
A ---) a 
B .--~ b 

A.x := B.s 
B.y := 1 
B.y :=A 0.x 
A 1.x :=C.s 
B.y :=A 0.x 
A I.X :=Ao.x 
C.s :=2 

B.s := 1 

G is not MLR-attributed. The problem concerns the offset of the inherited attribute of A. 
The LR automaton for G has a state which contains items [A ~ CA ,B ] and [A ---> A .Bd ]. 
If this state is pushed on the parsing stack it is not known how far from the top we find the 
inherited attribute of A from which we have to copy the inherited attribute value of B. This 
depends on whether the B is in the right-hand side of the second or the third production. This 
problem can be solved by splitting the production A ---> CAB in two productions, A --->CH and 
H --->AB (H is a new nonterminal). The conflicting productions are then in different item 
sets. [] 

5. Attribute evaluation during left-corner parsing. 
In this section we consider a one-pass attribute evaluator based on the left-comer parsing 

method, and we define a class of LC-attributed grammars. This class is related to the one- 
pass left-corner evaluator, just as the class of LL-AG is related to LL -parsing (see section 3). 
The left-corner of a production of the form A --->X r is the symbol X, the left-most symbol of 
the right-hand side of the production. In left-comer parsing left-comers of applied produc- 
tions are recognized in a bottom-up way, where the remaining part of the right-hand side is 
predicted, like in a top-down parsing method. A left-corner parser for a CFG G uses an input 
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buffer and a parsing stack. Its actions are determined by a parsing table, the left-corner parse 
table constructed for the CFG G. If the sentence w to be parsed is a correct sentence of G,  
the leTt-comer parser delivers the left-corner parse of w. 

To define the left-corner parse of a string with respect to a given CFG, we need the fol- 
lowing homomorphism. Let A be a set of symbols and Z ~ A .  The Z-erasing homomorphism 
on A ,  h z : A * - - ) A *  is defined by h z ( a ) = a  if a ~ Z  and h~,(a)=e if a e Z .  Moreover, 
h x (0~++ 13) = h z (o0 ++ h z (13), where ++ denotes string concatenation, i.e. ct ++ [3 is txl]. For a 
language L,  we define hE(L)= { hE(x) Ix e L  }. Let G = ( N , Z , P , Z )  be a CFG, [P I=m,  A a 
set {Pl  ..... Pm} of production labels, such that Zc'~A=O, and ~,6 :P --->A a labeling function 
that associates with each production in P a unique symbol in A. We will omit the subscript 
G and simply write ~. instead of ~'G. To a CFG G,  a label set A, and a labeling function ~, 
we associate the CFG Glc = (N,Y-~A,Ptc ,Z), in which Pie is defined as follows. 

Plc= { a "")Pi [ A -* e e P , ~.(A ---) e) =Pi } k) 

{ A ~ Xpio~ I A ~ x ~ e e , ~,(A ---) X t~)=pi }. 

It will be clear that ha(L(Gtc) )=L(G) .  We use the grammar G/c in order to define the left- 
comer parse of a string x e L (G) with respect to G.  

Definition 6 Let G be a CFG, x e L (G) and A, and Gtc as defined above. The sequence of 
labeling symbols ~ e A* is a left-corner parse of x with respect to G if there is a string 
y e L(Gtc), such that h z ( y ) = ~  and h A ( y ) = x .  [] 

Example 7 Let G be the underlying CFG of the AG of Example 1 (see Figure 2 ). Figure 10 
shows the productions of this grammar, and the productions of the CFG Glc associated with 
G and the set of production labels A = {Pl,P 2,P 3,P 4,P 5 }. 

