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Abs t rac t .  This article presents computer-algebra based techniques for 
the automatic generation and maintenance of numerical codes based o n  

finite difference approximations. The various generation phases - speci- 
fication, discretization, implementation and translation - as well as their 
respective knowledge bases, are discussed and specific attention is given 
to data mappings in the implementation phase and to high-performance 
language extensions in the Fortran translation phase. The generation 
of Fortran source for the dynamics part of a limited area weather fore- 
casting grid-point model is discussed and is illustrated by showing the 
production of a few variants of the surface-pressure tendency code using 
the present prototype. Finally, we indicate briefly how adjoints can be 
obtained using the present methodology. 

1 I n t r o d u c t i o n  

A common problem facing efficient maintenance of large scientific codes is the 
necessity of recoding for porting to new parallel architectures. Although one can 
nowadays appeal to a variety of tools to assist in such a task, most  of them 
can usually be characterized as source-transforming packages which either com- 
pile directly or produce new source appropriate  for the target architecture and 
compiler. Converters such as CMAX [16] fall into the latter category. Experi- 
ence shows however [19], that  most tools do not perform satisfactorily without 
additional manual  intervention or additional au tomated  preprocessing [6], espe- 
cially for porting from vector to MPP architectures. Although the standardiza- 
tion of data  parallel languages such as HPF  is expected to significantly improve 
portability, many proposed automat ic  data  layout and distribution tools assume 
coded Fortran source as start ing point. In the present context, a difficulty with 
automat ic  source t ransformation is that  impor tant  knowledge which is used in 
developing the code is not availahle to the automat ic  tool at the coded program 
stage. This knowledge is often useful for attaining an acceptable level of opti- 
mality. The problem is usually compounded when extensibility (e.g. amending 
or extending the algorithm) is added to the portabil i ty issue. 
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In this paper we adopt a program generation methodology to address such 
maintenance issues. The generation process, which is partially rule-driven, starts 
from a compact equational specification. After a number of transformations 
which include discretization and data mapping, the generator produces source 
code: Fortran 77 or 90, optionally with some high-performance constructs. It also 
generates code using memory mappings suitable for vector as well as for MPP 
architectures. The programming platform of the generation is the Lisp-based 
computer algebra system REDUCE [7] and the translation of intermediate code 
makes use of the REDUCE-based GENTRAN [4] package for Fortran 77 and 
GENTRAN 90 [2], its Fortran 90 extension. To demonstrate the potential of 
the present methodology, it was applied to the equations that are solved by 
the ttIRLAM 3 model. This is a numerical weather forecasting model that is 
in operational use in most of the meteorological institutes of the countries that 
participate in the HIRLAM project. 

Because of the time constraints on weather forecast production it is essential 
that the HIRLAM model code is efficient on the available hardware. Therefore 
models like this pose a real challenge on automatic code generation systems with 
respect to code optimality. Currently, however, we accept that the generation of 
optimal code is aided by the manual specification of a set of heuristic rules to 
the generator. Our research is more directed towards the generation of (Fortran) 
codes for a range of models from a basic set of equations: The model proper, 
its linearized version and the adjoint of the latter. A reason to choose HIRLAM 
in particular is that currently within the HIRLAM project group a task force is 
operating to develop a linearized version of the HIRLAM model and its adjoint. 
For sake of brevity, in this paper we will restrict ourselves to the generation of the 
equation for surface pressure tendency as solved by HIRLAM and its lineariza- 
tion and adjoint. Within this research, we will assume that the model equations 
are given in discretized form. Tile derivation of the discretized equations from 
the continuous forms is a task for numerical experts where other constraints than 
the model equations (e.g. conservation of energy) ([1]) play a role. Here we do 
not attempt to build an expert system to automate that process. 

The HIRLAM forecast model and the discretized pressure tendency in partic- 
ular are explained in Sect. 2. In Sect. 3 the structure of the prototype generator 
is described. The procedure for generating surface-pressure tendency code is pre- 
sented in the Sect. 4. Finally in Sect. 5, we briefly describe automatic generation 
adjoints for data assimilation using the present methodology. 

