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1. I n t r o d u c t i o n  

In the theories about the rheoloElcal behaviour of materials their actual state is to 

represented by a model. Such a model may be considered an image of the system, sim- 

plified in such a way that it is tractable for mathematical analysis and still re- 

presentlnE the features of the system that are expected to be important for its rheo- 

logical behaviour. The development of models may be viewed as a process in which some 

kind of balance between physical reality, mathematical simplicity and usefulness is 

optimized. 

In the present paper a thermodynamic approach is given which may be applied to many 

type of models in a unified and systematic way. Our results are similar to the ones 

obtained earlier by Lhuillier [I] and Maugin and Drout [2], but derived in a slightly 

different manner and generalized to a broader class of systems. There is also a close 

connection with the more general abstract formulation of Grmela [3] based upon a bra- 

cket formulation of diffusion and convection equations. In the work of Grmela however 

the general matrix representation (see eq. (2.7) below) which plays a central role in 

our formulation was not obtained. An important notion in our approach is the explicit 

distlnEuishment of different levels of description. This means that the representa- 

tion of system by a model may be a more or less detailed description of the real 

mlcrostructure. The following levels of description may be considered: 

l e v e l  1: molecular" dynamics 

A molecular model representation very similar to the real mlcrostucture and 

governed by classical mechanics. This level is used in computer simulations. 
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level 2: 

l e v e l  3: 

l e v e l  4: 

level 5: 

phase  space  

Representation of the structure llke level I, but specification of the 

state by a distribution function in phase space. 

configuration space 

Representation of the structure like level 2 but preaveraged with respect 

to velocities. The state is specified by a configurational distribution 

function. 

structural variables 

The structure is represented by a (set of) scalar and/or tensorial varia- 

bles. 

continuum 

The system is represented by a continuum, specified by {a) constitutive 

equation(s). 

In the present paper we wlll consider only the levels 3, 4 and 5. Nevertheless there 

will be still many possible descriptions for each system. The reason for this is 

that, as we shall see in the next section, the model is based upon a division of the 

system in a subsystem and its environment, both of which may be described at diffe- 

rent levels of description. 

In section 2 the general theory -which, for reasons to be given in section 3.1, will 

be called "the triangle model" -will be presented and in section 3 the application to 

a number of rheological models will be discussed. These applications are merely to 

illustrate the method. No attempt has been made to be complete in some sense or to 

obtain new results. In section 4 we discuss some features of the present approach and 

some prospects for future investigations. 

2 .  Theory 

In any microrheological model it is possible to define a subsystem and a set of ex- 

ternal stresses and forces are acting on it. This set will be denoted here by ~, and 

the associated set of external flows and velocities by F. The power supply to the sub- 

system then becomes 

W = Z • F (Z.1) 

Here, the dot denotes an inner product in the linear space to which E and F belong. 

If E and F are vectors or tensors the product will be a single or multiple contrac- 
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tion. Z and F may however also denote spatial fields or other functions, in that case 

the inner product in (i) may contain an integration with respect to the space coordi- 

nates or other variables. 

Besides the external variables Z and F we introduce a set of state variables ~, such 

that, at constant temperature, the free energy A of the system may be expressed as a 

function, or a functional of #: 

A = A (~) (2.2) 

The derivative of A with respect to ~ has the significance of a (set of) thermo- 

dynamic force(s): 

~A 
= -- = ~ (#) (2.3) 

Here, and elsewhere in this paper, the kind of derivative is not explicitly speci- 

fied, it depends upon the nature of the quantity #: if ~ is a set of scalar or ten- 

sorial variables (3) consists of a set of partial derivatives and in the case that 

is a function, an apropriate functional derivative. The latter situation occurs, for 

instance in configurational-space molecular models, if the distribution function @ is 

used as the state variable ~. 

We now consider the rate of dissipation A. Bij definition, this is the power supply 

(I) minus the rate of reversible storage of energy. In the isothermal case, the latter 

part equals the rate of change of the free energy A = ~ m ~ (the ~ denotes an inner 

product in the space to which , and # belong) so we have 

= z • #- n "  ~ (2.4) 

We assume that the set of variables, introduced so far, is complete in the sense that 

all quantities in (4) may be considered as functions (or functionals) of F and N: 

z = z (b,n) , ~ = % (b, n) (2.5) 

If from the three equations (4) and (5) the internal variables ~ and ~ (including ¢) 

are eliminated a relation between Z and F results. This is the microscopic consti- 

tutive equation of the model. 

We will now impose some general restrictions upon the functionals (5). To that end we 

introduce the concept of a "macroscopic time reversal". With this we mean a reversal 

of the external flows and velocities. The term "macroscopic" is used, in order to 

distinguish this kind of time reversal from a real time reversal in which also on a 
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microscopic scale all velocities and rates of change of state variables are reversed 

A microscopic time reversal implies a macroscopic one but the opposite statement is 

not necessarily true. In the present formalism a macroscopic time reversal is a 

change of sign of the variable F. Under such a transformation the variables h, Z, 

and % will also change but some restrictions upon these changes are imposed by the 

laws of thermodynamics. In order to analyse this, we define for any functional 

f (F) an even and an odd part with respect to macroscopic time reversal as 

1 - 1 
f+ (F) + ~ ( f  (F) + f C-F)) and f (F) = ~ ( f  (F) - f ( - F ) )  

For the variables in (4) we then have: A = A +, since the dissipation A has to be 

positive, by the second law of thermodynamics; F = F-, by definition; and U = ~+, 

since according to (3) ~ is a variable of state and not directly dependent upon F. 

The quantities Z and % have no definite parity, so, in general: Z = Z + + Z- and % = 

$-+$" 

We now consider the even part of (4): 

~ = Z - .  r - . *  %+ 

and the odd part: 

o =Z + . ~_ ~. %- 

(2.6) 

(2.7) 

From (6) we see  t h a t  o n l y  the  odd p a r t  o f  Z and t h e  even  p a r t  o f  ¢ c o n t r i b u t e  to  t h e  

d i s s i p a t i o n  4. T h e r e f o r e  we d e f i n e  the  d i s s i p a t i v e  s t r e s s  Z D as  

Z D : Z- (2.8) 

The even part of Z will considered as a reversible stress: 

Z R = Z + (2.9) 

Similarly we define ~ = %D + 

with 
$D = $÷ 

and 

$" = $- 

%" 

(2.10) 

(2.11) 

We now will derive some more explicit results about the dependence of Z and % on 

and H. From the parity of F, N, Z D and %D, as defined in (8) - (ii) it can be seen 

that we may write: 

and 

Z D = ~ (F,  N) • F ( 2 . 1 2 )  

%D = _# (~,  n) • ~ ( 2 . 1 3 )  
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in which the quantities B and ~ are even with respect to F. The minus sign in (13) 

will be explained after eq. (17), below. For the reversible part of ~ we may write 

~R = A (F, n) • F (2.14) 

in which A is even with respect to F and N. If (14) is substituted in (7), on using 

(9) and (11) we see that 

so 

z R • # =n.A (#, n) • # 

E R = A T (#, ~) " n 

(2.15) 

(2.16) 

The quantity A T in this expression is the adJoint of the operator A, in the sense 

that U • A • F = F • A T • ~ for arbirary U and F. (In the case that A is a tensor, A T 

denotes the transposed of A). The transposed of higher order tensors, defined in 

this way depends upon the number of contractions corresponding to the products "i" 

and "." If, for instance A is a third order tensor a • k : B = B : A T • a implies 

that klj k ATjkl whereas A : A • b b A T = = • : A would imply klj k = ATklj. We will 

make no distinction in the notation of these type of transpositions since in our case 

their meaning can always be deduced easily from the expressions in which they are 

used. 