1. Z --~A B Z --~A p l  B 
2. A ~ a  A b A ~ a  p2A b 
3. A ~ A -*P3 
4. B -~c  B d B - . c  p4B d 
5. B --) e B ---) P 5 

Fig. 10. The left-corner parse grammar of Example 7 

Let x =a p2P3b  p l  c p4P5d .  Clearly x e L(Glc), h~,(x)=P2P3PlP4P5,  and 
hA(X )=abed.  Hence, the left-corner parse of the sentence abed is P2P3P IP4Ps.  [] 

The left-corner parser is shown in Figure 11. The parser pushes symbols on the stack 
that are either from V, the grammar alphabet, or items of the form [A ,X ], where A e N and 
X e V. The first component of such an item is the goal symbol, and the second component is 
the left-corner symbol of this item. We assume a CFG is augmented with start production 
Z' ---)Z$, and each sentence ends with $.  The initial stack contents is the symbol Z' .  The 
kinds of actions the left-comer parser performs are Left-corner found, Shift, Expand by some 
production of the grammar (t~ r in the Expand case in Figure 11 denotes the reversal of the 
string ~), Reduce, Accept and Error. 

In order to define the left-corner parsing table MLCG for a CFG G,  we need some 
definitions. 

Definition 8 Let G = ( N , Z , P , S )  be a grammar. For each symbol X ~  V=NuY.,  we define the 
set of  chains CH (X) of X (with respect to G ) as follows: 
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�9 I fXeEthenCH(X)={<X>}.  

�9 I f X e N  then <X>eCH(X) and if X---re in P then <X ,e>e CH (X ). 

�9 I f<p>eCH(Y) fo r someYeV ,  andX-- ,Y ' l inP, then<X,p>eCH(X)  [] 

Hence, a chain in CH (X) is a sequence of symbols, starting with X. Moreover, Y follows Z 
in a chain, if there is a production Z ---> Ycr for some cte V*. Elements of CH(X) are called 
chains of X and denoted by t~. The last element of  a chain o is denoted by l (o). Notice that 
CH (X) is an infinite set if and only if there is a derivation X ~ +  Xz, z E Z*, in G.  

Let chain o=<X0,X1 ..... Xn >e CH(Xo), with n>l .  It follows from the definition of a chain 
that there is a derivation 

X 0 ~ f l X l ~ / l ~ P  2 " ' "  ~"Xn~n, "~ieV *, (l_<i_<n) (*) 

in G.  The sequence of productions p 1P 2 " " " Pn used in derivation (*) is called a production 
sequence associated with the chain o. The production sequence associated with chains of the 
form <X > is the empty sequence. The string Yn is called an r-string of chain t~, or the r- 
string of the sequence n=plp2" '"  Pn of productions. Notice that a chain may have more 
than one r-string. The length of a sequence of productions n is denoted by [n[. The last ele- 
ment of  a sequence n or 0 is denoted by l (n) and I (t~), respectively. 

Let G=(N,E,P,Z) be a CFG. For A e N  and X e V ,  let CH(A,X) be the set 
{t~e CH (A) I l (o)=X }, i.e. the set of chains of A that end with symbol X. Moreover, let 
PS (A ,X) be the set { n [ n is a production sequence of a chain o e  CH (A ,X) and [Ttl_> 1 }. 

Definition 9 For all A a N,  X e V and u e Z, the partial set of production sequences compati- 
ble with look-ahead symbol u, PPS(A ,X,u), is defined as follows: ne  PPS(A ,X,u), if and 
only if: 

�9 nePS(A ,X) 

�9 There is a production B ---> aA 5 with a c e  and u e First l(y&Follow (B)), where y is an 
r-string of n. [] 

We define the left-comer parsing table for a CFG G as follows. 

1. MLCG (A ,u)=Left-cornerfound, if CH(A ,u)~O. 

2. MLGG (u ,u)  = Shift. 

3. MLCG (A,u)=ExpandbyB - ~ ,  i fPPS(A ,B ,u )~O andB --~e~ P .  

4. MLCG ([A,X],u)=Expandbyp,i fp =l ( n ) , f o r s o m e n ~  PPS(A,X,u).  

5. MLC6 ([,4 ,A ], u ) =Reduce, if u ~ Follow (A ). 

6. MLCG ( [Z ' ,Z] ,$ )  =Accept. 

7. All entries of the table; MLCG not defined in 1-6 are Error entries. 

For an arbitrary CFG G the left-corner parsing table may contain multiply-defined entries. If  
this is indeed so, then the left-comer parser has a parsing conflict. The following conflicts are 
possible. 