2 T h e  D i s c r e t i z e d  F o r e c a s t  M o d e l  

Overview. The main components of the ItIRLAM forecasting system consist of 
a data assimilation scheme, to construct the initial state of the atmosphere from 
observations, and the forecast model, to integrate the atmospheric equations of 

3 The HIRLAM model was developed by the HIRLAM project group, a coopera- 
tive project of Denmark, Finland, Iceland, Ireland, The Netherlands, Norway and 
Sweden. 
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motions in time. The current formulations of these components allow efficient 
implementation of the forecast model and its adjoint on massively parallel sys- 
tems, but not of the data assimilation scheme. This is one of the reasons that  
currently efforts are directed towards reformulation of the latter scheme into one 
based on variational techniques using the adjoint equation of the forecast model 
([15]). Therefore, it is not a serious restriction that  we will limit ourselves here 
to the forecast model and its adjoint. 

The forecast model consists essentially of two main parts. The first, called 
'dynamics',  solves the primitive equations of motion, e.g., conservation of mass, 
momentum, and energy, by time and space discretization techniques. The second, 
called 'physics', describes the effect of sub-grid scale processes on the discretized 
model variables. It is a characteristic of the division into physics and dynam- 
ics that the former do not contain horizontal exchange of information: Physics 
are formulated column-wise, all horizontal 'communications' take place within 
the dynamics part. In general, the dynamics form the challenging part for code 
generation systems because physics are embarrassingly parallel under horizon- 
tal domain decomposition (which is the usual vectorization and parallelization 
strategy, [3]). For this study we selected from the dynamics the equation de- 
scribing conservation of mass, because it is representative for most dynamical 
equations, yet conceptually simple. A class of equations we do not address here 
consists of those implying 'global communications',  like Helmholtz equations or 
Fourier transforms. The following is thus restricted to the grid-point version of 
the HIRLAM model. 

T h e  S u r f a c e - P r e s s u r e  T e n d e n c y  E q u a t i o n .  In its vertically integrated form, 
conservation of mass reads: 

In here, ps is surface pressure, t time, V. the divergence operator, p pressure, 
and Vh the horizontal wind. The vertical coordinate is 7/([13]). Equation (1) is 
the pressure tendency equation. 

The vertical discretization is performed by defining the pressure at NLEV -~- 1 
so-called half-levels by two sets of numbers, A and B: 

Pk+I/2 = Ak+I/2 + B}+l/2p,(x,  y) ; k = 0 , . . . ,  NLEV (2) 

Wind components u and v are given on NLEV 'full-levels', at which the pressure 
is the arithmetic average of the pressures at the two neighboring half-levels. The 
surface is half-level NLEV -~- 1/2, SO ANLEV+I/~ = 0 and B ~ v + l / 2  = 1. 

The horizontal layout of the grid points is the Arakawa-C grid ([1]) where 
the wind components u and v are given half a grid distance to the East and 
North, resp., with respect to surface pressure Ps. (Fig. 1). The surface pressure 
tendency equation (1) can be discretized in a variety of ways. In combination 
with suitable discretizations of the other model equations, the following form 
satisfies the additional constraints like conservation of energy: 
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Fig. 1. The Arakawa-C grid. The figure shows the position of the grid points of wind 
components (u and v) with respect to the main grid points (T), carrying all other 
prognostic model variables 

Define: 

Uk = Z-~pk~uk ; Vk = apk~v~ (3) 

The overbar denotes the operator to obtain the value at a grid point where there 
is no directly available value; simple arithmetic averaging is sufficiently accurate 
(second order in Ax). Further symbols to be used are: a: earth radius; h= and 
hy: map factors (to describe e.g. convergence of meridians towards the poles); 
A: vertical difference; 8: horizontal difference. Then: 

Op, NLEV 1 {8=(hyUi) + ~ y ( h ~ ) }  
COt = - Z ah~h----~ 

j = l  

_ 1 us h ,  (4) 
ah~hy 

j=l  j=l  

Equations (3) and (4) are the equations we will consider in the sequel. 

