
Program Generation Techniques for the
Development and Maintenance of Numerical

Weather Forecast Grid Models

Victor V. Goldman 1 and Gerard Cats 2

Dept. of Computer Science, University of Twente,
PB 217, 7500 AE Enschede, The Netherlands
2 Royal Netherlands Meteorological Institute,

PB 201, 3730 AE De Bilt, The Netherlands

Abs t rac t . This article presents computer-algebra based techniques for
the automatic generation and maintenance of numerical codes based o n

finite difference approximations. The various generation phases - speci-
fication, discretization, implementation and translation - as well as their
respective knowledge bases, are discussed and specific attention is given
to data mappings in the implementation phase and to high-performance
language extensions in the Fortran translation phase. The generation
of Fortran source for the dynamics part of a limited area weather fore-
casting grid-point model is discussed and is illustrated by showing the
production of a few variants of the surface-pressure tendency code using
the present prototype. Finally, we indicate briefly how adjoints can be
obtained using the present methodology.

1 I n t r o d u c t i o n

A common problem facing efficient maintenance of large scientific codes is the
necessity of recoding for porting to new parallel architectures. Although one can
nowadays appeal to a variety of tools to assist in such a task, most of them
can usually be characterized as source-transforming packages which either com-
pile directly or produce new source appropriate for the target architecture and
compiler. Converters such as CMAX [16] fall into the latter category. Experi-
ence shows however [19], that most tools do not perform satisfactorily without
additional manual intervention or additional au tomated preprocessing [6], espe-
cially for porting from vector to MPP architectures. Although the standardiza-
tion of data parallel languages such as HPF is expected to significantly improve
portability, many proposed automat ic data layout and distribution tools assume
coded Fortran source as start ing point. In the present context, a difficulty with
automat ic source t ransformation is that impor tant knowledge which is used in
developing the code is not availahle to the automat ic tool at the coded program
stage. This knowledge is often useful for attaining an acceptable level of opti-
mality. The problem is usually compounded when extensibility (e.g. amending
or extending the algorithm) is added to the portabil i ty issue.

268

In this paper we adopt a program generation methodology to address such
maintenance issues. The generation process, which is partially rule-driven, starts
from a compact equational specification. After a number of transformations
which include discretization and data mapping, the generator produces source
code: Fortran 77 or 90, optionally with some high-performance constructs. It also
generates code using memory mappings suitable for vector as well as for MPP
architectures. The programming platform of the generation is the Lisp-based
computer algebra system REDUCE [7] and the translation of intermediate code
makes use of the REDUCE-based GENTRAN [4] package for Fortran 77 and
GENTRAN 90 [2], its Fortran 90 extension. To demonstrate the potential of
the present methodology, it was applied to the equations that are solved by
the ttIRLAM 3 model. This is a numerical weather forecasting model that is
in operational use in most of the meteorological institutes of the countries that
participate in the HIRLAM project.

Because of the time constraints on weather forecast production it is essential
that the HIRLAM model code is efficient on the available hardware. Therefore
models like this pose a real challenge on automatic code generation systems with
respect to code optimality. Currently, however, we accept that the generation of
optimal code is aided by the manual specification of a set of heuristic rules to
the generator. Our research is more directed towards the generation of (Fortran)
codes for a range of models from a basic set of equations: The model proper,
its linearized version and the adjoint of the latter. A reason to choose HIRLAM
in particular is that currently within the HIRLAM project group a task force is
operating to develop a linearized version of the HIRLAM model and its adjoint.
For sake of brevity, in this paper we will restrict ourselves to the generation of the
equation for surface pressure tendency as solved by HIRLAM and its lineariza-
tion and adjoint. Within this research, we will assume that the model equations
are given in discretized form. Tile derivation of the discretized equations from
the continuous forms is a task for numerical experts where other constraints than
the model equations (e.g. conservation of energy) ([1]) play a role. Here we do
not attempt to build an expert system to automate that process.