I. An expand e-rule/expand e-role conflict. In this case, there are two distinct e-roles for 
which the conditions in part 3 of the definition of the table are satisfied. 

2. A shift/expand conflict. In this case there is a pair (A ,u)  such that MLCa (A ,u) is 
defined in part 1 as a Left-corner found-entry, and in part 3 as an Expand entry. 

3. An expand/expand conflict. In this case there is a pair ([A ,X] ,u)  such that two distinct 
productions can be used in the Expand action. 
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4. An expand/reduce conflict. In this case there is a pair ([A ,A ] ,u )  such that part  4 in the 
definition of  the table prescribes an Expand action and part  5 defines this entry as a 
Reduce action. This conflict can only occur i fA is a left-recursive nonterminal. 

Of  these conflicts the first two are also LR (1) conflicts. They do not occur if  G is LR (1), 
The  second two conflicts are typical lef t -comer conflicts. 

The left-corner parser using a left-corner parsing table 

begin 
config := (Z';al  "" �9 an$); 
accept := False; 
error := False; 
repeat 

{ The confgurat ion is (I01112""Im ;ajaj+l �9 "" an$)  } 
action := MLCG (Ira ,aj ); 
case action of 

LcFound : 
{ I r a = A }  
config := (10/112 . . .  In_ 1 [A ,aj] ;aj+l �9 �9 �9 an$); 

Shift : 
{Ira =a j  } 
config := (/0/112" �9 �9 Ira-1 ;aj+l �9 �9 �9 an$); 

Expand by B ~ e : 
{ I r a = A }  
config := (101112... Ira-1 [A ,B ] ; aj . . .  an$); 

Expand by B ~ X tz : 
{Ira = [A,X]  } 
config := (101112"" Ira-1 [A ,B ] o~ r ; aj " "  an $ ); 

Reduce : 
{Ira = [A,A] } 
config := (101112"" "/m-1 ;aj " "  an$)  

Error: 

Accept: 
error := True 

{ Ira = [Z',Z] andre = 0  } 
accept := True 

end 
until accept o r  error 
end Left  comer  parser. 

Fig. 11 T h e  le f t -corner  parser 

A parsing configuration (STC,w)  of  the left-corner parser identifies the state of  the 
parser at a particular moment  while parsing an input sentence x .  It  consists o f  the stack con- 
tents STC,  which is a sequence of  stack symbols  (the last symbol  is the top most  stack sym- 
bol), and the unread part  w of  the input string x .  The left-corner parsing table for  the gram- 
mar  G of  Example  7 is shown in Figure 12. The meanings of  the entries in this table are as 
follows. Lc f  means Left-corner found, s means a Shift action, e 3 indicates an Expand action 
using production P3 of  the grammar,  Red means a Reduce action, and Ac indicates that the 
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action is Accept. The empty entries in the table are Error entries. 

a 

b 
C 

d 
Z' 
A 
B 
[Z',a] 
[Z',A ] 
[A ,a] 
[A,A ] 
[B,c] 
[B ,B ] 
[z ,z ' ]  

a b c d 
S 

S 

S 

S 

Lcf e3 e3 
Lcf e3 e 3 

Lcf  e5 e5 
e2 e2 

e l  e l  
e2 e2 

Red 
e4 e4 

Red Red 
Ac 

Fig. 12 The left-corner parsing table for Example 7 

Figure 13 shows the configurations of the left-corner parser and the output, for this example 
grammar, for the input string abcd$. 

5 
6 
7 
8 
9 

10 
11 
12 
13 

stack input output 
Z 

f 

[Z' ,a] 
[Z',A ] b A 

[Z',A]b [A,A] 
[Z',A ] b 

[Z',A ] 
[Z',ZlB 

[Z',Z] [B ,c ] 
[Z' ,Z][B,Bld B 

[Z',Z] [B,B ] d [B,B ] 
[ z ' , z  ] [B ,B ] d 

[Z',Z] [B ,B] 
[Z',Z] 

abcd$ 
bcas 
bcd$ 
bcd$ 
bcd$ 

cd$ 
cd$ 
,IS 
aS 
aS 
aS 

$ 
$ 

P 2  

P2P3 
P2P3 
P2P3 
P2P3Pl 
P2P3Pl 
P2P3PlP4 
P2P3PlP4P5 
P2P3PlP4P5 
P2P3PlP4P5 
P2P3PlP4P5 

Fig. 13 The moves of the left-corner parser 

We now present a definition of LC (k) grammars. In order to clarify the difference 
between and the similarity to the LR (k) grammars, we first present the definition of LR (k) 
grammars. 

