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ABSTRACT: A method for one step analysis of steady state processes, which is called the “displacement
based reference frame” formulation, has been presented in (Balagangadhar and Tortorelli 1998) and has
been applied to thermal processing in (Balagangadhar et al. 1999) and (Ruan 1999). In this paper we
develop a similar method. Only the primary variables displacements (u) and heat flows (q) are used as
nodal variables. For integration of material derivatives of secondary variables plastic strain, temperature
and phase fraction the Discontinuous Galerkin method is used. We apply the method to the simulation

of laser hardening of a steel slab.

1 INTRODUCTION

With help of a laser beam the surface of a work-
piece can be locally heated at very high rates. After
the beam has passed, the high thermal gradients
induce a very high cooling rate by conduction to
the cold bulk. Proper choice of the scanning veloc-
ity and power density causes a thermal cycle where
eventually the treated surface fully transforms to
martensite, a hard and wear resistant phase.

The main points of interest when doing simula-
tions are the thickness of the hardened layer, the
residual stresses and the eventual distortion of the
workpiece.

When a window is defined fixed to the laser
beam and the material is made to pass through
the window, hardening with a scanning laser beam
can be viewed as a steady state process.

Reference configuration \ Deformed configuration

Figure 1: Rolling as an example of a steady state
process.

Consider as an example of a steady state pro-
cess, rolling as shown in figure 1. The usual way
to analyze this process would be to prescribe the
velocities or displacement increments in the roll-
workpiece contact area. An analysis carried out
this way would give as result a velocity field, from

which through streamline integration stresses and
free surface locations have to be calculated. This
method has been called the “Rate equilibrium for-
mulation” in (Thompson and Yu 1990).

An alternative way of analyzing arises when we
compare an identical slab of workpiece material
at two different instances. The reference configu-
ration is when this slab has not yet entered the
work zone of the process. The deformed configura-
tion is when the volume under consideration has,
at some time later, entered the work zone and is
being processed.

Comparison of the locations of “identical” mate-
rial points in both configurations will directly yield
the deformation gradient.

Suitable differentiation of the deformation gradi-
ent along the streamline will yield a deformation
rate.

This deformation rate is then used to calculate a
plastic deformation rate. Integration of the plastic
deformation rate along the streamline yields the
plastic deformations. The elastic strains are found
after subtracting the plastic deformations from the
actual deformations. Then the stresses are known.
These stresses are used to check whether the de-
formed configuration is indeed in equilibrium.
When this is not the case, the locations of the ma-
terial points are updated and the calculation is re-
iterated.

In (Balagangadhar et al. 1999) the plastic
strains are nodal variables also and enter in the
system matrix. In our implementation we will show
that only displacements and heat flows are needed



As is apparent from figure 1 locating the stream-
lines in the reference configuration is a trivial task.
It is obvious that all streamline integration as well
as differentiations along streamlines will be done
in this configuration.

2 GOVERNING EQUATIONS

2.1 Phase Transformations

Two types of phase transformations are discerned,
diffusion related transformations and martensite
transformations. The evolution of diffusion related
transformations is described by an S-curve, the
Avrami equation.

e(t) = o+ (@ — o) (1 — e ") (1)

Here (g is the initial fraction, while @(7T) is the
amount of phase that should be present accord-
ing to the equilibrium phase diagram, n(7) and
7(T') are material parameters derived from TTT
(time-temperature-transformation) diagrams. The
martensite transformation is described by the
Koistinen-Marburger relation.

O(T) = pyars(1 — e PT=T0r0)) (2)

Here ¢, is the amount of austenite which is still
present at the martensite start temperature 1.
Both equations are used in a rate form, where the
eventual phase contents is found by integration
along the streamlines.

v-Vo=¢ (3)

2.2 Mechanical Equilibrium

The mechanical equilibrium equation in the ab-
sence of body forces is:

oc-V=0 (4)

For the constitutive equations a parallel fraction
model is used (Geijselaers and Huétink 1995). The
Cauchy stress is a weighted sum of the stresses in
the different phases.

o= Z p'o’ (5)

Here ' is the fraction of the i’* phase. The strain
is the summation of an elastic strain, a plas-
tic strain and contributions from transformation
strain, thermal dilatation and transformation plas-
ticity. Small strain is assumed to be sufficiently ac-
curate.
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Here p;(T) is the density of phase i. The transfor-
mation plasticity is linked to the deviatoric stress
s in the phase. This is governed by a rate equation.

the constants K* depend on the chemical composi-
tion of the steel and on the type of transformation.
The values of K* must be obtained from tests.

The description of plastic deformation is based
on the Von Mises yield criterion with isotropic
hardening. Plastic deformation of a phase occurs,
when the deviatoric stress in this phase exceeds
the yield surface.

