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Introduction

In the early days of geoinformation science, spatially referenced data usually orig-
inated within national boundaries, i.e. these data were derived from printed maps
published by national mapping organizations. Nowadays, users of geoinformation
are combining spatial data from a given country with global spatial data sets, rec-
onciling spatial data from published maps with coordinates established by satellite
positioning techniques, and integrating their spatial data with that from neighbouring
countries.

To perform these kinds of tasks successfully, we need to understand basic spatial ref-
erencing concepts. Section 3.1 discusses the relevance and actual use of reference sur-
faces, coordinate systems and coordinate transformations. We will explain the princi-
ples of spatial referencing as applied to mapping, the traditional application of geoin-
formation science. These principles are generally applicable to all types of geospatial
data.

Section 3.2 discusses satellite-based systems of spatial positioning. The development
of these global positioning systems has made it possible to unambiguously determine
any position in space. This and related developments have laid the foundations for
the integration of all spatial data within a single, global 3D spatial-reference system,
which we may expect to emerge in the near future.

3.1 Spatial referencing

One of the defining features of geoinformation science is its ability to combine spatially
referenced data. A frequently occurring issue is the need to combine spatial data from
different sources that use different spatial reference systems. This section provides
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Chapter 3. Spatial referencing and satellite-based positioning

a broad background of relevant concepts relating to the nature of spatial reference
systems and the translation of data from one spatial referencing system into another.

3.1.1 Reference surfaces

The surface of the Earth is far from uniform. Its oceans can be treated as reason-
ably uniform, but the surface or topography of its land masses exhibits large vertical
variations between mountains and valleys. These variations make it impossible to
approximate the shape of the Earth with any reasonably simple mathematical model.
Consequently, two main reference surfaces have been established to approximate the
shape of the Earth : one is called the Geoid, the other the ellipsoid; see Figure 3.1.

geoid and ellipsoid

Figure 3.1
The Earth’s surface and two
reference surfaces used to
approximate it: the Geoid;
and a reference ellipsoid. The
Geoid separation (N) is the
deviation between the Geoid
and the reference ellipsoid.
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We can simplify matters by imagining that the entire Earth’s surface is covered by
water. If we ignore effects of tides and currents on this global ocean, the resultant wa-
ter surface is affected only by gravity. This has an effect on the shape of this surface
because the direction of gravity—more commonly known as the plumb line—is de-

plumb line
pendent on the distribution of mass inside the Earth. Owing to irregularities or mass
anomalies in this distribution, the surface of the global ocean would be undulating. The
resulting surface is called the Geoid (Figure 3.2). A plumb line through any surface
point would always be perpendicular to the surface.

Figure 3.2
The Geoid, exaggerated to
illustrate the complexity of its
surface. Image: GFZ German
Research Centre for
Geosciences.

The Geoid is used to describe heights. In order to establish the Geoid as a reference
for heights, the ocean’s water level is registered at coastal locations over several years
using tide gauges (mareographs). Averaging the registrations largely eliminates vari-
ations in sea level over time. The resultant water level represents an approximation to
the Geoid and is termed mean sea level.

mean sea level

For the Netherlands and Germany, local mean sea level is related to the Amsterdam
Tide Gauge (zero height). We can determine the height of a point in Enschede with
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3.1. Spatial referencing

respect to the Amsterdam Tide Gauge using a technique known as geodetic levelling
(Figure 3.3). The result of this process will be the height of the point in Enschede above
local mean sea level. Height determined with respect to a tide gauge station is known
as orthometric height (height H above the Geoid) .

Several definitions of local mean sea levels (also called local vertical datums) appear
throughout the world. They are parallel to the Geoid but offset by up to a couple
of metres to allow for local phenomena such as ocean currents, tides, coastal winds,
water temperature and salinity at the location of the tide gauge. Care must be taken
when using heights from another local vertical datum . This might be the case, for

local vertical datums
example, in areas along the border of adjacent nations.

Even within a country, heights may differ depending on the location of the tide gauge
to which mean sea level is related. As an example, the mean sea level from the Atlantic
to the Pacific coast of the U.S.A. differs by 0.6–0.7 m. The tide gauge (zero height)
of the Netherlands differs -2.34 m from the tide gauge (zero height) of neighbouring
Belgium.

The local vertical datum is implemented through a levelling network (Figure 3.3a),
which consists of benchmarks whose height above mean sea level has been deter-
mined through geodetic levelling . The implementation of the datum enables easy
user access. Surveyors, for example, do not need to start from scratch (i.e. from the
Amsterdam tide gauge) each time they need to determine the height of a new point.
They use the benchmark of the levelling network that is closest to the new point (Fig-
ure 3.3b).

nearest benchmark of
the levelling network

point whose height
is to be determined

Benchmark of the levelling network

Amsterdam
tide gauge

levelling line

a b

Figure 3.3
A levelling network

implements a local vertical
datum: (a) network of

levelling lines starting from
the Amsterdam Tide Gauge,

showing some of the
benchmarks; (b) how the
orthometric height (H) is

determined for some point by
working from the nearest

benchmark.

As a result of satellite gravity missions, it is currently possible to determine height
(H) above the Geoid to centimetre levels of accuracy. It is foreseeable that a global
vertical datum may become ubiquitous in the next 10–15 years. If all geodata, for ex-
ample maps, were to use such a global vertical datum, heights would become globally
comparable, effectively making local vertical datums redundant for users of geoinfor-
mation.

The ellipsoid

We have defined a physical surface, the Geoid, as a reference surface for heights.
We also need, however, a reference surface for the description of the horizontal coor-
dinates of points of interest. Since we will later want to project these horizontal coordi-

horizontal coordinates
nates onto a mapping plane, the reference surface for horizontal coordinates requires
a mathematical definition and description. The most convenient geometric reference
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Chapter 3. Spatial referencing and satellite-based positioning

is the oblate ellipsoid (Figure 3.4). It provides a relatively simple figure that fits the
Geoid to a first-order approximation (for small-scale mapping purposes we may use
the sphere). An ellipsoid is formed when an ellipse is rotated around its minor axis.
This ellipse, which defines an ellipsoid or spheroid, is called a meridian ellipse (notice
that ellipsoid and spheroid are used here to refer to the same).

Figure 3.4
An oblate ellipsoid, defined
by its semi-major axis a and
semi-minor axis b.
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The shape of an ellipsoid may be defined in a number of ways, but in geodetic practice
it is is usually defined by its semi-major axis and flattening (Figure 3.4). Flattening f
is dependent on both the semi-major axis a and the semi-minor axis b:

f =
a− b

a
.

The ellipsoid may also be defined by its semi-major axis a and its eccentricity e, which
can be expressed as:

e2 = 1− b2

a2
=
a2 − b2

a2
= 2f − f2.

Given one axis and any one of the other three parameters, the other two can be de-
rived. Typical values of the parameters for an ellipsoid are:

a = 6378135.00m, b = 6356750.52m, f =
1

298.26
, e = 0.08181881066

Many different sorts of ellipsoids have been defined. Local ellipsoids have been es-
local ellipsoids

tablished to fit the Geoid (mean sea level) well over an area of local interest, which in
the past was never larger than a continent. This meant that the differences between
the Geoid and the reference ellipsoid could effectively be ignored, allowing accurate
maps to be drawn in the vicinity of the datum (Figure 3.5).

With increasing demands for global surveying, work is underway to develop global
reference ellipsoids. In contrast to local ellipsoids, which apply only to a specific coun-

global ellipsoids
try or localized area of the Earth’s surface, global ellipsoids approximate the Geoid as
a mean Earth ellipsoid. The International Union for Geodesy and Geophysics (IUGG)
plays a central role in establishing these reference figures.

In 1924, the general assembly of the IUGG in Madrid introduced the ellipsoid deter-
mined by Hayford in 1909 as the international ellipsoid. According to subsequently
acquired knowledge, however, the values for this ellipsoid give an insufficiently ac-
curate approximation. At the 1967 general assembly of the IUGG in Luzern, the 1924
reference system was replaced by the Geodetic Reference System 1967 (GRS 1967) el-
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Ellipsoid globally best
 fitting to the geoid

The geoid

Ellipsoid regionally best 
fitting to the geoid

Region of
best fit

Figure 3.5
The Geoid, its global best-fit

ellipsoid, and a regional
best-fit ellipsoid for a chosen

region. Adapted from:
Ordnance Survey of Great

Britain. A Guide to
Coordinate Systems in Great

Britain.

lipsoid. Later, in 1980, this was in turn replaced by the Geodetic Reference System
1980 (GRS80) ellipsoid.

