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1. Introduction 

1.1. Historical and scientific context 

In 1908, for the first time natural helium was liquefied by Kamerlingh Onnes 
(1908). About thirty years later, in 1939, it was discovered that helium has two 
stable isotopes: 4He and 'He (Alvares and Cornog 1939). Natural helium 
contains about 10-140 ppm 'He. After the Second World War the investiga- 
tion of 'He and 3He-4He mixtures at low temperatures was started. In the 
pioneering period, mixtures of 3He and 4He, with a few percent 3He content, 
were obtained by enriching natural helium (Beenakker and Taconis 1955). 
The first 'He from nuclear reactions became available in 1948 (Abraham 
et al. 1950). This led to an intensified investigation of pure 'He and 'He-4He 
mixtures. 

The first review in Progress in Low Temperature Physics on the properties 
of mixtures was given in 1955 by Beenakker and Taconis. At that time many 
of the mixture properties were not well understood. By the time of the second 
review by Taconis and de Bruyn Ouboter (1964) many more aspects were 
fairly well understood, although the existence of a tricritical point in the 
3He-4He phase diagram (Cohen and van Leeuwen 1960) and the finite 
solubility at absolute zero (Edwards and Daunt 1961, Edwards et al. 1965) 
were well established only (shortly) afterwards. Especially, the latter dis- 
covery opened the way to new areas of low-temperature research and to the 
important application in dilution refrigeration (London 1951, London et al. 
1962). 

The experimental properties of pure 'He and dilute solutions of 'He in 
supertluid 4He at very low temperatures, with special attention to dilution 
refrigerators, were reviewed by Wheatley (1970). 

In the above paragraphs reference is made only to general reviews of 
3He-4He properties in Progress in Low Temperature Physics. Other reviews 
are written by Radebaugh (1967), Peshkov (1968), Ebner and Edwards (1971), 
Ghozlan and Varoquaux (1979), Bashkin and Meyerovich (1981), and 
Donnelly (1 987). Books containing important chapters on 3He-4He mixtures 
are written (or edited) by Wilks (1967), Keller (1969), Lounasmaa (1974), 
Armitage and Farquhar (1975), Betts (1976), Ruvalds and Regge (1978), and 
Baym and Pethick (1978). 

The developments in the understanding of 3He-4He mixtures in the 
seventies and the eighties took place in the microscopic description, and 
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along the lines of thermodynamics, hydrodynamics, sounds and the associ- 
ated dissipative effects, convection, phenomena near the lambda line and the 
tricritical point, thin films, and spin-polarized systems. Furthermore, the 
better understanding of the mixture led to the perfection of dilution refriger- 
ators. 

The physics of 3He-4He solutions is too extensive to be covered by one 
single review. This chapter will deal with the thermodynamics and hydrody- 
namics of the bulk liquid at low temperatures and zero pressure. We will now 
give a summary of recent papers and reviews which are related to this subject, 
but not treated here. We hope that this may serve as a guide for further 
reading. 

Recent papers concerning the microscopic aspects of 3He-4He mixtures 
are written by Jackson (1982), Pfitzer (1985), Hsu and Pines (1985), Fabrocini 
(1986), de Bruyn Ouboter and Yang (1987), Sridhar and Shanthi (1987), 
Dalfovo and Stringari (1988), Pang (1988), Singh (1988), and Devreese et al. 
(1989). Adamenko and Rudavskii (1987) have reviewed the kinetics of the 
phonon-impurity system of 3He-4He superfluid solutions. Work regarding 
the various types of sounds is reported by Fujii et al. (1986), Lea et al. (1987), 
Wiegers et al. (1988), and Adamenko et al. (1988). Recent papers on thermal 
convection are written by Fetter (1982), Ecke et al. (1987), Bloodworth et al. 
(1987), and Ardron et al. (1987). Meyer (1988) has reviewed the transport 
properties near the lambda line and the tricritical point. The properties of 
spin-polarized 3He-4He mixtures have been reviewed by Meyerovich (1987). 
Properties of thin films have recently been described by Laheurte et al. (1987), 
Papoular and Romagnan (1987), Krotscheck et al. (1988) and Valles et al. 
(1988). 

1.2. Outline 

The specific heat of liquid 3He-4He mixtures is usually written in terms of the 
sum of the specific heat of a 3He-quasiparticle gas and the specific heat of the 
pure 4He component. In sect. 2 the thermodynamics based on this starting 
point is derived. Relations of important quantities and their low- and high- 
temperature limits are given. These are used to derive expressions for the 
velocity of second sound. This latter quantity is a very important source of 
information for the Fermi gas properties. The work in this field is critically 
reviewed. Finally, the Fermi gas parameters are summarized. 

In sect. 3 the experimental aspects of the 3He-4He hydrodynamics are 
treated. The appearance of mutual friction, which has long been neglected in 
this field, is discussed, together with the properties of the critical velocities. 
The phenomenological equations of motion are given. Attention is paid to 
the experimental results in the 0.7 to 2 K region, where the rotons and 
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phonons play a n  important role, and to the temperature region below 
250 mK, where the 4He excitations can be neglected. 

The occurrence of mutual friction is a strong indication that 4He vortices 
play an important role in 3He-4He hydrodynamics. In sect. 4 first the 
hydrodynamic expressions are derived from the thermodynamics of irrevers- 
ible processes, along the lines of Khalatnikov (1965), and de Groot and 
Mazur (1962). From the equation of motion of quantized 4He vortices, the 
observed cubic velocity dependence of the 4He chemical potential difference 
is explained on purely dimensional grounds. A differential equation is given 
from which the temperature profile (and the profiles of the pressure and 3He 
concentration) in a cylindrical tube in which 3He flows through superfluid 
4He, can be calculated. 

In sect. 5 the results of the previous sections are applied to dilution 
refrigerators. It is emphasized that, on the one hand, mutual friction can 
degrade the performance of these machines but, on the other hand, that it is 
essential for their proper operation: in 3He-circulating refrigerators mutual 
friction prevents the formation of a destabilizing superfluid “plug” at the 
concentrated side. In 4He-circulating machines the 3He circulates internally 
between the mixing chamber and the demixing chamber under the action of 
mutual friction. Especially, in the latter case mutual friction plays an essential 
role in the proper operation of the machine. 

In the last section we compare the 3He-4He hydrodynamics with the 
hydrodynamics in pure 4He-II and discuss our point of view on the state of 
affairs in 3He-4He thermodynamics and hydrodynamics. 

2. Thermodynamics of 3He-4He mixtures 

2.1. Introduction 

In this section we derive the expressions for thermodynamic functions of state 
of 3He-4He-II mixtures at zero pressure, and related quantities such as the 
osmotic pressure and the velocity of second sound. 

The specific heat of liquid 3He-4He mixtures is often treated as the sum of 
a 4He contribution and a 3He contribution. The 4He is superfluid whereas the 
jHe behaves as a gas of quasiparticles. We derive relations which follow 
immediately from this separation of the specific heat. In the next section it is 
assumed that the quasiparticles are Fermi particles with an excitation spec- 
trum which is nearly quadratic. The deviations of the quadratic spectrum are 
small and are treated in a first-order approximation. Therefore, we will call 
the gas a nearly ideal Fermi gas. At present, the 3He contribution to the 
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specific heat, second sound, osmotic pressure, etc. are usually described with 
this model. 

Relations are derived which are valid at all temperatures. These relations 
serve as the basis for deriving expressions in the low-temperature and high- 
temperature limits, which are of practical importance e.g. for the interpreta- 
tion of the measurements of the specific heat and second sound of dilute 
mixtures. In our view a consistent derivation is necessary because some 
derivations in the literature are inconsistent. Finally, recent experimental 
results of the thermodynamic properties of 3He-4He mixtures, interpreted in 
the framework of the nearly ideal gas, are shortly reviewed. 

Many aspects of the expressions for thermodynamic quantities of 3He-4He 
mixtures given in this chapter are presented before by other authors, e.g. by 
Radebaugh (1967), Ebner and Edwards (1971), Disatnik and Brucker (1972), 
Ghozlan and Varoquaux (1979), Greywall (1979), Corruccini (1984), Kuerten 
et al. (1985a, b), Bowley (1985) and Owers-Bradley et al. (1987). 

2.2. The quasiparticle description 

We start our discussion of the thermodynamics of 3He-4He-II mixtures by 
writing the molar specific heat of the mixture C, as 

C, (T, x) = xC( 3He) + (1 - x) C(4He), (1) 

with 

C(3He)=C,(T, x) (2) 

and 

C(4He)= Ct(T). (3) 

In these equations x is the molar 3He concentration, Cq is the molar specific 
heat of pure 4He at constant volume and C, is the specific heat of a 
quasiparticle gas at the same particle density as the 3He component. In this 
section we do not specify the nature of the quasiparticles. Equations (1)-(3) 
can be regarded as defining C,. The model in which the quasiparticles are 
treated as a nearly ideal Fermi gas is introduced in the next section. 

In general, the superscript 0 refers to a pure substance. The subscripts 3 
and 4 refer to 3He and 4He, respectively. Quantities corresponding to the 
quasiparticles in general have been represented by a lower index q. In the case 
the quasiparticle gas is considered as an ideal Fermi gas the quantities carry a 
lower index F. The corresponding quantities for the nearly ideal Fermi gas 
are denoted with an additional prime. In general, the variables of functions 
are written explicitly only when the function is introduced for the first time, or 
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when it is of particular importance for the understanding of the derivation. As 
the discussion is limited to the fluid properties at zero pressure, the pressure 
dependencies will not be given explicitly, except for the relations where the 
osmotic pressure is introduced. 

The entropy of the solution S ,  can be calculated as a function of Tand x by 
a single integration of C,/Tat constant x from T=O to T, since according to 
the third law S ,  at 0 K is independent of x. We put the entropies at 0 K equal 
to zero. The result is: 

(4) 

where S,O is the molar entropy of pure 4He, and S ,  represents the entropy of 
the quasiparticles. We like to point out that no term with -xln(x)- 
(1 -x)ln(l-x) (the classical entropy of mixing) should be added to S, 
(Greywall 1979, Husson et al. 1983). 

The internal energy Urn can be obtained from eqs. (1)-(3) by integration 
over T, and gives 

S,( T, X) =xS, (T, X) + ( 1 - x ) S ~ (  T )  , 

where U ,  and U: represent the internal energies of the quasiparticle gas and 
pure 4He, respectively. 

