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Abstract 

In some B-ISDN applications running on ATM networks (e.g., for audio/video connec
tions), the occasional loss of a single ATM cell may not affect the user's perceived QoS 
requirement. However, the QoS may be degraded due to the loss of a multiple ( consec
utive) ATM cells. As the event of consecutive cell loss is (typically) rare, its probability 
cannot be estimated efficiently using standard simulation. In this paper we propose a fast 
simulation method, based on importance sampling, to efficiently estimate the probability 
of a rare consecutive-cell-loss event. As an example, we consider a queueing model of 
the Leaky Bucket source policing algorithm, operating in a bursty traffic environment. 
We present empirical results to demonstrate the validity and effectiveness of our fast 
simulation method. 
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1 INTRODUCTION 

In an A"ynchronou" Tran,fer Mode (ATM) network, data i" transported in fixed-si~e cells. A cell loss 
may occur due to a variety of reasons, such as buffer overflow in one or more of the network nodes, or as 
a result of traffic policing at the interface between the u"er and the network. In any ca,e, the impact of a 
cell loss on the quality of service ( QoS) provided by a given connection depends on the application and 
it" re,ilience with re,pect to "uch a cell loss. 

Due to the bursty nature of traffic generated by broadband applications (e.g., multimedia and video 
conferendng), celb are likely to be lost in multiples (i.e., losing more than one consecutive arriving celb). 
For example, a buffer overflow at a network node (even if rare) may result in the loss of many consecu
tive cells. Recovery techniques, such as cell retransmission, may be implemented at the communication 
protocol level or at the application level. In some application" ("uch a" packet audio/video communica
tion), the occasional loss of one or a few cells may not influence the QoS. Also, extrapolation and/or 
error correcting techniques can be used to compensate for such cell loss. However, in the absence of cell 
retransmission or other adequate recovery procedures, the loss of con,ecutive ATM cells may lead to a 
remarkable or intolerable degradation of QoS. Therefore, for most applications, it is important to keep 
the occurrence of consecutive cell loss as rare as possible. This is particularly true for applications with 
bursty traffic, for which the frequency of consecutive cell loss tend to be (relatively) high. The number of 
consecutive cell loss that can be tolerated without affecting the QoS depends on the application and/or 
tl;e supporting recovery (or error correcting) mechanism, if any. For a given application, it i" de,irable 
to keep the frequency of losing more than a certain (tolerable) number of consecutive cells below some 
acceptable threshold. This frequency may be defined as the reciprocal of the steady-state average number 
of cells between such consecutive-cell-loss events. In a simple queueing model with a finite buffer, this 
frequency is closely related to another measure of interest; namely, the probability of consecutive cell loss, 
"ay, in a busy cycle. 

Needless to say, the development of models for the analysi" of consecutive cell loss is of much interest 
for the proper dimensioning of various buffers and other network control parameters. To the best of 
our knowledge, so far, there has been no analytical results relating to this relevant problem. For a 
simple M/M/1 queue with a finite buffer, we derive analytic dosed form expressions for the frequency of 
consecutive cell loss and the probability of its occurrence in a busy cycle (sec Section 2.2 of this paper.) 
However, for a GI/GI/1 queue, the analysis is considerably more difficult, and a useful analytical or 
algorithmic solution, if at all possible, is not yet available. For the typically correlated and bursty arrival 
processes, the feasibility of a useful analysis seems even more remote. Furthermore, the probabilities of 
interest are typically very small, leading to numerical problems. 

In order to avoid restrictions necessary for analytic tractability and/or numerical feasibility, simulation 
i" often preferred for the evaluation of realistic models. However, accurate estimation of the frequency of 
rare events, such as consecutive cell loss, requires observing numerous such events. But, if the frequency 
of con,ecutive cell loss is w-u per cell, then each consecutive-cell-loss event take" place approximately 
once in 109 cells. Ob,erving a sufficiently large number of consecutive-cell-loss events will take extremely 
long simulation time. 

Importance sampling (Hammersley and Handscomb 1964) has been used effectively to achieve signifi
cant speed ups in simulations involving rare events, such as failure in a reliable computer system or cell 
loss in an ATM communication network. See Nicola eta!. (1993) for a review of techniques for fast simula
tion of highly dependable systems, and Heidelberger (1993) for a survey of efficient simulation methods to 
e"timate buffer overflow probabilities in communication systems. The basic idea of importance sampling 
is to simulate the system under a different probability measure (i.e., with different underlying probability 
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distributions), so as to increase the probability of typical sample paths involving the rare event of interest. 
For each sample path (observation) during the simulation, the measure being estimated is multiplied by a 
correction factor, called the likelihood ratio, to obtain an unbiased estimate of the measure in the original 
system. Asymptotically optimal change of measures (to use in importance sampling) have been found 
to estimate small probabilities of buffer ovcrfiow in relatively simple queueing models (sec, Parekh and 
Walrand (1989), Sadowsky (1991), Chang et a!. (1993) and others.) In this paper, we develop heuristics, 
which arc partly based on these optimal change of measures, to estimate very small consecutive-cell-loss 
probabilities in simple GI /GI /1/k queues (k is the buffer capacity, including the server). We use our 
heuristics to evaluate a queueing model of the Leaky Bucket (LD) algorithm (see R.athgeb (1991)). Two 
cell arrival processes arc considered; namely, a Poisson process (mainly for validation and experimenta
tion) and a bursty two-phase burst/silence process (see Section 4.4). Empirical results demonstrate the 
effectiveness of our method to estimate very small consecutive-cell-loss probabilities. These results also 
show that the simulation time needed to achieve a given accuracy increases (however, slightly) with the 
number of consecutive cell loss. This increase is attributed to the inherent increase in variability of the 
probability being estimated, rather than the rarity of the event. 

