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In some applications, an a priori upper bound � (0 < � � 1) on the size of all itemsis known. To gauge the performance of approximation algorithms on lists of such items, theparametric asymptotic ratio R1A (�) is introduced asR1A (�) := lim supm!1 RmA (�);whereRmA (�) := supL fA(L)=OPT(L) j OPT(L) = m and all ai 2 L are � �g:The problem de�ned so far is quite general. Implicitly, we have allowed the bins Bi to havevarying capacities and both bins and items to be multidimensional. The bulk of this paper,not to mention the bin packing literature, is con�ned to the one dimensional problem withequal bin capacities, which we normalize to 1 for convenience; in this case, any set of itemswhose total size is at most 1 �ts into a bin. Correspondingly, items are always assumed to benumbers drawn from an interval [0; �] for some � � 1. We keep with these classical assumptionsthroughout the next section; the third and last section will cover more general versions of binpacking. We note once and for all that the versions of bin packing of interest to us here areNP-hard, except where stated otherwise.Many extensions and variants have been instrumental in maintaining the interest in thegeneral area of bin packing. We mention a few basic illustrations here; others can be foundin the more comprehensive treatment by Co�man, Galambos, Martello, and Vigo [12]. Threeprincipal parameters of bin packing problems are the number of items, the bin capacity, andthe number of bins. Choosing the number of bins as the objective function gives the classicalproblem, but choosing one of the two others as the objective function also gives interestingproblems. Multiprocessor scheduling actually predates bin packing and is the problem with agiven number m of bins and the objective of �nding the minimum common capacity such thatall items of the given list can be packed into m bins. The problem falls more properly withinscheduling theory and is surveyed in that context in the survey article by Lawler, Lenstra,Shmoys, and Rinnooy Kan [40]. The second problem is that of �nding a maximum cardinalitysubset of the given list of items which can be packed into a given number of bins with a givencapacity (see e.g. Co�man, Leung, and Ting [16] and Co�man and Leung [15]). The dual ofpacking is covering, where the item sizes in a bin must sum to at least 1. As a �nal variant wemention dual bin packing: maximize the number of unit capacity bins covered by a given listof items (Assmann, Johnson, Kleitman, and Leung [1]).2 The classical problemA bin packing algorithm is called on-line if it packs every item ai solely on the basis of the sizesof the items aj , 1 � j � i, i.e., without any information on subsequent items. The decisionsof an on-line algorithm are irrevocable; packed items cannot be repacked at later times. Abin packing algorithm that can use full knowledge of all items in packing L is called o�-line.Below, we cover on-line algorithms �rst and then discuss a number of o�-line algorithms.2



2.1 On-line algorithms2.1.1 Simple algorithmsThe simplest approximation algorithm for bin packing is probably the NEXT FIT (NF) algo-rithm: NF makes a single scan through the list L and shortsightedly packs the items one afterthe other into a unique, active bin. In case an item does not �t into the active bin, the binis closed (never to be used again), and an empty bin is opened and becomes the new activebin. The running time of NF is linear in the number of items packed. It is easy to see thatNF has an asymptotic ratio R1NF = 2: The list L = h12 ; "; 12 ; "; 12 ; "; : : :i that consists of n pairs12 , " where 0 < " < 1n shows that the asymptotic ratio cannot be better than 2. Moreover,the total contents assigned to two consecutive active bins is always at least 1, and this yieldsan upper bound of 2 on the asymptotic ratio. Johnson [33, 34] gave a complete analysis ofthe parametric asymptotic ratio of NF; he showed that for 1=2 � � � 1, R1NF (�) = 2 and for� < 1=2, R1NF (�) = 1=(1� �).An obvious drawback of NF is that it never uses the empty space in closed bins. A simplemodi�cation gives the FIRST FIT (FF) algorithm: FF also makes a single scan through thelist L, but it never closes an active bin. When packing a new item, FF puts it into the lowestindexed bin into which it will �t. A new bin is started only if the item does not �t intoany non-empty bin. The running time of FF