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11.1 Introduction

Processes on the planet Earth are complex phenomena that are taking place in space
and in time, i.e. in four dimensions. In many of these processes, differences in one
dimension (e.g. height above the geoid) can be disregarded, so that two spatial di-
mensions and the dimension time remain. Despite this simplification, the physical
description of the phenomena remains a difficult task. To better understand the pro-
cesses it often helps if the same geographic region is viewed repeatedly and, if possi-
ble, also from different directions and in different wavelength regions. Integration of
data from a variety of sources can be a means to retrieving information about processes
that would otherwise remain undetected.

Examples of important Earth system processes are:

• Volcanism, earthquakes, plate tectonics

• Ocean currents

• Climate

• Weather

• The living planet (biosphere, agriculture)

• Human activities (urbanization).

Data integration, as the term specifies, concerns the combination and further integra-
tion of spatial data. Such a combination may seem at a glance to be simple, but there
are various important and challenging issues around it. Indeed, we have seen in ear-
lier chapters that the combination of remote sensing data is not at all trivial. Even if the
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images come from geostationary satellites focusing at a single area of land, overlaying
these images is still a skilled—although not very difficult—operation. Ground control
points can play an essential role in this.

After the overlaying, integration then really concerns the combination of the different
wavelength bands, times of observation and, possibly, viewing directions. In addition,
the combination of different GIS layers may not be straightforward. Only if GIS layers
have the same scale and represent comparable layers of information can overlaying be
done sensibly, leading to a possible integration of the information on those layers. An
even more challenging case is the combination of a vector layer with an image. For
this, the same scale should apply, i.e. a common platform should be decided upon and
both sources of data should be made available on this platform so that the overlaying
step can be performed. Even then, full integration, i.e. the combination of the infor-
mation in the two layers, demands that several steps be followed very carefully and
close attention must be paid to issues of data quality. Combining layers and images
becomes increasingly challenging as the data become more and more complicated.
Combining, for example, LIDAR data obtained from an oblique point of view with
data from other sources can be done, but usually mathematical transformations have
to be applied. Similarly, the combination of data from active sensors with that from
passive sensors, of field data with remote sensing data or field data with GIS layers
are all activities that require a serious attention throughout.

In the past, much attention was paid to the activities of overlaying and data integration
and this is currently still the case. Terms that one typically comes across in this area
are conflation, of GIS layers, image fusion, of remote sensing images and registration.
Conflation is a somewhat older concept that defines a range of activities that allow one
to combine vector layers. Image fusion has had its roots within the ITC research no-
tably by Pohl and van Genderen [92] and is now being further developed throughout
the world. Image fusion is the process of combining relevant information from two or
more images into a single image. The resulting image will be more informative than
any of the input images as it can have complementary spatial and spectral resolution
characteristics. In particular the combination of a high spatial and a high spectral res-
olution image into a single image can be successful. We distinguish fusion at the pixel
level, from fusion at the segment level towards fusion at the object level. Image fusion
at the pixel level allows the integration of images with each other, but also of an image
with other information sources, such as a digital elevation model with images. At the
segment level, hence after segmentation of the image, it allows integration with GIS
layers. At the object level, hence after a classification, we can also speak about infor-
mation fusion. Research at this level is still going on. Registration is a term referring
to the combination of Earth observation and GIS layers. It is the process of transform-
ing different sets of data into one coordinate system. Data may be multiple images,
multiple GIS layers, images from different sensors, from different times, or from dif-
ferent viewpoints. It is used in compiling and analyzing satellite images. Registration
is necessary in order to be able to compare or integrate the data obtained from these
different measurements and some of it has been dealt with in Chapter 3.

As the focus of this chapter is data integration, it is assumed that the issue of over-
laying has been solved, so we can then concentrate our attention on the combination
of different layers of information in such a way that new, meaningful information is
generated. In this sense, integration is close to modelling, although, as can be seen
below, there are some clear distinctions between the two. The multi concept will also
be introduced as a generic term for the integration of various images at various scales.

Data integration brings with it several issues that play a role in the processing of the
data. The most important are:
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• data models (raster, vector, TIN, etc.)

• data conversion

• resampling and (dis)aggregation

• gap filling and interpolation

• spectral, angular and temporal effects

• change detection

• visualization techniques

• data assimilation in process models

• multi-sensor approaches.

In this chapter, first a distinction is made between process models and observation
models, and it is shown how both types of model can be used together to retrieve
more and better information. Next,the multi concept in remote sensing is introduced.
Data from multiple sources can be integrated to derive more geospatial information of
higher quality. Other subjects covered in the chapter are spatial, temporal and spectral
scales, and the data conversion issues that arise from data integration. Special atten-
tion is paid to change detection techniques, which requires the preparation of the data
in similar ways—as is the case for data integration in general.

The chapter concludes with two case studies: one focusing on time series analysis to
investigate global climate change; the other looks at the mapping of evapotranspira-
tion in a lake ecosystem by using multiple sources of remotely-sensed data.

11.2 Observation models and process models

To study the relations between object properties and observed spectra, radiative trans-
fer models have been developed. These models enable searching for optimum obser-
vation conditions and they can be used for the development of algorithms to retrieve
physical properties of observed objects on Earth.

Radiative transfer models that describe the relations between physical and biochemi-
cal properties of objects on the one hand, and observed radiation on the other, can be
called observation models. In an observation model, the characteristics of the observ-
ing instrument, the observational conditions and the observable object’s properties all
play prominent roles. Characteristics of the instrument and the observational condi-
tions include the viewing direction, the spectral bands used and their spectral and
spatial resolution. Object properties are, for instance, canopy LAI (leaf area index) for

leaf area index
vegetation and suspended sediment concentration for water. Figure 11.1 illustrates
the effect of vegetation canopy LAI on the observed reflectance spectrum in the visi-
ble, near infrared and shortwave infrared ranges. These simulations have been carried
out with the well-known SAIL model. It demonstrates clearly that for the observation
of high LAI values, especially the near infrared part of the spectrum is more sensitive
to LAI than the visible part.

In the thermal infrared spectral region, surface temperature and emissivity are impor-
tant object properties. Examples of other well-known physical theories in which the
observation conditions play a central role are, for instance, Einstein’s theory of rela-
tivity and the theory of quantum mechanics. Planck’s law of black-body radiation can
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Figure 11.1
Changing vegetation spectra
as a function of LAI.

0

10

20

30

40

50

60

70

400 800 1200 1600 2000 2400
Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

 (
%

)

LAI = 0

LAI = 0.25

LAI = 0.5

LAI = 1

LAI = 2

LAI = 4

LAI = 8

also be considered an observation model as it predicts the observed radiation spec-
trum as a function of the object’s temperature.

Most observation models relevant for remote sensing applications describe scattering
and absorption of radiation in various media, such as the atmosphere, water bodies,
snow, plant leaves and vegetation canopies. They might also include the scanning
mechanism and other observational and instrumental properties, such as viewing di-
rection, spectral and spatial resolutions, and signal-to-noise levels. Observation mod-
els may also be coupled. This is very useful, since most remote sensing observations
involve a mix of several media, e.g. the combination soil–leaf–canopy and that of sea
bottom–water–atmosphere.

On the other hand, we have process models in the Earth sciences that describe the
evolution of geo(bio)physical surface properties in time, independently from remote
sensing observations. Examples of such process models on various time scales are, for
instance, numerical weather prediction models (NWPs), vegetation growth models,
hydrological models, oceanographic models and climate models.

Process models in the geosciences usually rely on regular observations at many loca-
tions spread over a large area. Traditionally, these observations were mostly made in
the field with a variety of instruments. Remote sensing techniques have tremendously
increased the capability of spatial sampling and the consistency of the surface parame-
ters measured. RS instruments are mostly sensitive to many physical properties of the
surface, some of these may not belong to the set of properties that the user is interested
in. Exceptions to this are the mapping of sea-surface temperature, laser altimetry and
gravimetry, which are measurements of direct geophysical interest. In the majority of
cases, however, there are only indirect relationships between what is observed with
the instrument and the physical object properties of interest. In these cases, the use of
observation models becomes an attractive option, since these models describe the re-
lationships between all object properties relevant for the observation and the observed
remote sensing data.
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In general, remote sensing observations can be related to a number of object properties,
but also to several other influences, for example atmospheric effects. On the other
hand, some surface properties may have no effect at all on any of these observations.
All these considerations lead to the following categories of physical quantities within
the context of remote sensing:

Category 1 Primary RS observables, i.e. TOA (top-of-atmosphere) radiances;

Category 2 External variables that influence RS observables, e.g. atmospheric vari-
ables, Sun angle, view angle;

Category 3 Surface properties not of interest to users but which do have an influence
on RS observables (e.g. leaf thickness influences leaf reflectance and transmit-
tance, but will seldom be of interest to a user);

Category 4 Surface properties of interest to users that also have an influence on RS
observables (e.g. leaf area index, LAI);

Category 5 Surface properties of interest to users that have no influence on RS ob-
servables (e.g. trace pollutants in water are of great interest but they are not
detectable).

This is summarized visually in Figure 11.2. For users of remote sensing data, only
quantities from category 4 are really of interest. Category 5 is also of interest to users,
but undetectable by RS techniques. These quantities can only be measured by other
means. Categories 2 and 3 have an impact on the observations, but are not of interest
to users. Nevertheless, it is necessary to take them into account, since the observations
are sensitive to these factors. Ignoring them might lead to an incorrect interpretation
of the observed data.

RS observables

1

2 3 54

External
variables 

Retrievable
properties 

Properties of
interest to user  

Figure 11.2
Earth Observation variables
and their meaning for users.
The numbers correspond to

the five categories defined in
text.

A complete observation model will describe the relations between quantities of cate-
gories 2, 3 and 4, on the one hand, and the quantities from category 1 on the other.
Most radiative transfer models are, however, not complete, as they describe only ra-

radiative transfer models
diative transfer in particular medium, such as water, soils, plant leaves, vegetation
canopies or the atmosphere. Nevertheless, a complete observation model can be con-
structed by linking several sub-models together. This is not yet common practice, but
is, nevertheless, strongly recommended since conclusions that are based on the inter-
pretation of RS data with only one sub-model may not be reliable.

Finally, it should be noted that division over the five categories is not fixed but, rather,
depends on the particular remote sensing techniques applied. For instance, object
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height has no direct effect on passive RS observations, but it can be measured using
active techniques such as laser altimetry. Besides, which properties are of interest to
the user is strongly discipline and application dependent.