The HIRLAM forecast model and the discretized pressure tendency in partic-
ular are explained in Sect. 2. In Sect. 3 the structure of the prototype generator
is described. The procedure for generating surface-pressure tendency code is pre-
sented in the Sect. 4. Finally in Sect. 5, we briefly describe automatic generation
adjoints for data assimilation using the present methodology.

2 T h e D i s c r e t i z e d F o r e c a s t M o d e l

Overview. The main components of the ItIRLAM forecasting system consist of
a data assimilation scheme, to construct the initial state of the atmosphere from
observations, and the forecast model, to integrate the atmospheric equations of

3 The HIRLAM model was developed by the HIRLAM project group, a coopera-
tive project of Denmark, Finland, Iceland, Ireland, The Netherlands, Norway and
Sweden.

269

motions in time. The current formulations of these components allow efficient
implementation of the forecast model and its adjoint on massively parallel sys-
tems, but not of the data assimilation scheme. This is one of the reasons that
currently efforts are directed towards reformulation of the latter scheme into one
based on variational techniques using the adjoint equation of the forecast model
([15]). Therefore, it is not a serious restriction that we will limit ourselves here
to the forecast model and its adjoint.

The forecast model consists essentially of two main parts. The first, called
'dynamics', solves the primitive equations of motion, e.g., conservation of mass,
momentum, and energy, by time and space discretization techniques. The second,
called 'physics', describes the effect of sub-grid scale processes on the discretized
model variables. It is a characteristic of the division into physics and dynam-
ics that the former do not contain horizontal exchange of information: Physics
are formulated column-wise, all horizontal 'communications' take place within
the dynamics part. In general, the dynamics form the challenging part for code
generation systems because physics are embarrassingly parallel under horizon-
tal domain decomposition (which is the usual vectorization and parallelization
strategy, [3]). For this study we selected from the dynamics the equation de-
scribing conservation of mass, because it is representative for most dynamical
equations, yet conceptually simple. A class of equations we do not address here
consists of those implying 'global communications', like Helmholtz equations or
Fourier transforms. The following is thus restricted to the grid-point version of
the HIRLAM model.

T h e S u r f a c e - P r e s s u r e T e n d e n c y E q u a t i o n . In its vertically integrated form,
conservation of mass reads:

In here, ps is surface pressure, t time, V. the divergence operator, p pressure,
and Vh the horizontal wind. The vertical coordinate is 7/([13]). Equation (1) is
the pressure tendency equation.

The vertical discretization is performed by defining the pressure at NLEV -~- 1
so-called half-levels by two sets of numbers, A and B:

Pk+I/2 = Ak+I/2 + B}+l/2p,(x, y) ; k = 0 , . . . , NLEV (2)

Wind components u and v are given on NLEV 'full-levels', at which the pressure
is the arithmetic average of the pressures at the two neighboring half-levels. The
surface is half-level NLEV -~- 1/2, SO ANLEV+I/~ = 0 and B ~ v + l / 2 = 1.

The horizontal layout of the grid points is the Arakawa-C grid ([1]) where
the wind components u and v are given half a grid distance to the East and
North, resp., with respect to surface pressure Ps. (Fig. 1). The surface pressure
tendency equation (1) can be discretized in a variety of ways. In combination
with suitable discretizations of the other model equations, the following form
satisfies the additional constraints like conservation of energy:

270

Ay

T u

v

T u
a
v

v

T u
: $

A x

T u T

V V

T u
~. T

'V V

T u
- T

Fig. 1. The Arakawa-C grid. The figure shows the position of the grid points of wind
components (u and v) with respect to the main grid points (T), carrying all other
prognostic model variables

Define:

Uk = Z-~pk~uk ; Vk = apk~v~ (3)

The overbar denotes the operator to obtain the value at a grid point where there
is no directly available value; simple arithmetic averaging is sufficiently accurate
(second order in Ax). Further symbols to be used are: a: earth radius; h= and
hy: map factors (to describe e.g. convergence of meridians towards the poles);
A: vertical difference; 8: horizontal difference. Then:

Op, NLEV 1 {8=(hyUi) + ~ y (h ~) }
COt = - Z ah~h----~

j = l

_ 1 us h , (4)
ah~hy

j=l j=l

Equations (3) and (4) are the equations we will consider in the sequel.