is O(n logn) and thus greater than the O(n)running time of NF. However, FF has a much better asymptotic ratio. Johnson et al [35]proved the following: Let m be a positive integer with 1=(m+1) < � � 1=m. Then for m = 1,R1FF (�) = 17=10 holds and for m � 2, R1FF (�) = (m+ 1)=m holds.Other classical on-line algorithms are BEST FIT (BF), WORST FIT (WF), and ALMOSTWORST FIT (AWF). BF behaves like FF, except that it puts the next item into the bin intowhich it will �t with the smallest gap left over; ties are broken arbitrarily. WF puts the nextitem into a nonempty bin with the largest gap, starting a new bin only if this largest gap isnot big enough. AWF tries �rst to put the next item into a nonempty bin with the secondlargest gap; if the item does not �t there then AWF behaves like WF. All three variants belongto the class of so-called ANY FIT (AF) algorithms: An AF algorithm scans once through thelist L while packing the items. It never puts an item ai into an empty bin, unless the itemdoes not �t into any partially �lled bin. Similarly, an ALMOST ANY FIT (AAF) algorithmis an AF algorithm that never puts an item into a partially �lled bin with the lowest level,unless there is more than one bin having this level or unless the bin of lowest level is the onlyone that has enough room. Johnson [34] proved a beautiful and surprising result: An AFalgorithm can never have an asymptotic ratio better than FF, and all AAF algorithms havethe same asymptotic ratio as FF; these statements hold even for the parametric ratios. As aneasy consequence we get that the AAF algorithms BF and AWF have asymptotic ratios 17=10.The asymptotic ratio of the AF algorithm WF, however, is 2, the same as NF.2.1.2 Bounded space on-line algorithmsAn on-line bin packing algorithm is said to use k-bounded-space if for each new item, the choiceof bins into which it may be packed is restricted to a set of k or fewer active bins. A binbecomes active when it receives its �rst item; once a bin is closed, it can never become active3



k AFFk ABFk ABBk Hk SHk Champion2 2.00000 1.85000 1.70000 2.00000 2.00000 ABB3 1.85000 1.80000 1.70000 1.75000 1.75000 ABB4 1.80000 1.77500 1.70000 1.71429 1.72222 ABB5 1.77500 1.76000 1.70000 1.70000 1.70000 ABB, H, SH6 1.76000 1.75000 1.70000 1.70000 1.69444 SH7 1.75000 1.74286 1.70000 1.69444 1.69388 SH8 1.74286 1.73750 1.70000 1.69388 1.69106 SH9 1.73750 1.73333 1.70000 1.69345 1.69104 SH1 1.70000 1.70000 1.70000 1.69103 1.69103 H, SHTable 1: Asymptotic ratios for bounded-space bin packing algorithms, rounded to �ve decimalplaces.again. NEXT FIT uses 1-bounded-space, whereas FF, WF and AWF all use unbounded space.There are four very natural bounded-space bin packing algorithms that are de�ned via simplepacking rules for items and simple closing rules for bins: A new item can always be packed intothe lowest indexed bin (as in FF) or into the bin with the smallest remaining gap (as in BF). Ifthe new item does not �t into any active bin, some active bin has to be closed; in this case onecan always choose the lowest indexed bin (the FIRST bin) or the fullest bin (the BEST bin).The corresponding four algorithms are called AFFk, AFBk, ABBk, and ABFk : Here A standsfor Algorithm, the second letter denotes the packing rule (Best �t or First �t), the third letterdenotes the closing rule (Best bin or First bin), and k is the upper bound on the number ofactive bins.� Algorithm AFFk. This algorithm was de�ned under the name NEXT-k FIT by Johnson[34] in 1974. Provably tight bounds were not in hand until almost 20 years later. Csirikand Imreh [21] constructed a sequence of worst-case examples that show R1AFFk � 1710 +310(k�1) , and Mao [50] proved a matching upper bound on R1AFFk .� Algorithm ABFk. Mao [49] proved that R1ABFk = 1710 + 310k .� Algorithm AFBk . Zhang [62] adapted the analysis of Mao [50] to this algorithm andproved that R1AFBk = 1710 + 310(k�1) .� Algorithm ABBk. This algorithm was investigated by Csirik and Johnson [22]. In com-parison to the other three algorithms, ABBk uses the better packing and closing rulesand it has the better asymptotic ratio, R1ABBk = 17=10 holds for any k � 2.So, except for small k, the asymptotic ratios of all four algorithms are around 17=10; since theyare of the ANY FIT type, they of course cannot outperform FF.Lee and Lee [41] introduced a new class of bounded space algorithms using bin reservationtechniques. Their algorithm HARMONIC is based on a partition of the interval (0; 1] into k4



