
Invited Address I

Cache Consistency by Design

EXTENDED ABSTRACT

Ed Brinksma *

Tele-Informatics and Open Systems Group,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

brinksma@cs. utwente .nl

Abstract. In this paper we present a proof outline of the sequential consistency the lazy caching
protocol of Afek, Brown, and Merritt. We will follow a strategy of stepwise refinement, develop­
ing the distributed caching memory in five transformation steps from a specification of the serial
memory, whilst preserving the sequential consistency in each step. What we present, in fact, is
a rationalized design of the distributed caching memory. We will use a simple process-algebraic
formalism for the specification of the various design stages. We will not follow a strictly algebraic
exposition, however. At some points the correctness will follow using direct semantic arguments,
and we will also employ higher-order constructs like action transducers to relate behaviours. The
distribution of the design/proof over five transformation steps provides a good insight into the vari­
ations that could have been allowed at each point of the design while still maintaining sequential
consistency. The design/proof in fact establishes the correctness of a whole family of related mem­
ory architectures. The factorization in smaller steps also allows for a closer analysis of the fairness
assumptions about the distributed memory.

1 Introduction

In this paper we present a proof outline for the sequential consistency the lazy caching protocol of [ABM93]
as formulated in [Ger94]. A detailed presentation of this proof can be found in [Bri94]. We will follow a
strategy of stepwise n~finement, developing the distributed caching memory in five transformation steps
from a specification of the serial memory, whilst preserving the sequential consistency in each step. Thus
our proof (outline), in fact, presents a rationalized design of the distributed caching memory. •

We will use a simple process-algebraic formalism for the specification of the various design stages. Process
algebraic techniques [Hoa85, Mil89, BW90] arc by their nature suitable for transformational proofs as
they concentrate on laws that equate and/or compare different behaviour expressions. Such laws arc
natural candidates for design transformations. We will not follow a strictly algebraic exposition, however.
For some transformations we will show the correctness using semantic arguments directly, instead of pure
syntactic derivations from basic laws. We will also employ the less standard feature of action transducers
to relate behaviours in two of our design steps.

The structure of the rest of this paper is as follows.

section 2 introduces the process-algebraic formalism that we use;
section ,9 explains about the use of action transducers, and introduces the notion of queue-like action
transducers in particular;
section 4 gives a transformation style proof of the weak sequential consistency of the distributed
cache memory. This property takes into account only finite sequences of the observable actions of a
system;
section 5 improves the result to strong sequential consistency, also taking possibly infinite behaviour
into account;
section 6 discusses the results that have been obtained and draws some conclusions.

' This work has been supported by the EU as part of ESPRIT DRA project 6021 Building Correct Reactive
Systems (REACT).

S. T. Vuong et al. (eds.), Protocol Specification, Testing and Verification XIV
© Springer Science+Business Media Dordrecht 1995

54 Invited Address I

2 A simple process-algebraic formalism

We will work with a simple process algebraic formalism to specify the different design stages in the course
of our proof. Throughout this paper we will assume a working knowledge of process algebras. For a good
introduction to the literature of process algebras the reader is referred to [Hoa85, Mil89, BW90]. Below,
we give a short summary of those features that are essential for the development of our proof.

The syntax and semantics of our formalism are given in tables 1 and 2, respectively. The tables assume a
given set of observable actions Act and an additional silent or hidden action T. The behaviour expressions
defined by the syntax table define the behaviour of systems in terms of labeled transition systems, where
the transitions are labeled by elements in Act U { T}. These operational models can be derived for each
behaviour expression with the aid of the inference rules given in table 2. For a detailed account of this
so-called str-uctured opemtional semantics or SOS style of definition, we refer to [Mil89, Plo81].
The behaviour expressions are defined in an environment of process definitions of the form

where Pis a set of process identifiers p with action label type Lp, and Bp is a behaviour expression with
action label set L(Bp) ~ Lp. We will use the the notation p ~ Bp to denote the statement that 'p ~ Bp
is an element of the environment of process definitions'. The environment may contain mutually recursive
process definitions. The label types Lp are usually left undefined, and are implicitly understood to be the
smallest label types satisfying the static constraints of table 1. In the application part of the paper we
will provide concrete instances of the set of actions Act en the process definition environment.

Name Syntax B Label set L(B)

inaction 0 0
action-prefix p,.B (p, E Act) {p,} U L(B)

T.B L(B)
choice B, +B, L(B,) U L(B2)

composition B,[[aB, L(B,) U L(B2)

(G s;; Act)
hiding B/G L(B)- G

(G <;Act)
renaming B[H) H(L(B))

(H: Act- Act)
instantiation p Lp

(p ~ Bp, L(Bp) s;; Lp)

Table 1. syntax of a simple process algebraic language

In addition to the process algebraic combinators introduced by table 1 we will use generalizations for the
choice and composition operators. If B denotes a finite set of behaviour expressions then E B and TIG B
denote the repeated application of'+' and 'I Ia', respectively, to the elements of B. E.g. if B = { B1, ... , Bn}
then

l::B= B1 + ... +Bn

It B = Bdla · · .[[cBn

This notation exploits the commutativity and associativity of the combinators '+'and 'lie' that will be
justified below. If B = {B;[i E I} we often write LiEI B; and TI~r B;.
The standard identity over the behaviour expressions (and labeled transition systems) will be given by the
strong bisimulation equivalence relation, which is a congruence with respect to all the given combinators.
We recall the definition.

