6.3. Modeling N_2O/NO formation and reduction during combustion of char

Using the single particle model.

E.E. Beerling^a, G.Brem^b, E.A. Bramer^a, M. Valk^a.

^a Department of Thermal Engineering, Twente University of Technology, P.O. Box 217, 7500 AE Enschede (The Netherlands)

^b TNO-ME, P.O. Box 342, 7300 AH Apeldoorn (The Netherlands)

6.3.1 INTRODUCTION

The method of combusting coal in a fluidized bed combustor has many advantages. Due to the low combustion temperature, the emission of NO_x is low compared to conventional combustion techniques, because at these low temperatures the formation of NO_x from N_2 and O_2 from the fluidizing air (thermal NO_x) and NO_x formation through oxidation of char bound nitrogen (fuel NO_x), is less pronounced. Furthermore it is possible to reduce the emissions of SO_2 and SO_3 in the temperature range of a fluidized bed combustor by means of limestone addition to the bed.

A disadvantage of the low combustion temperature is that the emission of nitrous oxide (N_2O) is high compared to conventional combustion techniques. Nitrous oxide is a pollutant gas. It is a strong infrared absorber and therefore contributes to the greenhouse effect, causing global warming and it plays an important role in the depletion of the ozone layer.

The formation and reduction mechanisms of nitrous oxide during combustion of coal in a fluiduized bed combustor are very complex. A first distinction can be made between the nitrous oxide formation and reduction mechanisms during combustion of volatiles from the coal and the nitrous oxide formation and reduction mechanisms during combustion of char. The work reported in this paper is conducted to gain more inside in the N₂O formation and reduction mechanisms in combination with NO formation and reduction mechanisms that are important during char combustion in a fluidized bed combustor. A first attempt is made to model the N₂O and NO formation and reduction mechanisms the single particle model.

6.3.2 HETEROGENEOUS FORMATION AND REDUCTION MECHANISMS LITERATURE SURVEY

In this section the results of a literature survey on nitrous oxide formation and reduction mechanisms are presented. Use has been made of the work done by Hulgaard [1] and Johnsson [2].

When a coal particle is introduced in a fluidized bed combustor it shall first experience a raise in temperature. Moisture absorbed in the coal particle shall evaporate. After this stage the volatiles from the coal start to evolve and volatile combustion begins. Once the volatiles are evolved a char particle remains. At this stage the char combustion begins. As stated earlier nitrous oxide can be formed and reduced during both volatile and char combustion. Fig. 6.3.1 shows a simplified reaction scheme for N_2O formation and reduction during combustion of coal.

Figure 6.3.1. Simplified reaction scheme for nitrous oxide formation and reduction.

From literature it is clear that both volatile as char combustion play an important role in the N_2O (and NO) reduction and formation. Valk and Bramer [5] found that char combustion was responsible for 1/3 of the total N_2O produced. Wojtowicz et. al. [4] found that char combustion contributed 15 to 35 % (depending on the coal type used) to the total N_2O production. The emphasis of this literature survey is on the nitrous oxide formation and reduction during char combustion. The reactions involved in the nitrous oxide formation and reduction are in this stage mainly heterogeneous solid-gas reactions.

6.3.2.1 Heterogeneous N₂O formation

De Soete [3] studied the formation of N_2O by oxidation of char bound nitrogen using several types of char in a batchwise operated fixed-bed reactor. He found a linear relationship between the N_2O formation and the carbon conversion. The carbon conversion is defined as:

$$F_{c} = \int_{0}^{t} (X_{co} + X_{co_{2}}) dt / \int_{0}^{\infty} (X_{co} + X_{co_{2}}) dt$$
(6.3.1)

where X_i is the mole fraction of component i. He also found a linear relationship between the NO formation and the carbon conversion, as can be seen in Fig. 6.3.2.

Figure 6.3.2. Conversion of char bound nitrogen to NO and N₂O. De Soete [3].

Fig. 6.3.2 depicts an overall effect. From the total amount of N_2O produced by direct oxidation of char bound nitrogen, some N_2O will be reduced on the char surface area. De Soete conducted his experiments at constant reactor temperature. So when assuming a first order behaviour for the N_2O reduction reaction on the char surface area a linear relationship exists between the N_2O formation by direct oxidation of char bound nitrogen and the carbon conversion. De Soete found that 1 to 6 percent of the char bound nitrogen was converted to N_2O depending on the type of char used. Wojtowicz et.al. [4] report percentages between 2 and 10 percent. Bramer en Valk [5] found percentages between 1 and 1.6 percent. All the above mentioned researchers report a decrease in N_2O emission with increasing reactor temperature.