We see that, as a direct result of eq. (7), which was obtained by considering the 

parity of the quantities in (4) with respect to macroscopic time reversal, obtain a 

close relationship between the evalution equation (14) of ~R and the expression (16) 

of E ~. 

The results (12), (13), (14) and (16) may be collected in a matrix expression, simi- 

lar to the one obtained in classical treatment of non-equilibrium thermodynamics from 

the expression of the entropy production, (which, in the isothermal case considered 

here, is proportional to the dissipation (4)). 

This matrix expression becomes: 

AT.] 
(z.17} 

The skew-semmetry of the off diagonal elements is in accordance with the Onsager- 

Casimir reciprocal relations. The minus sign in (17) was introduced, in order to use 

the "forces" and "fluxes" of the expression of the dissipation (4), written as A E 

• ~+ C-n) .%. 
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A derivation of a set of rate equations similar to our derivation of (17) by taking 

into account the tlme-reversal properties of dissipative effects was first applied to 

rheological models by Lhuillier [i], (see also the review article by Maugin and Drout 

[2]). 

The main difference to the approach in these papers and the one presented here is 

that we do not consider the parity of variables with respect to ordinary time rever- 

sal but to what was called a macroscopic time reversal. This enabled us to split up 

the original expression (4) of the dissipation into the two parts (6) and (7). In 

this way the reversible and dissipative parts of the quantities ~ amd Z may be de- 

fined in an unambigious way. In the method based upon ordinary time reversal-symmetry 

a dissipation expression similar to (6) and an expression similar to 

(7) are introduced ad hoc. 

It is interesting to note that since A is independent of F, if follows from (17) 

A = 3 ~R / ~ # and so we obtain 

Z R = IT * -- (2.18) 

This result is in accordance with an expression first derived by Grmela [3] in a 

general theory based upon a bracket formulation of convection and diffusion equa- 

tions. In [3] and also in subsequent publications by Grmela et al. [4-6] it was shown 

that the expression (18) is consistent with the stress-tensor expressions in many 

theological models. 

In the application to specific theological models it is possible to make different 

choices for the variables Z, F, II and 4, depending upon the choice of the sub(system) 

and the level of description. A particular choice will be referred to as the " (•, F, 

/ IT, ~) - level of description" with the choosen variables substituted for Z, F, IT 

and # In section 3 we will discuss several rheological models at various levels of 

description. 

3. A p p l i c a t i o n s  

The theory, described in section 2 will now be applied to a number of special rheo- 

logical models. In section 3.1 we start with the treatment of spring dashpot models. 

This results in the construction of a special type of mechanical model, called "the 

triangle model" which represents the important features of the general theory in a 
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schematic way. In section 3.2 the elastic dumbbell will be discussed at several 

levels of description and in section 3.3. the rigid dumbbell model as an example of a 

model with a constraint. 

In section 3.4 it will be shown that it is also possible to describe reptation models 

in the present formalism and in section 3.5 we discuss the transient-network model as 

an example of a kinetic model. Finally in section 3.6 some examples of configura- 

tional tensor theories will be treated. 

3.1 M e c h a n i c a l  m o d e l s  

In the treatment of linear viscoelasticity one often makes use of spring-dashpot 

models, as a phenomenological, representation of material behaviour. Although the 

theory presented in section 2 is not restricted to linear viscoelastic behaviour it 

is still very instructive to apply it to this type of models. The reason for this is 

that some of the basic elements of the present model: reversible storage of energy, 

dissipation and conpllng of internal parts of the system to the environment are also 

the basic characteristics of spring-dashpot models. 

The external variables Z and r in (2.17) then become the external stress T and the 

external rate of extension ~, so we have: 

z=T , ~ =  ~ (3. i - i )  

The mechanical energy, stored in the springs of the model corresponds to the free 

energy A (~) defined in (2.2). We will consider here models with one spring, with 

spring force ~ and an extension e, so we have: 

= c , # = e (3.1-2) 

The dissipation expression (2.4) now becomes: 

~ = ~  - ~  (3.1-3) 

SO we, similar to (2.17), we have 

z • -A 

(3. i-4) 

In table I the constans W, ~ and A are given for a few well known mechanical models. 

We see that the structure of the matrix in (4) reflects the connection structure of 

the corresponding network: 
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Table I 

Eq. (3.1-4) applied to some mechanical models 

Model 

K 

K 

K 
A/Vv - 

P a r a m e t e r s  i n  ( 

o 

0 0 

o% 0 

0 1/n2 

oi 1/o2 

if the internal stress v is directly coupled to the external stress ~ (like in the 

Maxwell model) the parameter n vanishes. If on the other hand the rate of extension 

of the spring Z is directly coupled to the external rate of extension ~ (like in the 

Voigt-Kelvin model) the parameter ~ vanishes, the other two possibilities are combi- 

nations of these two cases. In all mechanical models discussed so far, we have A = 1 

The case k ~ I corresponds to amplification or reduction of stresses and rates of 

extension in the connection between internal and external variables. 

A model in which such is the case is presented in figure 1. This model, which 

-because of its characteristic shape- will be called "the trianEle model", is de- 

scribed by the complete set of equations (4) with n ~ O, ~ ~ 0 and A ~ I. Since (4) 
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is similar to the general expression (2.17) the triangle model may be considered also 

as a symbolic representation of the general theory, described in section 2. For that 

reason, in the rest of this paper we will also refer to the model described in sec- 

tion 2 as the "triangle theory". 

I 

? 
=i 

= T  
i 
I 

= ( 7  

Fig .  1 The t r i a n g l e  Model 

3 . 2  T h e  e l a s t i c  d u m b b e l l  m o d e l  

As a first application of the triangle model to a microscopic model we consider the 

elastic dumbbell model. This model is used to describe approximately some of the 

theological properties of dilute solutions of flexible macromolecules. For an exten- 

sive discussion we refer to chapter 13 of ref. [7]. Here we recall that a dumbbell 

consists of two beads on which hydrodynamic forces are acting, connected by a spring. 

The spring vector will be denoted by ~ and the configurational distribution function 

by @(~, t). 
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In order to apply the triangle model to the dumbbell model, we first have to define 

the variables ~, F, ~ and @. This means that a level of description has to be speci- 

fied. We start at the (T, ~/ H, ~)-level, so 

z=I ; b=L 

3A @=@ ; g=g=~@ 
( 3 . 2 - 1 )  

Here T is the macroscopic stress tensor; L the velocity gradient tensor and A = A-{V} 

the free energy, considered as a functional of the distribution function @ ~ @ Lq, t). 