3 The Generation Process  

Overv iew.  Program generation, or more broadly, software synthesis [12], is a 
branch of software engineering which concerns itself with the automation of pro- 

g r a m  writing. In a knowledge-driven approach, coded knowledge is used by the 
generator to transform a compact specification into a ready to compile and ex- 
ecute program. An important aspect of knowledge-based software synthesis is 
that  once represented and coded, the knowledge can be easily reused, amended, 
or extended, thus facilitating maintenance. In the field of computational science, 
there is a great deal of research being done on the many issues in this area: 
from computational intelligence, knowledge bases, and environments (see e.g. 
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[8, 18, 10]), to expression manipulation, optimization and translation (see e.g. 
[9, 4, 2]). Many software generators [17, 10, 18] make use of computer algebra 
systems, especially to manipulate mathematical expressions. The present gen- 
erator is embedded in the computer algebra system REDUCE [7]. The overall 
architecture of the generator is depicted in Fig. 2. The specifications contain 
Computational scripts which delineate concisely the computational trajectory. 
High-level optimization heuristics are also part of scripts, but routine low-level 
optimizations are implicitly left to the compiler. 

Fig. 2. General architecture of the generator 

Knowledge  Sources.  On an abstract level there are essentially four knowledge 
sources: model knowledge, mathematical knowledge, computational implementa- 
tion knowledge, and target language knowledge. A great deal of this knowledge 
is implemented in the form of equations and rules. When invoked by an ob- 
ject, a set of REDUCE rules will recursively perform substitutions very much 
like rewrite systems. The knowledge categories are not fully independent of each 
other: knowledge in one category is sometimes expressed in terms of knowledge 
of another. 

Model knowledge includes model equations such as those discussed in Sect. 
2 and forms the basis for constructing scripts. Model discretization also belongs 
to this category. Mathematical knowledge embodies the necessary mathematical 
machinery. Besides implicit knowledge contained in the computer algebra sys- 
tem, it includes definitions of finite difference operators and approximations for 
differential and integral operators. Computational implementation knowledge is 
used in transforming the discretized equations into a computation on a computa- 
tional grid. Information concerning program variables, their memory mappings 
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and shapes is also contained here. Finally, translation knowledge embodies tar- 
get language syntax and target architecture knowledge, the former being mostly 
contained in the GENTRAN [4] and GENTRAN 90 [2] packages. 

G e n e r a t i o n  P ha se s .  Generation proceeds through specification, approzima~ion- 
discretization, implementation and translation phases. They are executed proce- 
durally, drawing from the declarative knowledge sources which were summarized 
above. Besides scripts, variable declarations and data  mapping directives form 
important  components of the specifications. Knowledge can also be updated in 
the specifications. In the context of data parallel computing, script boundaries 
should correspond as much as possible to program phase 4 boundaries. In the 
discretization phase, differential and integral operators acquire their discretized 
form and, after all finite differencing operators are evaluated, all field variables 
appearing in the script equations are placed on the (staggered) discretization 
grid. An inconsistent grid-point reference will be detected. 

The implementation phase transforms the discretized scripts into an imper- 
ative calculation. Indexed variables are now associated with arrays; staggered 
variables get integer array indices. Some of the program transformations include 
index mappings, array reduction and array declarations, etc. The abstract com- 
putation is now expressed as intermediate code and passed to the translation 
phase. The latter is performhd by the GENTRAN packages. 