The rest of this paper is organized as follows. In Section 2, we introduce some notation relevant to the 
study of consecutive cell loss in simple queues, and we carry out the analysis for the M/M/1/k queue. 
In Section 2.3, we briefly introduce the problem of rare event simulation and review the basic idea of 
importance sampling. Change of measures used in importance sampling to speed up simulations of simple 
queues are presented in Section 3; both, a rare full-buffer event and a rare consecutive-cell-loss event, 
arc considered. Validation and experiments with our heuristic change of measure to simulate a queueing 
model of the LB algorithm arc presented in Section 4. Conclusions arc given in Section 5. 

2 CONSECUTIVE CELL LOSS IN SIMPLE QUEUES 

In this section we give brief preliminaries and notation that are needed for the discussion of consecutive 
cell loss in simple queues. For an M/M/1/k queue, i.e., Poisson cell arrivals and exponential service 
time distribution, the analysis is not complicated and it is carried out in this section. The results of this 
analysi• are used in Section 4 to validate statistical output obtained from simulation. For general inter
arrival and/ or service time distributions, the analysis is considerably more difficult and is not considered 
here. 

2.1 Preliminaries 

Consider an GI /GI /1/k queue (k is the buffer capacity, including the server). The probability density 
function (pdf) of the inter-arrival (rcsp., service) time is given by /A(t) (rcsp., fs(t).) Define the n
con•ecutive-cell-loss event to be the (cell arrival) event at which exactly n consecutive cells are lost 
during a single full-buffer (or ovcrfiow) period. (Note that more than n cells may be lost during the same 
overflow period.) We are interested in the steady-state frequency of this event, i.e., the reciprocal of the 
average number of arriving cells between two subsequent n-consecutive-cell-loss events; this is denoted 
by :F,.. A closely related measure of interest is the probability of n or more consecutive cell losses in a 
busy cycle; this is denoted .by 'Yn· 

Let N(t) be the number of items (cells) in the queue (including that in service) at timet, and denote by 
t;,j = 0, 1, 2, ... ,the consecutive instants in time at which N(t) jumps from 0 to 1, i.e., for all j = 0, 1, 2, ... , 
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N(tj) = 0 and N(tj) > 0. Define a busy cycle to be the evolution of the process N(t) between two such 
consecutive instants, say, t; and t;+l· Note that t;, j = 0, 1, 2, ... , constitute renewal points, and, therefore, 
busy cycles are i.i.d. (independent and identically distributed.) The length of a busy cycle is a r.v. T; for 
the j-th busy cycle T; = t; - t;_,,j = 1, 2, .... The number of arrivals during a busy cycle is a r.v. N 
which, because of buffer overflow, is not necessarily equal to the number of departures in the same busy 
cycle; for the j-th busy cycle it is denoted by N;. Furthermore, denote by On,; the number of full-buffer 
periods in the j-th cycle during which n or more cells arc lost. On,j is a realization of the random number 
0,.. It follows that the reciprocal of the long-run (steady-state) average number of arriving cells between 
two n-consecutive-cell-loss events, i.e., the frequency :Fn, is given by 

(1) 

Usually, analytic (or numerical) solution for E(N) can be determined. In particular, for an M/G/1/k 
queue, it is simply given by 1/pr, where JII is the steady-state probability that the server is idle (see, 
for example, Cooper (1981)). The analysis for E(On) is considerably more complicated, mainly because 
the length of a full-buffer period depends on the sample path (within a busy cycle) leading to that full
buffer. For example, in an M/G/1/k queue, full-buffer periods in the same busy cycle are independent, 
but the first full-buffer period has a different distribution from that of the second and all subsequent 
full-buffer periods. However, in an M/M/1/k queue, all full-buffer periods are independent and have the 
same exponential (service time) distribution, regardless of the sample path leading to the full-buffer. This 
independence yields significant simplifications leading to the analytical results obtained in the following 
section. 

2.2 Analysis of the M/M/1/k Queue 

Consider an M/M/1/k queue with an arrival rate A and a service rate JJ. A busy cycle is defined as above. 
Define 11';, 0 :5 i :5 k as the probability that the number in the system, N(t), moves from level ito level 
k without hitting level 0. In other words, given that N(t) = i, 11'; is the probability that the full-buffer 
state will be reached before the end of the busy cycle. Let 1 be the probability of at least one full-buffer 
period in a busy cycle. Furthermore, given a full-buffer, let </> be the probability of yet another full-buffer 
period in the same busy cycle. It follows that 1 = 11'1 and</>= 11'k-I· The probabilities 11';, 0 :5 i :5 k can 
be determined from the following equations 

1 :5 i :5 k- 1, (2) 

with 1l'o = 0 and 11'k = 1. It follows that 

1:5i:5k-1. (3) 
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Now, let l'n be the probability of n or more arrivals (i.e., n or more consecutive losses) in a single 
full-buffer period. Since full-buffer periods arc independent and having the same exponential distribution 
with a mean 1/ ~-'• it follows that 

(4) 

P(On ~ i) is the probability, in a busy cycle, of i or more full-buffer periods, during each of which there 
arc nor more (lost) arrivals. The probability of (at least one) n-consccutivc-ccll-loss in a busy cycle, "'n• 
is given by 

"'n P(On ~ 1) = L "'q}-1 (1- Pn)k-1 Pn 
k=l 

"!Pn (5) 

Also, define ¢,. to be the probability of another n-consccutivc-ccll-loss in the same busy cycle. Then 

00 

tPn L tPk (1 - l'n)k-l Jln 
k=1 

tPPn (6) 
1- ¢(1 - Jln) • 

It follows that 

P(On ~ i) (7) 

and 

E(o ) "'n "!lln 
" = 1-¢n = 1-¢" 

(8) 

