
D. Gašević, R. Lämmel, and E. Van Wyk (Eds.): SLE 2008, LNCS 5452, pp. 16–34, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evaluating the Visual Syntax of UML: An Analysis
of the Cognitive Effectiveness of the UML Family

of Diagrams

Daniel Moody and Jos van Hillegersberg

Department of Information Systems & Change Management
University of Twente, Enschede, Netherlands

d.l.moody@utwente.nl

Abstract. UML is a visual language. However surprisingly, there has been very
little attention in either research or practice to the visual notations used in UML.
Both academic analyses and official revisions to the standard have focused al-
most exclusively on semantic issues, with little debate about the visual syntax.
We believe this is a major oversight and that as a result, UML’s visual devel-
opment is lagging behind its semantic development. The lack of attention to
visual aspects is surprising given that the form of visual representations is
known to have an equal if not greater effect on understanding and problem solv-
ing performance than their content. The UML visual notations were developed
in a bottom-up manner, by reusing and synthesising existing notations, with
choice of graphical conventions based on expert consensus. We argue that this
is an inappropriate basis for making visual representation decisions and they
should be based on theory and empirical evidence about cognitive effectiveness.
This paper evaluates the visual syntax of UML using a set of evidence-based
principles for designing cognitively effective visual notations. The analysis re-
veals some serious design flaws in the UML visual notations together with
practical recommendations for fixing them.

1 Introduction

The Unified Modelling Language (UML) is widely accepted as an industry standard
language for modelling software systems. The history of software engineering is char-
acterised by competing concepts, notations and methodologies. UML has provided the
software industry with a common language, something which it has never had before.
Its development represents a pivotal event in the history of software engineering,
which has helped to unify the field and provide a basis for further standardisation.

1.1 UML: A Visual Language

UML is a “visual language for visualising, specifying, constructing and documenting
software intensive systems” [25]. The UML visual vocabulary (symbol set) is loosely
partitioned into 13 diagram types, which define overlapping views on the underlying
metamodel (Figure 1). So far, there has been remarkably little debate in research or

 Evaluating the Visual Syntax of UML 17

practice about the visual notations used in UML (also called visual syntax or concrete
syntax). There have been many academic evaluations of UML, but most have focused
on semantic aspects [e.g. 8, 26, 35]. There have also been several revisions to UML,
but these have also concentrated on semantic issues, with little discussion about, or
modification to, graphical conventions. The lack of attention to visual aspects is sur-
prising given UML’s highly visual nature. It is even more surprising in the light of
research in diagrammatic reasoning that shows that the form of representations has a
comparatively greater effect on their effectiveness than their content [14, 34]. Appar-
ently minor changes in visual appearance can have dramatic impacts on understanding
and problem solving performance [28].

Fig. 1. The 13 diagram types partition the UML visual vocabulary into a set of overlapping
sublanguages [25]

1.2 What Makes a Good Visual Language?

Diagrams are uniquely human-oriented representations: they are created by humans
for humans [12]. They have little or no value for communicating with computers,
whose visual processing capabilities are primitive at best. To be most effective, visual
languages therefore need to be optimised for processing by the human mind. Cogni-
tive effectiveness is defined as the speed, ease and accuracy with which information
can be extracted from a representation [14]. This provides an operational definition
for the “goodness” of a visual language and determines their utility for communica-
tion and for design and problem solving.

The cognitive effectiveness of diagrams is one of the most widely accepted as-
sumptions in the software engineering field. However cognitive effectiveness is not
an intrinsic property of diagrams but something that must be designed into them [14,
28]. Diagrams are not effective simply because they are graphical, and poorly-
designed diagrams can be far less effective than text [5].

Software engineering is a collaborative process which typically involves technical
experts (software developers) and business stakeholders (end users, customers). It is
therefore desirable that system representations (especially at the requirements level)

18 D. Moody and J. van Hillegersberg

can be understood by both parties: effective user-developer communication is critical
for successful software development. However a common criticism of UML is its
poor communicability to end users [35]. In practice, UML diagrams are often trans-
lated into textual form for verification with users, which is a clear sign of their inef-
fectiveness for this purpose [36].