4 The Surface-Pressure Tendency  Code Generat ion 

S p e c i f i c a t i o n  a n d  Sc r ip t s .  We illustrate below a portion of the specification 
for the pressure tendency code. It is written in the syntax of REDUCE and its 
associated support language Rlisp. Certain entries such as grid definition and 
associated field variables declarations are not shown. Another  script defining 
temporary variables to improve efficiency through common subexpression elim- 
ination, exchanging divisions for multiplications, as well as other heuristics is 
also omitted. Equation (2) for p and equation (3) for U and V are represented 
through the assignments of the generator variables p_.v, uaux_r and vaux_.v re- 
spectively. The operator df is the REDUCE symbolic differentiation operator. 
The discretization rules determine its finite difference approximation. The opera- 
tor cent r~av is a central average operator, and div2_op represents the horizontal 
divergence expressed in curvilinear coordinates. 

4 The word phase is overloaded in this article. When the generator itself is discussed, 
the conventionM meaning of the word is intended. When referring to generated pro- 
grams, as is done here, the word takes its more recently acquired technical designa- 
tion: a program segment with specific array reference characteristics, (see e.g. [11]). 
Confusion of this type is nearly unavoidable when discussing programs which gener- 
ate programs. Other program attributes such as implementation suffer also to some 
extent from the same ambiguity. 
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7, Pressure Tendency Script 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p_r:=g+B*ps $ 
da_eq:= d_a=df(a,eta) * d_eta$ 
db_eq:= d b=di(b,eta) * d_eta$ 
dp_eq:= d_p=df(p_r,eta) * d_eta$ 
dp_eq:= (dp_eq where 

heuristics_rulesO({da_eq,db_eq})) $ 

uaux_r:=u*centr_av(d_p,x) 
vaux_r:=v*centr_av(d_p,y) 

*2/d_eta$ 
*2/d_eta$ 

u_auxeq:= u_aux=numeric_integral(uaux_r,eta,O,l) 
v_auxeq:= v aux=numeric_integral(vaux_r,eta,O,l) 

repla_unkno~n!*:='((hx.hxv) (hy.hyu)) 

eq_4:= ddt_ps= -div2 op(u_aux,v_aux) / 25 
ps_t endency_s cr ipt : ={da_eq, db_eq, dp_eq, u_aux_eq, v aux_eq, eq_4} $ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Embodied in the REDUCE program variable ps_tendency_script (last pro- 
gram line), is the actual definition of the script used to generate the computation 
of (4). It is a concise list of equations (also defined in the specification) which 
delineate the steps of the computation on a high level. It was obtained from the 
second equality in (4). The list of equations could be modified, e.g. to represent 
the first equality in (4), should that lead to more efficient implementations on 
available hardware architectures. The present breakdown corresponds roughly 
to the one in the current (Fortran 77) reference version of the HIRLAM model, 
chosen because it leads to a more efficient code for vector architectures than the 
first equality. A posteriori it became apparent that a small number of factoriza- 
tions would further improve efficiency. They appear in the script flushed to the 
right for the sake of clarity. 

D a t a  M a p p i n g s .  The storage association of the field variables is determined 
by specifying index transformation functions. The corresponding inverse trans- 
formations are also needed because one is dealing with the mapping of functions 
and not of index values. A mapping of the horizontal index set (m, n) onto a 
column-major storage index set (ii) can be specified by the REDUCE expression: 

vec_map := { {ii= m-lo~(m)+l+(n-low(n))*npts(m)}, 
{n=floor((ii-l)/npts(m))+low(n), 
m=(ii-l)-floor((ii-1)/npts(m))*npts(m)+low(m)} }; 

The second and third lines represent the inverse map. Presently a mapping is 
applied globally to all field quantities, but  future implementations will enable 
assigning a specific mapping to a specific variable as well as to a specific program 
phase. 
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Translat ion.  Omitting the automatically generated array declarations, as well 
as temporary variables code, the program segment generated from the above 
script and mapping is shown below�9 The loop ranges were obtained via an iter- 

DO 25012 KK=I,NLEV 
ZDAK(KK)=A~YB(KE+X)-ABYB(KK) 