subintervals, where the partitioning points are 1=2; 1=3; : : : ; 1=k; to each of these subintervalsthere corresponds a single active bin, and only items belonging to this subinterval are packedinto this bin. If a new item arrives that does not �t into its corresponding active bin, thebin is closed and a new bin is activated. In [41] it is proved that R1Hk tends to the numberh1 � 1:69103. This number is de�ned by h1 = P1i=1 1ti�1 where t1 = 2 and ti+1 = ti(ti �1) + 1 for i � 1; it is a prominent number in bin packing. Woeginger [58] introduced theSIMPLIFIED HARMONIC (SHk) algorithm, a modi�cation of HARMONIC with a di�erentinterval structure and with a slightly better asymptotic ratio for small values of k.A summary of the asymptotic ratios of the bounded-space algorithms for some small valuesof k is given in Table 1. The asymptotic ratios of all �ve algorithms always remain above h1.In fact, Lee and Lee [41] showed that a bounded-space algorithm cannot have an asymptoticratio better than h1.2.1.3 Better algorithmsThe �rst on-line algorithm for bin packing with R1A < h1 was Yao's [60] REVISED FF (RFF).Both the de�nition and the analysis of RFF are fairly involved; it is something of a crossbetween FF and HARMONIC with the asymptotic ratio R1RFF = 5=3. All other known on-linealgorithms that beat this h1 bound are variants of HARMONIC with a special treatment ofthe large items � 1=3. Lee and Lee [41] described the REFINED HARMONIC (RH) algorithm,which was based on H20, and proved the asymptotic ratio R1RH = 373=228 � 1:639. Ramanan,Brown, Lee and Lee [52] introduced the MODIFIED HARMONIC (MH) with R1MH � 1:616.Finally, in 1991 Richey [54] introduced the HARMONIC+1 algorithm, our current champion.The de�nition of HARMONIC+1 uses a partition of [0; 1] into more than 70 intervals. Itsdesign and analysis were performed with the help of linear programming. Its asymptotic ratiois less than 1:5888.Finally, we discuss lower bounds on the performance of any on-line bin packing algorithm.Roughly speaking, a lower bound argument can proceed as follows. Suppose an on-line algo-rithm A is confronted with a huge set of tiny items. If A packs these tiny items very tightly,it will not be able to �nd an e�cient packing for the larger items that might arrive later; ifsuch items actually do arrive, A is going to lose. On the other hand, if A leaves lots of roomfor large items while packing the tiny items, the large items might not arrive; in that case, Ais again going to lose. Yao [60] formulated this idea mathematically; he used 1=7 + " as thesize of the tiny items, and 1=3 + " and 1=2 + " as sizes of large items. He proved that, withcertain lists of such items, the asymptotic ratio of every on-line bin packing algorithm A mustsatisfy R1A � 1:5. Brown [7] and Liang [47] independently generalized this lower bound to1:53635. Ten years later van Vliet [56, 57] found an elegant linear programming formulationfor the Brown/Liang construction. Van Vliet gave an exact analysis and increased the lowerbound to R1A � 1:5401. This is currently the best lower bound known for on-line bin packing.5



2.2 O�-line algorithms2.2.1 Simple algorithmsThe FF and BF algorithms do not work well on lists ordered by increasing item size. Intuitively,the large items at the end of the list should be combined with the small items at the beginningof the list, whereas FF and BF produce very dense packings for the small items and very poorpackings for the large items. Hence, it is natural to design o�-line algorithms that �rst sortthe list by decreasing size, and afterwards behave like one of the simple on-line algorithms.This yields FIRST FIT DECREASING (FFD), BEST FIT DECREASING (BFD) and NEXTFIT DECREASING (NFD). Not surprisingly, the performance of NFD is not very strong:Baker and Co�man [3] proved that R1NFD = h1 holds. On the other hand, the improvementof FFD and BFD over the on-line packing algorithms is dramatic: Johnson [33] showed thatR1FFD = R1BFD = 11=9 � 1:22. The proof of this result is notorious: more than 70 pages oftedious case analysis. In fact Johnson proved the inequality FFD(L) � (11=9)OPT(L) + 4.The additive constant of 4 in this inequality was later reduced to 3 by Baker [2] and then to1 by Yue [61]; the proofs in [2, 61] are simpler than Johnson's but are based on similar ideas.but slightly simpler.2.2.2 Better algorithmsAfter Johnson's 11=9 theorem in the early 