From eqs. (4) and ( 5 )  only differences between thermodynamic quantities at 
temperature T and T=O at a given concentration can be calculated. In the 
specification of the properties of the quasiparticles we still have to fix U,(O, x), 
the zero level of the energy. It will be taken in such a way that 

U,(O, x)=xU,(O, x)+(f -x)U,O(O). (6) 

U,(T, x)=xU,(T, x)+( l  -x)U,O(T). (7) 

This means that eq. ( 5 )  assumes the form 

We will take the internal energies of the pure components at 0 K to be equal 
to zero: U,O(O)=O and U,O(O)=O. In this case 

U,(O, x)= U ! N ,  4 ,  (8) 

where UE is the excess internal energy per mole solution. 
The molar volume V ,  is given by 

Vrn(x)= V:(l +xa), (9) 

where V: is the volume per mole of pure 4He and a is a constant (Bardeen 
et al. 1967). The molar volume V, will be considered to be pressure- and 
temperature-independent. 
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The molar Gibbs free energy G ,  follows from G ,  = Urn + p V, - TS,. The 
4He chemical potential follows from 

Substituting eqs. (4), (6) and (7) gives 

where G i  is the Gibbs free energy of pure 4He and Fq is the free energy of the 
quasiparticle gas. The last term in eq. (11) can be written as 

where we have used the relations aFq/ax = (aFq/a V)(dV/dx) and (aF,/aI/), = 

-pq. In these relations pq is the pressure of the quasiparticle gas at the same 
particle density as the 3He component. Furthermore, 

v= V,/X (13) 

P4(T, X)=G:(T)-Pq(T, x>v,". (14) 

is the volume per mole 3He. From eqs. (11) and (12) it follows that 

Equation (14) implies that the chemical potential of pure 4He at zero pressure 
is equal to the 4He chemical potential in the solution at a pressure pq. 

In the thermodynamics and the hydrodynamics of mixtures the osmotic 
pressure n plays a central role. It can be defined in two equivalent ways: 

In eq. (16) we have written the pressure dependence of the chemical potential 
explicitly. At low values of p ,  Tand x the right-hand side can be expanded to 
first order, yielding 

P4(P, T, x)=G&, T)-n(T ,  w,". (17) 
Comparing eq. (14) with eq. (17) shows that the osmotic pressure can be 
identified with the pressure of the quasiparticle gas: 

x )  = P q V ,  x). (18) 

P 3 K  x)=G,(T,  X ) - P , ( T  X)V3. (19) 

In a similar way an expression for p 3  can be derived resulting in 
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The 3He partial volume V3 = V,"( 1 + LX). Equation (19) implies that G, is equal 
to the 3He chemical potential p 3  in a solution at a pressure pq (Ebner and 
Edwards 1971). 

Equations (17) and (19) are consistent with the Gibbs-Duhem relation 

xdp3+( l  -x)dp4= -S,dT+ V,dp, (20) 
as can be verified by substitution, keeping in mind that (aG,/ap,)= V.  The 
expressions for p3 and p4 given by Greywall (1979) and Husson et al. (1983) 
are not consistent with eq. (20). 

Equation (20), applied at T=O and p=O and making use of eqs. (14) and 
(18) gives 

In this equation xo is the concentration of the dilute saturated solution at 
0 K. The chemical potentials of pure 3He and 4He are zero at 0 K, so p 3 ( 0 ,  xo) 
=C!(O)= U!(O)=O and G:(O)=O. 

In eq. (21) n,(x) is the osmotic pressure at 0 K. It is related to the excess 
internal energy through eqs. (8), (10) and (1 7), keeping in mind that Gm = U ,  
at T=O. The osmotic pressure at  nonzero temperatures, and the other 
thermodynamic quantities can, thus, be calculated from the excess internal 
energy (or the osmotic pressure at zero temperature) and the specific heat of 
the quasiparticle gas. 

The excess enthalpy HE is defined as 

HE( T, X) = H,( T, X) - xH,O( T) - ( 1 - X) H z  (T), (22) 

where H ,  is the molar enthalpy of the solution, and H! and H: are the molar 
enthalpies of pure 3He and 4He, respectively. The excess enthalpy plays an 
important role in experiments where the two pure components are mixed, 
and in the comparison between the calculations and the experiments 
(Seligmann et al. 1969, Karnatsevich et al. 1984). 

Conservation of energy of adiabatic 3He flow through 4He-TT (Ebner and 
Edwards 1971), leads to 

HY =constant, (23) 

where HY is given by 

It is called the osmotic enthalpy per mole 3He. For low temperatures and not 
too low 3He concentrations the 4He contribution to the entropy is negligible. 
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2.3. The nearly ideal Fermi gas 

We will now introduce the assumption that the quasiparticles constitute a 
nearly ideal gas of Fermi particles. From this assumption relations are 
derived for the thermodynamic functions of state. The thermodynamics of a 
two-component mixture is treated in many textbooks; see e.g. Guggenheim 
(1967). For a detailed treatment of the thermodynamics of the ideal Fermi 
gas, the reader is referred to general textbooks on statistical mechanics, e.g. 
Huang (1987). 

The separation of the mixture specific heat as represented by eqs. (1)-(3), 
with C, equal to the specific heat of a Fermi gas, is based on the theory of 
Pomeranchuk (1949). It was shown to be correct to order x for the first time 
by de Bruyn Ouboter et al. (1960). In fact, there is no reason why C(4He) 
should be absolutely independent of the 3He concentration. In the mixture 
the 4He occupies a larger volume than the same quantity of 4He in the pure 
phase. The difference between the true 4He contribution to the specific heat of 
the solution and the value of the pure fluid can well be of the order of 
4xaPV,0/k-,, where a p  is the isobaric expansion coefficient of 4He, V i  the 
molar volume of pure 3He, and xT the isothermal compressibility. For a 1 % 
mixture at T=OS K this term is about 1% of C,. 

A concentration dependence of C(4He) would affect the interpretation of 
C(3He) in terms of the Fermi gas specific heat, and all results derived from 
this, such as the value of the effective mass and the form of the quasiparticle 
excitation spectrum. In this review we will assume the validity of eqs. (1)-(3). 

In its simplest form the single-particle excitation spectrum is parabolic, as 
given by Landau and Pomeranchuk (1948). In this case one can apply the 
familiar ideal Fermi gas statistics at a given fixed concentration. 

The excitation spectrum of the Fermi particles and their effective mass can 
be determined from measurements of the specific heat, the osmotic pressure, 
second sound, the normal-component density (Esel'son et al. 1976, Pogorelov 
et al. 1979) and neutron scattering. It turns out that the excitation spectrum of 
the 3He quasiparticles is slightly nonparabolic (see, e.g. Ebner and Edwards 
1971, Disatnik and Brucker 1972, Greywall 1979, Szprynger 1982, van der 
Zeeuw et al. 1984). 

The relations derived in the preceding section can be applied to the nearly 
ideal Fermi gas. The lower index q has to be replaced by a lower index F and 
a prime. 

To second order in k2 the excitation spectrum is represented by 

E ( X ,  k)=Eo(x)+E;(x, k), (25) 

with 
h2 k2 

2m* ( x )  
E L ( &  k )  =- (1 +Yk2) 3 
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where m*(x) is the quasiparticle effective mass at  concentration x, k is the 
magnitude of the wave vector, h is Planck’s constant divided by 28 and c O ( x )  
is the potential energy of the quasiparticles. The form of the excitation 
spectrum given by eq. (26) was proposed by Brubaker et al. (1970). The 
parameter y is a measure for the nonparabolicity of the excitation spectrum. 
The presently accepted value is about -0.08 A’. 

As eq. (26) is a development of E to second order in k’, there is no point in 
expressing derived quantities to higher than first order in y. Strictly speaking, 
third-order terms in k2 are of importance in view of the high accuracy of the 
measurements of the specific heat and the second-sound velocity. So higher- 
order terms should be included in the description of 3He as a nearly ideal 
Fenni gas. In our treatment we confine the calculation to the second order in 
k’. The validity of the relations is limited accordingly. 

The density of states &(E,  E ~ ) ,  derived from eqs. (25) and (26), for quasipar- 
ticles with a mass m* and molar volume V is given by 

and 
~ Z ( E ,  E ~ )  = 0 for E < c 0 ,  

with 

We introduced a characteristic temperature T, defined by 
-hZ 

5ym* k, ’ 
T , ( X )  = ~ 

where k, is Boltzmann’s constant. The value of TF is weakly concentration- 
dependent due to its dependence on m*. Typically, it is of the order of 10 K. 
Furthermore, we introduce a parameter g given by 

g ( x ) =  - T F / T g -  (30) 

In this discussion TF is the Fermi temperature of the ideal Fermi gas given by 

h’ 
2m* k, 

T,(x) = ~ ( 3R2 !%>,,’. 

Here NA is Avogadro’s number. The value of TB for a 1% mixture is about 
100 mK and varies approximately as x2I3. Typically, g x  -0.01. 

The parameter g can be rewritten as 

3n2NA ’ I3  
9 = +Y ( T) 
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which shows that g is related to the ratio of y and square of the average 
particle distance. 

The chemical potential is determined by 

Here P = l/k, T and q; is the reduced chemical potential, defined by 

&=(Pk- U O ) / W  (34) 

where R is the molar gas constant, 
and U, = N A E O .  Introducing the Fermi functions F,(q) (n> - 1) defined by 

the chemical potential per mole of 3He 

The parameter t represents the reduced temperature defined by 

The reduced chemical potential qF of the ideal Fermi gas is determined by 
eq. (36) with g = 0 

t = TITF. (37) 

1 = j t 3 '2  FllZ(qF). (38) 

In eq. (36) the argument q; of the function F3/2  may be replaced by qF as we 
are interested only in a first-order approximation in g.  With eqs. (36), (38) and 
using the general relationship 

dF,/dq = nF,- (39) 

between Fermi functions, we get 

so for n > 0 to first order in g 

Fn+2gtnF,-,- 

The lower index F of the brackets in eqs. (40) and (41) indicates that the 
argument of the Fermi functions is qF instead of qk. As can be deduced from 
eq. (38) qF is a function of t only. 

The product gt = - TIT, is equal to five times the parameter G as intro- 
duced by Bowley (1985). It plays an important role in the discussion to follow. 
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In low-concentration specific heat measurements gt is typically in the range 
-0.001 to -0.1. 