1.3 How UML Was Developed

The graphical notations used in UML were developed in a bottom-up manner, by
reusing and synthesising existing notations:

“The UML notation is a melding of graphical syntax from various sources. The
UML developers did not invent most of these ideas; rather, they selected and integrated
the best ideas from object modelling and computer science practices.” [25]

How the “best” ideas were identified is not explained, but seems to have been done
(and still is) based on expert consensus. This paper argues that this is not a valid way to
make graphical representation decisions, especially when the experts involved are not
experts in graphic design (which is necessary to understand the implications of choices
made). Being an expert in software engineering does not qualify someone to design
visual representations. In the absence of such expertise, notation designers are forced to
rely on common sense and opinion, which is unreliable: the effect of graphic design
choices are often counterintuitive and our instincts can lead us horribly astray [40].

Design rationale is the process of explicitly documenting design decisions made
and the reasons they were made. This helps provide traceability in the design process
and to justify the final design. Design rationale explanations should include the rea-
sons behind design decisions, alternatives considered, and trade offs evaluated [15].
Such explanations are almost totally absent from the design of the UML visual nota-
tions. Graphical conventions are typically defined by assertion (e.g. “a class is repre-
sented by a rectangle”) with no attempt to justify them.

1.4 Objectives of This Paper

We argue that the design of visual notations should be evidence based: choice of
graphical conventions should be based on the best available research evidence about
cognitive effectiveness rather than on common sense or social consensus. There is an
enormous amount of research that can be used to design better visual notations
(though mostly outside the software engineering field). This paper evaluates the vis-
ual syntax of UML 2.0 using a set of evidence-based principles for designing cogni-
tively effective visual notations. Our aim is to be as constructive as possible in doing
this: to improve the language rather than just point out its deficiencies. As a result,
when we identify problems, we also try to offer practical (though evidence-based)
suggestions for fixing them.

2 Related Research

Ontological analysis has become widely accepted as a way of evaluating the semantics
of software engineering notations [7, 32]. This involves a two-way mapping between

 Evaluating the Visual Syntax of UML 19

the constructs of a notation and an ontology: the interpretation mapping describes the
mapping from the notation to the ontology while the representation mapping describes
the inverse mapping [7]. Ideally, there should be a one-to-one correspondence between
the categories in the ontological theory and notation constructs (Figure 2). If there is
not such a correspondence, one or more of the following problems will occur:

• Construct deficit exists when there is no semantic construct corresponding to a
particular ontological category.

• Construct overload exists when the same semantic construct is used to represent
multiple ontological categories

• Construct redundancy exists when multiple semantic constructs are used to rep-
resent a single ontological category

• Construct excess exists when a semantic construct does not correspond to any
ontological category.

If construct deficit exists, the language is said to be ontologically incomplete. If any
of the other three anomalies exist, the language is said to be ontologically unclear.
Ontological analysis has previously been applied to evaluate the semantics of UML
[26]. This paper complements this previous research by extending the evaluation of
UML to the level of visual syntax (form rather than content).

Fig. 2. Ontological Analysis: there should be a 1:1 correspondence between ontological con-
cepts and modelling constructs

3 Principles for Visual Notation Design

A previous paper defined a set of principles for designing cognitively effective visual
notations [19]. These principles were synthesised from theory and empirical evidence
from a wide range of disciplines and have been previously used to evaluate and im-
prove two other visual languages [20, 21]: ArchiMate [13], which has been recently
adopted as an international standard for modelling enterprise architectures and ORES,
a proprietary cognitive mapping method for organisational development and strategic
planning. We use these principles in this paper as a basis for evaluating the cognitive
effectiveness of the UML visual notations. This section reviews the principles.

20 D. Moody and J. van Hillegersberg

3.1 Principle of Semiotic Clarity

This principle represents an extension of ontological analysis to the level of visual syn-
tax using a theory from semiotics. According to Goodman’s theory of symbols [9], for a
notation to satisfy the requirements of a notational system, there should be a one-to-one
correspondence between symbols and their referent concepts [9]. The requirements of a
notational system constrain the allowable expressions and interpretations in a language
in order to simplify use and minimise ambiguity: clearly, these are desirable properties
for software engineering languages. When there is not a one-to-one correspondence
between semantic constructs and graphical symbols, the following anomalies can occur
(in analogy to the terminology used in ontological analysis) (Figure 3):

• Symbol redundancy exists when multiple symbols are used to represent the same
semantic construct. Such symbols are called synographs (the graphical equiva-
lent of synonyms). Symbol redundancy places a burden of choice on the lan-
guage user to decide which symbol to use and an additional load on the reader to
remember multiple representations of the same construct.

