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Abstract. UML is a visual language. However surprisingly, there has been very 
little attention in either research or practice to the visual notations used in UML. 
Both academic analyses and official revisions to the standard have focused al-
most exclusively on semantic issues, with little debate about the visual syntax. 
We believe this is a major oversight and that as a result, UML’s visual devel-
opment is lagging behind its semantic development. The lack of attention to 
visual aspects is surprising given that the form of visual representations is 
known to have an equal if not greater effect on understanding and problem solv-
ing performance than their content. The UML visual notations were developed 
in a bottom-up manner, by reusing and synthesising existing notations, with 
choice of graphical conventions based on expert consensus. We argue that this 
is an inappropriate basis for making visual representation decisions and they 
should be based on theory and empirical evidence about cognitive effectiveness. 
This paper evaluates the visual syntax of UML using a set of evidence-based 
principles for designing cognitively effective visual notations. The analysis re-
veals some serious design flaws in the UML visual notations together with 
practical recommendations for fixing them.  

1   Introduction 

The Unified Modelling Language (UML) is widely accepted as an industry standard 
language for modelling software systems. The history of software engineering is char-
acterised by competing concepts, notations and methodologies. UML has provided the 
software industry with a common language, something which it has never had before. 
Its development represents a pivotal event in the history of software engineering, 
which has helped to unify the field and provide a basis for further standardisation.   

1.1   UML: A Visual Language 

UML is a “visual language for visualising, specifying, constructing and documenting 
software intensive systems” [25]. The UML visual vocabulary (symbol set) is loosely 
partitioned into 13 diagram types, which define overlapping views on the underlying 
metamodel (Figure 1). So far, there has been remarkably little debate in research or 
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practice about the visual notations used in UML (also called visual syntax or concrete 
syntax). There have been many academic evaluations of UML, but most have focused 
on semantic aspects [e.g. 8, 26, 35]. There have also been several revisions to UML, 
but these have also concentrated on semantic issues, with little discussion about, or 
modification to, graphical conventions. The lack of attention to visual aspects is sur-
prising given UML’s highly visual nature. It is even more surprising in the light of 
research in diagrammatic reasoning that shows that the form of representations has a 
comparatively greater effect on their effectiveness than their content [14, 34]. Appar-
ently minor changes in visual appearance can have dramatic impacts on understanding 
and problem solving performance [28]. 

 

Fig. 1. The 13 diagram types partition the UML visual vocabulary into a set of overlapping 
sublanguages [25] 

1.2   What Makes a Good Visual Language? 

Diagrams are uniquely human-oriented representations: they are created by humans 
for humans [12]. They have little or no value for communicating with computers, 
whose visual processing capabilities are primitive at best. To be most effective, visual 
languages therefore need to be optimised for processing by the human mind. Cogni-
tive effectiveness is defined as the speed, ease and accuracy with which information 
can be extracted from a representation [14]. This provides an operational definition 
for the “goodness” of a visual language and determines their utility for communica-
tion and for design and problem solving.  

The cognitive effectiveness of diagrams is one of the most widely accepted as-
sumptions in the software engineering field. However cognitive effectiveness is not 
an intrinsic property of diagrams but something that must be designed into them [14, 
28]. Diagrams are not effective simply because they are graphical, and poorly-
designed diagrams can be far less effective than text [5].  

Software engineering is a collaborative process which typically involves technical 
experts (software developers) and business stakeholders (end users, customers). It is 
therefore desirable that system representations (especially at the requirements level) 
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can be understood by both parties: effective user-developer communication is critical 
for successful software development. However a common criticism of UML is its 
poor communicability to end users [35]. In practice, UML diagrams are often trans-
lated into textual form for verification with users, which is a clear sign of their inef-
fectiveness for this purpose [36]. 

