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ABSTRACT 

Plant-available soil moisture is a key element which 

affects plant properties in their ecosystems. This study 

shows Poa pratensis -a species of grass- responses to 

soil moisture deficit during an artificial drought episode 

in a greenhouse experiment. We used radiative transfer 

model inversion to monitor the gradual manifestation of 

soil moisture deficit effects on vegetation in a laboratory 

setting. Plots of 21 cm x 14.5 cm surface area with Poa 

pratensis plants that formed a closed canopy were 

subjected to water stress for 40 days. In a regular 

weekly schedule, canopy reflectance was measured. The 

1-D bidirectional canopy reflectance model SAIL, 

coupled with the leaf optical properties model 

PROSPECT, was inverted using hyperspectral 

measurements by means of an iterative optimization 

method to retrieve vegetation biophysical and 

biochemical parameters (mainly; LAI, Cab, Cw, Cdm 

and Cs). The relationships between these retrieved 

parameters with soil moisture content were established 

in two separated groups; stress and non-stressed. All 

parameters retrieved by model inversion using canopy 

spectral data showed good correlation with soil moisture 

content in the drought episode. These parameters co-

varied with soil moisture content under the stress 

condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 

and LAI: R2=0.48) at the canopy level.  
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1. INTRODUCATION 

 

One of the applications of quantitative remote sensing is 

to quantify the physiological responses of plants to 

various environmental conditions [1]. The use of optical 

remote sensing data requires an understanding of 

vegetation spectral reflectance as governed by leaf 

composition, structure, and canopy architecture. There 

is valuable information in the reflectance spectra that 

relates to the biophysical and biochemical properties of 

both the leaf and the canopy [2]. Monitoring spectral 

changes over time, translating spectra into biophysical 

and biochemical parameters of interest, and relating 

these parameters to environmental stresses are three 

main aspects of vegetation remote sensing [3].  

Among environmental stresses, soil moisture deficit or 

"ecological drought" is particularly relevant to plant 

communities [4,5]. Vegetation in natural ecosystems 

will face severe water stress as a response to repeated 

drought episodes. A harsh drought condition for a plant 

is defined in terms of soil water content and not 

necessarily by rainfall scarcity, so that soil 

characteristics can play a role in the ecosystem and the 

plant can experience drought even under favourable 

weather conditions [6]. In many ecosystems - especially 

in arid and semi-arid climates - soil moisture deficit is 

often the most important stress factor for vegetation 

communities.  

Progress of drought can be efficiently tracked by 

monitoring three major successive phases during a 

water stress episode [7]. During phase I, plant 

biophysical processes, such as evapotranspiration and 

photosynthesis, proceed as in well-watered conditions 

until soil moisture declines and cannot meet 

evapotranspiration demand. This might usually happen 

when soil water content decreases by 50% [8]. 

Hereafter, drought enters phase II. In this step, 

biophysical processes of the plant are reduced to lower 

than the potential levels. Vegetation transpiration, 

photosynthesis and water relations, which are sensitive 

to water potential at this stage, depend on soil 

properties, atmospheric condition and the plant factors. 

By decreasing soil water content, drought will progress 

and enter phase III. Although at this phase all stomata 

are totally closed, still some water is lost by non-

stomatal processes; from (1) the cuticle surface into the 

atmosphere and (2) roots into extremely dry soil [8,9]. 

At this phase, vegetation has already reached its 

permanent wilting point and cannot longer survive and 

recover. As a result, all aspects of vegetation growth 

(including physiological and biochemical processes) are 

affected [10]. Thus, in water stress condition through a 

drought episode, changes take place in biochemical, 

biophysical, physiological aspects of plants. 

During these phases, optical signals reflected by the 

plant will change and the reflectance spectra of the 

leaves will respond to the stress [11]. The fact that these 

changes occur over the entire reflectance spectrum, 

especially in the pigment absorption bands, in the near 

infrared (NIR) and at the water absorption bands, makes 

spectroscopy a valuable tool in assessing stress-induced 

impacts on plants [2].  