Another possible mechanism of N_2O formation mentioned in the literature is the formation of N_2O caused by NO reduction on the char surface. De Soete [6] could not find significant N_2O production from NO reduction in absence of oxygen. Bramer and Valk [5] used a micro-scale fluidized bed reactor to investigate this mechanism. They fed additional NO to the reactor operated under normal combustion conditions. The fuel used during these experiment was anthracite simulating char. Fig. 6.3.3 shows the results of these experiments.

Figure 6.3.3. Conversion NO and N₂O plotted against additional NO and N₂O fed to the reactor. $T_{bed} = 1098$ K, $\lambda = 1.2$, fuel = anthracite. Bramer and Valk [5].

In fig. 6.3.3 several conversion factors are plotted against the concentration of the additional NO or N_2O fed to the reactor. It can be seen that approximately 55 percent of the additional NO is reduced and that roughly 20 percent of last mentioned percentage is converted into N_2O . Amand et.al. [7] also found an increase in N_2O emission when feeding NO to a fluidized bed reactor.

Another possible source of N_2O is the formation of N_2O by catalytic oxidation of NH_3 . This NH_3 is a major reaction product during volatile combustion. Lisa et.al. [8] investigated the formation of N_2O from NH_3 over CaO, SiO_2 and $CaSO_4$. CaO appeared to be the most effective catalyst for N_2O formation when a mixture of NH_3 and O_2 was fed to the reactor. No N_2O formation could be detected when $CaSO_4$ or SiO_2 was used as a catalyst.

From literature it appeares however that direct oxidation of char bound nitrogen is the major source of N_2O during char combustion in a fluidized bed reactor.

6.3.2.2 Heterogeneous N₂O reduction

De Soete [9] investigated the decomposition of N_2O on the char surface area. The main reaction products he found were N_2 , HCN and NO. The amounts of NO and HCN appeared to be very small at temperatures below 1100 K. He also found a first order behaviour in N_2O for this reduction reaction.

Santala et.al. [10] studied the N_2O reduction on the surface areas of SiO₂, CaO and CaSO₂. Their experiments show that CaO is the most effective catalyst in reducing N_2O . SiO₄ (quartz sand) had only a little effect. The results are shown in fig. 6.3.4.

Figure 6.3.4. N_2O conversion (%) as function of temperature on surface of amongst others CaO, CaSO₄, SiO₂ and bedmaterial in a coal fired fluidized bed combustor. The component is mixed with quartz sand in the ratio as listed in the figure. Santala [10].

Miettinen et.al. [11] also investigated the N_2O reduction reaction and came to the same conclusions as Santala. So from literature it appeares that Ca containing components and char are effective catalysts in reducing N_2O . It also appeares that quartz sand has only a little effect on the N_2O reduction.

6.3.3. MODELING

In this section a first attempt is made to model the N_2O and NO reduction capacities of a single char particle analytically. The single particle model, proposed by Brem [12], will be used (see section 6.1). The reduction capacity is the ratio between the reduction and production rate of N_2O (or NO).

6.3.3.1 The single particle model.

In the single particle model some assumptions are made, described in section 6.1.2. The stoichiometric reaction coefficient in the combustion reaction is close to unity when combusting char under normal fluidized bed combustion. Furthermore isothermal conditions are presumed (bed and char particles have the same temperature.

6.3.3.2 The N₂O and NO reduction capacities.

In this subsection the single particle model is used to derive the expressions for the N_2O and NO reduction capacities under the assumption of a linear case, that is all reactions involved are first order reactions in the gaseous reactant, constant internal surface area of the char and constant effective diffusivity coefficient. The reduction capacity of a single char particle is defined as the ratio of the reduction rate and the formation rate, in formula (for the N₂O reduction capacity):

$$R_{N_2O} = \frac{\int_{0}^{r_s} R_{N_2O, r} 4\pi r^2 dr}{\int_{0}^{r_s} R_{N_2O, f} 4\pi r^2 dr}$$
(6.3.2)

In this formula $R_{N2O, r}$ is the N₂O reduction rate and $R_{N2O, f}$ is the N₂O formation rate. The assumption is made that the major source of N₂O is the oxidation of char bound

nitrogen inside the particle. The thus formed N₂O can be reduced on the char surface area on its way out of the particle. Depending on the value of the N₂O reduction capacity it is also possible that N₂O from the bulk is reduced on the char surface area.