1.3   How UML Was Developed 

The graphical notations used in UML were developed in a bottom-up manner, by 
reusing and synthesising existing notations:  

“The UML notation is a melding of graphical syntax from various sources. The 
UML developers did not invent most of these ideas; rather, they selected and integrated 
the best ideas from object modelling and computer science practices.” [25] 

How the “best” ideas were identified is not explained, but seems to have been done 
(and still is) based on expert consensus. This paper argues that this is not a valid way to 
make graphical representation decisions, especially when the experts involved are not 
experts in graphic design (which is necessary to understand the implications of choices 
made). Being an expert in software engineering does not qualify someone to design 
visual representations. In the absence of such expertise, notation designers are forced to 
rely on common sense and opinion, which is unreliable: the effect of graphic design 
choices are often counterintuitive and our instincts can lead us horribly astray [40]. 

Design rationale is the process of explicitly documenting design decisions made 
and the reasons they were made. This helps provide traceability in the design process 
and to justify the final design. Design rationale explanations should include the rea-
sons behind design decisions, alternatives considered, and trade offs evaluated [15]. 
Such explanations are almost totally absent from the design of the UML visual nota-
tions. Graphical conventions are typically defined by assertion (e.g. “a class is repre-
sented by a rectangle”) with no attempt to justify them.  

1.4   Objectives of This Paper 

We argue that the design of visual notations should be evidence based: choice of 
graphical conventions should be based on the best available research evidence about 
cognitive effectiveness rather than on common sense or social consensus. There is an 
enormous amount of research that can be used to design better visual notations 
(though mostly outside the software engineering field). This paper evaluates the vis-
ual syntax of UML 2.0 using a set of evidence-based principles for designing cogni-
tively effective visual notations. Our aim is to be as constructive as possible in doing 
this: to improve the language rather than just point out its deficiencies. As a result, 
when we identify problems, we also try to offer practical (though evidence-based) 
suggestions for fixing them.  

2   Related Research 

Ontological analysis has become widely accepted as a way of evaluating the semantics 
of software engineering notations [7, 32]. This involves a two-way mapping between 
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the constructs of a notation and an ontology: the interpretation mapping describes the 
mapping from the notation to the ontology while the representation mapping describes 
the inverse mapping [7]. Ideally, there should be a one-to-one correspondence between 
the categories in the ontological theory and notation constructs (Figure 2). If there is 
not such a correspondence, one or more of the following problems will occur: 

• Construct deficit exists when there is no semantic construct corresponding to a 
particular ontological category.  

• Construct overload exists when the same semantic construct is used to represent 
multiple ontological categories 

• Construct redundancy exists when multiple semantic constructs are used to rep-
resent a single ontological category 

• Construct excess exists when a semantic construct does not correspond to any 
ontological category. 

If construct deficit exists, the language is said to be ontologically incomplete. If any 
of the other three anomalies exist, the language is said to be ontologically unclear. 
Ontological analysis has previously been applied to evaluate the semantics of UML 
[26]. This paper complements this previous research by extending the evaluation of 
UML to the level of visual syntax (form rather than content). 

 

Fig. 2. Ontological Analysis: there should be a 1:1 correspondence between ontological con-
cepts and modelling constructs 

3   Principles for Visual Notation Design 

A previous paper defined a set of principles for designing cognitively effective visual 
notations [19]. These principles were synthesised from theory and empirical evidence 
from a wide range of disciplines and have been previously used to evaluate and im-
prove two other visual languages [20, 21]: ArchiMate [13], which has been recently 
adopted as an international standard for modelling enterprise architectures and ORES, 
a proprietary cognitive mapping method for organisational development and strategic 
planning. We use these principles in this paper as a basis for evaluating the cognitive 
effectiveness of the UML visual notations. This section reviews the principles.  
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3.1   Principle of Semiotic Clarity 

This principle represents an extension of ontological analysis to the level of visual syn-
tax using a theory from semiotics. According to Goodman’s theory of symbols [9], for a 
notation to satisfy the requirements of a notational system, there should be a one-to-one 
correspondence between symbols and their referent concepts [9]. The requirements of a 
notational system constrain the allowable expressions and interpretations in a language 
in order to simplify use and minimise ambiguity: clearly, these are desirable properties 
for software engineering languages. When there is not a one-to-one correspondence 
between semantic constructs and graphical symbols, the following anomalies can occur 
(in analogy to the terminology used in ontological analysis) (Figure 3): 

• Symbol redundancy exists when multiple symbols are used to represent the same 
semantic construct. Such symbols are called synographs (the graphical equiva-
lent of synonyms). Symbol redundancy places a burden of choice on the lan-
guage user to decide which symbol to use and an additional load on the reader to 
remember multiple representations of the same construct. 