Name a (m) b (m) f

International (1924) 6378388. 6356912. 1:297.000

GRS 1967 6378160. 6356775. 1:298.247

GRS 1980 & WGS84 6378137. 6356752. 1:298.257

Table 3.1
Three global ellipsoids

defined by a semi-major axis
a, semi-minor axis b, and

flattening f . For all practical
purposes, the GRS80 and

WGS84 can be considered to
be identical.

The local horizontal datum

Ellipsoids have varying positions and orientations. An ellipsoid is positioned and ori-
ented with respect to the local mean sea level by adopting a latitude (φ) and longitude
(λ) and ellipsoidal height (h) of what is called a fundamental point and an azimuth to
an additional point. We say that this defines a local horizontal datum. Note that the term
horizontal datum and geodetic datum are treated as equivalent and interchangeable
terms.

Several hundred local horizontal datums exist in the world. The reason for this is ob-
vious: different local ellipsoids of varying position and orientation had to be adopted
to provide a best fit of the local mean sea level in different countries or regions. The
Potsdam Datum, the local horizontal datum used in Germany is an example of a local
horizontal datum. The fundamental point is located in Rauenberg and the underly-
ing ellipsoid is the Bessel ellipsoid (a = 6,377,397.156 m, b = 6,356,079.175 m). We
can determine the latitude and longitude (φ, λ) of any other point in Germany with
respect to this local horizontal datum using geodetic positioning techniques, such as
triangulation and trilateration. The result of this process will be the geographic (or
horizontal) coordinates (φ, λ) of a new point in the Potsdam Datum.

A local horizontal datum is determined through a triangulation network. Such a net-
triangulation networks

work consists of monumented points that form a network of triangular mesh elements
(Figure 3.6). The angles in each triangle are measured, in addition to at least one side
of the triangle; the fundamental point is also a point in the triangulation network.
The angle measurements and the adopted coordinates of the fundamental point are
then used to derive geographic coordinates (φ, λ) for all monumented points of the
triangulation network.

Within this framework, users do not need to start from scratch (i.e. from the funda-
mental point) in order to determine the geographic coordinates of a new point. They
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Chapter 3. Spatial referencing and satellite-based positioning

can use the monument of the triangulation network that is closest to the new point.
The extension and re-measurement of the network is nowadays done through satellite
measurements.

Figure 3.6
The old primary triangulation
network in the Netherlands
was made up of 77 points
(mostly church towers). The
extension and
re-measurement of the
network is done nowadays
through satellite
measurements. Adapted
from original figure by “Dutch
Cadastre and Land
Registers”, now called het
Kadaster.

0 50 km

Amersfoort

The global horizontal datum

With increasing demands for global surveying, activities are underway to establish
global reference surfaces. The motivation in this is to make geodetic results mutually
compatible and to be able to provide coherent results to other disciplines, e.g. astron-
omy and geophysics.

The most important global (geocentric) spatial reference system for the geoinformation
community is the International Terrestrial Reference System (ITRS) . This is a three-
dimensional coordinate system with a well-defined origin (the centre of mass of the

ITRS
Earth) and three orthogonal coordinate axes (X, Y, Z). The Z-axis points towards a
mean North Pole. TheX-axis is oriented towards the mean Greenwich meridian and is
orthogonal to the Z-axis. The Y -axis completes the right-handed reference coordinate
system (Figure 3.7a).

The ITRS is realized through the International Terrestrial Reference Frame (ITRF), a
distributed set of ground control stations that measure their position continuously us-
ing GPS (Figure 3.7b). Constant re-measuring is needed because of the addition of new

ITRF
control stations and ongoing geophysical processes (mainly tectonic plate motion) that
deform the Earth’s crust at measurable global, regional and local scales. These defor-
mations cause positional differences over time and have resulted in more than one
realization of the ITRS. Examples are the ITRF96 and the ITRF2000. The ITRF96 was
established on 1 January 1997, which means that the measurements use data acquired
up to 1996 to fix the geocentric coordinates (X , Y and Z in metres) and velocities (posi-
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Figure 3.7
(a) The International

Terrestrial Reference System
(ITRS) and; (b) the

International Terrestrial
Reference Frame (ITRF)

visualized as a distributed set
of ground control stations
(represented by red dots).

tional change inX , Y and Z in metres per year) of the different stations. The velocities
are used to propagate measurements to other epochs (times). The trend is to use the
ITRF everywhere in the world for reasons of global compatibility.

GPS uses the World Geodetic System 1984 (WGS84) as its reference system. It has
geocentric datums

been refined on several occasions and is now aligned with the ITRF to within a few
centimetres worldwide. Global horizontal datums, such as ITRF2000 or WGS84, are
also called geocentric datums because they are geocentrically positioned with respect
to the centre of mass of the Earth. They became available only recently (roughly, since
the 1960s), as a result of advances in extra-terrestrial positioning techniques. 1

Since the range and shape of satellite orbits are directly related to the centre of mass
of the Earth, observations of natural or artificial satellites can be used to pinpoint the
centre of mass of the Earth, and hence the origin of the ITRS2. This technique can
also be used for the realization of global ellipsoids and datums at levels of accuracy
required for large-scale mapping.

To implement the ITRF in a particular region, a densification of control stations is
needed to ensure that there are enough coordinated reference points available in that
region. These control stations are equipped with permanently operating satellite po-
sitioning equipment (i.e. GPS receivers and auxiliary equipment) and communication
links. Examples of (networks consisting of) such permanent tracking stations are the
Actief GNSS Referentie Systeem Nederland (AGRS) in the Netherlands and the Satel-
litenpositionierungsdienst der deutschen Landesvermessung (SAPOS) in Germany.

We can transform ITRF coordinates (X , Y and Z in metres) into geographic coordi-
nates (φ, λ, h) with respect to the GRS80 ellipsoid without the loss of accuracy. How-
ever the ellipsoidal height h obtained through this straightforward transformation has
no physical meaning and is contrary to our intuitive human perception of height.
Therefore, we use instead the height, H , above the Geoid (see Figure 3.8). It is foresee-
able that global 3D spatial referencing in terms of (φ, λ, H) could become ubiquitous

3D spatial referencing
in the next 10–15 years. If, by then, all published maps are also globally referenced the
underlying spatial referencing concepts will become transparent and, hence, irrelevant
to users of geoinformation.

1Extra-terrestrial positioning techniques include, for example, Satellite Laser Ranging (SLR), Lunar Laser
Ranging (LLR), Global Positioning System (GPS), and Very Long Baseline Interferometry (VLBI).

2In the case of an idealized spherical Earth, it is one of the focal points of the elliptical orbits.
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Figure 3.8
Height h above the
geocentric ellipsoid, and
height H above the Geoid. h
is measured orthogonal to
the ellipsoid, H orthogonal to
the Geoid.
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Hundreds of existing local horizontal and vertical datums are still relevant because
they form the basis of map products all over the world. For the next few years we
still have to deal with both local and global datums, until the former are eventually
phased out. During the transition period, we will need tools to transform coordinates
from local horizontal datums to a global horizontal datum and vice versa (see Sub-
section 3.1.4). The organizations that usually develop transformation tools and make
them available to the user community are provincial or national mapping organiza-
tions (NMOs) and cadastral authorities.

3.1.2 Coordinate systems

Spatial data are special, because they are spatially referenced. Different kinds of coor-
dinate systems are used to position data in space. Here we distinguish between spatial
and planar coordinate systems. Spatial (or global) coordinate systems locate data ei-

spatial coordinate systems
ther on the Earth’s surface in a 3D space or on the Earth’s reference surface (ellipsoid
or sphere) in a 2D space. Planar coordinate systems, on the other hand, locate data on

planar coordinate systems
the flat surface of a map in a 2D space. Initially the 2D Cartesian coordinate system
and the 2D polar coordinate system will be examined. This will be followed by a dis-
cussion of the geographic coordinate system in a 2D and 3D space and the geocentric
coordinate system, also known as the 3D Cartesian coordinate system.