Note that for a sufficiently high number of consecutive losses Pn « 1 and E(On) R< "'n· 
The above analysis is not valid for other queues, such as M/G/1/k and GI/M/1/k. Appropriate 

analysis techniques may be developed for these queues, which is a subject for further investigation and 
is not considered in this paper. For these and other GI /GI /1/k queues, we use simulation to estimate 
E(O,.) and/or "'n· However, because then-consecutive-cell-loss is typically a rare event, E(On) and "'n 
are very small quantities, difficult to estimate using standard simulation. In the next section, we develop 
fast simulation methods, based on importance sampling, to efficiently estimate "'nand/or E(O .. ). These 
methods can be validated by comparing statistical output from simulations of the M/M/1/k queue with 
the above analytical results. 
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2.3 IMPORTANCE SAMPLING 

In a GI /GI /l/k queue, let us consider the estimation of the probability of reaching full-buffer in a 
busy cycle, 'Y (sec Section 2 for notation). This probability can be expressed as 'Y = Et(I(Ttb < T)), 
where TJb is a r.v. denoting the time to reach a full buffer in a busy cycle, and T is a r.v. denoting the 
cycle time (as defined in Section 2). I(.) is the indicator function. Note that Ttb = oo for a busy cycle 
in which the buffer is never full. The subscript f denotes the underlying original probability measure 
(i.e., the original arrival and service processes). Using standard simulation we generate n independent 
busy cycles to obtain samples of l(Ttb < T), say, !1, !2, ... , ln. Then i' = L:~=l 1;/n is an unbiased 
estimator of 'Y· The variance of this estimator is given by Var,(I(TJb < T))/n, where Var,(I(TJb < 
T)) = Et(I2(Ttb < T)) - EJ{I(Ttb < T)) = 'Y- "(2 • From the central limit theorem (CLT) we have 
vn(i'- 'Y) ~ N(O, Var,(I(TJb < T))). The CLT approximation can be used to obtain a 99% confidence 
interval (CI), the half width (HW) of which is given by 2.56 JVar,(I(TJb < T))/n. The relative error 
(RE) is defined as the ratio HWh ::::< 2.56/ .,jWY. Obviously, for a fixed n, RE ~ oo as 'Y ~ 0. This 
is the problem when using standard simulation to estimate the probability of a rare event, such as 'Y· 
Importance sampling can be used to overcome this inherent problem. 

Now, let g be another underlying probability measure, and w be a sample path (e.g., a busy cycle) in 
the set ll of all possible sample paths. Denote by dg(w) the probability of the sample path w according 
to the new probability measure g. (Similarly, df(w) is the probability of the sample path w according to 
the original probability measure f.) Note that 'Y can be written as follows 

1 1 ~M I..,(TJb < T) df(w) = l..,(TJb < T) ;z-( ) dg(w) 
wEll wEll 9 W 

1 I..,(Ttb < T)L(w) dg(w) = E9 (I(Ttb < T)L), 
wEll 

(9) 

where I..,(.) is the indicator function evaluated for sample path w, and L(w) = df(w)/dg(w) is the likelihood 
ratio. It is clear from the above equation that the only condition imposed on the new probability measure 
g is: dg(w) > 0 whenever I..,(TJb < T) df(w) > 0. It follows that we can simulate the system using the 
new probability measure g to obtain n independent samples of I(Ttb < T)L, say, ! 1£1. l2L2, ... , lnLn. 
An unbiased estimate of 'Y is given by i' = E7=l l;L;/n. The variance of this estimator is Var9 (l(Ttb < 
T)L)/n = (E9 (l(TJb < T)L2 ) -"(2)/n. Notice that a zero variance estimator is obtained if we choose the 
new probability measure g such that for all w E ll, dg(w) = I..,(Ttb < T) df(w)/'Y. However, this is not 
possible, since it requires the knowledge of 'Y, the quantity we arc trying to estimate! The main challenge 
in importance sampling is to find a robust and easily implementable new probability measure g such that 

(10) 

This means that the variance of the importance sampling estimate is much less than the variance of 
the standard simulation estimate. In other words, for the same simulation effort (e.g., the same number 
of busy cycles n), importance sampling yields an estimate with much smaller relative error than that 
obtained using standard simulation. (This also implies a significant speed up of simulation time to achieve 
certain accuracy.) Notice from the above equation that much variance reduction is obtained if L(w) = 
df(w)/dg(w) « 1 whenever I..,(Ttb < T) = 1. That is, g should be chosen so as to significantly increase the 
probability of the rare event {TJb < T}. An "effective" change of probability measure, g, is one for which 
the relative error ( RE) remains bounded, also as the probability of the rare event tends to zero. This is 
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a desirable property which implies that the simulation effort (e.g., the number of samples n) to achieve a 
given relative error remains the same as the rare event becomes rarer. In some cases, this property may 
be established empirically for a given importance sampling technique, as will be demonstrated in our 
experimental results of Section 4. 

3 FAST SIMULATION OF SIMPLE QUEUES 

Consider a simple queue with a finite buffer. The cell arrival "rate" is assumed to be sufficiently smaller 
than the service "rate", so that reaching a full-buffer (or buffer overflow) is a rare event. Efficient simula
tion involving a rare full-buffer event has been considered by many (see, for example, Parekh and Walrand 
(1989) and Sadowsky (1991).) Another rare event of interest is the n-consecutive-cell-loss event, which 
may occur only after the full-buffer is reached. In this section we consider these two related rare events, and 
develop an importance sampling heuristic to speed up simulations involving a rare consecutive-cell-loss 
event. 