• Symbol overload exists when the same graphical symbol is used to represent dif-
ferent semantic constructs. Such symbols are called homographs (the graphical
equivalent of homonyms). Symbol overload is the worst kind of anomaly as it
leads to ambiguity and the potential for misinterpretation [9]. It also violates one
of the basic properties of the symbol system of graphics (monosemy [1]), as the
meaning of these symbols must emerge from the context or through the use of
textual annotations.

• Symbol excess exists when graphical symbols are used that don’t represent any
semantic construct. Symbol excess unnecessarily increases graphic complexity,
which has been found to reduce understanding of notations [23].

• Symbol deficit exists when semantic constructs are not represented by any
graphical symbol. This is not necessarily a problem and can actually be an ad-
vantage: symbol deficit may be used as a deliberate strategy for reducing
graphic complexity of notations.

Fig. 3. Semiotic clarity represents an extension of ontological analysis to the syntactic level

 Evaluating the Visual Syntax of UML 21

If symbol deficit exists, the visual notation is said to be semiotically incomplete. If
any of the other three anomalies exist, the notation is semiotically unclear.

3.2 Principle of Perceptual Discriminability

Perceptual discriminability is the ease and accuracy with which different graphical
symbols can be differentiated from each other. Accurate discrimination between sym-
bols is a necessary prerequisite for accurate interpretation of diagrams [43].

Visual Distance
Perceptual discriminability is primarily determined by the visual distance between
symbols, which is defined by (a) the number of visual variables on which they differ
and (b) the size of these differences. In general, the greater the visual distance be-
tween symbols used to represent different constructs, the faster and more accurately
they will be recognised [42]. If differences are too subtle, errors in interpretation and
ambiguity can result. In particular, requirements for perceptual discriminability are
much higher for novices (end users) than for experts [3, 4].

Perceptual Popout
According to feature integration theory, visual elements that have unique values on at
least one visual variable can be detected pre-attentively and in parallel across the visual
field [29, 38]. Such elements “pop out” of the visual field without conscious effort. On
the other hand, visual elements that are differentiated by a unique combination of values
(conjunctions) require serial inspection to be recognised, which is much slower, error-
prone and effortful [39]. The clear implication of this for visual notation design is that
each graphical symbol should have a unique value on at least one visual variable.

3.3 Principle of Perceptual Immediacy

Perceptual immediacy refers to the use of graphical representations that have natural
associations with the concepts or relationships they represent. While the Principle of
Perceptual Discriminability requires that symbols used to represent different con-
structs should be clearly different from each other, this principle requires that symbols
should (where possible) provide cues to their meaning. The most obvious form of
association is perceptual resemblance, but other types of associations are possible:
logical similarities, functional similarities and cultural associations.

Iconic representations
Icons are symbols which perceptually resemble the concepts they represent [27].
These make diagrams more visually appealing, speed up recognition and recall, and
improve intelligibility to naïve users [3, 4]. Icons are pervasively used in user inter-
face design [22] and cartography [44] but surprisingly rarely in software engineering.

Spatial relationships
Perceptual immediacy also applies to representation of relationships. Certain spatial
configurations of visual elements predispose people towards a particular interpretation
of the relationship between them even if the nature of the elements is unknown [11,
43]. For example, left-to-right arrangement of objects suggests causality or sequence
while placing objects inside other objects suggests class membership (subset).

22 D. Moody and J. van Hillegersberg

3.4 Principle of Visual Expressiveness

Visual expressiveness refers to the number of different visual variables used in a vis-
ual notation. There are 8 elementary visual variables which can be used to graphically
encode information (Figure 4) [1]. These are categorised into planar variables (the
two spatial dimensions) and retinal variables (features of the retinal image).

Fig. 4. The Dimensions of the Design Space: the visual variables define a set of elementary
graphical techniques that can be used to construct visual notations

Using a range of variables results in a perceptually enriched representation which
uses multiple, parallel channels of communication. This maximises computational off-
loading and supports full utilisation of the graphic design space. Different visual vari-
ables have properties which make them suitable for encoding some types of information
but not others. Knowledge of these properties is necessary to make effective choices.

3.5 Principle of Graphic Parsimony

Graphic complexity is defined as the number of distinct graphical conventions used in
a notation: the size of its visual vocabulary [23]. Empirical studies show that increas-
ing graphic complexity significantly reduces understanding of software engineering
diagrams by naïve users [23]. It is also a major barrier to learning and use of a nota-
tion. The human ability to discriminate between perceptually distinct alternatives on a
single perceptual dimension (span of absolute judgement) is around six categories:
this defines a practical limit for graphic complexity [18].