Observation models and process models can supplement each other to enhance the
quality of the interpretation of remote sensing data and to fill gaps in time that occur
when observations are not possible owing to clouds or some other cause. Figure 11.3
shows possible interactions of observation models and process models with EO data
and existing geographic information (GIS and ground measurements, supplemented
with decision-support systems (DSSs)). A central role is played by the GIS database,
which provides a common geographic reference. The diagram shows how Earth ob-
servation data provide a series of snapshots of the situation on the Earth’s surface
(green triangle) and how this monitoring of the surface feeds a process model that is
updated with actual data (purple triangle). The process model provides information
to the decision-support system, which supports management actions aimed at control-
ling/mitigating the process. A good example of this is a water management system,
in which one might decide to allocate water for irrigation if the observed vegetation
appears to suffer from drought stress (see case study in Section 11.9).

Figure 11.3
Interactions between
observation models and
process models. Light arrows
indicate less likely (but
possible) interactions, dark
arrows the more obvious
ones. The GIS database
provides the common
geographic reference.
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The philosophy of combining many geospatial data sources in order to retrieve more
and better information from Earth observation data is expressed in the GEOSS 10 year

GEOSS
implementation plan [37], which states:

“Under GEOSS, national, regional, and international policy makers are collectively
harmonizing observations, real- or near real-time monitoring, integration of informa-
tion from in situ, airborne, and space-based observations through data assimilation
and models.”

How the concept of GEOSS could be applied in practice is illustrated in Figure 11.4,
which shows a modelling system that simulates images recorded by various sensors
on board Earth observation satellites. The heart of the system is a generic RS (obser-
vation) model that takes data from a GIS as input and produces as output simulated
imagery at the correct spatial resolution and for the spectral bands of the simulated
sensor. The RS model includes atmospheric effects and produces top-of-atmosphere
(TOA) radiance images for all required spectral bands. The satellite data distributor
also provides calibrated TOA radiance data, so this product can be compared to the
simulated data.

This comparison is illustrated by the scale symbol, to illustrate the balance between
the noise characteristics of the sensor, on one hand, and uncertainty in the surface
properties on the other. If simulated and actual satellite images do not correspond
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Figure 11.4
A generic image simulation

system that produces images
that can be compared to

actual satellite images. A
feedback mechanism

minimizes the differences
between both images by

adjusting the GIS information.
Updated GIS data may be
transferred to new maps.

sufficiently well, the GIS information is adjusted until the error becomes acceptable.
In the GIS, multiple layers of vector and raster data are stored and, in combination
with attribute information and values of physical quantities expressing the surface
properties, this information is used as input for the radiative transfer sub-models (e.g.
for soils, leaves, vegetation canopies and the atmosphere) of the RS model. In other
words, the GIS system provides the surface properties as well as their geographic
location.

Both spatial data and attribute data (properties) can be in error, and different actions
should be taken according to the kind of error. Geometric errors require a correction
of the geographic position of one or more objects, whereas errors in surface properties
only require the adjustment of these properties. Although the system as sketched is
very complex, it has a high degree of flexibility with regard to sensors and geometries,
so it would be possible to bridge gaps among the variety of sensor systems that are
orbiting the Earth, thereby facilitating the assimilation of data from different sources
(as promoted by GEOSS).

11.3 The multi concept in remote sensing

Remotely sensed data are often multispectral, sometimes multi-angular, and in some
cases also multi-temporal, for instance when time series of satellite data are analysed
to discover changes in surface properties or to monitor processes on Earth. If the
spectral, angular and temporal domains are exploited to retrieve information about
the surface, the data analysis and processing operations become more complicated,
but one can retrieve more information from the data. This is why data integration is
useful.

A few examples of multiple data observations are:

• colour photography

• multispectral remote sensing
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• hyperspectral imaging

• multi-temporal image analysis

• multi-frequency and dual polarization SAR (synthetic aperture radar)

• multi-angular optical observations

• day–night thermal images.

An example of simulated multi-angular observations with a hyperspectral sensor is
given in Figure 11.5, which shows how for a sparse vegetation object the observed
reflectance spectrum in 201 bands changes with the image acquisitions from space
under 7 different directions.

Figure 11.5
Surface spectra under
different directions (model
simulation)
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Remote sensing data can not only be combined with other remote sensing data, but
also with existing geospatial information, for instance the geographic information
stored in a GIS.

Some examples are:

• digital elevation models (DEMs)

• land use information (GIS data)

• field measurements

• predictions from process models.

If predictions from process models are combined with remotely sensed data, the pro-
cess model can be continuously updated with new observations. This is called data

data assimilation
assimilation, a technique that is intensively applied in operational weather forecasting.
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Combination of Earth observation data with other types of geospatial data is highly
recommended since existing information can be essential for improving the interpre-
tation of remote sensing data. The automatic classification of agricultural crops from
multispectral image data is such an example. Pixel-by-pixel classification usually
gives many errors, owing to sensor noise and field heterogeneity. However, if parcel
boundaries are known from a GIS database, one can classify all pixels within a field
as a group, which reduces the number of misclassifications enormously, provided, of
course, that the group as a whole is correctly classified.

Data can be integrated in an almost infinite number of ways. Results from data inte-
gration can, again, be combined with other geospatial data to produce yet other new
information, and so on. Therefore, only the most obvious forms of data integration
will be dealt with in this chapter.

Although data integration can be very useful, there are also some requirements that
have to be fulfilled for it to be effective:

• geospatial data have to be accurately co-registered in a common grid;

• time gaps between the various data layers have to be known and accounted for;

• systematic effects due to the atmosphere, the viewing angle, the Sun angle, etc.,
must be corrected for or taken into account.

In particular, if data from multiple sensor systems are integrated, one has to be aware
of differences in their spectral sensitivities, wavelength bands, viewing angles, spatial
resolutions, etc. Radiative transfer modelling can be applied to bridge the differences
in spectral characteristics and viewing geometry of the various sensors. Other forms
of modelling (e.g. 3D object modelling) are sometimes required to aid in the analysis
of multi-angular data, for instance to differentiate true changes from apparent changes
(e.g. shadows) due to a different viewing direction.

Data integration also comprises the incorporation of non-spatial information or point
data from field measurements. These data have to be associated with precise mo-
ments in time and with precise geographic locations, or with some time interval and
fuzzy-defined regions. Thus, here the important issue of the representativeness of this

representativeness
information for the associated time interval and geographic area comes into play.

In general, data integration forces us to consider the uncertainties or inaccuracies of
the various data sources available. In some cases, meta-data may contain information
about this. When integrating data for some purpose, one has to apply weights to each
of them, so that the final result is a balanced compromise in which inaccurate data
receive less weight than those with a high degree of certainty.

The multi concept is often applied in remote sensing because multiple observations
provide more information, in the sense that objects which look similar in a certain set
of observables (spectral bands, times, angles) may look different if the number of ob-
servables is increased. A very simple example is the difference between a black & white
and a colour photograph. Objects which look similar in black & white photograph

the multi concept
may have totally different colours, so they become better distinguishable in a colour
photograph. Another example, based on using multi-temporal data, can be found in
objects that show similar behaviour as a function of time up until summer, but then
start behaving differently. The difference will only become obvious if observations
from both “before” and “after” are available.

In principle, multiple observations are always useful, since even if an observation is
repeated under exactly the same circumstances with the same sensor (and thus might
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seem to be redundant) it is still of use as this helps to reduce the influence of noise.
Statistically, the uncertainty of a mean value is inversely proportional to the square
root of the number of repeated observations. If the observations are made with mul-
tiple sensors, then they provide more information, because different characteristics
are measured. For the retrieval of surface properties from Earth observation data it is
important to consider which factors determine the retrievability. Of course, only sur-

rRetrievability
face properties to which the observations are sensitive can in principle be retrieved,
but it is equally important that a change in another surface property does not pro-
duce a similar response in the observations. This is the issue of linear dependence.
If two surface properties produce a proportionally equal response in all observables
(i.e. spectral bands, moments of observation, viewing directions), then there is linear
dependence, and one cannot determine which surface property was the cause of the
observations. In Figure 11.6, three different situations are illustrated for the case of
two surface properties and two observables.

Figure 11.6
Linear dependance: two
observables (O) and two
surface properties (P). O1

O2
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In the left-hand diagram, property 1 only influences observable 1, and property 2
influences only observable 2. This case is very extreme and seldom occurs in prac-
tice, but the conclusion we can draw from the diagram is that in this case property 1
should be estimated from observable 1 and property 2 from observable 2. The mid-
dle diagram shows the more common situation that both surface properties influence
both observables, albeit in different ways. In this case both properties can still be
retrieved mathematically, since we can solve the associated system of two equations
with two unknowns. The right-hand diagram illustrates the case of linear dependence.
A change in both properties produces a similar change in the observables—perhaps of
a different magnitude, but in the same direction. In this case one cannot retrieve both
properties separately.

To summarize, the two main conditions for good retrievability are a high sensitivity
and linear independence. The chance of encountering cases of linear dependence de-
creases with the number of independent observations, and since multiple observations
are mostly independent, more surface properties can be retrieved and with a higher
accuracy.

An inherent part of the analysis, as well as the representation, of multiple observa-
tions is visualization. Many visualization techniques have already been explained in
Chapter 10, but some additional techniques are shown in Sections 11.7–11.9 to show
how linear changes and the dynamics of periodic processes can be visualized.
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11.4 Spatial, temporal and spectral scales

In the spatial, temporal and spectral domains that play a role in Earth observation,
one can define the concepts of resolution, sampling interval and scale. Resolution de-
scribes the ability to resolve small details (in space, time or the electromagnetic spec-
trum). Sampling interval refers to the distance between two successive observations,
while scale describes the total range of observations in a collection of data.

According to the sampling theorem of Nyquist and Shannon, which states that

“If a function x(t) contains no frequencies higher than B hertz, it is com-
pletely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart”,

the ideal sampling interval should be equal to half the resolution, which means two
samples per resolution cell. Otherwise, one loses information (under sampling) or one
samples more densely than necessary (oversampling). In practice, however, sampling

resolution vs. sampling interval
interval and resolution are often roughly equal, although it is good to keep in mind
that resolution and sampling interval are two different things. Note, by the way, that
in the above example the time domain was taken as the basis, but in the spatial domain
the same considerations apply.

Scales are more applicable to processes in the spatial and temporal domains than to
those in the spectral domain. For a number of important Earth system processes, their
corresponding scales are roughly indicated in Figure 11.7, which has logarithmic X-
and Y -axes in order to accommodate the large ranges to be considered in the spatial
and temporal domains. In the spatial domain this goes from 1 mm to 40,000 km (the
circumference of the Earth), and in the temporal domain from one second to a century.

minutesecond hour day week month year century

1 mm

1 cm

1 dm

1 m

10 m

30 m

100 m
300 m

1 km

5 km

30 km

100 km

500 km

2000 km
5000 km

40000 km

Climate

Weather

Urbanisation

Hydrological

processes 

Vegetation

growth

Figure 11.7
Temporal and spatial scales

of some Earth system
processes.

