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Abstract. In this paper we present a proof outline of the sequential consistency the lazy caching 
protocol of Afek, Brown, and Merritt. We will follow a strategy of stepwise refinement, develop­
ing the distributed caching memory in five transformation steps from a specification of the serial 
memory, whilst preserving the sequential consistency in each step. What we present, in fact, is 
a rationalized design of the distributed caching memory. We will use a simple process-algebraic 
formalism for the specification of the various design stages. We will not follow a strictly algebraic 
exposition, however. At some points the correctness will follow using direct semantic arguments, 
and we will also employ higher-order constructs like action transducers to relate behaviours. The 
distribution of the design/proof over five transformation steps provides a good insight into the vari­
ations that could have been allowed at each point of the design while still maintaining sequential 
consistency. The design/proof in fact establishes the correctness of a whole family of related mem­
ory architectures. The factorization in smaller steps also allows for a closer analysis of the fairness 
assumptions about the distributed memory. 

1 Introduction 

In this paper we present a proof outline for the sequential consistency the lazy caching protocol of [ABM93] 
as formulated in [Ger94]. A detailed presentation of this proof can be found in [Bri94]. We will follow a 
strategy of stepwise n~finement, developing the distributed caching memory in five transformation steps 
from a specification of the serial memory, whilst preserving the sequential consistency in each step. Thus 
our proof (outline), in fact, presents a rationalized design of the distributed caching memory. • 

We will use a simple process-algebraic formalism for the specification of the various design stages. Process 
algebraic techniques [Hoa85, Mil89, BW90] arc by their nature suitable for transformational proofs as 
they concentrate on laws that equate and/or compare different behaviour expressions. Such laws arc 
natural candidates for design transformations. We will not follow a strictly algebraic exposition, however. 
For some transformations we will show the correctness using semantic arguments directly, instead of pure 
syntactic derivations from basic laws. We will also employ the less standard feature of action transducers 
to relate behaviours in two of our design steps. 

The structure of the rest of this paper is as follows. 

section 2 introduces the process-algebraic formalism that we use; 
section ,9 explains about the use of action transducers, and introduces the notion of queue-like action 
transducers in particular; 
section 4 gives a transformation style proof of the weak sequential consistency of the distributed 
cache memory. This property takes into account only finite sequences of the observable actions of a 
system; 
section 5 improves the result to strong sequential consistency, also taking possibly infinite behaviour 
into account; 
section 6 discusses the results that have been obtained and draws some conclusions. 

' This work has been supported by the EU as part of ESPRIT DRA project 6021 Building Correct Reactive 
Systems (REACT). 
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2 A simple process-algebraic formalism 

We will work with a simple process algebraic formalism to specify the different design stages in the course 
of our proof. Throughout this paper we will assume a working knowledge of process algebras. For a good 
introduction to the literature of process algebras the reader is referred to [Hoa85, Mil89, BW90]. Below, 
we give a short summary of those features that are essential for the development of our proof. 

The syntax and semantics of our formalism are given in tables 1 and 2, respectively. The tables assume a 
given set of observable actions Act and an additional silent or hidden action T. The behaviour expressions 
defined by the syntax table define the behaviour of systems in terms of labeled transition systems, where 
the transitions are labeled by elements in Act U { T}. These operational models can be derived for each 
behaviour expression with the aid of the inference rules given in table 2. For a detailed account of this 
so-called str-uctured opemtional semantics or SOS style of definition, we refer to [Mil89, Plo81]. 
The behaviour expressions are defined in an environment of process definitions of the form 

where Pis a set of process identifiers p with action label type Lp, and Bp is a behaviour expression with 
action label set L(Bp) ~ Lp. We will use the the notation p ~ Bp to denote the statement that 'p ~ Bp 
is an element of the environment of process definitions'. The environment may contain mutually recursive 
process definitions. The label types Lp are usually left undefined, and are implicitly understood to be the 
smallest label types satisfying the static constraints of table 1. In the application part of the paper we 
will provide concrete instances of the set of actions Act en the process definition environment. 

Name Syntax B Label set L( B) 

inaction 0 0 
action-prefix p,.B (p, E Act) {p,} U L(B) 

T.B L(B) 
choice B, +B, L(B,) U L(B2 ) 

composition B,[[aB, L(B,) U L(B2 ) 

(G s;; Act) 
hiding B/G L(B)- G 

(G <;Act) 
renaming B[H) H(L(B)) 

(H: Act- Act) 
instantiation p Lp 

(p ~ Bp, L(Bp) s;; Lp) 

Table 1. syntax of a simple process algebraic language 

In addition to the process algebraic combinators introduced by table 1 we will use generalizations for the 
choice and composition operators. If B denotes a finite set of behaviour expressions then E B and TIG B 
denote the repeated application of'+' and 'I Ia', respectively, to the elements of B. E.g. if B = { B1, ... , Bn} 
then 

l::B= B1 + ... +Bn 

It B = Bdla · · .[[cBn 

This notation exploits the commutativity and associativity of the combinators '+'and 'lie' that will be 
justified below. If B = {B;[i E I} we often write LiEI B; and TI~r B;. 
The standard identity over the behaviour expressions (and labeled transition systems) will be given by the 
strong bisimulation equivalence relation, which is a congruence with respect to all the given combinators. 
We recall the definition. 