3.1 Rare Full-Buffer Event 

In a GI fGI /1/k queue, let us again consider the estimation of the probability of reaching full-buffer in 
a busy cycle, 'Y· As in Section 2.3, tlris probability can be expressed as 'Y = E,(I(Tfb < T)), where the 
expectation is taken with respect to the original probability measure f. Since {T1b < T} is a rare event 
(i.e., 'Y "" 0), using standard simulation is very inefficient, as it yields 0 for the indicator function on 
almost all busy cycles. Using importance sampling, we have 'Y = E1(I) = E9 (IL), where f and g are the 
original and the new probability measures, respectively, and L is the likelihood ratio. Denote by dg( w) 
the probability of a sample path w according to the new probability measure g. (Similarly, df(w) is the 
probability of a sample path w according to the original probability measure f.) Then L(w) = df(w)fdg(w) 
is the likelihood ratio associated with a sample path w; it can be computed easily during the simulation. 
For example, let t~.i (resp., t~,;), i = 1, 2, ... , N;, be the cell arrival (resp., departure) instants in the 
j-th busy cycle. Furthermore, let g~.;(t) (resp., g~.;(t)) be the new i-th inter-arrival (resp., service) time 
density used to simulate the system with importance sampling. The likelihood ratio, L;, assoCiated with 
the j-th busy cycle, takes the form 

N, I (ti+l - ti ·) 
L. = II A A,J A,J 

J i .(to+l- ti ·) 
i::l YA,J A,J A,J 

fs(t~.;- t~~f) 
X i i i 1 ' 

9s,;(ts,;- ts,;) 
(11) 

Note that t~.i+l = t~:/ 1 = t~.i+l is the instant at which the j-th busy cycle ends and the j + 1-th busy 
cycle begins. Thus, L; can be computed recursively at arrival and departure events during the simulation. 

Now, let b be the number of indepen_dent "biased" (using importance sampling) busy cycles used to 
obtain estimates for the mean and the variance of the r.v. IL. These estimates are given by 

b b 

fi.1 = L I;L;/b, a} = L (I;L; - fi.1 )2 f(b- 1). 
j=l j=l 
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From the central limit theorem, for large b, the estimate fii is approximately normally distributed. It 
follows that the relative half-width (in percentage) of the 99% confidence interval for the above estimator 
is given by 2.56 (a J/ fii) X 100. 

In the following we consider the optimal change of measure (importance sampling distribution) to 
efficiently estimate 1· Let FA(II) = ft":o c0t !A(t)dt be the moment generating function of the inter-arrival 
times. Define f~ ( t) = c0t fA ( t) /FA (II); this is another pdf obtained by exponentially tilting (twisting) the 
pdf !A(t) at a parameter II. Similarly, Fs(ll) = J,";0 e0tfs(t)dt is the moment generating function of the 
service times, and f~(t) = e0' fs(t)j Fs(ll) is the corresponding exponentially tilted pdf. 

Using heuristic arguments based on the theory of large deviations (Bucklew 1990), Parekh and Walrand 
(1989) proposed an importance sampling distribution to efficiently estimate the probability of buffer 
overflow in a GI /GI /1/k queue. In Sadowsky (1991), this distribution was proved to be the unique 
asymptotically (as k -+ oo) optimal change of measure. Let ()' be the solution of the equation 

FA(-e') Fs(e') = 1. (12) 

Then the optimal change of measure is obtained by simulating the GI /GI /1/k queue with the exponen
tially tilted densities 9A(t) = r;.O' (t) and gs(t) = tf (t). Importance sampling is "turned on" at the 
start of each busy cycle, and is "turned off" at the occurrence of the rare event. The moment generating 
functions for the new (optimal) inter-arrival and service times are given by 

G (e)= FA(II-11') G ·(!J) = F8 (!J + !J') 
A FA(-!J') ' s Fs(!J') · (13) 

Consider the M/M/1/k queue with its arrival rate A much smaller than its service rate p (i.e., A« p), 
so that a full buffer is a rare event. FA( -!J) = A/(A + !J) and Fs(!J) = pj(p- !J), for () < p. Solving 
the equation FA(-!J') Fs(!J') = 1 for !J', we get()' = p- A. It follows that GA(!J) = pj(p- !J) and 
Gs(!J) = A/(A- !J), i.e., optimally, the M/M/1/k queue is simulated with arrival rate p and service rate 
A. This change of measure accelerates the arrival process relative to the service process, thus increasing 
the probability of a full buffer in the simulated system. 

In the next section, we usc the optimal importance sampling distribution (as outlined above) in a 
heuristic to estimate very small consecutive-cell-loss probabilities. 

3.2 Rare Consecutive-Cell-Loss Event 

In this section we consider the estimation of the probability of losing n or more consecutive cells in a 
busy cycle, "'n (sec Section 2 for notation). This probability can be expressed as "'n = EJ(I(Tn < T)), 
where the expectation is taken with respect to the original probability measure f. Tn is a r.v. denoting 
the time to the first n-consecutive-ccll-loss event in a busy cycle, and T is a r.v. denoting the cycle time 
(also defined in Section 2). Note that Tn = oo for a busy cycle in which there is non consecutive cell loss. 
Here too, since {Tn < T} is a rare event, using standard simulation is very inefficient. In fact, the event 
{Tn < T} must be at least as rare as the event {TJb < T}, since the former may or may not occur only 
after the latter has occurred. Using importance sampling, we have "'n = E1(I) = E9 (IL), where f and 
g arc the original and the new probability measures, respectively, and L is the likelihood ratio. Based 
on b independent "biased" (using importance sampling) busy cycles, estimates of the mean fi, 1 and the 
variance a~ (and hence confidence intervals) are obtained as described in Section 3.1. 
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To the best of our knowledge, the problem of estimating the probability of a rare consecutive-cell-loss 
event ('Yn) using importance sampling has not been considered before. Note that this rare event can only 
occur during a full-buffer period, i.e., after the occurrence of a typically rare full-buffer event. Therefore, 
it seems intuitive to use two "biasing" (importance sampling) schemes, one to reach a full-buffer, and 
another, if necessary, to lose n consecutive cells during that full-buffer period. The main idea of our 
importance sampling heuristic is to use the optimal change of measure to reach the full-buffer state (as 
described in Section 3.1.) Once (and every time, until the consecutive loss of n cells) the full-buffer state 
is reached, additional "biasing" (e.g., by increasing the arrival "rate") is applied (if necessary) to increase 
the probability of n or more arrivals (losses) during the full-buffer period. "Biasing" is turned off as soon 
as the rare event of interest occurs, i.e., n arrivals during a full-buffer period. Otherwise, "biasing" is 
continued according to the optimal change of measure (of Section 3.1) until the next full-buffer period or 
the end of the busy cycle. The implementation details of "biasing" during full-buffer periods may differ 
depending on the particular arrival and service processes being considered. These details will be discussed 
for each of the models used in our experiments of Section 4. Empirical results from these experiments 
demonstrates the effectiveness of the above importance sampling heuristic to estimate 'Yn· The same 
heuristic can also be used to estimate :Fn, the frequency of the n-consecutive-cell-loss event. In either 
case, several orders of magnitude "speed ups" over standard simulation can be obtained. 

