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Advanced automation of industrial processes such as product handling, assembly and 
inspection requires further development of systems for the identification of objects involved 
in such processes. Various measurement methods for obtaining information about the identity 
of objects, based on the detection of features by which the objects can be characterised, are 
reviewed. Examples of such features are shape (or particular geometric properties) and mate­
rial properties. The measurement of geometric features is performed by a colour camera, or 
the combination of a black-and-white camera and structured light. Material properties are de­
tected by eddy current sensors. Most of these methods are illustrated with examples taken 
from a research project about the recognition of electronic components on PCB's, for recy­
cling purposes. Finally, some comments on the combination of sensor data (sensor fusion) to 
enhance the reliability of the identification process are given. 
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1. Introduction 

Identification of an object implies two essential elements: a set of characteristic prop­
erties describing the actual object and a set of models or object classes to which the object is 
being assigned unambiguously. The identification process comprises the measurement of the 
properties that describe the object's identity, the matching of the acquired data with the model 
data and finally, the assignment of the object under observation to a particular class, accord­
ing to a specified criteria. Looking to a cat (the measurement, data acquisition), we could 
identify this cat as an animal, or just a cat, or a Persian cat, or our left neighbour's cat, de­
pending on the required level of classification and the availability of specific data. Obviously, 
going from a higher class down to a lower or subclass, the amount of information required for 
a proper classification increases, so does the complexity and processing time of the identifi­
cation process. The more particular the class, the more specific should be the detection sys­
tem. 

Key problem in identification is the definition of the characteristic properties for a 
certain class. Each class should be described by a unique set of properties. Such properties 
need be detectable by a proper set of sensors (detectors). So, the detector or measurement 
system should be tailored to those features of the object that enable adequate identification. 
Features may appear in a variety of modalities. We can identify a person upon observing his 
face, appearance, voice, particular clothes, or even a characteristic gait or sound of footsteps. 
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In the recognition of persons, many features are involved, which can hardly be de­
scribed completely by a machine. They appear in a large number of combinations within a 
frame of almost infinite variability. In this paper we only discuss the identification of man­
made objects. The number of particular characteristics is low compared to that of natural en­
tities and phenomena. 

An example of identification of man-made objects is the recognition of buildings from 
aerial photographs [I]. This is an example of object recognition by remote sensing: the avail­
able measurement data is restricted to images from a number of different optical bands, but 
all of limited resolution. 

An important application of (man-made) object recognition is product inspection: 
failures in a product should be detected automatically, to alleviate human exertion, to obtain a 
more objective and reliable criterion for rejection of faulty products, and to safe money. Also 
in inspection systems faults should be accurately defined first, while the detection system 
should be designed such that it is able to detect and classify those particular faults . 

Figure 1. Yarn package [AKZO-Nobel}; to be inspected on various faults : yarn failures (broken fi­
bres, nooses, fluffs, pokes), shape faults, cone damage, transfer tail, contamination, all within speci­
fied tolerance bands. The inspection station consists of a number of detectors, each for a particular 
set offaults. 

This example illustrates the importance of a proper description of features to obtain an 
acceptable inspection result: neither correct packages might be rejected nor faulty ones ac­
cepted. Although faults can be considered as man-made objects, we will not take them into 
account further in this paper, and narrow down the discussion to complete objects only. 
Further, we focus on a restricted set of features: geometric properties (shape) and material 
properties (electric, magnetic). 

2. Retrieval of geometric properties from 2D grey-tone images. 

The most common way to characterise an object is by observing its shape. Most 
automatic identification systems use one or more cameras to generate an image of the object. 
This image (or a set of two images or even a sequence when 3D information is required) is 
analysed by some image processing algorithm [2], using the intensity distribution in the im­
age. The shape of the object is extracted from particular patterns in light intensity in the im­
age. 

bnage processing alone is not enough for a proper recognition. First of all, specified 
conditions for getting a proper image must be fulfilled: an illumination that yields adequate 
contrast and no disturbing shadows; a camera set-up with a full view on the object in the 
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scene and with a camera that has a sufficiently high resolution, not to loose relevant details. 
Obviously, a 2D image only shows a certain aspect of the object, never a complete view (self­
occlusion). In case of more than one object, some of them could be (partially) hidden behind 
others (occlusion), a situation that makes the identification much more difficult. 