Cache consistency by design 55 

Name Axioms and inference rules 

inaction none 

action-prefix JJ.B ~ B 
(JJ E ActU {r}) 

choice B, ~ B,' f- B, +B, ~ Bt' 

B, 
~ 

-+ B2' f- B1 + B2 ~ B2' 

composition B, ~ B,' f-~ea Bd]aB, ~ B,']]aB, 

B, ~ B,' f-~ea Bd]aB, ~ Bd]aB,' 

B1 ~ B,',B, ~ B,' f-~eG Bd]aB2 ~ B,']]aB,' 

hiding B ~ B' f-~ea B/G ~ B' /G 

B ~ B' f-~ea BfG _:, B'fG 

renaming 
~ H(~) 

B -+ B' f- B[H] _, B'[H] 

instantiation 
~ 

B. _, B' rp.e:Bp p ~ B' 

Table 2. structured operational semantics 

Let BE denote the set of behaviour expressions over given sets Act and P of actions and process identifiers, 
respectively. 

Definition 1. A relation R !;; BE x BE is a strong simulation relation iff for all (B1 , B2 ) E R and for 

all t1 E Act U { r} 3B,' Bt ~ B 1 1 implies 3B2' B2 ~ B21 and (B1', B2') E R. 

A relation R !;; BE x BE is a strong bisimulation relation iff both R and its inverse R-1 are strong 
simulation relations. 

Two behaviour expressions B,, B2 are strong bisimulation equivalent, written B1 ~ B2, iff there exists a 
strong bisimulation relation R with (B1,B2 ) E R. 0 

The following fact is a standard result in the process algebraic literature ( cf. [Mil89]) 

Fact 1. The relation ~ is a congruence with respect to all the combinator& introduced in table 1 and 
satisfies the laws listed in table 3. 0 

(1) B,]]aB, = B,]]aB, 

(2) B,]]a(B,]]aB,) = (B,]]aB.)]]aB, 

(3) Bd].(B,]].B,) = (Bd].B,)IJ.B, where B,]].B2 =dJBd]L(B1 )nL(B2 JB2 

(4) (B,]]aB.)/A = B,jA]]aB•fA if An G = 0 

(5) (Bd]aB,)[H] = B,[HJI]aB.[H] if HrG =ida and H-'(G) = G 

Table 3. Some transformation laws 

We recall the following (standard) notations. Action names are variables over ActU {r} and u denotes a 
string of actions a, ... an. 
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B _: B' ';!;t!J 3Bo, ... , Bn B = Bo ~ B1 II ... II Bn-1 ~ Bn = B' 
T" 

B ~ B' l;!;t!J 3n B -+ B' 

B ~ B' ';!;t!J 3B1, B2 B ~ B1 II B1 .! B2 II B2 ~ B' 

B ~ B' l;!;t!J 3Bo, ... , Bn B = Bo ~ B1 II ... II Bn-1 ~ Bn = B' 
Der(B) =t!J {B' l3u E Act* B ~ B'} 

We will also need a less strict relation than ~. 

Definition 2. A relation R ~ BE x BE is a weak simulation relation iff for all (B1 , B2) E R and for all 
a E Actu {£} 3B1' B1 ~ B1 1 implies 3B2' B2 ~ B21 and (B1',B2') E R. 
A relation R ~ BExBE is a weak bisimulationrelation iff both Rand its inverse R-1 are weak simulation 
relations. 

Two behaviour expressions Bb B2 are weak bisimulation equivalent, written B1 "" B2, iff there exists a 
weak bisimulation relation R with (B1 , B2) E R. 0 

Again we have a standard result ( cf. [Mi189]). 

Fact 2. The relation "" is a congruence with respect to all the combinators introduced in table 1 except 
for the choice combinator'+' (and its generalization L:J and~~"" (i.e."" satisfies all laws of ~J. 0 

Finally, let us define Traces(B) =t!J {u E Act* I 3B' B ~ B'}, then we have the following well-known 
definition and results (cf. 1Hoa85, vG93]). 

Definition 3. 
notation Two behaviour expressions B1, B2 are trace equivalent, written B1 ""trace B2, iff Traces(B1) = 
Traces( B2). 0 

Fact 3. The relation ""trace is a congruence with respect to all the combinators introduced in table 1 and 

~~""~""-· 0 
Fact 4. Let B1II•B2 be defined as in Table 3. 