Spatial and temporal scales can not only be attached to processes, but also to observa-
tions. An example is given in Table 11.1, which summarizes the spatial and temporal
scales of a few well-known Earth observation systems.

As well as spatial, temporal and spectral scales, which are more related to the act
of making observations, it is equally important to consider different levels of spatial
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Table 11.1
Scales of RS observations. Sensor Spatial scale Temporal scale

Meteosat Hemisphere 15 minutes

NOAA-AVHRR 3000 km daily

Landsat TM 180 km 16 days

SPOT 60 km 26 days

(pointable)

aggregation in various Earth science processes. These aggregation levels are mostly
levels of spatial aggregation

ordered hierarchically. For instance, a forest consists of trees, which have trunks,
branches and twigs, on which one finds leaves or needles, and so on. Similarly, an
agricultural area may be described in terms of parcels, lots, cropping fields, individual
plants, stems and single leaves.

Analysing multiple layers of geospatial data in a meaningful and coherent way re-
quires the co-registration of all these layers to a common spatial grid or reference.
The common grid spacing chosen is application-dependent and several considerations
may play a role in that choice. In some cases the preservation of high levels of spatial
detail is most important, and in other cases high levels of radiometric precision may
be more relevant. In the first instance, one would probably choose a common grid
spacing that accommodates the data layer with the highest spatial resolution, while in
the second instance one may choose a grid with a wider spacing. Figure 11.8 illustrates
the display of two images with different grid spacing and orientation for a part of En-
schede. The images have the same georeference, yet the pixel size and orientation are
different

A common grid also requires a resampling of those layers that have a different spacing
and/or orientation. In some cases, especially when an image of high spatial resolution
is converted to a less dense grid, the resampling has to be combined with aggregation,

resampling and aggregation
e.g. implemented as a low-pass filter applied to the input layer so as to exploit the
high spatial density of that layer, in order to increase the radiometric accuracy and
thus reduce noise.

In addition to spatial resampling and aggregation, other operations sometimes have
to be applied to the data to condition them for data integration. This would be nec-
essary when, for example, analysing a long time series of satellite data for which the
calibration data have gradually changed in the course of time—or even suddenly, for
example owing to the replacement of an existing satellite with a new one. In such
cases, the calibration data have to be corrected in order to obtain a time series that is
free of these artefacts.

In time-series analyses of NOAA AVHRR data, however, another gradual effect was
observed that could not be corrected. This effect is known as the orbital drift prob-
lem. Each NOAA satellite has a Sun-synchronous orbit that is not very precise, which

Sun-synchronous
means that after a number of years the moment in time at which the Equator is crossed
gradually increases by a couple of hours. See Figure 11.9, which illustrates this for
several satellites from the NOAA series. This means that observations coming from a
satellite that is at the end of its life are not comparable to similar observations made at
the beginning of its life. Especially in the Southern Hemisphere, this led to local solar
times of observation very late in the afternoon. However, effects caused by drastically
changing illumination conditions cannot be corrected, so in such cases one has to reject
data if conditions deviate too much from normal.

If the calibration data of one or more satellites have changed, we can sometimes com-
pensate for these effects by using a target on Earth that has stable reflectance proper-
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Figure 11.8
Difference in grid spacing and

orientation.
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Figure 11.9
Course of the local solar time

of observation near the
Equator from 1980 to 2001

for the NOAA series of
satellites. Source http:

//classic.nerc.ac.uk/

ties. In one such case, the Libyan desert in Africa was used as a stable reference target
with a constant NDVI value, and all data were recalibrated so that the same NDVI
resulted for that area during the whole time series of 18 years.

If two sensors with different spectral characteristics are involved in the data integra-
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tion, then one can try to match the spectral bands of one sensor with the closest bands
of the other sensor, but one has to be careful in doing so, since subtle spectral differ-
ences between objects on the ground will be observed differently by both sensors, so
this cannot be completely corrected. Figure 11.10 shows the spectral response func-
tions for the ASTER and MODIS sensors on board the Terra satellite, together with
some spectra of surface reflectance. This clearly illustrates the problem of combining
different sensors in spectral regions where surface reflectance is rather variable, such
as in the so-called red-edge region (around 700 nm).

Figure 11.10
Spectral response functions
for the ASTER and MODIS
sensors on board of the Terra
satellite and reflectance of
three surface types.
Source: [75].
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Similar considerations apply in the case of multiple observations from different satel-
lites that are treated as synoptic observations of one moment, while actually there may
be a time difference of days or a local time difference of hours. These cases are very
difficult to handle correctly, but radiative transfer modelling can be applied to bridge
the difference in the Sun–target–sensor geometry and process models might be used
to account for time differences.

Apart from the more sensor-based data-conversion issues already mentioned, some-
times conversion operations are also necessary to bridge differences in data formats
related, for example, to:

• computer data types (byte, integer, float)

• image data organization types (raster BIL, BSQ and BIP formats)

• image data formats (JPEG, GIF, BMP, GeoTIFF, HDF, etc.)

• raster <> vector (points, lines, polygons)

• vector TIN to contour lines

• physical unit conversion.
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11.5 Data integration issues in GISs

Integrating data sets in a GIS often results in an improved understanding of the prob-
lem/phenomenon at hand. One could even say that data integration is the raison
d’être of GISs; in any case, data integration certainly facilitates further analysis of the
data.

In real-life projects the user often has to integrate data by:

• merging mismatched data layers

• choosing, in cases where two data sets of the same features exist, which set
should be preferred (based on criteria that need to be defined);

• solving, for example, problems such as changes in administrative units (merg-
ing or splitting of areas) and matching these with data that only refer to an ad-
ministrative name or code.

Moreover, there is always a need to merge non-spatial (statistical data, social be-
haviour data, . . . ) with spatial data. With volunteered geodata and with crowdsourc-
ing (Web 2.0), data integration becomes both more tricky and also more important. In
this respect, meta-data and lineage documentation are essential for proper data inte-
gration. The merging of mismatching data layers might require dealing with:

• mismatchings in area (spatial extent)

• mismatchings in level of detail (scale)

• mismatchings in projection (georeferencing)

• mismatchings in time

• mismatchings in accuracy

• mismatchings in data format/type (tabular and spatial data)

• mismatchings in purpose for which the data are being collected.

11.6 Change detection

Change detection is a particular application of Earth observation in which data inte-
gration is required before one can concentrate on the observable changes. This ap-
plication is susceptible to the problem that changes in the observation system can be
confused with the actual changes in the target objects themselves. Once again, in this
case radiative transfer and observation modelling, adapted to the sensors at hand,
may help to separate apparent changes from true changes. Here, true changes are

true and apparent changes
changes in the object properties, while apparent changes are only related to changes
in the observation conditions.

In change detection, there are different kinds of change to be distinguished:

• Gradual changes (sometimes called linear changes) are involved in climate change
investigations, deforestation, urbanization, etc.

• Sudden changes are mostly related to disasters (floods, earthquakes, volcanic
eruptions, fires, etc.)
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• Periodic changes are related to the daily and yearly cycles of solar illumination
and warming, giving rise to the diurnal cycles of daylight and temperature and
the seasonal patterns of vegetation growth.

This section will focus on how data integration is applied in change detection. We will
focus on changes on the surface of the Earth, but there is certainly an overlap with the
techniques used in other image processing sciences, like medical imaging.

Changes are caused by processes. These processes can be natural, man-made, sea-
sonal, deterministic or random. To determine appropriate data sources for detect-
ing change, several characteristics of the process need to be known, such as speed,
duration, observables, area coverage and seasonality. Section 4.7.1 (and Section 11.1
and Figure 11.2) explains how these characteristics can be used to determine spatial
and temporal coverage, time and frequency of observation, spatial resolution or scale,
and observables. The expected size of the change determines the degree of sensitivity
needed in the analysis.

Change detection can be carried out at various levels of detail or sophistication, de-
pending on the interests of the user. This may include answering some or all of the
following questions:

• Has there been a change (detection)?

• What is the nature or type of the change (identification)?

• What is the area covered by the change (area)?

• What is the spatio-temporal pattern of the change?

Over the years, several categories of change detection techniques have been devel-
oped. These techniques will be discussed in the remainder of this subsection, fo-
cusing on whether they can be used for detection, identification, area and/or spatio-
temporal patterns of change. The definition and description of categories is mainly
based on [70].

Algebra techniques for change detection

This group of techniques includes all kinds of algorithms that are based on combi-
nations of values of a pixel in subsequent images, such as image differencing, image
ratioing, vegetation index differencing, image regression and change vector analysis.

Image differencing is a band-by-band, pixel-by-pixel subtraction of two images whereby
image differencing

the resulting change image has the same number of bands as the input images. Each
band of the change image contains the differences between the spectral values of the
pixels in the two original bands.

Image ratioing is a band-by-band, pixel-by-pixel ratio of two images whereby the re-
image ratioing

sulting change image has the same number of bands as the input images. Each band
of the change image contains the ratios of the spectral values of the pixels in the two
original bands.

For vegetation index differencing, vegetation index is calculated for each image; the
vegetation index differencing

change image contains the differences between the vegetation indices for each pixel.

For image regression, a relation is established through regression between two images
image regression

of different dates. The relation is used to predict pixel values in the second image,
which are then subtracted from the first image. Regression reduces the effects of sen-
sor, atmospheric and environmental differences between the two images. Develop-
ment of suitable regression functions can be difficult.
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In change vector analysis a spectral change vector is calculated, which describes the
change vector analysis

direction and magnitude of the change between two dates and a total change magni-
tude for each pixel. The total change equals the Euclidean distance between end points
in an n-dimensional change space; any number of spectral bands can be processed in
this way. The method produces detailed change information.

All methods in the “algebra” category rely on the selection of a threshold on the
change image, to separate noise and apparent changes from true changes and to deter-
mine the change areas. The choice of the threshold is often difficult and arbitrary. With
exception of change vector analysis, these methods cannot provide a complete change
matrix, so there is no complete identification of the nature of all changes. Algebra is

change matrix
often used when the focus is on detecting a very specific change, for example detection
of forest fires, where changes in the thermal bands indicate a rise in temperature of the
land surface and a threshold determines whether or not there is a fire. Other common
applications include deforestation mapping and detection of vegetation change.

Classification-based change detection

The techniques in this category all involve some kind of classification of separate or
combined images. Some of the most common techniques are discussed in the remain-
der of this subsection. For a more exhaustive list, see [70].

In post-classification comparison, the images are classified separately and classifica-
post-classification comparison

tions at different dates are compared. The advantages of this technique are the min-
imization of atmospheric influences and the fact that it generates a complete change
matrix. The disadvantages are that sufficient training data are needed for each classi-
fication (date) and that there might be systematic differences between both classifica-
tions.