• Symbol overload exists when the same graphical symbol is used to represent dif-
ferent semantic constructs. Such symbols are called homographs (the graphical 
equivalent of homonyms). Symbol overload is the worst kind of anomaly as it 
leads to ambiguity and the potential for misinterpretation [9]. It also violates one 
of the basic properties of the symbol system of graphics (monosemy [1]), as the 
meaning of these symbols must emerge from the context or through the use of 
textual annotations. 

• Symbol excess exists when graphical symbols are used that don’t represent any 
semantic construct. Symbol excess unnecessarily increases graphic complexity, 
which has been found to reduce understanding of notations [23]. 

• Symbol deficit exists when semantic constructs are not represented by any 
graphical symbol. This is not necessarily a problem and can actually be an ad-
vantage: symbol deficit may be used as a deliberate strategy for reducing 
graphic complexity of notations. 

 
Fig. 3. Semiotic clarity represents an extension of ontological analysis to the syntactic level 
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If symbol deficit exists, the visual notation is said to be semiotically incomplete. If 
any of the other three anomalies exist, the notation is semiotically unclear. 

3.2   Principle of Perceptual Discriminability 

Perceptual discriminability is the ease and accuracy with which different graphical 
symbols can be differentiated from each other. Accurate discrimination between sym-
bols is a necessary prerequisite for accurate interpretation of diagrams [43].  

Visual Distance 
Perceptual discriminability is primarily determined by the visual distance between 
symbols, which is defined by (a) the number of visual variables on which they differ 
and (b) the size of these differences. In general, the greater the visual distance be-
tween symbols used to represent different constructs, the faster and more accurately 
they will be recognised [42]. If differences are too subtle, errors in interpretation and 
ambiguity can result. In particular, requirements for perceptual discriminability are 
much higher for novices (end users) than for experts [3, 4].  

Perceptual Popout 
According to feature integration theory, visual elements that have unique values on at 
least one visual variable can be detected pre-attentively and in parallel across the visual 
field [29, 38]. Such elements “pop out” of the visual field without conscious effort. On 
the other hand, visual elements that are differentiated by a unique combination of values 
(conjunctions) require serial inspection to be recognised, which is much slower, error-
prone and effortful [39]. The clear implication of this for visual notation design is that 
each graphical symbol should have a unique value on at least one visual variable. 

3.3   Principle of Perceptual Immediacy 

Perceptual immediacy refers to the use of graphical representations that have natural 
associations with the concepts or relationships they represent. While the Principle of 
Perceptual Discriminability requires that symbols used to represent different con-
structs should be clearly different from each other, this principle requires that symbols 
should (where possible) provide cues to their meaning. The most obvious form of 
association is perceptual resemblance, but other types of associations are possible: 
logical similarities, functional similarities and cultural associations.  

Iconic representations 
Icons are symbols which perceptually resemble the concepts they represent [27]. 
These make diagrams more visually appealing, speed up recognition and recall, and 
improve intelligibility to naïve users [3, 4]. Icons are pervasively used in user inter-
face design [22] and cartography [44] but surprisingly rarely in software engineering.  

Spatial relationships 
Perceptual immediacy also applies to representation of relationships. Certain spatial 
configurations of visual elements predispose people towards a particular interpretation 
of the relationship between them even if the nature of the elements is unknown [11, 
43]. For example, left-to-right arrangement of objects suggests causality or sequence 
while placing objects inside other objects suggests class membership (subset). 
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3.4   Principle of Visual Expressiveness 

Visual expressiveness refers to the number of different visual variables used in a vis-
ual notation. There are 8 elementary visual variables which can be used to graphically 
encode information (Figure 4) [1]. These are categorised into planar variables (the 
two spatial dimensions) and retinal variables (features of the retinal image).  