Cache consistency by design 55

Name Axioms and inference rules

inaction none

action-prefix JJ.B ~ B
(JJ E ActU {r})

choice B, ~ B,' f- B, +B, ~ Bt'

B,
~

-+ B2' f- B1 + B2 ~ B2'

composition B, ~ B,' f-~ea Bd]aB, ~ B,']]aB,

B, ~ B,' f-~ea Bd]aB, ~ Bd]aB,'

B1 ~ B,',B, ~ B,' f-~eG Bd]aB2 ~ B,']]aB,'

hiding B ~ B' f-~ea B/G ~ B' /G

B ~ B' f-~ea BfG _:, B'fG

renaming
~ H(~)

B -+ B' f- B[H] _, B'[H]

instantiation
~

B. _, B' rp.e:Bp p ~ B'

Table 2. structured operational semantics

Let BE denote the set of behaviour expressions over given sets Act and P of actions and process identifiers,
respectively.

Definition 1. A relation R !;; BE x BE is a strong simulation relation iff for all (B1 , B2) E R and for

all t1 E Act U { r} 3B,' Bt ~ B 1 1 implies 3B2' B2 ~ B21 and (B1', B2') E R.

A relation R !;; BE x BE is a strong bisimulation relation iff both R and its inverse R-1 are strong
simulation relations.

Two behaviour expressions B,, B2 are strong bisimulation equivalent, written B1 ~ B2, iff there exists a
strong bisimulation relation R with (B1,B2) E R. 0

The following fact is a standard result in the process algebraic literature (cf. [Mil89])

Fact 1. The relation ~ is a congruence with respect to all the combinator& introduced in table 1 and
satisfies the laws listed in table 3. 0

(1) B,]]aB, = B,]]aB,

(2) B,]]a(B,]]aB,) = (B,]]aB.)]]aB,

(3) Bd].(B,]].B,) = (Bd].B,)IJ.B, where B,]].B2 =dJBd]L(B1)nL(B2 JB2

(4) (B,]]aB.)/A = B,jA]]aB•fA if An G = 0

(5) (Bd]aB,)[H] = B,[HJI]aB.[H] if HrG =ida and H-'(G) = G

Table 3. Some transformation laws

We recall the following (standard) notations. Action names are variables over ActU {r} and u denotes a
string of actions a, ... an.

56 Invited Address I

B _: B' ';!;t!J 3Bo, ... , Bn B = Bo ~ B1 II ... II Bn-1 ~ Bn = B'
T"

B ~ B' l;!;t!J 3n B -+ B'

B ~ B' ';!;t!J 3B1, B2 B ~ B1 II B1 .! B2 II B2 ~ B'

B ~ B' l;!;t!J 3Bo, ... , Bn B = Bo ~ B1 II ... II Bn-1 ~ Bn = B'
Der(B) =t!J {B' l3u E Act* B ~ B'}

We will also need a less strict relation than ~.

Definition 2. A relation R ~ BE x BE is a weak simulation relation iff for all (B1 , B2) E R and for all
a E Actu {£} 3B1' B1 ~ B1 1 implies 3B2' B2 ~ B21 and (B1',B2') E R.
A relation R ~ BExBE is a weak bisimulationrelation iff both Rand its inverse R-1 are weak simulation
relations.

Two behaviour expressions Bb B2 are weak bisimulation equivalent, written B1 "" B2, iff there exists a
weak bisimulation relation R with (B1 , B2) E R. 0

Again we have a standard result (cf. [Mi189]).

Fact 2. The relation "" is a congruence with respect to all the combinators introduced in table 1 except
for the choice combinator'+' (and its generalization L:J and~~"" (i.e."" satisfies all laws of ~J. 0

Finally, let us define Traces(B) =t!J {u E Act* I 3B' B ~ B'}, then we have the following well-known
definition and results (cf. 1Hoa85, vG93]).

Definition 3.
notation Two behaviour expressions B1, B2 are trace equivalent, written B1 ""trace B2, iff Traces(B1) =
Traces(B2). 0

Fact 3. The relation ""trace is a congruence with respect to all the combinators introduced in table 1 and

~~""~""-· 0
Fact 4. Let B1II•B2 be defined as in Table 3.