Definition 10 A CFG G is said to be LR (k) grammar, k > O, if the three conditions 

1. Z ~r~n cxAw ~rm r 
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2. Z =::~r*m yBx ==~rm O~y, and 

3. Firstk (w)  = Firstk (y) 

imply that txAy = TBx. 

A production A --> 13 of G is said to satisfy the LR(k) condition if the conditions 1, 2 and 3 
always imply ctAy= yBx . [] 

Definition 11 A CFG G is said to be LC (k), k > O, if each e-production satisfies the LR (k)- 
condition (see Definition 10), and if for each production A --->X 13, the conditions 

1. Z ~r*rn flag 1 ~rrn ff.~ ~z 1 :=~r*m ffXy 1 z 1 

2. Z ~*m o(Bz2 ~rrn O~'(~'X'~z2 ~*rn O~'O~"Xy2z2 

3, ~'t~" = o~ and Firstk (y lZ 1) = Firstk (y 2z 2), 

always imply that cxA = ogB and 13 = y. [] 

This form of the definition of LC (k) grammars is from Soisalon-Soininen and Ukkonen 
[SOU76]. Other characterizations of the left-comer grammars can be found in [Akk88]. It is 
shown in [SOS77] that LL(k) grammars are L C ( k )  and that LC(k) grammars are LR(k). 
These inclusions are proper. From a practical point it is interesting to notice that LC (k) 
grammars may be left-recursive, although the class of LC(k) languages (k >0) coincides 
with the class o fLL (k) languages. For readers interested in the precise extension of the class 
of LC (0) languages we refer to [Akk89]. 

Here, we will only consider LC (1) parsing, i.e. only one symbol look-ahead is used. 
The left-comer parsing table constructed for a CFG G, does not contain multiply-defined 
entries if and only if G is LC (1). A full proof of this statement is tedious and long, and can 
be found in [Akk88]. 

We now define the class of LC-attributed grammars and present the LC-  
parser/evaluator, based on the left-corner parser. Let S be a set PPS (A ,X ,u ) associated with 
a CFG G. We define the set of inherited attributes of  S as follows 

IN (S)={ a I a ~ I A (B), B is left-hand side of l (~), for some ~za S }. 

If G is an LC(1) grammar, then for any two production sequences ~] and ~2 in S, 
l (~1) = l (~2). Thus, the inherited attributes in IN(S ) are inherited attributes of a nonterminal 
symbol of the grammar, namely the nonterminal symbol that is the left-hand side of l (~1). 

Let 7z be a production sequence in S. If ~ has length one, then the left-hand side of I 0z) is A, 
and the inherited attributes of S are the inherited attributes o f A .  Let r e = p i p 2 . . .  Pn with 
n > 1, Pi: Xi-1 -'->XiYi (l</_<_n), Xo=A, and Xn=X. Let a ~ IN(S) .  This means that a is an 
inherited attribute of symbol Xn-1. 
Suppose that G is the underlying CFG of an L-attributed grammar. Then the inherited attri- 
butes of symbols Xi only depend on inherited attributes of the symbol Xi-1. Thus, inherited 
attribute a depends (via a sequence of semantic functions associated with the productions that 
occur in re, excluding the last production) on the inherited attributes of A. 

For each attribute a e IN (S), we define the set of semantic expressions Es (a) as follows. 

�9 If ~ in S and I 1-- 1 then a is the semantic expression associated with ~, and a is an ele- 
ment of Es (a ). 

�9 If x in S equals x'q where q is the production B ---~Xy, and the semantic rule for X.a 
associated with q is X.a ~--expr (al ..... an), then expr(e l ..... en) is an element of Es(a ). 
This is the semantic rule associated with ~, in which ei is the semantic expression of 
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B.ai associated with ~'. (Notice that all ai are inherited attributes of B ). 