70's, quite a few years passed before a polynomial-time algorithm beating the 11=9 bound was published. Yao [60] showed that the bound wasbeaten by his REVISED FFD (RFFD) algorithm that behaves as FFD but has a specialtreatment for the items of size > 1=3. The running time deteriorates to O(n10 logn), and theasymptotic ratio is improved only very slightly to 11=9� 10�7; but the result shows that thereis nothing magic about the 11=9 bound.Fernandez de la Vega and Lueker [30] constructed a polynomial time approximation scheme(PTAS, for short) for bin packing. In other words, they proved that for " > 0 there exists anapproximation algorithm A" that has a running time polynomial in the size of the input list L(but exponential in 1="), and that computes a packing with A"(L) � (1+")OPT(L)+const("),where const(") ! 1 as " ! 0. This result was considerably strengthened by Karmarkar andKarp [36] who designed another PTAS that guarantees A"(L) � OPT(L)+log2(OPT(L)). Thealgorithm in [36] uses a lot of tricks: elimination of small items, rounding techniques, linearprogramming formulations, the ellipsoid method, and so on. The running time of the algorithmis roughly O(n9). In this area, the development stops with Karmarkar and Karp, although manyquestions remain open. Is it possible to guarantee that A"(L) � OPT(L) + log(OPT(L)) inpolynomial time (i.e., replace the log2 in [36] by a simple log)? We feel that the answer to thisquestion should be YES. Is it possible to guarantee that A"(L) � OPT(L) + 1 in polynomialtime? The answer to this question might indeed be YES! (and it seems to be completely outof reach of our current techniques).3 GeneralizationsWe now relax certain of the assumptions of the classical problem.6



3.1 Variable sized bin packingIn variable sized bin packing, the items are packed into bins of several di�erent types B1; : : : ; Brwith sizes 1 = s(B1) > s(B2) > : : : > s(Br). There is an in�nite supply of bins of each type.The goal is to pack the items ai 2 [0; 1] into a set of bins with smallest total size (observe thatthe special case of a single bin type B1 of size s(B1) = 1 is the classical one dimensional binpacking problem). For a list L of items and an approximation algorithm A, denote by s(A;L)the total size of bins used by algorithm A. Denote by s(OPT; L) the total size of bins used inan optimal packing. The quality of algorithm A is measured byRvarA = limk!1 supfs(A;L)=s(OPT; L) j OPT(L) � kg:In the on-line version of variable sized bin packing, every time a new bin is opened, the onlinealgorithm decides which bin type to use next.Friesen and Langston [32] give three simple approximation algorithms for variable sized binpacking with the asymptotic ratios 2, 3=2, and 4=3. Only the �rst of these three algorithmsis on-line. This algorithm always chooses the largest bin size when a new bin is opened, andotherwise behaves just like NF. Not surprisingly, it has the same asymptotic ratio as NF. It canbe shown that any on-line algorithm that always chooses the largest possible bin size has anasymptotic ratio of at least 2, and also any on-line algorithm that always chooses the smallestavailable bin size has an asymptotic ratio of at least 2. Kinnersley and Langston [38] designa hybrid strategy called FFf . FFf uses the packing strategy of FF. The bin type selection isbased on a so-called �lling factor f with 1=2 � f � 1. Suppose that FFf must start a newbin as item ai arrives. If ai � 1=2, then FFf starts a new bin of size 1. If ai > 1=2, thenFFf chooses the smallest bin size in the interval [ai; ai=f ]; in case no such bin size exists, FFfchooses size 1. The asymptotic ratio of FFf is at most 1:5 + f=2, and there exist values of f(e.g. f = 3=5) for which this bound is tight. Zhang [63] shows that the asymptotic ratio ofFF12 equals 17=10, thus matching the guarantee of FF.Csirik [20] designed an on-line algorithm for variable sized bin packing that is based on theHARMONIC algorithm. For every item size ai, the algorithm computes a corresponding bintype Bj . All items that are assigned to the same bin type Bj are then packed by a HARMONICalgorithm into bins of size s(Bj). For any collection of bin types, the asymptotic ratio of thisalgorithm can be made arbitrarily close to h1 � 1:691. The algorithm performs even better forspecial collections of bin types; e.g. for two bin types with sizes s(B1) = 1 and s(B2) = 0:7, theasymptotic ratio is 1:4. These constitute the strongest results currently known for the on-lineversion of variable sized bin packing.For the o�-line version of variable sized bin packing, Murgolo [51] constructs a polynomialtime approximation scheme. This scheme is based on and extends the techniques of Karmarkarand Karp [36].3.2 Packings in Higher DimensionsThere are several generalizations of bin packing to higher dimensions; we will �rst discusspackings in which items are vectors and then discuss packings of rectangles in two dimensionalarenas. 7