 

To translate spectral remote sensing data into vegetation 

biophysical and chemical parameters, specialized 

algorithms and approaches are needed. There are two 

common approaches: the statistical approach [12–14] 

and physical modeling [15–18]. Statistical approaches 

include spectral vegetation indices computation and 

regression models applications, which are based on 

using data from various spectral bands. In many studies, 

plant stress effects have been analyzed by regressions 

against vegetation indices [11,19]. The physical 

approach consists of applying radiative transfer models 

(RTM) that are based on physical laws. They are highly 

suited for studying the relationship between biophysical 

variables and reflectance spectral data [20,21] since they 

are not site, sensor and species-specific and offer an 

explicit relationship between spectral signature and 

vegetation properties.  

Physical approaches have been widely used to retrieve 

vegetation parameters from various types of remote 

sensing data [15–18,22]. Physical modelling of 

vegetation remote sensing signals reveals the links that 

exist between vegetation biophysical and biochemical 

variables on the one hand and the leaf and canopy 

spectral reflectance on the other. 

In this study, physical approaches have been employed 

to retrieve the biophysical and biochemical parameters 

of vegetation (LAI, Cab, Cw, Cs) from hyperspectral 

measurements by inversion of the widely used 

PROSPECT and SAIL models to analyze the effects of 

prolonged soil water deficit on grass. Following this, the 

relationship between retrieved parameters and soil 

moisture content was assessed and compared to a 

control group with no soil water deficit. In this way, we 

could monitor drought-induced impacts on vegetation 

using a radiative transfer model inversion. To reach 

these objectives, we conducted a laboratory experiment 

in which 30 pots with Poa pratensis grass equipped 

with recording soil moisture sensors were monitored 

with frequent hyperspectral measurements at the canopy 

level. 

 

2. MATERIALS AND METHOD 

2.1. Experimental setup 

 

During this research, a greenhouse experiment was 

conducted for about 40 days in the garden of the ITC 

faculty of the University of Twente. A grass carpet (of 

Poa pratensis) grown locally was cut into 60 rectangles 

and transplanted into 21x14.5 cm pots with a depth of 

12 cm, all filled with organic soil. All 60 pots were 

watered regularly until the canopy height was about 15 

cm after which they were placed in a greenhouse. The 

greenhouse shielded the vegetation from rainfall, but 

temperature, irradiance and humidity were not 

controlled. We selected grass for our experiments 

because of its rapid response to soil moisture deficits, 

and because the requirements applying a 1-D vertical 

model like SAIL are more easily met for relatively 

small canopies. The pots were divided into three equally 

sized groups: (1) a group under the well-watered 

condition; (2) a group under a reduced watering 

condition; and (3) a group that was not irrigated at all. 

Ten pots in each group were equipped with calibrated 

soil moisture sensors (Em50 Series, Decagon Devices, 

Inc, USA). The well-watered pots were irrigated weekly 

with 200-250 ml water, such that the volumetric soil 

moisture content fluctuated around 30-40%. The pots in 

the reduced water treatment were watered weekly with 

about 100-200 ml water, such that the volumetric soil 

moisture content declined over the duration of the 

experiment to a value of 15-30%. The pots subject to no 

water treatment were not irrigated in order to expose 

them to maximum water stress conditions. The 

greenhouse was fitted with removable plastic covers as 

walls, which were left open during daytime and closed 

during the night and rainfall events.  

 

2.2. Instrumentation and measurements 
2.2.1. Canopy hyperspectral reflectance 

measurements 

 

Canopy spectra of all pots was measured in a remote 

sensing laboratory in a dark room using the Analytical 

Spectral Devices, FieldSpec® 3 Hi-Res Portable 

Spectroradiometer in Full Range (ASD Inc., Boulder 

CO., USA) that acquires continuous spectra located in 

the VIS, NIR and SWIR regions (350 to 2500 nm). The 

plants were illuminated by four tungsten halogen quartz 

lamps of 100W, each installed to be pointing in four 

azimuth directions, each under a 45 degree zenith 

incidence angle. Measurements were taken at the 

sampling intervals of the instrument (1.4 nm - VIS and 

NIR; 2nm - SWIR) and were resampled by the 

instrument automatically into 1 nm intervals using 

linear and polynomial interpolations [23]. The sensor 

had a fiber optic cable with a 25 degree field of view. 

