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Abstract. This paper presents a symbolic model checking algorithm
for continuous-time Markov chains for an extension of the continuous
stochastic logic CSL of Aziz et al [1]. The considered logic contains
a time-bounded until-operator and a novel operator to express steady-
state probabilities. We show that the model checking problem for this
logic reduces to a system of linear equations (for unbounded until and the
steady state-operator) and a Volterra integral equation system for time-
bounded until. We propose a symbolic approximate method for solving
the integrals using MTDDs (multi-terminal decision diagrams), a gener-
alisation of MTBDDs. These new structures are suitable for numerical
integration using quadrature formulas based on equally-spaced abscissas,
like trapezoidal, Simpson and Romberg integration schemes.

1 Introduction

The mechanised verification of a given (usually) finite-state model against a
property expressed in some temporal logic is known as model checking. For
probabilistic systems, transition systems where branching is governed by dis-
crete probability distributions, qualitative and quantitative model checking al-
gorithms have been investigated extensively [2,5,6,7,11,14,15,16,19,23,27]. In a
qualitative setting it is checked whether a property holds with probability 0 or
1; in a quantitative setting it is typically verified whether the probability for a
certain property meets given lower- or upper-bounds. For discrete-time systems,
the quantitative approach has been investigated quite thoroughly: model check-
ing algorithms have been developed for fully probabilistic transition systems
[2,5,14,19], like discrete-time Markov chains or generative transition systems, as
well as for probabilistic systems that contain non-determinism [6,7,8,16].

In this paper we consider real-time probabilistic systems, that is, we con-
sider the model checking problem for continuous-time Markov chains (CTMCs)
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that are at the basis of contemporary performance evaluation and reliability
analysis methodologies. A branching-time logic called continuous-time stochas-
tic logic (CSL) is used to express properties over CTMCs. This logic is an
extension of the (equally named) logic by Aziz et al [1] with an operator to
reason about steady-state probabilities: e.g. the formula S>p(Φ) asserts that the
steady-state probability for a Φ-state is at least p, for p ∈ [0, 1]. Apart from
the usual path-formulas like next and until, a time-bounded until U6t , for t a
non-negative real, is incorporated, together with standard derivatives, such as a
time-bounded eventually 36t. The usual path quantifiers ∀ and ∃ are replaced
by the probabilistic operator P./p(.) for comparison operator ./ and p ∈ [0, 1].
For instance, P<0.001(364error) asserts that the probability for a system error
within 4 time-units is less than 10−3.

The model checking problem for CSL is known to be decidable [1] (for ra-
tional time bounds), but to the best of our knowledge no algorithms have been
considered yet to verify CTMCs automatically, let alone symbolically. This paper
investigates which numerical methods can be adapted to “model check” CSL-
formulas over CTMCs as models. We show that next and (unbounded) until-
formulas can be treated similarly as in the discrete-time probabilistic setting.
Checking steady-state probability-properties reduces to solving a linear equa-
tion system combined with standard graph analysis methods, while checking the
time-bounded until reduces to solving a (recursive) Volterra integral equation
system. These integrals are characterised as least fixed points of appropriate
higher-order functions, and can thus be approximated by an iterative approach.

One of the major reasons for the success of model checking tools in practice
is the efficient way to cope with the state-space explosion problem. A prominent
technique is to adopt a compact representation of state spaces using (reduced
ordered) binary decision diagrams, BDDs for short [9]. This paper follows this
line by proposing an alternative variant, referred to as multi-terminal decision
diagrams (MTDDs), that is suited for the necessary real-time probability cal-
culations. MTDDs are a novel generalisation of multi-terminal binary decision
diagrams (MTBDDs [12], also called algebraic decision diagrams [3]), variants
of BDDs that can efficiently deal with real matrices. MTBDDs (and MTDDs)
allow arbitrary real numbers in the terminal nodes instead of just 0 and 1 (like in
BDDs). Whereas MTBDDs are defined on boolean variables, MTDDs allow both
boolean and real variables. This generalisation is suitable for numerical integra-
tion — needed for time-bounded until — using quadrature formulas based on
equally-spaced abscissas (i.e. interval points). This includes well-known methods
like trapezoidal, Simpson and Romberg integration schemes [24]. Due to their
suitability for numerical integration, the potential application of MTDDs is much
wider than model checking CTMCs. For the other temporal operators in CSL
we show that slight modifications of the MTBDD-approach for discrete-time
probabilistic systems [5] can be adopted.

The paper introduces MTDDs, defines appropriate operators on them and
presents a symbolic model checking algorithm for CSL using these structures.
Although it is difficult to obtain precise estimates for the time complexity of
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model checking using MTDDs (as with BDDs and MTBDDs), the success of
(MT)BDD-based model checkers for large-scale examples (for BDDs [10] and
for MTBDDs [18,20]) provides sufficient evidence to investigate MTDDs for our
setting. For instance, [18] reports experimental results of the computation of
steady-state probabilities for discrete-time Markov chains of over 1027 states.

Organisation of the Paper. Section 2 introduces the necessary concepts of
CTMCs. Section 3 presents the logic CSL and provides some useful character-
isations of CSL-formulas that facilitate a model checking procedure. Section 4
introduces MTDDs, describes how CTMCs can be encoded as MTDDs, and
presents several operators on these structures. Section 5 presents the approx-
imative symbolic model checking algorithm. Finally, Section 6 concludes the
paper. A (small) running example is used throughout the paper to illustrate the
key concepts.