3.2.1 Vector PackingIn vector packing, instead of an item being a single number, it is a d-dimensional vectorai = (v1(ai); : : : ; vd(ai)), where 0 � vj(ai) � 1 holds for 1 � j � d. The goal is to pack allitems into the minimum number of bins in such a way that, in every bin, the sum of all vectorsis at most one simultaneously in every coordinate. The vector packing problem arises as acrucial subproblem in scheduling with resource constraints (cf. Garey, Graham, Johnson andYao [29]).Kou and Markowsky [39] call an approximation algorithm A for d-dimensional vector pack-ing reasonable, if A never yields packings in which the contents of two non-empty bins couldbe combined into a single bin (in one dimension, this obviously corresponds to ANY FIT algo-rithms). Kou and Markowsky show that any reasonable vector packing algorithm A obeys thebound R1A � d + 1. Since the obvious generalization of FF to d-dimensional vector packingis reasonable, d-dimensional FF has an asymptotic ratio of at most d + 1. Garey, Graham,Johnson and Yao [29] performed an exact analysis of d-dimensional FF and showed that it hasa slightly better asymptotic ratio of d + 7=10. This currently provides the best asymptoticratio known for d-dimensional on-line vector packing. Galambos, Kellerer and Woeginger [27]and Blitz, van Vliet and Woeginger [6] discuss lower bounds for on-line vector packing. Theirlower bounds are rather weak and tend to 2 as d goes to in�nity. For d = 2 dimensions, thebest known lower bound is 1:6712.For o�-line algorithms, the method of Fernandez de la Vega and Lueker [30] yields asymp-totic ratios of d + " in d dimensions, where " can be made arbitarily close to 0. Yao [60]proved that in a reasonable (but somewhat restricted) model of computation, any o�-line ap-proximation algorithm with o(n logn) running time must have an asymptotic ratio R1A � d.Chekuri and Khanna [9] give polynomial time approximation algorithms for d-dimensional vec-tor packing whose asymptotic ratios grow with O(ln d). Their approach is based on a linearprogramming relaxation of this problem. Clearly, their algorithm does not fall into Yao's [60]restricted model of computation. It is an open problem whether R1A <const is possible forsome polynomial time approximation algorithm A in any dimension d � 2 where the value ofconst is independent of d. In fact, it would even be interesting to obtain asymptotic ratiosgrowing like O(ln ln d). Woeginger [59] (see also Chekuri and Khanna [9]) observed that unlessP = NP , there cannot exist a polynomial time approximation scheme for 2-dimensional vectorpacking.3.2.2 Packing in Strips and Two Dimensional BinsStrip packing originated in the work of Baker, Co�man, and Rivest [5]. In this extension totwo dimensions, the items are rectangles and the goal is to pack them into a unit-width semi-in�nite strip so as to minimize the total length of the strip spanned by the packing. Packedrectangles can not overlap each other or the boundaries of the strip. We consider the strip tobe vertical and require that rectangles be packed orthogonally in their given orientations, i.e.,their edges must be parallel to the bottom or sides of the strip and no rotations are allowed. Ifwe place boundaries at the integers and require that no rectangle overlap any such boundary,then we have the two-dimensional packing set-up of Chung, Garey, and Johnson [10], where8