In the present case we have 

A{@} = nkT S @ into d3~ (3.2-2) 

in which n is the number density of dumbbells, k Boltzmanns's constant, T the tempe- 

rature and @o the equilibrium distribution. 

This functional is (within an additative constant) the so called dynamical free 

energy, introduced by Doi [g]. (see also Sarti and Marruccl [9]). 

The associated thermodynamic force, which has the significance of a chemical poten- 

tial in configuration space becomes 

3A @ ( 3 . 2 - 3 )  
- - nkT ( i  + in ,-- ) 3@ 

~o 

The rate of reversible storage of energy due to a change of @ may now be written as 

- 3@ at - I p ~-6 d3~ (3.2-4) 

On the other hand, the macroscopic power supply is given by the familiar expression W 

= ~ : L, so the dissipation becomes: 

a@ (3.2-5) A = ! : L - ~ ~ a"t 

F o r  t h e  m a t r i x  e s p r e s s i o n  ( 2 . 1 7 )  we a l s o  o b t a i n  

(3.2-6) 

W i t h  ~ a f o u r t h  o r d e r  t e n s o r ,  A a s e c o n d  o r d e r  t e n s o r  a n d  ~ a s c a l a r  

o p e r a t o r .  
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In order to determine the explicit forms of these quantities we have to consider the 

evolution equations and the stress-tensor espressions of the dumbbell model. 

First, from the diffusion equation 

2 a . ( ~ a  
a t  @-~ = - a_8~ (~ _U • ~)  + n-~ 8--~ a-~ #)  ( 3 . 2 - 7 )  

in which ~ is a friction parameter and # the chemical potential defined by (1), on 

noting that the first term in the r.h.s of (7) is odd with respect to L and the 

second term is even, we see that the tensor A becomes 

= - ~ (@ ~) (3.2-8) 

and that the operator ~ may be represented as 

-2~ 
= n--~ a--~ " @ ~-~ ( 3 . 2 - 9 )  

I t  i s  p o s s i b l e ,  by  u s i n g  d e r i v a t i v e s  o f  t he  D i r a c - d e l t a  f u n c t i o n  t o  e x p r e s s  # i n  a 

form such that the last term in (7) becomes of the form -8 m ~ in which, like in (4) 

the symbol m denotes an integration in configuration space. We will not use this re- 

presentation here, and represent ~ by the differential operator (9). We now consider 

the stress tensor expression. We first calculate the reversible part from (2) and 

and (6): 

~R= A T I ~ = ~ , A = 

= nkT I (i - in L) (- ~o ~-~ 0 ~) d3~ 
a 

= nkT ~ (a___ in ~--) (~ ~) d3q 
as ~o 

= nkT ! + n <flg> (3.2-10) 

a 
with - fI= -kT ~-~ n @o' the so called connector force. In this way the "Kramers form" 

of the (reversible part of the) stress tensor is obtained. 

The total stress tensor expression for the dumbbell model is given by 

= 2 n ~ - nkT ! + n <fl ~> (3.2-11) 

I 
in which D = ~ (L + LT) • The first term of the r.h.s, is the solvent contribution to 

the stress tensor. Being odd in L this term is the dissipative part TD of ~. So, form 

(6) and (II) we obtain for the tensor ~: 

= 2W I (3.2-12) 
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in which ! is a fourth order tensor, defined by 

i 
llJkm = ~ (~Ik ~Jm + (~im &Jk ) (3.2-13) 

The results (8). (9), (10) and (ii) may be collected now in the following matrixs 

expression: 

[ T ]~_6_0@ = [[[2 7}I :_~_~(@a= g): n--~-2O-- (@ g) " ] [ L l a g O _ _ g a  , @ ~ -~- (3 .2 -14 )  

This result, together with the free energy expression(2) contains all relevant infor- 

mation of the elastic dumbbell model at the present level of description. 

We now change to a second level of description. Here we do not take the whole distri- 

bution function ~ but the configuration vector g as the variable of state. This will 

be done however in an average sense, namely such that ~ is not the actual rapidly 

fluctuation rate of change of g of an individual dumbbell due to the thermal motion, 

hut a flux, proportional to the diffusive flow in configuration space. It is the flux 

which is also present in the equation of continuity is configuration space: 

ae a 
a~ = - ~ _ "  (~ ~) (3 .2 -15 )  

The reversible force, associated with g may be obtained by substitution of (15) in 

(14) and ingretation by parts: 

= - f  ft ~ • (VJ cl) dacI = J" V# ~ " Cl dacI m n < m • 

In this expression m is defined as 

_m - n Oci kT ~-~ in O- ~ 

and 

~, :m.q  

: n <a> 

(3.2-16) 

The vector m is the thermodynamic force associated with the gradient of the chemical 

potential ~ in configuration space. It may also be interpreted as the resultant of 

minus the Brownian force fB = -kT ~-~ In @ and the connector force fl = _ kT ~ in @o" 

The quantity a in (16) may be considered as a density in configuration space of the 
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rate of change of the free enerEy per dumbbell, associated with the flux ~ discussed 

above. This makes it possible to apply the triangle model now to one dumbbell. 

In that case we have 

]1' = _m , ¢ = Cl (3 .2 -17 )  

And instead of the total stress tensor ! we now use the corresponding tensor ~, 

defined by 

T = n J" ~ T d 3 =n <T> (3.2-18) 

The quantity ~ will be called a stresslet. The total power supply may be written now 

as 

with 

W = T : L = n <T> : _L = n <w> 

W ---- T : n 

(3 .2 -19 )  

(3 .2 -20 )  

the local density In conflguratlon space, corresponding to the total power W. From 

(20) we see that in the present description the quantities Z and F defined in (2.1) 

become: 

Z = T , r = L (3.2-21) 

The matrix representation analogous to (2.17) becomes: 

[1[,' = °' ::] I:] (3 .2 -22 )  

In this case ~ is a fourth order tensor A a third order tensor and B a second order 

tensor. The explicit form for these tensors may be obtained from some further proper- 

ties of the model. First, from the equation of motion 

2 
cl  = I., • c l  - -~ m ( 3 . 2 - 2 3 )  

% 

in whlch ~ is a friction coefficient, one obtains 

s o  

"R 
cr = _L - ~I = A : L (3.2-24) 

A = 1 ~t ( 3 . 2 - 2 5 )  = w 
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and 
• D 2 

: - ~ m = ~ " ( - m )  ( 3 . 2 - 2 6 )  

SO 

2 q = ~ ! (3.2-27) 

From (22) and (25) we obtain for the reversible part of the stresslet 

R A T x = • m = m • A = m ~ (3.2-28) 
-- = 

In accordance with the Kramers form (see form ref. [7]) 
8 ¢ 

TR : n < m_.q> : n k T ~ ( ~ In ~o ) ~ ~ d3g (3.2-29) 

The dissipative part of ~ is similar to the first term m (ii) given by 
D 2 

T = -- • D m ~) : L (3.2-30) 
- n - - - 

SO 

n = 2 n__ I (3.2-31) 
- -  n = 

with I ,  given by (13) 

The resu l ts  (25), (26), (28) and (30), co l lected in matr ix form, become: 

= (3.2-32) 

Instead of taking T and L as the macroscopic variables In which the external power 

supply is expressed one also may write 

W = f • d (3.2-33) 

in which L is the hydrodynamic (external)  force act ing upon a dumbbell and ~ = L • 

the r e l a t i v e  v e l o c i t y  of  the f l u i d  f low at i t s  end points. 