2 Continuous-Time Markov Chains

Basic Definitions. Let AP be a fixed, finite set of atomic propositions. A
(labelled) continuous-time Markov chain (CTMC for short) is a tuple M =
(S, Q, L) where S is a finite set of states, Q : S × S → IR>0 the generator
matrix1, and L : S → 2AP the labelling function which assigns to each state
s ∈ S the set L(s) of atomic propositions a ∈ AP that are valid in s.

Intuitively, Q(s, s′) specifies that the probability of moving from state s to
s′ within t time-units (for positive t) is 1 − e−Q(s,s′)·t, an exponential distribu-
tion with rate Q(s, s′). If Q(s, s′) > 0 for more than one state s′, a competition
between the transitions is assumed to exist, known as the race condition. Let
E(s) =

∑
s′∈S Q(s, s′), the total rate at which any transition emanating from

state s is taken. This rate is the reciprocal of the mean sojourn time in s. More
precisely, E(s) specifies that the probability of leaving s within t time-units
(for positive t) is 1 − e−E(s)·t, due to the fact that the minimum of exponential
distributions (competing in a race) is characterised by the sum of their rates.
Consequently, the probability of moving from state s to s′ by a single transi-
tion, denoted P(s, s′), is determined by the probability that the delay of going
from s to s′ finishes before the delays of other outgoing edges from s; formally,
P(s, s′) = Q(s, s′)/E(s) (except if s is an absorbing state, i.e. if E(s) = 0; in
this case we define P(s, s′) = 0). Remark that the matrix P describes an em-
bedded discrete time Markov chain. (For a more extensive treatment of CTMCs
see [25].)

Example 1. As a running example we consider AP = { a, b }, S = { s0, . . . , s3 }
with L(s0) = ∅, L(s1) = { a }, L(s2) = { b } and L(s3) = { a, b }. The details of
the CTMC are:
1 Whereas usually the diagonal elements are defined as Q(s, s) = −Ps′ 6=s Q(s, s′) we

allow self-loops. This does not affect the transient and steady state behaviour of the
chain, but allows the standard interpretation of the next-state operator of the logic.
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Some transition probabilities are P(s0, s3) = P(s0, s1) = 1
2

and P(s1, s2) = 1.

A path is a (finite or infinite) sequence s0, t0, s1, t1, s2, t2, . . ., written as

σ = s0
t0→ s1

t1→ s2
t2→ . . . ,

with for natural i, si ∈ S and ti ∈ IR>0 such that Q(si, si+1) > 0, if σ is infinite.
Otherwise, if σ = s0

t0→ . . .
tl−1→ sl is finite, we require that sl is absorbing, and

Q(si, si+1) > 0 for all i < l. For σ a path, t ∈ IR>0 and natural i let σ[i] = si, the
i-th state of σ, δ(σ, i) = ti, the time spent in state si, and σ(t) = s0 for t < t0,
and σ(t) = σ[i] where i is the smallest index i with t 6

∑
06j6i tj, otherwise.

(For σ a finite path with absorbing state sl, σ[i] and δ(σ, i) are only defined for
i 6 l, δ(σ, l) = ∞, and σ(t) = sl for t > t1 + . . . + tl−1.) Let Path(s) denote the
set of paths in M starting in s, and Reach(s) the set of states reachable from s.

Borel Space. Let s0, . . . , sk ∈ S with Q(si, si+1) > 0, (0 6 i < k), and
I0, . . . , Ik−1 non-empty intervals in IR>0. Then, C(s0, I0, . . . , Ik−1, sk) denotes
the cylinder set consisting of all paths σ ∈ Path(s0) such that σ[i] = si (i 6 k),
and δ(σ, i) ∈ Ii (i < k). Let F(Path(s)) be the smallest σ-algebra on Path(s)
which contains all sets C(s, I0, . . . , Ik−1, sk) where s0, . . . , sk ranges over all se-
quences of states such that s = s0 and Q(si, si+1) > 0 (0 6 i < k) and
I0, . . . , Ik−1 ranges over all sequences of non-empty intervals in IR>0. The prob-
ability measure Pr on F(Path(s)) is the unique measure defined by induction on
k by Pr(C(s0)) = 1 and for k > 0:

Pr(C(s0, . . . , sk, I′, s′) = Pr(C(s0, . . . , sk)) ·P(sk, s′) ·
(
e−E(sk)·a − e−E(sk)·b

)

where a = inf I′ and b = sup I′. (For b = ∞ and λ > 0 let e−λ·∞ = 0.)

3 The Continuous Stochastic Logic CSL

Syntax. CSL is a branching-time, CTL-like temporal logic where the state-
formulas are interpreted over states of a CTMC. It adopts operators of PCTL
[19], like a time-bounded until operator and a probabilistic operator asserting
that the probability for a certain event meets given bounds. We treat a variant
of the (equally named) logic of [1] with, for reasons of simplicity, an unnested
time-bounded until operator plus a novel steady-state probability operator.

Definition 1. For a ∈ AP, p ∈ [0, 1] and ./ ∈ {6, <, >, > }, the state-formulas
of CSL are defined by the grammar

Φ ::= tt
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S./p(Φ)
∣∣∣ P./p(ϕ)
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where for t ∈ IR>0 path-formulas are defined by

ϕ ::= XΦ
∣∣∣ ΦU Φ

∣∣∣ ΦU6t Φ.