Definition 12 An attribute grammar G is LC-anributed, if 

�9 G is L -attributed. 

�9 The underlying CFG of G is LC (1). 

�9 For all partial sets of production sequences S, for all attributes a in IN(S) ,  the set 
Es (a) of semantic expressions of a contains one element. [] 

It can be shown that it is decidable whether an AG is LC-attributed (cf. [Akk88]). 
Notice that, if an LC-attributed grammar has a left-recursive production, then the semantic 
rules for the inherited attributes of the left-comer symbol of this production must be copy- 
rules. In case of a copy-rule X.a ~---B.b, the semantic expression for X.a is obtained from the 
semantic expression of B.b by a simple substitution. The condition that these semantic rules 
are copy-rules is not sufficient for an AG to be LC-attributed. The copy-rules should also 
preserve an ordering of inherited attributes, because the semantic expressions expr (A.x,A.y) 
and expr (A.y ,A.x ) are, of course, different. 

Example 13 Consider the; attribute grammar given in Figure 14. 

Syntactic rule 
E' --->E 

E ---~E +T  

E --~ T 

T -§  * F 

T -§  

F -->(E ) 

F -§ a 

Semantic rules 
E.i := e ; E'.s := E.s 

E2.i := El. i  ; T.i := E2.s ++Pl 
E I.S := T.s 

T.i :=E.i ; E.s :=T.s ++p2 

T2.i := Tl.i  ; F.i := T2.s ++P3 
T l.S := F.s 

F.i := T.i ; T.s :=F.s-t-+p 4 

E.i := F.i ++ P 5 ; F.s := E.s 

F.s := F.i ++ P 6 

Fig. 14 The productions and semantic rules for Example 13 

If t is a derivation tree of this AG with yield w, and ~ is the value of the attribute s of the 
unique node of t that has label E ' ,  then ~ is the left-corner parse of w. In general, this AG 
defines the translation from the input sentence into its left-corner parse. It will be clear that 
this AG is LC-attributed. [] 

The LC-parser/evaluator (see Figure 15) is based on the left-comer parser of Figure 11. 
An attributed parsing configuration is similar to the parsing configuration but instead of the 
stack symbols of the form B and [B ,C] used by this parser, we have attributed items of the 
form 

�9 ([A ---> cz .B 13], inh (A),syn (oO,inh (B)) (instead of stack symbols of the form B ), and 

�9 ([A --~o~.B~;C],inh(A),syn(oO,inh(B),syn(C)) (instead of stack symbols of the form 
[B,C]). 

These attributed items are comparable to those used by the LL parser/evaluator of section 3. 
In the attributed configurations of the left-corner evaluator, inh (A) is a sequence of values of 
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the inherited attribute instances of A in the stack. The sequence of values of synthesized 
attributes of C is denoted by syn (C). The notation syn (00, where o~ =X 1 " " " Xn, denotes the 
sequence that consists of the sequences syn (X i). 

The syntactic actions of the evaluator are determined by its Action table and its associ- 
ated table M, that prescribes the stack changes. These tables are derived from the left-comer 
parsing table MLCG in the following way. The attribute part of an attributed item does not 
influence the parsing actions to be performed by the evaluator. Therefore, they are not men- 
tioned in the definition of the tables. 

1. If item X has the form [A ---)tx.B [~ ], with et ~ e, or A =Z',  and MLCG (A, u )=Left- 
corner found, then Action (X , u ) =LcFound, and 
M (X,a)=[A ---)ct.B~;u ]. 

2. If item X hastheform[A-~oq.uo~z],withoq~eandA~Z' ,andMLGG(U,u)=Shif t ,  
then Action (X,u)=Shift-term, andM (X,u) = [A ---) ~lU .tx2]. 

3. If item X has the form [A~oq.Bcr with txl~e or A=Z' ,  and 
MLCG (B,u) =Expand by D ---) e, then Action (X,u) =Expand by D ---)e, and 
M (X,u)=[D -~ .][A --> (Zl.B ~2;D ]. 