The matr ix  representat ion (32) then becomes: 

- !  
(3.2-34) 

This form expresse the equilibrium of forces : f = m and the Stokes law 

= ~ (i - ~) We see that again, the skew symmetry of the off-diagonal 

elements of the matrix is obeyed. A final description that we will coslder in connec- 

tion with the elastic dumbbell model is one in terms of the configuration tensor 

= < g ~ > (3.2-35) 

as a variable of state. A closed description at that level is possible if the free 

energy A can be expressed explicitely as a function of S. In the case of linear dumb- 

bells such is the case and we have 

A = - I_ n k T log (det S__) + I_ n K t r  S__ (3.2-36) 
2 2 



229 

w i t h  k = t h e  s p r i n g  modulus  o f  t he  d u m b b e l l s .  The e x p r e s s i o n  (36 ) ,  f i r s t  o b t a i n e d  by 

Grmela and C a r r e a u  [6 ] ,  i s  e n s i s t e n t  w i t h  t he  Booy-Wiegen [10] e x p r e s s i o n  f o r  t h e  

c o n f i g u r a t i o n  d i s t r i b u t i o n  f u n c t i o n  in  t he  e x p r e s s i o n  (2) o f  t h e  f r e e  e n e r g y .  The 

thermodynamic  f o r c e  c o n j u g a t e  w i t h  S i s  o b t a i n e d  by d i f f e r e n t a t i o n  o f  (36) .  

In  t h i s  way we g e t  t h e  v a r i a b l e  N a t  t h e  c o n f i g u r a t i o n - t e n s o r  l e v e l  o f  d e s c r i p t i o n :  

E = M - aA _ I kT s-i) (3.2-37) 
- aS 2 n~ (! - E-- 

Again, we will show that a matrix representation of the form 

[:], = [° °T ] I L I A  o (3.2-38) 

applies and specify the matrix elements 2, ~ and 6" 

To this end an expression for ~ is needed. This may be derived by noting that 

= <~ S + S ~> in which ~ is given by (23). 

If subsequently the result (21) for m is used one obtains for the case of linear 

springs. 

= L • S + S • L T + 4kT T (! - ~ ~) (3.2-39) 

From (38) and (39) it follows that 

AiJkm = ~Ik SmJ + Sim ~Jk (3.2-40) 

and 
4 = ~-~ ~ (3.2-41) 

The dissipative part of the stress tensor is given by ! D = 2W 2, so analogous to (30) 

we have ~D = ~ : ~ with 

= 2~ ~ (3.2-42) 

The reversible part is given by the Kramers form (29) with, in the present case fl = 

K ~, SO 

T R nkT (~--- - = kT ~ - l) (3.2-43) 

and we see from (38), (40) and (43) that indeed 

T R = A T : M 
-- = -- ( 3 . 2 - 4 4 )  

It is important to note that the consistency of the evolution equation (39) and the 

stress tensor expression (43) is only obtained if the correct expression (36) of the 

free energy is used. This point (see also Maugin and Drauot [2]) was overlooked by 

Lhuillier [I] who used a quadratic form for the free energy function A(S) and arrived 



230 

at the conclusion that a convection laws similar to (39) (i.e. based upon the Oldroyd 

upper convective time derivative ~ = S - L • S - S • L T) are incompatible with the 

Kramers expression of the stress tensor. Instead, Lhuiliev obtains 
~A 

TR = 2 ~_, S , the so called Eringen "thermodynamic microstress tensor" as the cor- 

rect stress tensor expression in this case. We have now seen, however that a con- 

sistent structure tensor formulation of the elastic dummbbell model is possible with 

as well an Oldroyd upper convected derivative in the evolution equation as a Kramers 

expression for the stress tensor. 

3.3 The rigid dumbbell model 

It is interesting to see how constraints may be incorporated in the present forma- 

lism. This will be illustrated now for the rigid dumbbell model. This model is very 

similar to the elastic dumbbell described in the previous section. The difference is 

the rigidity constraint: Igl = q = constant. 

As a consequence the connector force fI is no longer a function of ~, but a constrai- 

ning force, determined by the equilibrium of forces in the ~-direction. It has been 

shown [II] that the treatment of the rigidity constraint is facilated, by using the 

projection operator 

P = 1 - e e ( 3 . 3 - 1 )  

with e = ~/l~l a unit vector in the direction of g. We shall see that this operator 

also plays a prominent role in the present treatment. 

We start with configuration-space level of description. Similar to (2) the free 

energy then becomes: 

A{~} = nkT I ~ in @ d2~ (3.3-2) 

and the corresponding chemical potential: 
aA 

= ~ = nkT (I + in ~) (3.3-3) 

The diffusion equation may analogous to (3.2-7) be expressed as 

a~ a • (~ P • L • e) + 2 a aN a-7 =a~ - ~ a-~" ( v ' ~ )  
- n < q  -- -- 

(3.3-4) 

If a matrix expression similar to (3.2-6) is defined one obtains from (4): 
a 

A .... ( @ P e) (3.3-5) 
- ae 
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and 
2 0 0 

n ~ q  

The stress tensor for the rigid dumbbell is given by 

(3.3-6) 

_T = 20 D + I n @ q2 <e e e e> : D + nkT <3 e e - I> 
2 

( 3 . 3 - 7 )  

The first two terms of the r.h.s, consltutes the dissipative stress ! D, so we have 

= 2n I + t g2 = ~ n ~ <e e e e > (3.3-8) 

The last term in (7) is the reversible stress Tn. Similar to (3.2-10) it may be 

proved that also In this case we have 

! R = ~ * A ~ I ~ A d 2 ~ ( 3 . 3 - 9 )  

So, the stress tensor expression (7) is compatible with the formalism of section 2 

Analogous to (3.2-14) the matrix formulation of the rigid dumbbell model at the 

present level of description becomes: 

a 

= [ - ( 3 . 3 - 1 0 )  
a@ - 2  a o -~--6 ('/' -P- e) : ~ p, 

n ~ cr 2 

At the (T,k / ~, ~) - level of description the thermodynamic force becomes 

a~ = 8 
m = ~ k T ~ in ~ (3.3-11) 

and the equation of motion is given by 

e = P • L • e - --2 m (3.3-12) 
2 - <g 

If, again, we define the stresslet T by _T = n <T>, from (I0) and the stress tensor 

expression (7) the following matrix representation may be obtained: 

2 
T_ ( ~ -  I + - ~  e e e e): -(_P e)  T _L 

= ( 3 . 3 - 1 3 )  

e P e  : - - - ~ 2  1 -m 
~t 2 - 

In verifying the equality ~R = n <TR> = n <m • P e> it should be noted that 

a~ _ _d 2 a [(1-e~_)_e] d 2 I ~_  • (1  - e e )  e e_ = - I  ~ ~ • _ _ e = I ~ (3  e_ e_ - I )  d2e 
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The r e s u l t  (13)  may be  b r o u g h t  i n  a form w h i c h  i s  more s i m i l a r  t o  t h e  e l a s t i c  dumb- 

b e l l  r e s u l t  ( 3 . 2 - 3 2 )  by d e f i n i n g  a t h e r m o d y n a m i c  f o r c e  

8U ( 3 . 3 - 1 4 )  

in which ~ = n (g) is an arbitrary extension of the function ~(e) to the 

space. Then we have: 

= g P • ~ (3.3-15) 

whole g 

If we also use that ~ = g • e, (13) may be written as  eeeec  T]IL 
(3.3-16) 

From (16) the description on the (~, L / ~, ~)-level is readily obtained by writing 

Z = f ~ (3.3-17) 

w h i c h  f o l l o w s  

u s i n g  t h e  f a c t  

The r e s u l t  i s :  

from the Kirkwood-Kramers expression of the stress tensor [7], and 

t h a t  d = L • ~. 