Even in the most favourable situation, the image alone does not always reveal enough 
information for a correct identification result. At least we need a model of the imaging proc­
ess itself: position and orientation of the camera(s), camera parameters like focal length, po­
sition of the light source(s) with respect to the object and camera, since all these aspects de­
termine the properties in the image from which features are being extracted. Although the 
pose (position and orientation) of the object in the scene could be derived from the available 
information and a priori knowledge of the imaging system, we will disregard in this paper the 
possibility of pose determination, and restrict to identification only. 

Many algorithms have been developed to extract particular features from an image, 
that is built up of thousands of samples (in space and time) having grey-tone values or just 
black and white (binary images). The image is searched for particular combinations of adja­
cent pixels such as edges, from which region boundaries are derived. Noise in the image may 
disturb this process, and special algorithms are developed to reduce noise effects. Finally, an 
image results that reflects in a way at least some geometrical aspects of the object. 

We show two examples of object recognition from 2D images. The examples differ in 
available a priori information. In the first case, we just have two images (stereo) of a number 
of objects; from each object we have a complete and exact geometrical model. The goal is to 
identify all the objects in the scene (figure 2). Clearly, a single image only would lead to am­
biguity: differently shaped objects can have identical projections. The use of stereo images 
can eliminate such an ambiguity. 

Figure 2. Example of the identification of objects (toys). A geometric model (wire frames with corner 
points) is available; positions and orientations in the scene are unknown. Identification is peiformed 
by a matching algorithm. using geometric hashing. The white points indicate the result of the identi­
fication process. 

The original images are searched for comer points (on the crossings of edges). The re­
sult is a large number of points (some hundreds) , many of them being false alarms, due to 
shadows, highlights or noise in the image. To identify the objects, all possible aspects of each 
model are compared (matched) with all the possible combinations of points in the scene. Us­
ing a special search algorithm (geometric hashing), we end up with a hypothesis about the 
most probable objects [3]. The result is shown in figure 2. Obviously, not all the objects have 
been identified; note also that some objects that are partly occluded are identified correctly. 

In this identification process, both images from the stereo set-up have been used. This 
yields two sets of candidate comer points. Each point in one image corresponds with one sin-
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gle point in the other, however, it is not evident which one. This general problem in stereo 
vision, the corresponding problem [4], is solved here by using knowledge about the position 
of the cameras. As a matter of fact, many other methods have been studied to obtain the re­
quired information from a set of stereo images [5]. 

The second example illustrates a completely different strategy for obtaining 3D shape 
information from 2D images. The method is based on "structured light", a kind of optical 
coding. A set of lines with known spacing is projected onto the object of interest (figure 3). 
From the observed shift and rotation of the projected lines with respect to the lines on the ref­
erence plane (the background), height information can be achieved. To obtain a complete 
range image, a sequence of grids is projected, each with different (binary related) spacing. 

Figure 3. Principle of the structured light method to obtain 3D information from a 2D image. Only 
one grid out of a set of 8 is shown here. Shadowed areas are eliminated by illumination from two 
different angles. 

The method yields a range image representing geometric properties of the object. In 
order to identify the object, this range image should be matched to a known model of the ob­
ject. Again, the application dictates the amount and type of a priori information. In the appli­
cation of the components on a PCB, the components of interest are modelled by a set of su­
perquadrics, mathematical functions with five parameters that describe the size and shape of 
the bodies. The surface points of a superquadric satisfy the equation £2 

(~)£2 +(:,)£2 £1 +(:J~ = 1 1 
2 2)- 2 

The parameters aj define the size and £j the shape of the body. The range images as observed 
by a camera are fitted to the available models; the best fit results in a hypothesis about the 
identity of the component that is subjected to the test [6,7]. Some results will be discussed in 
section 5 of this paper, together with examples of colour images and high-resolution grey­
tone images. 

3. Object identification based on tactile imaging 

A tactile imager provides shape information based on physical contact with the object 
under test. Basically, a tactile sensor consists of a matrix of pressure sensors, each responding 
to the local force that is exerted by the object. The output is a spatially sampled pressure im­
age, with a resolution that is mainly determined by the pitch of the sensor grid. Many princi-
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pIes for the construction of tactile sensors have been proposed, during the last three decennia 
[8]. 

The most popular types are those based on elastomeric, piezoresistive materials, pref­
erably those that are available in continuous sheets. Such materials allow the realisation of 
high-resolution tactile imagers. Disadvantages of this type of sensors are the strongly non­
linear force-resistance relation, poor reproducibility and hysteresis. The resulting image data 
(figure 4) are not accurate and not stable. However, even with inaccurate pressure data, object 
identification can be performed, by using a priori knowledge about the characteristics of the 
objects. 