3 The Generation Process

Overv iew. Program generation, or more broadly, software synthesis [12], is a
branch of software engineering which concerns itself with the automation of pro-

g r a m writing. In a knowledge-driven approach, coded knowledge is used by the
generator to transform a compact specification into a ready to compile and ex-
ecute program. An important aspect of knowledge-based software synthesis is
that once represented and coded, the knowledge can be easily reused, amended,
or extended, thus facilitating maintenance. In the field of computational science,
there is a great deal of research being done on the many issues in this area:
from computational intelligence, knowledge bases, and environments (see e.g.

271

[8, 18, 10]), to expression manipulation, optimization and translation (see e.g.
[9, 4, 2]). Many software generators [17, 10, 18] make use of computer algebra
systems, especially to manipulate mathematical expressions. The present gen-
erator is embedded in the computer algebra system REDUCE [7]. The overall
architecture of the generator is depicted in Fig. 2. The specifications contain
Computational scripts which delineate concisely the computational trajectory.
High-level optimization heuristics are also part of scripts, but routine low-level
optimizations are implicitly left to the compiler.

Fig. 2. General architecture of the generator

Knowledge Sources. On an abstract level there are essentially four knowledge
sources: model knowledge, mathematical knowledge, computational implementa-
tion knowledge, and target language knowledge. A great deal of this knowledge
is implemented in the form of equations and rules. When invoked by an ob-
ject, a set of REDUCE rules will recursively perform substitutions very much
like rewrite systems. The knowledge categories are not fully independent of each
other: knowledge in one category is sometimes expressed in terms of knowledge
of another.

Model knowledge includes model equations such as those discussed in Sect.
2 and forms the basis for constructing scripts. Model discretization also belongs
to this category. Mathematical knowledge embodies the necessary mathematical
machinery. Besides implicit knowledge contained in the computer algebra sys-
tem, it includes definitions of finite difference operators and approximations for
differential and integral operators. Computational implementation knowledge is
used in transforming the discretized equations into a computation on a computa-
tional grid. Information concerning program variables, their memory mappings

272

and shapes is also contained here. Finally, translation knowledge embodies tar-
get language syntax and target architecture knowledge, the former being mostly
contained in the GENTRAN [4] and GENTRAN 90 [2] packages.

G e n e r a t i o n P ha se s . Generation proceeds through specification, approzima~ion-
discretization, implementation and translation phases. They are executed proce-
durally, drawing from the declarative knowledge sources which were summarized
above. Besides scripts, variable declarations and data mapping directives form
important components of the specifications. Knowledge can also be updated in
the specifications. In the context of data parallel computing, script boundaries
should correspond as much as possible to program phase 4 boundaries. In the
discretization phase, differential and integral operators acquire their discretized
form and, after all finite differencing operators are evaluated, all field variables
appearing in the script equations are placed on the (staggered) discretization
grid. An inconsistent grid-point reference will be detected.

The implementation phase transforms the discretized scripts into an imper-
ative calculation. Indexed variables are now associated with arrays; staggered
variables get integer array indices. Some of the program transformations include
index mappings, array reduction and array declarations, etc. The abstract com-
putation is now expressed as intermediate code and passed to the translation
phase. The latter is performhd by the GENTRAN packages.