Traces(B1II•B2) =
{u E (L(BI) u L(B2))* I urL(B1) E Traces(B1), urL(B2) E Traces(B2)}

0

3 Queue-like action-transducers

Action-transducers are the operational counterpart of contexts, i.e. behaviour expressions with an open
place or hole in them. Such open places, often denoted by the symbol'[]', can be regarded as variables that
can be replaced with actual behaviour expressions to obtain instantiations of a given context. For example,
the context C[J =d/ a.O + [J can be instantiated by the expression b.c.O, yielding C[b.c.O] = a.O + b.c.O.

Whereas we can use behaviour expressions to define states with transitions between them (e.g. as defined
by table 2), contexts define action transducers with transductions between them. Such transductions will
be denoted by doubly decorated arrows, as in

T.! T'
b

which represents the transduction of action b into action a as action-transducer (state) T changes into
T'. Informally, this should be understood as follows: whenever a behaviour Bat the place of the formal
parameter'[]' produces an a-action transforming into B', T[B] will produce a b-action as its result and
transform into T'[B'].

Cache consistency by design

Examplel.

a.BII{aj[](afb] ~ Bll{aj[](afb]
b

where afb denotes the obvious renaming function replacing b by a.

The transduction T ~ T' thus corresponds to the operational semantic rule
b

b a
B -+ B' 1- T[B] -+ T'[B']

57

D

Additionally, we also allow transducers to produce actions 'spontaneously' to cater for contexts like a.[],
which can produce an a-action without consuming an action of an instantiating behaviour. This will be

denoted by transduction of the form T ~ T', corresponding to the operational semantic rule
0

1- T[B] ~ T'[B]

Example2.

a
-+ Bli{aj[]
0

D

In this paper we will not give a complete formal introduction to the concept of contexts as action­
transducers. For this the reader is referred to [Lar90, Bri92]. Here, it will suffice to define systems of
action-transducers by explicitly giving sets of transducer states and transductions between them.

A last step before defining transducer systems is the extension of the transduction notation to a suitable
'double-arrow' notation. Let u,u' E (ActU {r,O})*. We write u <J u' iff u can be obtained from u1 by
erasing any number of r- or 0-occurrences in it. We define

T ~ T'<;:;dt3To, ... ,T,.T:To ~ T1II ... IITn-1 ~ T .. :T'
bl•··bn

1
b1 bn

T ~ T' ¢'1d.f 3u1',u2' T ~ T' II u1 <I u1' II u2 <I u2'
ti':J ti'"J'

We now proceed with the definition of the special kind of action-transducer systems that we need for our
application, viz. the queue-like families of action transducers.

Deftnition4. Let Q ~ Act. A family of action-transducers Tq = {T" I u E Q•} is queue-like iff its
tranductions are of the form:

1. llqEQ,ueQ• T".!.. T"q
0

T

2. \lq E Q,u E Q• Tq" -+ T"
q

a
3. for 0 or more u E Q•,a E (Act- Q) T" -+ T". D

DefinitionS. Let Tq = {T" I u E Q•} be a queue-like family of action-transducers. For each A~ Q we
define the set D A ~ Act by

DA ={a E Act IT" ~ T" iff ufA = e}
a

D

Deftnition6. Let Tq = {T" I u E Q•} be a queue-like family of action-transducers. We say that Tq
preserves A ~ Act iff

llp,u E Act•,v E Q• T' ~ Tv implies pfA = uvfA
"

D

58 Invited Address I

The following two lemmata express invariants of the observable trace transductions that are induced by
families of queue-like action transducers. Of course, a string over any subset A of the set of actions Q
that are subject to queing will be preserved. The lemmata indicate that A can always be extended with
D A, the set of actions that can be passed directly 'through' the context when no element of A is being
queued. The intuition behind this result is that actions in D A could therefore never 'overtake' actions in
A, or vice versa, and thus upset the ordering of elements in the string.

Lemma 7. Let Tq = {Tu I u E Q*} be a queue-like family of action-transducers. For each A~ Q Tq
preserves A U D A.

Proof. See [Bri94].

LemmaS (preservation lemma).
Let Tq = {Tu I u E Q*} be a queue-like family of action-transducers. Let B continuously allow all actions

in Q, i.e. for all B' E Der(B) and all q E Q 3B" B' .:!.. B". Then for all A~ Q we have

VuE 1Taces(T'[B]) 3u' E 1Taces(B) with uf(A U DA) = u'f(A U DA)

Proof. Assume that T'[B] ~ Tv[B']. Because B continuously allows all actions in Q, we have in par­
ticular that B' ~ B" and therefore Tv[B'] ~ T'[B"]. It follows that there exists au' with T' ~ T'

u'
and u' E 1Taces(B). The required preservation result now follows from an application of the previous
lemma. 0

4 Deriving the lazy caching memory

We start our derivation of the lazy caching protocol with a specification of the serial memory, which is
given by the process Mem(x) defined by (1) below. The contents of the memory is represented by the
process parameter x, which is a vector of elements in the data domain D indexed by the set A of memory
addresses. For all a E Ax. denotes the a1h element of x. The set I= {1, ... , n} indexes the number of
user interaction points of the memory, i.e. the number of locations where local read and write actions can
be performed.