The other boolean connectives are derived in the usual way, i.e. ff = ¬tt,
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), and Φ1 → Φ2 = ¬Φ1 ∨ Φ2. The intended meaning
of the temporal operators U (“until”) and X (“next step”) is standard. The
temporal operator U 6t is the real-time variant of U ; Φ1 U6t Φ2 asserts that
Φ1 U Φ2 will be satisfied in the time interval [0, t]; i.e. there is some x ∈ [0, t]
such that Φ1 continuously holds during the interval [0, x[ and Φ2 becomes true
at time instant x. The state formula S./p(Φ) asserts that the steady-state proba-
bility for a Φ-state falls in the interval I./p = { q ∈ [0, 1] | q ./ p }. P./p(ϕ) asserts
that the probability measure of the paths satisfying ϕ falls in the interval I./p.

Temporal operators like 3, 2 and their real-time variants 36t or 26t can be
derived, e.g. P./p(36t Φ) = P./p(tt U6t Φ) and P>p(2 Φ) = P61−p(3¬Φ). For
example, P>0.99(2

(
req → P>1(365 resp)

)
) asserts that there is a probability of

at least 99% that every request will be responded within the next 5 time-units.

Semantics. The state-formulas are interpreted over the states of a CTMC. Let
M = (S, Q, L) with proposition labels in AP. The definition of the satisfaction
relation |= ⊆ S × CSL is as follows. Let Sat(Φ) = { s ∈ S | s |= Φ }.

s |= tt for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φi, i=1, 2
s |= S./p(Φ) iff πSat(Φ)(s) ∈ I./p

s |= P./p(ϕ) iff Prob(s, ϕ) ∈ I./p.

Here, πS′(s) denotes the steady-state probability for S′ ⊆ S wrt. state s, i.e.

πS′(s) = lim
t→∞ Pr{ σ ∈ Path(s) | σ(t) ∈ S′ }.

The limit exists, a consequence of S being finite [25]. Obviously, πS′(s) =∑
s′∈S′ πs′(s), where we write πs′(s) instead of π{ s′ }(s). We let π∅(s) = 0.

Prob(s, ϕ) denotes the prob. measure of all paths σ ∈ Path(s) satisfying ϕ, i.e.

Prob(s, ϕ) = Pr{ σ ∈ Path(s) | σ |= ϕ }.

The fact that, for each state s, the set { σ ∈ Path(s) | σ |= ϕ } is measurable,
follows by easy verification. The satisfaction relation (also denoted |=) for the
path-formulas is defined as usual:

σ |= XΦ iff σ[1] is defined and σ[1] |= Φ
σ |= Φ1 U Φ2 iff ∃k > 0. (σ[k] |= Φ2 ∧ ∀0 6 i < k. σ[i] |= Φ1)
σ |= Φ1 U6t Φ2 iff ∃x ∈ [0, t]. (σ(x) |= Φ2 ∧ ∀y ∈ [0, x[. σ(y) |= Φ1) .

In the remainder of this section we present alternative characterisations for
πS′(s) and Prob(s, ϕ) that will serve as a basis for our model checking algorithm.
Since the derivation of these characterisations from the theory of CTMCs and
DTMCs is not much involved, proofs are omitted.
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Computing Steady-State Probabilities. It is well known that the steady
state probabilities exist for arbitrary CTMCs. For a strongly connected CTMC
M and (non-absorbing) state s′, the steady state probability πS(s′) can be
obtained by solving a linear equation system [25], i.e.

πS(s′) =
π′

S(s′)/E(s′)∑
s∈S π′

S(s)/E(s)

where π′
S(s′′) satisfies the linear equation system

π′
S(s′′) =

∑
s∈S

P(s, s′′) · π′
S(s) such that

∑
s∈S

π′
S(s) = 1.

For the general case we reformulate this as follows. Let G be the underlying
directed graph of M where vertices represent states and where there is an edge
from s to s′ iff Q(s, s′) > 0. Sub-graph B is a bottom strongly connected com-
ponent (bscc) of G if it is a strongly connected component such that for any
s ∈ B, Reach(s) ⊆ B. We have πs′(s) = 0 iff s′ does not occur in any bscc
reachable from s. Let B be a bscc of G with Reach(s)∩B 6= ∅ (or equivalently,
B ⊆ Reach(s)) and assume that aB is an atomic proposition such that aB ∈ L(s)
iff s ∈ B. Then 3aB is a path-formula in CSL and Prob(s, 3B) = Prob(s, 3aB)
is the probability of reaching B from s at some time t. For s′ ∈ B, πs′(s) is given
by πs′(s) = Prob(s, 3B) · πB(s′) where πB(s′) = 1 if B = {s′}, and otherwise

πB(s′) =
π′

B(s′)/E(s′)∑
s∈B π′

B(s)/E(s)

for which π′
B(s′′) satisfies the linear equation system

π′
B(s′′) =

∑
s∈B

P(s, s′′) · π′
B(s) such that

∑
s∈B

π′
B(s) = 1.