For spectral-temporal combined analysis, all images are stacked in one data set and
spectral-temporal analysis

classified together, all at once, similar to a multispectral classification with many bands.
Changes are identified and labelled. This can be time-saving, but it may be difficult to
identify and label the change classes. A complete change matrix cannot be provided.

Unsupervised change detection labels spectrally-similar groups and clusters at Date 1,
unsupervised change detection

followed by spectrally similar groups at Date 2, and then detects changes. Because
an unsupervised algorithm is used, the process can be automated, but labelling the
changed areas is not always straightforward, especially in the case of processes (i.e. a
series of changes that are part of a process, such as conversion of forest via burnt areas
to crops and, finally, pasture).

Hybrid change detection first isolates changed pixels to construct a binary change
hybrid change detection

mask. The change mask then sieves out the changed themes from land use/land cover
(LULC) maps.

Visual analysis for change detection

The human eye is still one of the most powerful instruments available for detecting
and interpreting change. Visual interpretation can be aided by different ways of dis-
playing time series, such as multi-temporal colour composites and animations. Results
depend very much on the skills of the analyst and their familiarity with the area.

GIS

Change can also be detected by combining maps and images. GIS overlays on image
GIS overlays

data can provide a means for better interpretation and for detection of changes, e.g.
new buildings, changes in parcel boundaries or forest limits. The results can be di-
rectly combined with other data in the GIS, for example to update LULC information.
The difficulties lie in reconciling the accuracy of different sources and their registra-
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tion.

Past and current maps of land use/land cover can also be combined and, if necessary,
integrated with topographic and geological data. In addition to difficulties arising
from differences in accuracy of the sources and their registration, thematic categories
in the maps may not always match.

Other methods

Transformations are essentially data reduction techniques, which reduce redundancy
transformations

between bands or images and highlight any differences. They have been applied to
change detection, but the disadvantage of such transformations is that they cannot
produce detailed change matrices, they require (arbitrary) thresholds, and it is difficult
to interpret and label the change information they generate.

A number of model-based methods have been developed for very specific purposes.
model-based methods

These include the modelling of reflectance of certain classes or for the retrieval of bio-
physical parameters from spectral characteristics.

Furthermore, new developments in image classification also result in new approaches
to change detection. Image classification based on objects (object-oriented analysis) is

object-based change detection
employed in change detection. Fuzzy classification allows for the fact that boundaries
can be vague or gradual and developments in this field also lead to the development of
change detection methods that can adequately deal with changes in gradual bound-
aries or in objects with vague boundaries. This approach is, however, beyond the
scope of the Core module.

The case study on climate change described in Section 11.7 is an example of how one
can analyse a mixture of periodic phenomena (annual vegetation growth) and gradual
changes (year-to-year variations).
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11.7 Case study: Climate change

To find evidence for the impact of climate change on processes on Earth, time series
of satellite images are particularly suitable, since they constitute regular observations
over a long period of time under comparable conditions. Many processes on Earth
are controlled by the yearly seasonal cycle and can, therefore, be roughly modelled
as periodic functions, although these processes are also gradually evolving owing to
climate change. In order to find evidence for climate change, long-term trends have
to be separated from seasonal effects. This can be done by estimating the periodic
parameters of each year and by analysing trends in those annual parameters. In this
case study, a time series of NOAA NDVI images of the world was analysed to discover
trends in global vegetation-growth patterns over the period 1982–2000. In most years,
36 images of the 10-daily maximum NDVI were used as input.

The maximum value compositing (MVC) technique is often applied to time series of
maximum value compositing

NDVI images in order to reduce the effects of cloud cover, atmospheric conditions
and large viewing angles. During a 10-day period the NOAA satellite views a given
location on Earth every day at approximately the same local solar time, but the view-
ing angle and the atmospheric conditions may vary a lot during this period. As the
NDVI is always decreased under cloudy or hazy conditions, as well as for large viewing
angles, by taking the maximum NDVI of the 10-day period one hopes that the best ob-
servation has been selected. This method removes most cases of cloud cover in most
regions, but when the NDVI of a certain location is plotted as a function of time, one
still sees some residual effects of cloud and haze.

The HANTS (harmonic analysis of time series) algorithm works similarly to MVC by
removing negative outliers, not within 10-day intervals but over the whole year. In
this case, the signal is modelled by a series of sine and cosine functions that span the
whole period and have frequencies corresponding to the base period (e.g. one year)
and a number of higher harmonics (waves of higher frequency that fit in the base
period). As illustrated in Figure 11.11, negative outliers are removed and a gentle
curve is fitted to the remaining points.
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Figure 11.11
Outlier removal and curve

fitting using the HANTS
algorithm.
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Provided a phase is assigned to each frequency, the series of sine and cosine functions
can also be expressed as a series of only cosine functions:

y(t) = a0 +

n
∑

i=1

ai cos (ωit− ϕi), (11.1)

where a0 . . . an are the amplitudes and ϕ1 . . . ϕn the phases. The circular frequencies
ω1, . . . , ωn are chosen in such a way that ωi = 2π

T
i, where T is the length of the base

period. The amplitude of the zero frequency, a0, plays a special role, since it equals the
mean value of the modelled time series. To model vegetation dynamics throughout the
year, three frequencies above the zero frequency are usually sufficient. This also means
a considerable data reduction, since 36 original data points are then represented by
only seven components, namely the mean and, for the three frequencies, the amplitude
and the phase.

Modelling with a higher number of frequencies allows more details of the original
series to be preserved, but then there is a chance that effects due to cloud and haze
are preserved as well. Vegetation growth, on the other hand, is usually a fairly grad-
ual phenomenon and three frequencies are sufficient to follow the most rapid growth
spurts. Figure 11.12 visualizes the results for one year (1995) of data for the world.

This kind of visualization reveals that the frequencies 2 and 3 (periods of 6 and 4 months,
respectively) are already quite noisy owing to residual cloud cover and haze effects.
The mean, the yearly amplitude and the yearly phase look most reliable.

The phase is a number ranging from 0 to 360◦ or, if expressed in radians, from 0 to 2π.
Showing the phase as an image in black & white creates a problem, since 0◦ would
be shown as black and 360◦ as white, while actually 0◦ and 360◦ represent the same
angle. In this case one can use a colour look-up table that is circular in the RGB values,
meaning that 0◦ and 360◦ are represented by the same colour. A rainbow look-up table
(LUT) can be constructed in such a way that it follows the colour sequence blue-cyan-
green-yellow-red-magenta-blue, so that the start and the end have the same colour.
Such a LUT was applied to the phase images of Figure 11.12.

Phase information is independent of amplitude, but in practice one would like phase
information to be considered less important for small amplitudes. The following set of
equations provide a way of accomplishing a colour transformation that is controlled
not only by the phase but also by the amplitude:

R = 127×
[

1 +
A

Amax
cos(P − 240)

]

G = 127×
[

1 +
A

Amax
cos(P − 120)

]

B = 127×
[

1 +
A

Amax
cos(P )

]

Here P is the phase in degrees, A the amplitude, and R, G and B are the amounts of
red, green and blue on a scale from 0 to 255. The constant Amax is the maximum ex-
pected amplitude. If the amplitude equals the maximum amplitude, the RGB values
vary from zero to 254, so a large colour saturation is obtained. This is also demon-
strated by Figure 11.13, which shows the curves for R, G and B as a function of P if A
= Amax.

For zero amplitude R, G and B all become equal to 127, so one will observe mid-grey.
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Figure 11.12
Global NDVI dynamics for the
year 1995. Amplitudes are in
the left-hand column; phases

are in shown in the right-hand
column in rainbow colours.

Frequencies (top to bottom) =
0, 1, 2, 3.

254

127

0
0 30 60 90 120 150 180 210 240 270 300 330 360

Phase P

Figure 11.13
Variation of R, G and B as a

function of the phase
angle P .

It is also possible to include mean NDVI by coupling it to the pixel’s intensity. In this
case the factor 127 in the above formulas is replaced by

393



Chapter 11. Data integration

M −Mmin

Mmax −Mmin
× 255,

where M is the annual mean NDVI. This method of visualization was applied to
global data: Figure 11.14 shows global NDVI dynamics for all years from 1982 to 2000.

Figure 11.14
IHS representation of global
yearly vegetation dynamics
for the years 1982–2001.
Note anomalous behaviour in
southern areas in the years
1984, 1988, 1993+1994 and
2000+2001 owing to the
problem of orbital drift.

1982 1989 1996

1983 1990 1997

1984 1991 1998

1985 1992 1999

1986 1993 2000

1987 1994 2001

1988 1995

In order to obtain evidence of climate change, trends in the changes of mean NDVI,
its yearly amplitude and its phase were analysed by correlating these quantities with
time. In addition, the start and the end of the growing season were established from
the yearly growth patterns by finding the intersection of the growth curve with fixed
NDVI levels. Next, simple linear regression analysis was applied for each pixel to find
the rate of change (i.e. the slope of the regression line) at each location. To display the
results, a colour look-up table was used in which negative slopes were shown in blue,
positive slopes in red, and zero slopes in white; the degree of colour saturation was
used to show the magnitude of the slope.

The result is shown in Figure 11.15, which indicates that trends in vegetation dynam-
ics have taken place all over the world in this period of 20 years. These trends are
characterized by a slight increase in annual mean NDVI, increasing as well as de-
creasing yearly amplitudes, an advancement of the yearly phase, an advanced start
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of the growing season, and a lengthening of the growing season. These phenomena
are due to increasing global temperatures, especially in winter; CO2 fertilization; and
advances in agrotechnology.

Figure 11.15
Global trends (increase per
year) in (left-hand column)

mean NDVI (range
-0.01–0.01), yearly amplitude

(range -0.01–0.01), yearly
phase (range -5:5 deg); and

(right-hand column) length of
the growing season (range

-10–10 days) and start of the
growing season (range

-5–5 days).

Note that in Antarctica strong trends are also found. However, these have to be con-
sidered as unreliable as the associated correlations were not significant. If we only take
into account the locations where the correlation coefficient is significant at the 5% con-
fidence level (for 20 observation this means a minimum absolute correlation of 0.45),
then the picture shown in Figure 11.16 is obtained.

One can observe in Figure 11.16 that that significant trends are especially clear for
India and the Sahel region in Africa and that the clearest trends are indicated by the
increasing mean NDVI and the longer growing season in these regions.

These results are based on 20 years of NOAA-AVHRR data, which actually comprised
36 maximum-value composites of the 365 daily NDVI images per year. The NDVI is,
in turn, based on the red and near-infrared spectral channels, and the original ground
resolution of these GAC (global area coverage) data was 4 km at nadir. These data
were aggregated by the satellite data distributor into 1◦ × 1◦ geographic cells before
their dissemination to users. Roughly estimated, 20×365.25 = 7305 satellite images in
two channels have contributed to the final result (indicating climate change) for each
single 1◦ × 1◦ pixel, so this represents an extreme example of data integration.