8 6 4 2 
Column number 

Figure 4. left: positioning of an object on a 8 by 8 tactile sensor; right: sensor response. 

The quality of resistive tactile matrix sensors is also limited by mechanical and electrical 
cross-talk. The former is caused by the mechanical stiffness of the elastomeric layer, resulting in 
broadening of the point spread function describing the sensor's transfer characteristic. In order 
to minimise wiring, selection by rows and wires is preferred, although this strategy might cause 
electrical cross-talk as is illustrated by the equivalent electric circuit of figure 5. 

j SWI i SW2 j SW3 SW4 

Figure 5. Simplified electronic model of a 4x4 tactile matrix sensor based on a piezoresistive sheet; 
taxel selection is performed here by connecting a reference voltage through a multiplexer to only one 
column, and the individual measurement of all row currents. 
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In this diagram, the taxel resistances are represented by the parameters Rij . The resis­
tances Rf account for the resistance between adjacent rows. In fact, all these resistances are dis­
tributed over the sensitive sheet, but for simplicity they are modelled as lumped elements. Taxel 
Rll is selected by closing switch SWI, and simultaneous measurement of current 11. Obviously, 
there is a subnetwork of all other resistances in parallel to Rll , so the measurement of Rll is 
disturbed by the resistance values of all non-selected taxels. Elimination of this effect is 
achieved either by (virtual) grounding or active guarding of the non-selected rows and columns. 
The method is rather effective, but requires complex additional electronics. 

Despite poor performance of the individual sensor elements, it appears possible to use 
tactile matrix sensors for identification of objects. A l6xl6 tactile sensor based on highly con­
ductive rubber has been tested successfully in a three-finger robot for grip optimisation in 
autonomous control with dextrous grippers [II]. In this experimental set-up, a neural network 
has been trained to identify three classes of objects, based on the characteristic properties of the 
contact surface: spheres (point contact), cylinders (line contact) and flat objects. Moreover, the 
system is also able to localise the objects in the gripper, and for cylindrical and flat objects to 
determine their orientation. 

4. Identification based on material properties. 

Among the various features of an object, the kind of material of which it is composed 
is a property that can be employed for identification, when the acquisition of suitable optical 
images fails. In this section, specificity in bulk material is the feature that will be looked for. 
Again, various modalities can be candidate to extract the required information, such as ther­
mal capacity, mass density, compliance or electric conductivity, of which in particular the 
latter can be implemented in a rather simple way. The method we discuss here is based on the 
occurrence of eddy currents, induced in the material by an alternating magnetic field brought 
in the vicinity of the object. It should be noted that eddy currents flow mainly in the outside 
layer of the object, so identification occurs on the basis of the material just in the outer shell 
of the object. 

Basically, an eddy current sensor consists of a coil supplied with an alternating cur­
rent, resulting in a magnetic field protruding outside the sensor body. When a conductor is 
present in the region of the external field, free charge carriers (electrons) experience Lorentz 
forces and will move around in a rather disordered manner by non-homogeneities of the mate­
rial. These eddy currents counteract the field of origin, resulting in a reduction of the mag­
netic flux in the coil, which in turn lowers the self-inductance L. The strength of the eddy cur­
rents increases with the conductivity of the object, which makes the sensor material specific. 
Obviously, the output of this sensor also varies with the distance between object and sensor, 
which is the basis of the well-known contactless proximity sensor. 

Ferromagnetic objects that are subjected to the eddy-current sensor will raise the coil's 
self-inductance, due to a lower magnetic resistance (reluctance) of the magnetic circuit. 
Hence, the eddy current sensor can distinguish between objects with different conductivity 
and different magnetic permeability. 

The eddy current sensor together with the object can be modelled by a simple trans­
former circuit, in which the object acts as the secondary coil of the transformer with a mate­
rial-dependent resistive load. With this model, the equivalent impedance at the primary ter­
minals of the transformer can be derived: 



R = Rl + _k..;..'-=L,,-l W,-,--,2 L:o;2,,-/ ,-,R-=-:,2 

l+w2(L2/ R2)2 

k' L1W' (L ,/R2)2 
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Here, k is the coupling factor, accounting for the distance to the object, whereas L2 
and R2 reflect the object's ferromagnetic and resistive properties, respectively. RJ and LJ are 
the resistance and self-inductance of the sensor coil. From the simultaneous measurement of 
the real and imaginary parts of the sensor impedance, and using this model , material specific 
information can be obtained (parametrized by the ratio L21R2), and independent of the gap 
width between object and sensor head. 