Example 2. Consider S>0.5(Φ) where Φ = (a∧b) ∨P60.8(aU62 b), for the CTMC
of Example 1. Note that the CTMC is not strongly connected, since e.g. s3 cannot
be reached from s2 (and vice versa). Assume that Φ is valid in states s2 and s3,
and invalid otherwise (as we will see later on). Then we have s0 |= S>0.5(Φ),
since from s0 both the bscc B1 = { s3 } and the bscc B2 = { s1, s2 } can
be reached with probability P(s0, s3) = P(s0, s2) = 1/2, and s2 has a non-
zero steady-state probability in B2. Thus, the steady-state probability for Φ
exceeds 0.5. Formally: πSat(Φ)(s0) = π{ s2,s3 }(s0) = πs2(s0) + πs3(s0) where
πs2(s0) = Prob(s0 , 3B2) · πB2(s2) and πs3(s0) = Prob(s0, 3B1) · πB1(s3). We
have Prob(s0, 3B1) = Prob(s0 , 3B2) = 1/2, πB1(s3) = 1, and obtain π′

B2
(s2) =

1/2 by solving the equation system π′
B2

(s2) = π′
B2

(s1), π′
B2

(s1) = π′
B2

(s2),
π′

B2
(s1) + π′

B2
(s2) = 1. Subsequently, calculation of πB2(s2) yields 2/3. Thus,

π{ s2,s3 }(s0) = 1/2 · 2/3 + 1/2 · 1 = 5/6 which indeed exceeds 0.5.

Computing Prob(s, ϕ). The basis for calculating the probabilities Prob(s, ϕ)
is the following result.
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Theorem 1. For s ∈ S, t ∈ IR>0 and Φ, Φ1, Φ2 state-formulas in CSL:

1. Prob(s, XΦ) =
∑

s′∈Sat(Φ) P(s, s′).
2. The function S → [0, 1], s 7→ Prob(s, Φ1 U Φ2) is the least fixed point of the

higher-order operator Θ : (S → [0, 1]) → (S → [0, 1]) where2

Θ(F )(s) =




1 if s |= Φ2∑
s′∈S P(s, s′) · F (s′) if s |= Φ1 ∧ ¬Φ2

0 otherwise.

3. The function S × IR>0 → [0, 1], (s, t) 7→ Prob(s, Φ1 U6t Φ2) is the least fixed
point of the higher-order operator Ω : (S × IR>0 → [0, 1]) → (S × IR>0 →
[0, 1]) where3

Ω(F )(s, t) =




1 if s |= Φ2∑
s′∈S Q(s, s′) · ∫ t

0 e−E(s)·x · F (s′, t−x) dx if s |= Φ1 ∧ ¬Φ2

0 otherwise.

The first two results of Theorem 1 are identical to the discrete-time probabilistic
case, cf. [14,19,4]. This entails that model checking for these formulas can be
carried out by well-known methods:

– (Prob(s, XΦ))s∈S can be obtained by multiplying the transition probability
matrix P with the (boolean) vector iΦ = (iΦ(s))s∈S characterising Sat(Φ),
i.e. iΦ(s) = 1 if s |= Φ, and 0 otherwise.

– (Prob(s, Φ1 U Φ2))s∈S can be obtained by solving a linear equation system
of the form x = P ·x + iΦ2 where P(s, s′) = P(s, s′) if s |= Φ1 ∧ ¬Φ2 and 0
otherwise. Prob(s, Φ1 U Φ2) is the least solution of this set of equations. Note,
however, that this system of equations can, in general, have more than one
solution. The least solution can be obtained by applying an iterative approx-
imative method or a graph analysis combined with standard methods (like
Gaussian elimination) to solve regular linear equation systems. The worst
case time complexity of this step is linear in the size of ϕ and polynomial in
the number of states.

Example 3. Consider our running CTMC example, Φ = (a∧ b) ∨ P60.8(aU62 b)
and suppose we want to check s1 |= Φ. It follows from Q(s1, s2) = 1 that
the probability of reaching b-state s2 from s1 within two time-units equals
1− e−1·2 ≈ 0.864664. Formally, we have s2 |= Φ, since s2 |= b, and s1 6|= Φ,
since s1 6|= a ∧ b and using Theorem 1 we have that Prob(s1 , aU62 b) equals

∑
s′∈S

Q(s1, s
′) ·

∫ 2

0

e−E(s1)·x · F (s′, 2−x) dx =
∫ 2

0

e−xdx = [−e−x]20 = 1 − e−2

which exceeds 0.8.
2 The underlying partial order on S → [0, 1] is defined for F1, F2 : S → [0, 1] by

F1 6 F2 iff F1(s) 6 F2(s) for all s.
3 The underlying partial order on S × IR>0 → [0, 1] is defined for F1, F2 : S × IR>0 →

[0, 1] by F1 6 F2 iff F1(s, t) 6 F2(s, t) for all s, t.
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The last result of Theorem 1 is due to the fact that the probability density
function of the sojourn time in state s is given by E(s) · e−E(s)·t. The result-
ing recursive integral formula can be reformulated into a heterogeneous linear
differential equation of the form

y′(t) = Q · y(t) + b(t)

where y(t) denotes the vector (Prob(s, Φ1 U 6tΦ2))s∈S , and Q is derived from
Q, by Q(s, s′) = Q(s, s′) if s, s′ |= Φ1 ∧ ¬Φ2, and otherwise Q(s, s′) = 0. The
vector b(t) = (bs(t))s∈S is given by bs(t) =

∑
s′∈Sat(Φ2) Q(s, s′) · e−E(s)t,

if s |= Φ1 ∧ ¬Φ2, and otherwise bs(t) = 0. The vector (Prob(s, Φ1 U 6tΦ2))s∈S

agrees with the following solution of the above heterogeneous linear differential
equation:

y(t) = eQt ·
(
iΦ2 +

∫ t

0

e−Qx · b(x) dx

)
, where eQx =

∞∑
k=0

(Qx)k

k!
.