The fiber optic cable was placed in a pistol and mounted 

on a stand. In the setting, under 22.55 cm height and 25 

degrees FOV, the spectrometer scanned a diameter of 

10 cm on the pot surface with the nadir point at the 

center of the circle.  

 

2.2.2. Soil hyperspectral reflectance measurements 

 

Reflectance of the background soil containing various 

ranges of soil moisture content was also measured. 

These spectroradiometer measurements were used as 

inputs in the radiative transfer modelling. At the end of 

the experiment, all biomass of 10 samples was 

completely harvested in order to take soil reflectance 

measurements on a set of soil samples having a range of 

soil moisture. 

2.2.3. Leaf Area Index and leaf chlorophyll content 

 

LAI was measured directly during the experiment at 

http://www.decagon.com/products/data-management/


 

different dates (having various soil moisture contents) 

by harvesting the pot samples which did not have a soil 

moisture sensor. Leaf area was measured on a 

representative sub-sample in the pot and related to its 

dry mass (oven dried at 65°C for 48 hours). The ratio of 

leaf area to leaf dry mass, known as specific leaf area, 

was calculated in cm2 g-1. Finally, the total dry mass of 

leaves collected within the pot surface area was 

converted into LAI by multiplying by the specific leaf 

area. To take measurements of leaf chlorophyll content, 

we used the Minolta SPAD-502 leaf chlorophyll meter. 

We took 10 chlorophyll samples from each pot during 

one measurement located in the field of view of the 

canopy reflectance measurements and used the average 

value. The relative values of the SPAD 502 were 

converted into absolute amount of chlorophyll using a 

widely-used calibration curve from the literature [24]. 

2.2.4. Soil water characteristic (SWC) curve 

 

Soil water characteristic curve was used to define the 

water stress threshold for plants in the experiment. This 

curve relates the mass or volume of water retained in a 

soil under equilibrium conditions to matric potential 

[25]. It depends on the soil type, structure, distribution 

of pore spaces and organic content. The SWC curve was 

obtained by measuring the water potential and 

volumetric soil moisture on a set of soil samples that 

had a range of water contents. We used the WP4C Dew 

Point Potentiameter (Decagon Devices, Inc, WP4C, 

USA) to quantify the water potential of the samples. 

The volumetric soil moisture of the same samples was 

measured along with the water potentials. By plotting 

pF (log of the negative water potential in cm) against 

soil moisture (m3 m-3), the SWC curve of the samples 

was generated [26]. We used soil moisture content 

corresponding to a pF of 4.2 as a stress threshold, since 

the permanent wilting point of the used soil type in this 

experiment, organic soil,  is near this pF value [27–29]. 

 

2.3. Inversion of Radiative Transfer Models 

 

Implementations of the well-known and widely used 

PROSPECT and SAIL radiative transfer models were 

selected for physically based leaf and canopy 

parameters retrieval. We used the so-called RTMo 

model, which is a four-stream SAIL model for the 

radiative transfer of incident light in canopies [30].  

RTMo is a combination of the ‘4SAIL’ model [31] with 

a few additions, and the leaf radiative transfer model 

‘Fluspect’ which is basically the ‘PROSPECT5’ model 

with a few modifications and additions. The main 

differences between RTMo (4SAIL+ Fluspect) and 

PROSAIL (SAILH+PROSPECT4) are: (1) The leaf 

angle distribution in RTMo is described with two 

parameters, the mean leaf inclination parameter (LIDFa) 

and the bimodality of the leaf inclination distribution 

(LIDFb), while PROSAIL uses only the Mean Leaf 

Inclination Angle (MLA); (2) the fraction of diffuse 

incoming solar radiation is spectral-dependent while in 

PROSAIL it is considered as a constant value. 