Mem, •• (x) <= L W;(d, a).Mem, •• (x{d/x.})
iEI

aEA,dED

+ L R;(x., a).Mem ••• (x)
iEl
aEA

(1}

Here, W; (d, a) represents the action of writing datum d in memory address a, and R; (d, a) reading datum
d from memory location a. It will be useful to define the sets

- W; =dJ{W;(d,a) IdE D,a E A} and W =dtUiEI W;
- 'R; =df {R.(d, a) IdE D, a E A} and 'R =dt uiEJ 'R;
- £; =df W; u 'R; and £. =dt uiEJ £;

We can now formulate the correctness criterion in our setting as

Definition 9. Let B1 and B2 be behaviour expressions with L(B;) ~ £.A behaviour B1 is weak sequential
consistent with B2 iffVu E 1Taces(Bl) 3u' E 1Taces(B2) such that ViE I uf£; = u'f£; 0

This is a weaker requirement than the originally given definition of sequential consistency, which is
concerned with maximal, and therefore possibly infinite traces (which are not in 7Taces(B1)). We will
first complete the design for this version of sequential consistency and will revisit the question of infinite
traces in section 5.

Cache consistency by design 59

4.1 Distributing the memory

Our first step in the design is to create a local copy of the memory for every user. The specification of
the local memory for user j E I is given by the process definition of Locmemi(x) at (2) below. Note that
Locmemi(x) still interacts in all actions in W, but accepts only local read actions, i.e. those in 'Rj·

Locmemi (x) <= L W;(d, a).Locmem;(x{ d/xa})
lEI

aEA,dED

+ L Ri(x., a).Locmemi(x)
aEA

Our first refinement is now given by the process definition Refinement1 in (3).

rrw -
Refinement1 <= Locmemi(O)

jE/

The correctness of this step is certified by the following lemma.

Lemma 10. Memser(O) ~ Refinement1

(2)

(3)

Proof. The relation defined by { (Memser(x), fi~1 Locmemi(x)) I x E DA} is a strong bisimulation. 0

Corollary 11. Refinement1 is weak sequential consistent with M em,er(O)

Proof. Follows directly from ~ ~ "='trace (fact 3). 0

4.2 Introducing local caching

In the next step of our design we introduce a local cache that the user communicates with and that
is updated by the local memory. Because of its direct interface with the user this cache has a more
elaborate set of interactions that the chaches that we will ultimately design. The behaviour of the cache
at interaction point j E I is given by the process definition Cachei(x) in (4) below. In addition to the
(local) memory the caches have update actions Uj(d, a). For convenience we define U; =d,{U;(d, a) I dE
D,a E A} and U =dJU;E1 U;.

Cachei(x) <= :L W;(d, a). Cachei(x{ d/x.}) (4)
iEI

aEA,dED

+ :L Uj(d, a).Cachei(x{ d/x.})
aEA,dED

+ :L Rj(Xa, a). Cachej(x)
al'Z

+ :L r. Cachei(Y)
iiEr(z)

Note that the local caches synchronize on all actions in W, but accept only local read and update actions,
i.e. only actions in 'Rj UUj. Cache invalidation is modelled by allowing the elements of the memory vector
x to take the undefined value l, and the introduction of the following predicate and set:

- a ! X iff Xa ;il
- r(x) =df {y I 'v'a E A Ya = Xa V Ya =i}

60 Invited Address I

Let U /'R : Act -+ Act denote the renaming function that maps each read action R; (d, a) to the corre­
sponding update action U;(d, a) for all i, d, and a, and all other actions to themselves. We are now ready
to define the second refinement of our design as follows.

Refinemen~ <= Ilw (Locmem;(O)[U/'R]IIu;uw Cachej{"fi;0))/U
jE/

for arbitrary Y;o E r(O).

The correctness of this step follows from the following lemma.

Lemma 12. 'fiE DA, y E r(x),j E I(Locmem;("iii)[U/'R]IIu;uw Cache;(Y))/U RJ Locmem;(x)

(5)

Proof. The relation {((Locmem;(x)[U/'R]IIu;uw Cache;("Y))/U,Locmem;(x)) I x E DA,y E r(x)} is a
weak bisimulation relation. D

Corollary 13. Refinemen~ is weak sequential consistent with Mem,er(O)

Proof. Because RJ is a congruence relation w.r.t. the parallel combinator IIG (fact 2) it follows from that
Refinemen~ RJ Refinement1• Combining this with RJ ~ RJtrace (fact 3) and corollary 11 the desired result
now follows directly. D

4.3 Buffering cache communication

In this refinement step we will buffer the communication of write/update actions to the cache, and only
allow read actions if there are no local write actions buffered. This can be expressed using a family of
queue-like action transducers in the sense of section 3.