the objective is to minimize the number of bins (unit squares) needed, i.e., the nearest integerno smaller than the height of the corresponding strip packing.The bottom-left algorithm of Baker, Co�man, and Rivest [5] and the level-oriented (or shelf)algorithm by Co�man, Garey, Johnson, and Tarjan [11] were fundamental to packing in twodimensions. In a bottom-left packing, each successive item is placed as near the bottom of thestrip as possible and then as far left at that height as possible. If the rectangles are packed indecreasing-width order, an asymptotic ratio of 2 is achieved. As the name suggests, in level-oriented packings, each rectangle is placed on one of a sequence of levels. The bottom-mostlevel is the bottom of the strip; a higher level is a horizontal boundary running through thetallest rectangle in the next lower level. Thus, levels correspond to (horizontal) bins in theone-dimensional problem. The algorithms NF, FF, and BF can be adapted in the obviousway to level packings. Prior to applying any of these algorithms, the list may be ordered bydecreasing height or width. To cite a typical result (see Co�man, Garey, Johnson, and Tarjan[11]), we mention that FF with rectangles in decreasing height order has the 17=10 asymptoticratio of FF in the one dimensional case. Baker, Brown, and Katse� [4] extended the basicideas and designed an algorithm with an asymptotic ratio of 5=4. As a �nal note, we mentionthat a polynomial-time approximation scheme for a (somewhat restricted) special case of strippacking was devised by Fernandez de la Vega and Zissimopoulos [31]. Finally, Kenyon andRemila [37] succeeded in constructing an approximation scheme for the general strip packingproblem.Shelves are preset levels and were introduced as the basis of on-line level-oriented algorithmsby Baker and Schwarz [8]. As an example, assume that 1 is an a priori bound on rectangleheights and suppose that the only shelf heights possible are rk; k � 0 for some given r 2 (0; 1).Rectangles with heights in (rk+1; rk] must be placed on shelves of height rk, starting a newsuch shelf on top of the current packing whenever necessary according to the given packingalgorithm. A principal result of Baker and Schwarz [8] is that the FF shelf algorithm has anasymptotic ratio of 1:7=r, but an absolute ratio that grows like 1=(1 � r). In an analogousway, Csirik and Woeginger [25] transform the HARMONIC algorithm into the correspondingHARMONIC shelf algorithm. The asymptotic ratio of the HARMONIC shelf algorithm canbe made arbitrarily close to 1:691. Achieving an asymptotic ratio better than 1:691 for on-linestrip packing is probably di�cult; in [25] it is argued that no shelf algorithm can do this, inwhich case a completely di�erent approach will be necessary.The algorithmic techniques of one dimensional and strip packing are easily applied to twodimensional bin packing. Combining FFD bin packing with FFDH strip packing yields anasymptotic ratio known to be in the interval [2:022; 2:125]; cf. Chung, Garey, and Johnson [10].Shelf algorithms were adapted for on-line two dimensional bin packing by Coppersmith andRaghavan [19]. Variants and extensions of their algorithms were introduced by Csirik, Frenk,and Labb�e [23] and by Li and Cheng [42]; in the latter paper, an algorithm was presentedwith the provably tight asymptotic ratio of 23940 . The HARMONIC algorithm (see Section2.1.2) was extended to the two dimensional problem by Li and Cheng [44]; their algorithm hasan asymptotic ratio of (1:691 : : :)2, the square of the corresponding result in one dimension.Csirik and van Vliet [24] subsequently described an improvement that substantially reducesthe absolute ratio of the Li-Cheng algorithm while leaving the asymptotic ratio unchanged.Lower bounds for on-line two dimensional bin packing were taken up by Galambos [26].9



He proved a lower bound of 1:6. A later collaboration with van Vliet [28] yielded 1:808. ThePh.D. thesis of van Vliet [57] contains 1:851. The best bound currently known is R1A � 1:907(Blitz, van Vliet and Woeginger [6]).4 Final RemarksWhile worst-case analysis of bin packing remains quite active, it must be noted that, in the last15 years or so, average-case analysis has received at least as much attention. The monographby Co�man and Lueker [17] on the subject describes basic results and analytic techniques. Amore recent survey of average-case results for one-dimensional bin packing can be found in [13].To illustrate typical average-case estimates, suppose the n items of L are independent, uniformrandom draws from [0; 1] and consider the wasted space W in the classical NF, FF, and BFpackings (i.e., the di�erence in the number of bins used and the total size of the items). Then wehave E[WNFn ] � n=6; (n ! 