4 Evaluation of UML

In this section, we evaluate the 13 types of diagrams defined in UML 2.0 using the
principles defined in Section 3.

4.1 Principle of Semiotic Clarity

The UML visual vocabulary contains many violations to semiotic clarity: in particu-
lar, it has alarmingly high levels of symbol redundancy and symbol overload. For
example, of the 31 symbols commonly used on Class diagrams (shown in Figure 6

 Evaluating the Visual Syntax of UML 23

and Table 1), there are 5 synographs (16%) and 20 homographs (65%). This results in
high levels of graphic ambiguity (due to homographs) and graphic complexity (due to
synographs).

• Symbol redundancy: this is widespread in UML: examples of synographs can be
found in all diagram types. For example, in Use Case Diagrams, actors can
be represented by stick figures or rectangles; in Class Diagrams, interfaces can
be represented by rectangles or circles. Relationships can also be represented in
different ways: for example, in Package Diagrams, package relationships can be
shown using spatial enclosure or connecting lines. The purpose for providing al-
ternative visual representations is not explained but presumably to provide flexi-
bility to notation users. However flexibility in perceptual forms is undesirable in
any language (e.g. alternative spellings for words in natural languages) and un-
dermines standardisation and communication.

Fig. 5. Symbol redundancy: there are multiple graphical representations (synographs) for inter-
faces in Class Diagrams, actors in Use Case Diagrams and package relationships in Package
Diagrams

• Symbol overload: this is endemic in UML, with the majority of graphical con-
ventions used to mean different things. For example, in Class Diagrams, the
same graphical symbol can be used to represent objects, classes and attributes.
Different types of relationships can also be represented using the same graphical
convention e.g. package merges, package imports and dependencies are all rep-
resented using dashed arrows. A major contributor to symbol overload in UML
is the widespread practice of using text to discriminate between symbols (some-
thing which very few other software engineering notations do) 1.

• Symbol excess: the most obvious example of symbol excess and one which af-
fects all UML diagram types is the note or comment. Notes contain explanatory
text to clarify the meaning of a diagram and perform a similar role to comments
in programs. Including notes on diagrams is a useful practice, but enclosing
them in graphical symbols is unnecessary as they convey no additional seman-
tics. Such symbols add visual noise to the diagram (an example of what graphic
designers call “boxitis” [41]) and confound its interpretation by making it likely
they will be interpreted as constructs.

Recommendations for Improvement
To simplify interpretation and use of the language, all occurrences of symbol redun-
dancy, symbol overload and symbol excess should be removed:

1 Symbols are considered to be homographs if they have zero visual distance (i.e. they have

identical values for all visual variables) but represent different semantic constructs.

24 D. Moody and J. van Hillegersberg

• Symbol redundancy: this can be easily resolved by choosing one of the symbols
as the sole representation for a construct. Two later principles (Perceptual Dis-
criminability and Perceptual Immediacy) provide the basis for choosing be-
tween synographs (identifying the most cognitively effective alternative).

• Symbol overload: this can be resolved by differentiating between symbols used
to represent different constructs. The Principle of Perceptual Discriminability
defines ways of differentiating between symbols.

• Symbol excess: this can be resolved simply by removing the unnecessary sym-
bols. For example, notes can be simply shown as blocks of text so they will not
be interpreted as constructs. They should also be shown using smaller font so
they are clearly lower in the visual hierarchy (perceptual precedence).

4.2 Principle of Perceptual Discriminability

UML diagrams consist of two types of elements: nodes (two-dimensional graphical
elements) and links (one-dimensional graphical elements). Discriminability of both
types of elements are important. Figure 6 shows the node types that commonly appear
on Class Diagrams, which are the most important of all UML diagrams. There are
several problems with the discriminability of these symbols:

• Visual proximity: the node types (with one exception) differ on only a single
visual variable (shape) and the values chosen are very close together: all shapes
are either rectangles or rectangle variants. Given that experimental studies show
that rectangles and diamonds are often confused by naïve users in ER diagrams
[23], it is likely that these shapes will appear virtually identical to non-experts.

• Textual encoding: some of the symbols have zero visual distance (homographs)
and are differentiated by labels or typographical characteristics. For example,
objects are distinguished from classes by use of underlining, abstract classes by
italics and data types by a label «data type». Text is a inefficient way to differ-
entiate between symbols as it relies on slower, sequential cognitive processes.