The visualization technique presented in Figure 11.14 for the whole world has been
applied to smaller regions as well, using SPOT-VGT NDVI images as input. Only data
from the year 2002 were processed to show the influence of topography on vegetation-
growth dynamics. In order to express the terrain topography in the image, a technique
called hillshading was applied. Here, data from a digital elevation model (DEM) were
integrated with the NDVI dynamics by modulating them with the resulting hillshad-
ing, as shown in Figure 11.17; the colour circle indicates which colour hue is to be
associated with the month of maximum NDVI.
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Figure 11.16
Significant (5% confidence
level) correlation coefficients
(absolute value > 0.45) for
trends corresponding to
those shown in Figure 11.15.
Positive trends are shown in
red, negative trends in blue.

Figure 11.17
Vegetation dynamics in 2002
of the Alps and surroundings.
The colour circle shows the
relation between the month of
maximum NDVI and the
colour hue.
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In this image, one can observe a strong relation between topography and vegeta-
tion growth. The Alps show red and brown colours, indicating maximum NDVI in
August–September. This is because in mountainous regions there is snow in winter
and spring, which delays growth. In very high regions, snow cover is permanent.
These have no vegetation at all during the whole year, so they appear black. In the im-
age one can also clearly recognize the Upper Rhine Valley (orange), the Black Forest
(white), the Po Valley and the Apennines in Italy, and a large area west of Milan where
rice is grown (orange). The grasslands to the north of The Alps are white, indicating
permanent green vegetation cover throughout the year.

The same SPOT-VGT data for the whole of Europe were used to make a cloud-free,
synthesized time series of images that show winter snowfall and its withdrawal in
spring and summer. In this case the original SPOT bands in the red, near infrared and
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shortwave infrared were used, and positive outliers were removed using the HANTS
algorithm to obtain cloud-free data. Snow has a high reflectance in the visible and the
near infrared, but it absorbs radiation in the shortwave infrared. In an RGB composite
of NIR, SWIR and RED (in that order), snow appears in purple (magenta), since the
SWIR component is missing, and only NIR and RED remain, which control red and
blue, respectively, so we obtain magenta colours. Such a sequence of images can be
played as an animation, which is an alternative way of observing the processes of
vegetation growth and snow cover. The individual images are shown in Figure 11.18.
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Figure 11.18
Synthesized cloud-free time
series of 36 SPOT-VGT
images of the year 2002 in
the band combination RGB =
NIR, SWIR, RED. Each
column contains the nine
images of each quarter of the
year, in chronological order
from top to bottom.
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11.8 Case study: Flood modelling: Nam Chun (Thailand)

11.8.1 Introduction to case study

In this section we focus a problem that occurs all over the world: flooding. On every
continent, floods cause damage and kill people, so one can quite safely say that floods
are the most recurring, widespread and disastrous of all natural hazards. The occur-
rence of most floods is, of course, highly correlated with the meteorological conditions
in an area, and since these are difficult to forecast with a high degree of accuracy, it is
also difficult to predict flood events. But even if meteorological conditions—especially
precipitation—are known, it is no trivial task to forecast floods, let alone to predict
their severity. To be able to so, additional information is required, not only regard-
ing the precipitation but also with respect to the area that is likely to be affected. For
instance, with precipitation one needs to know the form in which it will fall (rain or
snow, . . . ), the total amount that will fall, its intensity and where exactly it will fall.
In short, the precipitation must be spatially-dynamically characterized, where spa-
tial stands for the geographic domain (where) and dynamic for the development over
time (when). But also the area that receives the precipitation must be known: what is
its size, how steep is it, what is the shape of the watershed that feeds its river system,
what are its vegetation and soil characteristics, and how much water is already present
to start with? In order to be able to predict how much water will be at a certain place
at a certain time, we must enter the world of spatial-dynamic modelling.

Spatial-dynamic modelling

Most GISs have limited dynamic modelling capabilities, especially when it comes to
problems where the output of a given time-step becomes the input of the next time-
step. In most cases, therefore, a GIS is used in parallel with, i.e. in addition to, a
dedicated spatial-dynamic model; the GIS is used to prepare the spatial input data that
the model requires and to analyse and further elaborate the model’s spatial output (see
Figure 11.19). Of course there are exceptions to this, such as the dynamic GIS PCRaster
developed by the University of Utrecht and some advanced models that contain basic
GIS functionalities. In our case study, we will use, in sequence, two spatial-dynamic
models parallel to a GIS. The first model is a rainfall-runoff model that is used to
predict discharge at the outlet of a catchment—the upstream part—as a function of
the rainfall and the characteristics of the catchment. The discharge predictions become
the input for the second model: a 1D/2D hydraulic model that simulates the flow of
water over (and through) complex topography in the downstream part of a catchment.
It is used to assess the spread of flood water in order to estimate the consequences of
flooding in the affected parts downstream.

Non-spatial
(attribute)

data

Spatial
data

Pre-analysis Rainfall-
runoff
model

1D/2D flood
propagation

modelPost-analysis

Temporal
data

Spatial
output

Temporal
output

GIS

Figure 11.19
Parallel use of GISs and
spatial-dynamic models
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The Nam Chun study

On 11 August 2001 the typhoon Usagi passed over central Thailand bringing with
it intense and prolonged rainfall. This resulted in numerous flash floods and land-
slides. Approximately 120 people died in this event and over a 1000 people were
made homeless. Very quickly people blamed the extensive and uncontrolled defor-
estation of central Thailand as the main cause of the widespread destruction the ty-
phoon caused. The province of Petchabun in central Thailand—see Figure 11.20—was
one of the worst affected areas. The central event in this disaster was the occurrence of
a flash flood that originated in the Nam Chun watershed and caused extensive flood
damage downstream on the Pa Sak flood plain.

The study described here was carried out to check to what degree had deforestation
affected the generation of the flash flood that occurred and to establish to what extent
would reforestation be a useful and effective measure for preventing a repetition of
such disastrous flooding.

Figure 11.21 shows the main spatial characteristics of the watershed: an upstream,
mountainous part (left-hand side), with relatively steep slopes and deeply incised
river valleys; and a downstream part (right-hand side) with relatively flat topogra-
phy, exhibiting a gentle gradient of approximately 1–2% towards the Pa Sak River, to
which the Nam Chun River contributes. The area of the upstream and downstream
parts of the watershed is in total approximately 92 km2.

The upper part of the watershed consists of two parallel sub-catchments of a general
west-northwest to east-southeast orientation that have their confluence near where the
Nam Chun River enters the Pa Sak valley proper. In terms of lithology, the upstream
part consists of uplifted Triassic sedimentary rocks, mainly conglomerates, sandstones
and shales. The downstream part consists mainly of Quaternary colluvial and alluvial
deposits. The vegetation in the upstream part can be characterized by degraded and
disturbed forests on the steeper and higher slopes. In the lower parts, farmers have
encroached upon the forest to cultivate maize and other food crops such as beans,
cabbage and tamarind. A significant part of the upper catchment is covered by fallow
grasslands.

Of the downstream part, almost the entire area is used for agriculture: farmers grow
rice in the rainy season (May–September) and tobacco, cucumber and maize in the
dry season (October–April). Tree crops such as coconuts, mangos and tamarind are
also grown there. The average annual rainfall is 1066 mm per year from an annual
average of 120 rainy days, which are concentrated in the period May to September.
The average maximum temperature is 34 ◦C (ranging between 37 ◦C in April and 31 ◦C
in December.

11.8.2 Surface-runoff modelling in the upstream part

In the study, a distributed erosion model was applied to quantify the amount of runoff
in the upper catchment and to obtain hydrographs at the outlet into the Pa Sak valley.
This model, the Limburg Soil Erosion Model (LISEM), was used because it takes into
account the effect of land cover and soil characteristics in a spatial way. This meant
that all model parameters could be represented as maps (in raster format), which not
only allowed us to assess the consequences of, for example, land cover changes on the
shape of the hydrograph, but also to identify where land cover changes would have
the most significant effect. This last capability is important because it offers spatial
planners a tool for prioritizing areas where mitigation efforts are likely to have the
greatest effect. The reader should note that LISEM is a combined hydrological and
erosion model, even though the erosion part was not used in this study: LISEM was
applied only as a distributed hydrological model.

400



11.8. Case study: Flood modelling: Nam Chun (Thailand)

Phnom Penh

Bangkok

V I E T N A M  

M A L AY S I A

M Y A N M A R L A O S

C A M B O D I A

 

A N D A M A N

S E A

Gulf of Thailand

SOUTH CHINA

SEA

Gulf of

Martaban

Gulf of

Tonkin

St r a i t  o f  M
a

l a
c
c
a

THAILAND

15°

100° 105°

100° 105°

10° 10°

20°20°

15°

Naypyitaw

Figure 11.20
Location of the Nam Chun

watershed in North-Central
Thailand.

LISEM is a physically-based hydrological and soil erosion model for simulating hy-
drology and sediment transport during and immediately after a single rainfall event,
and it may be applied in catchments of sizes ranging from 1 ha up to approximately
100 km2. The model, developed by Utrecht University’s, Department of Physical Ge-
ography, simulates the effects of both current land use and soil conservation measures
on surface runoff and sediment transport. LISEM comprises two basic processes: a wa-
ter part and an erosion part (Figure 11.22). The hydrological processes incorporated in
the model are rainfall, interception, surface storage in micro-depressions, infiltration,
vertical movement of water in soil, flow over land and channel flow. The model also
incorporates the influence on hydrological and soil erosion processes of compaction
(including the influence of tractor tracks), small paved roads, field strips and grassed
waterways.
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Figure 11.21
A 3D representation of an
ASTER false colour
composite of the Nam Chun
watershed; scale varies in
this representation. The view
is towards the North.

Upstream

Downstream

Pa Sak River

Nam Chun River

For the runoff process, rainfall is the basic input. Interception by crops and vegetation
is simulated by regarding them as a storage compartment that is to be subtracted from
the rainfall. The remaining rainfall then reaches the soil surface, where it can infiltrate
or be added to the surface storage. Since LISEM is a storm-based model, the infiltrated
water is considered as a loss in the sense that it cannot resurface.

Infiltration can be simulated using one of several available equations, among them
those developed by Green & Ampt, Holtan and Richards. In our study we used the
Green & Ampt model. Surface storage can be considered as a mini reservoir in which
water is stored (think of small ponds and puddles) until a threshold is exceeded. Then
overland flow will occur. The flow velocity can be calculated using a combination
of Manning’s formula and the kinematic wave equation. The flow is directed over
the terrain along the local drainage direction, which can be derived from the relevant
DTM.