The internal energy per mole of quasiparticles is given by 

With the density of states given by eq. (27) and using eqs. (30), (31) and (37) 

The pressure satisfies 

p; V = k , T  H;(E, O)ln[l +exp(&-&)]ds. !: 
Integration by parts results in 

(44) 

With eqs. (34) and (40) the chemical potential p;7 = Gk can be calculated. 
Using the general relation G = U + p  V -  TS and using eqs. (34)-(45), the 
thermodynamic functions of state can be calculated. The expressions for the 
ideal gas can be obtained by putting g=O (and, hence & = r f p )  in these 
equations. The deviations of the expressions for the nearly ideal gas and the 
ideal gas are to first order proportional to g, and are tabulated in table 1. 

2.4. The thermodynamic properties below 250 mK 

In 1967 Radebaugh published calculations of the thermodynamic quantities 
of 3He-4He mixtures. However, his results did not agree with later measure- 
ments on the osmotic pressure (Landau et al. 1970, Ghozlan and Varoquaux 
1979) and the osmotic enthalpy (de Waele et al. 1983). 

Near T=O it  holds that qF2:l/t .  With this result the OK values of the 
thermodynamic functions of state discussed in the previous section can be 
calculated (table 1). 

Kuerten et al. ( 1  985) performed calculations, starting from experimental 
values of the molar volumes, specific heat, and the osmotic pressure at 0 K. 
For fixed concentrations the expressions for the ideal Fermi gas were used. 
The calculations were restricted to zero pressure, 3He concentrations below 
8%, and temperatures below 250 mK. The important features of this calcu- 
lation are summarized below. 

The calculation scheme is shown in fig. 1. The quantities on the top line 
were deduced from experiments. The molar volume V,  is given by eq. (9), 
where V: = 27.58 x m3/mol and a = 0.286. The values of no, the osmotic 
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TABLE 1 
Summary of the deviations of the ideal Fermi gas behaviour, giving the general 
expressions, the T= 0 and the high-temperature limits, respectively. Note the 
definition of the symbol Q which is used to give an expression for the specific 
heat. The expression for (pn3 V - M * ) / g M *  is obtained from eq. (68). 

Zero-T High-T 
Function Expression Value Value 

Fk-  F ,  

g R  TF 

c, - C,  

gR 
dQ/dt 0 

- 4 
5 

” ‘I1/’  
4 2 x  

- 3 t  

- 3t 

- 2t  

pressure at 0 K, were derived from measurements by Landau et al. (1970), 
Landau and Rosenbaum (1973) and by Ghozlan and Varoquaux (1979). The 
fit to a theoretical formula of Varoquaux (1971) of Landau’s results for T=O, 
yields 

813 

no@) = 309.2 (&>”’ - 132(&y - 691 (&) &Pa). 

(46) 

This formula was used for concentrations up to 8%. 
The specific heats of pure 4He and ,He used in the calculations were 

deduced from the measurements of Greywall (1978a, b, 1982). Furthermore, a 
concentration-independent effective mass m* = 2.46~1, was used, where m3 is 



Ch. 3,52 THERMO- AND HYDRODYNAMICS OF 'Hee4He MIXTURES 181 

I 

1 

Fig. 1. Calculation scheme used by Kuerten et al. (1985) to calculate the thermodynamic 
functions of state below 250 mK. The quantities on the top line are the input data. The subscript 
e in this figure refers to quantities deduced from experiments. The subscript c refers to calculated 

quantities. 

the 3He atomic mass. As stated before, in general, m* is concentration- 
dependent. However, the value of 2.46m3 is a good compromise between the 
values deduced from specific heat (Anderson 1966, Greywall 1979) and 
osmotic pressure for concentrations between 1 YO and 6.6%. Furthermore, the 
value is in agreement with the recent measurements of Fukuyama et al. 
(1 988). 

In a saturated solution the chemical potentials of the 3He component in the 
concentrated phase and the dilute phase are equal. At low temperatures 
the 4He in the concentrated phase can be neglected. The concentration of the 
saturated dilute solution x,( T )  then follows from 

Different measurements of xo do not give the same result (Watson et al. 
1969). The value xo=0.066, as chosen by Kuerten, is consistent with the 
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measurements of Abraham et al. (1969) and Fukuyama et al. (1988). The 
effects of temperature and magnetization on the maximum solubility were 
recently discussed by Dalfovo and Stringari (1988). 

The thermodynamic quantities, calculated according to this scheme, are 
tabulated by Kuerten et al. (1985b) as functions of x and T. The calculated 
osmotic pressure at finite temperatures fits Landau’s data within 1%. The 
main results are summarized in fig. 2, which is a TZ-x diagram with lines of 
constant osmotic pressure (isotones), constant osmotic enthalpy and the 
phase separation curve. It has the same meaning and importance for dilution 
refrigeration as enthalpy diagrams for refrigerator engineering in general. 
Heat flows and cooling powers can be derived from it. 

The change in (osmotic) enthalpy along the phase separation line deter- 
mines the cooling power of the mixing chamber. The variation of Hg” along a 
line of constant osmotic pressure gives the cooling power of the dilute flow in 
the heat exchangers in the limit of zero dissipation. Furthermore, with the 
isenthalps, the x-T dependence in channels with adiabatic flow of 3He in 4He 
can be determined from the temperature and concentration at the tube 
entrance. 

The relationship between T Z  and x of the isenthalps is in good approxima- 
tion linear in a large region of the Tz-x diagram as shown by the calculated 
diagram (fig. 2) and the measurements (see fig. 6). 

The low-temperature limits of some important quantities are given in table 
2. The Fermi gas entropy is 

S,=CdT, with C,= 104.3 Jmol-’ K-’, (48) 

v,, =4.26 x loT4 m3/moi. (49) 

and V,, the volume per mole of 3He at concentration xo satisfies 

The validity of the calculations of Kuerten et al. was demonstrated by 
comparing the values of H E  at 0 K, and p 3  determined by Seligmann et al. 
(1969), with the calculations. 

2.5. High-temperature limits 

Many measurements of the specific heat and the velocity of second sound are 
performed in the concentration and temperature region where t B 1 but still 
JgtJ Q 1. In this region one may apply the general relations given above in the 
high-temperature limit. 

Expressions for the thermodynamic functions of the ideal Fermi gas in the 
high-temperature limit are given by Greywall (1979). However, our equations 
differ in several ways from the starting equations of Greywall (see sect. 2.3.). 
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Fig. 2.  The T2-x diagram with isenthalps (dashed curves), isotones (full) and the phase 
separation curve, n in Pa and HY in J/mol. 

In the high-temperature limit the Fermi functions [eq. (35)] satisfy the 
relation 

F ,  = nF,- (50) 

(51) 
q;;=qp+7gt. 3 

v ; - ( t , . ~ ) ~ U ~ + 3 R T ~ c ( l + B t - ~ ’ ~ - g g l ) ,  (52 )  

so eq. (40) gives 

The quasiparticle internal energy is given by 

0.005 - 

- 
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TABLE 2 
Values of F(0,  x o ) ,  F,, F ,  and F, ,  where F represents x ,  H Y ,  l7, p and p 3 ,  respectively. The 
parameters F ,  and F ,  represent the coefficients in the series expansion of F ( T , x )  in the 
neighbourhood of T=O and x = x o ,  so F(T, x)= F ( 0 ,  xo)+ F x ( x - x o ) + F , T 2 .  The parameter F ,  
represents the coefficient in the series expansion along the phase separation line: F ( T ,  x , )  
= F(0,  xo) + F,  T2. 

X 0.066 1 0 0.506/KZ 
H? 0 J/mol 17.58 J/mol 84.06 J/mol KZ 92.95 J/mol K2 
n 2209 Pa 45.0 kPa 81.7 kPa/Kz 104.4 kPa/K2 
P3 0 J/mol 17.58 J/mol -20.28 J/molK2 -11.39 J/molK2 
P4 - 60.92 mJ/mol - 1.242 J/mol - 2.253 J/mol KZ - 2.882 J/mol K2 

where B= 1 / m  gives the first-order term in the high-temperature ex- 
pansion of the internal energy of the ideal Fermi gas (Stoner 1938). The high- 
temperature limits of the deviation of the ideal-gas functions of state are given 
in table 1. 

The temperature derivative of eq. (52) gives Ck: 

This equation shows that in the high-temperature limit the specific heat 
increases with temperature (de Bruyn-Ouboter et al. 1960, Greywall 1979, 
van der Zeeuw et al. 1984, Owers-Bradley 1988). The slope is a direct measure 
of Tg  and, hence, of y (Greywall 1978a, b). 

Using the value of the correction of the pressure of the nearly ideal Fermi 
gas in the high-temperature limit (table 1) and the relation pFV=$UF we 
obtain 

(54) 
R T  

p’ --( 1 + Bt - 3/2 + @gt- 112). 
F -  v 

For t %= 1 this equation gives van’t Hoff’s relation. Ebner (1967) has derived an 
expression for the osmotic pressure in the high-temperature limit, extending 
the work of Bardeen et al. (1966, 1967) to higher temperatures. 

2.6. The velocity of second sound 

The velocity of second sound is one of the main sources of information on the 
Fermi gas parameters of 3He (van der Boog et al. 1978, 1981a, b, Greywall 



Ch. 3, $2 THERMO- A N D  HYDRODYNAMICS OF 3He-4He MIXTURES 185 

1979, Greywall and Paalanen 1981, Husson et al. 1983, Corrucini 1984, 
Bowley 1985, 1988). The basic equations for the velocities of first sound, u, , 
and second sound, u-, are given by Khalatnikov (1965): 

where the plus sign holds for first sound and the minus sign, for second sound. 
In eq. (55 )  u1 is given by 

u:=(1 + d ) ( $ )  T , 

and u2,  

where 

and 

where S4 is the partial entropy of the ‘He component and u2 is equal to the 
velocity of second sound to first-order. In these expressions M, is the molar 
mass of the mixture, M4 is the ‘He molar mass, ps (p , )  is the superfluid 
(normal fluid) density and p is the density of the solution. 

The relative difference of u? and u$ is about ( ~ ~ / u ~ ) ~ d .  The ratio u2/ul is 
typically 0.1, and d z 0.16~. Therefore, practically speaking, u - z u2. 

From eq. (57), p. can be derived from the measured velocity of second 
sound, provided the temperature and concentration dependences of w and d 
are known. The so-called “inertial effective mass” can be obtained from this 
by subtracting the density of the normal ‘He-11 component. 