Unfortunately, it is not clear (at least to the authors) how to obtain a closed so-
lution for the above integral. Using a numerical approximation method instead is
also not an accurate way out, essentially because known approximative methods
for computing eAx (for some square matrix A) are instable, yet computationally
expensive [25]. For that reasons, our algorithm to compute Prob(s, Φ1 U6t Φ2) is
directly based on the last result of Theorem 1. The result suggests the following
iterative method to approximate Prob(s, Φ1 U6t Φ2): let F0(s, t) = 0 for all s, t
and Fk+1 = Ω(Fk). Then,

lim
k→∞

Fk(s, t) = Prob(s, Φ1 U6t Φ2).

(The general nested time-bounded until in [1] can be treated in a similar way.)
Each step in the iteration amounts to solve an integral of the following form:

Fk+1(s, t) =
∫ t

0

∑
s′∈S

Q(s, s′) · e−E(s)·x · Fk(s′, t−x) dx,

if s |= Φ1 ∧ ¬Φ2. These integrals can be solved numerically based on quadrature
formulas of the type

∫ b

a

f(x) dx ≈
N∑

j=0

αj · f(xj)

with interval points x0, . . . , xN ∈ [a, b] and weights α0, . . . , αN that do not de-
pend on f (but may be on N). In our model checking algorithm we focus on
equally-spaced abscissas, i.e. xj = a + j · h where h = (b−a)/N . Well-known
methods applied in practice, like trapezoidal, Simpson, and Romberg integration
schemes belong to this category [24]. For instance, for the trapezoidal method
α0 = αN = h

2 and αi = h for 0 < i < N .
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4 Multi-terminal Decision Diagrams

BDDs and MTBDDs. While (ordered) binary decision diagrams (BDDs) are
data structures for representing boolean functions f : { 0, 1 }n → { 0, 1 }, multi-
terminal BDDs (MTBDDs [12], also called algebraic decision diagrams [3]) allow
terminals to be labelled with values of some domain D (usually IR or [0, 1]), i.e.
they represent functions of the type f : { 0, 1 }n → D. The main idea behind
the MTBDD representation is the use of acyclic rooted directed graphs for a
simplified (more compact) representation of the (binary) decision tree which
results from the Shannon expansion: f(b1, . . . , bn) = (1−b1) · f(0, b2, . . . , bn) +
b1 · f(1, b2, . . . , bn).

For model checking discrete-time Markov chains against PCTL-formulas [19]
it has been shown that MTBDDs can be effectively used [5,20]. These techniques
can potentially be adapted to our continuous-time setting, but are not able to
cope with numerical integration, a technique needed for the time-bounded un-
til operator of CSL with the iterative method sketched above. Therefore, we
introduce a variant of MTBDDs that is focussed on dealing with numerical in-
tegration.

MTDDs. Multi-terminal decision diagrams (MTDDs) are a variant of MT-
BDDs that yield a discrete representation of real-valued functions whose ar-
guments are either boolean variables (called state variables, since they represent
the encoding of states) or real variables (called integral variables, since they
represent variables over which numerical integration takes place). For instance,
MTDDs can represent functions of the type { 0, 1 }n × IR → IR. For the state
variables, the aforementioned Shannon expansion is used. For an integral vari-
able x, a finite set { x0, . . . , xN } is chosen from the range of x. The function
(. . . , x, . . .) 7→ f(. . . , x, . . .) is represented by the function values f(. . . , xj, . . .),
for 0 6 j 6 N . To accomplish this, we use a representation of f that is based
on a discrete fragment of the decision tree where the branches for the integral
variables represent the cases where x ∈ { x0, . . . , xN }.

Formally, with each integral variable x (over interval [0, t]) the following com-
ponents are associated: (i) a natural number N(x) that denotes the number of
abscissas of x, (ii) a set of abscissas where absj(x) denotes the j-th abscissa,
(iii) a range rng(x) = { abs0(x), . . . , absN(x)(x) }, and (iv) a number of weights
wtJ

j (x) for J 6 N(x), and 0 6 j 6 J . The basic idea is that this representation
facilitates numerical integration based on the quadrature formula:

∫ xJ

0

f(x) dx ≈
J∑

j=0

wtJ
j (x) · f(abs j(x))

where absj(x) = xj = j · h for step-size h = t/N(x). This corresponds to a
quadrature formula in which the interval points absj(x) are equally-spaced ab-
scissas [24].

For state variable z, we define rng(z) = { 0, 1 } and N(z) = 1. Let < be a
fixed total order on Var, the set of state and integral variables, such that z < x
for all state variables z and integral variables x.
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Definition 2. A multi-terminal decision diagram (MTDD) over 〈Var, <〉 is a
rooted acyclic directed graph with vertex set V containing 3 types of vertices:

– each state vertex v is labelled by a state variable var (v) and has two children
child0(v), child1(v) ∈ V .

– each integral vertex v is labelled by an integral variable var(v) = x and a nat-
ural number epnt(v) 6 N(x), (endpoint) and has N(x)+1 children child0(v),
. . . , childN(x)(v).

– each terminal vertex v is labelled by a real number val(v),

such that var(v) < var(w) for each non-terminal vertex v and non-terminal child
w of v.