Since LISEM is a process-based model it required a significant amount of input data.
All the required input data were derived from three base maps: 1) the digital eleva-
tion mode; 2) a soil unit map; and 3) a land cover map. The digital elevation model
was derived from the topographic map (Land Development Department, Thailand,
based on aerial photographs 1:25,000). The soil unit map was derived from a study
by Solomon [107], and values for the infiltration parameters (Ksat) were obtained by
Prachansri [93]. A digital land cover map of the study area was produced in 2004 by
the Land Development Department of Thailand. The accuracy of the map was found
by Prachansri [93] to be 72%, which we considered to be acceptable for the purpose of
our study. As LISEM is grid-based, all input maps used in the model were converted
into a raster format having a grid size of 30 m × 30 m. Table 11.2 shows a number of
the parameters (collected by Prachansri [93]) required for running the model.

402



11.8. Case study: Flood modelling: Nam Chun (Thailand)

Rainfall

LAI, per

Idd

π, slope

Rft

Kaat, theta

per, aggrsrab

coh

DSa

Interception

Infiltration

Surface 
storage

Splash 
erosion

Flow 
erosion

Transport 
deposition

Overland 
flow

Water
discharge

  Sediment
discharge

Figure 11.22
Simplified flow chart of the

LISEM model.
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Table 11.2
Input data for LISEM
version 2.39, with the use of
the Green & Ampt infiltration
model.

Parameter Name Method Unit

Catchment characteristic
Local drain direction LDD.map derived from DEM -
Catchment boundaries AREA.map derived from DEM -
Area covered by rain gauges ID.map field observation -
Slope gradient (sine of slope angle) GRAD.map derived from DEM -
Location of outlet and sub-outlets OUTLET.map derived from DEM -
Rainfall data ASCII field observation mm/h

Interception
Fraction of soil covered by vegetation PER.map field observation -
Leaf area index LAI.map derived from PER.map -
Vegetation height CH.map field observation m

Infiltration
(Green & Ampt)
Saturated hydraulic conductivity KSAT1.map field measurement mm/h
Saturated volumetric soil moisture content THETAS1.map field measurement -
Initial volumetric soil moisture content THETAI1.map field measurement -
Soil water tension at the wetting front PSI1.map derived from literature cm
Soil depth SOILDEP1.map field observation mm

Surface storage
Random roughness RR.map derived from literature cm
Width of impermeable roads ROADWIDT.map field observation m

Overland flow
Manning’s roughness coefficient N.map derived from literature -
Local drain direction of channel network LDDCHAN.map derived from ldd.map -

Channel flow
Local drain direction of channel network LDDCHAN.map derived from ldd.map -
Channel gradient CHANGRAD.map derived from grad.map -
Manning’s n for the channel CHANMAN.map derived from literature -
Width of channel scalar CHANWIDT.map derived from ldd.map m
Channel cross-sectional shape CHANSIDE.map field observation -
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Model calibration and validation

Many authors have demonstrated the need to calibrate process-based models to achieve
acceptable levels of predictive quality. In the case of hydrological models, typically
these are calibrated using data measured at the outlet of the relevant catchment. Dif-
ferences between observations and simulated modelling results can be basically at-
tributed to four different sources of error:

1. errors in the meteorological input data;

2. errors in the recorded hydrological observations;

3. errors and simplifications inherent in the model’s structure; and

4. errors resulting from the use of non-optimal parameter values.

During the calibration step, only errors from non-optimal parameter values can be
addressed.

In our case study, the results of the LISEM model were evaluated using six selected
rainstorm events (Tables 11.7–11.8). Three of these served as a calibration set, to opti-
mize the parameter settings. The other three rainstorms served as a validation set, to
test the predictive qualities of the optimized model.

The model results were calibrated primarily on peak discharge, but also on the general
shape of the hydrograph. The simulated hydrograph was visually compared with the
measured data and the two parameters were used to calibrate on peak discharge:

1. Saturated hydraulic conductivity (Ksat), which determines infiltration rate and
amount of runoff; and

2. Surface roughness coefficients. Table 11.3 shows the results for the peak dis-
charge and Figure 11.24 the results for the general shape of the hydrograph.
The parameter values obtained after the calibration step can be found in [93].

Events Rainfall (mm) Peak discharge (m3s−1)

Observed Simulated

Calibration

60905 52.58 37.5 37.90

18095 18.43 13.00 13.40

260905 29.49 31.45 32.99

Validation

70905 16.60 4.2 4.72

90905 10.61 1.02 1.30

120905 26.74 15.37 23.81

Table 11.3
Observed and simulated

peak discharge in the Nam
Chun catchment.

Runoff rate for different land cover types

The model enabled us to assess the contribution to runoff from sub-areas within the
catchment. The highest volume of surface runoff was predicted for maize cultivations,
with an average value of 482 × 10−3 m3 s−1; the lowest volume predicted was for
forest areas, with an average of 13.3 × 10−3m3 s−1. On the whole, agricultural areas,
comprising cornfields, mixed crops and orchards, show approximately 16 times higher
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Figure 11.24
Measured and simulated
discharge in the Nam Chun
catchment on 6 September
2005 (top-left), 18 September
2005 (top-right) and 26
September 2005 (bottom).
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rates of surface runoff than non-agricultural areas (comprising forest, degraded forest
and grassland areas): 440×10−3 m3 s−1 vs. 27.82×10−3 m3 s−1 per pixel of 30 m×30 m.

This enormous difference can be attributed to the combination of higher hydraulic
conductivity, greater surface cover and higher surface roughness values in the non-
agricultural areas, resulting in high infiltration rates, which in effect reduce surface
runoff. The spatial and temporal distribution of surface runoff as predicted by the
calibrated model is presented in Figure 11.25.
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Figure 11.25
Spatial and temporal

distribution of surface runoff
(time-step = 1 minute).
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Scenario generation

Our objective in the Nam Chun study was to evaluate the effects of different land use
scenarios on the rate of predicted surface runoff in the catchment. Jetten et al. [49] state
that although models may not be able to accurately predict future events, they can be
used to compare different scenarios. In scenario studies, the same uncertainty about
input data applies to all scenarios and one can, therefore, assume that the differences
resulting in the different simulations are in fact a consequence of the scenario changes
applied. Therefore, in order to evaluate the effects of different land use scenarios, three
land cover scenarios were developed:

• Base scenario: actual situation, i.e. as per August 2001;

• Scenario A: change the entire catchment to forest;

• Scenario B: Change land use to corn cultivation before harvest; and

• Scenario C: Change land use to corn cultivation after harvest (i.e. bare soils).

The results of the scenario simulations are shown in Table 11.4.

Table 11.4
Summary of change in peak
runoff and its time of
occurrence for a selected
event (No. 060905) in relation
to different land use
scenarios: (A) entire
catchment forested; (B)
change from forest to corn
fields before harvest; (C)
change from forest to corn
fields after harvest. Change
in peak discharge is given
compared to that of the actual
situation. Peak arrival time for
the actual situation was 3.5 h.

Scenarios Peak Change in Peak arrival time

discharge(m3s−1) peak discharge difference(h)

Actual situation 37.9

A 9.3 -76% +2.0

B 184 +385% -2.0

C 194 +412% -3.0

Under Scenarios B and C, total discharge was predicted to increase to approximately
400% compared to that under actual land use (base scenario). This indicates that cul-
tivation of corn increases the amount of surface runoff and that expanding areas of
agricultural activity in the watershed will result in a drastic increase in river discharge
at the catchment’s outlet. Figure 11.26 shows the predicted discharges for the three
land use scenarios.

11.8.3 Flood propagation modelling in the downstream part

In previous subsections we have demonstrated how a hydrological model can be used
to estimate runoff from a given catchment for various scenarios. In itself this is use-
ful, but in practice it is not in the catchment itself where most flooding problems oc-
cur. Flooding is usually greatest on the relatively flat terrain beyond the outlet of
the mountainous catchments, where we usually find higher concentrations of human
population and property.

In this subsection we demonstrate how to assess the consequences of this runoff in
the downstream parts. In order to quantify the effect of upper catchment runoff, a
combined 1D/2D hydraulic model was used to model the propagation of the flow over
flat terrain. To do this we chose to use the SOBEK modelling suite, which combines
one-dimensional channel flow with two-dimensional overland flow.
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Figure 11.26
Predicted hydrograph for
three land use scenarios.

Model data input

Four main types of input data were needed for the model: 1) The digital terrain model,
to represent the natural and man-made topography (this includes flow-affecting struc-
tures such as embankments and road networks); 2) surface roughness data, to repre-
sent the resistance of different vegetation types along the river channel and the flood
plain on the water flow; 3) river cross-sections, to represent the shape of the rivers; and
4) the boundary conditions, which include the incoming discharge at the upstream
boundary and water levels, or a rating curve, at the downstream boundary. Note that
in the model as it was used in this study, there was no direct rainfall in the down-
stream area: it was assumed that all surface water came from the upstream part of the
catchment.

Surface topography

By far the most important input for the model are data that accurately represent the
surface topography. Especially for the Nam Chun study, a detailed topographical sur-
vey was conducted by the mapping division of the Thai Land Development Depart-
ment [93], producing 1 m contour lines and spot heights with an accuracy of 0.1 m
(Figure 11.27). From this data, a DTM was derived with a grid size of 10×10 m. During
a field survey, man-made objects that affect flow, such as embankments, were added
to the DTM.
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Figure 11.27
Spot heights and contour
lines of the Nam Chun flood
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Digital Elevation Model of the
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Surface roughness map

In flood modelling, surface roughness represents the resistance that the water expe-
riences as it flows over the surface of terrain. Surface roughness is strongly related
to land cover: smooth, non-vegetated surfaces offer little resistance, whereas dense
forests have high friction values. The parameter used for expressing surface rough-
ness is Manning’s roughness coefficient. It is hard to measure this coefficient under
normal conditions, so usually tabulated values as a function of land cover are used.
During calibration procedures, Manning’s roughness coefficients are frequently ad-
justed to improve model performance.

The land cover map that was used for the downstream part of the Nam Chun study
was derived using visual interpretation of aerial ortho-photos at a scale of 1:25,000,
and the land cover was classified according to the classification standard of Land De-
velopment Department of Thailand. The land cover map was further improved dur-
ing a field survey. The final map is shown in Figure 11.29. This map was transformed
into surface roughness values using values of Manning’s coefficients taken from the
literature; see Table 11.5.
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Figure 11.29
Land cover types on the Nam

Chun flood plain.

River cross-sections

In this study, cross-section data were derived from the DEM and by surveying during
the fieldwork. The channel width and slope of the river bank were measured and
visually estimated. River-bed elevations were obtained directly from the DEM.