Retrieval of canopy parameters from hyperspectral 

canopy level measurements was performed by inverting 

the RTMo model. The PROSPECT5 model [32,33] 

calculates the leaf hemispherical reflectance and 

transmittance as a function of four input parameters: (1) 

the leaf structural parameter N (unitless); (2) the leaf 

chlorophyll a+b concentration Cab (μg cm-2); (3) the dry 

matter content Cdm (g cm-2); and (4) the water 

concentration of the leaves Cw (g cm-2). In Fluspect also 

brown pigment concentration, Cs (arbitrary unit), is 

included. The 4SAIL model [15,16] is a one-

dimensional bidirectional turbid medium radiative 

transfer model. It defines the canopy as a horizontally 

homogenous layer that consists of small vegetation 

elements. The model has been applied successfully to 

homogeneous vegetated canopies [15,34]. In addition to 

the leaf reflectance and transmittance, the RTMo model 

requires some other input parameters to simulate the 

top-of-canopy bidirectional reflectance. These are the 

sun zenith angle, θs (deg); the sensor viewing angle, θo 

(deg); the relative azimuth angle between sensor and 

sun, ψ (deg); solar irradiance, Esun; sky irradiance, Esky, 

background reflectance (soil reflectance) for each 

wavelength, rsl; LAI (m2 m-2); the hot spot size 

parameter, defined as the ratio between the average 

width of the leaves and the canopy height [35] and the 

leaf inclination distribution function (LIDF) which is 

described with 2 parameters: the mean leaf inclination 

parameter (LIDFa) and bimodality of the leaf 

inclination distribution (LIDFb). 

Inversion of a physical reflectance model results in 

finding the set of input parameters which leads to the 

best match between simulated spectra by the model and 

observed spectra by the sensor. In this research we used 

an iterative optimization technique for model inversion. 

The iterative optimization is a classical technique to 

invert any model with continuous variables. It has been 

applied as well to invert radiative transfer models in 

remote sensing [36]. The minimization of a merit 

function that accounts for the differences between the 

simulated and the measured reflectance spectra is used 

as a stopping criterion for this optimization problem. 



 

Table 1 shows the initial guess of input parameters used 

in this research. To consider the contribution of the 

background soil reflectance in the model inversion, we 

changed the model soil spectra based on the value of 

soil moisture recorded in the pot in which canopy 

reflectance were taken.  

 

Table 1. Initial guess of parameters for retrieval  

Parameter Abbr.  

in 

model 

Unit Initial  

guess 

Leaf chlorophyll content Cab μg cm-

2 

40 

Leaf water content Cw g cm-2 0.009 
Leaf dry matter content Cdm g cm-2 0.012 

Leaf area index LAI m2  m-2  1 
Senescent material Cs - 0 

Leaf structural parameter N - 1.5 

Leaf inclination parameter LIDFa - - 0.35 
Biomodality of the leaf 

inclination 

LIDFb - - 0.15 

carotenoids   Cca μg cm-

2 

5 

Hot spot size parameter hot m m-1 0.05 
solar zenith angle θs deg 45 

observation zenith angle θo deg 0 
Relative Azimuth Angle  ψ deg 0 

 

The cost function calculated was simply the sum of 

the squared differences over the whole wavelength 

range of the measured reflectance. From the result, the 

RMSE between measured and simulated spectra was 

calculated according to Eq. 1: 

 

                                                             

(1) 

where Rmeasured is a measured reflectance and Rsimulated is 

a simulated reflectance through inversion, and n is the 

number of wavelengths. 

3. RESULTS AND DISCUSSION 

3.1. SWC curve as the water stress threshold 

 

The SWC curve measured in the laboratory (Fig. 1) was 

used to define a threshold for water stress. Common 

values of the pF (log of the negative water potential in 

cm) for the onset of stress and for the permanent wilting 

point are 2.6 and 4.2, respectively. Fig. 1 shows that 

these occur at volumetric soil moisture contents of 0.23 

and 0.2 [m3 m-3].  Because the Poa pratensis did not 

show any signs of drought stress for values of pF below 

4.2, we used a soil moisture condition of 0.2 [m3 m-3] as 

an upper limit for stress. 
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Figure 1. Soil Water Characteristics (SWC) curve 

produced in the laboratory and stress thresholds 

 

3.2. RTMo Radiative Transfer Modelling 

3.2.1. RTMo Inversion Results 

 

The RMSE of measured and simulated spectra was 

employed as the criterion of the model inversion 

performance. Fig. 2 shows the goodness of fit of the 

simulation in some samples of measured and simulated 

canopy reflectance spectra on different days of the 

experiment. 
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Figure 2. Measured (red line) and simulated/modeled 

(blue dash line) canopy spectra in different phases of 

drought experiment. 