First the expression for de N₂O formation rate will be derived. The formation rate of N_2O is assumed to be proportional to the char combustion rate. In formula:

$$R_{N_2O,f} = -\frac{\partial C_s}{\partial t} X_{NC} \gamma_{N_2O}$$
(6.3.3)

with:

t

C_s = carbon concentration in the particle = time X_{NC} = molar ratio of nitrogen and carbon in the char = molar ratio of the amount N_2O formed by direct oxidation γ_{N2O} from the total amount of nitrogen in the char

The mass balance of the solid reactant (carbon) can be written as:

$$\frac{\partial C_s}{\partial t} = -R_s \tag{6.3.4}$$

with R_s the reaction rate of carbon, in formula:

$$R_{s} = k_{s} C_{O_{2}} A_{g} \tag{6.3.5}$$

with: $k_s = reaction rate constant$

 \vec{A}_{g} = reaction surface area per unit of volume C_{02} = local oxygen concentration

Using equation (6.3.4) and (6.3.5), equation (6.3.3) can be written as:

$$R_{N_2O,f} = k_s C_{O_2} A_g X_{NC} \gamma_{N_2O}$$
(6.3.6)

The assumption is made that N₂O can only be reduced on the char surface area. In that case the N_2O reduction rate can be written as follows:

$$R_{N_2O, r} = k_{N_2O} C_{N_2O} A_g \tag{6.3.7}$$

In latter formula k_{N2O} is the reaction rate constant for the N₂O reduction reaction.

6.3.3.2.1 Mass balances.

The pseudo-steady-state N₂O mass balance can be written as follows:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(D_e r^2 \frac{\partial C_{N_2 O}}{\partial r} \right) + k_s C_{O_2} A_g X_{NC} \gamma_{N_2 O} - k_{N_2 O} C_{N_2 O} A_g = 0$$
(6.3.8)

where r is the radial coordinate and D_e is the effective diffusivity. In formula (6.3.8) use has been made of formulas (6.3.6) and (6.3.7).

The boundary conditions are:

 $t = 0 \qquad C_{N_2O} = 0$

$$r = 0 \qquad \frac{\partial C_{N_2 O}}{\partial r} = 0$$

$$r = r_s$$
 $D_e \frac{\partial C_{N_2 O}}{\partial r} = k_d (C_{N_2 O, \infty} - C_{N_2 O, s})$ (6.3.9)

where r_s is the particle radius, k_d is the mass transfer coefficient in the external gas film, $C_{N2O, \ \infty}$ and $C_{N2O, \ s}$ are the N₂O concentration in the bulk and the N₂O concentration at the particle outer surface, respectively.

In order to solve equation (6.3.8) it is necessary to find an expression for the O_2 profile. The dimensionless oxygen mass balance can be written as follows:

$$\frac{2}{\zeta} \frac{\partial C}{\partial \zeta} + \frac{\partial^2 C}{\partial \zeta^2} - \Phi_o^2 C = 0$$
(6.3.10)

with $\zeta = r/R$, $C = C_{02} / C_{02, \omega}$ and Φ_0 is the Thiele modulus,

$$\Phi_o = R \sqrt{\frac{k_s A_g}{D_e}}$$
(6.3.11)

The dimensionless boundary conditions can be written as follows:

$$\theta = 0$$
 $C = 0$

$$\zeta = 0 \qquad \frac{\partial C}{\partial \zeta} = 0$$

$$\zeta = \zeta_s \qquad D_e \frac{\partial C}{\partial \zeta} = Bi_m (1 - C_s) \qquad (6.3.12)$$

where $\zeta_s = r_s / R$, C_s is the reduced oxygen concentration at the external surface of the particle, Bi_m is the Biot number for mass transfer defined as:

$$Bi_m = R \frac{k_d}{D_e} \tag{6.3.13}$$

 θ is the reduced time defined as:

$$\theta = \frac{k_s C_{O_2 \infty} A_g t}{C_{s,o}}$$
(6.3.14)

where $C_{s,o}$ is the initial carbon concentration in the particle. Equation (6.3.10) can now be solved which leads to the following expression for the reduced oxygen concentration in the particle:

$$C = \frac{Bi_m}{\frac{\sinh(\Phi_o \zeta_s)}{\zeta_s} (Bi_m + \Phi_o \coth(\Phi_o \zeta_s) - \frac{1}{\zeta_s})} \frac{\sinh(\Phi_o \zeta)}{\zeta}$$
(6.3.15)

Now the N₂O mass balance can be solved. First equation (6.3.8) is written in the dimensionless form:

$$\frac{2}{\zeta} \frac{\partial N^*}{\partial \zeta} + \frac{\partial^2 N^*}{\partial \zeta^2} - \Phi_{N_2 O}^2 N^* + \gamma_1 \Phi_o^2 C = 0$$
(6.3.16)

where N^{*} = C_{N20} /C_{N20, ∞}, $\gamma_1 = \gamma_{N20} X_{NC} C_{O2, \infty}$ /C_{N20, ∞} and Φ_{N20} the Thiele modulus defined as:

$$\Phi_{N_2O} = R \sqrt{\frac{k_{N_2O} A_g}{D_e}}$$
(6.3.17)