Boundary conditions

The upstream boundary condition is the discharge prediction from the catchment
study as described in Subsection 11.8.2 and Figure 11.26. In our study, not only did
we make discharge predictions for the three land use scenarios in the upstream catch-
ment; we also made predictions for rainstorms of different return periods: 2, 10, 20 and
50 years. For example, a rainstorm with a return period of 50 years is an event that, on
average, occurs once every 50 years. The return period is a measure of the severity of
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Table 11.5
Values of Manning’s
roughness coefficient for
flood plain surface roughness
as used in the model.

Land cover types Manning’s coefficient

Cornfield 0.045

Shrub 0.040

Mixed field crop 0.035

Mixed orchard 0.150

Orchard 0.100

Paddy field 0.100

Institutional 0.001

Lowland villages 0.150

Roads 0.001

Water body 0.033

the storm: a longer return period signifies a more severe storm. Hydrographs for all
three scenarios are shown in Figure 11.30 a,b. The downstream boundary consists of a
time series of water levels observed in the Pa Sak river.

Model output

SOBEK generates several output files, such as maps at predefined time-steps that con-
tain information on water depth and flow velocity; time series of water depth, dis-
charge and flow velocity at predefined locations; and an animation file that shows the
progression of the flood. In the Nam Chun study, we used maximum water depths
and maximum velocities for the flood-hazard mapping.

Calibration of the model results

In this study, the model was calibrated by comparing water-depth maps with the wa-
ter depths that were obtained from interviews during fieldwork in 2001, after typhoon
Usagi. Unfortunately, there was no information available on the extent of flooding.
During the fieldwork, 50 flood-depth points were collected through interviews with
the local population. The parameter that was used to minimize differences between
the modelling results and observed flood data was the surface roughness coefficient.
After a limited number of trials, a set of optimum values was obtained that were used
during further analysis. For more information regarding the calibration step, please
check [93].

Modelling results for the three land use scenarios

The results shown in Table 11.6 indicate that for a rainstorm with a return period of
2 years under actual land cover the average inundation depth in the upstream part is
0.35 m, although in some places a maximum depth of 0.89 m would be reached. Only
8% of the territory would be flooded in the downstream part (Figure 11.31). Under
scenarios in which the upstream catchment is completely transformed into corn fields
(Scenarios B and C), the maximum flood-water depth downstream doubles and the
spatial extent of flooding on the flood plain more than triples. If the entire upland area
is covered by forest (Scenario A), there would be no flooding at all downstream.

Table 11.6
Summary of flooding
characteristics under the
three land use scenarios for a
rainstorm with a 2 year return
period.

Total area 25 km2 Actual situation Scenario A Scenario B Scenario C

Flooded area, km2 1.92 0.07 7.27 7.65

Total flood volume, 106m3 0.29 0.00 2.69 3.20
Average depth, m 0.35 0.14 0.96 0.98
Maximum depth, m 0.89 0.41 2.21 2.25

Maximum velocity, ms−1 1.11 0.12 5.51 5.8
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Figure 11.30
Boundary condition for Nam
Chun upstream for 4 return

periods: (a) actual land use,
(b) Scenario A, (c)
Scenario B and (d)

Scenario C.

11.8.4 Example: flooding following a rainstorm with a 20 year return period

For a rainstorm with a 20 years return period, the results of the model simulation (Ta-
ble 11.7) indicate that under the actual situation 55% of the area would be inundated.
For the Scenarios A, B and C, the inundated area would be 43%, 64%, 63%, respectively.
Under Scenario B, the total volume of flood water would be 19.59 × 106m3, which is
twice as high as under the actual situation. For Scenario C, the total of volume of
flood water was lower than for Scenario B. This can be explained by the distribution
of discharge over time. Under scenario C, for a rainstorm with a 20 year return period
(annual probability of occurrence 5%) the discharge is higher at the beginning but after
two hours it subsides to levels below that of Scenario B, thus affecting the total volume
of the flood water under Scenario B.
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Table 11.7
Summary of flooding
characteristics under the
three land use scenarios for a
rainstorm with a 20 year
return period.

Total area 25 km2 Actual situation Scenario A Scenario B Scenario C

Flooded area, km2 13.87 10.77 16.00 15.77

Total flood volume, 106m3 9.47 5.21 19.59 14.66
Average depth, m 1.53 1.24 1.87 1.79
Maximum depth, m 3.40 2.96 3.90 3.97

Maximum velocity, ms−1 6.04 5.77 6.99 6.92

Maximum water depth

Figure 11.31 and Table 11.8 show that the maximum water depth maps for scenarios
B and C are quite similar, with only a small area at the lower part of the map for
Scenario B having a greater maximum water depth than for Scenario C. In contrast, the
combined maximum water depth class 0.2–1.0 m and flood extent under Scenario C
is greater and larger than under Scenario B. These depths are found near the apex of
the Nam Chun because under Scenario C the water propagates and inundates in the
upper part of the river—then there is less water to drain to the river’s lower portion.
In Scenario A, the maximum depth of most of the floodwater does not reach 2 m, yet
under Scenarios B and C areas of 18% and 9%, respectively, would be flooded by water
with depths greater than 2 m; maximum water depths greater than 3 m cover 6% of
the surface area under Scenario B. Under Scenario A, 88% of the flooded area has a
water depth of less than 1 m.

Table 11.8
Surface area flooded (% of
total area) per water depth
class for a rainstorm with a
20 year return period.

Water depth, m actual situation Scenario A Scenario B Scenario C

0 - 0.2 19 28 10 11
0.2 - 0.5 28 33 14 19
0.5 - 1.0 29 27 31 34
1.0 - 2.0 22 11 27 27
2.0 - 3.0 2 1 12 8
> 3.0 0 0 6 1

Total (km2) 100 ( 13.87) 100 (10.77) 100 (16.00) 100 (15.77)
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Figure 11.31
The spatial distribution of

maximum water depth for the
three land use scenarios and

actual land use for a
rainstorm with a 20 year

return period.
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Maximum flow velocity

Figure 11.32 and Table 11.9 show the distribution of the maximum flow velocity for
the present situation and scenarios A, B and C. For most of the inundated area the
maximum flow velocity does not rise above 0.50 m s−1. In scenarios B and C, the
maximum velocities of water flow that are less than 0.50 m s−1 occur on 97% and
96%, respectively, of flooded area; 4% of the area has a flow velocity greater than
0.50 m s−1. The highest maximum water flow velocities are to be found in the top
part of the downstream area (near the apex). In scenario A, for most of inundated
area the flow velocity of flood water is lower than 30 cm s−1. This means that if the
upland catchment were completely forested, it would reduce the maximum water flow
velocity in the downstream area.

Figure 11.32
The spatial distribution of
maximum flow velocity for the
three land use scenarios and
actual land use for a
rainstorm with a 20 year
return period.
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Table 11.9
Surface area flooded (% of
total area) per water velocity
class for a rainstorm with a
20 year return period.

Water velocity, ms−1 Actual situation Scenario A Scenario B Scenario C

0 - 0.1 31 50 25 20
0.1 - 0.3 59 47 51 59
0.3 - 0.5 8 3 21 17
0.5 - 1.0 2 0 3 4
1.0 - 2.0 0 0 0 0
2.0 - 3.0 0 0 0 0
> 3.0 0 0 0 0

Total (km2) 100 (13.87) 100 (10.77) 100 (16.00) 100 (15.77)
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11.8.5 Flood-hazard mapping

Flood hazard is the probability of occurrence of a potentially damaging flood event of
a certain magnitude within a given time period and area. As part of our case study,
we created flood-hazard zone maps from the results of flood modelling simulations
for rainstorms with return periods of 2, 10, 20 and 50 years. A different degree of
hazard was assigned to each flooding frequency. Five categories of flood hazard were
established for each scenario:

• areas with high flood hazard—high frequency of flooding, i.e. a return period of
2 years;

• areas with medium flood hazard—medium frequency of flooding, i.e. a return
period of 10 years;

• areas with low flood hazard—low frequency of flooding, i.e. a return period of
20 years;

• areas with very low flood hazard—very low frequency of flooding, i.e. a return
period of 50 years;

• areas with no flood hazard.

Figure 11.33 shows the flood hazard zone for each scenario and for the actual situ-
ation. A high level of flood hazard that applies to 31% of the area occurs when the
whole upstream catchment area is turned over to corn fields (Scenarios B and C). In
contrast, the area of high flood hazard becomes smaller if the upstream area is con-
verted to forest. The area of medium levels of flood hazard (for rainstorms of 10 year
return period) covers 36% of the terrain in the actual situation and under Scenarios B
and C. Under scenario A only 28% of the area has a medium level of flood hazard.
The areas of low flood hazard (for rainstorms of 20 year return period) cover only 3, 3,
2 and 1 km2 under the actual situation, Scenario A, Scenario B and Scenario C, respec-
tively. Thus we can conclude that flood hazard is reduced if the land cover upstream
is entirely forest. By contrast, when the upland area is devoted to agriculture, the risk
of flooding increases, as does the area of flood hazard.
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Figure 11.33
Flood-hazard mapping for the
three scenarios of land use
and actual land use.
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11.9. Case study: Environmental management plan for the Lake Uromiyeh ecosystem, Iran

11.9 Case study: Environmental management plan for the Lake Uromiyeh
ecosystem, Iran

This case study illustrates how data integration at different levels was used in a com-
plex project to support decisions about water allocation in a semi-arid region. The dis-
cussion here focuses on data integration issues without going into much detail about
the project itself.

11.9.1 Project set up

Lake Uromiyeh (Figure 11.34) lies in the western part of Iran. Its basin covers about
54,000 km2 and is made up of mountains and river flood plains. The climate is semi-
arid, with an average annual rainfall of about 350 mm; low-lying areas (1200–1400 m
amsl) receive about 250 mm per year and mountainous areas (around 3000 m amsl)
more than 1000 mm, mostly as snow. Irrigated agriculture is the main economic activ-
ity in low-lying areas, exploiting both surface water and groundwater resources, while
rain-fed agriculture is practised in the foothills of the mountainous areas.

Salmas Tabriz

Sarab

MiandoabNaghadeh

Uromiyeh

Mahabad

Saghez

Takab

Figure 11.34
Lake Uromiyeh and its

watershed; weather stations
are sited at locations shown

in the basin (source: U.S.
Geological Survey
Department of the

Interior/USGS).

Lake Uromiyeh is shallow (6–8 m deep) and has no outflow, so any precipitation
falling in the basin only leaves it through evaporation, either off the land or from the
lake itself. The evaporating water leaves behind its dissolved salts, which at the time
of the project had resulted in hypersalinity in the lake; the actual salinity depends
on the amount of water in the lake, i.e. the lake’s water level. These circumstances
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have led to the development of a relatively simple ecology with salt-loving organisms
populating every level of the food chain.

Falling water levels in the lake caused the shoreline to retreat, leaving behind deserts
of salt and resulting in the complete collapse of much of the lake’s flora and fauna.
These events presented the authorities with a warning that better coordination of wa-
ter use— involving all stakeholders in the basin—was needed.