It is important to mention that, in general, the simulation effort (with importance sampling) slowly 
increases with the number of consecutive cell loss of interest, i.e., the importance sampling scheme is not 
asymptotically (as n -t oo) efficient. (This can, perhaps, be seen from the experimental results for the 
M/D/1/k queue in Section 4.3.) However, this is not due to the increased rarity of then-consecutive
ccll-loss event, but due to increase in the inherent variance of the probability of n or more arrivals during 
a full-buffer period. Let V be a r.v. denoting the length of a full-buffer period, then for Poisson arrivals 
with a rate>., this probability is given by Pn(V) = e-AV L::n (>.V)'fi!. Clearly, the variance of Pn(V) 
increases with the variance of V and is amplified for high values of n. It is this inherent increase in 
variability which cannot be reduced by importance sampling. In fact, for an M/M/1/k queue, the full
buffer periods, V, arc independent and exponentially distributed with a mean 1/ p.. In this case, samples of 
P,.(V) observed during simulation can be replaced by their (deterministic) meanpn =(A;")". This way, 
the variability of Pn(V) docs not affect the simulation results. Indeed, for an M/M/1/k queue, this special 
implementation of our heuristic is asymptotically efficient (as n -t oo), which is clearly demonstrated by 
the empirical results in Section 4.1. 

4 EXPERIMENTAL RESULTS 

In this section we usc fast simulation methods discussed in Sections 3.1 and 3.2 to evaluate a model 
of the Leaky 13ucket (L13) algorithm. For validation purposes, the simulation of an M / M /1/k queue is 
considered in Section 4.1. The operation of the Ll3 algorithm and its model are described in Section 4.2. 
The evaluation of this model is considered in Sections 4.3 and 4.4, for Poisson and two-phase burst/silence 
(TP13S) cell arrival processes, respectively. The empirical results displayed here include estimates of 'Yn 
(i.e., the probability of losing n or more consecutive cells in a busy cycle), E(On) (i.e., the expected 
number of n-consecutive-cell-loss events in a busy cycle) and :Fn (i.e., the steady-state frequency of the 
n-consecutive-cell-loss event.) 
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4.1 Simulation of the M/M/1/k Queue 

In this section we consider the efficient simulation of an M/M/1/k queue to estimate the probability 
of consecutive cell Joss in a busy cycle. For this model, analytical results in Section 2.2 can be used to 
validate statistical output from simulation. As outlined in Section 3.2 our importance sampling heuristic 
makes usc of two different "biasing" schemes. The first is optimal "biasing" (as described in Section 3.1) 
to reach the full-buffer state (i.e., the M/M/1/k queue is simulated with arrival rate J.' and service rate 
,\.) The second is "biasing" during full-buffer periods, which in the special case of an M/M/1/k queue 
can be implemented as follows. As argued in Section 3.2, the probability of n or more arrivals (losses) 
during a full-buffer period is given by l'n = (.>.~1.)", which is typically very small in the original queue. 
In the simulated queue, we increase this probability to p, (a constant sufficiently higher than Pn; for 
example, 1'• = 0.5). With probability p., the full-buffer period is considered to be a "successful" overload 
period (i.e., having n or more arrivals). Let U be a uniform random variable (0 < U < 1). Every time 
(until the consecutive loss of n cells) the full-buffer state is reached, we take a sample u of U. If u :5 p., 
then the n-consecutive-cell-loss event is considered to have occurred, and "biasing" is turned off until the 
end of the current busy cycle. In this case, the likelihood ratio is updated by the multiplication factor 
p,.fp,. (Note that in this implementation, a sample of the full-buffer period need not be generated, and 
the simulation is continued, from the instant of reaching the full-buffer state, as if a departure event has 
just occurred leaving the queue with k- 1 cells.) Otherwise, if u > p., then the n-consecutivc-cell-loss 
event is considered to have not occurred, and "biasing" is continued as described in Section 3.1 until the 
next full-buffer period or the end of the current busy cycle. In this case, the likelihood ratio is updated 
by the multiplication factor (1- Jln)/(1 - p8 ). 

Now let us consider the M/M/1/k queue with,\= 0.8 cells per unit of time, J.' = 1.0 cells per unit 
of time and k = 25. In Table 1, for increasing n, we give fast simulation estimates of the cycle-based 
quantities; namely, then-consecutive-cell-loss probability (1'n) and the expected number ofn-consecutive
cell-loss events E(On)· Numerical results from analysis arc also displayed. Consistent with our remark 
in Section 2.2, note that E(On) Rl 1'n for values of n ;::; 8. Also, Note that the frequency :Fn can be 
determined by E(On)/E(N) = P1 E(On), where P1 = 1- ~· 

Using different arrival and service rates, experiments indicate that for high n, the lowest relative 
error can be obtained by setting Jls (approximately) to 1- ~· Therefore, the "biasing" probability l's 

is heuristically set to max(p~, 1- ~), where p~ is the (new) probability of nor more arrivals during a 
full-buffer period in the simulated system (i.e., with the optimal change of measure as given in Section 
3.1.) For the simulated M/M/1/k queue, it follows that p;, = (rl=;;)". 25600 "biased" busy cycles were 
simulated to get the estimates and their relative error (i.e., the relative half-width of the 99% confidence 
interval) in percentage. Note that fast simulation results are in good agreement with the numerical results 
from analysis. Also, the relative error docs not increase for larger values of n; this verifies the asymptotic 
optimality of the particular implementation of our proposed importance sampling method when applied 
to the M/M/1/k queue. 