25012 COITINUE 
DO 25013 KK=I,MLEV 
ZDBE(KK)=B~YB(KK+I)-BHYB(KK) 

25013 CONTI|UE 
DO 2501~ KKcl,MLEV 
DO 25015 II=I,MLAT*ML01 
ZDPK(II,KK)=PPSZ(II)*ZDBK(KK)§ 

25015 CONTINUE 
25014 CONTINUE 

DO 25015 II=I,MLAT*ML01-1 
U.AUX(II)=O.O 

25016 CONTINUE 
DO 25017 KK=I,HLEV 
DO 25018 II=I,MLAT*ML0~-I 
U_AUX(II)ffiPUZ(II,KK)*ZDPK(II§247 
�9 II,KK)*ZDPK(II,KE)+U.AUX(II) 

25018 CO|TI |UE 
25017 CONTINUE 

DO 25019 II=I,HLAT*MLON-NLON 
V.AUX(II)=O.O 

25019 CONTINUE 
DO 25020 KK=I,XLEV 
D0 25021 II=I,nLAT*NLON-nLON 
V.AUX(II)=PVZ(II,KK)*ZDPK(II§ 
�9 PVZ(II,KK)*EDPK(II,KK)§ 

25021 COHTImUE 
25020 CONTINUE 

DO 25022 II=RLON§ 
POPSOT(II)=ZKOLOH*~YU(II-I)*U_AUX(II-I) 
�9 *ZRHXXY(II)-(Z~DLOH*HYU(II)*U.AUX(II)* 
�9 ZRHXHY(II))§ 
�9 II-MLON)*Z~HXHY(II)-(Z~DLAH*HXV(II)* 
�9 V_AUX(II)*ZRnXHY(II)) 

25022 CONTIIUE 

i 

ated DEFINE/USE consistency scheme as a way of treating boundaries. Two it- 
erations were needed�9 Certain optimizing transformations such as factorizations, 
loop-fusion, and code motion will improve the code further�9 Implementation of 
such transformations is in progress. 

Presently, maintenance of forecast models involves porting code with two- 
dimensional arrays for vector machines to fully three-dimensional arrays for MPP 
architectures. By specifying a three-dimensional array storage scheme instead of 
the one above, a similar code is generated with the correct array references and 
three-level loop nesting. We show instead below the elemental assignment version 
with eosh i f t  and sum operators in Fortran 90 syntax using GENTRAN 90. 

real,dimension(mlev+l)::ahyb,bhyb,zdak,zdbk 
real,dimension(mlon,mlat)::ppsz,pdpsdt,zhx,zhy,hxv,hyu,u_aux,v_aux& 

& ,zrhxhy,hxhy,rhxu,rhyv 
real,dimension(mlon,mlat,mlev+l)::zpkp,zdpk,puz,pvz,ke 

zdak--eoshift (ahyb, I, 1) -ahyb 
zdbk=eoshif t (bhyb, I, I) -bhyb 
zdpk=ppsz*zdbk+zdak 
u_aux=sum (eoshift (zdpk, I, 1 ) *puz+puz*zdpk, 3) 
v_aux=sum (eoshif t (zdpk, 2,1 ) *pvz+pvz*zdpk, 3) 
pdpsdt =zrdloh*eoshift (hyu, I, - I) *eoshift (u_aux, 1, - 1 ) *zrhxhy-zrdloh*~ 

& hyu*u_aux*zrhxhy+zrdlah*eoshift (hxv, 2, - l)*eoshift (v_aux, 2 ,- I)* & 
zrhxhy-zrdlah*hxv*v_aux*zrhxhy 
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The array declarations as well as the DIN and SHIFT parameters of eosh i f l ;  
were inferred automatically using special generic procedures. We have not yet 
studied in detail the efficiency of the code in this form. However its compactness 
makes it more amenable to automatic common subexpression elimination and 
other transformations, obviating the manual breakdown of the scripts discussed 
earlier, as shown by our preliminary work using the SCOPE [9] package. 

