
Low-Fat Recipes for Spin

Theo C. Ruys

Faculty of Computer Science, University of Twente.
P.O. Box 217, 7500 AE Enschede, The Netherlands.

ruys@cs.utwente.nl

Abstract. Since the introduction of the first version of the model checker
Spin in 1991, many papers have been written on improvements to the
tool and on industrial applications of the tool. Less attention has been
given to the pragmatic use of Spin. This paper presents several tech-
niques to optimise both the modelling and verification activities when
using Spin.

Introduction

Since the introduction of the first version of the model checker Spin [5] in 1991
(accompanying Gerard Holzmann’s book [6] on Spin), many papers have been
published on technical improvements to Spin. The extensive list of industrial ap-
plications [8] shows that Spin has already been proven quite useful. The procee-
dings of the Spin Workshops [18] give a good overview of the (applied) research
on Spin. It is surprising that less attention has been given to the pragmatic use
of Spin; there is not even a Frequently Asked Questions (FAQ) list for Spin.

With respect to verification tools that need extensive user guidance – like
theorem provers and proof checkers – model checkers are often put forward as
‘press-on-the-button’ tools: given a model and a property, pressing the ‘verify’
button of the model checker is enough for the tool to prove or disprove the
property. If both the model and the property are readily available, this claim
might be true. However, the formalization of both the model and the properties is
usually not a trivial task. Furthermore, due to the infamous state space explosion
problem, both the model and the property to be verified should be coded as
efficient as possible for the model checker that is being used.

Now that model checking tools in general and Spin in particular are becoming
more widespread in use [7], these tools are starting to be adopted by people that
only want to press the button and that do not know precisely what is ‘under the
hood’ of such verification tools. During technology transfer projects and during
the education of our students we experienced that – without proper guidance
– Promela and Spin are not being used in the most optimal way. On the
one hand, Promela, because it resembles C [9], is regarded as a high level
programming language. On the other hand, Spin is seen as a magic tool that
can verify even the largest systems. Promela models are being constructed as
some sort of C programs that may be good specifications and functional models,
but may not be as efficient to verify. Several solutions to this potential misuse
of model checkers come to mind:

K. Havelund, J. Penix, and W. Visser (Eds.): SPIN 2000, LNCS 1885, pp. 287–321, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

288 T.C. Ruys

– More agressive tools. If model checking tools would mimic optimizing com-
pilers more closely, all non-efficiency could be optimised away. The limited
price to pay would be a drop in compilation and runtime speed.

– Restrict the language. If the user of the model checker cannot use ‘expensive’
constructs, the model will be efficient by construction. The catch here is that
in general it will be more difficult to model systems.

– Educate the users. If the users know what constructs should be avoided and
what data and control structures are most efficient, the user can improve his
modelling skills himself.

This paper aims to be helpful with respect to the last solution. We present some
(shortened) selected techniques from “Effective Spin” [15], a collection of proven
best practices when using Spin.

Effective Modelling and Verification. Press-on-the-button verification is
only feasible for small to medium sized applications. Industrial size applications
need aggressive use of the modelling language, the properties to be checked and
the verification tool itself. As discussed above, there is generally a big difference
in efficiency in the models developed by a ‘casual’ user and the models develo-
ped by an ‘expert’ user. Moreover, the ‘expert’ user knows how to exploit the
directives and options of the model checker to optimise the verification runs. Ef-
ficient use of model checking tools seems to require an ‘assembler programming’
approach to model building: use all tricks of the model checker to minimise the
state space of the model and make the verification process as efficient as possible.
The ‘expert’ verification engineer resembles the seasoned programmer, who not
only has a deep knowledge and understanding of data structures and algorithms
but also knows the options and directives to tune the programming tools that
he is using.

With model checking tools there is – just as with programming – a trade-off
between time and space requirements. For the model checking process, however,
the space requirements are much more important than the time requirements.
Because of the state space explosion, it is crucial to reduce the number of states
as much as possible. So reduction of the number of states is the first considera-
tion. The minimization of the size of the state vector (i.e. the amount of memory
which is needed to encode a single state) is the next concern. Only in the last
case, reduction of the verification time should be taken into account. Spin has
several options and directives to tune the verification process. Not surprisingly,
many of these options are related to the trade-off between space and time requi-
rements. An efficient verification model is usually optimised and tuned towards
the property that has to be verified. It is not unusual to have a different model
for each different property. This differs from programming, where one usually
has only a single program (and older superseded versions of that program).

This paper presents a couple of ‘expert’ techniques to optimise both the
modelling and verification process when using Spin.1 These techniqes are mostly
1 To determine whether one is already on the ‘expert’ level of Promela one could

do the following: start Xspin, press “Help” and read the last section “Reducing

Low-Fat Recipes for Spin 289

concerned with the minimization of the number of states or the reduction of the
state vector. The techniques discussed here are not answers to FAQs, but are
more like ‘recipes from a cookbook’ in the style of [2] and [12]. The recipes are
presented in a tutorial oriented manner. When appropriate, there will be pointers
to more formal and technical discussions, though. This paper is intended to be
useful for intermediate to advanced users of Spin; [15] has more sections for
novice users of Spin.

All proposed techniques can be used with standard Promela and standard
Spin. No modifications to Spin are needed. Some hints and tips will be trivial
to experienced C/C++ programmers, but might be ‘eye-openers’ for Spin users
that originate from the ‘formal methods community’. Several of the tips and
techniques presented in this report, may even look like terrible ‘hacks’: horrible
and unreadable deviations from the original specification or model.2

We hope that the recipes will not only be adopted as efficient ways to achieve
specific goals in Promela or Spin, but also induce a new way of thinking about
the verification process with Spin.

Experiments. The techniques discussed in this paper and the advice given are
verified by numerous experiments with Spin itself. Summaries of the results of
(most of) these experiments are included in the report. All verification expe-
riments are run on a Dell Inspiron 7000 Notebook computer running Red Hat
Linux 6.1 (Linux kernel version 2.2.12). The Dell computer is driven by a Pen-
tium II/300Mhz with 128Mb of main memory. For the pan verification runs we
limited the memory to 64Mb though. For our experiments we used Spin version
3.3.10.

Some verification runs have been repeated with certain optimization settings
enabled or disabled. The different types of verification runs are identified as
follows:

default default Xspin settings
-o3 disables Spin’s smart merging of safe sequences
-DNOREDUCE disables partial order reduction
-DCOLLAPSE a state vector compression mode
-DMA=n uses a minimised DFA encoding for the state space

See [19] for details on these verification options.

Literate Programming. The recipes in the paper are illustrated by Promela
code fragments. These Promela fragments are presented as literate programs
[10,14]. Literate programming is the act of writing computer programs primarily
as documents to be read by human beings, and only secondarily as instructions

Complexity”. The Spin user who already lives by all these rules of thumb, is on the
right track.

2 Some of the techniques discussed in this paper should probably be done by Spin
instead of the user. Future versions of Spin might incorporate optimizations (e.g.
assignment of arrays, efficient arrays of bits, checking for pure atomicity, etc.) which
would make the discussions in this paper obsolete. Until then, one has to adopt these
techniques manually.

290 T.C. Ruys

to be executed by computers [14]. A literate program combines source code and
documentation in a single file. Literate programming tools then parse such a file
to produce either readable documentation or compilable source code.

We use noweb, developed by Norman Ramsey as our literate programming
tool. noweb [14,13] is similar to Knuth’s WEB, only simpler. Unlike WEB, noweb is
independent of the programming language to be literated.

We briefly introduce the reader to the noweb style of literate programming.
A literate document consists of code chunks and document chunks. What follows
is a code chunk.
1 〈sample code chunk 1〉≡

proctype Silly()
{

〈Silly’s body 2〉
}

In this code fragment, the chunk 〈sample code chunk 1〉 is defined. In the left
margin, noweb shows the unique number of the code chunk.3 When the name of
a code chunk appears in the definition of another code chunk, it stands for the
corresponding replacement text. In our simple example, 〈sample code chunk 1〉
uses the code chunk 〈Silly’s body 2〉, which is defined as follows.

2 〈Silly’s body 2〉≡ (1) 3 .
do
:: skip
od ;

In the right margin of the definition of a chunk, between parenthesis, the tags of
the code chunks that use this particular code chunk are listed. In this case, this
list only contains the tag of 〈sample code chunk 1〉. It’s possible and common
practice to give the same name to several different code chunks. Continuing our
example, we can expand our Silly process as follows.
3 〈Silly’s body 2〉+≡ (1) / 2

assert(0) ;

The +≡ here indicates that the code chunk 〈Silly’s body〉 has appeared before.
The Promela code following +≡ will be appended to the previous replacement
text for the same name. When such continuations of code chunk definitions are
used, noweb provides more information in the right margin; it indicates the pre-
vious definition (/) and the next definition (.) of the same code chunk.

Recipe 1 – Macros, inline Definitions, and m4

Unlike most programming languages, Promela does not support the concept of
procedures or functions to structure a Promela model. Instead, Promela offers
the macro mechanism of the cpp preprocessor [9] and – since Spin version 3.2.0
3 In this paper the WEB style of chunk numbering is used. Another popular way of

chunk identification is a tag page.n, where n indicates the n-th chunk on page page.