Definition 14. The family of queue-like action transducers {Kj I u E (W U U;)*} is for each j E I
completely characterized by the following set of transductions:

K'!
U;(d,a) Ku.U,(d,a) • ----+

J 0 J

K'!
W;(d,a)

Ku.W;(d,a) foralliEI • --+
J 0 J

KU;(d,a).u r
K'! • ----+

J Uj(d,a) J

KW;(d,a).u ~

K'! foralliEI • --+ J W;(d,a) J

K'!
R;(d,a)

K'! if u contains no W;-actions • --' R;(d,a) J

The refinement is reflected in the following process definition.

Refinement3 <= Ilw (Locmem;(ii)[U/'R]IIu;uw KJ[Cache;(Y;o)])/U
jEI

for arbitrary Y;o E r(O).

We can now prove the following lemma.

Lemma15.

'Vj E I, u E (W U 'R; U U;)*,x E DA, y E r(x)

(Locmem;(O)[U/'R]IIu;uw Kj[Cache;("Y;0)])/U ~
3u' E (WU'R;UU;)"

(Locmem;(O)[U/'R]IIu;uw Cache;(Y;o))/U g;,
1\ ur(w; u 'R;) = u'r(w; u 'R;) 1\ urw = u'rw

D

(6)

Cache consistency by design

Proof. This essentially follows from the preservation lemma 8. See [Bri94].

Corollary 16. Refinemenfa is weak sequential consistent with Mem, •• (O)

Proof. Assume that

llw (Locmemi(O)[U/"R.JIIu;uw Kj[Cachei(Yi0)])/U ~
jEJ

then according to fact 4 for each j E I with Uj = ur(w u "R.j) we have

61

Also, it follows that for all j E I the Uj must agree on their common actions in w, i.e. Uj, rw = u;, rw
for J1,i2 E I.
Using the above lemma we find uj with Ujr(wj U"R.j) = ujr(w; U"R.j) and Ujrw = ujrw. The latter
equality implies that for j1,j2 E I we have uj, rw = u;, rw = u;. rw = uj, rw. This means that we
can apply fact 4 again, in the opposite direction, combining the uj and find au' with u'r(w U "R.j) =
uj r(w u "R.j)

llw (Locmemi(O)[U/"R.JIIu;uw Kj[Cache;(Yi0)])/U &;.
jEJ

It follows that u' r(wi U "R.;) = ur(wi U "R.;) for all j E I, i.e. Rejinement3 is weak sequential consistent
with Rejinemen~, and thus with Mem, •• (O). 0

We proceed with a cosmetic transformation that is not really necessary for the design, but brings our
specification closer in line with the specification given in the problem statement in [Ger94]. There, the
cache communication buffer identifies all update and non-local write interactions once they have been
buffered. The contents of local write interactions is marked for identification with a special symbol ('*').
To achieve this in our design we introduce a revised class of queue-like transducer families.

Definition 17. The family of queue-like action transducers { Lj I u E (W U Uj)*} is for each j E I
completely characterized by the following set of transductions:

• LO:
1
~L":·(d,a)

0 1

• L"
1
~ K~.(d,a,*)

0 1

• £0:
1
~ K~.(d,a)

0 1
i#j 0

• Lo.(d,a).cr r

i ~ L"
1 a(d,a) E {(a,d),(a,d,*)}

• L"~LO:
1 R;(d,a) 1

if u contains no *-actions

The corresponding revision of the cache specification is given by the process definition of Cachej(x) below.

Cachej (x) ¢: L Ui (d, a). Cachej (x{ d/ "'•})
aEA,dED

+ L Rj(x.,a).Cachej(x)
a!Z

+ L T. Cachej (y)
iiEr(z)

(7)

The overall refinement step that is implied by these changes is given by the process definition Refinement3,.

62 Invited Address I

Rejinement3, ~ rrw (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(il;0)])/U
jEI

for arbitrary il;o E r(O).

(8)

Essentially, Lj[Cachej(il;o)] differs from Kj[Cache;(il;o)] only in the way in which the internal events
corresponding to the buffer-cache communication are produced; the resulting transition systems are iden­
tical.

Lemma 18. Lj[Cachej('Y;o)] ~ Kj(Cache;(il;o)]

Proof. Left to the reader.

Corollary 19. Rejinement3, is weak sequential consistent with Mem,.r(O)

Proof. As ~ is a congruence w.r.t. the operators used and preserves traces.

4.4 Centralizing background memory

0

0

As the local memories have served their purpose in producing the local {buffered) caches they can now
be recombined into a central background memory. Therefore, our penultimate design step is specified as
follows.

Lemma20.

Proof.

Refinement4 ~ (Mem,.r(O)[U/'R.]]]uuw llw Lj[Cachej(il;o)])/U
jEI

for arbitrary il;o E r(O).