Traces(B1II•B2) = 
{u E (L(BI) u L(B2))* I urL(B1) E Traces(B1), urL(B2) E Traces(B2)} 

0 

3 Queue-like action-transducers 

Action-transducers are the operational counterpart of contexts, i.e. behaviour expressions with an open 
place or hole in them. Such open places, often denoted by the symbol'[]', can be regarded as variables that 
can be replaced with actual behaviour expressions to obtain instantiations of a given context. For example, 
the context C[ J =d/ a.O + [ J can be instantiated by the expression b.c.O, yielding C[b.c.O] = a.O + b.c.O. 

Whereas we can use behaviour expressions to define states with transitions between them (e.g. as defined 
by table 2), contexts define action transducers with transductions between them. Such transductions will 
be denoted by doubly decorated arrows, as in 

T.! T' 
b 

which represents the transduction of action b into action a as action-transducer (state) T changes into 
T'. Informally, this should be understood as follows: whenever a behaviour Bat the place of the formal 
parameter'[]' produces an a-action transforming into B', T[B] will produce a b-action as its result and 
transform into T'[B']. 
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Examplel. 

a.BII{aj[ ](afb] ~ Bll{aj[ ](afb] 
b 

where afb denotes the obvious renaming function replacing b by a. 

The transduction T ~ T' thus corresponds to the operational semantic rule 
b 

b a 
B -+ B' 1- T[B] -+ T'[B'] 
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D 

Additionally, we also allow transducers to produce actions 'spontaneously' to cater for contexts like a.[], 
which can produce an a-action without consuming an action of an instantiating behaviour. This will be 

denoted by transduction of the form T ~ T', corresponding to the operational semantic rule 
0 

1- T[B] ~ T'[B] 

Example2. 

a 
-+ Bli{aj[] 
0 

D 

In this paper we will not give a complete formal introduction to the concept of contexts as action­
transducers. For this the reader is referred to [Lar90, Bri92]. Here, it will suffice to define systems of 
action-transducers by explicitly giving sets of transducer states and transductions between them. 

A last step before defining transducer systems is the extension of the transduction notation to a suitable 
'double-arrow' notation. Let u,u' E (ActU {r,O})*. We write u <J u' iff u can be obtained from u1 by 
erasing any number of r- or 0-occurrences in it. We define 

T ~ T'<;:;dt3To, ... ,T,.T:To ~ T1II ... IITn-1 ~ T .. :T' 
bl•··bn 

1 
b1 bn 

T ~ T' ¢'1d.f 3u1',u2' T ~ T' II u1 <I u1' II u2 <I u2' 
ti':J ti'"J' 

We now proceed with the definition of the special kind of action-transducer systems that we need for our 
application, viz. the queue-like families of action transducers. 

Deftnition4. Let Q ~ Act. A family of action-transducers Tq = {T" I u E Q•} is queue-like iff its 
tranductions are of the form: 

1. llqEQ,ueQ• T".!.. T"q 
0 

T 

2. \lq E Q,u E Q• Tq" -+ T" 
q 

a 
3. for 0 or more u E Q•,a E (Act- Q) T" -+ T". D 

DefinitionS. Let Tq = {T" I u E Q•} be a queue-like family of action-transducers. For each A~ Q we 
define the set D A ~ Act by 

DA ={a E Act IT" ~ T" iff ufA = e} 
a 

D 

Deftnition6. Let Tq = {T" I u E Q•} be a queue-like family of action-transducers. We say that Tq 
preserves A ~ Act iff 

llp,u E Act•,v E Q• T' ~ Tv implies pfA = uvfA 
" 

D 
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The following two lemmata express invariants of the observable trace transductions that are induced by 
families of queue-like action transducers. Of course, a string over any subset A of the set of actions Q 
that are subject to queing will be preserved. The lemmata indicate that A can always be extended with 
D A, the set of actions that can be passed directly 'through' the context when no element of A is being 
queued. The intuition behind this result is that actions in D A could therefore never 'overtake' actions in 
A, or vice versa, and thus upset the ordering of elements in the string. 

Lemma 7. Let Tq = {Tu I u E Q*} be a queue-like family of action-transducers. For each A~ Q Tq 
preserves A U D A. 

Proof. See [Bri94]. 