The reduced boundary conditions are:

$$\theta = 0 \qquad N^* = 0$$

$$\zeta = 0 \qquad \frac{\partial N^*}{\partial \zeta} = 0$$

$$\zeta = \zeta_s \qquad D_e \ \frac{\partial N^*}{\partial \zeta} = Bi_m(1 - N_s^*) \qquad (6.3.18)$$

where N_s is the reduced N_2O concentration at the external surface of the particle. Equation (6.3.16) can now be solved which gives the following expression for the reduced N_2O profile in the particle:

$$N^{*} = \frac{Bi_{m} \left(1 + \frac{\gamma_{1}}{1 - \Phi_{N_{2}O}^{2}/\Phi_{o}^{2}}\right)}{\frac{\sinh(\Phi_{N_{2}O}\zeta_{s})}{\zeta_{s}} (Bi_{m} + \Phi_{N_{2}O} \coth(\Phi_{N_{2}O}\zeta_{s}) - \frac{1}{\zeta_{s}})} \frac{\sinh(\Phi_{N_{2}O}\zeta)}{\zeta} - \frac{\gamma_{1}}{1 - \Phi_{N_{2}O}^{2}/\Phi_{o}^{2}} C$$
(6.3.19)

where C is the dimensionless oxygen concentration described by equation (6.3.15).

With equations (6.3.15) and (6.3.19) the expression for the N₂O reduction capacity can be derived. The definition of the N₂O reduction capacity of formula (6.3.2) can be written in dimensionless form:

$$R_{N_2O} = \frac{1}{\gamma_1} \frac{\frac{\partial N^*}{\partial \zeta}|_{\zeta_s}}{\frac{\partial C}{\partial \zeta}|_{\zeta_s}} + 1$$
(6.3.20)

Application of equations (6.3.15) and (6.3.19) in formula (6.3.20) results in the following expression for the N_2O reduction capacity:

$$R_{N_2O} = 1 + \frac{1}{\gamma_1} \left[(C_1 - C_2) * C_3 - C_4 \right]$$
(6.3.21)

where:

$$C_{1} = \frac{\Phi_{N_{2}O} \coth(\Phi_{N_{2}O}\zeta_{s})Bi_{m}(1 + C_{4})}{Bi_{m} + \Phi_{N_{2}O} \coth(\Phi_{N_{2}O}\zeta_{s}) - 1/\zeta_{s}}$$

$$C_{2} = \frac{Bi_{m}(1 + C_{4})}{[Bi_{m} + \Phi_{N_{2}O} \operatorname{coth}(\Phi_{N_{2}O}\zeta_{s}) - 1/\zeta_{s}]\zeta_{s}}$$

$$C_3 = \frac{1}{Bi_m} + \frac{\zeta_s}{\zeta_s \Phi_o \operatorname{coth}(\Phi_o \zeta_s) - 1}$$

$$C_{4} = \frac{\gamma_{1}}{1 - \Phi_{N_{2}O}^{2}/\Phi_{o}^{2}}$$

The only unknown factor in the formula for the N₂O reduction capacity is the reduced radius of the particle ζ_s . Ishida and Wen [13] derived a relationship between the reduced particle radius and the conversion degree X for the linear case:

$$X = 1 - \zeta_s^3 + \frac{3\zeta_s}{\Phi_o^2} \left[\Phi_o \zeta_s \operatorname{coth}(\Phi_o \zeta_s) - 1 \right]$$
(6.3.22)

It can be shown that the N₂O reduction capacity is only a weak function of the conversion degree X (and also of the reduced particle radius) except for conversion degrees close to unity. The assumption is made that a char particle in a fluidized bed reactor can not reach a conversion close to unity because at high conversion degrees the char particle becomes so small that it will be elutriated. In this case a constant value of unity will be adopted for the reduced particle radius ζ_s (i.e. the initial situation) in the expression for the N₂O reduction capacity of a single particle. This adoption simplifies the expression for the N₂O reduction capacity considerably:

$$R_{N_{2}O} = 1 + \frac{1}{\gamma_{1}} \left(\left[\frac{\left(1 + \frac{\gamma_{1}}{1 - \Phi_{N_{2}O}^{2}/\Phi_{o}^{2}}\right) Bi_{m} \left[\Phi_{N_{2}O} \operatorname{coth}(\Phi_{N_{2}O}) - 1\right]}{Bi_{m} + \Phi_{N_{2}O} \operatorname{coth}(\Phi_{N_{2}O}) - 1} \right] *$$

$$\left[\frac{1}{Bi_{m}} + \frac{1}{\Phi_{o} \operatorname{coth}(\Phi_{o}) - 1}\right] - \frac{\gamma_{1}}{1 - \Phi_{N_{2}O}^{2}/\Phi_{o}^{2}}$$
(6.3.23)