The objective of the project was to develop an environmental management plan for
the Lake Uromiyeh Basin in the framework of a cooperation between The Netherlands
and Iran.

11.9.2 Decision-support system

As the success of the project required the cooperation of all sectors of the economy,
as well as all groups of local inhabitants, the concept of integrated water resources
management (IWRM) was applied. This entailed the involvement of stakeholders
from agriculture, water management, industry, municipalities and water managers,
together representing the governmental, private and non-governmental sectors.

The key tool in the integrated management was a decision-support system (DSS) that
combined data from all related fields. IWRM, however, involves more than just run-
ning a DSS and making decisions on the basis of the outcomes it generates. Rather, it
is the process by which the activities of all stakeholders are coordinated. The advan-
tage of using a DSS is that it provides the possibility of testing outcomes of different
decision schemes, i.e. of analysing different scenarios.

The DSS for Lake Uromiyeh incorporated a number of software tools, as shown in
Figure 11.35.

Figure 11.35
Logical structure of the Lake
Uromiyeh DSS, indicating the
major software tools and data
types used.

 
AVHRR
Landsat,

Spot,
etc

ILWIS
&

HYMOS
DEFINITE

RIBASIM

Surface
Energy

Balance/
ET calc.

Hydro., agro., meteo.,
census, etc.,

databases

The DSS comprised four major logical units:

1. external databases (green area in Figure 11.35), which did not form an integral
part of the decision-support system;

2. a central spatio-temporal database (purple area) (a loose amalgamation of a GIS
and hydrological data management software);

3. EO data and observation models (the overlap area between green and purple
areas), which were used independently from the rest of the DSS. (In fact, this
part processes input data for the decision support part of the system);
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11.9. Case study: Environmental management plan for the Lake Uromiyeh ecosystem, Iran

4. process models that exchanged data but were not fully integrated with the cen-
tral database.

The software tools were not integrated in one computer system, but were used inde-
pendently. A well-defined data flow scheme represented the logical framework of the
DSS.

11.9.3 External databases

Several institutions from different Iranian ministries and departments provided data
for the project. Hydrological, agronomic, meteorological, statistical, ecological and
topographic data were merged in the central database. In many cases the data were
not just copied from the external databases to the DSS: some conversions were made
to meet the import requirements of the data storage systems.

11.9.4 Central spatio-temporal database

The central database used was not fully integrated to store the data in a homoge-
neous manner because the development of such an environment would have exceeded
project funding. Instead, efforts were concentrated on storing the data in a practical
structure: data for the process models were integrated into a special hydrological data
management environment (HYMOS), while the data needed for the EO observation
models were stored in an analysis-oriented GIS (ILWIS). This structure is illustrated
in Figure 11.36; the special data integration tools and methods are indicated for the
relevant steps.

Printed reports
(ecology, 

agriculture, etc)

Printed maps
(topography,

hydrology, etc)

Time series
(hydrology, 

meteorology, 
agriculture, etc)

Satellite images 
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AVHRR, etc)

A/D conversion:
digitizing of 
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A/D conversion:
scanning, 
digitizing

File/data format
conversion

File/data format
conversion

Full GIS functionality 
including spatial 

resampling + image 
processing  

Pre-processing functions 
for time series of point 
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resampling, statistical 
analysis, etc.  

ILWIS HYMOS

Used in EO 
observation 

model 

Used in water 
allocation 

(process) model  

External data editing functions

Figure 11.36
Data flows to the central

spatio-temporal database of
the DSS

An important characteristic of the main units of the central database was the wide
range of data processing functions available. ILWIS was used mainly for the spatial
operations1, of which the most frequently used were:

1Not all the steps described here were originally carried out during the development phase of the central
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• Re-projection of maps. For example, precipitation maps (Figure 11.37) were
available originally in geographic coordinates, which were re-projected to the
UTM mapping system.

• Spatial re-sampling for adjusting spatial resolution.

– Re-sampling of coarse resolution to smaller grid size, i.e. densification.
Precipitation maps are good examples of this here: the original maps of
a course spatial resolution (about 10 km) needed to be densified, since
several calculations used a grid of 1 km size. The densification method
applied used an interpolation of regularly spaced data.

– Re-sampling of finer resolution to coarser grid size, i.e. aggregation. This
was used for generalizing the land cover/land use map of 28 m resolution
that was provided by the Ministry of Agriculture and Jihad of Iran (origi-
nally classified from Landsat TM images) to the grid size of 1 km size. To
do this a majority filter was used, which assigns the category of highest
occurrence within the area of the aggregated cell to the whole cell.

• Spatial interpolation of irregularly-spaced point data; both simple and complex
interpolators were used. A typical application was the interpolation of meteoro-
logical data (e.g. hours of sunshine ) measured at six stations around the basin.
For the interpolation, a complex geostatistical method was used that took into
consideration both the spatial distribution of the variables shown in the IWMI
Water and Climate Atlas of the region and the values actually measured at the
stations.

Figure 11.37
Precipitation maps of a wet
hydrological year
(1993–1994) and a dry
hydrological year
(1999–2000).
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11.9.5 EO data and observation models

Earth observation was an integral part of the data analysis. Two major types of analy-
sis based on Earth observation data were used:

• Satellite images were used for mapping the land cover and defining the major
water users from this map (e.g. irrigated and rain-fed agriculture). This is the
data flow related to the “Classification” observation model in Figure 11.38. Clas-
sification uses statistical methods for creating a link between the observed signal
(the image) and the surface properties; the intermediate results were stored in
the central spatio-temporal database (not shown in the figure).

spatio-temporal database. In its final form, however, the central database did have capabilities for facilitating
these steps.
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• A surface energy-balance method (SEBAL) was used for mapping the distri-
bution of the water flux leaving the basin, i.e. evapotranspiration (ET). It is a
physically-based (deterministic) model, which uses the relation between the sur-
face physical properties and the electromagnetic energy recorded in the satellite
images.

Outputs of the two types of analysis were used to define the water demands of the
different sorts of users in a wet (1993/1994) and a dry (1999/2000) hydrological year.
The demands calculated were then stored in the HYMOS database.
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Figure 11.38
Data flows in the EO data

and observation models
module with a focus on the

data integration steps.

11.9.6 Process models

Allocation of water to different users requires a careful evaluation of the water re-
sources available versus the water demands and priorities. The process modelling
part of the DSS actually comprised two models:

• The RIBASIM (RIver BAsin SIMulation, developed by Delft Hydraulics) model,
which distributes available water resources to users according to priorities and
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Figure 11.39
Example of the results of the
surface energy-balance
calculations: actual
evapotranspiration maps of
the two hydrological years
analysed.
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Figure 11.40
Schematic representation of
water resources and users in
the Ghadar Chai basin: the
actual situation.
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needs. It is able to simulate the flow of water from the headwaters of rivers
to the lowest point of their basins—in our case, from the mountains to Lake
Uromiyeh. Water flows can be traced through river channels, lakes, reservoirs
and wetlands, as well as groundwater flows from sources to users. The logi-
cal structure of the actual situation in one sub-basin (the Ghadar Chai basin) is
shown in Figure 11.40. Not only actual situations, but also future scenarios can
be simulated with RIBASIM: Figure 11.41 includes four new irrigation schemes,
a new dam and a new fish pond. RIBASIM can directly be linked to HYMOS.
All the data integration steps are thus made outside the model.

• The DEFNITE (DEcisions on a FINITE Set of Alternatives) model, which is a tool
for impact assessment and scenario analysis. A wide range of decision-support
tools are included, e.g. multi-criteria methods, as well as tools for cost-benefit
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Figure 11.41
Schematic representation of

water resources and users in
the Ghadar Chai basin: future

scenario with extended
irrigation schemes.

and cost-effectiveness analyses, are available. For example, DEFNITE can com-
pare different outputs (scenarios) from RIBASIM by assigning weights and as-
sessing the most reasonable option. In this sense, DEFINITE is not a process
model itself, but a tool to characterize and analyse the results of process models.

Several scenarios with different priorities and different levels of irrigation develop-
ment were calculated. The DSS proved that actual water use is, unfortunately, not
sustainable. This result poses an enormous challenge for the water managers of the
region, especially since demand for water is still rising as a result of increasing social
and economic pressures.

11.9.7 Conclusions

Data of different kinds, obtained from several sources, were integrated in the decision-
support system developed for the Lake Uromiyeh Environmental Management Plan.
The complexity of the situation required various methods of spatial and temporal re-
sampling to create a data set that fitted the analytic methods proposed. Statistical and
deterministic observation models were used to calculate the input data for a process
model, which provided water allocation scenarios in all the sub-catchments of the
Lake Uromiyeh basin. The DSS only supports decisions; it does not make decisions.
The modelling results of the study proved that there was a need for new management
plans that would match available resources with demand in a sustainable manner.

Acknowledgements

The Lake Uromiyeh project was carried out with the support of the governments of
Iran and the Netherlands. The main Iranian contributors were the Water Research In-

425



Chapter 11. Data integration

stitute; the water, environmental and agricultural authorities in the provinces of East
and West Azerbaijan; and Yekom and Pandam consulting companies. Dutch partners
included ITC, Deft Hydraulics and Water Watch. As international consultants, Wet-
lands International and Dr Mike Moser participated in the project.

426



Chapter 12

Use and Users

Corné van Elzakker
Yola Georgiadou
Thomas Groen
Norman Kerle
Joan Looijen
Andrew Skidmore
Richard Sliuzas
Alexey Voinov
Eduard Westinga

Introduction

Geoinformation systems and information products need to be adjusted to their uses
and users. This can be considered as a design process to which we can apply a sys-
tematic approach (see Figure 12.1). Who exactly are users of spatial information? One
view could be that users are those who use a system without the complete technical
expertise required to fully understand that system. As most GIS and EO applications
are complex, and since almost all maps today are produced by some combination of
GISs and EO methods, by this definition virtually anyone who has ever looked at a
map is a user: there will be components of the hardware, software, and management
or data systems that even an expert is unlikely to fully understand.

At the same time, it would be wrong to think of a user as somebody who sits at the
end of the research chain and is only fed information from various flows of observed
or derived data. After all, as a recipient of spatial information, the user could have
an important role in defining what information should be generated, as well as in
what form it should be presented. Moreover, it is often difficult to distinguish the
producer of information from the consumer of that information. Perhaps the term
stakeholder, which has also been used in the discussion on governance in Chapter 1, is
more appropriate, as it connects the use of spatial data and information to an identified
issue for which access to and use of spatial data and information are considered to be
relevant and important.

It is clear that enormous volumes of data are being generated. This phenomena was
identified by the editors of a special 125th anniversary issue of the prestigious science
journal Science entitled “What we don’t know” as a significant scientific challenge.
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