4. If item X has the form [A -~ Ctl.B Ct2 ;Y ], and MLCc ([B ,Y ],u )=Expand by D --~ Y ~, 
then Action (X ,u ) =Expand by D --~ Y ~, and 
M (X,u)=[D ---)Y .~] [A ---)oq.Bct2;D ]. 

5. If item X has the form [A---)oq.Bot2;B ], and MLC a ([B ,B ],u )=Reduce, then 
Action (X ,u ) = Shift-nont, and M (X ,u ) = [A ---) oqB .ct2]. 

6. Ifi temX has the form [A ~ o~. ], thenAction (X ,u ) = Reduce, and M (X,u) =e. 

7. IfX is the item [Z' ~ Z .  $], then Action (X ,$ ) = Accept. 

8. All entries of the tables not defined in 1-7 are Error entries. 

I fM(X,u)=Y1Y~, then itemX on top of the stack is replaced by items Y1 and Y2 (with 
Y1 on the top and Y2 below it). It will be clear from the definition of these tables that they do 
not contain multiply-defined entries if and only if the table MLCa does not contain them. 

The semantic actions of the parser/evaluator are computations of attributes of the new 
top most stack symbol which use only attribute values of the actual top most stack symbol. 

We will now show that the LC parser/evaluator can parse LC (1) grammars and evaluate 
all LC-attributed grammars. Suppose that in a parsing configuration, the stack symbol 
[A ~o~.B ~;C] is on top of the parsing stack. Then the associated item fields for attribute 
values will contain the inherited attributes of A, the synthesized attributes of symbols in t~, 
the inherited attributes of B (the active goal), and the synthesized attributes of C (the recog- 
nized left-corner). A symbol of this form appears on the top of the stack after a Reduce 
action with a C-production. Now, either a Shift-nont or an Expand by D ---)C ~ action can 
occur. In the case of a Shift-nont action, the active goal symbol B must equal the recognized 
left-comer symbol C. The synthesized attributes of C are then copied in the field of the 
semantic stack for the synthesized attributes of symbols before the dot in the top most item. 
The inherited attributes of the first symbol following the dot are computed from the inherited 
attributes of A and the synthesized attributes of tx and C. In the case of an Expand action, the 
inherited attributes of D, which is the left-hand side of the recognized production, are com- 
puted from the inherited attributes of B, which is the active goal symbol. If the grammar is 
LC-attributed this is always possible, using for inherited attribute D.a the semantic expres- 
sion in Es (a) where S is the set PPS (B ,D ,u ) and u is the look-ahead symbol. Furthermore, 
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LC parser/evaluator for an LC-attributed grammar 

begin 
accept := False; 
error := False; 
stack :=([Z' --~ .Z $ ],e,e,e); 
a := read(input) { input contains a 2" �9 " an $, and a = a 1 } 
repeat 

{ attributed config, is ([Z' ---) .Z $ ],e,e,e, �9 �9 �9 X ; aj . . -  an $); 
case Action (X ,a ) of 

LcFound : 
{X=[A ---)a.B~];M(X,a)=[A ----)~.B~;a] } 
pop; push (M(X,a)); 
a := read(input); 

Expand by D ---) YI] : 
{ X=[A --) al .B~2;Y] } 
{M(X,a)=[D --~Y.~][A ---) a l .B  ~2;D] } 
pup; push (M(X,a)); 
compute inh(D); copy syn(Y); 
if l:l~eN then compute inh(l:13) end; 

Expand by D ---) lz : 
( X=[A ~ a l .B  a2] } 
{ M (X,a )=[D .--).][A ---) a l .B  a2;D ] } 
pop; push (M(X,a)); compute inh(D); 

Shift-term : 
{ X=[A --> al.a~z]; M (X ,a )=[A ---> ala .a2] } 
pop; push M (X,a); 
a := read(input); 
if 1 :a2~ N then compute inh(1 :~2) end; 

Shift-nont : 
{ X=[A -->~I.BoGB] andM(X,a)=[A ---)alB .~2] } 
pop; push (M(X,a)); copy syn(B); 
if l :~2~N then compute inh(l:~/) end; 

Reduce : 
{X=[A --> a . ]  } 
pop; compute syn(A ); 

Accept : accept := True 
Error : error := True 

end 
until accept or error 
end LC parser/evaluator. 