LemmaS (preservation lemma). 
Let Tq = {Tu I u E Q*} be a queue-like family of action-transducers. Let B continuously allow all actions 

in Q, i.e. for all B' E Der(B) and all q E Q 3B" B' .:!.. B". Then for all A~ Q we have 

VuE 1Taces(T'[B]) 3u' E 1Taces(B) with uf(A U DA) = u'f(A U DA) 

Proof. Assume that T'[B] ~ Tv[B']. Because B continuously allows all actions in Q, we have in par­
ticular that B' ~ B" and therefore Tv[B'] ~ T'[B"]. It follows that there exists au' with T' ~ T' 

u' 
and u' E 1Taces(B). The required preservation result now follows from an application of the previous 
lemma. 0 

4 Deriving the lazy caching memory 

We start our derivation of the lazy caching protocol with a specification of the serial memory, which is 
given by the process Mem(x) defined by (1) below. The contents of the memory is represented by the 
process parameter x, which is a vector of elements in the data domain D indexed by the set A of memory 
addresses. For all a E Ax. denotes the a1h element of x. The set I= {1, ... , n} indexes the number of 
user interaction points of the memory, i.e. the number of locations where local read and write actions can 
be performed. 

Mem, •• (x) <= L W;(d, a).Mem, •• (x{d/x.}) 
iEI 

aEA,dED 

+ L R;(x., a).Mem ••• (x) 
iEl 
aEA 

(1} 

Here, W; ( d, a) represents the action of writing datum d in memory address a, and R; ( d, a) reading datum 
d from memory location a. It will be useful to define the sets 

- W; =dJ{W;(d,a) IdE D,a E A} and W =dtUiEI W; 
- 'R; =df {R.(d, a) IdE D, a E A} and 'R =dt uiEJ 'R; 
- £; =df W; u 'R; and £. =dt uiEJ £; 

We can now formulate the correctness criterion in our setting as 

Definition 9. Let B1 and B2 be behaviour expressions with L(B;) ~ £.A behaviour B1 is weak sequential 
consistent with B2 iffVu E 1Taces(Bl) 3u' E 1Taces(B2) such that ViE I uf£; = u'f£; 0 

This is a weaker requirement than the originally given definition of sequential consistency, which is 
concerned with maximal, and therefore possibly infinite traces (which are not in 7Taces(B1)). We will 
first complete the design for this version of sequential consistency and will revisit the question of infinite 
traces in section 5. 
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4.1 Distributing the memory 

Our first step in the design is to create a local copy of the memory for every user. The specification of 
the local memory for user j E I is given by the process definition of Locmemi(x) at (2) below. Note that 
Locmemi(x) still interacts in all actions in W, but accepts only local read actions, i.e. those in 'Rj· 

Locmemi (x) <= L W;(d, a).Locmem;(x{ d/xa}) 
lEI 

aEA,dED 

+ L Ri(x., a).Locmemi(x) 
aEA 

Our first refinement is now given by the process definition Refinement1 in (3). 

rrw -
Refinement1 <= Locmemi(O) 

jE/ 

The correctness of this step is certified by the following lemma. 

Lemma 10. Memser(O) ~ Refinement1 

(2) 

(3) 

Proof. The relation defined by { (Memser(x), fi~1 Locmemi(x)) I x E DA} is a strong bisimulation. 0 

Corollary 11. Refinement1 is weak sequential consistent with M em,er(O) 

Proof. Follows directly from ~ ~ "='trace (fact 3). 0 

4.2 Introducing local caching 

In the next step of our design we introduce a local cache that the user communicates with and that 
is updated by the local memory. Because of its direct interface with the user this cache has a more 
elaborate set of interactions that the chaches that we will ultimately design. The behaviour of the cache 
at interaction point j E I is given by the process definition Cachei(x) in (4) below. In addition to the 
(local) memory the caches have update actions Uj(d, a). For convenience we define U; =d,{U;(d, a) I dE 
D,a E A} and U =dJU;E1 U;. 

Cachei(x) <= :L W;(d, a). Cachei(x{ d/x.}) (4) 
iEI 

aEA,dED 

+ :L Uj(d, a).Cachei(x{ d/x.}) 
aEA,dED 

+ :L Rj(Xa, a). Cachej(x) 
al'Z 

+ :L r. Cachei(Y) 
iiEr(z) 

Note that the local caches synchronize on all actions in W, but accept only local read and update actions, 
i.e. only actions in 'Rj UUj. Cache invalidation is modelled by allowing the elements of the memory vector 
x to take the undefined value l, and the introduction of the following predicate and set: 

- a ! X iff Xa ;il 
- r(x) =df {y I 'v'a E A Ya = Xa V Ya =i} 
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Let U /'R : Act -+ Act denote the renaming function that maps each read action R; ( d, a) to the corre­
sponding update action U;(d, a) for all i, d, and a, and all other actions to themselves. We are now ready 
to define the second refinement of our design as follows. 

Refinemen~ <= Ilw (Locmem;(O)[U/'R]IIu;uw Cachej{"fi;0 ))/U 
jE/ 

for arbitrary Y;o E r(O). 

The correctness of this step follows from the following lemma. 