Bi(s', ") T) = ¢ s — (0l ("D, T)2 =0 (9)

Here €? is the equivalent plastic strain. Using clas-
sical flow theory for plasticity, we find an expres-
sion for the plastic strain rate.

" = — ° do? {3§Z S:S; rd—
3G+ gt 2 () (10)
3GY . st dG* . dot .
= KRt _ L Gz_y T
y K8 g (o — @ T

The plastic strain rate and the transformation
plasticity rate per fraction are integrated along the
streamlines to obtain the plastic strain.

V- V(Epl(i) + Etp(i)) — dri@ 4 gtr®® (11)

This is a scalar equation, which applies to every
component of the tensors. We call it the convection
equation. After integration of the plastic strain
rates to plastic strains, the fraction stress is cal-
culated.
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2.3 Thermal Equilibrium
The equation of conservation of energy is:
V- (kVT)—pé=0 (13)

Here £ is the conductivity coefficient. p Is the mass
density and e is the specific internal energy. The



phase.
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Per fraction the internal energy is a function of
the temperature, obtained by integration of the
specific heat c,.

(14)

e(T) = /T ¢ (T)dT + € (15)
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An approximate expression for the rate of the in-
ternal energy is then found.

pe =Y pe T+ pe'e!
[ [

The first term is the regular specific heat, the sec-
ond term is a model of latent heat of phase trans-
formation. The resulting rate equation of thermal
equilibrium is:

Z pigoic;T = — Z ple'pt +V - (kVT)

(16)
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To obtain the temperatures the temperature rate
has to be integrated. For a steady state process the
time integration is again replaced by an integration
along the streamlines.

v-VT =T (18)

3 DISCRETIZATION

3.1 Convection equation

The streamline integration of any quantity f, be
it a strain component, phase fraction, equivalent
plastic strain or temperature, is described by the
convection equation.

v-Vf=f

Using the deformation gradient F this can be
transformed to the undeformed configuration.

v-Vf=v.-Fl.F1.Vf=
0 (20)
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A very stable discretization of the convection equa-
tions (11) and (18) is the Discontinuous Galerkin
method (Fortin and Fortin 1989).

(19)
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the jump at the inflow boundary of every element
is weighted. Since the convection equation is a first
order equation, only the boundary condition at the
inflow of the element is taken into account, the
jump at the outflow is disregarded. In this way the
necessary upwinding is realized.

To obtain a well posed problem the initial con-
dition at the inflow of the domain has to be taken
into account also. The solutions obtained this way
for the convection equations are free of spurious
oscillations and show hardly any cross wind dif-
fusion. The resulting matrix equations will have a
form like:

DI} = [BI{f} + {fo} (22)

All quantities which are defined inside the elements
and which are interpolated by discontinuous func-
tions are written with the suffix ()¢. Effectively
these are variables, which are defined in the in-
tegration points.

3.2 Thermal equations

The temperature field which results from the con-
vection equation is discontinuous across element
boundaries. Therefore a discretization of the ther-
mal conduction equation is used, which can cope
with discontinuous temperatures. The primary
variables are the heat fluxes q in the nodes. The
temperatures are treated as dependent element
variables. Equation (17) is partitioned into a heat
flow equation and a temperature rate equation.

q=—kVT
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The temperatures are discontinuous across ele-
ment boundaries. The T-interpolation in each el-
ement is independent from the neighbors. This
means that the second equation can be solved to
find the temperature rates directly in the integra-
tion points. Only the first equation needs to be
discretized. The temperature jumps across the el-
ement boundaries are also weighted.
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After applying partial integration the inter-

element integrals cancel out and we find

/q-qu: /k(V-q)TdV—/kq-nTodA (25)
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temperatures need to match. A quadratic q-field
matches with a linear 7-interpolation.

In the specification of the boundary conditions
the role of the temperatures and heat flows are
reversed when compared to conventional thermal
modeling. The heat flow is now a kinematical
boundary condition, the temperature is a natural
boundary condition. When no boundary condition
is specified, the temperature is zero.

The resulting matrix equations are written as

M{a} = [C{T} +{Q)
(T = [Li{a} + {&r} (20)
DT} = BI{T} +{To)

3.3 Mechanical Equilibrium

The mechanical equilibrium equation (4) is written
in a weak form using a vector weight function u.
Since the stresses are discontinuous across element
boundaries, the jumps have to be weighted.
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After partial integration the inter-element bound-
ary terms cancel out. Only terms dealing with the
prescribed stress boundaries I', remain.

/ (68V):odV = / i - tod A (28)
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The plastic strain rates in the elements are cal-
culated using equations (8) and (10). The strain
rates are integrated to strains using equation (11).
This results in a system of matrix equations.