Low-Fat Recipes for Spin 291

– the semantically equivalent inline construct. As the name of the construct
already suggests, an invocation of an inline definition amounts to the automatic
inlining of the text of the inline definition into the body of the process that
invokes it.

Although limited with respect to native procedures or functions, inline
definitions can still be quite helpful to structure a Promela model. The cpp
macro mechanism is convenient for defining constants and symbolic propositions
(e.g. Xspin’s dialog window for LTL verification runs). Furthermore, the cpp
preprocessor can be used to parameterise a Promela model.

Note that Spin’s on-line documentation [19] suggests a third method to si-
mulate procedures. A seperate server process needs to be declared with the
body of the procedure. This server process responds to the user processes via a
special globally defined channel, and responding to these requests via an user
provided local channel. In the light of our ‘assembler modelling’ approach it will
be clear that this method is rejected for its inefficiency.

In this section, we discuss some common cpp macros and inline tricks that
have proven useful within the context of Promela models. We will also show
some of the limitations of inline definitions with respect to parameterising Pro-
mela models and introduce the reader to m4, a more powerful macro processor
than cpp.

1.1 Some cpp Macros

To get a feeling of cpp macros, we first introduce some useful cpp one-liners.
These macros will be used in other parts of this report as well.

IF/FI. Promela does not support a pure deterministic conditional statement,
To model a deterministic conditional one has to reside to the following construct:

if
:: 〈boolean expression〉 -> 〈then part〉
:: else -> 〈else part〉
fi ;

If the 〈else part〉 is missing (i.e. equal to skip), the construct becomes a rather
clumsy way to model the equivalent of the following piece of C code:

if (〈boolean expression〉) {
〈then part〉
}

The following two macros IF and FI can be used as a convenient shorthand for
a deterministic conditional:
4 〈cpp macros 4〉≡ 5 .

#define IF if ::
#define FI :: else fi

292 T.C. Ruys

Now we can write:

IF 〈boolean expression〉 -> 〈then part〉
FI;

IMPLIES. When checking properties in an assert statement, it often happens
that one needs to check a logical implication: p ⇒ q. The ⇒ operator does not
have a direct counterpart in Promela. Instead we encode the equivalent ¬p ∨ q
as a cpp macro:
5 〈cpp macros 4〉+≡ / 4

#define IMPLIES(p,q) ((!p) || (q))

1.2 A Poor Man’s Assignment

Although Promela supports arrays and typedef variables, these structured
types are not (yet) ‘first class citizens’ of the language. For example, it is not
possible to use Promela’s assignment statement (i.e. ‘=’) to copy one array
or typedef variable to another.4 Here, the cpp macro or inline construct can
be helpful to implement a “poor man’s assignment” or copy procedure. As an
example, suppose a Promela model contains the following typedef definition:
6 〈typedef Foo 6〉≡

typedef Foo {
byte b1 ;
byte b2 ;

} ;

The inline definition to copy one Foo variable to another is now trivial:
7 〈inline CopyFoo 7〉≡

inline CopyFoo(src,dest)
{

d_step {
dest.b1 = src.b1 ;
dest.b2 = src.b2 ;

}
}

4 If one tries to assign a complete typedef variable, Spin will issue an ‘incomplete
structure ref’ error. But beware: if one tries to assign a complete array variable,
Spin will not complain. Spin even allows assignment of incompatible arrays (i.e.
different base type or different number of elements). But instead of copying the
complete array, Spin will only copy the first element of the array. The reason for
this is that the name of an array variable is treated as an alias to the first element
of the particular array.
Please note that Promela does allow initialisation of a complete array in the decla-
ration of the array, though. The declaration

〈type〉 a[N]=val ;
initialises all N elements of a to val.

Low-Fat Recipes for Spin 293

Similarly, one can use the following inline definition to assign the value val to
the elements of an array a of length n.

8 〈inline AssignArray 8〉≡
inline AssignArray(a,n,val)
{

byte i ;
d_step {

i=0 ;
do
:: i < n -> a[i] = val ; i++
:: i >= n -> break
od ;
i=0 ;

}
}

Note that the variable i is not local to the inline definition, but instead will be
a local variable in all processes that invoke the AssignArray definition. To make
sure that the overhead of the local variable is kept to a minimum, the variable
i is reset to 0 at the end of the d step. In this way, system states will not differ
on the basis of the temporary variable i. See Recipe 5 for details on this idiom.

It would even have been more efficient if we would be able to ‘hide’ the varia-
ble i from the state vector using the Promela keyword hidden. Unfortunately,
the current version of Spin only allows global variables to be declared as hidden
variables. So in order to hide i, we should declare i as a global variable and
remove the declaration of i from the inline macro.

Note that one has to supply inline definitions for all typedef objects or
array variables that have to copied or initialised.

1.3 Parameterised Protocols

Communication protocols are often parameterised by some symbolic constants.
Typical parameters are the number of processes, the length of the communi-
cation buffers, the window size of the protocol, etc. When modelling such a
parameterised protocol in Promela one usually uses the macro mechanism of
the preprocessor cpp to define the parameters at the start of the Promela
model. For example, we could use the following Promela fragment

#define N 3
#define WSIZE 4
#define CL 2

to specify N protocol instances, a windowsize of WSIZE and a channel length of
CL elements.

Each time the Promela model has to be validated with different values of
the parameters, the constants need to be changed explicitly in the Promela
model. To really make the constants parameters to the Promela model, Spin

294 T.C. Ruys

provides the preprocessor related options -D and -E to move the definition of
such parameters outside the Promela model:

-Dyyy pass -Dyyy to the preprocessor
-Eyyy pass yyy to the preprocessor

Instead of defining the parameters in the Promela model itself, one can run
Spin as follows:

spin -DN=3 -DWSIZE=4 -DCL=2 〈promela file〉
Consequently, the 〈promela file〉 does not have to be changed for different values
of the protocol parameters. When parameters are set in this way using the
command-line, it is recommended to specify default values for the parameters in
the Promela model itself. For example:

#ifndef N
#define N 3
#endif

In practice, changing one of the parameters of a Promela model often means
that some other statements have to be altered as well. For example, consider
the following Promela fragment, where a message MSG is non-deterministicly
sent to one of the available N processes. We assume that the sending over the
channels to[i] cannot be blocked.

9 〈non-deterministic send - if 9〉≡
if
:: to[0] ! MSG
:: to[1] ! MSG
:: to[2] ! MSG
:: to[3] ! MSG
fi ;

In this case N is equal to 4. The number of processes parameter is hardcoded
into the model; if N is changed from 4 to 7, we have to add three more lines. We
could make the sending of the MSG depend on N using Promela’s do statement:5

10 〈non-deterministic send - do 10〉≡
byte i ;
atomic {

i=0 ;
do
:: i<N-1 -> i++
:: i<N-1 -> to[i] ! MSG ; break
:: i>=N-1 -> to[N-1] ! MSG ; break
od ;
i=0 ;

}

This do-solution is less efficient than the straightforward if clause: not only do
we need an extra variable to loop through the possible processes 0..N, the do-
5 Note that the do-solution is only semantically equivalent to the if-solution if the

sending over the channels to[i] cannot be blocked.

Low-Fat Recipes for Spin 295

Table 1. Some cpp macros and their m4 counterparts

cpp macro m4 macro
#define MAX 5 define(‘MAX’,‘5’)
#define P (a>5 && b<10) define(‘P’,‘a>5 && b<10’)
#define IMPLIES(x,y) ((!x) || (y)) define(‘IMPLIES’,‘((!$1) || ($2))’)
#include "filename" include(‘filename’)

construct also performs worse with respect to the execution time and the search
depth.6 Moreover, the do-solution is clearly less readable than the original if
construct. The only advantage of the do-solution is that it is parameterised in N.

Unfortunately enough, the cpp preprocessor is not expressive enough to let
a macro expand to the if solution: cpp does not have a looping construct that
depends on some numeric constant. A more powerful preprocessor is needed.

1.4 The m4 Macro Processor

Like cpp, m4 [16] is a macro processor in the sense that it copies its input to the
output, expanding macros as it goes. m4 is being used either as a front-end to
compilers, or as a macro processor in its own right. m4 is much more powerful
and flexible than cpp. m4 is widely available on all UNIXes.7 In the context of
Promela and Spin, m4 has turned out to be valuable tool for making Promela
models more generic without losing efficiency.