Lemma 12. 'fiE DA, y E r(x),j E I(Locmem;("iii)[U/'R]IIu;uw Cache;(Y))/U RJ Locmem;(x) 

(5) 

Proof. The relation {((Locmem;(x)[U/'R]IIu;uw Cache;("Y))/U,Locmem;(x)) I x E DA,y E r(x)} is a 
weak bisimulation relation. D 

Corollary 13. Refinemen~ is weak sequential consistent with Mem,er(O) 

Proof. Because RJ is a congruence relation w.r.t. the parallel combinator IIG (fact 2) it follows from that 
Refinemen~ RJ Refinement1• Combining this with RJ ~ RJtrace (fact 3) and corollary 11 the desired result 
now follows directly. D 

4.3 Buffering cache communication 

In this refinement step we will buffer the communication of write/update actions to the cache, and only 
allow read actions if there are no local write actions buffered. This can be expressed using a family of 
queue-like action transducers in the sense of section 3. 

Definition 14. The family of queue-like action transducers {Kj I u E (W U U;)*} is for each j E I 
completely characterized by the following set of transductions: 

K'! 
U;(d,a) Ku.U,(d,a) • ----+ 

J 0 J 

K'! 
W;(d,a) 

Ku.W;(d,a) foralliEI • --+ 
J 0 J 

KU;(d,a).u r 
K'! • ----+ 

J Uj(d,a) J 

KW;(d,a).u ~ 

K'! foralliEI • --+ J W;(d,a) J 

K'! 
R;(d,a) 

K'! if u contains no W;-actions • --' R;(d,a) J 

The refinement is reflected in the following process definition. 

Refinement3 <= Ilw (Locmem;(ii)[U/'R]IIu;uw KJ[Cache;(Y;o)])/U 
jEI 

for arbitrary Y;o E r(O). 

We can now prove the following lemma. 

Lemma15. 

'Vj E I, u E (W U 'R; U U;)*,x E DA, y E r(x) 

(Locmem;(O)[U/'R]IIu;uw Kj[Cache;("Y;0 )])/U ~ 
3u' E (WU'R;UU;)" 

(Locmem;(O)[U/'R]IIu;uw Cache;(Y;o))/U g;, 
1\ ur(w; u 'R;) = u'r(w; u 'R;) 1\ urw = u'rw 

D 

(6) 
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Proof. This essentially follows from the preservation lemma 8. See [Bri94]. 

Corollary 16. Refinemenfa is weak sequential consistent with Mem, •• (O) 

Proof. Assume that 

llw (Locmemi(O)[U/"R.JIIu;uw Kj[Cachei(Yi0 )])/U ~ 
jEJ 

then according to fact 4 for each j E I with Uj = ur(w u "R.j) we have 
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Also, it follows that for all j E I the Uj must agree on their common actions in w, i.e. Uj, rw = u;, rw 
for J1,i2 E I. 
Using the above lemma we find uj with Ujr(wj U"R.j) = ujr(w; U"R.j) and Ujrw = ujrw. The latter 
equality implies that for j1,j2 E I we have uj, rw = u;, rw = u;. rw = uj, rw. This means that we 
can apply fact 4 again, in the opposite direction, combining the uj and find au' with u'r(w U "R.j) = 
uj r(w u "R.j) 

llw (Locmemi(O)[U/"R.JIIu;uw Kj[Cache;(Yi0 )])/U &;. 
jEJ 

It follows that u' r(wi U "R.;) = ur(wi U "R.;) for all j E I, i.e. Rejinement3 is weak sequential consistent 
with Rejinemen~, and thus with Mem, •• (O). 0 

We proceed with a cosmetic transformation that is not really necessary for the design, but brings our 
specification closer in line with the specification given in the problem statement in [Ger94]. There, the 
cache communication buffer identifies all update and non-local write interactions once they have been 
buffered. The contents of local write interactions is marked for identification with a special symbol ('*'). 
To achieve this in our design we introduce a revised class of queue-like transducer families. 

Definition 17. The family of queue-like action transducers { Lj I u E (W U Uj )*} is for each j E I 
completely characterized by the following set of transductions: 

• LO: 
1 
~L":·(d,a) 

0 1 

• L" 
1 
~ K~.(d,a,*) 

0 1 

• £0: 
1 
~ K~.(d,a) 

0 1 
i#j 0 

• Lo.(d,a).cr r 

i ~ L" 
1 a(d,a) E {(a,d),(a,d,*)} 

• L"~LO: 
1 R;(d,a) 1 

if u contains no *-actions 

The corresponding revision of the cache specification is given by the process definition of Cachej(x) below. 

Cachej (x) ¢: L Ui ( d, a). Cachej (x{ d/ "'•}) 
aEA,dED 

+ L Rj(x.,a).Cachej(x) 
a!Z 

+ L T. Cachej (y) 
iiEr(z) 

(7) 

The overall refinement step that is implied by these changes is given by the process definition Refinement3,. 
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Rejinement3, ~ rrw (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(il;0 )])/U 
jEI 

for arbitrary il;o E r(O). 