Fig. 6. Class Diagram node types: visual distances between symbols are too small to be reliably
perceptible

Table 1 shows the link types most commonly used on Class diagrams. There are a
number of discriminability problems with these conventions:

• Visual proximity: the link types differ on only two visual variables (shape and
brightness) and the differences in values chosen are very small in many cases
(e.g. closed and open arrows are visually similar).

 Evaluating the Visual Syntax of UML 25

• Non-unique values: discrimination between relationship types mostly relies on
unique combinations of values (conjunctions). Only two of the links have unique
values on any visual variable which precludes perceptual popout in most cases.

• Textual encoding: some of the links have zero visual distance (homographs) and
are differentiated only by labels.

Table 1. Relationship Types in UML Class Diagrams

Recommendations for Improvement

There is a range of ways to improve the discriminability of UML symbols:

• Clearly distinguishable shapes: of all the visual variables, shape plays a privi-
leged role in discrimination as it is the primary basis on which we classify ob-
jects in the real world: differences in shape generally signal differences in kind
[2, 17, 30]. This means that shapes used to represent different constructs should
be clearly distinguishable from each other. For example, packages could be
shown as 3D rectangles to differentiate them from classes (Figure 7): these are
clearly distinguishable from each other as they belong to different shape
families. Another advantage is that their 3D appearance suggests that they can
“contain” other things, which provides a clue to their meaning (Principle of
Perceptual Immediacy).

• Perceptual popout: each symbol should have a unique value on at least one
visual variable rather than relying on conjunctions of values.

• Redundant coding: discriminability can also be improved by using multiple
visual variables in combination to increase visual distance [16]. Redundancy is
an important technique used in communication theory to reduce errors and
counteract noise [10, 33]. Figure 7 is an example of the use of redundant coding,
as brightness (through the use of shading) is used in addition to shape to distin-
guish between classes and packages. This also facilitates perceptual popout as
no other UML symbol uses shading.

26 D. Moody and J. van Hillegersberg

• Resolving symbol redundancy: this principle also provides the basis for choos-
ing between synographs. For example, in Use Case Diagrams, stick figures
should be preferred to rectangles for representing actors because they are much
more discriminable from all other symbols that can appear on such diagrams.

Class

Class

Package

Fig. 7. Use of a 3D shape to differentiate packages from classes. A handle can also be included
to reinforce the role of a package as a “container” (Principle of Perceptual Immediacy).

Redundant coding can also be used to improve discriminability of relationships in
UML. In the current UML notation (Figure 8: left), the visual distance between gen-
eralisation relationships and associations is very small, even though these represent
fundamentally different types of relationships (relational vs set-theoretic [12]). Dis-
criminability of these relationships can be improved by using an additional visual
variable, vertical location (y), to differentiate between them (Figure 8: right). Loca-
tion is one of the most cognitively effective visual variables and this spatial configura-
tion of elements is naturally associated with hierarchical relationships, which supports
ease and accuracy of interpretation (Principle of Perceptual Immediacy) [43].

Customer

Person

Organisation Account Customer

PersonOrganisation

Account

Fig. 8. Redundant coding I. Left: UML 2.0 uses only one visual variable (shape of
arrowheads) to distinguish between association and generalisation relationships. Right: vertical
location could be used to further differentiate generalisation relationships by always placing
subclasses below superclasses.

Discriminability can be improved further by adding a third visual variable: line to-
pology (shape) (Figure 9). Merged or “tree-style” line structures (where multiple lines
converge into one) are also naturally associated with hierarchical relationships as they
are the standard way of representing organisational charts (Principle of Perceptual

 Evaluating the Visual Syntax of UML 27

Immediacy). This would be even more effective if merged lines were reserved for this
purpose: currently in UML, merged lines can be used to indicate generalisation sets but
can also be used for many other types of relationships (e.g. aggregation, package com-
position, realisation) which means that it lacks any specific meaning.

Customer

Person Organisation

Account

Fig. 9. Redundant coding II. Line topology (shape) can be used to differentiate generalisation
relationships further

Discriminability can be improved further by adding a fourth visual variable: line
weight (size) (Figure 10). Use of an ordinal variable such as size creates a natural
perceptual precedence among relationship types: generalisation relationships will be
perceived to be more important than other relationship types. However this is justifi-
able as generalisation relationships are arguably the strongest relationships of all (as
they represent “family” relationships): their visual precedence is therefore congruent
with their semantic precedence.