The use of a different preprocessor than Spin’s is anticipated in Spin with
the -Pxxx option. To make Spin use m4 instead of cpp, one simply issues the
command

spin -Pm4 -E-s8

This report is not the place to describe m4 in great detail. The interested reader
should refer to [16] instead. We will only briefly discuss some differences between
cpp and m4 to make a migration to m4 easier. And of course we will present the
parameterised m4 macro that expands to the 〈non-deterministic send - if 9〉
chunk of the previous section.
Table 1 shows some cpp macros and their m4 equivalent counterparts. The m4
macro processor uses quoted strings (i.e. a string between the characters ‘ and
’) to specify the arguments of the define macros. Naturally, m4 also provi-
des constructs to conditionally include or exclude some program fragments. For
example, the cpp construct
6 In Recipe 3 “Randomness” we discuss the differences between the if and do solutions

in greater detail.
7 A warning on m4 from [16]: “Some people found m4 to be fairly addictive. . . . Beware

that m4 can be dangerous for the health of compulsive programmers.”
8 The option -s which is passed to m4 using Spin’s -E option, is needed to ensure the

correct synchronisation of line numbers and file names within the Promela source
file(s). See [16] for details.

296 T.C. Ruys

#ifdef name
〈then ...〉
#else
〈else ...〉
#endif

has the following
m4 counterpart:

ifdef(‘name’,‘
〈then ...〉 ’,‘
〈else ...〉 ’)

And the if, the ifndef and undef constructs of cpp have equivalent commands
within m4 as well.

Comments in m4 input files are normally delimited by the characters ‘#’ and
a newline character. These comment delimiters can be changed to any string,
using m4’s built-in macro changecom. To retain Promela style comments – i.e.
the cpp style comments – we change the comment delimiters to /* and */.
11 〈m4 macros 11〉≡ 12 .

changecom(‘/*’,‘*/’)

Besides counterparts for all cpp commands, m4 supports several additional pre-
processing features. To implement a general looping construct, only the stack-like
redefinition macros, the recursion construct and the integer arithmetic operati-
ons of m4 are needed, though. The following forloop macro is from [16]:

12 〈m4 macros 11〉+≡ / 11
define(‘forloop’,

‘pushdef(‘$1’, ‘$2’)_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)popdef(‘$1’)’)
define(‘_forloop’,

‘$4‘’ifelse($1, ‘$3’, ,
‘define(‘$1’, incr($1))_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)’)’)

Understanding the implementation of the forloop macro is not really needed,
only the result of an invocation of forloop is important here. The forloop
macro expects 4 parameters. The first parameter is the looping variable. The
second and third parameter are the start and end value of the looping variable,
respectively. The last argument of forall is the string that should be written
for each value of the looping variable.
For example, the macro invocation
forloop(‘i’, 1, 8, ‘i ’)

expands to
1 2 3 4 5 6 7 8

For each value of i, the string ‘i ’ is written, with the actual value substituted
for i. Using forloop, we now are able to write a parameterised version of 〈non-
deterministic send - if 9〉:
13 〈non-deterministic send - if using m4 13〉≡

if
forloop(‘i’, 0, eval(N-1), ‘:: to[i] ! MSG
’)fi ;

If N has been defined to be 4, this chunk 13 will expand exactly to chunk 9. Alt-
hough we managed to parameterise the guards of the if clause, the m4 construct
using forloop is clearly less readable than both the original static if clause and

Low-Fat Recipes for Spin 297

the do solution. In Recipe 3, though, we will show that the m4 construct proves
to be an efficient and parameterised solution.

The forloop macro can also be quite useful in a (boolean) expression. Sup-
pose that a process waits for all N processes to become ready, i.e. the boolean
ready[i] is true for all i ∈ 0..N-1:
ready[0] && ready[1] && ... && ready[N-1]

Again, we cannot use cpp to build this expression which depends on the para-
meter N. The forloop macro is straightforward, however:
forloop(‘i’, 0, eval(N-1), ‘ready[i] &&’) true

Conclusions. To structure a Promela model or to parameterise the model,
the use of cpp and inline constructs usually suffices. The power user, however,
might consider to add m4 to his (verification) toolbox: this macro processor is
more powerful than cpp and the parameterising of the Promela model is usually
more elegantly. Moreover – as we will see in Recipe 3 – the resulting Promela
model can be more efficient in terms of the number of states or the needed search
depth. It is possible to mix m4 and cpp constructs in a single Promela model.
This is not considered good practice, though.

As a last remark, remember that Promela is a protocol meta language, not
a programming language. Shorthands like IF and forloop should be used with
caution.

Recipe 2 – Atomicity

This section discusses issues related to the atomic and d step constructs of
Promela, which both introduce a sequence of statements that is to be executed
indivisibly. The atomic sequence is allowed to contain non-deterministic choices,
whereas the d step (i.e. the deterministic step) may only contain deterministic
statements.9

Both constructs can be used to reduce the complexity of the validation model
and to improve the efficiency of verification runs [19]. As we will see in Recipe 5,
the d step construct can also be seen as a mechanism to define an indivisible
statement in the language at the user-level, and thus to extend the semantics of
Promela itself [20].

The semantics of the atomic clause of Promela has changed over the years.
In version 1.x of Spin, it would causes a run-time error if any statement, other
than the first statement, blocks in an atomic sequence [17]. However, since ver-
sion 2 of Spin, it is legal for an atomic sequence to block. If any statement
within the atomic sequence blocks, the atomicity is lost, and other processes are
allowed to execute arbitrarily many statements [20]. The d step is not allowed to
block, though. The pan verifier will abort the verification if it detects a blocking
d step.
9 Although the d step clause should only contain ‘deterministic’ statements, the pan

verifier will not check this. If the verifier encounters a non-deterministic choice, it
will just choose the first alternative.

298 T.C. Ruys

2.1 Atomicity of Single Statements

Before turning to the atomic and d step constructs themselves, we briefly dis-
cuss the granularity of Promela statements. In the realm of (competing) par-
allel processes that share global memory, the implementation of computations
and assignment statements is liable to result in incorrect behaviour due to race
conditions between the processes. The abstraction level of Promela is higher:
a single statement is assumed to be indivisible. For example, an assignment like

a = b+c*d-e*f ;

is considered to be atomic within Promela. If one wants to check the correc-
tness of a possible low-level implementation of such an assignment, one should
manually split up the assignment using temporary variables. For example:

x1 = c*d ;
x2 = e*f ;
x1 = b+x1 ;
a = x1-x2 ;

To exclude the temporary variables x1 and x2 from the state vector, they should
be defined as hidden global variables.

2.2 Atomic is Not Always Atomic

New users often expect the version 1.x semantics of Spin: placing an atomic
clause around a sequence of statements should ensure the atomicity of the state-
ments. This erroneous perspective can lead to unexpected errors that are hard to
find. For example, suppose a Promela model contains an atomic clause which
is assumed to be indivisible. During a verification run, however, the atomic
clause blocks and control is passed to one of the other processes. Later during
the search, the property that is being checked is violated, due to the premature
ending of the atomic clause. Still assuming the atomicity of the clause, the user
does not understand why the property has been violated.

The statement that causes an atomic clause to block is often an if or do
statement. If the set of guards of the if or do statement is not complete and
the else statement is missing, the particular statement might block. This error
can easily slip into the model, when behaviour is added to the Promela model
(i.e. new possible values for variables, new mtype messages that are sent over a
channel), that is not anticipated by the particular if or do statement.

Although the semantics of the atomic clause have changed, it is still rela-
tively easy to check whether atomic clauses are ‘pure’ in the sense that they
are not exited prematuraly due to a blocking statement. The following steps are
sufficient:

– declare a global bit variable aflag;
– set aflag to 1 on entrance of each atomic block that has to be checked

for ‘pure atomicity’: immediately after the first statement or guard of the
atomic block;

Low-Fat Recipes for Spin 299

– set aflag to 0 on leaving those atomic blocks: immediately before the closing
‘}’ of the block;

– use Spin to verify that aflag is always equal to zero, i.e. verify that the
invariant property []P holds, where P is equal to !aflag.

For example, to verify the following atomic clause
14 〈atomic block 14〉≡

atomic {
guard ;
...

}

for ‘pure atomicity’, it would have to be changed to

15 〈atomic block with aflag 15〉≡
atomic {

guard ;
aflag=1 ;
...
aflag=0 ;

}

A drawback of this method is that all atomic clauses have to be altered in the
Promela model to check for ‘pure atomicity’. Instead, we could also use cpp
macros such that the checking can be done conditionally. The 〈aflag declarati-
ons 16〉 chunk below defines the necessary macros:

16 〈aflag declarations 16〉≡
#ifdef CHECK_ATOMICITY
bit aflag ;
#define SET_AFLAG aflag=1
#define RESET_AFLAG aflag=0
#else
#define SET_AFLAG skip
#define RESET_AFLAG skip
#endif

The SET AFLAG and RESET AFLAG macros are only ‘active’ when CHECK ATOMICITY
is defined. The 〈atomic block with aflag 15〉 fragment can now be changed to:

17 〈atomic block with AFLAG macros 17〉≡
atomic {

guard ;
SET_AFLAG ;
...
RESET_AFLAG ;

}

300 T.C. Ruys

2.3 Infinity and Atomicity

Most reactive systems – like communication protocols – execute forever. Spin
does not have problems verifying such systems with infinite behaviour.10 Infi-
nity and the atomic and d step constructs do not mix, though. Consider the
following trivial infinite loop in Promela:

18 〈infinite loop 18〉≡ (19–21)
bit b ;
do
:: b=1-b
od ;

which is encapsulated in the following proctype:
19 〈infinite-normal.pr 19〉≡

active proctype Infinite()
{

〈infinite loop 18〉
}

When this Promela model is checked (e.g. for invalid endstates), pan will ter-
minate normally and report that 2 states are stored with a maximum search
depth of 1.
Things change, however, if we enclose the 〈infinite loop 18〉 into an atomic clause:

20 〈infinite-atomic.pr 20〉≡
active proctype Infinite()
{

atomic { 〈infinite loop 18〉 }
}

There will still be only one state, but pan cannot ‘get out’ of the atomic loop; the
pan verifier will continue to execute the assignment statement. Luckily, pan will
(eventually) complain that the search depth was too small: every execution of
the assignment will have been put onto the stack. When we enclose the 〈infinite
loop 18〉 in a d step, we get into trouble, though.