(For Var = {v1, . . . , vn} with vi < vi+1 we refer to an MTDD over 〈Var, <〉 as
an MTDD over (v1, . . . , vn).) The constraint on the labelling of the non-terminal
vertices is standard for (ordered) BDDs, and requires that on any path from the
root to a terminal vertex, the variables respect the given ordering <. An MTDD
M over (v1, . . . , vn) represents a partial function fM, the values of which are
obtained by traversing M starting at the root vertex as follows. For state vertex
v, the edge from v to child0(v) represents the case var(v) is false; the edge from
v to child1(v) the case var(v) is true. For integral vertex v, the edge from v
to child j(v) stands for the case where the value of the real variable var(v) = x
is absj(x). The value epnt(v) is needed to perform the operator Integrate
(defined below). If epnt (v) = J then in vertex v the range of integration is [0, xJ ]
where xJ = absJ (x).4 For efficiency reasons, an implementation will internally
represent MTDDs in a reduced form [9], a compact and canonical representation.

The relationship between BDDs, MTBDDs and MTDDs is as follows. An
MTBDD is an MTDD without integral vertices; a BDD is an MTBDD with
val(v) ∈ { 0, 1 } for all terminal vertices v.

Remark 1. Note that an MTDD over 〈Var, <〉 is also an MTDD over 〈Var′, <′〉
for any superset Var′ of Var and total order <′ on Var′ such that v1 < v2 iff
v1 <′ v2 for all v1, v2 ∈ Var.

Encoding CTMCs by MT(B)DDs. In BDD-approaches transition systems
are symbolically represented by encoding states by bit vectors, and encoding
the transition relation by its characteristic function. To represent the generator
matrix of a CTMC by a MTDD we abstract from the names of the states, and
instead, similar to [13], use binary tuples of atomic propositions that are true in
that state. Using this scheme, CTMCs are encoded as MTDDs as follows. Let
M = (S, Q, L) be a labelled CTMC. We assume that |S| = 2n and that the
labelling function L is injective. (Any labelled CTMCs may be transformed into
one satisfying these conditions by adding dummy states and new propositions.)
4 In our model checking procedure, for any integral vertex v with var(v) = x and

epnt(v) = J < N(x), the branches representing the cases where x = xj and j >
epnt(v) (i.e. the edges to the children childj(v)) are not of importance. Accordingly,
we may assume that any integral vertex v with epnt(v) = J has exactly J+1 children
child0(v), . . . , childJ(v).
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We fix an enumeration a1, . . . , an of atomic propositions and identify each state
s with the boolean n-tuple (b1, . . . , bn) where bi = 1 iff ai ∈ L(s). In what
follows, we assume that S = { 0, 1 }n where we identify each state s with its
encoding and the generator matrix Q with the function F : { 0, 1 }2n → IR
where F (z1, z

′
1, . . . , zn, z′n) = Q((z1, . . . , zn), (z′1, . . . , z

′
n)). We represent M by

the MTBDD Q for Q over (z1, z
′
1, . . . , zn, z′n), in other words fQ = F . Note that

Q does not contain integral variables and hence is a MTBDD.

Example 4. Consider the CTMC of Example 1. According to the above scheme
we encode the states by s0 7→ 00, s1 7→ 01, s2 7→ 10 and s3 7→ 11. The function
F = fQ and the MTDD Q are given by:

3

0

0.5 21

z′1

z2 z2

z′2 z′2

z′1

z2

z′2

z2

z′2

z1

F (0, 1, 0, 1) = 3
F (0, 0, 0, 1) = 3
F (0, 1, 1, 0) = 1
F (1, 0, 0, 1) = 0.5
F (1, 1, 1, 1) = 2

F (z1, z
′
1, z2, z

′
2) = 0 otherwise

where dotted lines denote zero-edges and solid lines one-edges.

Operators on MTDDs. The symbolic model checking algorithm in this pa-
per uses several operators on MTDDs that are slight modifications of equivalent
operators on BDDs [9] and MTBDDs [12,3]. For space reasons we only briefly
describe these operators and focus on the new operators, in particular substitu-
tion and computing integrals. As it is standard in the BDD setting, hash tables
can be used to generate a reduced MTDD during its construction.

– Combining MTDDs via binary operators. Operator Apply allows a point-
wise application of the binary operator op (like summation or multiplication)
to two MTDDs. For MTDDs M1 and M2 over (v1, . . . , vn), Apply(M1, M2, op)
yields an MTDD M over (v1, . . . , vn) for the function fM = fM1 op fM2 .

– Variable renaming. Operator Rename changes the variable labelling of any
vi-labelled vertex of MTDD M over (v1, . . . , vn) into w, for w 6= vj, 0 < j 6 n.
Rename(M, vi, w) yields a MTDD over (v1, . . . , vi−1, w, vi+1, . . . , vn).

– Restriction. For state variable vi = z and boolean b, Restrict(M, z, b) de-
notes the MTDD over (v1, . . . , vi−1, vi+1, . . . , vn) that is obtained from M by
replacing any edge from a vertex v to an z-labelled vertex w by an edge from
v to childb(w), followed by removing all z-labelled vertices. In a similar way,
Restrict(M, x, xj) is defined for vi = x an integral variable, 0 6 j 6 N(x)
and xj = absj(x).

– Comparison operators. Given MTDD M without integral vertices and over
n state variables, and interval I, Compare(M, I) is the BDD representing
the function that equals 1 if fM(b1, . . . , bn) ∈ I and 0, otherwise.