(8) 

Essentially, Lj[Cachej(il;o)] differs from Kj[Cache;(il;o)] only in the way in which the internal events 
corresponding to the buffer-cache communication are produced; the resulting transition systems are iden­
tical. 

Lemma 18. Lj[Cachej('Y;o)] ~ Kj(Cache;(il;o)] 

Proof. Left to the reader. 

Corollary 19. Rejinement3, is weak sequential consistent with Mem,.r(O) 

Proof. As ~ is a congruence w.r.t. the operators used and preserves traces. 

4.4 Centralizing background memory 

0 

0 

As the local memories have served their purpose in producing the local {buffered) caches they can now 
be recombined into a central background memory. Therefore, our penultimate design step is specified as 
follows. 

Lemma20. 

Proof. 

Refinement4 ~ (Mem,.r(O)[U/'R.]]]uuw llw Lj[Cachej(il;o)])/U 
jEI 

for arbitrary il;o E r(O). 

(Mem,.r(O)[U/'R.]]]uuw llw Lj(Cachej(il;o)])/U ~ 
jEI 

rrw (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(ii;0 )])/U 
jEI 

IJ~1 (Locmem;(O)[U/'R.]]]u;uw Lj[Cachej(il;0 )])/U 

~ {law 4 of table 9} 

(IJ~1 (Locmem;(O)[U/'R.]]]u;uW Lj[Cachej(il;0 )]))/U 

~ {L(Locmem;, (O)[Uf'R.]) n L(Locmem;,(D)[Uf'R.]) = W (j1 'I i2), 
L(Locmem;(O)[Uf'R.]) n L(Lj[Cachej(ii;o)]) = U; U W} 

(IJje1 (Locmem;(O)(U/'R.]]]. Lj[Cachej(il;o)]))fU 

(9) 
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~ {laws 1 and 9 of table 9} 

(Ilje 1 Locmem;(O)[U/'R.]II. I1}e 1 Lj[Cachej(ii;0 }])/U 

~ {law 5 of table 9 and lemma 1 0} 

(Mem,.r(O)[Uf'R.] II. rr;EI Lj[Cachej(ii;o}])/U 

~ {L(Mem,.r(D)[Uf'R.J) n L(Ilje1 Lj[Cachej(Yjo)]) = U U W, 
L(Lj, [Cachej, (jjh0)]) n L(Lj,[Cachej,(!7;,0 )]) = W (jt f. j2)} 

(Memser(O)[U/'R.]IIuuwiTjE/ w Lj[Cachej(ii;0 )])/U 

Corollary 21. Refinement4 is weak sequential consistent with Mem,.r(O) 

Proof. As ~ preserves traces. 

4.5 Adding the user interface 
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0 

0 

The last step in our design is the buffering of local write interactions with the users. Local read interaction 
is permitted only when the local write buffer is empty. Again, this can be conveniently modelled using 
families of queue-like action transducers. 

Definition 22. The family of queue-like action transducers { Mj I u E W; •} is for each j E I completely 
characterized by the following set of transductions: 

• M~ ~ M~.w;(d,a) 
3 0 3 

MW,(d,a).~ ~ M'! 
3 W;(d,a) 3 

R;(d,a) 

MJ-MJ 
R,(d,a) 

0 
• 

• 
• M~ ~ M'! a E {R;(d,a), W;(d, a)lj f. i E I} 

3 " 3 

The corresponding refinement is expressed by process definition Refinements below (recall that in the 
beginning of this section we put I= {1, ... ,n}). 

Refinements ¢' (10) 
w 

(Mj o ... o M~)[(Mem,er(D)[Uf'R.] lluuw IT Lj[Cachej(Yjo)])/U] 
jE/ 

for arbitrary Yjo E r(O). 

Theorem 23. For all i E I(Mj o ... o M;')[(Mem,.r(li)[U/'R.JIIuuwiT;EI w Lj[Cachej(Yjo)])/U] is weak 
sequential consistent with M emser(D). 

Proof. By induction on i using preservation lemma 8 it is straightforward to show that the application 
of each M;' preserves the actions in W; U 'R.; and in Wj U 'R.j for j f. i, choosing A = W; and A = 0, 
respectively. The sequential consistency with M em,.r(D) then follows from corollary 21. 0 

Corollary 24. (Mj o ... o M~)[(Memser(O)[U/'R.] lluuwiT;ei w Lj[Cachej(!l;o)])/U] is weak sequential 
consistent with M em,.r(O). 

Proof. Take i = n. 0 
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5 Strong sequential consistency 

Having completed the design and proven it correct in terms of weak sequential consistency we come 
back to the original formulation of the problem in [Ger94], where sequential consistency is required with 
respect to the maximal observable traces, i.e. possibly infinite traces, of the systems involved. This is a 
strictly stronger requirement, as can be learned from the following example. 