In this section we discuss the relations for the velocity of second sound 
within the framework of the previous sections. A theory of first and second 
sound has been given by Brucker et al. (1976). 

Equation (58) can be simplified as follows. S,= -(a~‘/a7‘)~, so 
S,(aT/aS,),  = - ( a ~ ~ / a S , ) ~ .  Hence, 
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With 

and eq. (4) we obtain 

This expression for w has been derived before by Ghozlan and Varoquaux 
(1969). Together with eq. (17) it shows very elegantly that second sound can 
be considered as an adiabatic osmotic pressure wave (Corrucini 1984). Note 
that eq. (62) does not contain the parameter CI as erroneously derived by 
Bowley (1985). 

We will consider the expression for the second-sound velocity in the 
temperature region where the 4He contribution to the entropy can be 
neglected (so S,/x = Sk), and at the same time the high-temperature limiting 
values of the Fermi gas properties can be applied. In this case the contribu- 
tion of the pure 4He chemical potential (the fountain term) may be neglected 
and we may write 

In order to obtain the high-temperature limit we write 

We use eq. (54) and note that (atlax),,, is, to first order, proportional to g. 
Therefore, we may put p k  = pF in the second term, as the difference between p b  
and pF results only in a term which is of second order in g. After a little 
algebra, expressing the first term in CI and 6 (de Waele and Kuerten 1989), we 
obtain 

(65) w ={xxRT( 1 + B t - 3 / 2  - 2 a x - 3 6 ~  ++gt), 

where eqs. (9), (13), (31) and (32) are used. The parameter 6 determines the 
concentration dependence of the effective mass according to 

m*(x)  = m:(l +x6), (66) 

where rnt is the quasiparticle effective mass at zero concentration. 
Expression (57) contains the normal fluid density pn which also contains a 

contribution from the 3He component. This contribution is given by Wilks 
(1967) and Greywall (1979): 
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where fFD= [l + e x p { B ( ~ - ~ ~ ) - & } ] - ~ .  After integration by parts, pn3 can be 
expressed in terms of Fermi functions according to 

M* 
pn3=- [ 1-4 3 g $ j r  t 

with M*=m*N,. 

eqs. (9) and (66) gives to first order in ax, Sx and g 
Using the high-temperature limiting values of the Fermi functions with 

M,* 
v40 pn3 =x-( 1 -ax + 6x-2gt). 

Furthermore, 

ps N p - pn3 1% [ 1 -0.25x - ax - x ~ Mgl M4 

and 

x = 1 - 0.25~.  M3-M4 -- M ” - l +  
M4 M4 

Finally, we note that the parameter d [eq. (59)] is to lowest order given by 

Combining the equations given above results in the equation 

Equation (73) contains terms due to the Fermi character of the quasiparticles 
(lW3/’), the deviation of the ideal gas excitation spectrum (2 .8gt ) ,  the 
concentration dependence of the effective mass ( -  1.6Sx), and the concentra- 
tion dependence of the molar volume (the a-dependent terms), respectively. It 
clearly shows the relative importance of each of the contributions. 

The data of Greywall (1979), and Greywall and Paalanen (198 1) have been 
reanalyzed by Bowley (1985, 1988). 

2.7. Summary of experimental results 

The first experimental data on mixture properties at low temperatures were 
analyzed in terms of the ideal Fermi gas. After the discovery of the non- 
parabolic excitation spectrum the data have been analyzed according to this 
new insight. This was encouraged by the availability of high-precision data 
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on the specific heat and the velocity of second sound. Bowley (1985) fitted the 
data of Greywall (1979), and Greywall and Paalanen (1981) taking into 
account the effects of the interactions between the 3He quasiparticles and 
their dispersion. Recently, the same data were reanalyzed once more (Bowley 
1988) using the new temperature scale introduced by Greywall (1985). The 
value of the parameter y is found to be about -0.08 A2. 

Heat capacity measurements of 0.44%, 1.07% and 2.6% mixtures, were 
performed by Owers-Bradley et al. (1987). In this paper they also gave a short 
review of the various experimental results of the quasiparticle effective mass 
at zero concentration. For completeness we present a summary in table 3. 

3. Hydrodynamics: experimental results 

3.1. Introduction 

In the early days of dilution refrigeration the possible existence of mutual 
friction between 3He and 4He was a source of concern. The first 3He 
circulating machine (Das et al. 1964) was equipped with a superleak shunt in 
the dilute channel to avoid possible harmful effects of mutual friction. 
Wheatley and his co-workers (1968b, 1971) designed 3He circulating dilution 
refrigerators taking only viscous effects and heat conduction into account. In 
1971, they measured the temperature increase in a flow impedance consisting 
of an annular space between two cylinders. The results were in agreement 
with the so-called mechanical-vacuum model. This is a model in which the 

TABLE 3 
Summary of the experimental values of m;. 

References m:/mj Method 

Edwards et al. (1965) 2.5 Specific heat 
Anderson et al. (1966ULandau 

et al. (1970) 2.34 Specific heat 
Landau et al. (1970) 2.24 Osmotic pressure 
Varoquaux (1971) 2.26 Osmotic pressure 
Greywall (1978a, b) 2.28 Specific heat 
Greywall (1979) 2.341 Specific heat, Second sound 
Sobolev et al. (1979) 2.28 Normal component density 
Ghozlan and Varoquaux (1979) 2.255 Review 
Polturak and Rosenbaum (1981) 2.38 Specific heat 
Chocolacs et al. (1984) 2.34 Specific heat 
Owers-Bradley et al. (1987, 1988) 2.226 Specific heat 
Bowley (1985, 1988) 2.272 Second sound 
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3He is assumed to move with respect to the superfluid 4He without mutual 
friction. Possibly, as a result of the successful operation of machines without 
superleak the question of the existence of mutual friction in mixtures was 
shifted to the background. 

Discrepancies with the mechanical-vacuum model have been reported 
occasionally, especially, in high-circulation machines. In 197 1, Niinikoski 
reported the observation of large osmotic pressure differences between the 
mixing chamber and the still, which were not compensated by a fountain 
pressure or by a pressure drop due to the viscosity of the solution. In 1977, 
anomalous dependence of the ’He flow rate as a function of the still heating 
power was observed in Grenoble (Frossati et al. 1977). 

At the Eindhoven University of Technology, a more extensive study on 
these discrepancies was triggered by the discovery of the anomalous behav- 
iour of the difference in heights of the phase boundaries in a double mixing 
chamber (Coops et al. 1982). 

In this section, firstly, experimental work concerning the flow properties 
above 0.7 K are discussed. In the main part of this section, the results of the 
investigations in Eindhoven, concerning the flow properties below 250 mK, 
are described. 

3.2. Flow properties in the 0.7-2.17 K range 

At temperatures above 0.7 K the ’He flow properties are dominated by the 
strong coupling with the normal 4He component. This leads to the so-called 
“heat flush” effect where a heat flow in a ’He-4He mixture carries the ’He 
along with the normal component of the 4He. In experiments where the ’He 
is not circulated, it is very difficult to obtain a stationary state. In principle, 
3He can be circulated as in a ’He dilution refrigerator but, to our knowledge, 
this kind of experiments has never been performed at  high temperatures. 

In the early days of the mixture investigations, the heat-flush effect was 
used to increase the 3He concentration starting from natural helium. In 
Lancaster, McClintock and his co-workers developed a technique based on 
the heat-flush effect to purify natural helium to an extremely high degree 
(x<5 x (Hendry and McClintock 1987). With high-purity 4He it is 
now possible to study advanced topics such as the determination of the 
Landau critical velocity (Ellis and McClintock 1985), and macroscopic 
quantum tunneling of vortices in He-I1 (Hendry et al. 1988). 

In Leiden, Mudde and van Beelen (1987), and Mudde (1989) have investi- 
gated thermal counterflow properties of mixtures in a capillary of inner 
diameter D=O.1 mm (fig. 3) above 1 K. Below normal-component velocities 
of uc= 106 mm/s the temperature along the tube was remarkably constant. 
This is the result of the requirement that in quasisteady flow the entropy flow 
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Fig. 3. Experimental set-up and results from the Leiden group (Mudde and van Beelen 1987). 
The top of the figure represents the experimental arrangement. A heating power Q is supplied to 
cell Vk containing a 3He-4He mixture. The pressure in the cell is measured with a pressure gauge 
C,. The cell is connected with a reservoir via a capillary of inner diameter 0.1 mm. The 
temperature profile is measured with five thermometers. The time variation of the concentration 
in the reservoir is measured with a parallel-plate capacitor. In the lower part of the figure the 
points represent the temperatures in a quasisteady flow experiment, measured at the moment 
when Tk- To passes the (arbitrary) value of 27.5 mK. All temperature profiles for normal fluid 
velocities below 106 mm/s coincide, and the T-gradient is zero. For velocities larger than this 

value the temperature gradient is nonzero and flow-dependent. 

and the 3He flow must be almost constant. The product u,D = 10.6 mm'/s is 
in agreement with the corresponding product in pure 4He-II (see, e.g. Tough 
1982) and in 3He-4He mixtures below 250 mK (Zeegers et al. 1987). 

Partly as a result of their work on the vortex cooler, Satoh and his co- 
workers (Okuyama et al. 1987) in Sendai have studied the flow properties in 
the 0.7-1.3 K range. NMR was used to measure the time dependence of the 
3He concentration in an upstream cell, from which the normal-component 
velocity is derived. The measurements in 0.1 and 0.2 mm diameter tubes 
showed two critical velocities with u,D products of 25 and 50 mm2/s, respect- 
ively. These values are about a factor 2 higher than those found by other 
authors. 

We like to point out that the temperature region of 0.5 to 1.2 K is very 
interesting since here the transition takes place from the low-temperature 
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regime, where the phonons and rotons can be completely neglected, to the 
high-temperature regime where the flow is dominated by these ,He excita- 
tions. Unfortunately, so far, no systematic investigations have taken place in 
this temperature region. 

3.3. Flow properties in the 10-250 mK range 

3.3.1. Introduction 
Below 500 mK the densities of the phonons and the rotons are low and have a 
negligible effect on the 3He flow properties. In this temperature region, 
steady-state experiments are fairly easy to perform. The 3He-circulating 
dilution refrigerator is the natural instrument for studying the 3He-4He flow 
properties. For an introduction to dilution refrigeration we refer to the book 
of Lounasmaa (1 974). 