2D geographic coordinates (φ, λ)

The most widely used global coordinate system consists of lines of geographic latitude
(phi or φ or ϕ) and longitude (lambda or λ). Lines of equal latitude are called parallels.
They form circles on the surface of the ellipsoid.3. Lines of equal longitude are called
meridians and form ellipses (meridian ellipses) on the ellipsoid (Figure 3.9)

The latitude (φ) of a point P (Figure 3.10) is the angle between the ellipsoidal normal
through P ’ and the equatorial plane. Latitude is zero on the Equator (φ = 0◦), and
increases towards the two poles to maximum values of φ = +90◦ (N 90◦) at the North
Pole and φ = −90◦ (S 90◦) at the South Pole.

The longitude (λ) of the point is the angle between the meridian ellipse that passes
through Greenwich and the meridian ellipse containing the point in question. It is
measured on the equatorial plane from the meridian of Greenwich (λ = 0◦), either
eastwards through λ = +180◦ (E 180◦) or westwards through λ = −180◦ (W 180◦).

Latitude and longitude represent the geographic coordinates (φ, λ) of a point P ’ (Fig-
ure 3.10) with respect to the selected reference surface. They are always given in an-
gular units. For example, the coordinates for the City Hall in Enschede are:4

3The concept of geographic coordinates can also be applied to a sphere.
4This latitude and longitude refers to the Amersfoort datum. The use of a different reference surface will
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Latitude (φ) and longitude (λ)
angles express the position of

points in the 2D geographic
coordinate system.

φ = 52◦13′26.2′′N, λ = 6◦53′32.1′′E

The graticule on a map represents the projected position of the geographic coordinates
(φ, λ) at constant intervals or, in other words, the projected position of selected merid-
ians and parallels (Figure 3.13). The shape of the graticule depends largely on the
characteristics of the map projection and the scale of the map.

3D geographic coordinates (φ, λ, h)

3D geographic coordinates (φ, λ, h) are obtained by introducing ellipsoidal height (h)
into the system. The ellipsoidal height (h) of a point is the vertical distance of the point
in question above the ellipsoid. It is measured in distance units along the ellipsoidal
normal from the point to the ellipsoid surface. 3D geographic coordinates can be used
to define a position on the surface of the Earth (point P in Figure 3.10).
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The angles of latitude (φ) and
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ellipsoidal height (h)

represent the 3D geographic
coordinate system.

result in different angles of latitude and longitude.
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3D geocentric coordinates (X, Y, Z)

An alternative method for defining a 3D position on the surface of the Earth is to use
geocentric coordinates (X, Y, Z), also known as 3D Cartesian coordinates. The system’s
origin lies at the Earth’s centre of mass, with the X and Y axes on the plane of the
Equator. The X-axis passes through the meridian of Greenwich and the Z-axis coin-
cides with the Earth’s axis of rotation. The three axes are mutually orthogonal and
form a right-handed system. Geocentric coordinates can be used to define a position
on the surface of the Earth (point P in Figure 3.11).

The rotational axis of the Earth, however, changes position over time (referred to as
polar motion). To compensate for this, the mean position of the pole in the year 1903

polar motion
(based on observations between 1900 and 1905) is used to define what is referred to as
the “Conventional International Origin” (CIO).

Figure 3.11
An illustration of the 3D
geocentric coordinate system
(see text for further
explanation).
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2D Cartesian coordinates (X, Y )

A flat map has only two dimensions: width (left to right) and length (bottom to top).
Transforming the three dimensional Earth onto a two-dimensional map is the sub-
ject matter of map projections and coordinate transformations (Subsection 3.1.3 and
Subsection 3.1.4). Here, as for several other cartographic applications, two-dimensional
Cartesian coordinates (x, y), also known as planar rectangular coordinates, describe the
location of any point unambiguously.

The 2D Cartesian coordinate system is one of intersecting perpendicular lines with the
X-axis and the Y -axis as principal axes. The X-axis (the Easting) is the horizontal axis
and the Y -axis (the Northing) is the vertical axis with an intersection at the origin. The
plane is marked at intervals by equally-spaced coordinate lines that together form the
map grid . Given two numerical coordinates x and y for point P , one can unambigu-
ously specify any location P on the map (Figure 3.12).

Usually, the origin is assigned the coordinates x = 0 and y = 0. Sometimes, however,
large positive values are added to the origin coordinates. This is to avoid negative val-

false origin
ues for the x and y coordinates in cases where the origin of the coordinate system is lo-
cated inside the specific area of interest. The point that then has the coordinates x = 0

and y = 0 is called the false origin. The Rijksdriehoekstelsel (RD) in the Netherlands
is an example of a system with a false origin. The system is based on the azimuthal
double stereographic projection (see Section 3.1.3), with the Bessel ellipsoid used as
reference surface. The origin was shifted from the projection centre (Amersfoort) to-
wards the southwest(false origin)to avoid negative coordinates inside the country (see
Figure 3.13).
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P (244,249)
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Figure 3.12
An illustration of the 2D

Cartesian coordinate system
(see text for further

explanation).

The grid on a map represents lines having constant 2D Cartesian coordinates (Fig-
ure 3.13). It is almost always a rectangular system and is used on large- and medium-
scale maps to enable detailed calculations and positioning. The map grid is usually

map grid
not used on small-scale maps (about 1:1,000,000 or smaller). Scale distortions that re-
sult from transforming the Earth’s curved surface to the mapping plane are so great
on small-scale maps that detailed calculations and positioning become difficult.

2D Polar coordinates (α, d)

Another way of defining a point in a plane is by using polar coordinates. This is the
distance d from the origin to the point concerned and the angle α between a fixed (or
zero) direction and the direction to the point. The angle α is called azimuth or bearing
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Figure 3.13
The coordinate system of the

Netherlands represented by
the map grid and the

graticule. The origin of the
coordinate system has been
shifted (the false origin) from

the projection centre
(Amersfoort) towards the

southwest.
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and is measured in a clockwise direction. It is given in angular units while the distance
d is expressed in length units.

Figure 3.14
An illustration of the 2D Polar
coordinate system (see text
for further explanation). Origin
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Bearings are always related to a fixed direction (initial bearing) or a datum line. In
principle, this reference line can be chosen freely. Three different, widely used fixed
directions are: True North, Grid North and Magnetic North. The corresponding bearings
are true (or geodetic) bearings, grid bearings and magnetic (or compass) bearings,
respectively.

Polar coordinates are often used in land surveying. For some types of surveying in-
struments, it is advantageous to make use of this coordinate system. The development

polar coordinates
of precise, remote-distance measurement techniques has led to a virtually universal
preference for the polar coordinate method for detailed surveys.

3.1.3 Map projections

Maps are one of the world’s oldest types of document. In the days that our planet was
thought to be flat, a map was simply a miniature representation of a part of the world.
To represent the specifically curved Earth’s surface, a map needs to be a flattened
representation of a part of the planet. Map projection concerns itself with ways of
translating the curved surface of the Earth into a flat, 2D map.

Map projection is a mathematically described technique for representing the

Earth’s curved surface on a flat map.

To represent parts of the surface of the Earth on a flat, printed map or a computer
screen, the curved horizontal reference surface must be mapped onto a 2D mapping
plane. The reference surface for large-scale mapping is usually an oblate ellipsoid; for
small-scale mapping it is a sphere.5 Mapping onto a 2D mapping plane means trans-
forming each point on the reference surface with geographic coordinates (φ, λ) to a set
of Cartesian coordinates (x, y) that represent positions on the map plane (Figure 3.15).

The actual mapping cannot usually be visualized as a true geometric projection, di-
rectly onto the mapping plane. Rather, it is achieved through mapping equations. A

mapping equations
forward mapping equation transforms the geographic coordinates (φ, λ) of a point on the
curved reference surface to a set of planar Cartesian coordinates (x, y), representing
the position of the same point on the map plane:

(x, y) = f(φ, λ)

5In practice, maps at scales of 1:1,000,000 or smaller can use the mathematically simpler sphere without
the risk of large distortions. At larger scales, the more complicated mathematics of ellipsoids is needed to
prevent large distortions occurring on the map.
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Example of a map projection
in which the reference

surface with geographic
coordinates (φ, λ) is

projected onto the 2D
mapping plane with 2D

Cartesian coordinates (x, y).