(i- _P)- _ P p  2 "[ d- 1 

- ~ P- -~q 

Note that the corresponding equation (3.2-34) for 

is obtained if we take P = 1 

(3.3-18) 

the case of elastic dumbbels 

The theory of Dol [12] for nematic liquid crystals may be formulated very similar to 

equation (16). In that case the viscous stresses are neglected, so the [l,l)-element 

of the matrix in (16) becomes zero. Furthermore a mean field potential @(e) is intro 

duced, in order to describe the tendency of the rods to assign in preferred direc- 

tions. Instead of (ii) we then have 

8 8 
m = kT ~__ I n  V) + ~ (3.3-19) 

Usually ¢ is taken to be the Maier-Saupe potential: 

= const _ _3 NkT e e : S 
2 

(3.3-20) 

in which S is the structure tensor, defined as 

= <e e _ _I 1> 
- -  - -  3 - -  

( 3 . 3 - Z l )  
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The evolution equation for the rotary motion of the rods is given by [12] 

a . (.,. a i n  @ v ,  a 
aVi = _ am . (VJ P " L • e)  + 5 r ~-~ - - 7  + @ ~ ~ )  ( 3 . 3 - 2 2 )  at a_e _ _ _ 

in which D r is an average rotary diffusivity. 

From this expression we see that 

e = P • L • e - ~T  m_ ( 3 . 3 - 2 3 )  

which is indeed similar to the expression of ~. So we expect that in this case 

[1 I ° : [:1 e (_P e_) k~T ! • - 

( 3 . 3 - 2 4 )  

In order to prove this, we still have to verify the expression for x, implied by 

(24). To this end we calculate 

a <a~ . ( I  - e e )  e>. ! = n <T> = n <kT ~_ i n  @ • (1 - e e ) e >  + n ag - 

The first term delivers the dilute-solution result nkT <3 e ~ - I> = 3 nkT S. 

For the second term, by using the Maier Saupe potential (20) we obtain 

-3n UkT (S • S - S: <e e e e>), so 

_T = 3 nkT S_ - 3n UkT (S_. • S - S: <e e e e> ( 3 . 2 - 2 5 )  

This result is indeed in accordance with the stress tensor expression obtained by 

Doi. So we see that the matrix representation (24) is consistent with the theory of 

D o l .  

In the theory of nematics one often employs the preaveraging assumption. 

<e e e e> = <e e> <e e> ( 3 . 3 - 2 6 )  

In that case a closed description at the (T,L/S,M) level is possible. Noting that the 
3 

free energy function corresponding to the Maler-Saupe potential is given by A~ = - ~n 

UkT S:S we obtain for the thermodynamic force M: 

aA@ 3 
= aS-~- = - ~n UkT ( 3 . 3 - 2 7 )  

It can be seen that the equation for ~, see ref. [13], obtained from (22) may be re- 
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presented as 

= A : L - ~ : M ( 3 . 3 - 2 8 )  

with, 

A : L = ! (L + L_ T) + L • S + S • L T - !(L + L T) : S 1 
- 3 3 - - 

- (L + L T) : ~ ~ (3.3-29) 

and, 

: M = 4 D r [(i u !S: M 1) + U S S: M (3.3-30) - - n UkT - 5 ) ~ - U (S • M - 3 .... 

From (29) we calculate 

AT _ 1 1 : M = ~ (M + M T) + M • S + S • M - ~ (M + M T) : !_S 

- (M__+M_ T) : s_s 

( 3 . 3 - 3 1 )  

o r  by eliminating M with (27) 

A T : M_ = 3 n kT (_S - U S • S + U S : S S) ( 3 . 3 - 3 2 )  

Within an isotroplc term this is indeed the stress tensor expression, obtained by Doi 

[13]. So, again the formalism of our triangle model applies. The matrix representa- 

tion in this case becomes of the form(3.2-38)with W = O, ~ and ~ defined by (29) and 

(30) and a thermodynamic force M, given by (27). 

3 . 4  Reptation models 

The concept of reptation, was proposed originally by de Gennes [14] and used in a 

rheological model by Doi and Edwards [15] and by Curtiss and Bird [16] in a different 

way. 

We will follow here the approach of Doi and Edwards in which the polymer molecule is 

treated as a chain, confined in a tube. The tube consists of N segments of a length 

a. The average contour of the molecule coincides with the center line of the tube and 

is called the "primitive chain". Due to the thermal motion at the molecule the primi- 

tiva chain performs a diffusive motion along its own contour (reptation) and tube 

elements are created and destructed at the endpoints of the primitive chain. 

The motion of a primitive chain segment consists of two parts : a convective part and 

a diffusive part. 

The convective part is fully determined by the motion of the tube segments and causes 

a rate of rotation. 
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e = L • e- e • D • e = P e : L ( 3 . 4 - 1 )  

of the segment-orientation vectors e. In the second expression (I) we have used the 

projection operator defined by (3.3-I). The diffusive part of the motion of the seg- 

me~ts determines the motion of the chain along the tube. This motion is governed by 

the diffusion law 

s = - D a in______~ (3.4-2) 
as 

in which D is a diffusion constant, s the curve linear position along the tube and @ 

= @ (e, s, t) a probability density for one segment of being at a position s with an 

orientation _e at time t. The function @ may be represented [15] by the integral ex- 

pression: 

t ^ 
,pc , s, t )  : c t -  t ' , s )  , C e ' )  d d r '  C3.4-3)  

- a  

in which KCt - t' ,s) a memory function determined by the diffusion process along the 

rope, e_-(e',t',t) = F_t(t') • e'/ l(_Ft(t') • e'l (with Ft(t') the relative deformation 

gradient) a function which determines the relation between the orientation (e') of a 

tube element at the tense of creation (t') and its orientation at the present tense 

(t) and ~(e') is the orientation distribution function of tube elements at the con- 

stant of creation. 