– Matrix/vector multiplication. Let MTBDDs Q and B without integral ver-
tices over 2n and n state variables, respectively, represent the matrix Q
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and vector b. Then Multi(Q, B) denotes the MTBDD over n variables that
represents the vector Q · b. This operator can easily be modified for MT-
DDs. E.g. if Q is a MTDD over (v1, . . . , vn, w1, . . . , wm) and B a MTDD over
(w1, . . . , wm) then MULTI(Q, B) represents the function

(v1, . . . , vn) 7→
∑

w1,...,wm

fQ(v1, . . . , vn, w1, . . . , wm) · fB(w1, . . . , wm).

– Substitution. Let M be a MTDD over (v1, . . . , vn) where vn = x is an integral
variable with N(x) = N and assume y 6= vi for all i. Assume that for any
x-labelled vertex v in M we have epnt(v) = N . Then Subst(M, y, x) denotes
the MTDD over (v1, . . . , vn−1, y, x) which represents the partial function that
equals fM(. . . , y−x) for 0 6 x 6 y and is undefined otherwise. Subst(M, y, x)
results from M by replacing any x-labelled vertex v by the subgraph depicted
as:

0

f1 f0 fN fN−1 f0fj−1 f0fj ......

· · · · · ·x x x

y

In the figure (visualising the decision tree instead of the reduced MTDD),
children are depicted from left to right and vertices child i(v′j) where i > j are
omitted. Here fj = val(child j(v)) for 0 6 j 6 N . More precisely, new vertices
v′, v′1, . . . , v′N are introduced with var(v′) = y, var(v′j) = x, child j(v′) = v′j ,
epnt(v′) = N and epnt(v′j) = j.

– Computing integrals. Let vn = x be an integral variable with N(x) = N ,
rng(x) = { x0, . . . , xN } and wtJ

j (x) = αJ
j . Then, Integrate(M, x) denotes

the MTDD over (v1, . . . , vn−1) that results from M by replacing any x-
labelled vertex v with epnt (v) = J by the terminal vertex labelled by

J∑
j=0

αJ
j · val(childj(v))

where α0
0 = 0. 5 Thus, if epnt(v) = N(x) for each x-labelled vertex v

in M then Integrate(M, x) represents an approximation of the function
(. . .) 7→ ∫ t

0
fM(. . . , x)dx.

Besides the described operators on MTDDs, our model checking algorithm uses
methods for boolean combinators and for a BDD-based graph analysis, e.g. to
obtain the bottom strongly connected components of the graph underlying a
CTMC, and MTBDD-based methods for solving linear equation systems, e.g. to
compute the probabilities πs′(s). For these algorithms we refer to [9,12,3].
5 Note that we assume that x = vn; hence vn is the largest in the variable ordering,

and the children of a x-labelled vertex are terminal vertices.
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5 Symbolically Model Checking CSL

Our symbolic model checking algorithm for CSL works as follows. Let M =
(S, Q, L) be a CTMC which is represented by a MT(B)DD Q over 2n variables
as explained in the previous section. For each CSL-state-formula Φ we define a
BDD Sat[[ Φ ]] over (z1, . . . , zn) that represents the characteristic function of the
set Sat(Φ); for each CSL-path formula ϕ we define a MTBDD PR[[ ϕ ]] represent-
ing the function s 7→ Prob(s, ϕ). By applying standard operators on MTBDDs
we determine the MTBDDs P, representing the transition probability matrix P
of M, and SP representing the steady-state probabilities πs′(s) for s, s′ ∈ S.
Sat[[ Φ ]] is defined as follows:

Sat[[ tt ]] = 1
Sat[[ ai ]] = the BDD for the boolean function (z1, . . . , zn) 7→ zi

Sat[[¬Φ ]] = ¬Sat[[ Φ ]]
Sat[[ Φ1 ∧ Φ2 ]] = Sat[[ Φ1 ]] ∧ Sat[[ Φ2 ]]
Sat[[S./p(Φ) ]] = Compare(Multi(SP, Sat[[ Φ ]]′), I./p)
Sat[[P./p(ϕ) ]] = Compare(PR[[ ϕ ]], I./p).

Here, 1 denotes the BDD consisting of a single, terminal vertex labelled by 1.
Sat[[ ai ]] is a BDD consisting of a single state-vertex v labelled with zi such that
child0(v) and child1(v) are labelled with 0 and 1, respectively. Sat[[ Φ ]]′ denotes
Sat[[ Φ ]] where zi is renamed into z′i (using nested applications of Rename). The
definition of Sat[[S./p(Φ) ]] is justified by the characterisation of πSat(Φ)(s) in
Section 3.

MTBDD PR[[ ϕ ]] is defined by induction over the structure of ϕ. For ϕ = XΦ
and ϕ = Φ1 U Φ2, the MTBDD PR[[ ϕ ]] can be obtained in the same way as for
the discrete-time probabilistic case [5]. This follows directly from the first two
clauses of Theorem 1. For the time-bounded until-operator we define:

PR[[ Φ1U6t Φ2 ]] = BoundedUntil(Q, Sat[[ Φ1 ]], Sat[[ Φ2 ]], t, kmax, ε)

where kmax indicates the maximum number of iterations and ε is the maximum
desired tolerance of the approximation. The algorithm for BoundedUntil is
listed in Table 1. Here, F0 represents the first approximation F0(s, t) = 0. First
the MT(B)DD H for the function H(s, s′, x) = Q(s, s′) · e−E(s)·x is constructed.
This requires as input the MTBDD-representations of E that can easily be ob-
tained from the MTDD Q representing the generator matrix (cf. Section 2). X
consists of a single, integral vertex labelled by x with N+1 terminal vertices
labelled with the values x0, . . . , xN . Here we assume that N is sufficiently large.
In the first five steps of the iteration, the MTDD-representation of Fk+1 is con-
structed systematically. More precisely, Fk represents (approximations) for the
values Fk(s, xj) (0 6 j 6 N) where xj = j · h and h = t/N . I′ represents the
function fI′(s′, y, x) = Fk(s′, y−x). MTDD J represents the function

fJ(s, s′, y, x) = Q(s, s′) · e−E(s)·x · Fk(s′, y−x).
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algorithm BoundedUntil (Q, B1, B2, t, kmax, ε) :
begin F0 := 0; k := 0;

H := Apply(Q, Apply(E, X, (q1, q2) 7→ e−q1·q2 ), ·);
repeat

I := Subst(Fk, x, y);
J := Apply(H, I′, ·);
K := Multi(J,1);
L := Rename(Integrate(K, x), y, x);
Fk+1 := Apply(Apply(L, B1,min), B2,max);
Dk+1 := Apply(Fk+1, Fk,−);

∆k+1 := maxs,j

�
�
�
� fDk+1(s, xj)

�
�
�
�;

k := k + 1;
until (k = kmax or ∆k 6 ε);
if ∆k 6 ε then return Restrict(Fk, x, t) else return error;

end.

Table 1. Algorithm for BoundedUntil

For this, we consider J as the MTDD representation of a matrix whose rows are
indexed by triples (s, y, x), and whose columns are indexed by s′. Matrix-vector
multiplication with 1, the MTDD over (z′1, . . . , z

′
n) that represents the constant

function s′ 7→ 1, yields MTDD K over (z1, . . . , zn, y, x) representing

fK(s, y, x) =
∑
s′∈S

fJ(s, s′, y, x).

By Integrate(K, x) the integrals
∫ xJ

0
fK(s, xJ , x)dx are approximated by

∑
j αJ

j ·
fK(s, xJ , xj). For generating the MTDD Fk+1 that represents function (s, x) 7→ 1
if s |= Φ2, (s, x) 7→ fL(s, x) if s |= Φ1 ∧¬Φ2 and (s, x) 7→ 0 otherwise, we use the
fact that Fk+1(s, x) = max{ min{ fSat[[ Φ1 ]](s), fL(s, x) }, fSat[[ Φ2 ]](s) }.

Finally, after the calculation of Fk+1, the result is compared with the result
of the previous iteration, by an inspection of the terminal nodes of Dk+1 which
represents the difference between Fk and Fk+1. The iteration is finished if either
the indicated maximum number of iterations is reached, or the tolerance of an
“acceptable” approximation results.

Example 5. Consider our running example and check s1 |= P60.8(aU62 b). We
assume that N equals 4 and adopt the trapezoidal method for numerical integra-
tion. The MTBDD Q is the same as in Ex-
ample 4. In the first iteration we obtain for
F1 a single state vertex v labelled z1 with
child1(v) = 1, the terminal vertex labelled 1.
In the second iteration we obtain the MTDD
F2 depicted on the rigth. Here n1 = 1

2 · e−0 +
1
2
· e−0.5, n2 = 1

4
· e−0 + 1

2
· e−0.5 + 1

4
· e−1,

n3 = 1
4 · e−0 + 1

2 · (e−0.5 + e−1)+ 1
4 · e−1.5, and

0

z1

z2

x

1

n1
n2

n3

n4
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n4 = 1
4 · e−0 + 1

2 · (e−0.5 + e−1 + e−1.5) + 1
4 · e−2. The third iteration reveals that

F3 = F2, so the algorithm finishes and returns R = Restrict(F3, x, 2), obtained
from F3 by replacing the subgraph starting in vertex x by the terminal vertex with
label n4 ≈ 0.882604. Finally, Compare(R, I60.8) reveals that P60.8(aU62 b) is
indeed violated in s1. Increasing the number of abscissas increases the accuracy:
e.g. N = 64 leads to 0.8647350 as an approximation for 1 − e−2.

6 Concluding Remarks

We have presented a symbolic model checking algorithm for verifying properties
stated in CSL over continuous-time Markov chains. The basis of this model
checking procedure is a characterisation of time-bounded until in terms of a
Volterra integral equation system that can be solved by iteration. To solve the
integrals in a symbolic way we generalised MTBDDs into multi-terminal decision
diagrams (MTDDs) and presented suitable operators on these structures that
facilitate a numerical integration using quadrature formulas based on equally-
spaced abscissas. Due to their suitability for numerical integration, the potential
application of MTDDs is much wider than model checking CTMCs.

An important direction for future research is the implementation of the pro-
posed algorithm that should provide evidence about the adequacy of our ap-
proach. Amongst others, the size of intermediate MTDDs is unclear yet, and
we want to compare our technique with standard methods to extract perfor-
mance measures from Markov chains [26]. In fact, CSL and the algorithm can
be generalised such that transient and steady state measures are expressible and
can be approximated. We also plan to consider CTMCs that may contain non-
determinism, like stochastic transition systems [17] or interactive Markov chains
[21,22]. We believe that by extending our approach with schedulers [27] in a
similar way as for the discrete-time probabilistic case this is feasible.

Acknowledgement. We thank Markus Siegle for discussion about our initial ideas

concerning MTDDs. Ed Brinksma provided valuable comments on an earlier version.
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