The corresponding inverse mapping equation transforms mathematically the planar Carte-
sian coordinates (x, y) of a point on the map plane to a set of geographic coordinates
(φ, λ) on the curved reference surface:

(φ, λ) = f(x, y)

The Mercator projection (spherical assumption) [106], a commonly used mapping pro-
jection, can be used to illustrate the use of mapping equations. The forward mapping
equation for the Mercator projection is:6

x = R(λ− λ0)

y = R ln tan

(

π

4
+
φ

2

)

The inverse mapping equation for the Mercator projection is:

φ =
π

2
− 2 arctan

(

e−
y
R

)

λ =
x

R
+ λ0

Classification of map projections

Many map projections have been developed, each with its own specific qualities. It is
these qualities that make the resulting maps useful for certain purposes. By definition,
any map projection is associated with scale distortions. There is simply no way to

scale distortions
flatten an ellipsoidal or spherical surface without stretching some parts of the surface
more than others. The amount and kind of distortions a map has depends on the type
of map projection.

Some map projections can be visualized as true geometric projections directly onto the
mapping plane—known as an azimuthal projections—or onto an intermediate surface,

6When an ellipsoid is used as a reference surface, the equations are considerably more complicated than
those introduced here. R is the radius of the spherical reference surface at the scale of the map; φ and λ

are given in radians; λ0 is the central meridian of the projection; e = 2.7182818, the base of the natural
logarithms, not the eccentricity.
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which is then rolled out onto the mapping plane. Typical choices for such intermediate
surfaces are cones and cylinders. These map projections are called conical or cylindri-
cal projections, respectively. Figure 3.16 shows the surfaces involved in these three
classes of projection.

Figure 3.16
Classes of map projections Cylindrical Conical Azimuthal

The azimuthal, conical, and cylindrical surfaces in Figure 3.16 are all tangent surfaces,
i.e. they touch the horizontal reference surface at one point (azimuthal), or along a
closed line (cone and cylinder), only. Another class of projections is obtained if the
surfaces are chosen to be secant to (to intersect with) the horizontal reference surface;
see Figure 3.17. Then, the reference surface is intersected along one closed line (az-
imuthal) or two closed lines (cone and cylinder). Secant map surfaces are used to
reduce or average out scale errors since the line(s) of intersection are not distorted on
the map.

Figure 3.17
Three classes of secant
projection Cylindrical Conical Azimuthal

In the geometric depiction of map projections in Figures 3.16 and 3.17, the symmetry
axes of the plane, cone and cylinder coincide with the rotation axis of the ellipsoid or
sphere, i.e. a line through the North and South poles. In this case, the projection is said

normal, transverse, and oblique
projections to be a normal projection. The other cases are transverse projections (symmetry axis in

the equatorial plane) and oblique projections (symmetry axis is somewhere between the
rotation axis and the equator of the ellipsoid or sphere); see Figure 3.18.

The Universal Transverse Mercator (UTM) is a system of map projection that is used
worldwide. It is derived from the Transverse Mercator projection (also known as
Gauss-Kruger or Gauss conformal projection). UTM uses a transverse cylinder secant
to the horizontal reference surface. It divides the world into 60 narrow longitudinal
zones of 6 degrees, numbered from 1 to 60. The narrow zones of 6 degrees (and the
secant map surface) make the distortions small enough for large-scale topographic
mapping.

Normal cylindrical projections are typically used to map the world in its entirety. Con-
ical projections are often used to map individual continents, whereas the normal az-
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Oblique conicalTransverse cylindrical

Figure 3.18
A transverse cylindrical and

an oblique conical projection

imuthal projection may be used to map polar areas. Transverse and oblique aspects of
many projections can be used for most parts of the world.

It is also important to consider the shape of the area to be mapped. Ideally, the general
shape of the mapping area should be well-match with the distortion pattern of a spe-
cific projection. If an area is approximately circular, it is possible to create a map that
minimizes distortion for that area on the basis of an azimuthal projection. Cylindrical
projection is best for a rectangular area and conic projection for a triangular area.

So far, we have not specified how the curved horizontal reference surface is projected
onto a plane, cone or cylinder. How this is done determines what kind of distortions
the map will have compared to the original curved reference surface. The distortion
properties of a map are typically classified according to what is not distorted on the

distortion properties
map:

• With a conformal map projection, the angles between lines in the map are iden-
tical to the angles between the original lines on the curved reference surface.
This means that angles (with short sides) and shapes (of small areas) are shown
correctly on the map.

• With an equal-area (equivalent) map projection, the areas in the map are identical
to the areas on the curved reference surface (taking into account the map scale),
which means that areas are represented correctly on the map.

• With an equidistant map projection, the length of particular lines in the map are
the same as the length of the original lines on the curved reference surface (tak-
ing into account the map scale).

A particular map projection can exhibit only one of these three properties. No map
projection can be both conformal and equal-area, for example.

The most appropriate type of distortion for a map depends largely on the purposes
for which the map will be used. Conformal map projections represent angles correctly,
but as the region becomes larger they show considerable area distortions (Figure 3.19).
Maps used for the measurement of angles (e.g. aeronautical charts, topographic maps)
often make use of a conformal map projection such as the UTM projection.

Equal-area projections, on the other hand, represent areas correctly, but as the region
becomes larger, considerable distortions of angles and, consequently, shapes occur
(Figure 3.20). Maps that are to be used for measuring area (e.g. distribution maps) are
often made using an equal-area map projection.

The equidistant property is achievable only to a limited degree. That is, true distances
can be shown only from one or two points to any other point on the map, or in cer-
tain directions. If a map is true to scale along the meridians (i.e. no distortion in the
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Figure 3.19
The Mercator projection, a
cylindrical map projection
with conformal properties.
The area distortions are
significant towards the polar
regions.

Figure 3.20
The cylindrical equal-area
projection, i.e. a cylindrical
map projection with
equal-area properties.
Distortions of shapes are
significant towards the poles.

North–South direction), we say that the map is equidistant along the meridians (e.g. an
equidistant cylindrical projection) (Figure 3.21). If a map is true to scale along all par-
allels we say the map is equidistant along the parallels (i.e. no distortion in the East–West
direction). Maps for which the area and angle distortions need to be reasonably ac-
ceptable (several thematic maps) often make use of an equidistant map projection.

As these discussions indicate, a particular map projection can be classified. An exam-
ple would be the classification “conformal conic projection with two standard paral-
lels”, which means that the projection is a conformal map projection, that the inter-
mediate surface is a cone, and that the cone intersects the ellipsoid (or sphere) along
two parallels. In other words, the cone is secant and the cone’s symmetry axis is par-
allel to the rotation axis. (This would amount to the middle projection displayed in
Figure 3.17). This projection is also referred to as “Lambert’s conical projection” [47].
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Figure 3.21
The equidistant cylindrical

projection (also called Plate
Carrée projection), a

cylindrical map projection
with equidistant properties.

The map is equidistant (true
to scale) along the meridians.

Both shape and area are
reasonably well preserved.

3.1.4 Coordinate transformations

Users of geoinformation often need transformations from a particular 2D coordinate
system to another system. This includes the transformation of polar coordinates into
Cartesian map coordinates, or the transformation from one 2D Cartesian (x, y) system
of a specific map projection into another 2D Cartesian (x′, y′) system of a defined map
projection. This transformation is based on relating the two systems on the basis of a
set of selected points whose coordinates are known in both systems, such as ground
control points or common points such as corners of houses or road intersections. Im-
age and scanned data are usually transformed by this method. The transformations
may be conformal, affine, polynomial or of another type, depending on the geometric
errors in the data set.

2D Polar to 2D Cartesian transformations

The transformation of polar coordinates (α, d), into Cartesian map coordinates (x, y)

is done when field measurements, i.e. angular and distance measurements, are trans-
formed into map coordinates. The equation for this transformation is:

x = d sinα

y = d cosα

The inverse equation is:

α = arctan

(

x

y

)

d2 = x2 + y2

Changing map projection

Forward and inverse mapping equations are normally used to transform data from
one map projection into another. The inverse equation of the source projection is used
first to transform source projection coordinates (x, y) to geographic coordinates (φ, λ).
Next, the forward equation of the target projection is used to transform the geographic
coordinates (φ, λ) into target projection coordinates (x′, y′). The first equation takes us
from a projectionA into geographic coordinates. The second takes us from geographic
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coordinates (φ, λ) to another map projection B. These principles are illustrated in
Figure 3.22.