In this section we describe the experiments at  temperatures between 10 and 
250 mK, performed at the Low Temperature Physics group of the Eindhoven 
University of Technology (see Castelijns et al. 1985, Kuerten et al. 1986a, b). 
In these experiments the changes of the pressure, temperature and 3He 
concentration across a large variety of flow impedances were determined. 
Three flow rate regimes can be distinguished: the high flow rate regime, where 
the gradient of the ,He chemical potential in a cylindrical capillary satisfies a 
cubic velocity dependence; a low flow rate regime, where p, is constant; and a 
transition region, where critical velocities are observed. 

Here we first give the experimental set-up. Next, the experimental results in 
the high flow rate regime are described. Finally, the measurements of the 
critical velocities are presented. 

3.3.2. Experimental set-up 
The total molar rate of circulation in a dilution refrigerator, ri,, is the sum of 
the 'He circulation rate r i 3  and the ,He circulation rate ri,. It is imposed by 
the heating power Q, supplied to the still. The ,He flow rate ti, is, typically, a 
few percent of ri, and will be neglected. 

The mixing chamber (M) has an experimental cell (E) on top (fig. 4). In this 
context, lower indices m or e apply to properties in M or E, respectively. 

The temperature T, of the mixing chamber is imposed by means of a 
heater on the entrance tube. The 3He enters the mixing chamber at temper- 
ature Ti. It leaves the mixing chamber in the dilute phase through the flow 
impedance Z ,  and flows into the experimental cell E. The exit of E is 
connected to the dilute side of the heat exchangers. In E the temperature T, 
and the 3He concentration x ,  are measured. 

The flow impedance Z ,  is the flow channel under investigation. In general, 
it consists of a cylindrical capillary of length L and inner diameter D with 
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Fig. 4. Experimental set-up of the Eindhoven group. The mixing chamber (M) and an experi- 
mental cell (E) are connected by a flow impedance Z,. The temperatures at the mixing chamber 
entrance (T),  in the mixing chamber ( T , ) ,  and in the experimental cell (z) are measured. The 
'He concentration in E is measured with a plate capacitor. The pressure drop across the 
impedance is measured by a pressure gauge. In some cases the flow impedance was shunted by a 
superleak. The temperature T, is kept constant by adjusting the heating power Q, at the entrance 

of the mixing chamber. 

L % D. Tubes with lengths varying from 5 mm to 1.4 m and diameters from 0.1 
to 2.3 mm are investigated. Also, bundles of (sometimes more than 100) 
parallel capillaries, and slits are studied. 

Optionally, a superleak can be installed parallel to the flow impedance 
permitting 4He to circulate through 2, and the superleak (Castelijns et al. 
1985). In this review only experiments without superleak shunt will be 
discussed. In nonadiabatic flow experiments a heating power is supplied to 
the liquid flowing in 2,. Here we will concentrate on results of adiabatic flow 
experiments. 

The 3He concentration of the mixture in E is measured with an air 
capacitor using the fact that the relative dielectric constant E ,  of 3He-4He 
mixtures is equal to 1.0572-0.0166~ (Kierstead 1976). The capacitor consists 
of 23 plates with a clear distance of 0.2 mm (nominal capacitance 32 pF). The 
capacitance is measured with a bridge. The calibration is obtained from the 
values of the capacitance in vacuum, in pure 4He, and in the saturated 
mixture (6.6%). 



Ch. 3, $3 THERMO- AND HYDRODYNAMICS OF 3He-4He MIXTURES 193 

The 3He concentration in the mixing chamber, x,, is calculated from the 
measured temperature T, and the relation for the phase separation line 
(Kuerten et al. 1985b). 

The pressure drop Ap in the impedance is measured with a pressure gauge. 
In this gauge the capacitive coupling between a silver-plated Kapton foil and 
a fixed surface is a measure of the pressure difference across the foil. The 
gauge was calibrated in a 4He cryostat against the hydrostatic pressure head 
of a 4He liquid column for pressures between 0 and 300 Pa. 

The values of the osmotic pressures and chemical potentials of the mixtures 
in E and M are derived from the measured temperatures and concentrations 
using the expressions given by Kuerten et al. (1985% b). The osmotic pressure 
in the still is measured with a so-called London device (London et al. 1968, 
Varoquaux 1971). 

3.3.3. Experimental results, the high flow rate regime 
When the flow rate is increased at fixed T,, the 3He concentration x, 
decreases. The concentration is observed to vary linearly with the distance 1 
from the tube entrance. This holds even for concentrations varying from 
6.6% at the entrance to values as low as 3% at the exit. 

In fig. 5 some typical results of x,-ril measurements are given. The concen- 
tration at  the entrance x, x 6.6%. For most of the tubes the concentration x, 
decreases monotonically with increasing flow rate. Curve 4 represents the 
results of a tube with a small diameter (0.8 mm). It shows a kink at 
ril=0.3 mmol/s. For ri, >0.3 mmol/s, the concentration x, x 1.3%. Such a low 

0 i 0.5 1.0 

nt lmmol  Is) 

Fig. 5. Measured x e 4 ,  dependencies for four different sizes of 2,: (1) L =  23 mm, D =  1.6 mm; ( 2 )  
L=10.5mm,D=1.2mm;(3)L=23mm,D=1.2mm;(4)L=23mm, D=0.8mm.Themeasure- 
rnents are performed in the high flow rate regime, where mutual friction dominates. The lines are 

guides to the eye only. 
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x ,  value causes a very low 3He concentration in the liquid in the still, 
resulting in a high 4He contribution in the circulating mixture. Increasing the 
still heating power results only in a larger 4He contribution. 

The conservation of energy for a steady adiabatic flow of 3He through 
4He-II is formulated in eq. (23). In the T-x region of interest (10-150 mK, 
2-7% 3He), the enthalpy Hy is, in good approximation, a linear function of 
T 2  and x (fig. 2). Therefore, it is convenient to plot the experimental data in a 
T2-x diagram. 

In fig. 6 the measured T:-X, dependences are plotted for varying ri, and 
fixed T, (by adjusting Qi every time lit is varied). The measured T$x, curves 
follow lines of constant osmotic enthalpy. When the flow rate is increased, the 
temperature T, increases and the concentration x ,  decreases along an isen- 
thalp. Eventually, at large flow rates, T, will approach the temperature Ti of 
the 3He entering the mixing chamber. But T, can never be larger than Ti 
because the concentrated phase is cooled by the liquid in the dilute side of the 
heat exchangers. In practice, the upper limit for T, is 0.9Ti. When no heating 

J 

I I 1 I 1  

xe l%l 
5 6 7 

Fig. 6. T2-x diagram. The points represent measured dependences of Tz and x, when ri, is 
varied at fixed T,. Curves are shown for eight different mixing chamber temperatures. The 
points follow the lines of constant osmotic enthalpy in fig. 2. The line through one of the series of 
points represents the line of constant osmotic enthalpy in the low-temperature limit (see table 2). 

The heavy line represents the phase separation line. 
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power is applied to the mixing chamber Ti=2.8T,, so we get as the limiting 
case Tezz0.9T,w2.5T,. The limiting T2-xe relation is given by 

T ~ = O . ~ ~ ( X ~ - X , ) K ~ .  (74) 

The pressure difference Ap is measured as a function of it, for fixed values 
of T, in the range between 30 and 90 mK. From the measured T,, x, and Ap 
values, the 4He chemical potential p4, is calculated. The values of x, and p4, 
are obtained from the tabulated values at the coexistence curve. 

In fig. 7, some examples of the cube root of Ap4=p4,-p4, are plotted as 
functions of ri3 for flow rates much larger than the critical flow rate. The 
measured gradient of p4 and the 3He flow rate density j ,  = tiJA satisfy the 
relation 

where x is an empirical parameter equal to 11 x lo-' kgsm7/mol, which is 
not strongly temperature- and concentration-dependent. The total area of the 
cross section of the impedance is A. Relation (75) is of key importance for the 
understanding of mutual friction. It will be discussed in more detail in 
the next sections. 

'r- 

1 0.5 

n3 [mmolIs] 

Fig. 7. The cube root of Ap4=ple-p4m as a function of t i3 .  The symbols correspond to four 
different mixing chamber temperatures. 
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The osmotic pressures 17, (the osmotic pressure in the still) and 17, are 
equal within the uncertainties of the measurement. Large differences between 
17, and 17, are observed even though the pressure drop for the impedance 
used in the experiment was very small. This is a direct result of eqs. (17) and 
(75) which also explain the observation of Niinikoski (1971). 

The pressure drop Ap over Z, depends on the flow rate, the sizes of Z,, 
and the temperature T,. In general, Ap is determined by the combined effect 
of mutual friction and viscosity. At high flow rate densities in single tubes, the 
measured pressure differences are very small (1 Pa). It will be shown in 
sect. 4.4. that in these experiments mutual friction strongly dominates viscous 
effects. In order to investigate the combined-dissipation regime, where both 
viscosity and mutual friction play an important role, impedances are con- 
structed consisting of bundles of N identical parallel tubes each with diameter 
D N  and length L. The diameters DN are chosen in such a way that the total 
cross-sectional area of the various impedances is approximately constant 
( 2 N x D i  x 2  mm2). In this way the viscous contribution is increased when N 
was increased, while the mutual friction term is unchanged. 

In fig. 8 measured pressure differences over a bundle of 28 tubes are plotted 
for several values of T, as functions of n3. At low flow rates the viscous effects 
dominate. The values of the constant q d ,  giving the 3He viscosity q, according 
to 

? = q d /  T 2 ,  (76) 

are derived from the linear part of these graphs using the relation 

dP -= -qzn3 v,/x. 
dl (77) 

The q d  values vary roughly from 50 nPa s K2 at T, = 30 mK to 65 nPa s K2 at 
T, = 60 mK, in agreement with the measurements of Kuenhold et al. (1972). 
For higher flow rates the increasing temperature in the tube leads to a 
decreasing viscosity of the mixture. This effect results in a concave Ap-n3 
relationship. 

3.3.4. Critical velocities 
In this section we describe the observation of nonzero critical velocities in 
3He-4He mixtures in flow channels consisting of bundles of parallel tubes. As 
usual, the 3He flow rate was varied at constant T,, 

A typical example of the measured downstream temperature T, plotted as 
a function of the average 3He velocity is given in fig. 9. S6me of the 
measurements seem to show hysteresis around the transition. The critical 
velocity is not strongly temperature-dependent . This suggests that the critical 
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r I I I I I I 

Fig. 8. Pressure differences across a bundle of 28 parallel capillaries as functions of ri, for several 
constant values of T,. The lines are for visual aid only. The parameter qd is determined from the 

linear part of the curves. 

velocity is only a function of the density of the normal component, which 
does not change more than 3% in the temperature range. 