4.2 The Leaky Bucket (LB) Algorithm 

An ATM connection is established with an admission contract which specifies the traffic characteristics 
of the source and the quality of service (QoS) to be guaranteed by the network. In order for the network 
to ensure that the admission contract is not violated, the usage parameter control (UPC) procedure is 
invoked to monitor the actual traffic and to police the excess traffic violating the contract. The Leaky 
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Ducket (LD) algorithm is a popular UPC procedure and can easily be implemented with counters (see 
Turner (1986).) Each time a cell arrives, the counter is incremented by one. As long as the counter has 
a positive value, it is decremented at fixed intervals, d. When the cell arrival "rate" exceeds the periodic 
decrement "rate," the counter value will increase. If the counter reaches a pre-specified limit, say, k, 
then the source is considered to have exceeded its admission contract, and subsequent cells arc discarded 
(or marked for policing) until the counter value falls below the limit again. The operation of this LD 
algorithm can be modeled as a GI/D/1/k queue, in which the service time is deterministic and identical 
to the decrement interval, d. An arriving cell is lost if it finds a full buffer. 

For a two-phase burst/silence source model (sec Section 4.4), the stationary cell loss probability can 
be obtained by a numerical method whose complexity grows in proportion to the value of k (Rathgeb 
1991.) No analytical or numerical method is available yet to obtain the probability of consecutive cell loss 
in a GI/D/1/k queue. In order to avoid restrictions necessary for analytic tractability and/or numerical 
feasibility, simulation is often preferred for the evaluation of realistic models of the LD algorithm. However, 
standard simulation is not efficient because consecutive cell loss is a rare event. Accurate and efficient 
estimation of very small probabilities, such as "'(, using importance sampling has been considered in Nicola 
ct al. (1994). In the next two sections, we usc the importance sampling heuristic proposed in Section 3 
to efficiently estimate "'fn, E(O .. ) and :F,. in a model of the LB algorithm with (non-bursty) Poisson and 
(bursty) TPDS cell arrival processes. 

4.3 Poisson Cell Arrival Process 

In this section we usc importance sampling to efficiently estimate the probability of consecutive cell loss in 
a busy cycle of an M/D/1/k queueing model of the LB algorithm (i.e., for a Poisson cell arrival process). 
The arrival rate is A and the service time is a constant d. As outlined in Section 3.1, the optimal change of 
measure to reach the full-buffer state can be obtained by solving Equation (12) for 8'. The corresponding 
inter-arrival and service time densities can now be determined from their generating functions as given in 
Equation (13). It follows that the optimal service times are also deterministic and identical to the original 
(i.e., no change in the service process.) However, the arrival process docs change, so as to increase the 
probability of the rare full-buffer event. We note that full-buffer periods (i.e., the actual remaining service 
time upon reaching the full-buffer state) in the same busy cycle arc neither independent nor identically 
distributed. Therefore, in this implementation, these full-buffer periods must be simulated (unlike the 
implementation for the M/M/1/k queue). The probability of nor more arrivals (losses) during a full
buffer period depends on the remaining service time (r < d) and is given by Pn(r) = c->.r E:,. (.Xr); /i!. 
This probability is typically very small in the original system, and, therefore, "biasing" is necessary to 
increase the probability of "success" (i.e., nor more arrivals) during the full-buffer period. In the simulated 
queue, we increase this probability top. (a constant sufficiently higher than P .. (r); for example, p. = 0.5). 
Every time (until the consecutive loss of n cells) the full-buffer state is reached, we take a sample u of 
a uniform random variable U (defined in Section 4.1). If u ::=; p., then the n-consecutivc-ccll-loss event 
is considered to have occurred, and "biasing" is turned off until the end of the current busy cycle. In 
this case, at the end of the full-buffer period, the likelihood ratio is updated by the multiplication factor 
P,.(r)/p •. Otherwise, if u > p., then the n-consecutive-cell-loss event is considered to have not occurred, 
and "biasing" is continued immediately after the full-buffer period (as described in Section 3.1) and until 
the next full-buffer period or the end of the current busy cycle. In this case, at the end of the full-buffer 
period, the likelihood ratio is updated by the multiplication factor (1- P .. (r))/(1- p,). 

Note that when the full-buffer period r is very small (i.e., r « d), "biasing" may yield non-typical 
sample paths, resulting in extremely small values for the likelihood ratio and leading to unstable estimates. 
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To overcome this problem, the above heuristic is modified as follows. Upon reaching the full-buffer state, 
Pn(r) is determined, and "biasing" during the full-buffer period (as outlined above) is activated only 
if, say, P,.(r)/P,.(d) ~ 4 x w-3 . In this way, "biasing" is activated only when a full-buffer period is 
sufficiently large to yield a rare (but typical) sample path. As long as the consecutive-cell-loss event did 
not occur, "biasing" to reach the next full-buffer period is resumed as outlined above. The following 
example shows that the above heuristic with this modification is quite robust and effective. 

Now let us consider the model of the LB algorithm with a Poisson cell arrival process at rate A = 0.8 
cells per unit of time. The new ( oi>tima.l) arrival process to reach the full-buffer state is also Poisson, 
however, at an increased rate A• = A+ 9", where (from Equation (12)) 9" is the non-trivial solution of 
A+9• = Acd0". The (deterministic) service time is set to d = 1 time unit, k = 10, and we vary the number 
of consecutive cell loss, n. In Table 2, we list fast simulation estimates of "In and E(On) as well as their 
relative error (i.e., the relative half-width of the 99% confidence interval) in percentage. 25600 "biased" 
busy cycles were used to get these estimates. Using different arrival rates and/ or service times, the best 
relative error (for high values of n) is obtained by setting l'• (approximately) to 1 -Ad. Therefore, the 
"biasing" probability p. is heuristically set to max(P~(r), 1-Ad), where P~(r) is the (new) probability of 
n or more arrivals during the full-buffer period r in the simulated system (i.e., with the increased optimal 
arrival rate A•.) For the simulated M/D/1/k queue, it follows that P~(r) = c-A'r E:n (A•r); /i!. Note 
that if "biasing" is not activated in a full-buffer period because r « d, then p. = P,.(r), and the likelihood 
ratio is not updated at the end of the full-buffer period. Using the same effort (in CPU time), standard 
simulation yields meaningful results for only two entries with relatively high probabilities. As can be seen, 
the relative error of the fast simulation estimates slowly increases with n, which is an indication that the 
importance sampling heuristic is not asymptotically efficient with respect to n. As explained in Section 
3.2, this is due to the increased variability of Pn(V) for higher n, where V is a r.v. denoting the length 
of a full-buffer period. Note that E(On) R< "In for values of n ~ 4, which validates our remark in Section 
2.2 for queues other than the M/M/1/k. 