21 〈infinite-d step.pr 21〉≡
active proctype Infinite()
{

d_step { 〈infinite loop 18〉 }
}

The pan verifier will never be able to complete its d step transition and will keep
executing the assignment statement; all in a single search step. The verifier will
get into an endless (livelock) loop and will never allow one of the other processes
to proceed. This error is not easy to spot as it seems as if pan is very busy
traversing the state space.
10 Note that Promela models always define finite state systems. Thus infinite beha-

viour in Promela involves looping: visiting a state that has already been visited
before.

Low-Fat Recipes for Spin 301

Although this example is trivial, an endless loop in a d step clause is not
unlikely to occur in practice. For example, consider the inline definition of
〈inline AssignArray 8〉, which initialises an array a of length n. The increment
statement i++ in the do-loop can easily be forgotten.

So before putting a computation into a d step one should make sure that the
computation does not contain an infinite loop. A simple way to check this is to
first enclose the computation sequence into an atomic clause. If the maximum
search depth turns out to be too small due to the atomic clause, the clause
probably contains an infinite loop.

Conclusions. In this recipe we discussed the ‘atomicity’ constructs of Pro-
mela. We have shown how to check for ‘pure atomicity’ when using the atomic
clause. Furthermore, we discussed the pitfalls regarding infinite behaviour in
combination with atomic and d step.

Recipe 3 – Randomness

The file rand.html from [19] mentions the following: “There is no random num-
ber generation function in Promela. . . . In almost all cases, Promela’s notion
of non-determinism can replace the need for a random number generator.” In
general this is true. Randomness is a concept used in program implementation
(e.g. in simulutation and testing), whereas non-determinism is a concept used in
the specification of systems and hence, in model checking and verification. An
attempt to construct a random generator in Promela often reflects a misun-
derstanding of the user with respect to the model. For verification, in general,
only specific possibilities (e.g. boundary values, valid and invalid choices) need
modelling.

Still, there sometimes seems to be a need for an explicit randomise construct.
Especially users new to Spin and less familiar with non-deterministic choices,
expect a random number generation function in Promela. Furthermore, in the
initial phase of the modelling of a system, an explicit random construct can be
quite useful.

In this section we investigate and compare several possibilities to add a
random definition to the Promela language. The randomness example proves
to be a nice example to get a feeling of the “assembler programming” approach
to model building.

do solution. A natural first attempt to an explicit randomise construct – which
is commonly seen – is the following piece Promela definition:
22 〈inline: random - plain do 1st try 22〉≡

inline random(i,N)
{

〈random - do 1st try〉
}

where the body of 〈random - do 1st try 23〉 could be defined as:

302 T.C. Ruys

23 〈random - do (1st attempt) 23〉≡
i=0 ;
do
:: i<N -> i++
:: i<N -> break
:: i>=N -> break
od ;

The do-loop is used to non-deterministically increment the variable i or to break
out of the loop. After the loop the variable i will have a value from the range
0..N. We see that for both guards i<N and i>=N we can always break out of
the loop. So, an elegant and slightly more efficient randomise construct is the
following:
24 〈inline: random - plain do 24〉≡

inline random(i,N)
{

〈random - do 25〉
}

where 〈random - do 25〉 is defined as:

25 〈random - do 25〉≡ (24 26)
i=0 ;
do
:: i<N -> i++
:: break
od ;

The construction can improved even further by placing the complete 〈random
do〉 chunk in an atomic clause.11

26 〈inline: random - atomic do 26〉≡
inline random(i,N)
{

atomic { 〈random - do 25〉 }
}

if solution. Similar to 〈non-deterministic send - if 9〉, we can also use an
if-clause to set the random value in a single transition. For example, if N is 4,
we could also set i to a random value between 0 and N using the following code:

if
:: i=0
:: i=1
:: i=2
:: i=3
:: i=4
fi ;

11 Note that we cannot use a d step clause here, because the random choice is based
on the non-deterministic guards in the do-loop.

Low-Fat Recipes for Spin 303

Spin will non-deterministicly choose one of guards to set i to a value in the
range 0..4. The drawback of the if solution is that the code chunk has to be
altered when the constant N is changed. As explained in Recipe 1, we cannot use
the cpp preprocessor to let a macro expand dynamically to a variable number of
guards, based on the parameter N. Instead we use the m4 macro forloop defined
in 〈m4 macros 12〉 to dynamically build the if clause:12

27 〈inline: random - if 27〉≡
inline random(i)
{

if
forloop(‘j’, 0, eval(N), ‘ :: i=j
’) fi ;
}

Pseudo-random Generator. Apart from the non-deterministic techniques
that we discussed above, one can also model a deterministic, pseudo-random
generator in Promela. For example, after defining the macro
#define RANDOM (seed*3 + 14) % 100

every subsequent assignment
seed = RANDOM ;

will set seed to a “pseudo-random” value between 0 and 99. It will be clear
that this is a different kind of randomness than the non-deterministic do and if
techniques. In the remainder of this recipe, we will not discuss pseudo-random
generators any further.

3.1 Comparison

To compare the different implementations of the random definition, we have run
two types of test series with Spin:

– We have verified a Promela model where random(i,N) was called only once
with N==50.

– To check the verification time of the random construct, we also verified a
Promela model where the random(i,N) definition was invoked 10000 times
with N==10.

We distinguish between setting a local or global variable. The reason for making
this distinction is that declaring variables to be local to a process or global to
the complete model can have consequences on the effectiveness of the verification
runs. Although semantically equal (unless the global variable is used in some
other process), Spin can optimise the use of local variables more aggressively
because, by definition, a local variable will never be used by other processes.
Thus, Spin can savely apply live-variable analysis [1] on local variables within a
process, whereas Spin cannot do this for global variables.
12 The only drawback of this m4 approach is that we cannot make N a parameter of the

inline definition; the value of N has to be known at macro expansion time.

304 T.C. Ruys

Table 2. local - 50. Comparing different implementations to set a local
variable to a random value between 0 and 50.

implem
enta

tion

opt
ions

dep
th reac

hed

stat
es stor

ed

stat
es match

ed

tran
sitio

ns

plain do default 53 104 50 154
atomic do default 55 104 50 154
if default 2 53 50 103
plain do -o3 104 205 50 255
atomic do -o3 105 104 50 154
if -o3 3 104 50 154

Table 3. local - 10000x10. Comparing different implementations to set
a local variable 10000 times to a random value between 0 and 10.

implem
enta

tion

opt
ions

dep
th reac

hed

stat
es stor

ed

tran
sitio

ns

tota
l memory

(Mb)

tim
e (sec

)

plain do default 130002 330003 430003 10.669 2.23
atomic do default 150002 330003 1429900 11.149 11.05
if default 20002 220003 1319900 6.390 6.21
plain do -o3 250002 650003 750003 18.669 4.13
atomic do -o3 260002 440003 1539900 15.770 14.07
if -o3 40002 440003 1539900 10.250 6.69

For the ‘local variable’ verification runs, for example, we used the following Test
process:
28 〈random-local-var.pr 28〉≡

active proctype Test()
{

byte i ;
random(i) ;
assert((0<=i) && (i<=N)) ;

}

Furthermore, we repeated the verification runs with different optimization set-
tings enabled and disabled. Enabling or disabling partial order reduction did
not make any significant difference. On the other hand, disabling the “sequence
merge mode” of Spin (using the -o3 option) gave different results. Tables 2-5
summarise the results of the various verification runs.

Local Table 2 and Table 3 list the results of randomly setting a local variable.
The tables show that the plain do and atomic do solutions behave more or
less the same for the default setting of Spin. If the “sequence merge mode” is
disabled with -o3, though, the plain do solution generates many more states than
the atomic do construct. We also can conclude that using an atomic construct

Low-Fat Recipes for Spin 305

Table 4. global - 50. Comparing different implementations to set a
global variable to a random value between 0 and 50.

implem
enta

tion

opt
ions

dep
th reac

hed

stat
es stor

ed

stat
es match

ed

tran
sitio

ns

plain do default 104 255 0 255
atomic do default 55 154 0 154
if default 3 154 0 154
plain do -o3 104 255 0 255
atomic do -o3 105 154 0 154
if -o3 3 154 0 154

Table 5. global - 10000x10. Comparing different implementations to
set a global variable 10000 times to a random value between 0 and 10.

implem
enta

tion

opt
ions

dep
th reac

hed

stat
es stor

ed

tran
sitio

ns

tota
l memory

(Mb)

tim
e (sec

)

plain do default 250002 650013 750003 18.669 7.56
atomic do default 160002 440013 1539900 13.130 18.35
if default 40002 440013 1539900 10.250 10.52
plain do -o3 250002 650013 750003 18.669 7.46
atomic do -o3 260002 440013 1539900 15.770 20.64
if -o3 40002 440013 1539900 10.250 10.71

has negative influence on the running time of the verification: the atomic do
solution is much slower than the plain do construct.