The critical velocity increases with decreasing tube diameter. The product 
u,D is plotted as a function of the diameter in fig. 10. For diameters above 
0.3 mm the value is about 15 mm2/s, comparable with the value in pure 

Below the critical velocity Ap4 =O. Just above the critical velocity the value 
of Ap4 is not given by eq. (79 ,  which is the limiting value at  large flow rates. 

Later on, Zeegers et al. (1989) found indications of a second critical velo- 
city uc2 in cylindrical capillaries. The values are about twice the first critical 
velocity ucl. No critical velocity is observed in flow impedances consisting of 

4~e-11. 
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Fig. 9. The measured temperature T, as a function of ri3 for T,=46 mK, determined with a flow 
impedance consisting of a bundle of 60 parallel capillaries, with L= 177 mm and D =0.3 mm. The 

critical velocity at a flow rate of about 0.55 mmol/s is clearly visible. 
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Fig. 10. The product u,D versus D. 

narrow slits. Presumably, the critical velocity is very small or zero in slits. 
Apparently, the appearance of critical velocities is determined by the geo- 
metry of the flow channel. It is an intriguing question whether the ratio 
ucz/ucl in cylindrical capillaries is equal to 2 for a fundamental reason. 
Probably, this question can only be answered when the mechanism for 
critical velocities is understood. 
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At present there is no complete empirical description for the transition 
from the state where mutual friction is absent to the fully developed mutual- 
friction state. We have the impression that numerical experiments with the 
superfluid vortex tangle will contribute significantly to the understanding of 
superfluid hydrodynamics. Theoretical aspects of the 3He-4He hydrodynam- 
ics will be treated in the next section. 

4. Hydrodynamics: theoretical aspects 

4.1. Introduction 

The hydrodynamic description of 3He-4He-II mixtures leans heavily on the 
two-fluid model of pure superfluid 4He-II, developed by Landau in 1941 
(Tough 1982, Glaberson and Donnely 1985). In this model, phonons and 
rotons cannot be created by the motion of the normal component below 
certain well-defined values of the relative velocity between the superfluid and 
the normal component. This is imposed by energy and momentum conserva- 
tion. The critical velocity for roton excitation is the smallest, 58 m/s, and, 
therefore, no friction (dissipation) should occur at relative velocities below 
this value. For normal-component velocities below 58 m/s the superfluid 
background was expected to behave as a mechanical vacuum. 

However, already in 1949, Gorter and Mellink showed the existence of a 
frictional force between the normal and the superfluid components in pure 
4He above velocities as low as a few centimeters per second. Onsager (1949) 
conjectured vortices of superfluid 4He with quantized circulation as a pos- 
sible third kind of excitation. Following a suggestion of Feynman (1955), 
Vinen (1957) developed a model in which the frictional force between the 
normal and the superfluid components is mediated by vortices. When a 
critical velocity is exceeded the vortices are assumed to form a tangle in the 
fluid which is in violent motion (superfluid turbulence). 

The mechanical-vacuum model for 3He-4He mixtures has its origin in a 
paper by Landau and Pomeranchuk (1948). In contrast to the situation in 
pure 4He the possibility of mutual friction in mixtures has long been 
overlooked. Since the work of Mazur and Prigogine (1951) mutual friction 
between 3He and 4He has not been considered. Khalatnikov (1965) derived 
the two-fluid hydrodynamic equations for 3He-4He-II mixtures neglecting 
mutual friction. In this section the hydrodynamics of 3He-4He mixtures will 
be treated including mutual friction. Some basic properties of quantized 
vortices will be treated. Finally, the differential equation for the temperature 
profile in a cylindrical tube in which 3He flows through superfluid 4He will be 
derived. 
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4.2. Hydrodynamic equations 

The hydrodynamic equations for pure 4He-II and for 3He-4He-II mixtures 
have been derived by Khalatnikov (1965) without taking mutual friction into 
account. If mutual friction is included, an extra term appears in the equation 
of motion of the superfluid component. Here we only give an outline of the 
tedious derivation which is given in more detail in the thesis of Kuerten 
(1987b). 

The treatment is analogous to the one given by de Groot and Mazur (1962) 
for a classical multicomponent fluid. In the derivation it is assumed that the 
temperature is low enough to neglect the normal component of 4He, apart 
from its effect on the effective mass. The equation of motion for the superfluid 
component reads 

whete h is a dissipative potential. The right-hand side of eq. (78) is the mutual 
frictional force exerted by the normal component on the superfluid compo- 
nent per unit mass of the superfluid component. In the derivation the 
equations for conservation of total mass, 3He particle number, total 
momentum, and energy, together with the equation for the entropy pro- 
duction and eq. (78) provide ten equations for nine variables, From this 
overspecified set the dissipative function can be determined as a sum of terms, 
each of which is the product of a generalized thermodynamic force and a flux. 
For a large class of irreversible processes the relations between the fluxes and 
forces are linear to first order. In general, higher-order relationships are 
allowed, provided the dissipative function is positive. To first order the 
mutual frictional force would read 

P f= - -V T+ 7ps(un - U, ) . 
T (79) 

As shown in sect. 3.3, the mutual friction is zero below a certain critical 
velocity. Above the critical velocity, the relationship between f and the 
velocity difference is nonlinear. At high velocities the frictional force is, in 
good approximation, proportional to the cube of the relative velocity: 

where B is a positive function of Tand x. In writing down eq. (80) the effect of 
VT on f has been neglected. The nonlinear dependence is the result of the 
interaction of the normal component with the superfluid through quantized 
vortices as will be discussed in the next section. 
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4.3. The motion of quantized vortices 

From the analogy with flow in pure 4He-II it is expected that mutual friction 
in 3He-4He mixtures is due to the interaction of 3He with quantized vortex 
lines in superfluid 4He. The idea is that these vortex lines are created (or form 
a stable tangle) if the average relative velocity between 'He and 4He exceeds a 
certain critical value. As a result of the vortex-vortex interactions and the 
interaction with 'He, the vortex lines develop towards a complex dynamical 
structure, which is called a vortex tangle. 

If the force between 'He and a single straight vortex line is known, the 
equation of motion for a vortex line can be constructed. Then one can 
calculate the evolution of a vortex tangle numerically, starting from an 
arbitrary initial configuration. In the steady-state macroscopic properties like 
the line length density L and the mutual frictional force density F fluctuate 
around an average value. 

The procedure outlined above has been followed by Schwarz (1982, 1985) 
for pure 4He, where the force between the normal component and a straight 
vortex line is known from experiments. Unfortunately, the force between 'He 
and a vortex line is unknown. However, it is possible to use a general 
expression for this force with only two unknown friction parameters, which 
may be dependent on temperature and 3He concentration. Then, the un- 
known quantities L and F can be determined as functions of these two 
parameters and the relative velocity. 

The equation of motion of a vortex line has been derived by Schwarz 
(1978). Two contributions to the velocity of a point on the vortex line can be 
distinguished. The first contribution is due to the local superfluid velocity uo. 
This local velocity uo differs from the hydrodynamic superfluid velocity us, 
which equals the average of uo over a volume containing many vortex lines. 
The second contribution results from the force of the normal component on 
the vortices. This force is transferred to the superfluid as a Magnus force. It 
causes a difference between the local superfluid velocity and the velocity of 
the vortex line, which is proportional to the velocity of the normal fluid with 
respect to the line. The general expression for the velocity of a vortex line, u, is 

u = uo + as' x (u, - uo) - a's' x [s' x (u, - no)], (81) 
where s' is the unit vector tangent to the vortex line, and a and a' are friction 
parameters. For a given configuration of the vortices, eq. (81) yields the time 
evolution if uo is known. The local superfluid velocity obeys the relations 

and 
v x uo=o (82) 

(83) uo di= K = h/m4 
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if the contour C is taken around one vortex line with positive orientation. 
When the fluid is incompressible 

v*u,=o (84) 
holds, and the relations are similar to the equations for a magnetic field due 
to electrical currents and give the Biot-Savart solution (see e.g. Jackson 1975) 

where r is a point in space and us, is an arbitrary solution of eqs. (82) and (84) 
without vortices. It can be found from the boundary conditions. The integral 
is taken over all vortex lines. 

With eq. (85)  not only the velocity of an element in the liquid, but also of a 
point on the vortex can be calculated. In the latter case the integral diverges. 
This problem is solved by taking into account the finite structure of the 
vortex core. By comparison with the velocity of a classical vortex ring, the 
integral can be separated into a local contribution due to the part of 
the tangle near the point of interest, and a nonlocal contribution due to the 
rest of the tangle. The velocity of a vortex ring is determined by a parameter fl 
given by 4xfl=t~ln(cRfa,), where R is an average value for the radii of 
curvature in the vortex tangle, and c is a constant of order one. 

Even without calculating the evolution of a vortex tangle, some important 
properties of the dynamical equilibrium can be derived, if the relative velocity 
u,, is homogeneous. In the localized induction approximation the equation of 
motion of the vortex can be written as 

ds 
dt -= u,o + ps’ x s” + [a  - a’s’ x J [s’ x (U”, - ps’ x s”)], 

where s is a point on the vortex. The first term yields a uniform translation of 
the vortex and can be removed by a Galilei transformation. It is possible to 
define dimensionless length and time scales by introducing the dimensionless 
length so = su,,/fl and the dimensionless time to = tu;Jfl. Substitution in 
eq. (86) yields a dimensionless equation 

(87) 
ds0 -= s; x s: + [a- a’s; x ] [s; x (e,-sb x s:) J , 
dt, 

where e, is the unit vector in the z-direction. The z-axis has been chosen in the 
direction of u,, . This equation depends only on a, a‘ and e,. Hence, if no walls 
are present, the solution does not depend on the magnitude of the applied 
velocity unS. The vortex tangle is homogeneous and oriented along e,. 
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The density of vortex line length L is given by 
1 r  

where the integration is performed over the tangle inside a volume s2. The line 
length density equals 

L= - Lo(a,a’),  t)’ 
where the dimensionless vortex length density 

q r  

(89) 

is only a function of a and a’. The integral in eq. (90) is taken in a 
dimensionless volume a,. Equation (89) shows that L is proportional to u:,. 
In a similar way the average mutual frictional force density F can be 
calculated. 