We also will use the averages of K along the tube.: 

I t' $(t - t') = [ I K(t - ,s) ds (3.4-4) 

The calculation of the stress tensor in the Doi and Edwards theory is based upon the 

expression 

= n ~ <~ e e> ds (3.4-5) 
o 

in which ~ is the tension in the chain. From the theory of rubber elasticity one 

obtains: 
3 kT 

- ( 3 . 4 - 6 )  
a 

I f  (3)  i s  u s e d  t o  p e r f o r m  t h e  a v e r a g i n g  i n  (5)  and  (6)  i s  s u b s t i t u t e d  we o b t a i n  

t P 

: 3 n N kT ] J @(t - t ' )  <e ~>'  d t '  ( 3 . 4 - 7 )  
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in which < >' denotes an average with respect to the creation distribution function 

@(e'). In the derivation of (7) we also have used the definition (4) of #. 

We will show now in which way it is possible to formulate the Doi and Edwards theory 

in the framework outlined in section 2. To that end we have to define for this case 

the tensor T, the vector m and the matrix elements in the expression 

6 A ~ _ ( 3 . 4 - 8 )  

From (i) we see that 

A = P e (3.4-9) 

and 

~8 = 0 ( 3 . 4 - 1 0 )  

Since in the Doi and Edwards theory no dissipative stresses occur, we also have 

n = ~ (3.4-11) 

and remaining problem is to verify that T = A T . m is consistent with the stress ten- 

sor expression of Doi and Edwards. To this end, like in our previous examples we use 

as the thermodynamic force 
a 

m = kT ~_ in @ (3.4-12) 

With the form (i0) of ~ we then have 

T = (P e)T . m = m • P e : m e (3.4-13) 

Here we have used the expressions (3.3-I) and (13) of P and m respectively. 

By performing the average <~> with the distribution function (3) and comparing the 

result with the stress tensor expression (7) is may be shown, [note that 

@~ #) e d2e = I (3 e e - !) @ d2 ~)], that 

L jm'No~ <~> ds + isotropic term (3.4-14) I= 

So we see that the quantity ~_ introduced above is indeed the appropriate variable to 

be used in the matrix formulation. We also obtain the following result 

- = = ( 3 . 4 - 1 5 )  

6 (P e) : • - 

It is possible to include the variable s in the the theory. To this end we introduce 

a thermodynamic force associated with the diffusive motion of the chain. This force 

is the thermodynamic potential 
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= kT a in_______~ (3.4-16) 
as 

The equation (2) may be written then as s = - (D/kt) n and the matrix form (15) be- 

comes: 

0 ." 

= (P e) : 

fi 

-(_P. _e)T fi • 

ft. O. 

D 
0 • k"-'t 

(3.4-17) 

We see that ~ only contributes to the flux s and not to the tensor T. 

A generalisation of the Doi and Edwards theory in which frictional forces between the 

chain and the tube wall were taken into account was presented first by Jongschaap 

[17] (see also Geurts and Jongschaap [18]). This model, which was called the "Repta- 

ring Rope Model" was shown to be equivalent to the theory of Curtiss and Bird. The 

main difference with the Doi and Edwards theory is an extra term in the stress tensor 

of the form. 

T D = n N 2_ s(L - s) K(t - t',s) <e e e e>: D ds dt' (3.4-18) 

Comparing this with (14) and (17) we see that the matrix representation of Reptating 

Rope model becomes: 

Z ~ s(U-s) e e _ e e  : - (P Te) • 0 L 

e = P e 0 0 -m (3.4-19) 

D 
s o : o • k-i - ~  

Although we now have seen how the triangle model may be applied to reptation models 

some point remain to be clarified. First we see that a front-factor 3 in the stress 

tensor expression is obtained. This factor arises from the averaging in orientation 

space and is similar to the same factor in reversible part of the stress tensor (3.3- 

13) of the rigid dumbbell model. The factor 3 is also present in the theory of Doi 

and Edwards but seems to have a different origin there. It does nog appear in the 

Curtiss Bird theory or in the Reptating Rope Model. The main difference is that in 

our present formulation the thermodynamic force m associated with the orientation 

distribution of the segments plays a prominent role whereas in the original reptation 

theories it is the tensile force along the chain which contributes to the stress. 
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The Transient-Network Model, originally developed by Green and Toblsky [18] Lodge 

[191 and Yamamoto [20]is used to describe the rheological behaviour of polymer melts 

and concentrated polymer solutions. In the model, the system of highly entangled 

polymers is represented by a rubberlike network of segments. The network is not per- 

manent since the segments are created and annihilated at specified rates. 

Before describing it in our present formalism we will first briefly summarise some 

basic notions of the Transient Network Model. The number density $(g,t) of segments 

with a specified configuration may, analogous to (3.4-31 be expressed as 

t ^ 
= [ [n ( t , t . i  ' d t '  ( 3 . 5 - 1 1  
--CO" 

# J 

In this expression n(t,t') is the number of segments created per unit time at time t' 

and still present at time t, 

.q = F t t ( t  ' )  • cl' ( 3 .5 -2 )  

A function specifying the motion of the segments and @(g') the creation distribution 

function of a segment which usually is assumed to be afunctional. The equation (2) 

specifies the assumption of affine motion of the segments. This may also be expressed 

as 

=L_ • g ( 3 . 5 - 3 )  

The k i n e t i c s  o f  l oss  and c r e a t i o n  o f  segments may be s p e c i f i e d  by the  p r o p e r t i e s  o f  

the f u n c t i o n  ~ ( t , t ' ) .  At cons tan t  t ' ,  the change o f  ~ w i t h  t i s  due to  l oss .  Th is  i s  

expressed by the loss  f u n c t i o n  h ( t ) ,  d e f i n e d  by 

a ~ ( t , t '  ) 
a t = - h ( t )  ~ ( t , t ' )  (3 .5 -4 )  

On the o t h e r  hand n i t '  , t ' )  d t '  i s  the number o f  segments c rea ted  i n  the t ime i n t e r -  

v a l  [ t ' , t '  + d t ' ] ,  t h e r e f o r e  a c r e a t i o n  f u n c t i o n  g ( t ' )  i s  d e f i n e d  by 

( t ' , t ' 1  = n o g ( t ' )  ( 3 . 5 - 5 )  

I n  t h i s  e x p r e s s i o n  n o d e n o t e s  t h e  e q u i l i b r i u m  v a l u e  o f  t h e  number  d e n s i t y  o f  s e g m e n t s  

n .  The r e l a t l o n  b e t w e e n  n and  n i s :  

t 
n i t ) = [  ~ ( t , t ' )  d t '  ( 3 . 5 - 6 )  

--CO 

From t h i s  e x p r e s s i o n  and  (4)  and  (5) t h e  f o l l o w i n g  r a t e  e q u a t i o n  f o r  n i s  o b t a i n e d :  
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dn 
d-"t = g n o  - h n ( 3 . 5 - 7 )  

The solution of (7) with the initial condition (5) may be expressed as 

t 

- ~ h(t'') dt'' 
t- 

n(t,t') = n o g(t,t') e (3. s-s) 

We will now apply the triangle theory to the transient network model like in some of 

the previous applications we take the one-segment contribution T to the stress tensor 

as the stress variable, so 

= r ~(g,t) ~ d3~ (3.5-9) ! 
J 

The matrix representation then becomes: 

with 

0 = 

= !g 

O_ 

-(l g)T 0 

o_ o_ 

g 
o_ k-T 

m=kg 

the sprlng-force in a segment and 

= kT (h n - n o) 
g 

(3.5-10) 