Fig. 15 The LC parser/evaluator 

the synthesized attributes of  C are copied into the field for the synthesized attributes of  C of  
the new top most  stack symbol  and the inherited attributes of  the first symbol  after C in the 
production that has just been recognized, are computed. After a Reduce action with the pro- 
duction A ---> ~, the synthesized attributes of  A are computed f rom the synthesized attributes 
of  a and the inherited attributes of  A.  All these attributes are on the top of  the semantic 
stack. After the pop action on the parsing stack, the new top most  stack symbol  has the form 
[B --) c~.[3 ;A ]. 
Just as in the LL-evaluator  of  section 3, a pointer can be associated with each i tem in the 
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stack that refers to the list of values of attribute instances. 

We know that the LL(1) grammars are a proper subset of the LC(1) grammars. Does 
this proper inclusion also hold for the corresponding classes of one-pass attribute grammars; 
is LL-AG a subclass of the LC-attributed grammars? If G is an LL (1) grammar then for all 
A , X a N  and u~Z,  the set PPS(A ,X ,u )  contains at most one element. From this we may 
conclude that an LL-AG is indeed LC-attributed. 

There are MLR -attributed grammars that are not LC-attributed, because there are simple 
LR (1) grammars that are not LC (1). The class LL-AG is not a subclass of the class of MLR - 
attributed grammars defined in section 4. Hence, the class of LC-attributed grammars is also 
incomparable with the class of MLR-attributed grammars. The problem with the offset of 
attributes in the stack doesn't occur for LC -attributed grammars, if we use left-comer parsing. 
This is obvious, because the production is recognized as soon as its left-comer symbol is 
recognized. The grammar shown in Example 5 (see section 4) is not MLR-attributed, but it is 
LC-attributed. One should notice that this does not contradict the fact that all LC-attributed 
grammars can be evaluated by some one-pass LR parser/evaluator. But the definition of a 
class of LR-attributed grammars that contains the class of LC-attributed grammars, and 
hence the class LL-AG, is less restrictive than the definition of MLR-attributed grammars. 
The reader is referred to [AMT90] for these larger classes of LR -attributed grammars. 

It is possible to transform an LC(1) grammar G into an LL(1) grammar, say x(G), in 
such a way that L (x (G)) is the same language as L (G). In order to define such a transfor- 
mation we need the following relation. (A E denotes the set A u {e}.) 

Definition 14 The relation >tic with respect to a CFG G is defined as follows: 

,= >Fc_c__N xV~, 

* (X,Y)e>ffci fandonlyi fX---)o~isaproduct ionofG and Y = l:tx. [] 

We write X >tc Y instead of (X, Y)~ >tic, and >~c denotes the transitive closure of >lc. 

Let G = (N,Z,P ,Z) be a CFG and let N be the set {A ~N  [A = z  or there is a production in 
P of the form B --) ~4 ~, where ctc-e}. (Thus A E/V ifA is the start symbol of G or A occurs 
in the right-hand side of a production of G of  which it is not the left-corner). Let N be 
ordered: N = {At ,A 2 ..... A n }. The grammar x (G)  is the CFG (N' ,Z ,P ' ,Z) .  N'  is a superset 
of N that contains all symbols of the form [A ,Y] ( A ~ N  and Y~Ve)  that appear in the pro- 
ductions of x(G ). The set of productions P '  is defined as follows. 

Initially, P '  = O. P '  will contain only those productions that are added to P '  in one of the fol- 
lowing three steps. 

1. For all i ,  l<i <n, for all a ~ Z E add to P" the production A i ---)a [A i,a ], if A i ~ N and 
Ai >~c a. 

2. For all [Ai ,Y], where Y ~ VE, which occur in the right-hand side of a production in P ' ,  
for all productions in P of the form B ~ YI], such that Ai >Pc B ,  add the production 
[Ai, Y ] --~ ~ [A i ,B ] to P ' ,  if  it is not already in P ' .  