In the default setting, the if random solution behaves superior to both do
solutions: the number of states is less and the depth of the if construct is
constant, whereas the depth of both do solutions is linear in N. For -o3, the if
solution results in as many states as the atomic do solution, but the search depth
is still constant. The if solution is slightly slower than the plain do construct
but a factor two faster than the atomic do.

Global. Table 4 and Table 5 show the results of randomly setting a global
variable. Now the number of states for the if and atomic do solutions are the
same for both the default and -o3 verification runs. Still, the depth of the if
solution is superior. The plain do solution generates more states in both settings
and only excels in its execution speed. Note that only the search depth of the
atomic do construct is affected by changing the verification run from default to
-o3.

Conclusions. The if solution is favorable with respect to the number of sta-
tes and the depth reached. For the same reason, even despite its fast running
times, the plain do solution should be avoided. The atomic do solution suffers

306 T.C. Ruys

from the linear depth and the somewhat slower execution time. The advantage
of the atomic do solution is that it can be used for general N without changing
the Promela source code. In the rare event, that you need an explicit rando-
mise function, the atomic do will therefore suffice. For a general and efficient
implementation, one should try the m4 implementation of the if solution.

Recipe 4 – Array of Bits - Bitvector

Promela has borrowed the array mechanism of C to group related values into a
single array variable. All Promela datatypes can be stored in an array. When
modelling a system in Promela, an array of bits is quite useful to encode the
(local) state of the system. For example, an array of bits can be used to model

– a collection of on/off switches of the system (e.g. a factory plant); or
– a set of processes in the system (e.g. in a multicast protocol)

Unfortunately, when using arrays of bits, Spin will issue the following unnerving
warning:

spin: warning: bit-array 〈array-name〉 mapped to byte-array

In other words, Spin will allocate 8 times as much memory for the bit array in
the state vector as was expected! In this section we will discuss a different way
to encode arrays of bits in Promela, which is superior to Spin’s mapping to
byte-arrays.

4.1 Bitvector

To implement an equivalent to Promela’s array-mechanism, we define a library
of bitvectors. A bitvector is an (unsigned) piece of memory, where each bit
can be individually set, reset and tested. We use Promela’s built-in integer
types to represent the bitvectors: byte (max. 8 bits), short (max. 16 bits)
and int (max. 32 bits). Promela also supports a variable length unsigned
type (max. 8 bits). The following aspects of the various integer types have to be
taken into account:

– The byte type is an unsigned type. The short and int types are signed
integer types, which means that we have to be careful with the sign bit (left-
most bit). Special care is needed in combination with logical shift operations
to the right, because such operations also shift the signbit to the right.

– In numerical expressions, Spin converts the operands to (32-bit) signed int
values. Consequently, a bitvector int consisting of 32 ones (i.e. ˜0) is con-
sidered to be a negative int value. Spin will generate a truncation warning
when converting an int value back to an unsigned byte.

– Consequently, it is also not wise to use -1 (i.e. 16 ones) for a short. In
numerical expressions this value is converted to the int value ffff, which
results in similar truncation warnings.

Low-Fat Recipes for Spin 307

To be on the safe side, one should not use signed values (i.e. non-negative inte-
gers) to encode bitvectors, so:

– use bytes or unsigned variables for bitvectors with 2–8 bits;
– use shorts for bitvectors with 9–15 bits;
– use ints for bitvectors with 16–31 bits;

We define the following shorthands for bitvector declarations.
29 〈bitvector macros 29〉≡ (34) 30 .

#define BITV_U(x,n) unsigned x : n
#define BITV_8 byte
#define BITV_16 short
#define BITV_32 int

The suffixes 8, 16 and 32 indicate the number of bits the corresponding
bitvector occupies.
30 〈bitvector macros 29〉+≡ (34) / 29 31 .

#define ALL_1S 2147483647

The constant ALL 1S is equal to 231 and is represented by a zero followed by 31
ones. The constant ALL 1S is used to set all bits in a bitvector to 1.

The bits of a bitvector are manipulated using the logical bitwise operators
of Promela: ˜, &, |, ˆ, << and >>. More details on these operators can be found
in traditional textbooks on the programming language C (e.g. [9]). We define
some basic operations to manipulate bitvectors. The following macros set the
i-th bit of the bitvector bv to 0 and 1, respectively:
31 〈bitvector macros 29〉+≡ (34) / 30 32 .

#define SET_0(bv,i) bv=bv&(˜(1<<i))
#define SET_1(bv,i) bv=bv|(1<<i)

We can also set all bits of a bitvector to 0 or 1 in a single instruction:
32 〈bitvector macros 29〉+≡ (34) / 31 33 .

#define SET_ALL_0(bv) bv=0
#define SET_ALL_1(bv,n) bv=ALL_1S>>(31-n) ;

The parameter n to SET ALL 1 denotes the number bits to set to 1. It seems
natural to let SET ALL 1 just assign ALL 1S to bv. However, Spin will issue a
truncation error when bv is a byte or a short. The following two macros can
be used to test whether the i-th bit is 0 or 1, respectively:
33 〈bitvector macros 29〉+≡ (34) / 32

#define IS_0(bv,i) (!(bv&(1<<i)))
#define IS_1(bv,i) (bv&(1<<i))

The 〈bitvector macros〉 now provide the same functionality as the original ar-
ray manipulation operations. Instead of writing a[i]=1 one has to invoke the
macro SET 1(a,i) and the boolean test a[i] now boils down to IS 1(a,i).
All bitvector macros are stored in the ‘header’ file bitvector.lpr:
34 〈bitvector.lpr 34〉≡

〈bitvector macros 29〉

308 T.C. Ruys

Bigger bitvectors: revival of byte-arrays. If one needs a bitvector with
more than 31 individual bits, one can use an array of bytes to encode such
a ‘big’ bitvector. The following macros again hide the implementation details
from the user.
35 〈bitvector macros using byte-arrays 35〉≡

#define BITV(bv,n) byte bv[n]
#define SET_0(bv,i) bv[i/8] = bv[i/8] & (˜(1<<(i%8)))
#define SET_1(bv,i) bv[i/8] = bv[i/8] | (1 << (i%8))
#define IS_0(bv,i) (!(bv[i/8]&(1<<(i%8))))
#define IS_1(bv,i) (bv[i/8]&(1<<(i%8)))

The array of bytes approach also becomes attractive if the number of bits that
have to be stored is between 17 and 24; this would save one byte compared
to the int implementation. A drawback of using an array of bytes to encode
bitvectors is that manipulation of a complete bitvector is more problematic.
For instance, testing whether all bits are equal to zero (or one) cannot be done
using a cpp macro definition. In the remainder of this recipe we will only use
bitvectors that are implemented by the simple data types: byte, short and
int.

Note that encoding bitvectors using an array of bytes is as efficient as the
implementation using the simple data types: byte, short and int. The results
of the verification runs of bitvectors implemented by arrays of bytes can be
found in [15].

4.2 Comparison

To compare Spin’s byte-array implementation to the newly developed bitvector
macros, we have written a simple Promela specification that models a bridge
between two places A and B. At the start of the system, N persons are at A and
they all have to cross the bridge to get to B.

The places A and B are modelled by Promela processes and the bridge itself
is a (handshake) channel between A and B. The choice for the next person to cross
the bridge is made non-deterministically.13 We use the variable person to encode
the presence of a person at either A or B. The variable person is either defined
as a bit-array (and converted to a byte-array by Spin) or as as bitvector. If
person[i] is 1 (or IS 1(person,i) is true) in process A it means that the i-th
person is still at A.
To illustrate the usage of the bitvector operations, we include the definition of
process B for the N=8 case:
36 〈proctype B - one bridge 36〉≡

active proctype B()
{

BITV_8 person ;
byte i ;

13 Analogous to 〈inline: random - if 27〉, the ‘random’ choice for the next person to
cross the bridge has been implemented by an if guard using m4.

Low-Fat Recipes for Spin 309

Table 6. One bridge, 8 persons: byte-array vs. bitvector.

implem
enta

tion

opt
ions

stat
e vect

or

dep
th reac

hed

stat
es stor

ed

tota
l memory

(Mb)

tim
e (sec

)

byte-array default 36 54 7702 2.507 0.07
bitvector default 24 54 7702 2.404 0.09
byte-array -DCOLLAPSE 36 54 7702 2.507 0.13
bitvector -DCOLLAPSE 24 54 7702 2.507 0.11
byte-array -DMA=60 36 54 7702 0.819 1.60
bitvector -DMA=60 24 54 7702 0.512 1.98

SET_ALL_0(person) ;
do
:: (!ALL_HERE(8)) -> bridge ? i ; SET_1(person,i) ;
:: else -> break
od

\}

where ALL HERE is defined as:
37 〈bridge: macros 37〉≡

#define ALL_HERE(N) ((personˆ((˜0)<<N))==(˜0))

We have verified three cases:

– One bridge, N=8. There is only one bridge between A and B. The number of
persons at A is 8. The information stored in the person array can be coded
in a single byte (i.e. BITV 8).