(3.5-11) 

(3.5-12) 

a chemical potential associated with the change in the free energy of the network due 

to a change of n. In principle this quantity could be derived form details of the 

entanglement-desentanglement previous regarded as a chemical reaction, but, following 

Ajjl at al [33], we use the form (12)suggested by the rate equation (7) of the 

transient network model. The expression for T obtained form (10) and (11) is in ac- 

cordance with the usual stress tensor expression T = k [ @ ~ ~ d3~. Substitution of 

as given by (I) and making use of (2), and (8) results in the constitutive equation 
t 

t 
;~ h(t'') dt'' 

= n o kT ~ g(t') e t ~t-lt') dr' (3.5-13) 

in which Rt(T) = Et(T) • Et ( T)-I 

Returning to the matr ix expression (10) we w i l l  consider now some posslble modif ica- 

t lons o f  the model. F i r s t  l l ke  has been done in the case of  the e l a s t i c  dumbbell 

model (sect ion 3.1) one may change the level  of  descr ipt ion.  For instance by using 

the d i s t r i b u t i o n  funct ion @(e,t) or a l t e r n a t i v e l y  a st ructure tensor. S = <g g> as a 

state var lab le .  We w i l l  not discuss these modif icat ions here. An i n te res t i ng  change 
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at the present level of description however is a change of the convection law. A well 

known alternative is the so called Gordon and Schowalter [22] non affine convection 

law, also used in the Phan Thien-Tanner [23] formulation of the Transient Network 

Model. In that case instead of (3) we have 

= L  • ~ -  ~ • s ( 3 . 5 - 1 4 )  

i n  w h i c h  D = ~(L + L_T), t h e  r a t e  o f  s t r a i n  t e n s o r .  T h i s  may be  w r i t t e n  a s ,  

The skew s y m m e t r y  o f  t h e  m a t r i x  i n  ( 2 . 1 7 )  t h e n  i m p l i e s  t h a t  

= ( I  - ~) ~ ~ ÷ ( i s o t r o p i c  t e r m )  ( 3 . 5 - 1 6 )  

T h i s  i m p i i e s  t h a t  a I s o  i n  t h e  s t r e s s  t e n s o r  e x p r e s s i o n  a f a c t o r  ( i  - ~)  s h o u l d  be 

i n c l u d e d .  The p o i n t  t h a t  i n  t h e  c a s e  o f  n o n - a f f i n e  m o t i o n  t h e  s t r e s s  t e n s o r  e x p r e s -  

s i o n  s h o u l d  be  m o d i f i e d  h a s  b e e n  d i s c u s s e d  i n  an o t h e r  c o n t e x t  by  L a r s o n  [24] and  

a l s o  by Maugin  and D r o u t  [21 and by  GrmeIa  [3 ] .  As p o i n t e d  o u t  by  L a r s o n  [ 2 4 ] ,  t h e  

p h y s i c a l  r e a s o n  f o r  t h e  e x t r a  f a c t o r  i n  t h e  s t r e s s  t e n s o r  i s  some k i n d  o f  " s i i p "  o f  

t h e  n e t w o r k  s t r a n d s .  We w i l l  i l l u s t r a t e  t h i s  now f o r  t h e  c a s e  o f  s l i p  i n  e n t a n g i e -  

ment .  I n  f i g u r e  2 a p i e c e  o f  a p o l y m e r  c h a i n  b e t w e e n  two e n t a n g l e m e n t s  i s  shown.  

I f  t h e  f o r c e s  f and  m, and  t h e  v e c t o r s  g and  s a r e  d e f i n e d  a s  i n d i c a t e d  i n  f i g u r e  

2. C o n s e r v a t i o n  o f  e n e r g y  r e q u i r e s  ( i n  t h e  c a s e  o f  no f r i c t i o n  i n  t h e  e n t a n g l e m e n t s )  

t h a t  

£ • ~ = m • ~ ( 3 . 5 - 1 7 )  

So, if we introduce a slip factor a by requiring 

= a ~ (3 .5 -18 )  

we have, 

I 
= - f (3.5-19) a - 

(In the case represented by Figure 2b we would have a = 2.) The stress tensor in a 

network corresponding to the entanglement structure of Figure 2a would become. ! = 

n<f S> = n a<m ~>. If in this expression we take m = K ~ with s = ~ (since at any 

instant the total part of the chain between two entanglements contributes to the 

elastic stress), we obtain, 

I = nK a<~ ~> (3.5-20) 

in accordance with our previous result (16). 
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(a; 

~m 

s_ ~ 

q 

(b) 
Figure 2 

Non affine motion due to slip in entanglements : schematic picture of the entangle- 

ment structure (a) and mechanical analogue (b). The chain vector s of a part of the 

chain changes at rate that differs from the rate of change of the vector g between 

two entanglements. The elastic force m in the chain also differs from the force f, 

acting ~l..,v,, the entanglements. 

Also in this case the situation may be clearly summarised in a matrix representation. 

At the (f,~/m,~) - level we have 

= lea a]o [:] ( 3 . 5 - 2 1 )  
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and at the (T_,L_/_s,m) - level :with T_ = f (I 

[ T_ Is = [ 0 a _i (I -(a I-(1)T ]0_ [ L_ ]m (3 .5-22)  

316 C o n f i g u r a t i o n  t ensor  models 

In the case of the elastic dumbbell model (section 3.1) we have seen an example in 

which a closed formulation of the theory is possible at the (!,L/M,S) - level. In 

that case the structure tensor S was defined by (3.2-35) in terms of microscopic 

variables and its properties were derived from the underlying configuration-space 

theory. In some cases, it may be usefull to introduce the properties of the structure 

tensors without an explicit reference to molecular theories. This possibility - In 

fact - is the main advantage of the use of different levels of description in combi- 

nation with a consistent thermodynamic formulation. 

A nice example of a structure tensor theory which is a model proposed by Giesekus 

[27,28]. In this theory, which may be considered as a generalisation of the elastic 

dumbbell model described in section 3.2.the reversible part of the stress tensor is 

assumed to be of the form 

~R = ~(C _ ! )  (3.6-1)  

This expression is  consistent  w i th  our previous resu l t  (3.2-43) i f  we take ~ = nkT and 
K 

For the tensor C, the fo l l ow lng  evo lu t ion  equation is  proposed: 

= - B • T R (3.6-2)  

w i th  C = C - L • C - C • L T, the upper convected d e r i v a t i v e ,  and _B a k lnd  o f  genera- 

l i zed  m o b i l l t y  tensor which is  taken to be 

= ~ ( !  + a ~R) (3.6-3)  

In order to compare t h i s  w i th  our previous resu l ts  we note that  from 

~__R = L • C * C • L T = A : C (3.6-4)  

i n  which ~ is  o f  the same form (3.2-40) as in the dumbbell model. With t h i s  expres- 

slon for ~, on using the result T R = A T :M we obtain from (i) that 
I = ~ ~ (! - G -1) (3.6-5) 

which is indeed in accordance with (3.2-37) 