(Mem,.r(O)[U/'R.]]]uuw llw Lj(Cachej(il;o)])/U ~
jEI

rrw (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(ii;0)])/U
jEI

IJ~1 (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(il;0)])/U

~ {law 4 of table 9}

(IJ~1 (Locmem;(O)[U/'R.]]]u;uW Lj[Cachej(il;0)]))/U

~ {L(Locmem;, (O)[Uf'R.]) n L(Locmem;,(D)[Uf'R.]) = W (j1 'I i2),
L(Locmem;(O)[Uf'R.]) n L(Lj[Cachej(ii;o)]) = U; U W}

(IJje1 (Locmem;(O)(U/'R.]]]. Lj[Cachej(il;o)]))fU

(9)

Cache consistency by design

~ {laws 1 and 9 of table 9}

(Ilje 1 Locmem;(O)[U/'R.]II. I1}e 1 Lj[Cachej(ii;0 }])/U

~ {law 5 of table 9 and lemma 1 0}

(Mem,.r(O)[Uf'R.] II. rr;EI Lj[Cachej(ii;o}])/U

~ {L(Mem,.r(D)[Uf'R.J) n L(Ilje1 Lj[Cachej(Yjo)]) = U U W,
L(Lj, [Cachej, (jjh0)]) n L(Lj,[Cachej,(!7;,0)]) = W (jt f. j2)}

(Memser(O)[U/'R.]IIuuwiTjE/ w Lj[Cachej(ii;0)])/U

Corollary 21. Refinement4 is weak sequential consistent with Mem,.r(O)

Proof. As ~ preserves traces.

4.5 Adding the user interface

63

0

0

The last step in our design is the buffering of local write interactions with the users. Local read interaction
is permitted only when the local write buffer is empty. Again, this can be conveniently modelled using
families of queue-like action transducers.

Definition 22. The family of queue-like action transducers { Mj I u E W; •} is for each j E I completely
characterized by the following set of transductions:

• M~ ~ M~.w;(d,a)
3 0 3

MW,(d,a).~ ~ M'!
3 W;(d,a) 3

R;(d,a)

MJ-MJ
R,(d,a)

0
•

•
• M~ ~ M'! a E {R;(d,a), W;(d, a)lj f. i E I}

3 " 3

The corresponding refinement is expressed by process definition Refinements below (recall that in the
beginning of this section we put I= {1, ... ,n}).

Refinements ¢' (10)
w

(Mj o ... o M~)[(Mem,er(D)[Uf'R.] lluuw IT Lj[Cachej(Yjo)])/U]
jE/

for arbitrary Yjo E r(O).

Theorem 23. For all i E I(Mj o ... o M;')[(Mem,.r(li)[U/'R.JIIuuwiT;EI w Lj[Cachej(Yjo)])/U] is weak
sequential consistent with M emser(D).

Proof. By induction on i using preservation lemma 8 it is straightforward to show that the application
of each M;' preserves the actions in W; U 'R.; and in Wj U 'R.j for j f. i, choosing A = W; and A = 0,
respectively. The sequential consistency with M em,.r(D) then follows from corollary 21. 0

Corollary 24. (Mj o ... o M~)[(Memser(O)[U/'R.] lluuwiT;ei w Lj[Cachej(!l;o)])/U] is weak sequential
consistent with M em,.r(O).

Proof. Take i = n. 0

64 Invited Address I

5 Strong sequential consistency

Having completed the design and proven it correct in terms of weak sequential consistency we come
back to the original formulation of the problem in [Ger94], where sequential consistency is required with
respect to the maximal observable traces, i.e. possibly infinite traces, of the systems involved. This is a
strictly stronger requirement, as can be learned from the following example.

Example 3. Consider a serial memory with only two user interfaces and only a single memory location
initially holding the value 0. Suppose now a distributed implementation displays the infinite trace

that is, user 1 writes the value 1 into the memory and user 2 keeps on reading the initial value 0 infinitely
often.

Note that every finite prefix of this trace is weak sequential consistent with the serial memory. For all n
W1(1)(R2(0))n is weak sequential consistent with (R2(0))nW1(1), which is a valid behaviour of the serial
memory. For the infinite trace Wt(1)(R2(0))"' there exists no analogous permutation, as can be readily
checked. 0

The above example shows that when infinite strings are considered sequential consistency implies a
liveness property: a write by one user is eventually read by the other. In this section we will show
that the lazy caching memory in fact satisfies this stronger requirement, and will require only minor
adaptations of the proofs for weak sequential consistency.