I �9 

Add [Ai ,Ai ] --o e to P , if A i ~ N .  ~ 

The CFG x(G ) is reduced, and L (G) =L (x (G)). 

The following example illustrates this transformation. 

Example 15 Consider the CFG G given by the 
T ---)T • and T ---~id. 

productions: Z ---)Z + T ,  Z ---)T, 
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Symbols id, + and x are terminal symbols. 
x (G) are shown in Figure 16. 

Z .---> id [Z, id ] 
[Z ,T] ---> [Z,Z] 
[Z,Z] .--->+ T [Z,Z] 
T ---> id [T ,id] 
[T,T] ~ e  

The productions of the transformed grammar 
[] 

[Z ,id] ---> [Z ,T] 
[Z,T] ---> x id  [Z,T] 
[Z,Z] --->e 
[T,id] ---> [T,T] 
[T,T] -.-> x id  IT,T] 

Fig. 16 The productions of the transformed grammar 

Notice that the nonterminal symbols of x(G) are the stack symbols used by the left- 
corner parser. Transformation x has the following property. From the left-parse of each sen- 
tence w ~ L (G), with respect to the CFG x(G), it is possible to obtain the left-corner parse of 
w with respect to the original CFG G. 

Suppose that G is an LC-attributed AG. If the semantic rules for the inherited attributes 
of left-comer symbols of G are copy-rules, then it is easy to augment the transformation x 
and obtain an attributed transformation that results in an L-attributed LL (1) grammar. By an 
implementation of this augmented transformation, we can extend a compiler writing system 
for LL-AG and obtain a compiler writing system for LC-attributed grammars. The reader is 
invited to produce an LL-AG from the LC-attributed grammar of Example 13. For more 
details concerning the tran:fformation "r, we refer to [Akk88]. 

6. Concluding remarks 

One-pass compilation based on attribute grammars has several advantages over more 
general methods. One of the advantages is that it is not necessary to store the complete parse 
tree for evaluation of the attributes. Another advantage is that attribute values can be used to 
solve parsing conflicts, so that the underlying CFG of an AG does not have to be deterministi- 
cally parsable by the parsing method used. We have presented three classes of attribute 
grammars for which attribute evaluation can be performed during parsing. We have shown 
that a parser/evaluator for the class of LC-attributed grammars can be defined using concepts 
and techniques that are inherited from the implementation of L-attributed LL (1) grammars, 
and the implementation techniques used for the evaluation of inherited attributes during LR 
parsing. 

7. Existing systems 

We give a list of some existing translator writing systems that generate processors which 
employ attribute evaluation during parsing. We consider only systems with one-pass evalua- 
tion of both inherited and synthesized attributes in conjunction with parsing. This list is cer- 
tainly not exhaustive. More systems are described in [DJL88]. 

Systems for attribute evaluation during top-down parsing include CWS2 [BOW78], 
MUG1 [GRW76], MIRA (LILA) [LDH83], APARSE [MKR79], SUPER [Set82], and TCGS 
[Sch91]. APARSE was the first system where the values of attributes were used to influence 
parsing. TCGS, the Twente Compiler Generator System, is a compiler writing system for L - 
attributed LL (1) grammars in Extended BNF-notation. It produces a scanner and a recursive 
descent parser/evaluator. 
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MUG1 [GRW76], Rie [SIS90], Poco [Eu185], Metauncle [Tar89] and Haripriyan's sys- 
tem [HSS88] are translator writing systems for attribute evaluation during LR parsing. Rie is 
a system that can produce parser/evaluators for the class of LR-attributed grammars defined 
in [SIN85]. Metauncle, developed in the HLP project at the University of Helsinki, generates 
evaluators for uncle-attributed grammars [Tar90]. Haripriyan's system implements 
Pohlmann's evaluation method [Poh83]. The system SABLE from Twente University gen- 
erates an LALR (1) parser/evaluator that can use attribute values to solve parse conflicts. The 
input grammar can be syntactically ambiguous [Ve188]. 

There appear to be very few compiler writing systems that generate a parser/evaluator 
based on left-corner parsing. Programmar is a system that generates a backtracking 
parser/evaluator for affix grammars, based on left-corner parsing [Mei86]. 
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