In its most simple form, the eddy current sensor can be used in a single-point meas­
urement of the material feature: after a training (calibration sequence) with the complete set 
of objects it is possible to distinguish between, for instance, steel, aluminium and copper ob­
jects, and between ferro- and non-ferro materials [10]. When combined with a scanning 
mechanism, the eddy current sensor can be used to obtain a conductivity image of objects. 
Figure 6 'shows a picture of a piece of PCB with different components on it; the goal is to 
identify these components on the basis of differences in the materials, as shown in the imped­
ance images in the same figure. 

Figure 6. Left: grey-tone reproduction of a colour image of a test PCB with various components. 
Middle and left: impedance images taken by a s canning eddy-current sensor, showing the real and 
imaginary parts of the impedance, respectively. 

S. Identification of electronic components on PCB's: a case study 

Recycling of waste materials contributes to reduction of environmental problems. A 
prerequisite for recycling is the separation of the primary waste streams into more homogene­
ous material flows. In this example we discuss the recycling of printed circuit boards (PCB' s) 
from outdated electronic equipment (TV sets, computers) . A PCB might contain components 
that could be reused (memory chips) or that are harmful for the environment (batteries) . We 
describe here a project in which a system is being developed for the identification of compo­
nents on waste PCB's. 

The system consists of four identification units : a range imager based on structured 
light, a high-resolution grey-tone camera, a colour camera and an eddy current sensor. The 
PCB under test passes subsequently these stations. Each station comes up with a hypothesis 
about certain components on the PCB, restricted in the prototype system to Ie's (of various 
types), electrolytic capacitors and batteries. The range imager identifies the components on 
the basis of 3D shape. Characteristic details in a high-resolution image are checked in the 
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second station, for instance the presence of an array of small bright points, indicating an Ie. 
The colour camera system uses the spectral characteristics in the image of the PCB, to obtain 
a proper segmentation of the regions representing the objects of interest [12]. The segmenta­
tion process is further improved by using a priori knowledge about the component's shape, 
whereas the object recognition is performed using the technique of inexact attributed graph 
matching [13]. Finally, the eddy-current sensor is used here as an additional test for suspi­
cious components that are identified with insufficient certainty [14] . 

Figure 7' shows a picture of a complete PCB, taken with a standard black-and-white 
camera, and using diffuse illumination. Figure 8 is a height map of the same PCB, as obtained 
from the range imaging system (using structured light). 

Figure 7. Example of a PCB. A variety of electronic components (lC's, capacitors), some empty 
sockets, and left-middle a battery. 

25 
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Figure 8. Range image (height map) of a PCB; the tilted, upstanding capacitors are clearly visible. 
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Figure 9 illustrates the difference in the images obtained from a standard area-scan 
camera (right) and a high-resolution line-scan camera (left). A complete high-resolution im­
age is obtained by moving the PCB in front of the line-scan camera. The image is used for 
component identification based on specific details, for instance the pins of the IC's (by tem­
plate matching) and the characters printed on the components (OCR). 

Figure 9. Detail from (left) a high-resolution line-scan camera (/728 pixels per line) and (right) a 
standard black-white camera image. 

Each of the first three stations generates a set of hypotheses about the possible identity 
of the components on the PCB, and to each of these hypotheses an uncertainty level has been 
connected. The uncertainty about the identity of an object could be reduced by combining the 
outputs of the individual systems in such a way that the total uncertainty is lower than that of 
the individual systems. This is not a trivial process, because the uncertainty is different for the 
various identification systems, and not all objects are identified by all systems. For instance, 
the range imager can hardly distinguish between empty and occupied IC-sockets, and the col­
our camera has some difficulties in detecting electrolytic capacitors. In this application the 
hypotheses from the first three stations are combined using Dempster-Shafer theory of data 
fusion [15]. This method takes into account the differences in levels and classes of uncer­
tainty. 

6. Conclusions 

In this paper we reviewed a number of methods for the identification of (man-made) 
objects. Evidently, the quality of the identification (the certainty of the generated hypothesis 
about the object's identity) increases when more a priori information about the object is 
available and actually used in the recognition process. All systems discussed here and proba­
bly most others as well suffer from the fact that they can only detect a limited number of fea­
tures (if they are able at all to detect them). It is shown that identification upon a single fea­
ture or a single modality will not result in a sufficiently high certainty. The key solution to 
this problem is the use of a multi-sensor system, that is designed to detect various features of 
different nature. A proper combination of the individual results (sensor or data fusion) should 
enhance the overall quality of the identification. 
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