The tensor ~ in the expression ~B = _ ~ : M may be obtained now by using the result 

~D = _ B • T n, which follows from (2) and the expressions (I), (3) and (5) for TR, 

and M. The result is 

= - B • A_ (3.6-6) 
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If this is compared with the elastic dumbbell result (3.2-41) one sees that the 

tensor B generalizes the mobility factor 4/n ~. In the case that a = 0 the elastic 

dumbbell result is reobtained. The viscous stress in the Giesekus model has the usual 

form ! D = ~ : k with ~ given by (3.2-42), so the model may be summarizes now as 

follows: 

['], {': 0:i (3.6-7) 

with A, B and M given by (3.2-40), (3) and (5) respectively. By elimination of M, 

and ~ the following constitutive equations may be obtained: 

y_D = 2 W D (3.6-8) 

T R + A _~R + a T R • T R = 2 8 - I  _D (3.6-9) 

1 
with A - 

The Giesekus model is a good illustration of how a slight modification of the dumb- 

bell model, expressed at the configuration-tensor level of description may cause sig- 

nigicant changes in the constitutive equations. 

In the Giesekus model, the treatment was partially based upon the underlying molecu- 

lar description. In other models at the configuration- tensor-level the approach is 

entirely at a macroscopic level. An example is the theory of Leonov [25] based upon 

the concept of a recoverable strain and theories based upon Eckarts [29] concept of a 

variable relaxed state. For further information about the latter class of theories we 

refer to a paper by Stickforth [30]. For our present discussion it is sufficient to 

know that in those theories the stress and the velocity gradient are decomposed in a 

reversible (elastic) and a dissipative (inelastic) part. 

So we have like before : T = T R + ~D but also : L = L R + L D. In order to compare this 

with our formalism we have to define ~R and LD in a consistent way. to this end we 

rewrite the dissipation form as follows 

A=T: L-M: S 

= T : L - M : A : A-I : S " 

=T: L-TR: L R 

in which (3.2-44) has been used and 

L_R = A-I : 

Instead of  ( I0)  one may also wr i te  

A = T  D : L + T  R : L D 

The phenomenological re la t i ons  according 

become : 

(3.6-10) 

(3.6-11) 

(3.6-12) 

to non-equilibrium thermodynamics then 
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T D ~ _¢T L [:o]= [: :]: (3.6-13) 

This, indeed, is the form obtained by Leonov [25], Stickforth [27] and others. In our 

present approach, however, it is possible to go one step further. If we start from 

our matrix expression (3.2-38)and eliminate M, S and ~ in the same way as in deri- 

ving(13), we obtain : 

T D ~ 0 L [:o]=[; :1 (3.6-14) 

with ~ A-I A-T = : ~ : which is of the same form as (13) but with one important d i f -  

ference, namely that the matrix now has the diagonal form. The meaning of the 

variables LR and L D becomes more clear in a schematic representation s imi lar  t o  the 

t r iangle model given in Figure 3. We see that ~R and ~D correspond to a mapping of 

the spring and dashpot inside the system. In the case that A = I ,  L R coincides with 

and ! R with M. In other cases these quantit ies w i l l  d i f f e r  from each other. 

From f igure 3 i t  can also be seen that the strain corresponding to L R is indeed 

the so called recoverable strain,  used in the Leonov Model: i t  is an e las t ic  recovery 

measured at the part of the system where the external variables ! and k apply. 

L 
L R - -  L D .~ 

Figure 3 

Representation of the model described by the equations 

(3.2-38] and (3.6-14) by the triangle model (see also Figure I) 

i ° 

R 
= T  
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4. Discussion 

In this paper a theory was presented by which a unified treatment of various rheolo- 

gical models is possible. The theory may be considered as an extension of earlier 

work by Grmela [3] and others [1,2]. In our treatment the concept of a so called 

macroscopic time reversal played a central role. On the basis of this, an unambigious 

dlstinguishment between reversible and dissipative variables was possible and a uni- 

versal matrix representation (2.17) could be given. The skew symmetry of this matrix 

is in accordance with the Onsager-Casimir symmetry relations. 

In the applications, discussed in section 3, we have seen that this skew-symmetry may 

be used as a check on the consistency of the stress tensor expression with the evolu- 

tion equation of a model. In the network models with non-affine motion (sec. 3-6), 

for instance, it implies the necessity of an extra factor in the stress tensor ex- 

pression. In configuration tensor models the skew symmetry of the matrix in (2.17) 

may be used to construct the stress tensor expression, from a given evolution equa- 

tion. In section 3 some examples were given of application of our formalism to 

existing models. Our purpose there was not to obtain new results in the sense of new 

constitutive equations, but merely to demonstrate the capability and flexibility of 

the new approach. Only in the treatment of the dumbbell models (section 3.2 - 3.3) 

the level of description with functions as state variables and functional dependences 

was employed. In the other applications a tensor-formulation was sufficient. 

Nevertheless one should keep in mind that in future applications a functional formu- 

lation might be necessary. For instance in cases where nonlocal phenomena are impor- 

tant. The description could be based upon global fields instead of local variables of 

state ; this makes a functional formulation necessary. In this context the problem of 

the effects of domains on orientation and stress liquid crystals might be of 

interest. In the examples of section 3, in most cases only a reformulation of 

existing theories was obtained. The main advantage of the present formulation, how- 

ever is it shows in which directions modifications of the model are possible and 

also that those modifications fall into a few categories. Referring to the general 

equation (2.17) we first have : a change in the free energy functional A(@) and so of 

the expression for the thermodynamic stress : M(@), seemed of the viscous effects 

described by the quantities ~ and ~ and third a change of the coupling effect, ex- 

pressed by the quantity A. It has been shown that the latter 4.1 changes significant 

in the case of constraints and in the case of non-affine motion. So we see that our 

theory offers the possibility of analysing the implications of particular modifica- 

tions of a model in a systematic and consistent manner. 

In applying the theory to existing models sometimes new insight is obtained. For 

instance, in the case of the Doi and Edwards model, where we haven seen that the 
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stress is due to the thermodynamic force associated with the orientation of the tube 

segments, rather than a tensile force along the tube. We also have clarified the 

origin of the extra factor in the stress tensor expression due to non-affine motion. 

Finally, in section 3.7 we arrived at the result that the matrix (3.6-13) in the 

theory of Leonov and in similar theories should be diagonal. 

The use of different levels of description was only fully employed in the case of the 

elastic dumbbell model. In some other cases this could also be done, but we did not 

make an attempt to be complete here. Still it should be stressed that a change of 

level of description result in a considerable simplification of the problem. An ob- 

vious case is of course the change from the configuration space level to the struc- 

ture tensor level of description. The opposite change from the configuration space 

level to the level of forces and deformations of individual particles, however, is in 

many cases even more usefull. At this level, in fact, many of the examples that we 

have considered were formulated. In general one could say that our triangle modelcan 

be applied in any case in which a thermodynamic subsystem can be defined for which 

the free energy may be expressed as a function of functional of some state variables, 

a set of external variables by which the exchange of power with the environment is 

described and an evolution equation of the microstructure. 
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