Example 3. Consider a serial memory with only two user interfaces and only a single memory location 
initially holding the value 0. Suppose now a distributed implementation displays the infinite trace 

that is, user 1 writes the value 1 into the memory and user 2 keeps on reading the initial value 0 infinitely 
often. 

Note that every finite prefix of this trace is weak sequential consistent with the serial memory. For all n 
W1(1)(R2(0))n is weak sequential consistent with (R2(0))nW1(1), which is a valid behaviour of the serial 
memory. For the infinite trace Wt(1)(R2(0))"' there exists no analogous permutation, as can be readily 
checked. 0 

The above example shows that when infinite strings are considered sequential consistency implies a 
liveness property: a write by one user is eventually read by the other. In this section we will show 
that the lazy caching memory in fact satisfies this stronger requirement, and will require only minor 
adaptations of the proofs for weak sequential consistency. 

First, let A"' denote the set of finite and infinite strings over A. Then we define the set of finite and 
infinite traces of a behaviour B as 

Traces.,(B) =df {uo.Ut.U2· · ·· E Act"' I3{B;};eN B = Bo,B; U B;+I} 

Definition 25 (strong sequential consistency). 
Let B1 and B2 be behaviour expressions with L(B;) ~C.. A behaviour B1 is strong sequential consistent 
with B2 iff 

0 

To show the correctness of the distributed caching memory it suffices to extend some of the definitions 
and facts of section 2. We start with the equivalence corresponding to Traces.,(B) defined by 

B1 ""traccw B2 iff Traces.,(Bt) = Traces.,(B2) 

Fact 5. The relation ""tracew is a congruence with respect to all the combinators introduced in table 1 and 
~ s; ~trace.., ~ R:: trace· 0 

Fact 6. Let Btii•B2 be defined as in Table 3. 

Traces.,(Btii•B2) = 

{u E (L(Bt) u L(B2))"' I urL(Bt) E Traces.,(Bt), urL(B2) E Traces.,(B2)} 

0 

The proofs of these facts are standard, and are left to the reader. 

The last generalization that we need is the extension of lemma 8 to strings in Act"'. This is the only 
part of the proof in which we will need the weak fairness assumption given in the problem description in 
[Gcr94]: that no read, write, or update action is continuously enabled but never executed. 

Lemma26 (extended preservation lemma). Let Tq = {T" I u E Q*} be a queue-like family of 
action-transducers. Let B continuously allow all actions in Q, i.e. for all B' E Der(B) and all q E Q 

3B" B' !... B". Then for all A ~ Q we have 

'VuE Traces.,(T'[B]) 3u' E Traces.,(B) with ur(A u DA) = u'r(A u DA) 



Proof. See [Bri94] 

Theorem27. 

Cache consistency by design 

(M: o ... o M~)[(Memser(D)[U/R.J lluuw rrw Lj[Cachej(yJ0 )])/UJ 
jEI 

is strong sequential consistent with M em,.r(O). 

Proof. We check proofs of the refinement steps for the weak sequential case: 
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1. distributing the memory: this was proved using that~ <:;; ""trace (see corollary 11), which can now be 
replaced by the argument that ~ <:;; ""trace". 

2. introducing local caching: this was proved using that""<:;; ""trace (see corollary 13), which can now be 
replaced by the argument that "" <:;; ""trace". 

3. buffering cache communication: an infinite trace version of lemma 15 can be proved using fact 6 
instead of fact 4, and the extended preservation lemma 26, which leads to the strong version of 
corollary 16. The subsequent modification in Refinemenf-:J, can be imitated as ""tracew is invariant 
under renaming of internal actions. 

4. centralizing background memory: this is more or less the inverse of refinement 1, and therefore follows 

again by ~ <:;; ""trace", and the fact that ""traeew is a congruence. 

5. adding the user interface: this follows by using the extended version of the preservation lemma. 0 

6 Conclusions 

In this paper we have presented a proof of the sequential consistency of the lazy caching protocol of 
[ABM93J. It is based on the application of a number of transformation steps, deriving the distributed 
caching memory in several steps from the sequential memory, whilst maintaining the property of sequential 
consistency. Thus the proof can also be seen as a rationalized reconstruction of the design of the lazy 
caching protocol, and a a posteriori attempt at correctness by design. One of the potential benefits of 
such an approach is that more general results can be obtained than the correctness of a specific design 
only. In this case the factorization of the proof in separate design steps gives substantial insight in design 
alternatives, and in fact provides us with correctness proofs for a whole family of distributed caching 
designs. Being based on the same transformation principles the following variations can be proven correct 
by minimal rearrangements of the proof: 

1. user interface buffers: we can allow asymmetry between users in the sense that some may have 
buffered and others may not have a buffered user interface. 