These examples represent the performance of the 

inversion since there was a full agreement with the 

measured and simulated reflectance. The small error in 

the model inversion (0.002 < RMSE < 0.009) confirmed 

the simulation performance under different soil moisture 



 

contents during the experiment. However, the inversion 

results were also evaluated in their accuracy (deviations 

from measured parameter values). The relation between 

the measured and the retrieved (estimated) parameters 

(Cab and LAI) is demonstrated in Fig. 3. This figure 

illustrats the deviatins from the one-to-one line. There 

was a significant relationship between measured and 

retrieved values. 
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Figure 3. Retrieved versus measured vegetation parameters; (left) leaf chlorophyll content, and (right) LAI.  

3.2.2. Trend of Retrieved Parameters 

Retrieved leaf and canopy (leaf multiplied by LAI) 

parameters were plotted against their related soil 

moisture (Fig. 4). This way, we could follow the trend 

of changes and detect water stress impacts on the 

retrieved parameters. In the left panels of Fig. 4, we 

pooled together all the samples and fitted a nonlinear 

curve while in the middle and right panels in Fig. 4 we 

separated stressed and control treatments and fitted 

separate straight line segments. As Fig. 4 clearly shows 

(based on statistical analysis results shown in Table 2) 

the relationships are strong and significant, in the 

stressed treatment (SMC < 0.2). The chlorophyll content 

of the leaf is declining. Healthy plants, of which the 

growth is not limited by water availability, are generally 

expected to have higher chlorophyll content than water 

stressed plants. Reduced chlorophyll concentration  is 

often associated with the stressed plants.  In addition, 

the water content of the leaf, leaf dry matter content and 

LAI showed a declining trend during the water stress 

episode while Cs (brown pigments) showed an 

increasing trend. The trend of parameter changes at the 

canopy level indicates that at the permanent wilting 

point, all pigments and physical properties start 

changing and brown leaves appear. Furthermore, the 

results of the retrievals have shown no significant 

changes in control treatments either at leaf or canopy 

level.  Simple linear regression was performed between 

different retrieved parameters (at leaf and canopy 

levels) and soil moisture content in stressed and non-

stressed treatments (Tab. 2). ANOVA analysis showed 

that all relationships in the stressed treatments (n = 51) 

were strong (acceptable R2 values) and significant (the 

F-ratio for the slopes were significant at the 0.05 critical 

alpha level) at both leaf and canopy scale while there 

were not any significant relationships in the control (n = 

56) treatment (low R2 values and no significant F-ratio 

for the slopes). In addition, two-samples t-test results 

showed that there were significant differences between 

the stressed and control treatments at both leaf and 

canopy scale. When we pooled together all the samples, 

nonlinear regression was performed for all 

measurements together.  

R2 = 0.74 

NRMSE = 0.15 
 

 

R2 = 0.87 

NRMSE = 0.18 
 

 



 

 

   

   

   

     Figure 4. Relationship between retrieved parameters and soil moisture content; Left panels show all parameter changes 

together at leaf level, the middle panels show the parameter changes at the leaf level seperated by water stress threshold 

(SWC = 0.2 [m3 m-3], pF > 4.2) and the right panels show canopy (leaf level multiplied by LAI) parameter changes. 