The same procedure as decribed above can be used to derive an expression for the NO reduction capacity of a single particle. The formation rate of NO is assumed to be proportional to the char combustion rate, in formula:

$$R_{NO,f} = -\frac{\partial C_s}{\partial t} X_{NC} \gamma_{NO} = k_s C_{O_2} A_g X_{NC} \gamma_{NO}$$
(6.3.24)

where γ_{NO} is the molar ratio of the amount NO formed by direct oxidation from the total amount of nitrogen in the char.

The assumption is made that NO can only be reduced on the char surface area. In that case the NO reduction rate can be written as follows:

$$R_{NO,r} = k_{NO} C_{NO} A_g \tag{6.3.25}$$

Making use of equations (6.3.24) and (6.3.25), the NO reduction capacity can be written as:

$$R_{NO} = 1 + \frac{1}{\gamma_2} \left(\left[\frac{\left(1 + \frac{\gamma_2}{1 - \Phi_{NO}^2 / \Phi_o^2}\right) Bi_m [\Phi_{NO} \coth(\Phi_{NO}) - 1]}{Bi_m + \Phi_{NO} \coth(\Phi_{NO}) - 1} \right] * \left[\frac{1}{Bi_m} + \frac{1}{\Phi_o \coth(\Phi_o) - 1} \right] - \frac{\gamma_2}{1 - \Phi_{NO}^2 / \Phi_o^2} \right)$$
(6.3.26)

where:

$$\gamma_2 = X_{NC} \gamma_{NO} \frac{C_{O_2,\infty}}{C_{NO,\infty}}$$
(6.3.27)

$$\Phi_{NO} = R \sqrt{\frac{k_{NO} A_g}{D_e}}$$
(6.3.28)

6.3.4 MICRO-SCALE EXPERIMENTS

In order to investigate the N_2O reduction and formation mechanisms during combustion of char, some micro-scale experiments have been conducted.

6.3.4.1 Experimental set-up.

Figure 6.3.5 showes the experimental set-up used.

Figure 6.3.5. Experimental set-up.

The reactor is a \emptyset 10 cm quartz tube with a porous quartz distributor plate. The height of the reactor is 65 cm. The reactor is situated in an electrically heated oven together with the gas preheater. The gas composition and the gas flow entering the reactor can be adjusted by means of critical flow nozzles. Char can continuously be supplied to the reactor (above the bed) by a small hopper and screw feeder with a variable speed motor. The whole feeding system is placed on a digital balance. The temperature of the oven is regulated by a temperature controller, the excess heat can be removed by cooling air around the reactor.

The effluent gases can be analysed by the following equipment:

- CO:	Beckman model 870 (Non-dispersive infrared absorption, 0 - 5 vol %)
- CO:	Maihak Defor (Non-dispersive infrared absorption, 0 - 0.5 vol %)
- CH:	Beckman model 400 (Flame ionisation detection, 0 - 10000 ppmV)
- NO/NO _x :	Beckman model 951 A (Chemiluminescention, 0 - 1000 ppmV)
- SO ₂ :	Maihak Defor (Non-dispersive infrared absorption, 0 - 1000 ppmV)
- O ₂ :	Maihak Oxigor 6N (Paramagnetic, 0 - 20 vol %)
- CO ₂ :	Maihak Defor (Non-dispersive infrared absorption, 0 - 20 vol %)
- N ₂ O:	Miran Infrared Analyser model 80 (Infrared absortion, range depending
-	on calibration)

6.3.4.2 Preparation of the char.

The char used for the experiments was produced from El Cerrejon coal in a \emptyset 30 cm fluidized bed reactor. The reactor was heated up to 880 °C. At this temperature 10 kg of coal (sieve fraction 2 - 6.3 mm) was supplied to the reactor. For 8 minutes the reactor was fired with petroleum under lean condition. Then the air supply to the reactor was stopped and the reactor was cooled down to 350 °C under an inert atmosphere. The analysis of the resulting char is shown in table 6.3.1.