 

Fig. 4. The Dimensions of the Design Space: the visual variables define a set of elementary 
graphical techniques that can be used to construct visual notations  

Using a range of variables results in a perceptually enriched representation which 
uses multiple, parallel channels of communication. This maximises computational off-
loading and supports full utilisation of the graphic design space. Different visual vari-
ables have properties which make them suitable for encoding some types of information 
but not others. Knowledge of these properties is necessary to make effective choices.  

3.5   Principle of Graphic Parsimony 

Graphic complexity is defined as the number of distinct graphical conventions used in 
a notation: the size of its visual vocabulary [23]. Empirical studies show that increas-
ing graphic complexity significantly reduces understanding of software engineering 
diagrams by naïve users [23]. It is also a major barrier to learning and use of a nota-
tion. The human ability to discriminate between perceptually distinct alternatives on a 
single perceptual dimension (span of absolute judgement) is around six categories: 
this defines a practical limit for graphic complexity [18].  

4   Evaluation of UML 

In this section, we evaluate the 13 types of diagrams defined in UML 2.0 using the 
principles defined in Section 3. 

4.1   Principle of Semiotic Clarity 

The UML visual vocabulary contains many violations to semiotic clarity: in particu-
lar, it has alarmingly high levels of symbol redundancy and symbol overload. For 
example, of the 31 symbols commonly used on Class diagrams (shown in Figure 6 
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and Table 1), there are 5 synographs (16%) and 20 homographs (65%). This results in 
high levels of graphic ambiguity (due to homographs) and graphic complexity (due to 
synographs). 

• Symbol redundancy: this is widespread in UML: examples of synographs can be 
found in all diagram types. For example, in Use Case Diagrams, actors can  
be represented by stick figures or rectangles; in Class Diagrams, interfaces can 
be represented by rectangles or circles. Relationships can also be represented in 
different ways: for example, in Package Diagrams, package relationships can be 
shown using spatial enclosure or connecting lines. The purpose for providing al-
ternative visual representations is not explained but presumably to provide flexi-
bility to notation users. However flexibility in perceptual forms is undesirable in 
any language (e.g. alternative spellings for words in natural languages) and un-
dermines standardisation and communication.  

 

Fig. 5. Symbol redundancy: there are multiple graphical representations (synographs) for inter-
faces in Class Diagrams, actors in Use Case Diagrams and package relationships in Package 
Diagrams 

• Symbol overload: this is endemic in UML, with the majority of graphical con-
ventions used to mean different things. For example, in Class Diagrams, the 
same graphical symbol can be used to represent objects, classes and attributes. 
Different types of relationships can also be represented using the same graphical 
convention e.g. package merges, package imports and dependencies are all rep-
resented using dashed arrows. A major contributor to symbol overload in UML 
is the widespread practice of using text to discriminate between symbols (some-
thing which very few other software engineering notations do) 1. 

• Symbol excess: the most obvious example of symbol excess and one which af-
fects all UML diagram types is the note or comment. Notes contain explanatory 
text to clarify the meaning of a diagram and perform a similar role to comments 
in programs. Including notes on diagrams is a useful practice, but enclosing 
them in graphical symbols is unnecessary as they convey no additional seman-
tics. Such symbols add visual noise to the diagram (an example of what graphic 
designers call “boxitis” [41]) and confound its interpretation by making it likely 
they will be interpreted as constructs.  

Recommendations for Improvement  
To simplify interpretation and use of the language, all occurrences of symbol redun-
dancy, symbol overload and symbol excess should be removed: 

                                                           
1  Symbols are considered to be homographs if they have zero visual distance (i.e. they have 

identical values for all visual variables) but represent different semantic constructs. 
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• Symbol redundancy: this can be easily resolved by choosing one of the symbols 
as the sole representation for a construct. Two later principles (Perceptual Dis-
criminability and Perceptual Immediacy) provide the basis for choosing be-
tween synographs (identifying the most cognitively effective alternative).  