1) (Co�man, So, Hofri, and Yao [18]), E[WFFn ] = �(n2=3) (Shor[55], Co�man, Johnson, Shor, and Weber [14]), and E[WBFn ] = �(pn log3=4 n) (Leighton andShor [46], Shor [55], Rhee and Talagrand [53]). These results can be compared to E[WOPTn ] =pn (Lueker [48]).Our discussion of generalizations can be continued to problems of three or more dimensions.In the large, the algorithmic extensions from one to two dimensions can be essentially repeatedas extensions from d to d+1 dimensions for d � 2; as one might expect, asymptotic ratios tendto worsen as d increases. We refer the reader to Coppersmith and Raghavan [19], Galambosand van Vliet [28] and Li and Cheng [42, 43, 45].References[1] S. B. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y-T. Leung. On a dual version ofthe one-dimensional bin packing problem. J. Algorithms, 5(4):502{525, 1984.[2] B. S. Baker. A new proof for the First-Fit-Decreasing bin-packing algorithm. J. Algorithms,6:49{70, 1985.[3] B. S. Baker and E. G. Co�man. A tight asymptotic bound for Next-Fit-Decreasing bin-packing. SIAM J. Alg. Disc. Meth., 2:147{152, 1981.[4] B. S. Baker, D. J. Brown, and H. P. Katse�. A 5/4 algorithm for two-dimensional packing.J. Algorithms, 2:348{368, 1981.[5] B. S. Baker, E. G. Co�man, Jr., and R. L. Rivest. Orthogonal packings in two dimensions.SIAM J. Comput., 9:846{855, 1980.[6] D. Blitz, A. Van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic worst-caseratio of on-line bin packing algorithms. Unpublished manuscript, 1996.[7] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. TechnicalReport R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.10



[8] B. S. Baker and J. S. Schwarz. Shelf algorithms for two-dimensional packing problems.SIAM J. Comput., 12:508{525, 1983.[9] C. Chekuri and S. Khanna. On multi-dimensional packing problems. in Proceedings of thetenth Annual ACM-SIAM Symposium on Discrete Algorithms, 185{194, 1999.[10] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins. SIAMJ. Alg. Disc. Meth., 3:66{76, 1982.[11] E. G. Co�man, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance boundsfor level-oriented two-dimensional packing algorithms. SIAM J. Comput., 9:808{826, 1980.[12] E. G. Co�man, Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approximationalgorithms: Combinatorial Analysis, in Handbook of Combinatorial Optimization, D.-Z.Du and P. M. Pardalos (Eds.). Kluwer Academic Publishers, 1998.[13] E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Bin Packing Approximation Al-gorithms: A Survey. In Approximation Algorithms for NP-Hard Problems, D. Hochbaum(ed.). PWS Publishing Co. (1996), Boston, MA.[14] E. G. Co�man, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber. First-Fit Bin Packing:A Tight Bound on Expected Wasted Space. Probab. Th. and Related Fields, 10(1997),69-101.[15] E. G. Co�man, Jr. and J. Y. Leung. Combinatorial analysis of an e�cient algorithm forprocessor and storage allocation. SIAM J. Comput., 8:202{217, 1979.[16] E. G. Co�man, Jr., J. Y. Leung, and D. W. Ting. Bin packing: maximizing the numberof pieces packed. Acta Informatica, 9:263{271, 1977.[17] E. G. Co�man, Jr. and G. S. Lueker. Probabilistic Analysis of Packing and PartitioningAlgorithms. Wiley, New York, 1991.[18] E. G. Co�man, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic model of bin-packing.Inf. and Cont., 44:105{115, February 1980.[19] D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: Algorithms andworst-case analysis. Oper. Res. Lett., 8:17{20, 1989.[20] J. Csirik. An on-line algorithm for variable-sized bin packing. Acta Informatica, 26:697{709, 1989.[21] J. Csirik and B. Imreh. On the worst-case performance of the NkF bin packing heuristic.Acta Cybernetica, 9:89{105, 1989.[22] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: best is better than �rst.In Proc. 2nd ACM-SIAM Symp. Discrete Algorithms, 309{319, 1991.[23] J. Csirik, J. B. G. Frenk, and M. Labb�e. Two dimensional rectangle packing: On linemethods and results. ARIDAM V, Rutgers University, 1990.11