First, let A"' denote the set of finite and infinite strings over A. Then we define the set of finite and
infinite traces of a behaviour B as

Traces.,(B) =df {uo.Ut.U2· · ·· E Act"' I3{B;};eN B = Bo,B; U B;+I}

Definition 25 (strong sequential consistency).
Let B1 and B2 be behaviour expressions with L(B;) ~C.. A behaviour B1 is strong sequential consistent
with B2 iff

0

To show the correctness of the distributed caching memory it suffices to extend some of the definitions
and facts of section 2. We start with the equivalence corresponding to Traces.,(B) defined by

B1 ""traccw B2 iff Traces.,(Bt) = Traces.,(B2)

Fact 5. The relation ""tracew is a congruence with respect to all the combinators introduced in table 1 and
~ s; ~trace.., ~ R:: trace· 0

Fact 6. Let Btii•B2 be defined as in Table 3.

Traces.,(Btii•B2) =

{u E (L(Bt) u L(B2))"' I urL(Bt) E Traces.,(Bt), urL(B2) E Traces.,(B2)}

0

The proofs of these facts are standard, and are left to the reader.

The last generalization that we need is the extension of lemma 8 to strings in Act"'. This is the only
part of the proof in which we will need the weak fairness assumption given in the problem description in
[Gcr94]: that no read, write, or update action is continuously enabled but never executed.

Lemma26 (extended preservation lemma). Let Tq = {T" I u E Q*} be a queue-like family of
action-transducers. Let B continuously allow all actions in Q, i.e. for all B' E Der(B) and all q E Q

3B" B' !... B". Then for all A ~ Q we have

'VuE Traces.,(T'[B]) 3u' E Traces.,(B) with ur(A u DA) = u'r(A u DA)

Proof. See [Bri94]

Theorem27.

Cache consistency by design

(M: o ... o M~)[(Memser(D)[U/R.J lluuw rrw Lj[Cachej(yJ0)])/UJ
jEI

is strong sequential consistent with M em,.r(O).

Proof. We check proofs of the refinement steps for the weak sequential case:

65

1. distributing the memory: this was proved using that~ <:;; ""trace (see corollary 11), which can now be
replaced by the argument that ~ <:;; ""trace".

2. introducing local caching: this was proved using that""<:;; ""trace (see corollary 13), which can now be
replaced by the argument that "" <:;; ""trace".

3. buffering cache communication: an infinite trace version of lemma 15 can be proved using fact 6
instead of fact 4, and the extended preservation lemma 26, which leads to the strong version of
corollary 16. The subsequent modification in Refinemenf-:J, can be imitated as ""tracew is invariant
under renaming of internal actions.

4. centralizing background memory: this is more or less the inverse of refinement 1, and therefore follows

again by ~ <:;; ""trace", and the fact that ""traeew is a congruence.

5. adding the user interface: this follows by using the extended version of the preservation lemma. 0

6 Conclusions

In this paper we have presented a proof of the sequential consistency of the lazy caching protocol of
[ABM93J. It is based on the application of a number of transformation steps, deriving the distributed
caching memory in several steps from the sequential memory, whilst maintaining the property of sequential
consistency. Thus the proof can also be seen as a rationalized reconstruction of the design of the lazy
caching protocol, and a a posteriori attempt at correctness by design. One of the potential benefits of
such an approach is that more general results can be obtained than the correctness of a specific design
only. In this case the factorization of the proof in separate design steps gives substantial insight in design
alternatives, and in fact provides us with correctness proofs for a whole family of distributed caching
designs. Being based on the same transformation principles the following variations can be proven correct
by minimal rearrangements of the proof:

1. user interface buffers: we can allow asymmetry between users in the sense that some may have
buffered and others may not have a buffered user interface.

2. cache buffers: we can also allow asymmetry between caches in the sense that some may have buffered
access and others not.

3. local memories: we may choose some users to have access to a complete local memory instead of a
cache.

4. background memories: we may choose to have several write-synchronizing background memories for
smaller user groups (e.g. to expedite cache updates).

The structured presentation of the proof also allows for a rather precise analysis of the blanket fairness
assumption (no action other than cache invalidations can always be enabled but never taken) in general
exposition in [Ger94]. Weak fairness is required in the following places:

1. processing local writes stored in the user interface buffers into the memory and the local cache buffers;
2. processing writes and updates stored in a local cache buffer into the local cache;
3. processing memory updates into the local cache buffers.

The first two are used in (the application of) the extended preservation lemma 26; the last is implicit in
the proof of weak bisimulation equivalence in lemma 12. The latter exploits a notion of fairness that is
'built-in' in the notion of weak bisimulation equivalence. In the context of ACP it appears as Koomen's
fair abstraction rule [BW90J.