With the same arguments the dependence of the critical velocity u, on u,, 
for flow through a rigid cylindrical tube with diameter D can be determined. 
In this case the situation of dynamical equilibrium found from eq. (87) is not 
only a function of a and a’, but also of the dimensionless diameter of the tube 
ljns DIP. Hence, 

for a certain function Lo. Below the critical velocity L = O  in the equilibrium 
state. Above the critical velocity a turbulent state is present (L>O). The 
function Lo depends on u,, only through v , , D / j .  Hence, 

v, D z constant. (92) 

Equation (92) has to first order been confirmed by experiment in pure 
4He-II (Tough 1982). However, in our derivation it has been neglected that 
depends weakly on the local structure of the vortex, as it involves the 
logarithm of the local radius of curvature. The analysis of Swanson and 
Donnelly (1985) takes this dependence into account and gives a better 
agreement with experimental results. Equation (92) has also been verified to 
first order in the flow of 3He through superfluid 4He (fig. 10). The numerical 
result recently obtained by Buttke (1987, 1988), which disagrees with eq. (92), 
has to be rejected on the dimensional grounds given above (Schwarz 1987). 

What is still missing is a theoretical derivation of the numerical value of the 
friction parameter ;5 introduced in eq. (75). To make up for this deficiency, 
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one would like to calculate the interaction between a vortex line and one 3He 
particle, possibly along the lines of the calculation of the ion-vortex inter- 
actions (Muirhead et al. 1985). Subsequently, one could calculate the mutual 
frictional force density. In pure 4He, where the normal fluid consists of only 
phonons and rotons, it is possible to calculate the interaction between a 
vortex line and the normal fluid in a semiclassical way (Hillel 1981, Hillel and 
Vinen 1983). However, the calculation of the mutual frictional force density 
from first principles in 3He-4He mixtures is an enormous task which has not 
yet been accomplished. 

4.4. Adiabatic flow in tubes below 250 mK 

In order to study the steady-state flow properties of 3He-4He mixtures we 
consider a channel, the impedance Z,,  which has a homogeneous cross 
section with area A. In general, the two components flow with different 
velocities, as the net 4He transport is assumed to be zero. It is assumed that 
quadratic terms in the ,He velocity may be neglected, and that the temper- 
ature is low enough to neglect thermal phonons and rotons. Furthermore, it 
will be assumed that the components of the velocities in the radial direction 
are negligible and that the temperature is uniform in a cross section of the 
impedance. Terms of order higher than T 2  and (x-x0) will be neglected. At 
temperatures below 50 mK, eq. (69) and the low-temperature values given in 
table 2 hold. Furthermore, 

K = K d / T ,  with IC*= 3 x loT4 W/m (93) 

and 

Vm3 = 4.26 x m3/mol. (94) 

In this equation V,, = V,/xo is the volume of one mole of 3He at concen- 
tration xo. For an impedance of arbitrary, uniform cross section, an impe- 
dance factor per unit length l, dependent only on the geometry, can be 
defined such that 

follows from momentum conservation. For Poiseuille flow in a cylindrical 
tube l= 128/nD4. 

Energy conservation yields 
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Using eqs. (20) and (24) gives 

}ri3+gri4-A5 dl(  K? d l )  = O .  (97) 

From eqs. (75), (95) and (97) p ,  T and x can, in principle be calculated as 
functions of 1. However, solution of these equations is complicated because 
S,,  tf, and K are complicated functions of T and x. However, at low temper- 
atures at concentrations near xo one can substitute eqs. (48), (93) and (95), 
which gives 

When ti4 = 0, eq. (98) reduces to 

d T 2  v d ( t i 3 V i 3  1-x,dp4 Kd d _ - _ _ _ _ A -  Gr- T2 xo dl ri ,  dl 

Equation (99) can be put in a dimensionless form by 

(99) 

introducing the 
reduced temperature t = TITo and the reduced length I = l/lo, where 

and 

are the characteristic temperature and length. Substitution in eq. (99) yields 

d 1 dt dt2 1 
d), t d I  d l  t2  

where ( is a dimensionless parameter equal to 

The ratio of the last two terms on the left-hand side of eq. (102), [ t 2 ,  is a 
measure of the ratio of the contributions to the temperature rise due to the 
viscous force and the mutual frictional force. From the experiments of 
Wheatley et al. (1971) a value of (3’ of the order of 2.5 x follows. Hence, 
the effect of mutual friction is negligible and the viscous force dominates. On 
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the other hand, in the flow situation of Castelijns et al. (1985) <t2 is of the 
order of 200. This means that in these experiments the viscous force is 
dominated completely by the mutual frictional force. 

Substitution of dp,/dl=O in eq. (99) results in an expression for the 
mechanical-vacuum model. In this case Wheatley et al. (1968) derived the 
intrinsic minimum temperature of a 3He circulating dilution refrigerator. Van 
Haeringen et al. (1979) solved the equation analytically and calculated the 
temperature profiles in impedances. These results are very useful in designing 
tubes in dilution refrigerators (van Haeringen 1985). 

Equation (102) has been solved numerically in order to calculate the 
temperature profiles in the case where mutual friction is present (Kuerten et 
al. 1986a, 1987a, b). 

5. Dilution refrigeration 

5.1. Introduction 

The hydrodynamics of 3He moving through 4He at very low temperatures, 
neglecting mutual friction, has been treated by many authors; see e.g. Frossati 
(1978). In this section we discuss several ways in which mutual friction affects 
the operation of dilution refrigerators. The effect can be harmful. However, 
mutual friction also fulfils an essential condition for the proper and stable 
operation of dilution machines. This holds for both types of machines: 
3He-circulating machines and the so-called ,He-circulating machines. 

General introductions in the field of dilution refrigeration can be found in 
the books of Lounasmaa (1974) and Betts (1976), and in the reviews by 
Frossati (1978) and Taconis (1982). 

5.2. Limiting mechanisms 

We consider a 3He-circulating dilution refrigerator in which ri3 moles of pure 
3He are circulated per second. The mixing chamber is sketched in fig. 11. The 
enthalpy balance of the mixing chamber can be written as 

Q +ri3 H;( T )  = ri3 H?( Tm), 

HY ( Tm 1 = H? (Tm 9 x m  ( Tm 1). 

( 104) 

(105) 

where 

The total amount of heating power Q supplied to the mixing chamber can 
have several origins: 

Q = Q, + Qe + Q d ,  (106) 
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Fig. 1 1 .  Schematic drawing of the mixing chamber and the associated enthalpy and heat flows. 

where Q, is the heating power resulting from the experiment, Q, is the 
unwanted external heat leak, and Q d  represents the heat flowing into the 
mixing chamber through the fiquid in the dilute exit tube. In the case that 
Q, = Q! = 0, the mixing chamber temperature is determined by several differ- 
ent mechanisms. They will be discussed below. 

Even when Q d = O  the mixing chamber temperature at a given ri, is 
determined by the limited surface area of the heat exchangers. The influence 
of the heat exchanger on the performance of dilution refrigerators is discussed 
by many authors. We refer especially to the papers by Niinikoski (1976) and 
Frossati et al. (1977), Frossati (1978). 

When the surface area of the heat exchangers is very large the temperature 
of the mixing chamber tends to be very low (in the 2 mK range) and intrinsic 
effects will determine the temperature of the mixing chamber, i.e. one can no 
longer satisfy the condition Qd=O.  In the low-temperature region, T, is 
determined by a combined result of a large viscosity, a large thermal 
conductivity (Q, # 0), and a small cooling power. This effect w a s  first dis- 
cussed by Wheatley et al. (1968b), and later on in more detail by van 
Haeringen et al. (1979). The limiting temperature based on the mechanical- 
vacuum model can be calculated using eq. (102) with t = O ,  and is about 
0.7 To, independent of ri ,  . 

In general, #O;  so, also mutual friction has an effect on the limiting value 
of T,. The intrinsic minimum T, calculated with the general expression (102) 
has a minimum for ri3 = O  (this corresponds to 5 =O). The influence of mutual 
friction on the intrinsic minimum temperature in the single-cycle mode (this is 
the mode in which the 'He supply to the mixing chamber at the concentrated 
side is stopped, but the 'He is still extracted at the dilute side) is illustrated in 

When the flow impedance at the mixing chamber exit is large, the temper- 
ature rise as a result of the dissipation in this tube may prevent further 

fig. 12. 
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Fig. 12. The calculated minimum (dimensionless) mixing chamber temperature in the single- 
cycle mode as a function of the mutual friction parameter e. The parameter (' is the effective ( 

[eq. (103)] for the single-cycle mode, but for all practical purposes one may put (' = 5 .  

cooling of the incoming concentrated 3He flow (de Waele et al. 1984). This 
mechanism of indirect heating of the mixing chamber via the heat exchangers 
has been discussed in section 3.3. 

It is argued by Geurst et al. (1975) that there should be a jump in the 3He 
chemical potential at the phase boundary, which drives the 3He across the 
phase boundary. One would expect that this jump is proportional to the flow 
rate density at the phase boundary. The jump should lead to an increase in 
T,. This interesting effect, which may show up at large flow rate densities, has 
not been found so far. 

5.3. Mutual friction in 3He-circulating machines 

5.3.1. Dissipative effects 
For large flow resistances in the dilute channel, the 3He concentration drop 
can be of the same order as the concentration in the mixing chamber. In that 
case the 3He concentration in the still will become very low, leading to a high 
fraction of 4He in the circulated mixture (compare curve 4 in fig. 5). In many 
cases the point where the concentration drop in the dilute channel is 
approximately equal to the concentration in the mixing chamber shows up in 
the plot of the total flow rate versus still heating power as a kink (Castelijns 
et al. 1985). 

For a single cylindrical tube with diameter D, carrying a Poiseuille flow of 
3He, the product A ( = 3 2 / D 2 .  In this case eqs. (100) and (103) can be written 
as 

D=1.78 x 10-'O/T; (107) 

5 = 0 . 2 5 i 1 : / D ~ / ~ .  (108) 

and 
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Equation (107) gives the order of magnitude of the diameter D of the dilute 
channel in the exit of the mixing chamber reaching its intrinsic low-temper- 
ature limit To. For T0=2 mK, eq. (107) results in D =22 mm. For 
ti3 = 5 mmol/s eq. (108) gives 5 =0.16. Since t z 1 near the intrinsic limit, one 
obtains (tz ~ 0 . 1 6 ,  so the effect of mutual friction on the solution of eq. (102) is 
small. This is mainly due to the large viscosity at very low temperatures. 
However, when D is determined by eq. (107) with higher To, then the mutual 
friction will soon dominate the viscous effects. Fortunately, eq. (107) leads to 
very small diameters in the high-temperature regions, and it is quite easy to 
make the tube diameters somewhat larger, thereby reducing the effects of 
mutual friction and viscosity. 