• Symbol overload: this can be resolved by differentiating between symbols used 
to represent different constructs. The Principle of Perceptual Discriminability 
defines ways of differentiating between symbols. 

• Symbol excess: this can be resolved simply by removing the unnecessary sym-
bols. For example, notes can be simply shown as blocks of text so they will not 
be interpreted as constructs. They should also be shown using smaller font so 
they are clearly lower in the visual hierarchy (perceptual precedence).  

4.2   Principle of Perceptual Discriminability 

UML diagrams consist of two types of elements: nodes (two-dimensional graphical 
elements) and links (one-dimensional graphical elements). Discriminability of both 
types of elements are important. Figure 6 shows the node types that commonly appear 
on Class Diagrams, which are the most important of all UML diagrams. There are 
several problems with the discriminability of these symbols: 

• Visual proximity: the node types (with one exception) differ on only a single 
visual variable (shape) and the values chosen are very close together: all shapes 
are either rectangles or rectangle variants. Given that experimental studies show 
that rectangles and diamonds are often confused by naïve users in ER diagrams 
[23], it is likely that these shapes will appear virtually identical to non-experts.  

• Textual encoding: some of the symbols have zero visual distance (homographs) 
and are differentiated by labels or typographical characteristics. For example, 
objects are distinguished from classes by use of underlining, abstract classes by 
italics and data types by a label «data type». Text is a inefficient way to differ-
entiate between symbols as it relies on slower, sequential cognitive processes.  

 

Fig. 6. Class Diagram node types: visual distances between symbols are too small to be reliably 
perceptible 

Table 1 shows the link types most commonly used on Class diagrams. There are a 
number of discriminability problems with these conventions: 

• Visual proximity: the link types differ on only two visual variables (shape and 
brightness) and the differences in values chosen are very small in many cases 
(e.g. closed and open arrows are visually similar).  
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• Non-unique values: discrimination between relationship types mostly relies on 
unique combinations of values (conjunctions). Only two of the links have unique 
values on any visual variable which precludes perceptual popout in most cases. 

• Textual encoding: some of the links have zero visual distance (homographs) and 
are differentiated only by labels.  

Table 1. Relationship Types in UML Class Diagrams 

 

Recommendations for Improvement 

There is a range of ways to improve the discriminability of UML symbols: 

• Clearly distinguishable shapes: of all the visual variables, shape plays a privi-
leged role in discrimination as it is the primary basis on which we classify ob-
jects in the real world: differences in shape generally signal differences in kind  
[2, 17, 30]. This means that shapes used to represent different constructs should 
be clearly distinguishable from each other. For example, packages could be 
shown as 3D rectangles to differentiate them from classes (Figure 7): these are 
clearly distinguishable from each other as they belong to different shape  
families. Another advantage is that their 3D appearance suggests that they can 
“contain” other things, which provides a clue to their meaning (Principle of 
Perceptual Immediacy).  

• Perceptual popout: each symbol should have a unique value on at least one  
visual variable rather than relying on conjunctions of values. 

• Redundant coding: discriminability can also be improved by using multiple  
visual variables in combination to increase visual distance [16]. Redundancy is 
an important technique used in communication theory to reduce errors and 
counteract noise [10, 33]. Figure 7 is an example of the use of redundant coding, 
as brightness (through the use of shading) is used in addition to shape to distin-
guish between classes and packages. This also facilitates perceptual popout as 
no other UML symbol uses shading.  
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• Resolving symbol redundancy: this principle also provides the basis for choos-
ing between synographs. For example, in Use Case Diagrams, stick figures 
should be preferred to rectangles for representing actors because they are much 
more discriminable from all other symbols that can appear on such diagrams. 