Char: El Co	errejon	Land of origin: Columbia	<u></u>
ULTIMAT	E ANALYSIS	WEIGHT PERCENTAGE	
Carbon	С	84.21	
Hydrogen	Н	0.54	
Oxygen	0	3.12	
Nitrogen	Ν	1.61	
Sulphur	S	0.62	
Volatile ma	tter	4.76	
Fixed carbon		85.35	
Moisture		2.09	
Ash		9.89	

Table 6.3.1. Analysis of the char.

The density of the char ρ_c is 750 kg/m³, the bulk density W_g is 335 kg/m³ and the fixed-bed porosity ϵ (the ratio of the density of the char and the bulk density of the char) is 0.45. The value of the surface area of the char A is difficult to determin, so a value of 600 m²/g is adopted from literature (van Engelen et.al. [14]).

6.3.4.3 Experimental program

Experiments have been conducted to gain more inside in the following subjects:

- Thermal N₂O decomposition.
- N_2O reduction reaction at the char surface area.
- N_2O formation through NO reduction at the char surface area.
- Combustion (parametric study).

The experimental conditions are discussed below:

- Thermal N₂O decomposition.

In order to study the importance of thermal N₂O decomposition, 1500 ppm N₂O has been suplied to the empty reactor in the temperature range of 600 to 1000 °C.

- N_2O reduction reaction at the char surface area.

During these experiments a gas mixture of N_2O in N_2 (inert atmosphere) was fed through a fixed bed consisting of 45 g of El-Cerrejon char in order to study the reaction rate and the reaction order. Table 6.3.2 shows the experimental conditions.

Table 6.3.2. Experimental conditions.

Mean char diameter	1 and 1.5 mm
Concentration N ₂ O inlet in N ₂	1200 and 130 ppmV
Bed temperature	From 773 to 1023 K

- N_2O formation through NO reduction at the char surface area.

From literature it is not clear whether this N_2O formation mechanism plays a significant role. To study this mechanism a mixture of 450 ppmV NO in nitrogen was fed through the reactor containing a fixed bed of 45 g of El-Cerrejon char. Table 6.3.3 gives the experimental conditions.

Table 6.3.3. Experimental conditions.

Bed temperature	From 773 to 1073 K
Mean char diameter	1 and 1.5 mm

- Micro-scale combustion experiments.

Micro-scale combustion experiments (oxygen atmosphere) have been conducted to study the influence of temperature and particle diameter the N_2O and NO emissions. Table 6.3.4 shows the experimental conditions.

Table 6.3.4. Experimental conditions.

Constant process conditions:

Fluidizing velocity	0.4	[m/s]
Bed height (static)	0.1	[m]
Bed height (expan.)	0.15	[m]
Diameter bedmaterial	0.6 - 0.8	[mm]
Air ratio	1.2	[-]
Char supply	0.3	[kg/hr]

Experimental variations:

Sieve fraction char	1-2 and 2-3 mm	
Bed temperature	From 1023 to 1173 K	

6.3.4.4. EXPERIMENTAL RESULTS

In this chapter the results from the experimental program will be reported.

6.3.4.4.1 Thermal N₂O decomposition

Figure 6.3.6 shows the N₂O conversion in relation with temperature. It can be seen that the thermal N₂O decomposition is not important below reactor temperatures of 900 °C. However, it is not clear whether this reduction is purely thermal, because the stainless steel gas sampling tube in the reactor can also have a catalytic effect on the N₂O reduction reaction.

Figure 6.3.6. Conversion in relation to temperature for thermal N₂O decomposition.

6.3.4.4.2 N₂O reduction reaction on the char surface area

From experimental data the reaction rate and the order m of the reaction has been derived taking into account the effects of external and internal mass transport limitations. The value of the effective diffusivity has been estimated to be $1 * 10^{-5}$ m²/s.

Reaction order m = 1 appeared to be the best fit for the experimental data. Figure 6.3.7 shows a plot of the reaction rate constant calculated from experimental data in relation to the temperature for m = 1.

Figure 6.3.7. Reaction rate constant in relation to temperature.

The reaction rate constant for the N_2O reduction reaction on the char surface area can be written as follows:

$$k_{N_2O} = 9.16 * 10^7 EXP\left(\frac{-13540}{T}\right) \left[\frac{1}{s}\right]$$
 (6.3.29)

6.3.4.4.3 N_2O formation through NO reduction on the char surface area

During these experiments no N_2O formation from NO could be detected. From the data obtained during these experiments a first order behaviour was found for the NO reduction reaction on the char surface area. The following reaction rate was found:

$$k_{NO} = 2 * 10^8 EXP\left(\frac{-14800}{T}\right) \left[\frac{1}{s}\right]$$
 (6.3.30)

Figures 6.3.8 and 6.3.9 show the concentrations of N_2O and NO measured during micro-scale combustion experiments.