Historically, GI Science has dealt with data referenced spatially with respect to the
(x, y) coordinates of a specific map projection. For application domains requiring
3D spatial referencing, a height coordinate may be added to the (x, y) coordinates of
the point. The additional height coordinate can be a height H above mean sea level,
which is a height with a physical meaning. The (x, y, H) coordinates then represent
the location of objects in a 3D space.

Figure 3.22
The principle of changing
from one map projection to
another.
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Datum transformations

A change of map projection may also include a change of the horizontal datum. This
is the case when the source projection is based upon a different horizontal datum than
the target projection. If the difference in horizontal datums is ignored, there will not
be a perfect match between adjacent maps of neighbouring countries or between over-
laid maps originating from different projections. It may lead to differences of several
hundreds of metres in the resulting coordinates. Therefore, spatial data with different
underlying horizontal datums may require datum transformation.

Suppose we wish to transform spatial data from the UTM projection to the Dutch RD
system, and suppose that the data in the UTM system are related to the European
Datum 1950 (ED50), while the Dutch RD system is based on the Amersfoort datum.
To achieve a perfect match, in this example the change of map projection should be
combined with a datum transformation step; see Figure 3.23.

The inverse equation of projection A is used first to take us from the map coordinates
(x, y) of projectionA to the geographic coordinates (φ, λ, h) for datumA. A height co-
ordinate (h or H) may be added to the (x, y) map coordinates. Next, the datum trans-
formation takes us from these coordinates to the geographic coordinates (φ, λ, h) for
datum B. Finally, the forward equation of projection B takes us from the geographic
coordinates (φ, λ, h) for datum B to the map coordinates (x′, y′) of projection B.

Mathematically, a datum transformation is feasible via the geocentric coordinates (x, y, z)
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Figure 3.23
The principle of changing

from one projection into
another, combined with a

datum transformation from
datum A to datum B.

or directly by relating the geographic coordinates of both datum systems. The latter
relates the ellipsoidal latitude (φ) and longitude (λ), and possibly also the ellipsoidal
height (h), of both datum systems [59].

Geographic coordinates (φ, λ, h) can be transformed into geocentric coordinates (x, y, z),
and vice versa. The datum transformation via the geocentric coordinates implies a 3D
similarity transformation. This is essentially a transformation between two orthogo-
nal 3D Cartesian spatial reference frames together with some elementary tools from
adjustment theory. The transformation is usually expressed with seven parameters:
three rotation angles (α, β, γ), three origin shifts (X0, Y0, Z0) and a scale factor (s).
The inputs are the coordinates of points in datumA and coordinates of the same points
in datum B. The output are estimates of the seven transformation parameters and a
measure of the likely error of the estimate.

Datum transformation parameters have to be estimated on the basis of a set of selected
points whose coordinates are known in both datum systems. If the coordinates of these

datum transformation
parameterspoints are not correct—often the case for points measured on a local datum system—

the estimated parameters may be inaccurate and hence the datum transformation will
be inaccurate.

Inaccuracies often occur when we transform coordinates from a local horizontal da-
tum to a global geocentric datum. The coordinates in the local horizontal datum may
be distorted by several tens of metres because of the inherent inaccuracies of the mea-
surements used in the triangulation network. These inherent inaccuracies are also
responsible for another complication: the transformation parameters are not unique.
Their estimation depends on the particular choice of common points and whether all
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seven transformation parameters, or only some of them, are estimated.

The example in Table 3.2 illustrates the transformation of the Cartesian coordinates of
a point in the state of Baden-Württemberg, Germany, from ITRF to Cartesian coordi-
nates in the Potsdam Datum. Sets of numerical values for the transformation parame-
ters are available from three organizations:

Table 3.2
Three different sets of datum
transformation parameters
from three different
organizations for transforming
a point from ITRF to the
Potsdam datum.

Parameter National set Provincial set NIMA set

scale s 1 – 8.3 · 10−6 1 – 9.2 · 10−6 1

angles α +1.04′′ +0.32′′

β +0.35′′ +3.18′′

γ −3.08′′ −0.91′′

shifts (m) X0 −581.99 −518.19 −635

Y0 −105.01 −43.58 −27

Z0 −414.00 −466.14 −450

1. The federal mapping organization of Germany (labelled “National set” in Ta-
ble 3.2) provided a set calculated using common points distributed throughout
Germany. This set contains all seven parameters and is valid for whole Ger-
many.

2. The mapping organization of Baden-Württemberg (labelled “Provincial set” in
Table 3.2) provided a set calculated using common points distributed through-
out the state of Baden-Württemberg. This set contains all seven parameters and
is valid only within the state borders.

3. The National Imagery and Mapping Agency (NIMA) of the U.S.A. (labelled
“NIMA set” in Table 3.2) provided a set calculated using common points dis-
tributed throughout Germany and based on the ITRF. This set contains a co-
ordinate shift only (no rotations, and scale equals unity). This set is valid for
whole Germany.

The three sets of transformation parameters vary by several tens of metres, for reasons
already mentioned. The sets of transformation parameters were used to transform
the ITRF cartesian coordinates of a point in the state of Baden-Württemberg. Its ITRF
(X, Y, Z) coordinates are:

(4, 156, 939.96 m, 671, 428.74 m, 4, 774, 958.21 m).

The three sets of transformed coordinates for the Potsdam datum are given in Ta-
ble 3.3.

Table 3.3
Three sets of transformed
coordinates for a point in the
state of Baden-Württemberg,
Germany.

Potsdam coordinates National set (m) Provincial set (m) NIMA set (m)

X 4, 156, 305.32 4, 156, 306.94 4, 156, 304.96

Y 671, 404.31 671, 404.64 671, 401.74

Z 4, 774, 508.25 4, 774, 511.10 4, 774, 508.21

The three sets of transformed coordinates differ by only a few metres from each other.
In a different country, the level of agreement could be a within centimetres, but it can
be up to tens of metres of each other, depending upon the quality of implementation
of the local horizontal datum.
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3.2 Satellite-based positioning

The importance of satellites in spatial referencing has already been mentioned be-
fore. Satellites have allowed us to create geocentric reference systems and to increase
the level of spatial accuracy substantially. Satellite-based systems are critical tools in
geodetic engineering for the maintenance of the ITRF. They also play a key role in
mapping and surveying in the field, as well as in a growing number of applications
requiring positioning techniques. The setting up a satellite-based positioning system
requires the implementation of three hardware segments:

1. the space segment, i.e. the satellites that orbit the Earth and the radio signals that
they emit;

2. the control segment, i.e. the ground stations that monitor and maintain the com-
ponents of the space segment;

3. the user segment, i.e. the users, along with the hardware and software they use
for positioning.

In satellite positioning, the central problem is to determine the values (X, Y, Z) of a
receiver of satellite signals, i.e. to determine the position of the receiver with the accu-
racy and precision required. The degree of accuracy and precision needed depends on
the application, as does timeliness, i.e. are the position values required in real time or
can they be determined later during post-processing. Finally, some applications, such
as navigation, require kinematic approaches, which take into account the fact that the
receiver is not stationary, but moving.

Some fundamental aspects of satellite-based positioning and a brief review of cur-
rently available technologies follows.

3.2.1 Absolute positioning

The working principles of absolute, satellite-based positioning are fairly simple:

1. A satellite, equipped with a clock, sends a radio message at a specific moment
that includes

(a) the satellite identifier,

(b) its position in orbit, and

(c) its clock reading.

2. A receiver on or above the planet, also equipped with a clock, receives the mes-
sage slightly later and reads its own clock.

3. From the time delay observed between the two clock readings, and knowing the
speed of radio transmission through the medium between (satellite) sender and
receiver, the receiver can compute the distance to the sender, also known as the
satellite’s pseudorange. This pseudorange is the apparent distance from satellite to
receiver, computed from the time delay with which its radio signal is received.

Such a computation places the position of the receiver on a sphere of radius equal to
the computed pseudorange (see Figure 3.24a). If, instantaneously, the receiver were to
do the same with a message from another satellite positioned elsewhere, the position
of the receiver would be placed on another sphere. The intersection of the two spheres,
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which have different centres, describes a circle as being the set of possible positions of
the receiver (see Figure 3.24b). If a third satellite message is taken into consideration,
the three spheres intersect at, at most, two positions, one of which is the actual posi-
tion of the receiver. In most, if not all practical situations where two positions result,

trilateration
one of them is a highly unlikely position for a signal receiver, thus narrowing down
the true position of the receiver. The overall procedure is known as trilateration: the
determination of a position based on three distances.