4.4 Bursty Cell Arrival Process 

In this section we consider the evaluation of the LD algorithm for a more realistic two-phase burst/silence 
cell arrival process (sec Rathgcb (1991)), which we will refer to as TPBS process. This arrival process 
has been used to model bursty sources, such as pa.cketized voice (see Heffes and Lucantoni (1986)) and 
interactive data services, and, therefore, it is often used to compare various policing mechanisms. The 
number of cells per burst is geometrically distributed with a parameter a, and the inter-cell time during 
a burst is deterministic given by r. Therefore, transitions from burst to silence occur with a probability 
a, only at multiples of r. The duration of the silence phase is exponentially distributed with a mean {;- 1• 

The peak cell arrival "rate" is 1/r, and the average cell arrival "rate" A= (r + a/fJ)-1 . Note that we 
can increase the burstiness of the cell arrival process by increasing the average burst length (i.e., smaller 
a) while keeping the average cell "rate" the same (i.e., constant a/{3.) The pdf of the TPBS inter-arrival 
time and its moment generating function are given by 

{ 
0, 

!A(t) = 1- a, 
a {3c-f:J(t-r)' 

if t < r, 
if t = T, 

if t > T, 

(14) 

(15) 
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9A(t) = fA.0" (t) is the corresponding exponentially tilted pdf (with a tilting parameter 8*); its moment 
generating function is given by GA(8) = FA(8- 8*)/ FA( -9"). It can be shown that the tilted pdf, YA(t), 
is also a TPI3S process with the same deterministic burst inter-cell time 7, and with its parameters, 
fi" = fi + 8*, and a• = afi/(fi + (1- a)8*). The tilted pdf, 9A(t), is used as the (new) inter-arrival time 
density for simulation with importance sampling to reach the full-buffer state. 

For a TPBS cell arrival process, the LB algorithm can be modelled as TPBS/D/1/k queue. Since the 
full-buffer and the consecutive cell loss are typically rare events, importance sampling is used to efficiently 
simulate this system. At the beginning of each busy cycle, and after each full-buffer period (as long as the 
rare consecutive-cell-loss event has not occurred), "biasing" to reach the next full-buffer period is affected 
as described in Section 3.1. The new "biased" (TPI3S) cell arrival process is determined by a•, fi* and 7, 

as given above. The service time is deterministic (d), and, therefore, remains unchanged in the simulated 
system. As soon as the full-buffer state is reached, further "biasing" during the full-buffer period may 
be necessary to accelerate then-consecutive-cell-loss event. Since the inter-cell time during a burst (7) is 
deterministic, the number of cells that may be lost during a full-buffer period of length r cannot exceed a 
maximum given by Ttma• = Lr/7J. At the beginning of a full-buffer period of length r, if n :5 Ttma•• then 
"biasing" is done by setting the new (3 to (3". If a• is not sufficient to increase the probability of n or more 
remaining cells in the current burst to a high value, p. (for example, p8 = 0.5.), then the new a is set to 
a8 as determined from (1- a8 )n = r>s (i.e., a8 = 1- e1n(p,)/n.) In other words, until the consecutive loss 
of n cells, we usc the optimal "biasing" to reach the full-buffer state (i.e., the new a is set to a• and the 
new fi is set to fi*.) In addition, depending on nand r, more (stronger) "biasing" during the full-buffer 
period may be necessary (i.e., if n :5 Ttma•• then the new a is set to min(a•,a,).) The effectiveness of 
this heuristic is demonstrated in one example. In another example, we usc the heuristic to experiment 
with the burstiness of the cell arrival process. 

In the first experiment, we consider a TPI3S cell arrival process with a = 0.2, fi = 5.0 x w-4 and 
7 = 1. The (deterministic) service time, d, is set to 100 time units, and k is set to 30. In Table 3, the 
number of consecutive cell loss, n, is varied, and we give fast simulation estimates of 1'n and :Fn, with 
their percentage relative error (i.e., the relative half-width of the 99% confidence interval.) 25600 "biased" 
busy cycles were used to get these estimates. For all n, the "biasing" probability, p., is set to 0.5. It is 
not directly seen from the table, however, it is interesting to point out that, for smaller values of n, 
stronger "biasing" during full-buffer periods is not necessary (i.e., the new a is set to a• .) For relatively 
high consecutive-cell-loss probabilities, it was possible to compare with results from standard simulation 
using the same effort (in CPU time.) Note that the relative error of the fast simulation estimates slowly 
increases with n, i.e., the importance sampling heuristic is not asymptotically efficient with respect to n. 
A similar observation was made in the experiment for the M/D/1/k queue in Section 4.3. 