4 The Surface-Pressure Tendency Code Generat ion

S p e c i f i c a t i o n a n d Sc r ip t s . We illustrate below a portion of the specification
for the pressure tendency code. It is written in the syntax of REDUCE and its
associated support language Rlisp. Certain entries such as grid definition and
associated field variables declarations are not shown. Another script defining
temporary variables to improve efficiency through common subexpression elim-
ination, exchanging divisions for multiplications, as well as other heuristics is
also omitted. Equation (2) for p and equation (3) for U and V are represented
through the assignments of the generator variables p_.v, uaux_r and vaux_.v re-
spectively. The operator df is the REDUCE symbolic differentiation operator.
The discretization rules determine its finite difference approximation. The opera-
tor cent r~av is a central average operator, and div2_op represents the horizontal
divergence expressed in curvilinear coordinates.

4 The word phase is overloaded in this article. When the generator itself is discussed,
the conventionM meaning of the word is intended. When referring to generated pro-
grams, as is done here, the word takes its more recently acquired technical designa-
tion: a program segment with specific array reference characteristics, (see e.g. [11]).
Confusion of this type is nearly unavoidable when discussing programs which gener-
ate programs. Other program attributes such as implementation suffer also to some
extent from the same ambiguity.

273

7, Pressure Tendency Script
.

p_r:=g+B*ps $
da_eq:= d_a=df(a,eta) * d_eta$
db_eq:= d b=di(b,eta) * d_eta$
dp_eq:= d_p=df(p_r,eta) * d_eta$
dp_eq:= (dp_eq where

heuristics_rulesO({da_eq,db_eq})) $

uaux_r:=u*centr_av(d_p,x)
vaux_r:=v*centr_av(d_p,y)

*2/d_eta$
*2/d_eta$

u_auxeq:= u_aux=numeric_integral(uaux_r,eta,O,l)
v_auxeq:= v aux=numeric_integral(vaux_r,eta,O,l)

repla_unkno~n!*:='((hx.hxv) (hy.hyu))

eq_4:= ddt_ps= -div2 op(u_aux,v_aux) / 25
ps_t endency_s cr ipt : ={da_eq, db_eq, dp_eq, u_aux_eq, v aux_eq, eq_4} $

.

Embodied in the REDUCE program variable ps_tendency_script (last pro-
gram line), is the actual definition of the script used to generate the computation
of (4). It is a concise list of equations (also defined in the specification) which
delineate the steps of the computation on a high level. It was obtained from the
second equality in (4). The list of equations could be modified, e.g. to represent
the first equality in (4), should that lead to more efficient implementations on
available hardware architectures. The present breakdown corresponds roughly
to the one in the current (Fortran 77) reference version of the HIRLAM model,
chosen because it leads to a more efficient code for vector architectures than the
first equality. A posteriori it became apparent that a small number of factoriza-
tions would further improve efficiency. They appear in the script flushed to the
right for the sake of clarity.

D a t a M a p p i n g s . The storage association of the field variables is determined
by specifying index transformation functions. The corresponding inverse trans-
formations are also needed because one is dealing with the mapping of functions
and not of index values. A mapping of the horizontal index set (m, n) onto a
column-major storage index set (ii) can be specified by the REDUCE expression:

vec_map := { {ii= m-lo~(m)+l+(n-low(n))*npts(m)},
{n=floor((ii-l)/npts(m))+low(n),
m=(ii-l)-floor((ii-1)/npts(m))*npts(m)+low(m)} };

The second and third lines represent the inverse map. Presently a mapping is
applied globally to all field quantities, but future implementations will enable
assigning a specific mapping to a specific variable as well as to a specific program
phase.