2. cache buffers: we can also allow asymmetry between caches in the sense that some may have buffered 
access and others not. 

3. local memories: we may choose some users to have access to a complete local memory instead of a 
cache. 

4. background memories: we may choose to have several write-synchronizing background memories for 
smaller user groups (e.g. to expedite cache updates). 

The structured presentation of the proof also allows for a rather precise analysis of the blanket fairness 
assumption (no action other than cache invalidations can always be enabled but never taken) in general 
exposition in [Ger94]. Weak fairness is required in the following places: 

1. processing local writes stored in the user interface buffers into the memory and the local cache buffers; 
2. processing writes and updates stored in a local cache buffer into the local cache; 
3. processing memory updates into the local cache buffers. 

The first two are used in (the application of) the extended preservation lemma 26; the last is implicit in 
the proof of weak bisimulation equivalence in lemma 12. The latter exploits a notion of fairness that is 
'built-in' in the notion of weak bisimulation equivalence. In the context of ACP it appears as Koomen's 
fair abstraction rule [BW90J. 
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Although we have used a process-algebraic notation for the specification of the various design stages, and 
have applied a number of well-known laws from the process-algebraic literature, our proof is, in fact, het­
erogeneous in nature. The process-algebraic syntax is used to define labelled transitions systems. We have 
allowed, however, some of the fairness requirements to be superimposed on this representation, thereby 
leaving a proper process-algebraic framework. Also, we have not used a structured syntax to define action 
transducers, but have defined them directly in terms of their transductions. As already mentioned, the 
transducers have their syntactic counterparts in behaviour expression contexts, i.e. behaviour expressions 
with open places or 'holes' in them. Contexts corresponding to the transducers that we have used could 
be expressed in terms of our process-algebraic formalism if we accept simple compound data types such 
as strings and their associated operations as given (otherwise one could turn to languages like LOTOS 
to formalize such notions [BB87]). In these cases, however, their syntactic representation is much more 
involved than their operational one, and would distract from the essential feature that figures in the proof, 
viz. that they are action transducers that induce observable action-sequence transductions. As sequential 
consistency is an invariant of such transductions, that is precisely the way we want to view them. 

The correctness of a number of transformations has been shown in terms of direct semantic proofs, viz. 
by producing strong and weak bisimulations, and by reasoning in terms of action transducers. As a 
consequence, it can be disputed as to what extent our proof can be seen as one based on the application 
of correctness-preserving transformations ( CPTs). Although our transformations do preserve the desired 
correctness criterion, this term is usually reserved for generic design principles whose correctness has 
been established beforehand (cf. for example [Bol92]), to be contrasted with the procedure of 'invent 
and verify'. In addition to the applied standard process algebraic laws listed in table 3, however, most 
other parts of the proof could retrospectively qualify as CPTs. The formulation of our transduction 
based proofs, the (extended) preservation lemma, for example, is generic in the sense that it applies 
to all queue-like transducers. This enables its repeated application in proof, viz. twice in the proof of 
lemma 15 concerning the cache buffer, and twice in the proof of theorem 23 concerning the user interface 
buffer. In order not to burden our proof with such concerns we have foregone the formulation of a generic 
transformation principle corresponding to the equivalence proven in lemma 10. The idea behind the proof 
is quite general, however, viz. that a process maybe split into parts according to a partitioning of all those 
of its actions that do not affect its state, where each part should still be able to synchronize on all actions 
that do influence the state in order to maintain it. We present a generic formulation of this transformation 
without proof. 

Let p( x) be a parameterized process defined by 

p(x) <= L f(a,x).p(.q(a,x)) + L h(a,x).p(x) (11) 
aEVar aElnv 

where x ranges over a given domain D, Var and Inv are given index sets, and f : Var x D -+ Act, 
g : Var x D -+ D, and h : Inv x D -+ Act U { r} are functions with f injective and rge(f) n rgc(h) = 0. 
Theorem28. Lctp(x) of the form defined by.(ll) above. LetF be a finite partitioning of Inv and define 
for all FE :F 

pp(x) <= L f(a, x).pp(g(a, x)) + L h(a, x).pp(x) 
aEVar aEF 

Then 
p(x) IT rge(f)pp(x) 

FE:F 

0 

Sofar, we have not succeeded in formulating a suitably general formulation of the transformation principle 
behind the introduction of the local caches in lemma 12. It seems that the semantic idea behind it is not 
readily expressible in generic syntactic terms. Summarizing, we can say that the problem of proving 
the lazy caching protocol correct has also served as a source of inspiration for the formulation of new 
correctness preserving design transformations. Although much of our proof can be interpreted as the 
application of such transformations, parts remain that rely on the 'invent and verify' approach. As 
a whole the proof illustrates that an opportunistic combination of different methods can lead to an 
insightful example of correctness by design. 
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