Figure 6.3.8. Overall N₂O and NO concentrations, $d_{char} = 1 - 2$ mm.

Figure 6.3.9. N₂O and NO concentrations, $d_{char} = 2 - 3$ mm.

From figures 6.3.8 and 6.3.9 it can be seen that the NO concentration increases with increasing temperatures and that the N_2O concentration decreases with increasing temperatures. Furthermore it can be seen that the NO concentration increases while the N_2O emission decreases when burning smaller char particles.

6.3.4.4.5 Model results

A computer program has been written to simulate the micro-scale experiments. The reactor is modeled as a plugflow reactor. Earlier experiment have shown that the char is homogeneously mixed in the bed and that the reactor shows a one fase behaviour. The N₂O and NO reduction capacities of a single char particle (formulas (6.3.23) and (6.3.26)) have been used. The first order reaction rate constant in oxygen for the burning of the char has been adopted from Smith [15]:

$$k_{char} = 20.85 * T * EXP\left(\frac{-21600}{T}\right) \left[\frac{m}{s}\right]$$
 (6.3.31)

All model parameters are known except for the primary formation rate of char-N to N_2O (= γ_{N2O}) and char-N to NO (= γ_{NO}). Experimental data will be used to get values for γ_{N2O} and γ_{NO} (see fig. 6.3.10). These factors must physically satisfy the following expression:

$$2\gamma_{N_0} + \gamma_{N_0} \le 1$$

Figure 6.3.10. Meaning factors γ_{N20} and γ_{N0} .

Figures 6.3.11 and 6.3.12 show the results of the calculations. Figure 6.3.11 shows γ_{N20} in relation to temperature and particle diameter. Figure 6.3.12 shows γ_{N0} in relation to temperature and particle diameter. In figure 6.3.13 the summation of the latter two $(2^*\gamma_{N20} + \gamma_{N0})$ is shown.

Figure 6.3.11. γ_{N20} in relation to temperature and particle diameter.

Figure 6.3.12. $\gamma_{NO}\,$ in relation to temperature and particle diameter.

Figure 6.3.13. $2^* \gamma_{N20} + \gamma_{N0}$ in relation to temperature and diameter.

From fig. 6.3.11 the conclusion can be drawn that the amount of char bound nitrogen converted into N₂O decreases proportional with increasing temperature. It is also clear that the larger char particle diameter enhances the amount of N₂O formed by direct oxidation of char bound nitrogen. Figure 6.3.12 shows that the amount of NO formed by direct oxidation of char bound nitrogen increases proportional with increasing temperature and decreases with increasing char particle diameter. Figure 6.3.13 shows that NO and N₂O account for 35 to 75 % of the char bound nitrogen depending on temperature and particle diameter. It could be expected that the factors γ_{N2O} and γ_{NO} are dependent on the particle temperature. It was however unexpected that the above mentioned factors are a function of the particle size. An explanation for this could be the unknown value for the reaction rate constant for the combustion reaction k_{char} which is adopted from literature.

6.3.5 CONCLUSIONS.

The main source of N_2O and NO during char combustion in a fluidized bed reactor is the direct oxidation of char bound nitrogen. This N_2O and NO can be reduced on the char surface area. For both reduction reaction a first order reaction behaviour in the gaseous component was found by fitting the reaction order to experimental data. No N_2O formation could be detected by NO reduction on the char surface area.

Micro-scale char combustion experiments showed that the N_2O concentration decreases proportional with increasing temperature while the NO concentration increases proportional with increasing temperature. These experiments also show that

the N_2O concentration increases with larger particle diameters of the char. The NO concentration decreases with larger particle diameter.

Expressions for the N₂O and NO reduction capacities for the so-called linear case have been used in a computer program to determine the factors γ_{N2O} and γ_{NO} which represent the primary formation of N₂O and NO inside the char particle. These factors show a linear temperature dependence. Also an influence of the char diameter was found, which might be caused by an incorrect value for the reaction rate constant of the combustion reaction. From these factors it is clear that N₂O and NO account for 35 to 75 % of the char bound nitrogen, depending on temperature and particle diameter.

The single particle model has been used to derive expressions for the N_2O and NO reduction capacities of a single particle for the linear case. The latter means the assumption of constant internal surface area of the char and constant effective diffusivity. In reality both the internal surface area and the effective diffusivity will change because the char is involved in the combustion reaction leading to changes inside the particle. Further work must be done to expand the expressions for the reduction capacities for the non-linear case, as decribed in Brem [10] and to validate the model with experimental data. Also the N₂O and NO reactions during volatile combustion should be included so the model can eventually be used to predict the N₂O and NO emission from a fluidized bed combustor.