– One bridge, N=14. There is only one bridge between A and B. The number of
persons at A is 14. Earlier experiments have shown that N=14 is the largest
parameter for which the model can be verified exhaustively within 64Mb of
memory.

– Two bridges, N=7. There are three processes A, B and C and there are two
bridges: one between A and B and one between B and C. At the start there
are 7 persons at A that have to go to C via B.

Spin’s approach to map bit-arrays to byte-arrays may not be extremely pro-
blematic. If the state vector compression techniques of Spin would be able to
compress the 7 extra zeros that are allocated for each bit in the byte-arrays, not
much harm will be done. For that reason we have also verified the bridge models
with two of Spin’s advanced compressions methods enabled: -DCOLLAPSE and
-DMA=60.

The results of the experiments are summarised in the Tables 6-8. The results
show that the bitvector implementation indeed results in a much smaller state
vector. Consequently, the verification of the bitvector models needs (much)
less memory than Spin’s byte-array implementation. Surprisingly enough, the

310 T.C. Ruys

Table 7. One bridge, 14 persons: byte-array vs. bitvector.

implem
enta

tion

opt
ions

stat
e vect

or

stat
e vect

or - stor
ed

stat
e vect

or - ove
rhea

d

dep
th reac

hed

stat
es stor

ed

tota
l memory

(Mb)

tim
e (sec

)

byte-array default 52 40 8 90 1204260 60.058 18.94
bitvector default 28 16 8 90 1204260 31.180 15.78
byte-array -DCOLLAPSE 52 24 12 90 1204260 45.209 32.63
bitvector -DCOLLAPSE 28 18 12 90 1204260 38.143 28.43
byte-array -DMA=60 52 - - 90 1204260 66.358 456.63
bitvector -DMA=60 28 - - 90 1204260 36.865 454.29

Table 8. Two bridges, 7 persons: byte-array vs. bitvector.

implem
enta

tion

opt
ions

stat
e vect

or

stat
e vect

or - stor
ed

stat
e vect

or - ove
rhea

d

dep
th reac

hed

stat
es stor

ed

tota
l memory

(Mb)

tim
e (sec

)

byte-array default 52 36 8 86 316379 16.127 5.07
bitvector default 36 20 8 86 316379 11.109 4.62
byte-array -DCOLLAPSE 52 10 12 86 316379 9.265 7.46
bitvector -DCOLLAPSE 36 10 12 86 316379 9.163 7.01
byte-array -DMA=60 52 - - 86 316379 2.560 64.88
bitvector -DMA=60 36 - - 86 316379 1.638 72.92

bitvector implementation is also faster than the byte-array implementation
(except for the -DMA=60 compression verification runs). The -DCOLLAPSE com-
pression mode behaves spectacular on the byte-array verification runs, but only
brings it closer to the bitvector implementation.

The bitvector implementation seems to be extremely efficient and difficult
to compress any further. In the one bridge/N=14 case (Table 7), the default case
of the bitvector run performs better than the two compressed verification runs.

Conclusions. From the results we conclude that there is no reason to stick to
Spin’s byte-array implementation. With respect to state space considerations,
the bitvector implementation is superior in all cases, including the compressed
verification runs. Furthermore, the bitvector macros seem slightly faster than
the array indexing implementation of Spin.

Recipe 5 – Extending Promela - Deque

Promela is a protocol modelling language; it is not a specification language. One
of the complaints about Promela that is often heard is that Promela resembles
the programming language C [9] too much. The lack of more abstract datatypes
than the built-in types bit, byte, array, etc., is seen as serious disadvantage.
This view on Promela is not correct, though. The Promela language is rich

Low-Fat Recipes for Spin 311

2 3 4

2 3 4

first last

first last

d1

d2

Fig. 1. Erroneous implementation of a circular deque in Promela,
using dynamic first and last pointers.

enough to add user-defined datatypes. The typedef construct can be used to
define new datatypes and the inline or cpp macros (see Recipe 1) can be used
to define operations on such new datatypes. If the bodies of the operations are
enclosed in d step clauses, the implementation will be highly efficient, as Spin
treats a complete d step clause as a single transition.

The most important rule that should be followed when adding a new datatype
T to Promela is that a value t of T is always represented by the same sequence
of bits. The reason for this is that two states are considered equal by Spin if the
memory representation of both states is exactly the same. If the same value t
can have several different memory footprints, Spin will not be able to conclude
that the same value t is used.

For example, suppose we would try to implement a double-ended deque-like
datatype on top of the built-in array type of Promela. We treat the array as
a circular buffer, using first and last pointers which point to the first element
and last element of the deque, respectively. Such implementation allows the
addition and removal of elements at both sides of the deque, which can be done
quite efficiently. Figure 1 shows the array representations of deque d1 and d2
that are semantically equal. Both deques contain the values 2, 3 and 4. However,
apart from the fact that the first and last pointers of d1 and d2 are different,
the array representation of d1 and d2 are clearly not equal. So, Spin will treat
the two deques as being different.

5.1 Deque

To illustrate the power and elegance of Promela, we present a correct imple-
mentation of a double-ended Deque datatype in Promela. Elements can be
added and removed from the front and the back of a Deque object. First we
define the Deque datatype itself.

38 〈typedef Deque 38〉≡
typedef Deque {

byte a[N] ;
byte length ;
byte i ;

} ;

312 T.C. Ruys

The array a is used to hold the elements of the Deque. The array a can hold
at most N elements of type byte. The field length holds the number of ele-
ments in the deque. The first element (i.e. the ‘front’) of a Deque variable will
always be stored in a[0], whereas the last element (i.e. the ‘back’) will reside in
a[length-1]. Entries in a that are not used (i.e. a[length..N-1]) will always
have value 0.

The field i is only used as a temporary index variable within the array a.
Outside of the Deque operations, it will always have the value 0. Instead of
having a local temporary field i for each Deque, one could also choose to use a
single global variable for all Deque variables.14 Having a single global temporary
variable is more efficient with respect to the state vector, especially when the
Promela model uses several Deque variables. The advantage of having the local
i field in the typedef definition of Deque, though, is that the typedef definition
is self-sufficient; the user can use the typedef definitions together with the Deque
operations without having to declare additional variables. There is no danger for
having nameclashes.

A clear disadvantage of the 〈typedef Deque 38〉 definition is that the type
of the elements (i.e. byte) and the number of elements (i.e. N) are hardcoded
into the Deque definition. If one needs another Deque in which the type of the
elements or the maximum number of elements differs, one has to define a new
typedef definition. To be more generic, we make both the type and the number
of elements a parameter to the Deque datatype:
39 〈Deque definition 39〉≡ (48) 42 .

#define DECLARE_DEQUE(T,MAX) \
typedef Deque_##T##MAX { \

T a[MAX] ; \
byte length ; \
byte i ; \

}

The ## operation in the typedef is cpp’s string concatenation operator. Thus,
the macro application DECLARE DEQUE(type,N) will expand to a typedef defi-
nition with the name Deque typeN.15 For example,
40 〈Deque example: Deque declarations 40〉≡

DECLARE_DEQUE(byte,3) ;
DECLARE_DEQUE(short,5) ;

will define the following typedef definitions:
41 〈Deque example: Deque declarations expansions 41〉≡

typedef Deque_byte3 { ... } ;
typedef Deque_short5 { ... } ;

14 In the programming language C++ we would have made i a static variable to the
class Deque.

15 The reader familiar with C++ [21] will recognise the similarity between the
DECLARE DEQUE construct and C++’s template mechanism. In fact, early C++ com-
pilers used macro expansion to implement templates.

Low-Fat Recipes for Spin 313

Table 9. Deque operations.