5 Adjoint Code Generation 

The maintenance of large model codes is usually accompanied by the mainte- 
nance of the adjoint model. The adjoint has been traditionally hand-coded but 
more recently tools have been constructed for its automatic generation through 
the use of automatic differentiation techniques (see e.g. [5] for an overview). Like 
many automatic tools, automatic adjoint generators take (hand-)coded source 
as their starting point. As already implied in the introduction, source code often 
contains programming constructs which are more relevant to the target language 
and hardware architecture. These usually mask model and mathematical  knowl- 
edge which is needed to perform what is in principle a mathematical  transforma- 
tion. The generation techniques presented here allow us to couple the generation 
of the adjoint model to the generation of the forward model with relative ease. 
Within the framework shown in Fig. 2, the adjoint generation is initiated at the 
specification/discretization level. 

In adjoint modeling it is the adjoint 73" of the linearized form of the forward 
model D which is needed. The action of 79" on a vector a in the range space of 
D can be expressed in terms of the inner product (a, Du), as: 

79"a - 5(a, Du) 5u ' (5)  

as discussed by Thacker [14] in the context of automatic differentiation. The 
adjoint code can thus be generated by differentiating the appropriately dis- 
cretized inner product. In terms of specification scripts, we introduce the variable 
adj_ddt_ps adjoint to the surface pressure tendency. Its contribution to the in- 
ner product for the dynamics will be the horizontal sum of adj-dd~;_ps*ddt_ps. 
By prepending the script of the forward model one obtains a full script for the 
inner product. An adjoint script adj ~ c r i p t  is then generated by performing dif- 
ferentiation on i nne r_p rod_sc r i p t  in reverse mode with respect to the model 
variables u, v, and ps. The scripts for the inner product as well as for the adjoint 
are shown below. The latter was automatically generated from the former, and 
has the recursive structure typical of reverse mode differentiation. The last three 
equations in the script represent the required adjoints of ps, u and v respectively. 
Fortran code generation follows by going through the same transformations as 
for the forward model. Details of this work, which is in progress, will be presented 
elsewhere. 
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inner.prod.script:= 
(ps.tendency_script, 

inner_prod= 
discr.integral(discr_inteEral( 
adj_ddt.ps*dd~.ps, 

x,O,rmaxlon),y,O,rmaxlat)}$ 

m o d _ v a r s ! * : = ' (  ps u v ) $  
mod_range_vars!*:='( ddt.ps)$ 

adj.scripr := 
(adj.alOOl=df(inner.prod,ddt.ps~), 
ndj.bl001=mat_mul(adj_al001,df(ddt.ps,u_aux~)), 
adj.blOO2ffinat.mul(adj_alOOl,df(ddt_ps,v.aux')), 
adj.clOOl=ent.nul(adj_blOOl,df(u_nux,d_p~)) § 

eat.mul(adj_blOO2,df(v.nnx,d_pS)), 
adj_r 
adj.clOO3=mat.nul(adj_blOO2,df(v.anx,v~)), 
adj.dlOOl=mat.mul(adj_clOOl,df(d_p,psJ)), 
adj.dlOO2ffima~_mul(adj.clOO2,df(u,u')), 
adj.dlOO3=uat.enl(adj.clOO3,df(v,v~))} 

6 C o n c l u s i o n s  

We have presented program generation techniques for large scale numerical mod- 
els. We have concentrated more on procedural components than on high-level 
inference in order to be able to assess the functionality needed to be able to 
obtain the necessary leverage for realistic maintenance and development issues. 
In spirit, our work is mostly related to that of Ref. [17] and, to some extent, to 
that of Ref. [t0] where the architecture has much in common with ours. That  
work however has a much more developed inference system and more formalized 
specifications. Specifications in the present work are less constrained so as to 
allow us to deal more directly with the issues mentioned in the article. Future 
work includes generating other parts of the forecast model, and implementing 
additional code transformations and more sophisticated data layout schemes. 
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