Class

Class

Package

 

Fig. 7. Use of a 3D shape to differentiate packages from classes. A handle can also be included 
to reinforce the role of a package as a “container” (Principle of Perceptual Immediacy). 

Redundant coding can also be used to improve discriminability of relationships in 
UML. In the current UML notation (Figure 8: left), the visual distance between gen-
eralisation relationships and associations is very small, even though these represent 
fundamentally different types of relationships (relational vs set-theoretic [12]). Dis-
criminability of these relationships can be improved by using an additional visual 
variable, vertical location (y), to differentiate between them (Figure 8: right). Loca-
tion is one of the most cognitively effective visual variables and this spatial configura-
tion of elements is naturally associated with hierarchical relationships, which supports 
ease and accuracy of interpretation (Principle of Perceptual Immediacy) [43]. 

Customer

Person

Organisation Account Customer

PersonOrganisation

Account

 

Fig. 8. Redundant coding I. Left: UML 2.0 uses only one visual variable (shape of  
arrowheads) to distinguish between association and generalisation relationships. Right: vertical 
location could be used to further differentiate generalisation relationships by always placing 
subclasses below superclasses.   

Discriminability can be improved further by adding a third visual variable: line to-
pology (shape) (Figure 9). Merged or “tree-style” line structures (where multiple lines 
converge into one) are also naturally associated with hierarchical relationships as they 
are the standard way of representing organisational charts (Principle of Perceptual 



 Evaluating the Visual Syntax of UML 27 

Immediacy). This would be even more effective if merged lines were reserved for this 
purpose: currently in UML, merged lines can be used to indicate generalisation sets but 
can also be used for many other types of relationships (e.g. aggregation, package com-
position, realisation) which means that it lacks any specific meaning. 

Customer

Person Organisation

Account

 

Fig. 9. Redundant coding II. Line topology (shape) can be used to differentiate generalisation 
relationships further 

Discriminability can be improved further by adding a fourth visual variable: line 
weight (size) (Figure 10). Use of an ordinal variable such as size creates a natural 
perceptual precedence among relationship types: generalisation relationships will be 
perceived to be more important than other relationship types. However this is justifi-
able as generalisation relationships are arguably the strongest relationships of all (as 
they represent “family” relationships): their visual precedence is therefore congruent 
with their semantic precedence. 

Customer

Person Organisation

Account

 

Fig. 10. Redundant coding III. Line weight (size) can be used to differentiate generalisation 
relationships further 

Finally, discriminability can be improved even further by adding a fifth visual vari-
able: colour (Figure 11).  

Each step in the process progressively introduces a new visual variable, so that by 
Figure 11 the difference between the relationships is unmistakeable. The last three 
visual variables introduced represent unique values as no other UML relationship 
types use these values: which facilitates perceptual “popout”. If merged lines were 
reserved for generalisation hierarchies, this too would be a unique value.  
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Fig. 11. Redundant Coding IV. Colour can also be used to redundantly encode generalisation 
relationships 

4.3   Principle of Perceptual Immediacy 

Like most software engineering notations, UML mostly relies on abstract geometrical 
shapes to represent constructs. Such symbols don’t convey anything about the mean-
ing of their referent concepts: their meaning is purely conventional and must be 
learnt. The only exception is Use Case Diagrams where stick figures and custom 
icons may be used to represent different types of actors. This may be one reason why 
these diagrams are more effective for communicating with business stakeholders than 
most other UML diagrams. UML also makes limited use of spatial relationships and 
relies mainly on different types of connecting lines to distinguish between different 
types of relationships (e.g. Table 1).  

Recommendations for Improvement 

Where possible, perceptually direct shapes, icons and spatial relationships should be 
used instead of simple “boxes and lines”. For example, Figure 7 shows how a more 
perceptually direct shape could be used to represent packages. As another example, 
whole-part relationships are shown in a similar way to other associations and are 
differentiated only by a different shaped connector. This convention is not mnemonic 
(it is difficult for non-experts to remember which end is the “whole” and which is the 
“part” end) and is ambiguous because diamonds are also used to represent n-ary rela-
tionships. A more perceptually direct way to show such relationships would be to 
allow them to “pierce” elements (Figure 12). This makes such relationships stand out 
from other relationships (Principle of Perceptual Discriminability) and also has a 
mnemonic association as the part emerges from “inside” the whole. Alternatively, a 
“dovetail joint” could be used. 