66 Invited Address I

Although we have used a process-algebraic notation for the specification of the various design stages, and
have applied a number of well-known laws from the process-algebraic literature, our proof is, in fact, het­
erogeneous in nature. The process-algebraic syntax is used to define labelled transitions systems. We have
allowed, however, some of the fairness requirements to be superimposed on this representation, thereby
leaving a proper process-algebraic framework. Also, we have not used a structured syntax to define action
transducers, but have defined them directly in terms of their transductions. As already mentioned, the
transducers have their syntactic counterparts in behaviour expression contexts, i.e. behaviour expressions
with open places or 'holes' in them. Contexts corresponding to the transducers that we have used could
be expressed in terms of our process-algebraic formalism if we accept simple compound data types such
as strings and their associated operations as given (otherwise one could turn to languages like LOTOS
to formalize such notions [BB87]). In these cases, however, their syntactic representation is much more
involved than their operational one, and would distract from the essential feature that figures in the proof,
viz. that they are action transducers that induce observable action-sequence transductions. As sequential
consistency is an invariant of such transductions, that is precisely the way we want to view them.

The correctness of a number of transformations has been shown in terms of direct semantic proofs, viz.
by producing strong and weak bisimulations, and by reasoning in terms of action transducers. As a
consequence, it can be disputed as to what extent our proof can be seen as one based on the application
of correctness-preserving transformations (CPTs). Although our transformations do preserve the desired
correctness criterion, this term is usually reserved for generic design principles whose correctness has
been established beforehand (cf. for example [Bol92]), to be contrasted with the procedure of 'invent
and verify'. In addition to the applied standard process algebraic laws listed in table 3, however, most
other parts of the proof could retrospectively qualify as CPTs. The formulation of our transduction
based proofs, the (extended) preservation lemma, for example, is generic in the sense that it applies
to all queue-like transducers. This enables its repeated application in proof, viz. twice in the proof of
lemma 15 concerning the cache buffer, and twice in the proof of theorem 23 concerning the user interface
buffer. In order not to burden our proof with such concerns we have foregone the formulation of a generic
transformation principle corresponding to the equivalence proven in lemma 10. The idea behind the proof
is quite general, however, viz. that a process maybe split into parts according to a partitioning of all those
of its actions that do not affect its state, where each part should still be able to synchronize on all actions
that do influence the state in order to maintain it. We present a generic formulation of this transformation
without proof.

Let p(x) be a parameterized process defined by

p(x) <= L f(a,x).p(.q(a,x)) + L h(a,x).p(x) (11)
aEVar aElnv

where x ranges over a given domain D, Var and Inv are given index sets, and f : Var x D -+ Act,
g : Var x D -+ D, and h : Inv x D -+ Act U { r} are functions with f injective and rge(f) n rgc(h) = 0.
Theorem28. Lctp(x) of the form defined by.(ll) above. LetF be a finite partitioning of Inv and define
for all FE :F

pp(x) <= L f(a, x).pp(g(a, x)) + L h(a, x).pp(x)
aEVar aEF

Then
p(x) IT rge(f)pp(x)

FE:F

0

Sofar, we have not succeeded in formulating a suitably general formulation of the transformation principle
behind the introduction of the local caches in lemma 12. It seems that the semantic idea behind it is not
readily expressible in generic syntactic terms. Summarizing, we can say that the problem of proving
the lazy caching protocol correct has also served as a source of inspiration for the formulation of new
correctness preserving design transformations. Although much of our proof can be interpreted as the
application of such transformations, parts remain that rely on the 'invent and verify' approach. As
a whole the proof illustrates that an opportunistic combination of different methods can lead to an
insightful example of correctness by design.

Cache consistency by design 67

References

[ABM93] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM TI-ansuctions on Programming Languages and
Systems, 15(1):182-206, 1993.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language LOTOS. Com­
puter Networks and ISDN Systems, 14:25-59, 1987.

[Bol92] T. Bolognesi. Catalogue of LOTOS correctness preserving transformations. Technical Report
Lo/WP1/Tl.2/N0045/V03, Esprit Project 2304 Lotosphere, April 1992.

[Bri92] Ed Brinksma. On the uniqueness of fixpoints modulo observation congruence. Lecture Notes in Com-
puter Science 630, pages 62-76. Springer-Verlag, 1992.

[Bri94] Ed Brinksma. Cache consistency by design. In: Deliverable WP3 of ESPRIT BRA REACT (project
6021), June 1994. Submitted for publication.

[BW90]
[Ger94]

J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge University Press, 1990.
Rob Gerth. Introduction to sequential consistency and the lazy caching algorithm. In: Deliverable WP3
of ESPRIT BRA REACT (project 6021), June 1994. Submitted for publication.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[Lar90] Kim Guldstrand Larsen. Compositional theories based on an operational semantics of contexts. In

J. W. de Bakker, W. P. de Roever, and Grzegorz Rozenberg, editors, Stepwise Refinement of Distributed
Systems - Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages
487-518. Springer-Verlag, 1990.

[Mil89]
[Plo81]

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Com­
puter Science Department, Aarhus University, 1981.

[vG93] Rob J. van Glabbeek. The linear time- branching time spectrum ii. LectureNotes in Computer Science
715, pages 66 - 81. Springer-Verlag, 1993.