274

Translat ion. Omitting the automatically generated array declarations, as well
as temporary variables code, the program segment generated from the above
script and mapping is shown below�9 The loop ranges were obtained via an iter-

DO 25012 KK=I,NLEV
ZDAK(KK)=A~YB(KE+X)-ABYB(KK)

25012 COITINUE
DO 25013 KK=I,MLEV
ZDBE(KK)=B~YB(KK+I)-BHYB(KK)

25013 CONTI|UE
DO 2501~ KKcl,MLEV
DO 25015 II=I,MLAT*ML01
ZDPK(II,KK)=PPSZ(II)*ZDBK(KK)§

25015 CONTINUE
25014 CONTINUE

DO 25015 II=I,MLAT*ML01-1
U.AUX(II)=O.O

25016 CONTINUE
DO 25017 KK=I,HLEV
DO 25018 II=I,MLAT*ML0~-I
U_AUX(II)ffiPUZ(II,KK)*ZDPK(II§247
�9 II,KK)*ZDPK(II,KE)+U.AUX(II)

25018 CO|TI |UE
25017 CONTINUE

DO 25019 II=I,HLAT*MLON-NLON
V.AUX(II)=O.O

25019 CONTINUE
DO 25020 KK=I,XLEV
D0 25021 II=I,nLAT*NLON-nLON
V.AUX(II)=PVZ(II,KK)*ZDPK(II§
�9 PVZ(II,KK)*EDPK(II,KK)§

25021 COHTImUE
25020 CONTINUE

DO 25022 II=RLON§
POPSOT(II)=ZKOLOH*~YU(II-I)*U_AUX(II-I)
�9 *ZRHXXY(II)-(Z~DLOH*HYU(II)*U.AUX(II)*
�9 ZRHXHY(II))§
�9 II-MLON)*Z~HXHY(II)-(Z~DLAH*HXV(II)*
�9 V_AUX(II)*ZRnXHY(II))

25022 CONTIIUE

i

ated DEFINE/USE consistency scheme as a way of treating boundaries. Two it-
erations were needed�9 Certain optimizing transformations such as factorizations,
loop-fusion, and code motion will improve the code further�9 Implementation of
such transformations is in progress.

Presently, maintenance of forecast models involves porting code with two-
dimensional arrays for vector machines to fully three-dimensional arrays for MPP
architectures. By specifying a three-dimensional array storage scheme instead of
the one above, a similar code is generated with the correct array references and
three-level loop nesting. We show instead below the elemental assignment version
with eosh i f t and sum operators in Fortran 90 syntax using GENTRAN 90.

real,dimension(mlev+l)::ahyb,bhyb,zdak,zdbk
real,dimension(mlon,mlat)::ppsz,pdpsdt,zhx,zhy,hxv,hyu,u_aux,v_aux&

& ,zrhxhy,hxhy,rhxu,rhyv
real,dimension(mlon,mlat,mlev+l)::zpkp,zdpk,puz,pvz,ke

zdak--eoshift (ahyb, I, 1) -ahyb
zdbk=eoshif t (bhyb, I, I) -bhyb
zdpk=ppsz*zdbk+zdak
u_aux=sum (eoshift (zdpk, I, 1) *puz+puz*zdpk, 3)
v_aux=sum (eoshif t (zdpk, 2,1) *pvz+pvz*zdpk, 3)
pdpsdt =zrdloh*eoshift (hyu, I, - I) *eoshift (u_aux, 1, - 1) *zrhxhy-zrdloh*~

& hyu*u_aux*zrhxhy+zrdlah*eoshift (hxv, 2, - l)*eoshift (v_aux, 2 ,- I)* &
zrhxhy-zrdlah*hxv*v_aux*zrhxhy

275

The array declarations as well as the DIN and SHIFT parameters of eosh i f l ;
were inferred automatically using special generic procedures. We have not yet
studied in detail the efficiency of the code in this form. However its compactness
makes it more amenable to automatic common subexpression elimination and
other transformations, obviating the manual breakdown of the scripts discussed
earlier, as shown by our preliminary work using the SCOPE [9] package.