 

Fig. 12. “Piercing” elements (middle) conveys the concept of being “part of” in a more percep-
tually direct way than the existing convention (left) and makes such relationships more  
discriminable from other types of relationships. A “dovetail joint” (right) provides another 
possible option. 
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4.4   Principle of Visual Expressiveness 

The visual expressiveness of the UML visual notations is summarised in Table 2. 
Most diagram types use only two of the eight available visual variables, mostly shape 
and brightness. Shape is one of the least efficient variables and brightness is problem-
atic for discriminability purposes (for which it is mainly used) because it is an ordinal 
variable so creates perceptual precedence among symbols.   

Activity Diagrams are the only diagrams that use more than two visual variables, 
primarily because they use both planar variables (x,y) to encode information: “swim-
lanes” allow the diagram to be divided into horizontal and/or vertical regions which 
can convey information about who performs the activity, where it is performed etc. 
The planar variables are the most powerful visual variables and represent the major 
distinguishing feature between diagrams and textual representations [1, 14]. However 
few software engineering notations use spatial location to convey information and it 
acts as a major source of noise on most software engineering diagrams. UML Activity 
Diagrams represent a rare example of excellence in using spatial location to encode 
information in the software engineering field.  

Colour is one of the most cognitively effective visual variables, yet is specifically 
avoided in UML: 

“UML avoids the use of graphic markers, such as colour, that present challenges for 
certain persons (the colour blind) and for important kinds of equipment (such as print-
ers, copiers, and fax machines).” [25] 

A major contributing factor to the visual inexpressiveness of the UML visual nota-
tions is the use of text to encode information. UML currently relies far too much on 
textual elements to distinguish between symbols and to encode semantics (e.g. cardi-
nalities of relationships). As a result, UML diagrams are really more textual than 
graphical. 

Table 2. Visual Expressiveness of UML Diagrams 
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Recommendations for Improvement 

The recommendations for improving visual expressiveness are: 

• Colour: this provides an obvious opportunity for improving cognitive effective-
ness of UML diagrams as colour is one of the most cognitively efficient visual 
variables. Differences in colour are detected faster and more accurately than any 
other visual variable [37, 43]. The reasons given for not using colour in UML 
are simply not valid: firstly, technology limitations should not drive notation de-
sign choices; secondly, graphic designers have known about such problems for 
centuries and have developed effective ways of making graphic designs robust 
to such variations (primarily through redundant coding).  

• Graphical rather than textual encoding: text is less cognitively effective for en-
coding information and should only be used as a “tool of last resort” [24]. The 
more work that can be done by the visual variables, the greater the role of per-
ceptual processes and computational offloading.  

4.5   Principle of Graphic Parsimony (Less Is More) 

It is not an easy task to determine the graphic complexity of the UML diagram types 
as the rules for including symbols on each diagram type are very loosely defined. For 
example, there are 6 different types of structure diagrams (Class, Component, Com-
posite Structure, Deployment, Object, Package), but symbols from any of these  
diagrams can appear on any other (which explains their very high levels of graphic 
complexity in Table 3 below). This means that the graphic complexity of each type of 
structure diagram is the union of the symbols defined across all diagram types. The 
reason for such flexibility is hard to fathom, as the point of dividing the language into 
diagram types should be to partition complexity and to make the visual vocabularies 
of each diagram type manageable. Having such a laissez-faire approach places a great 
strain on perceptual discriminability and increases the graphic complexity of all dia-
grams. Table 3 summarises the graphic complexity of the UML diagram types (the  
 

Table 3. Graphic Complexity of UML Diagrams 

Diagram Graphic Complexity

Activity 31 
Class 60 
Communication 8 
Component 60 
Composite structure 60 
Deployment 60 
Interaction overview 31 
Object 60 
Package 60 

  Sequence 16 
State machine 20 
Timing 9 
Use case 9 
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number of different graphical conventions that can appear on each diagram type). 
Most of them exceed human discrimination ability by quite a large margin. A notable 
exception is Use Case Diagrams which may explain their effectiveness in communi-
cating with business stakeholders. 