PUSH FRONT(deq,x) adds a new element x at the front of deq
PUSH BACK(deq,x) adds a new element x at the back of deq
FRONT(deq) returns the first element of deq
BACK(deq) returns the last element of deq
POP FRONT(deq) removes the first element of deq
POP BACK(deq) removes the last element of deq
CLEAR(deq) removes all elements from deq
COPY(src,dest) copies the elements of Deque src to Deque dest
PRINT(deq) writes the contents of deq to the standard output
SIZE(deq) returns the number of elements in deq
IS EMPTY(deq) returns true if deq does not contain any elements

To ease the declaration of Deque variables, we also define a short hand for the
Deque ... names:
42 〈Deque definition 39〉+≡ (48) / 39

#define DEQUE(T,MAX) Deque_##T##MAX

Now we can introduce Deque variables as follows:
43 〈Deque example: Deque variables 43〉≡

DEQUE(byte,3) d1 ;
DEQUE(short,5) d2 ;

Deque operations. For the implementation of the Deque operations we use
Promela’s inline construct and cpp macros. We use Promela’s d step con-
struct to encode the operations as efficient as possible. Table 9 shows the ope-
rations that we defined for Deque in [15].16

In this paper, we only present the definitions of PUSH FRONT, PUSH BACK,
COPY, FRONT, BACK, SIZE and IS EMPTY. The other Deque operations are left as
an exercise.
44 〈Deque operations 44〉≡ (48) 45 .

inline PUSH_FRONT(deq,x)
{

d_step {
deq.i=deq.length ;
do
:: deq.i > 0 -> deq.a[deq.i]=deq.a[deq.i-1] ; deq.i--
:: deq.i == 0 -> break
od ;
deq.a[0]=x ;
deq.length++ ;
deq.i=0 ;

}
}

16 We borrowed the names for the Deque operations from C++’s Standard Template
Library (STL) [21].

314 T.C. Ruys

The operation PUSH FRONT(deq,x) adds the element x to deq by shifting all
elements of deq to the right in array deq.a. The ‘local’ field deq.i is used to
iterate through the array deq.a. At the end of the operation this temporary
variable is resetted to 0.

The danger of PUSH FRONT is that if the array deq.a is full, the operation will
still try to add a new element. Fortunately, the pan verifier will trigger this “index
out of bounds” error on run-time.17 It would have nicer been though, if we had
added an assertion like assert(deq.length<N) to the operation. Unfortunately,
this is not possible as N is not fixed: there may be several Deques defined, all
with different MAX arguments. We could have solved this by storing the size of
the array into the typedef definition of Deque, but this would have enlarged the
Deque objects.

PUSH FRONT is an expensive operation: all elements in the deque have to be
shifted one place to the right in order to insert a single element. Still, due to
the d step construct the complete operation only uses a single transition within
Spin.

The Deque type is a double-ended List, so we can also add elements to the
back of the Deque object:
45 〈Deque operations 44〉+≡ (48) / 44 46 .

inline PUSH_BACK(deq,x)
{

d_step {
deq.a[deq.length]=x ;
deq.length++ ;

}
}

Like with PUSH FRONT, there is no explicit check for an “index out of bounds”
error. The operation PUSH BACK is more efficient than PUSH FRONT. In fact, when
using an array to implement a Deque type, adding to the back of the array is
always more efficient than to the front of the array.18

Because typedef and array objects in Promela are not assignable, we also
need a operation to copy the contents of one Deque variable to another Deque
variable.
46 〈Deque operations 44〉+≡ (48) / 45 47 .

inline COPY(src,dst)
{

d_step {
CLEAR(dst) ;
dst.length=src.length ;
dst.i=0 ;
do

17 Unless the pan verifier has been compiled using the directive -DNOBOUNDCHECK.
18 It will be clear that the implementation of a Stack-like datatype on top of an array

is most efficient: addition and removal of elements is always done at the back of the
array.

Low-Fat Recipes for Spin 315

:: dst.i < dst.length -> dst.a[dst.i] = src.a[dst.i] ; dst.i++
:: dst.i >= dst.length -> break
od ;
dst.i=0 ;

\}
\}

Note that we first call CLEAR on dst to set all elements of dst.a to 0.
Below we define the operations on Deque objects that return a value:
47 〈Deque operations 44〉+≡ (48) / 46

#define FRONT(deq) (deq.a[0])
#define BACK(deq) (deq.a[deq.length-1])
#define SIZE(deq) (deq.length)
#define IS_EMPTY(deq) (deq.length==0)

Note that the macros FRONT and BACK do not check whether deq is non-empty.
Here our Deque implementation is ended. In [15] all Deque definitions and ope-

rations are defined and stored (using noweb) in a single ‘header’ file deque.hpr:

48 〈deque.hpr 48〉≡
〈Deque definition 39〉
〈Deque operations 44〉

Promela models that need Deque objects can simply #include this file.

Conclusions. In this recipe we have shown that Promela allows the definition
of efficient user-defined types. A double-ended Deque type has been defined. In
the same way, other abstract data types like single-ended Queues, Lists and
Stacks can be defined and offered to the user via the usual #include mechanism.

Recipe 6 – Invariance

Manna and Pnueli [11] consider three main classes of temporal properties of
reactive programs: invariance, response and precedence properties. This section
is devoted to checking invariance properties with Spin. An invariance property
refers to a boolean expression P , and it requires that P is an invariant (i.e. is
equal to true) over all reachable states of all computations [11]. In temporal
logic notation, invariance properties are expressed by 2P for a state formula P .

Dwyer et. al. [4] have conducted a valuable survey on the practical use of
temporal properties with respect to finite-state verification. They collected more
than 500 temporal specifications to classify temporal properties into property
patterns. One of the results of [4] is that 25% of the temporal properties that
are being checked are invariance properties (i.e. universality or absence patterns
in the terminoloy of [4]).19

For novice users of Spin, the invariance property is easy to grasp and proba-
bly one of the first properties that they will verify with Spin. There are several
19 Response properties are even more common: they constitute nearly 50% of the

temporal properties.

316 T.C. Ruys

ways to verify an invariance property 2P with Spin. In this recipe we discuss five
of them. We have tested the different invariance schemes on several Promela
specifications to find out which is most efficient. Our approach only allows refe-
rences to global variables to appear in the expression P . This does not restrict
the approach as local variables can always be declared globally. Using global
variables may be less efficient than using local variables, though.

1. monitor process. The first method that we investigate is the method that
is proposed in assert.html of [19]. This method is also the method of choice
for people (relatively) new to Spin. To express system invariance it suffices to
place the invariant in an independently executed process.

49 〈invariance - monitor process 49〉≡
active proctype monitor()
{

assert(P) ;
}

Since the monitor process is executed independently from the rest of the system,
the assert(P) statement may be evaluated at any time. Alternatively, one could
add the assert statement to the init process after all processes have been star-
ted. Note that in this case the property P is not checked in the initial state of
the system.

Even before running experiments with Spin, however, we can predict that
the ‘independence’ execution of the monitor process will be expensive. As the
assert statement will be enabled in all states of the system, the number of
states could – in the worst case – be doubled.

2. never claim - do assert. The Spin documentation [19] also suggests ano-
ther method to check for invariance.
50 〈invariance - never do assert 50〉≡

never {
do
:: assert(P)
od

}

The never claim ensures that after every step of the system the assertion is
checked. In this way the number of states is not doubled, only the search depth
of the verification run.

A minor drawback of this method is the fact that Spin always gives the
following warning after verifying a never claim:

warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

As this never claim is not generated from a LTL formula, the novice Spin user
is not likely to trust the verification results after this warning about ‘stutter-
closed’-ness. In [15], stuttering is discussed in more detail. Here we only assure
the reader that the never do assert method is always safe with respect to
partial order reduction. And the warning can thus be ignored.

Low-Fat Recipes for Spin 317

3. LTL property. The most logical way to check for invariance is to use Spin’s
support for Linear Temporal Logic (LTL) formulae. Spin’s command line option
-f translates a LTL formula to a never claim, encoding the corresponding Büchi
acceptance condition.
The LTL formula 2P is translated to the following (stutter-closed) never claim:

51 〈invariance - LTL never claim 51〉≡
never {
TO_init:

if
:: (!P) -> goto accept_all
:: (1) -> goto TO_init
fi ;

accept_all:
skip

}

4. guarded monitor process. A drawback of the 〈invariance - monitor pro-
cess 49〉 method is that the assert statement is enabled in every state. To verify
2P , though, it suffices to check that 3¬P does not hold.
52 〈invariance - guarded monitor process 52〉≡

proctype monitor()
{
end:

atomic { !P -> assert(P) ; }
}

The atomic statement only becomes executable when P itself is not true. The
end label is needed because if the atomic clause never becomes executable, the
monitor process would have a ‘non-valid end-state’.

5. unless. Our last method to check for invariance uses Promela’s unless
statement. The idea is to enclose the 〈body〉 of one of the processes of the system
into the following unless clause:
53 〈invariance: unless 53〉≡

proctype Foo()
{

{ 〈body〉
} unless { atomic { !P -> assert(P) ; } }

}

Whenever P becomes false, the 〈body〉 will be interrupted and Spin will con-
clude that the invariant property P does not hold. The unless method has some
advantages, but these are outweigthed by the disadvantages:

318 T.C. Ruys

+ No extra proctype is needed, which saves 4 bytes in the state vector.
+ The local variables of the process can also be used in the property P .
− The definition of a proctype has to be changed. This involves even

more work when the process contains labels and goto’s.
− The unless construct can reach inside atomic clauses, which means

that if the property P is false inside an atomic clause, the unless
method will erroneously report an error.

− The partial order reduction may be invalid if rendez-vous communi-
cation is used within the body.

− The 〈body〉 of the process is not allowed to end, because otherwise
the unless statement also terminates, preventing subsequent tests
on !P.