5 Adjoint Code Generation

The maintenance of large model codes is usually accompanied by the mainte-
nance of the adjoint model. The adjoint has been traditionally hand-coded but
more recently tools have been constructed for its automatic generation through
the use of automatic differentiation techniques (see e.g. [5] for an overview). Like
many automatic tools, automatic adjoint generators take (hand-)coded source
as their starting point. As already implied in the introduction, source code often
contains programming constructs which are more relevant to the target language
and hardware architecture. These usually mask model and mathematical knowl-
edge which is needed to perform what is in principle a mathematical transforma-
tion. The generation techniques presented here allow us to couple the generation
of the adjoint model to the generation of the forward model with relative ease.
Within the framework shown in Fig. 2, the adjoint generation is initiated at the
specification/discretization level.

In adjoint modeling it is the adjoint 73" of the linearized form of the forward
model D which is needed. The action of 79" on a vector a in the range space of
D can be expressed in terms of the inner product (a, Du), as:

79"a - 5(a, Du) 5u ' (5)

as discussed by Thacker [14] in the context of automatic differentiation. The
adjoint code can thus be generated by differentiating the appropriately dis-
cretized inner product. In terms of specification scripts, we introduce the variable
adj_ddt_ps adjoint to the surface pressure tendency. Its contribution to the in-
ner product for the dynamics will be the horizontal sum of adj-dd~;_ps*ddt_ps.
By prepending the script of the forward model one obtains a full script for the
inner product. An adjoint script adj ~ c r i p t is then generated by performing dif-
ferentiation on i nne r_p rod_sc r i p t in reverse mode with respect to the model
variables u, v, and ps. The scripts for the inner product as well as for the adjoint
are shown below. The latter was automatically generated from the former, and
has the recursive structure typical of reverse mode differentiation. The last three
equations in the script represent the required adjoints of ps, u and v respectively.
Fortran code generation follows by going through the same transformations as
for the forward model. Details of this work, which is in progress, will be presented
elsewhere.

276

inner.prod.script:=
(ps.tendency_script,

inner_prod=
discr.integral(discr_inteEral(
adj_ddt.ps*dd~.ps,

x,O,rmaxlon),y,O,rmaxlat)}$

m o d _ v a r s ! * : = ' (ps u v) $
mod_range_vars!*:='(ddt.ps)$

adj.scripr :=
(adj.alOOl=df(inner.prod,ddt.ps~),
ndj.bl001=mat_mul(adj_al001,df(ddt.ps,u_aux~)),
adj.blOO2ffinat.mul(adj_alOOl,df(ddt_ps,v.aux')),
adj.clOOl=ent.nul(adj_blOOl,df(u_nux,d_p~)) §

eat.mul(adj_blOO2,df(v.nnx,d_pS)),
adj_r
adj.clOO3=mat.nul(adj_blOO2,df(v.anx,v~)),
adj.dlOOl=mat.mul(adj_clOOl,df(d_p,psJ)),
adj.dlOO2ffima~_mul(adj.clOO2,df(u,u')),
adj.dlOO3=uat.enl(adj.clOO3,df(v,v~))}

6 C o n c l u s i o n s

We have presented program generation techniques for large scale numerical mod-
els. We have concentrated more on procedural components than on high-level
inference in order to be able to assess the functionality needed to be able to
obtain the necessary leverage for realistic maintenance and development issues.
In spirit, our work is mostly related to that of Ref. [17] and, to some extent, to
that of Ref. [t0] where the architecture has much in common with ours. That
work however has a much more developed inference system and more formalized
specifications. Specifications in the present work are less constrained so as to
allow us to deal more directly with the issues mentioned in the article. Future
work includes generating other parts of the forecast model, and implementing
additional code transformations and more sophisticated data layout schemes.

7 Acknowledgments

The authors have benefited from discussions with Lex Wolters, Robert van En-
gelen, Paul ten Brummelhuis, and Hans van Hulzen. We are grateful to Andrd
Koopal for providing I~TEX forms of the HIRLAM equations.

R e f e r e n c e s

1. Arakawa, A., Lamb, V. R.: A potential enstrophy and energy conserving scheme for
the shallow water equations. Mon. Wen. Rev.109 (1981) 18-36.