Recommendations for Improvement 

There are three general strategies for dealing with excessive graphic complexity: 

1. Reducing semantic complexity: reducing the number of semantic constructs is an 
obvious way of reducing graphic complexity. In UML, a major contributor to 
graphic complexity is the level of overlap between the visual vocabularies of dia-
gram types. To reduce this, metamodel constructs could be repartitioned so that 
the number of constructs in each diagram type is manageable and there is less 
overlap between them. 

2. Reducing graphic complexity: graphic complexity can also be reduced directly 
(without affecting semantics) by introducing symbol deficit.  

3. Increasing visual expressiveness: The span of absolute judgement and therefore 
the limits of graphic complexity can be expanded by increasing the number of 
perceptual dimensions on which visual stimuli differ. Using multiple visual vari-
ables to differentiate between symbols (Principle of Visual Expressiveness) can 
increase the span of absolute judgement in an (almost) additive manner [18].  

5   Conclusion 

This paper has evaluated the cognitive effectiveness of the 13 UML diagram types 
using theory and empirical evidence from a wide range of fields. The conclusion from 
our analysis is that radical surgery is required to the UML visual notations to make 
them cognitively effective. We have also suggested a number of ways of solving the 
problems identified, though these represent only the “tip of the iceberg” in the im-
provements that are possible: space limitations prevent us including more. Of all the 
diagram types, Use Case Diagrams and Activity Diagrams are the best from a visual 
representation viewpoint, which may explain why they are the most commonly used 
for communicating with business stakeholders [6]. Class Diagrams are among the 
worst – even though they are the most important diagrams – which may explain why 
they are commonly translated into text for communicating with users [36].  

Another goal of this paper has been to draw attention to the importance of visual 
syntax in the design of UML. Visual syntax is an important determinant of the cogni-
tive effectiveness of software engineering notations, perhaps even more important 
than their semantics. We believe that the lack of attention to visual aspects of UML is 
a major oversight and that as a result its visual development is lagging behind its 
semantic development.  

5.1   Theoretical and Practical Significance 

Software engineering has developed mature methods for evaluating semantics of 
software engineering notations (e.g. ontological analysis). However it lacks compara-
ble methods for evaluating visual notations. The theoretical contribution of this paper 
is to demonstrate a scientific approach to evaluating and improving visual notations, 
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which provides an alternative to informal approaches that are currently used. This 
complements formal approaches such as ontological analysis that are used to evaluate 
semantics of notations.  

The practical contribution of this paper is that it provides a theoretically and em-
pirically sound basis for improving the cognitive effectiveness of the UML visual 
notations. This will improve communication with business stakeholders (which is 
currently a major weakness) as well as design and problem solving performance. 
Cognitive effectiveness supports both these purposes as it optimises representations 
for processing by the human mind. 

5.2   UML 3.0: A Golden Opportunity? 

The next release of UML represents a golden opportunity to redesign the visual nota-
tions in a cognitively optimal manner. The existing UML notations have been devel-
oped in a bottom up manner, by reusing and synthesising existing notations. However 
ideally, visual representations should be designed in a top-down manner based on a 
thorough analysis of the information content to be conveyed: form should follow 
content [31]. The UML metamodel provides a sound and now relatively stable foun-
dation for doing this. Of course, such change will need to be handled carefully as 
practitioners familiar with the existing notation will resist radical change. However 
they may be more open to changes if they have a clear design rationale grounded on 
theory and empirical evidence, something which is currently lacking from the UML 
visual syntax. 
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