K){u} = (W} + {F(T, )
(@O} = [V){u} + [GHTY + (@) (20)
DR} = B} + {=o}

The matrix [K] is the regular elastic stiffness ma-
trix. The matrices [Y], [G] and the vector {®,}
depend on the stress state. As a consequence this
is a highly non-linear system.

3.4 The strain rate d

The displacement field u is Cjy continuous across
element boundaries. This means that the strain
field e = $(uV + Vu) is discontinuous. The strain
rate d is defined as the material derivative of the
strain. Just taking the derivative of the discon-
tinuous strains in the elements does not give a

with neighboring elements have to be taken into
account also. To do so we resort again to the dis-
continuous Galerkin method of section 3.1. This
time it is used however in the opposite direction,
to obtain material derivatives from a known dis-
continuous field, compare with equation (22).

[B{d"} = [D]{=°} (30)

Inspection of matrix [B] shows that it has no cou-
pling with other elements. The only “external”
coupling comes from [D], which refers to the up-
wind neighbors. So calculation of d is done element
by element involving upwind neighbors only.

4 IMPLEMENTATION

Quadratic triangles are used with u and q as nodal
variables. Per element three integration points are
used. This implies that the interpolation of the el-
ement fields o, €, d, ¢ and T is linear, with the
integration point values as basis.

The convection equation (19) does not change
between iterations. Therefore equation (22) is
solved right at the beginning. This allows for so-
lution of the the integration point temperatures
{T*} in equations (26) in terms of the nodal point
heat fluxes q.

[qu]{Q} = {Rq} (31)

The matrices are evaluated as:

[Kgq] = [M] = [C][D][B][L]
{R¢} = {Q} + [CID™'{To} + [C[D~'][B]{&r}
(32)

Solution requires a few iterations to account for
temperature dependent properties and tempera-
ture dependent phase transformations.

Having the solution of the convection equation
at hand allows us also to directly assemble a similar
systems matrix for the mechanical problem.

[Kuul{u} = {Ru} (33)

Symbolically the matrices can be evaluated as:

Kol = [K] = (WD BIY]
(R} = WD IBI(GHT) + (ah)+ (39)
+ WD Heo} + {F(T, 0)}

However assembly of the element matrix of one el-
ement requires looping over all elements upwind
from the considered element. This implies that as-
sembly of the system matrices of equation (34)



average size model this is prohibitive.

Our experience is that a fairly good convergence
can be reached when only matrix [K] is used to find
feasible solution directions. This we combine with
one-dimensional line searches. In this way only the
right hand side {R,} needs to be assembled. Con-
vergence is slow but steady until after approxi-
mately 50 iterations the norm of the unbalance
becomes lower than 1 % of ||{F(T, ¢)}||, the norm
of the nodal forces due to thermal and transforma-
tion dilatation.

5 SIMULATIONS

We applied the presented method to a simulation
of laser hardening of a steel slab. Dimensions and
process parameters are shown in figure 2. The ma-
terial data are chosen to represent a 0.4 % C steel
(C45).

At the inflow the material consists of ferrite and
pearlite, which are treated as one phase. Heated by
a laser the surface quickly reaches a temperature
of almost 1400 °C. The temperature distribution
is shown in Figure 3.

At temperatures above A; (715 °C) the ferrite
and pearlite transform to austenite. This transfor-
mation is modeled using an Avrami equation with
temperature dependent parameters.

Due to the high thermal gradients, initially
the cooling rate behind the heated zone is very
high. When the temperature drops below A,
the austenite will start transforming back to fer-
rite/pearlite. Also this transformation is modeled
with an Avrami equation. The parameters how-
ever are such that back transformation proceeds
much slower than the austenite transformation. As
a result, a considerable amount of the austenite is
retained.

At temperatures below M, it will transform to
martensite, the desired structure at the surface.
The martensite transformation is modeled by the
Koistinen-Marburger relation, which describes the
equilibrium amount of martensite at the consid-
ered temperature. The martensite distribution is
shown in figure 4. The martensite contents at the
surface is estimated to approximately 32 %. When
this is corrected for the temperature at the out-
flow, an amount of 45 % martensite is expected
after cooling to room temperature.

The distortion of the slab is apparent from fig-
ure 2. The deformation is typical for unilaterally
surface heated products. However, since this is a
plain strain simulation, deformations are grossly
exaggerated.

In this paper we show a one step method to ob-
tain a solution to steady thermal processing with
phase transformations. This method is based on
the displacement based reference frame formula-
tion as reported in (Balagangadhar et al. 1999). In
contrast to (Balagangadhar et al. 1999) we do not
have plastic strains as nodal variables. The sys-
tem matrix of our mechanical problem is identical
to a regular elastic stiffness matrix. This matrix
is used in an iteration procedure, where only the
right hand side is calculated every iteration. As a
consequence more, but relatively cheap iterations
are needed.
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