2. Borst, W. N., Goldman, V.V., van Hulzen, J. A.: GENTRAN90: A REDUCE pack-
age for the generation of FORTRAN 90 code. (ISSAC '94),Proceedings Int. Symp.
on Symbolic and Algebraic Computation (1994) 45-51. ACM Press, New York.

3. Cats, G., Middelkoop, H., Streefland, D., Swierstra, D.: In: The dawn of massively
parallel processing in meteorology, Springer Verlag, Berlin (1990) 47-75.

4. Gates, B. L., Dewar, M. C.: GENTRAN User's Manual - REDUCE VERSION,
(1991)

5. Griewank, A., Corliss, G.F., eds.: Automatic Differentiation o] Algorithms. SIAM,
Philadelphia, (1991).

277

6. Hammond, S. W., Loft, R. D., Dennis, J. M., Sato, R. K.: A data parallel im-
plementation of the NCAR Community Climate Model (CCM2). In Proe. Seventh
SIAM Conference on Parallel Processing for Scientific Computing, D.H. Bailey, P.E.
Bj0rstad, J.R. Gilbert, M.V. Mascagni, R.S. Schreiber, H.D. Simon, V.J. Torczon
and L.T. Watson, (eds.), (1995) 125-130. SIAM, Philadelphia.

7. Hearn, A. C.: REDUCE 3.5 Manual (1993), The Rand Corporation, Santa Monica.
8. Houstis, E. N., Rice, J., R., Vichnevetsky, R., (Eds.): Proceedings of the Third

International Conference on Expert Systems for Numerical Computing, WesV
Lafayette,May 1993. Math. Comput. Simulation 36 (1994) 269-520

9. van Hulzen, J. A.,: SCOPE 1.5, a Source-Code Optimization Package for REDUCE
3.5 - User Manual. Memorandum INF-94-17, Department of Computer Science,
University of Twente, (1994).

10. Kant, E., Yau, A. S-H., Liska, R., Steinberg, S.: A problem solving environment for
generating certifiably correct programs to solve evolution equations. Preprint (1995).
Department of Mathematics and Statistics, University of New Mexico, Albuquerque.

11. Kremer, U., Mellor-Crummey, J., Kennedy, K., Carle, A.: Automatic data layout
for distributed-memory machines in the D programming environment. Technical
Report CRPC-TR93298-S, Center for Research on Parallel Computation, (1993).

12. Setliff, D., Kant, E., Cain, T.: Practical Software Synthesis. IEEE Software 10
(1993) 6-10

13. Simmons, A., Burridge, D. M.: An energy and angular-momentum conserving ver-
tical finite-difference scheme and hybrid vertical coordinates. Mon. Wen. Rev.109
(1981) 758-766.

14. Thacker, W. C.: Automatic differentiation from an oceanographer's perspective.
In [5], pp. 191-201.

15. Th~paut, J.N., Courtier, P.: Four-dimensional variational data assimilation using
the adjoin of a multilevel primitive-equation model. Quart. J. Roy. Meteor. Soc. 117
(1991) 1225-1254.

16. Thinking Machines Corporation: Using the CMAX converter. Manual version 2.0
(1994).

17. Wang, P. S.: FINGER: A Symbolic System for Automatic Generation of Numerical
Programs in Finite Element Analysis, J. Symb. Comp. 2 (1986) 305-316

18. Weerawarana, S., Houstis, E. N., Rice, J. R.: An interactive symbolic-numeric
interface to Parallel ELLPACK for building general PDE Solvers. In B.R. Donald, D.
Kapur, and J. L. Mundy, editors: Symbolic and Numerical Computation for Artificial
Intelligence, Academic Press (1992) 303-321.

19. Wolters, L., Cats, G., Gustafsson, N.: Limited area numerical weather forecast-
ing on a massively parallel computer. Proceedings of the 8th A CM International
Conference on Supercomputing, July 11-15 1994, Manchester, England, ACM press,
(1994),289-296.