6.1 Comparison

To compare the different invariance methods we used these methods to verify
the following four (standard) Promela specifications:

brp a bounded retransmission protocol (from [3]).
leader a leader election protocol (part of Spin’s 3.3.10 distribution).
philo a model for the well-known dining philosophers problem; we used

N=7 for the default runs and N=6 for the -DNOREDUCE runs.
pftp a flow control protocol (from [6] and part of Spin’s 3.3.10 distri-

bution).
We conducted two types of verification runs. In the default case, we used Spin’s
default settings and only adjusted the depth of the depth first search (DFS)
stack (via option -m) when needed. Because the unless method is not reliable
in combination with rendez-vous communication and partial order reduction (i.e.
for the brp and philo runs), we repeated the verification runs with partial order
reduction disabled (i.e, -DNOREDUCE).

Tables 10-13 list the results of verifying some trivial invariance properties
using the methods discussed. The columns correspond with the 5 invariance
methods. We verified two versions of the ‘monitor process’ method: in 1a the
monitor process is started first, whereas in 1b the monitor process is started
last. The ‘best’ results in a row are typeset using boldface.

Tables 10 and 12 report the total memory used by the verification runs
in the default and -DNOREDUCE case, respectively. Tables 11 and 13 report the
verification time (i.e. user+system time) of the runs. Due to space considerations,
we have not included other significant parameters of the verification runs, like
‘depth reached’ or ‘number of states stored’.

Conclusions. First we consider the results in the columns 1a and 1b. The only
difference between the Promela models of 1a and 1b is the activation order of
the monitor process. Still the results for 1a and 1b show significant differences.
If the monitor process is started last (1b) the verification statistics are worse.
The reason for this is that Spin’s DFS will select the processes in reverse order;
i.e. the last process started will be considered first. And because the monitor
process is always enabled, this step will always be executed before any other

Low-Fat Recipes for Spin 319

Table 10. Invariance default: total memory used (Mb).

1a 1b 2 3 4 5
brp 27.157 38.115 14.971 15.688 26.338 22.135
leader 2.542 2.542 2.542 2.542 2.542 9.648
philo 16.318 21.336 11.710 11.915 11.710 12.510
pftp 9.441 11.285 9.441 9.953 9.441 9.744

Table 11. Invariance default: verification time (sec).

1a 1b 2 3 4 5
brp 11.11 16.42 4.90 5.77 9.39 10.24
leader 0.03 0.02 0.02 0.03 0.02 3.36
philo 23.26 35.11 11.41 13.84 11.31 12.01
pftp 1.53 2.01 1.67 2.06 1.56 1.62

Table 12. Invariance -DNOREDUCE: total memory used (Mb).

1a 1b 2 3 4 5
brp 40.777 59.415 22.140 24.735 40.572 21.048
leader 7.725 10.387 5.062 5.307 5.062 14.011
philo 11.504 16.317 7.203 7.835 7.203 17.973
pftp 30.644 40.679 20.608 22.037 20.608 22.307

Table 13. Invariance -DNOREDUCE: verification time (sec).

1a 1b 2 3 4 5
brp 24.13 37.16 10.86 12.54 21.09 9.60
leader 2.66 4.18 1.30 1.37 1.19 5.76
philo 19.67 30.67 9.61 12.07 9.57 35.27
pftp 13.70 19.34 8.19 9.22 7.84 8.34

process can advance a step. But although 1a performs better than 1b, its results
are still worse than the other invariance methods. So we conclude that to check
for invariance one should not use the ‘monitor process’ solution. But if you do,
be sure to activate the monitor process as the first process.

Although the unless method sometimes shows the best statistics (i.e. when
partial order reduction is disabled) it has too many restrictions to be general
applicable. ¿From the other three methods, method ‘4. guarded monitor pro-
cess’ seems to perform quite well. However, the results of method ‘2. never do
assert’ are always close or better. For the verification of the brp, method 2
performs even much better than method 4. It is also interesting to see that,
although it never performs bad, there is no verification run where method ‘3.
LTL property’ shows the best results. Using this method to check for invariance
is not a bad choice, but method 2 and 4 perform better.
To conclude we recommend to use method ‘2. never do assert’ when checking
invariance with Spin.

320 T.C. Ruys

Conclusions

In this paper we presented six ‘recipes’ to cook more efficient Promela models
and to use the model checker Spin more effectively. In Recipe 1 we showed how
macros and inlines can help to structure and parameterise Promela models.
Recipe 2 discussed some issues regarding the atomic and d step constructs. In
Recipe 3 we investigated the most efficient way to model randomness in Pro-
mela. In Recipe 4 we developed a bitvector library that is more efficient than
Spin’s own byte-array implementation. In Recipe 5 we combined the ingredients
of Recipe 1 and 2 to show how to add efficient data types to Promela. And in
Recipe 6 we investigated the effectiveness of five different methods to check for
invariance with Spin.

This paper and the forthcoming [15] are not claimed to constitute a complete
and finished collection of best practices for Spin. On the contrary, the author
hopes that this collection of techniques will stimulate other Spin users to con-
tribute their own best practices and experiences to this list. In this way not only
the common knowledge on modelling and verification with Spin will grow, it will
also yield opportunities to optimise and improve the Spin system itself.

Acknowledgements. First of all, the author wants to thank Gerard Holzmann,
the Spin master, who is always available for patiently answering naive questions
and personal wishes regarding Spin. I would like to thank Pim Kars for showing
me – already in 1996 – several efficient Promela tricks, that changed my atti-
tude towards the application of verification tools. Ed Brinksma is thanked for
sharing his experiences as a ‘novice’ Spin user (i.e. Recipe 2 and 4). Yaroslav
Usenko is thanked for his suggestion for a more elegant and slightly more effi-
cient do solution for the random construct (i.e. Recipe 3). I want to thank Rom
Langerak and especially the anonymous referees for their very useful suggestions
to improve both the contents and readability of this paper.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techni-
ques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

2. Dov Bulka and David Mayhew. Efficient C++ (Performance Programming Tech-
niques). Addison-Wesley, Reading, Massachusetts, 2000.

3. Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and G. Jan Tretmans.
The Bounded Retransmission Protocol must be on time! (Full Version). CTIT
Technical Report Series 97-03, Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands, 1997. Also available from URL:
http://wwwtios.cs.utwente.nl/˜dargenio/brp/.

4. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Pro-
perty Specifications for Finite-State Verification. In Proceedings of the 1999 In-
ternational Conference on Software Engineering (ICSE’99), pages 411–420, Los
Angeles, CA, U.S.A., May 1999. ACM Press.

5. Gerard J. Holzmann. Spin homepage:
http://netlib.bell-labs.com/netlib/spin/whatispin.html.

Low-Fat Recipes for Spin 321

6. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

7. Gerard J. Holzmann. Spin Model Checking - Reliable Design of Concurrent Soft-
ware. Dr. Dobb’s Journal, pages 92–97, October 1997.

8. Gerard J. Holzmann. The Model Checker Spin. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

9. Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice
Hall, second edition, 1988.

10. Donald E. Knuth. Literate Programming. Number 27 in CSLI Lecture Notes.
Center for the Study of Language and Information (CSLI), Stanford University,
California, 1992.

11. Zohar Manna and Amir Pnueli. Tools and Rules for the Practicing Verifier. In R.F.
Rashid, editor, Carnegie Mellon Computer Science: A 25th Anniversary Comme-
morative, pages 125–159. ACM Press, New York, 1991.

12. Scott Meyers. Effective C++ (50 Specific Ways to Improve Your Programs and
Designs). Addison-Wesley, Reading, Massachusetts, second edition, 1998.

13. Norman Ramsey. noweb – homepage. Available from URL:
http://www.cs.virginia.edu/˜nr/noweb/.

14. Norman Ramsey. Literate Programming Simplified. IEEE Software, 11(5):97–105,
September 1994.

15. Theo C. Ruys. Effective Spin. CTIT Technical Report Series, Centre for Telematics
and Information Technology, University of Twente, Faculty of Computer Science,
Enschede, The Netherlands, August 2000. To appear.

16. René Seindal. GNU m4, version 1.4. Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111, USA, 1.4 edition, November 1994. Available
from URL: http://www.gnu.org.

17. Spin Documentation. Basic Spin Manual. Part of Spin’s online HTML documen-
tation.

18. Spin Documentation. Proceedings of the Spin Workshops. Part of Spin’s online
HTML documentation.

19. Spin Documentation. Spin Version 3.3: Language Reference - Man-Pages and
Semantics Definition. Part of Spin’s online HTML documentation.

20. Spin Documentation. What’s New in Spin Versions 2.0 and 3.0 - Summary of
changes since Version 1.0. Part of Spin’s online HTML documentation.

21. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, third edition, 1997.

	Macros, inline Definitions, and m4
	Some cpp Macros
	A Poor Man's Assignment
	Parameterised Protocols
	The m4 Macro Processor

	Atomicity
	Atomicity of Single Statements
	Atomic is Not Always Atomic
	Infinity and Atomicity

	Randomness
	Comparison

	Array of Bits - Bitvector
	Bitvector
	Comparison

	Extending Promela - Deque
	Deque

	Invariance
	Comparison