Figure 3.24
Pseudorange positioning:
(a) With just one satellite, the
receiver position is
somewhere on a sphere,
(b) With two satellites, the
position is located where the
two spheres intersect, i.e. in a
circle. Not shown: with three
satellites, its position is where
the three spheres intersect.

a b

It would appear, therefore, that the signals of three satellites would be sufficient to
determine a positional fix for our receiver. In theory this is true, but in practice it is
not. The reason being that satellite clocks and the receiver clock are never exactly
synchronized. Satellite clocks are costly, high-precision, atomic clocks that we can

clock bias
consider synchronized for the time being, but the receiver typically uses a far cheaper,
quartz clock that is not synchronized with satellite clocks. This brings an additional
unknown variable into play, namely the synchronization bias of the receiver clock, i.e.
the difference in time readings between it and the satellite clocks.

Our set of unknown variables has now become (X, Y, Z, ∆t) representing a 3D po-
sition and a clock bias. The problem can be solved by including the information ob-
tained from a fourth satellite message, (see Figure 3.25). This will result in the deter-

3D positioning
mination of the receiver’s actual position (X, Y, Z), as well as its receiver clock bias
∆t, and if we correct the receiver clock for this bias we effectively turn it into a high-
precision atomic clock as well!

Obtaining a high-precision clock is a fortunate side-effect of using the receiver, as it
allows the design of experiments distributed in geographic space that demand high
levels of synchronicity. One such application is the use of wireless sensor networks for
researching natural phenomena such as earthquakes or meteorological patterns, and
for water management.

The positioning of mobile phone users making an emergency call is yet another appli-
cation. Often callers do not know their location accurately. The telephone company
can trace back the call to the receiving transmitter mast, but this may be servicing an
area with a radius ranging from 300 m to 6 km. That is far too inaccurate for emer-
gency services. If all masts in the telephony network are equipped with a satellite
positioning receiver (and thus, with a very high-precision synchronized clock), how-
ever, the time of reception of the call at each mast can be recorded. The time difference
of arrival of the call between two nearby masts describes a hyperbola on the ground of
possible positions of the caller. If the call is received on three masts, two hyperbolas
are described, allowing intersection and thus “hyperbolic positioning”. With current
technology the (horizontal) accuracy would be better than 30 m.
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Receiver
Clock Bias

Pseudo Range

Figure 3.25
Four satellites are needed to

obtain a 3D position fix.
Pseudoranges are indicated

for each satellite as dotted
circles, representing a

sphere; the actual range is
represented as a solid circle,

which is the pseudorange
plus the range error caused

by receiver clock bias.

Returning to satellite-based positioning, when only three, and not four, satellites are
“in view”, the receiver is capable of falling back from the above 3D positioning mode
to the inferior 2D positioning mode. With the relative abundance of satellites in orbit

2D positioning mode
around the Earth, this is a relatively rare situation, but it serves to illustrate the impor-
tance of 3D positioning.

If a 3D fix had already been obtained, the receiver simply assumes that the height
above the ellipsoid has not changed since the last 3D fix. If no fix had been obtained,
the receiver assumes that it is positioned at the geocentric ellipsoid adopted by the po-
sitioning system, i.e. at height h = 0.7 In the receiver computations, the ellipsoid fills
the slot of the missing fourth satellite sphere, and the unknown variables can there-
fore still be determined. Clearly, in both of these cases, the assumption upon which
this computation is based is flawed and the resulting positioning in 2D mode will be
unreliable—much more so if no previous fix had been obtained and one’s receiver is
not at all near the surface of the geocentric ellipsoid.

7Any receiver is capable of transforming a coordinate (X, Y, Z), using a straightforward mathematical
transformation, into an equivalent coordinate (φ, λ, h), where h is the height above the geocentric ellipsoid.
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Time, clocks and world time

Before any notion of standard time existed, villages and cities simply kept track of their
local time, determined from the position of the Sun in the sky. When trains became
an important means of transportation, these local time systems became problematic
as train scheduling required a single time system. Such a time system called for the
definition of time zones: typically 24 geographic strips bounded by longitudes that are

Greenwich Mean Time
multiples of 15◦. This and navigational demands gave rise to Greenwich Mean Time
(GMT), based on the mean solar time at the meridian passing through Greenwich,
United Kingdom, which is the conventional 0-meridian in geography. GMT became
the world time standard of choice.

GMT was later replaced by Universal Time (UT), a system still based on meridian
crossings of stars, albeit distant quasars, as this approach provides more accuracy than
that based on the Sun. It is still the case that the rotational velocity of our planet is not
constant and the length of a solar day is increasing. So UT is not a perfect system
either. It continues to be used for civilian clock time, but it has now officially been re-
placed by International Atomic Time (TAI). UT actually has various versions, among
them UT0, UT1 and UTC. UT0 is the Earth’s rotational time observed at some location.
Because the Earth experiences polar motion as well, UT0 differs between locations. If
we correct for polar motion, we obtain UT1, which is identical everywhere. Never-
theless, UT1 is still a somewhat erratic clock system because of the varying rotational
velocity of the planet, as mentioned above. The degree of uncertainty is about 3 ms
per day.

Coordinated Universal Time (UTC) is used in satellite positioning and is maintained
with atomic clocks. By convention, it is always within a margin of 0.9 s of UT1, and
twice annually it may be shifted to stay within that margin. This occasional shift of a
leap second is applied at the end of 30 June or, preferably, at the end of 31 December.
The last minute of such a day is then either 59 or 61 seconds long. So far, adjust-
ments have always entailed adding a second. UTC time can only be determined to the
highest precision after the fact, as atomic time is determined by the reconciliation of
the observed differences between a number of atomic clocks maintained by different
national time bureaus.

In recent years, we have learned to measure distance, and therefore also position,
with clocks, by using satellite signals, the conversion factor being the speed of light,
approximately 3 × 108 m s−1 in a vacuum. As a consequence, multiple seconds of

atomic clocks
clock bias could no longer be accepted, and this is where atomic clocks are at an ad-
vantage. They are very accurate time keepers, based on the exact frequencies at which
specific atoms (Cesium, Rubidium and Hydrogen) make discrete energy-state jumps.
Positioning satellites usually have multiple clocks on board; ground control stations
have even better quality atomic clocks.

Atomic clocks are not flawless, however: their timing tends to drift from true time and
they, too, need to be corrected. The drift, and the change in drift over time, are mon-
itored and included in the satellite’s navigation message, so that these discrepancies
can be corrected for.

3.2.2 Errors in absolute positioning

Before we continue discussing other modes of satellite-based positioning, let us take
a close look at the potential for error in absolute positioning. Users of receivers are
required to be sufficiently familiar with the technology in order to avoid real operat-
ing blunders such as poor receiver placement or incorrect receiver software settings,
which can render positioning results virtually useless. We will skip over many of the
physical and mathematical details underlying these errors; they are only mentioned
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here to raise awareness and understanding among users of this technology. For back-
ground information on the calculation of positional error (specifically, the calculation
of RMSE or root mean square error), see Subsection 5.3.2.

Errors related to the space segment

As a first source of error, operators of the control segment may, for example in times of
global political tension or war, intentionally deteriorate radio signals from satellites to
the general public to avoid optimal use of the system by a perceived enemy. This selec-
tive availability—meaning that military forces allied with the control segment will still
have access to undisturbed signals—may cause error that has an order of magnitude
larger than all other error sources combined.8

A second source occurs if the satellite signal contains incorrect information. Assuming
that it will always know its own identifier, the satellite may make two kinds of error:

1. Incorrect clock reading. Even atomic clocks can be off by a small margin, and
thanks to Einstein we know that moving clocks are slower than stationary clocks,
due to a relativistic effect. If one understands that a clock that is off by 0.000001 s
causes an computation error in the satellite’s pseudorange of approximately
300 m, it becomes clear that these satellite clocks require very strict monitoring.

2. Incorrect orbit position. The orbit of a satellite around our planet is easy to de-
scribe mathematically if both bodies are considered point masses, but in real life
they are not. For the same reasons that the Geoid is not a simply shaped sur-
face, the gravitation pull of the Earth that a satellite experiences in orbit is not
simple either. Moreover, satellite orbits are also disturbed by solar and lunar
gravitation, making flight paths slightly erratic and difficult to forecast exactly.