 

 

 

 

 

 

 

 



 

 

Table 2. Relationship established between retrieved parameters (canopy levels) and soil moisture content in the stressed 

and control treatments.  

relationships/analysis One-way ANOVA  
Two samples t-test 

(differences of treatments) 

relationship Treatment R2 RMSE F-ratio probability p-value (Two-tailed) 

Retrieved canopy parameters: 

Cab-SWC 
Stressed  0.76 10.89 154.677 <0.0001* 

0.0001* 
control 0.19 12.09 13.268 0.001 

Cw-SWC 
Stressed  0.72 0.004 122.35 <0.0001* 

0.0001* 
control 0.15 0.005 9.36 0.003 

Cdm-SWC 
Stressed  0.69 0.001 106.496 <0.0001* 

0.001* 
control 0.23 0.002 16.125 0.0001 

Cs-SWC 
Stressed  0.42 0.167 35.141 <0.0001* 

0.0001* 
control 0.008 0.006 0.456 0.501 

LAI-SWC 

Stressed  0.52 0.53 52.384 <0.0001* 
0.14* 

control 0.22 0.444 15.82 0.001 

together 0.44 0.48 - - - 

      *The probability less than 0.05 (and acceptable correlation based on R-suared) is deemed significant (and strong) and denoted by bold number and star 

 

As Fig. 4 and Table 2 show, the trend of the parameter 

changes is totally different in stressed treatments in 

comparison to the control treatment. There is a strong 

and significant relationship between parameters and soil 

moisture content in the stress treatment. Cab, Cw, Cdm 

and LAI are declining during soil moisture deficit but 

Cs is increasing. However, such relationships in the 

control treatment are neither strong nor significant.  LAI 

has a significant correlation with soil moisture content, 

but it is not strong. This LAI trend might be explained 

by taking the time into account. We performed this 

experiment in late August and September when the 

growth period of vegetation is influenced by the season. 

September is the time when LAI of well-watered plants 

is also decreasing. The retrieved parameters showed a 

significant relationship with soil moisture content for 

the stress treatment. Almost all the retrieved parameters 

values (except Cs) are declining while the soil is drying. 

The more away from the stress threshold (and therefore, 

the dryer the soil and consequently the more severe the 

drought), the lower the parameters values. Thus, the soil 

moisture at the permanent wilting point might be a 

valuable index in which we can find a significant 

relationship between the parameters and the soil 

moisture content. In addition, corresponding retrieved 

parameter values at the wilting point (in this study a soil 

moisture content of 0.2 [m3 m-3]) might be a useful 

indicator of severity of drought and could be used as 

drought signals when measurements of soil moisture in 

the field are not available.  

 

4. CONCLUSIONS 

In this study, we investigated in the laboratory the 

vegetation response to water stress in a Poa pratensis 

grass canopy exposed to various levels of soil moisture 

deficit. Spectroradiometer observations and modeling 

simulations described in this article demonstrate that 

water stress changes all parts of the reflectance 

spectrum (VIS, NIR and SWIR). A 40% decrease in soil 

moisture content in a drought episode results in an 

average increase of 65% (std = 0.02) in reflectance in 

the visible part (450 - 700 nm), of 9% (std = 0.05) in the 

NIR part (700 - 1300 nm) and of 60%  (std = 0.07) in 

the SWIR part (1300 - 2450 nm). Furthermore, we 

retrieved leaf and canopy parameters using RTMo with 

satisfactory accuracy. By investigation of the trends of 

parameter changes during the experiment (both lab 

measurements and modelling results), we concluded 

that the soil moisture content at the permanent wilting 

point marked the threshold in which different behaviour 

of stressed and control treatments could be identified. 

Although there are some effects of soil moisture deficit 

on vegetation properties at soil moisture contents 

greater than the permanent wilting point, we found that 

the relationship between soil moisture deficit and 

vegetation properties changes were strong and 

significant below our proposed threshold (pF value 

below 4.2 and soil moisture lower than 0.2 [m3 m-3]). 

Corresponding retrieved parameter values in the 

proposed threshold might be a useful detector of 

drought signals when the measurements of soil moisture 

in the field is not available. Although a pF of 2.60 to 4.2 

is the point from which water uptake starts decreasing, 

this research showed that it is not detectable in the VIS, 

NIR and SWIR parts of the spectrum.
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