In general, mutual friction does not necessarily degrade the performance of 
dilution refrigerators, but in machines which are critically designed according 
to the criteria of the mechanical-vacuum model, problems can be expected. 
As was demonstrated by Castelijns et al. (1985), a superleak shunt across a 
flow channel in which mutual friction causes problems can help to overcome 
the harmful effects. 

5.3.2. Stabilizing effects of mutual friction 
In the discussion so far it is shown that mutual friction has a degrading effect 
on many aspects of dilution refrigerators. However, mutual friction has also a 
very good influence on the operation of the machine. It is essential for their 
(stable) operation. As put forward by Wheatley et al. (1971) the temperature 
gradients are relatively large in the regions around the still and the 1 K bath. 
The resulting osmotic pressure gradients exert forces on the 4He component 
which are larger than the forces from the ordinary pressure gradient at the 
concentrated side. This drives the 4He to regions of high temperatures and 
high 3He concentrations. An eventual superfluid column (plug) in these 
regions cannot be removed. 

If mutual friction would be absent, the 4He in the concentrated channel of 
the machine would not leave the channel during start up. For similar reasons, 
during continuous operation, 4He would move from the mixing chamber into 
the concentrated channel via the superfluid 4He film, or stay there after 
entering the channel as the (small) 4He fraction of the circulating mixture. 

The presence of a superfluid plug would lead to dilution of 3He (and 
cooling) in warm regions, and demixing (and heating) in the cold spots. For 
example, cooling would take place in the concentrated channel near the still, 
and heating in the heat exchangers. This would prevent the proper operation 
of the machine. Hence, a mechanism driving the 4He out of the concentrated 
channel is necessary. Mutual friction is the only known force which can 
balance the osmotic forces. Therefore, it must play an essential role in this 
process. 
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5.4. Mutual friction in 4He-circulating machines 

In 4He-circulating refrigerators (see e.g. Satoh et al. 1987) 4He is used to drive 
the circulation of 3He. Especially, in this type of machines mutual friction 
plays an essential role. In this discussion we assume that the dilute phase 
flows from the mixing chamber towards the demixing chamber in the form of 
droplets (Griffioen et al. 1986). This does not affect the general conclusion. 
Figure 13 is a schematic drawing of the process we have in mind. 

In contrast to what is suggested by the name, it is not the 4He flow which 
determines the cooling power, but the 3He flow resulting from it. The 3He in 
the dilute phase is dragged along with the 4He in the droplets. If there would 
be no mutual friction between 3He and 4He, the latter would move to the 
demixing chamber without taking the 3He along. This can be understood as 
follows: there is a temperature gradient in the tube connecting the mixing 
chamber (typically at 10mK) with the demixing chamber (around a few 
hundred mK). As the droplet moves in this tube, there is also a temperature 
gradient in the droplet, with a corresponding gradient of the osmotic pres- 
sure. This would lead to an acceleration of 4He towards the warm end of the 
droplet, accompanied by a mixing (and cooling) at the warm end of the 
droplet, and a demixing (and heating) at the cold end. Near the mixing 
chamber the heating of the droplets leaving the mixing chamber would 
balance the cooling power. In essence, 4He would move towards the demi- 

mixing chamber 

( l o w  temperature1 

demixing chamber 

(high temperaturel 

Fig. 13. Schematic drawing of a droplet of a 3He-4He solution in the dilute phase falling through 
the concentrated phase (hatched region) in a tube connecting the mixing chamber and the 
demixing chamber of a 4He-circulating dilution refrigerator. As a result of the temperature 
gradient in the tube, there is a T-gradient in the droplet. This leads to a gradient in the osmotic 
pressure in the droplet which drives the superfluid 4He from the cold end (top) towards the warm 
end (bottom), resulting in demixing at the cold end and mixing at the warm end. 
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Xing chamber without dragging 3He along and, hence, without producing 
cooling in the mixing chamber. 

Due to the mutual friction, the difference in 3He and 4He velocities is 
limited. This is comparable to the cooling mechanism in the so-called vortex 
cooler (see e.g. Okuyama 1987), where the mutual friction between the 
superfluid and the normal component leads to the proper operation of the 
device. 

6. Discussion 

6.1. Comparison between 4He-II and 3He-4He-II mixtures 

In this section a comparison will be made between the hydrodynamics of pure 
4He-II and of 3He-4He-II mixtures. The macroscopic description of the 
hydrodynamics of pure 4He-II is based on the two-fluid model. The mutual 
friction between the normal and the superfluid components is presumably 
caused by the interaction of the normal component with quantized vortices. 
The state of superfluid turbulence is investigated under various experimental 
conditions such as temperature, geometry and velocities (Tough 1982, 
Glaberson and Donnelly 1985). For cylindrical capillaries there are three flow 
regimes. Below a first critical value of the relative velocity, there is no mutual 
friction. If that critical velocity is exceeded, mutual friction appears, but the 
resulting state is inhomogeneous and anisotropic (TI). Furthermore, the 
transition between the laminar and turbulent state exhibits hysteresis. At still 
higher velocities a second transition occurs to a state of homogeneous and 
isotropic turbulence (TII). This state is described reasonably well by the 
motion of a vortex tangle as numerically simulated by Schwarz. 

Mixtures of 3He and superfluid 4He can also be regarded as a mixture of 
two components, with the normal component consisting of the 3He plus the 
normal part of the 4He. The mutual friction between 3He and 4He is not 
caused by the friction of 3He with the normal component of the 4He, because 
it is also present at temperatures where thermal phonons and rotons are 
absent. In the hydrodynamics of 3He-4He solutions, critical velocities play a 
role which are quite similar to the critical velocities in pure 4He-II. There also 
is an indication that there is a second critical velocity above which the 
turbulence is fully developed. It seems that the ratio of the two critical 
velocities (approximately 2) is the same as in pure 4He. In contrast to the 
situation in pure superfluid 4He, the critical velocities are independent of 
temperature in the temperature range of the experiments (10 < T< 250 mK). 

The fact that the behaviour of 3He-4He mixtures is so similar to 4He-II is 
surprising. Mutual friction is caused by the interaction between excitations 



Ch. 3, $6 212 A.Th.A.M. DE WAELE and J.G.M. KUERTEN 

and quantized vortices, which is determined by quantum mechanics. The 
excitations in pure superfluid 4He (phonons and rotons) obey Bose statistics. 
On the other hand, the excitations in mixtures are the 3He quasiparticles, 
which obey Fermi statistics. Therefore, one would expect a difference in flow 
properties. The calculation of the strength of the 3He-vortex interaction from 
the many-particle interactions is one of the basic problems in the field of 
3He-4He hydrodynamics. 

In 3He-4He mixtures the temperature and density can be varied independ- 
ently. This offers some advantage over pure 4He. For example, in pure 4He it 
appears that the critical velocity is temperature-dependent, whereas in mix- 
tures the critical velocity seems to be independent of temperature. This 
suggests that the temperature dependence in pure 4He is mainly due to the 
variation of the density of the normal component. 

The similarityn between the properties of pure 4He-II and 3He-4He-II 
mixtures makes it also possible to apply the simulations of the motion of 
quantized vortices in pure 4He to mixtures. Schwarz derived an expression 
for the frictional force exerted by the normal fluid on a vortex. This ex- 
pression contains two parameters which depend on the microscopic inter- 
actions between the normal fluid and a vortex line. If these parameters are 
known for mixtures, Schwarz’s results can be applied to mixtures. 

6.2. Thermodynamics 

Since the mid-seventies the measurements of the thermodynamic properties 
of mixtures have been extended by precise measurements of the specific heat 
and the velocity of second sound. It is remarkable that this accuracy in the 
measurements has not led to a precise knowledge of the effective mass 
(Bowley 1988). The specific heat data of Greywall were refitted several times 
and, in fact, could be fit by the parameters showing up in various models. The 
specific heat measurements of Owers-Bradley are analyzed in terms of the 
nearly ideal Fermi gas, but higher-order terms in the nonparabolic excitation 
spectrum play an important role; so, a consistent higher-order analysis is 
necessary, i.e. terms of 6th (or even higher) order of the wave vector in the 
quasiparticle excitation spectrum should be taken into account. 

In this review we have chosen a systematic fourth-order approximation. In 
principle, higher-order approximations can be derived in an analogous way 
but lead to tedious calculations and complicated expressions. Moreover, one 
may wonder whether the introduction of new fitting parameters will lead to 
less uncertainty in the description of the system. 

In sect. 2.3 we have emphasized that the separation of the specific heat into 
a Fermi quasiparticle contribution and a 4He contribution may be an 
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oversimplification. If this is so it may have consequences for the parameters 
derived from models of the 3He-4He solutions. 

6.3. Hydrodynamics 

At present, the hydrodynamic properties in the temperature range from 
10-250 mK are fairly well described. At temperatures above 500 mK phon- 
ons and rotons will affect the 3He hydrodynamics. There have been a few 
investigations in the temperature range where phonons and rotons play a 
role, but the transition region from the low-temperature range, where pho- 
nons and rotons can be neglected, to the high-temperature range has not been 
investigated. 

The mesoscopic description in terms of superfluid turbulence is in full 
development at  the moment. One may hope that the calculations will clarify 
the origin of the critical velocities. One of the fields for future research is the 
study of time-dependent effects (fluctuations) which accompany the transi- 
tions in the critical velocity regions. 

Below 10mK interesting effects may show up in the ballistic regime 
(Guenault and Pickett 1984), i.e. when the quasiparticle mean free path is of 
the order of the average vortex-line distance, or when the quasiparticle mean 
free path is of the order of the tube diameter. It is speculated that in the very 
low temperature regime mixtures can be superfluid (see Ishimoto et al. 1987 
and the references therein). Of course, this would open the possibility to study 
the interesting properties of a mixture of two supeduids, one of which can be 
varied over a large range of densities. Unfortunately, at present there are no 
indications that this exciting temperature range has been entered yet. 
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