Both types of error are strictly monitored by the ground control segment, which is re-
sponsible for correcting any errors of this nature, but it does so by applying an agreed-
upon tolerance. A control station can obviously compare results of positioning compu-
tations such as those discussed above with its accurately known position, flagging any
unacceptable errors and potentially labelling a satellite as temporarily “unhealthy”
until those errors have been corrected and brought back within the agreed tolerance
limits. This may be done by uploading a correction to the clock or the satellite’s orbit
settings.

Errors related to the medium

A third source may be due to the influence of the medium between sender and receiver
on the satellite’s radio signals. The middle atmospheric layers of the stratosphere and
mesosphere are relatively harmless and of little hindrance to radio waves, but this is
not true of the lower and upper layers of the atmosphere:

• The troposphere: the approximate 14 km-high airspace directly above the Earth’s
surface, which holds most of the atmosphere’s oxygen and which envelops all
phenomena that we call the weather. It is an obstacle that delays radio waves in
a rather variable way.

• The ionosphere: the part of the atmosphere that is farthest from the Earth’s sur-
face. It starts at an altitude of 90 km and holds many electrically charged atoms,

8Selective availability was stopped at the beginning of May 2000; in late 2007 the White House decided to
remove selective availability capabilities all together. However, when deemed necessary, the US government
still has a range of capabilities and technology available to implement regional denial of service of civilian
GPS signals in an area of conflict, effectively producing the same result.
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thereby forming a protective “shield” against various forms of radiation from
space, including, to some extent, radio waves. The degree of ionization shows a
distinct night and day rhythm and also varies with solar activity.

The ionosphere is a more severe source of delay for satellite signals, which obviously
means that pseudoranges are estimated as being larger than they actually are. When
satellites emit radio signals at two or more frequencies, an estimate can be computed
from differences in delay incurred for signals of different frequency, which enables
correction for atmospheric delay, leading to a 10–50% improvement of accuracy. If
this is not the case, or if the receiver is capable of receiving only a single frequency, a
model should be applied to forecast the (especially ionospheric) delay; typically the
model takes into account the time of day and current latitude of the receiver.

Errors related to the receiver’s environment

Fourth in the list of sources of error is that which occurs when a radio signal is received
via two or more paths between sender and receiver, typically caused by the signal
bouncing off some nearby surface such as a building or rock face. The term applied
to this phenomenon is multi-path; when it occurs the multiple receptions of the same

multi-path error
signal may interfere with each other (see Figure 3.26). Multi-path is a source of error
that is difficult to avoid.

Figure 3.26
At any point in time, a
number of satellites will be
above the receiver’s horizon.
But not all of them will be “in
view” (e.g. the satellites on
the far left and right); and for
others, multi-path signal
reception may occur.

All of the above sources of error influence computation of a satellite’s pseudorange.
Cumulatively, they are called the user equivalent range error (UERE). Some error sources

range error
may affect all satellites being used by a particular receiver, e.g. selective availability
and atmospheric delay, while others may be specific to one satellite, for instance, in-
correct satellite information and multi-path.

Errors related to the relative geometry of satellites and receiver

There is one more source of error, which is unrelated to individual radio signal charac-
teristics: rather, this error is the result of the combination of signals from satellites used
for positioning. The constellation of satellites in the sky from the receiver’s perspective
is the controlling factor in these cases. Referring to Figure 3.27, the sphere-intersection
technique of positioning provides more precise results when the four satellites are
evenly spread over the sky; the satellite constellation of Figure 3.27b is preferred over
that of 3.27a. This source of error is know as geometric dilution of precision (GDOP).

geometric dilution of precision
GDOP is lower when satellites are just above the horizon in mutually opposed com-
pass directions. However, such satellite positions have bad atmospheric delay char-
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acteristics, so in practice it is better if they are at least 15◦ above the horizon. When
more than four satellites are in view, modern receivers use “least-squares” adjustment
to calculate the best possible positional fix from all the signals. This gives a better
solution that obtained just using the “best four”, as was done previously.

a b

Figure 3.27
Geometric dilution of

precision. The four satellites
can be in a poor constellation

for positioning(a) or in a
better constellation (b).

satellite clock (m) 2

satellite position (m) 2.5

ionospheric delay (m) 5

tropospheric delay (m) 0.5

receiver noise (m) 0.3

multi-path (m) 0.5

Total RMSE Range error (m):
√

22 + 2.52 + 52 + 0.52 + 0.32 + 0.52 = 5.97

Table 3.4
Indication of typical

magnitudes of error in
absolute satellite-based

positioning

These errors are not all of similar magnitude. An overview of some typical values
(without selective availability) is provided in Table 3.4. GDOP functions not so much
as an independent error source but rather as a multiplying factor, decreasing the pre-
cision of position and time values obtained.

The procedure that we discussed above is known as absolute, single-point positioning
based on code measurement. It is the fastest and simplest, yet least accurate, means of
determining a position using satellites. It suffices for recreational purposes and other
applications that require horizontal accuracies to within 5–10 m. Typically, when en-
crypted military signals can also be used, on a dual-frequency receiver the achievable
horizontal accuracy is 2–5 m. Below, we discuss other satellite-based positioning tech-
niques with better accuracies.

3.2.3 Relative positioning

One technique for trying to remove errors from positioning computations is to per-
form many position computations, and to determine the average over all solutions.
Many receivers allow the user to do this. It should, however, be clear from the above
that averaging may address random errors such as signal noise, selective availability
(SA) and multi-path to some extent, but not systematic sources of error, such as incor-

random and systematic error
rect satellite data, atmospheric delays, and GDOP effects. These sources should be
removed before averaging is applied. It has been shown that averaging over 60 min in
absolute, single-point positioning based on code measurements, before systematic er-
ror removal, leads to only a 10–20% improvement of accuracy. In such cases, receiver
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averaging is therefore of limited value and requires near-optimal conditions for long
periods. Averaging is a good technique if systematic errors have been accounted for.

In relative positioning, also known as differential positioning, one tries to remove some
of the sources of systematic error by taking into account measurements of these errors
in a nearby stationary reference receiver that has an accurately known position. By us-
ing these systematic error findings for the reference receiver, the position of the target
receiver of interest can be determined much more precisely.

In an optimal setting, the reference and target receiver experience identical conditions
and are connected by a direct data link, allowing the target to receive correctional
data from the reference. In practice, relative positioning allows reference and target
receiver to be 70–200 km apart; they will experience essentially similar atmospheric
signal error. Selective availability can also be addressed in this away.

For each satellite in view, the reference receiver will determine its pseudorange er-
ror. After all, its position is known to a high degree of accuracy, so it can solve any
pseudorange equations to determine the error. Subsequently, the target receiver, hav-
ing received the error characteristics will apply the correction for each of the satellite
signals that it uses for positioning. In doing so, it can improve its accuracy to within
0.5–1 m.

The discussion above assumes we needed positioning information in real time, which
called for a data link between reference and target receiver. But various uses of satellite-
based positioning do not need real time data, making post-processing of the recorded
positioning data suitable. If the target receiver records time and position accurately,
correctional data can be used later to improve the accuracy of the originally recorded
data.

Finally, mention should be made of the notion of inverted relative positioning. The prin-
ciples are still the same as above, but with this technique the target receiver does not
correct for satellite pseudorange error, but rather uses a data link to upload its posi-
tioning/timing information to a central repository, where the corrections are applied.
This can be useful in cases where many target receivers are needed and budget does
not allow them to be expensive.

3.2.4 Network positioning

Now that the advantages of relative positioning have been discussed, we can move
on to the notion of network positioning: an integrated, systematic network of reference
receivers covering a large area, perhaps an entire continent or even the whole globe.

The organization of such a network can take different shapes, augmenting an already
existing satellite-based system. Here we discuss a general architecture, consisting of
a network of reference stations, strategically positioned in the area to be covered, each
of them constantly monitoring signals and their errors for all positioning satellites in
view. One or more control centres receive the reference station data, verify this for
correctness, and relay (uplink) this information to a geostationary satellite. The satellite
will retransmit any correctional data to the area that it covers, so that target receivers,
using their own approximate position, can determine how to correct for satellite signal
error, and consequently obtain much more accurate position fixes.