6.3.6 SYMBOLS

A	surface area of the char	m²/g
a	stoichiometric reaction coefficient	-
A,	reaction surface area per unit of volume	m^2/m^3
Bim	Biot number for mass transfer	-
C	reduced oxygen concentration	-
Ci	concentration of component j	mol/m^3
ď	diameter	m
D,	effective diffusivity	m^2/s
F _c	carbon conversion	-
k	reaction rate constant	1/s, m/s
m	reaction order	-
N	reduced NO concentration	-
N*	reduced N ₂ O concentration	-
R	initial particle diameter	m
r	particle diameter	m
r	radial coordinate	m
R _{NO}	NO reduction capacity of a single particle	-
R _{N20}	N_2O reduction capacity of a single particle	-
T	temperature	Κ
t	time	\$
W	bulk density of the char	kg/m ³
X	mole fraction of component j	-

X _{NC}	molar ratio of nitrogen and carbon in the char	-
ΥNO	molar ratio of the amount of N ₂ O formed by direct oxidation	
	from the total amount of nitrogen in the char	-
γ _{N2O}	molar ratio of the amount of NO formed by direct oxidation	
	from the total amount of nitrogen in the char	-
ε	fixed-bed porosity	-
θ	reduced time	-
ζ	reduced particle diameter	-
ρ	density	kg/m ³
φ	Thiele modulus	-

Subscripts

c char	
f formation	
NO with respect to NO	
with respect to N_2O	
with respect to O_2	
r reduction	
s with respect to carbo	m
_∞ bulk	

6.3.7 REFERENCES.

- 1 Hulgaard, T. Nitrous oxide from combustion. Ph.D. Thesis, Technical University of Denmark, Denmark (1991).
- 2 Johnsson, J.E., Nitrous oxide formation and destruction in fluidized bed combustion a literature review of kinetics. 23rd IEA-AFBC-Meeting. Firenze, (1991).
- 3 De Soete, G.G., Heterogeneous N₂O and NO formation from bound nitrogen atoms during char combustion. Twenty-third Symposium (international) on combustion.
- 4 Wojtowicz, M.A., Oude Lohuis, J.A., Tromp, P.J.J., Moulijn, J.A. N₂O formation in fluidized bed combustion of coal. Eleventh International Conference of Fluidized Bed Combustion. ASME, New York, p.1013-1020, (1991).
- 5 Bramer, E.A., Valk, M. Nitrous oxide and nitric oxide emissions by fluidized bed combustion. Eleventh International Conference on Fluidized Bed Combustion, ASME, New York, p.701-708, (1991).
- 6 De Soete, G.G., Formation of nitrous oxide from NO and SO_2 during solid fuel combustion. Proceedings of 1989 Joint Symposium on Stationary Combustion NO_x Control, San Francisco, (1989).
- 7 Amand, L.E., Andersson, S. Emissions of nitrous oxide (N₂O) from fluidized bed boilers. The Tenth International Conference on Fluidized Bed Combustion. ASME, New York, (1989).
- 8 Lisa, K., Santala, P., Hupa, M. Formation of nitrous oxide from ammonia on lime surfaces. Abo Akademi, Finland, Report no. 90-50, (1990).
- 9 De Soete, G.G. Heterogeneous reactions on coal and char, with emphasis on N₂O formation. Conference held at Chalmers, Goteborg, Sweden, (1988).
- 10 Santala, P., Lisa, K., Hupa, M. Catalytic destruction of N₂O in a fixed bed laboratory reactor, Abo Akademi, Finland, Report no. 90-6, p.1-22, (1990).
- 11 Miettinen, H., Stromberg, D., Lindquist, O. The influence of some oxide and sulphate surfaces on N₂O decomposition. Eleventh International Conference on Fluidized Bed Combustion, ASME,

New York, p.999-1004, (1991).

- 12 Brem, G. Mathematical modeling of coal conversion processes. Ph.D. Thesis, Twente University of Technology, Enschede, Thew Netherlands, (1990).
- 13 Ishida, M., Wen, C.Y. Comparison of kinetics and diffusional models for solid-gas reactions. AIChE Journal, vol. 2, (1988).
- 14 Engelen van, A.B., Honing van der, G. Coal characterization by combustion experiments in a small scale fluidized bed, interpreted by an analytical single porous particle conversion model, Twente University of Technology, Enschede, The Netherlands, (1990).
- 15 Smith, I.W. The intrinsic reactivity of carbon to oxigen. Fuel, vol. 57, p.303-314, (1978).