In the second experiment, we consider a TPBS arrival process, in which we increase the burstincss, 
while fixing the average cell arrival "rate." As described earlier in tlus section, this can be achieved by 
decreasing a and {j, while fixing a/ (3. We set 7 = 1 and A = 1/50. It follows that a/ (3 is fixed at 49. 
The (deterministic) service time, d, is set to 25 time units, and k is set to 100. For a fixed number of 
consecutive cell loss, n = 5, in Table 4 we vary the burstiness and give the fast simulation estimates of 1'n 
and :F,., with their percentage relative error. 25600 "biased" busy cycles were used to get these estimates. 
For all values of a, the "biasing" probability, p8, is set to 0.5. Using the same effort (in CPU time), only 
for relatively high probabilities, it is possible to obtain meaningful results from standard simulation. As 
expected, the empirical results in Table 4 indicate a sharp increase in the consecutive-cell-loss probability 
due to increased burstiness. 
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5 CONCLUSIONS 

In this paper we have proposed a heuristic importance sampling change of measure to efficiently estimate 
the probability of a rare consecutive-cell-loss event in a GI /GI /1/k queue. This heuristic makes use of 
the optimal change of measure proposed by Parekh and Walrand (1989) to accelerate the occurrence 
of a rare full-buffer event in an asymptotically stable queue. However, further "biasing" is necessary to 
increase the probability of a rare consecutive-cell-loss event during a full-buffer period. Experimental 
results demonstrate the validity and effectiveness of our fast simulation method, which is used for the 
evaluation of a GI / D/1/k queueing model of the Leaky Ducket algorithm. 
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Table 1 Estimates of "Yn and E(On) in an M/M/1/k Queue 

"Yn E(On) 
!!'ast Sirn. Anal. Fast Sirn. Anal. 

full- 9.45 x1o-1 9.48 x10-1 4.66 x10-3 4.72 x10-3 

buffer ± 3.20% ± 4.52% 

n=1 7.69 x10-1 7.58 x10-1 2.10 x1o-3 2.10 x10-3 

± 3.16% ± 4.20% 

n=4 1.58 x10-4 1.59 x10-4 1.81 x10-4 1.84 x 10-4 

± 3.25% ± 3.50% 

n=8 7.12 x10-6 7.15 x1o-6 7.15 x10-6 7.19 x10-6 

± 3.21% ± 3.21% 

n = 16 1.09 x10-8 1.09 x10-8 1.09 x10-8 1.09 x10-8 

± 3.21% ± 3.21% 

n = 32 2.53 x1o-11 2.54 X10-H 2.53 X10-H 2.54 x10-H 
± 3.21% ± 3.21% 

n = 64 1.36 x10-25 1.36 x10-25 1.36 x1o-25 1.36 x10-25 

± 3.21% ± 3.21% 

Table 2 Estimates of')'n and E(On) in an M/D/1/k Queue 

"Yn E(On) 
Std. Sim. Fast Sirn. Std. Sim. Fast Sirn. 

full- 1.00 x10-2 9.92 x10-3 4.87 x10-2 4.80 x10-2 

buffer ± 4.49% ± 2.15% ± 5.99% ± 3.21% 

n=1 6.47 x10-3 6.38 x10-3 1.43 x10-2 1.40 x10-2 

± 4.76% ± 2.22% ± 5.91% ± 3.00% 

n=4 8.20 x10-5 8.28x1o-5 

± 3.48% ± 3.50% 

n=8 9.68 x10-9 9.68 x10-9 

± 4.23% ± 4.23% 

n= 12 2.15 x10-13 2.15 x10-13 

± 4.97% ± 4.97% 

n = 16 1.49 x10-18 1.49 x10-18 

± 5.56% ± 5.56% 
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Table 3 Estimates of 'Yn and :Fn in a TPBS/ D/1/k Queue 

'Yn :Fn 
Std. Sirn. Fast Sirn. Std. Sirn. Fast Sim. 

full- 6.14 xl0-3 6.15 x1o-3 1.29 xl0-3 1.28 xl0-3 

buffer ± 8.46% ± 0.87% ± 9.50% ± 1.86% 

n=1 5.14xl0-3 5.19 xl0-3 1.01 xl0-3 1.02 xlo-3 

± 9.16% ± 0.87% ± 10.13% ± 1.82% 

n=2 4.27 xl0-3 4.36 xw-3 8.12 x1o-4 8.18 xl0-4 

± 9.97% ± 0.87% ± 10.90% ± 1.78% 

11=4 2.82 x1o-3 2.99 xl0-3 4.96 xl0-4 5.21 xl0-4 

± 12.06% ± 0.89% ± 12.88% ± 1.73% 

n=8 1.18 xl0-3 1.31 xl0-3 1.88 xl0-1 2.10 xl0-1 

± 17.91% ± 1.08% ± 18.37% ± 1.77% 

n = 16 2.23x10-1 3.41 x1o-s 
± 1.49% ± 2.01% 

1! = 32 5.70x1o-a 8.62 xl0-7 

± 2.20% ± 2.57% 

1! = 64 2.76x1o-u 4.18 xl0-10 

± 3.51% ± 3.75% 
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Table 4 Estimates of In and :F,. in a TPBS/D/1/k Queue 

In :Fn 
Std. Sim. Fast Slrn. Std. Sim. Fast Sim. 

01 = 0.05 3.07x10-2 3.12 xl0-2 2.20 xl0-3 2.22 x10-3 

± 4.04% ± 1.50% ± 5.22% ± 2.83% 

01 = 0.10 1.55 xl0-3 1.53 x1o-3 1.61 xl0-1 1.53 xl0-1 

± 14.46% ± 1.53% ± 17.54% ± 2.80% 

01 = 0.15 6.72 xw-s 6.39 x1o-s 9.48 xl0-6 7.77x10-6 

± 58.73% ± 1.55% ± 71.29% ± 2.73% 

a= 0.20 2.18 x10-6 3.13 xl0-7 

± 1.60% ± 2.70% 

a= 0.25 6.09 x1o-s 9.80 x10-9 

± 1.65% ± 3.18% 

01 = 0.30 1.34 xl0-9 2.44 xl0-10 

± 1.72% ± 3.12% 

a= 0.35 2.26 x w-u 4.58 x10- 12 

± 1.71% ± 2.54% 

01 = 0.40 2.86 x10-13 6.42 xl0-14 

± 1.79% ± 3.03% 
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