With network positioning, accuracy in the sub-metre range can be obtained. Typically,
advanced receivers are required, but the technology lends itself also for solutions with
a single advanced receiver that functions in the direct neighbourhood as a reference
receiver to simple ones.
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3.2.5 Code versus phase measurements

Up until this point, we have assumed that the receiver determines the range of a satel-
lite by measuring time delay of the received ranging code. There exists a more ad-
vanced range determination technique, known as carrier phase measurement. This typ-
ically requires more advanced receiver technology and longer observation sessions.
Currently, carrier phase measurement can only be used with relative positioning, as
absolute positioning using this method is not yet well developed.

The technique aims to determine the number of cycles of the (sine-shaped) radio signal
between sender and receiver. Each cycle corresponds to one wavelength of the signal,
which in the L-band frequencies used is 19–24 cm. Since the number of cycles of the
signal cannot be measured directly, it is determined (in a long observation session)
from the change in carrier phase over time. Such a change occurs because the satellite
is orbiting. From its orbit parameters and the change in phase over time, the number
of cycles can be derived.

With relative positioning techniques, a horizontal accuracy of 2 mm–2 cm can be
achieved. This degree of accuracy makes it possible to measure tectonic plate move-
ments, which can be as large as 10 cm per year for some locations on the planet.

3.2.6 Positioning technology

This section provides information on currently available satellite-based positioning
technology. At present, two satellite-based positioning systems are operational—GPS
and GLONASS—and a third is in the implementation phase—Galileo. These systems
are US, Russian and European, respectively. Any of them, but especially GPS and
Galileo, will be improved over time and will be augmented with new techniques.

GPS

The NAVSTAR Global Positioning System (GPS) was declared operational in 1994,
providing Precise Positioning Services (PPS) to US and allied military forces, as well
as US government agencies; civilians throughout the world have access to Standard
Positioning Services (SPS). The GPS space segment nominally consists of 24 satellites,
each of which orbits our planet in 11 h 58 min at an altitude of 20,200 km. There
can be any number of satellites active, typically between 21 and 27. The satellites are
organized in six orbital planes, somewhat irregularly spaced, at an angle of inclination
of 55–63◦ to the equatorial plane; nominally four satellites orbit in each plane (see
Figure 3.28). This means that a receiver on Earth will have between five and eight
(rarely, even up to 12) satellites in view at any moment in time. Software packages
exist to help in planning GPS surveys, identifying the expected satellite set-up for any
location and time.

The NAVSTAR satellites transmit two radio signals, an L1 frequency of 1575.42 MHz
and an L2 frequency of 1227.60 MHz. There is also a third and fourth signal, but these
are not important for the discussion here. The role of the L2 signal is to provide a
second radio signal, thereby providing a way, with (more expensive) dual-frequency
receivers, of determining fairly precisely the actual ionospheric delay of the satellite
signals received.

GPS uses WGS84 as its reference system,which has been refined on several occasions
WGS84

and is now aligned with the ITRF at the level of a few centimetres worldwide. (See
also Section 3.1.1.) GPS has adopted UTC as its time system.

For civilian applications, GPS receivers of varying quality are available, their qual-
ity depending on the embedded positioning features: supporting single- or dual-
frequencies; supporting only absolute or also relative positioning; performing code
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Figure 3.28
Constellation of satellites in
the GPS system; here four
satellites are shown in only
one orbital plane.

measurements or also carrier phase measurements.

GLONASS

What GPS is to the US military, is GLONASS to the Russian military, specifically the
Russian Space Forces. Both systems were primarily designed on the basis of military
requirements, but GLONASS did not significantly develop civil applications as GPS
did and thus it is commercially less important.

GLONASS’s space segment consists nominally of 24 satellites, organized in three or-
bital planes, at an inclination of 64.8◦ to the Equator. Its orbiting altitude is 19,130 km,
with a period of revolution of 11 h 16 min.

GLONASS uses the PZ-90 as its reference system and, like GPS, uses UTC as its time
reference, albeit with an offset for Russian daylight.

GLONASS’s radio signals are somewhat similar to those of GPS, differing only in the
details: the frequency of GLONASS’s L1 signal is approximately 1605 MHz (changes
are underway), and its L2 signal approximately 1248 MHz; otherwise, GLONASS’s
system performance is rather comparable with that of GPS.

Galileo

In the 1990s, the European Union (EU) judged that it needed its own satellite-based po-
sitioning system, to become independent of the GPS monopoly and to support its own
economic growth by providing services of high reliability under civilian control.The
EU system is named Galileo.

The vision is that satellite-based positioning will become even bigger due to the emer-
gence of mobile phones equipped with receivers, perhaps with some 400 million users
by the year 2015. The development of the system has experienced substantial delays;
currently European ministers insist that Galileo should be up and running by the end
of 2013.

When completed, Galileo will have 27 satellites, with three in reserve, orbiting in one
of three, equally spaced, circular orbits at an elevation of 23,222 km and inclined at
56◦ to the Equator. This higher inclination (when compared to that of GPS) has been
chosen to provide better positioning coverage at high latitudes, such as in northern

122



3.2. Satellite-based positioning

Scandinavia, where GPS performs rather poorly.

In June 2004, the EU and the US agreed to make Galileo and GPS compatible by adopt-
ing interchangeable set-ups for their satellite signals. The effect of this agreement is
that a Galileo/GPS tandem satellite system will have so many satellites in the sky
(close to 60) that a receiver can almost always find an optimal constellation in view.

This will be especially useful in situations where in the past signal reception was poor,
in built-up areas and forests, for instance. It will also bring the implementation of a
Global Navigation Satellite System (GNSS) closer, since positional accuracy and reli-
ability will improve. Such a system would bring the ultimate development of fully
automated air and road traffic control systems much closer. Automatic aircraft land-
ing, for instance, requires a horizontal accuracy in the order of 4 m, and a vertical
accuracy of less than 1 m. Currently, these requirements cannot be reliably met.

The Galileo Terrestrial Reference Frame (GTRF) will be a realization of the ITRS and
will be set up independently from that of GPS so that one system can back up the
other. Positional differences between WGS84 and GTRF will be at worst only a few
centimetres.

The Galileo System Time (GST) will closely follow International Atomic Time (TAI),
with a time offset of less than 50 ns for 95% of the time over any period of the year.
Information on the actual offset between GST and TAI, and between GST and UTC (as
used in GPS), will be broadcast in the Galileo satellite signal.

Satellite-based augmentation systems

Satellite-based augmentation systems (SBAS) aim to improve the accuracy and relia-
bility of satellite-based positioning (see Subsection 3.2.4) in support of safety-critical
navigation applications, such as aircraft operations near airfields. Typically, these sys-
tems make use of an extra, now geostationary, satellite that has a large service area,
for example a continent, and which sends differential data about standard positioning
satellites that are currently in view in its service area. If multiple ground reference
stations are used, the quality of the differential data can be quite good and reliable.
Usually this satellite will use radio signals of the same frequency as those in use by
the positioning satellites, so that receivers can receive the differential code without
problem.

Not all advantages of satellite augmentation will be useful for all receivers. For con-
sumer market receivers, the biggest advantage, as compared to standard relative posi-
tioning, is that SBAS provides an ionospheric correction grid for its service area, from
which a correction specific for the location of the receiver can be retrieved. This is not
true in relative positioning, where the reference station determines the error it experi-
ences and simply broadcasts this information for nearby target receivers to use. With
SBAS, the receiver obtains information that is best viewed as a geostatistical interpo-
lation of errors from multiple reference stations.

More advanced receivers will be able to deploy also other differential data such as
corrections on satellite position and satellite clock drift.

Currently, three systems are operational: for North America WAAS (Wide-Area Aug-
mentation System) is in place; EGNOS (European Geostationary Navigation Overlay
Service) for Europe; and MSAS (Multi-functional Satellite Augmentation System) for
eastern Asia. The ground segment of WAAS consists of 24 control stations, spread
over North America; that of EGNOS has 34 control stations. These three systems are
compatible, guaranteeing international coverage.

Usually signals from the geostationary SBAS satellites (under various names, such as
AOR, Artemis, IOR, Inmarsat, MTSAT) can be received even outside their respective
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service areas. But the use of these signals there must be discouraged, as they will not
help improve positional accuracy. Satellite identifiers, as shown by the receiver, have
numbers above 30, setting them apart from standard positioning satellites.

Though originally intended to improve the safety of aircraft landings, SBAS, with its
horizontal accuracy to within 3 m, has many other uses. At this level of accuracy, vehi-
cle position can be determined to a specific road lane, and “automatic pilots” become
a possibility.
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