[24] J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin packing. Oper.Res. Lett., 13:149{158, 1993.[25] J. Csirik and G. J. Woeginger. Shelf algorithms for on-line strip packing. Inform. Process.Lett., 63:171{175, 1997.[26] G. Galambos. A 1.6 lower-bound for the two-dimensional on-line rectangle bin-packing.Acta Cybernetica, 10:21{24, 1991.[27] G. Galambos, H. Kellerer, and G. J. Woeginger. A lower bound for on-line vector packingalgorithms. Acta Cybernetica, 11:23{34, 1994.[28] G. Galambos and A. van Vliet. Lower bounds for 1-, 2- and 3-dimensional on-line binpacking algorithms. Computing, 52:281{297, 1994.[29] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrainedscheduling as generalized bin packing. J. Comb. Th. Ser. A., 21:257{298, 1976.[30] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + " inlinear time. Combinatorica, 1:349{355, 1981.[31] W. Fernandez de la Vega and V. Zissimopoulos. An approximation scheme for strip-packingof rectangles with bounded dimensions. Technical Report, LRI. University of Paris XI,France, 1995.[32] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J. Comput., 15:222{230, 1986.[33] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,1973.[34] D. S. Johnson. Fast algorithms for bin packing. J. Comput. System Sci., 8:272{314, 1974.[35] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-caseperformance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.,3:256{278, 1974.[36] N. Karmarkar and R. M. Karp. An e�cient approximation scheme for the one-dimensionalbin packing problem. In Proc. 23rd Ann. Symp. on Foundations of Computer Science, 289{298, 1984.[37] C. Kenyon and E. Remila. Approximate strip-packing. to appear in Math. Oper. Res..[38] N. G. Kinnersley and M. A. Langston. On-line variable-sized bin packing. Discr. Appl.Math., 22:143{148, 1988.[39] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM J. Researchand Development, 21:443{448, 1977. 12



[40] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys. Sequencing andscheduling: Algorithms and complexity. in Handbook of Operations Research and Man-agement Science Vol. 4, Logistics of Production and Inventory, S. C. Graves, A. H. G.Rinnooy Kan, and P. H. Zipkin, editors, North Holland, 445{522, 1993.[41] C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. J. Assoc. Comput.Mach., 32:562{572, 1985.[42] K. Li and K.-H. Cheng. Generalized First-Fit algorithms in two and three dimensions. Int.J. Foundations Comp. Sci., 1(2):131{150, 1990.[43] K. Li and K. H. Cheng. On three dimensional packing. SIAM J. Comput., 19:847{867,1990.[44] K. Li and K.-H. Cheng. A generalized HARMONIC algorithm for on-line multidimensionalbin packing. Technical Report TR UH-Cs-90-2, University of Houston, January, 1990.[45] K. Li and K. H. Cheng. Heuristic algorithms for on-line packing in three dimensions. J.Algorithms, 13:589{605, 1992.[46] T. Leighton and P. Shor. Tight bounds for minimax grid matching with applications tothe average case analysis of algorithms. Combinatorica, 9(2):161{187, 1989.[47] F. M. Liang. A lower bound for on-line bin packing. Inform. Process. Lett., 10:76{79, 1980.[48] G. S. Lueker. An average-case analysis of bin packing with uniformly distributed itemsizes. Technical Report 181, University of California at Irvine, Department of Informationand Computer Science, 1982.[49] W. Mao. Best-k-Fit bin packing. Computing, 50:265{270, 1993.[50] W. Mao. Tight worst-case performance bounds for Next-k-Fit bin packing. SIAM J. Com-put., 22:46{56, 1993.[51] F. D. Murgolo, An e�cient approximation scheme for variable-sized bin packing. SIAM J.Comput., 16:149{161, 1987.[52] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin packing in linear time.J. Algorithms, 10:305{326, 1989.[53] W. T. Rhee and M. Talagrand. Exact bounds for the stochastic upward matching problem.Trans. Amer. Math. Soc., 307(1):109{125, May 1988.[54] M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discr. Appl.Math., 34:203{227, 1991.[55] P. W. Shor. The average-case analysis of some on-line algorithms for bin packing. Combi-natorica, 6(2):179{200, 1986. 13



[56] A. Van Vliet. An improved lower bound for on-line bin packing algorithms. Inform. Pro-cess. Lett., 43:277{284, 1992.[57] A. Van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristics.PhD thesis, Erasmus University, Rotterdam, The Netherlands, 1995.[58] G. J. Woeginger. Improved space for bounded-space on-line bin packing. SIAM J. Discr.Math., 6:575{581, 1993.[59] G. J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Inform.Process. Lett., 64:293{297, 1997.[60] A. C. C. Yao. New algorithms for bin packing. J. Assoc. Comput. Mach., 27:207{227,1980.[61] M. Yue. A simple proof of the inequality FFD(L) � 119 OPT(L) + 1 8L, for the FFDbin-packing algorithm. Acta Math. App. Sinica, 7:321{331, 1991.[62] G. Zhang. A tight worst-case performance bound for AFB-k. Technical Report 015, Insti-tute of Applied Mathematics, Academia Sinica, Beijing, China, 1994.[63] G. Zhang. Worst-case analysis of the FFH algorithm for on-line variable-sized bin packing.Computing, 56:165{172, 1996.

14