Customer

Person Organisation

Account

Fig. 10. Redundant coding III. Line weight (size) can be used to differentiate generalisation
relationships further

Finally, discriminability can be improved even further by adding a fifth visual vari-
able: colour (Figure 11).

Each step in the process progressively introduces a new visual variable, so that by
Figure 11 the difference between the relationships is unmistakeable. The last three
visual variables introduced represent unique values as no other UML relationship
types use these values: which facilitates perceptual “popout”. If merged lines were
reserved for generalisation hierarchies, this too would be a unique value.

28 D. Moody and J. van Hillegersberg

Fig. 11. Redundant Coding IV. Colour can also be used to redundantly encode generalisation
relationships

4.3 Principle of Perceptual Immediacy

Like most software engineering notations, UML mostly relies on abstract geometrical
shapes to represent constructs. Such symbols don’t convey anything about the mean-
ing of their referent concepts: their meaning is purely conventional and must be
learnt. The only exception is Use Case Diagrams where stick figures and custom
icons may be used to represent different types of actors. This may be one reason why
these diagrams are more effective for communicating with business stakeholders than
most other UML diagrams. UML also makes limited use of spatial relationships and
relies mainly on different types of connecting lines to distinguish between different
types of relationships (e.g. Table 1).

Recommendations for Improvement

Where possible, perceptually direct shapes, icons and spatial relationships should be
used instead of simple “boxes and lines”. For example, Figure 7 shows how a more
perceptually direct shape could be used to represent packages. As another example,
whole-part relationships are shown in a similar way to other associations and are
differentiated only by a different shaped connector. This convention is not mnemonic
(it is difficult for non-experts to remember which end is the “whole” and which is the
“part” end) and is ambiguous because diamonds are also used to represent n-ary rela-
tionships. A more perceptually direct way to show such relationships would be to
allow them to “pierce” elements (Figure 12). This makes such relationships stand out
from other relationships (Principle of Perceptual Discriminability) and also has a
mnemonic association as the part emerges from “inside” the whole. Alternatively, a
“dovetail joint” could be used.

Fig. 12. “Piercing” elements (middle) conveys the concept of being “part of” in a more percep-
tually direct way than the existing convention (left) and makes such relationships more
discriminable from other types of relationships. A “dovetail joint” (right) provides another
possible option.

 Evaluating the Visual Syntax of UML 29

4.4 Principle of Visual Expressiveness

The visual expressiveness of the UML visual notations is summarised in Table 2.
Most diagram types use only two of the eight available visual variables, mostly shape
and brightness. Shape is one of the least efficient variables and brightness is problem-
atic for discriminability purposes (for which it is mainly used) because it is an ordinal
variable so creates perceptual precedence among symbols.

Activity Diagrams are the only diagrams that use more than two visual variables,
primarily because they use both planar variables (x,y) to encode information: “swim-
lanes” allow the diagram to be divided into horizontal and/or vertical regions which
can convey information about who performs the activity, where it is performed etc.
The planar variables are the most powerful visual variables and represent the major
distinguishing feature between diagrams and textual representations [1, 14]. However
few software engineering notations use spatial location to convey information and it
acts as a major source of noise on most software engineering diagrams. UML Activity
Diagrams represent a rare example of excellence in using spatial location to encode
information in the software engineering field.

Colour is one of the most cognitively effective visual variables, yet is specifically
avoided in UML:

“UML avoids the use of graphic markers, such as colour, that present challenges for
certain persons (the colour blind) and for important kinds of equipment (such as print-
ers, copiers, and fax machines).” [25]

A major contributing factor to the visual inexpressiveness of the UML visual nota-
tions is the use of text to encode information. UML currently relies far too much on
textual elements to distinguish between symbols and to encode semantics (e.g. cardi-
nalities of relationships). As a result, UML diagrams are really more textual than
graphical.

Table 2. Visual Expressiveness of UML Diagrams

30 D. Moody and J. van Hillegersberg

Recommendations for Improvement

The recommendations for improving visual expressiveness are:

• Colour: this provides an obvious opportunity for improving cognitive effective-
ness of UML diagrams as colour is one of the most cognitively efficient visual
variables. Differences in colour are detected faster and more accurately than any
other visual variable [37, 43]. The reasons given for not using colour in UML
are simply not valid: firstly, technology limitations should not drive notation de-
sign choices; secondly, graphic designers have known about such problems for
centuries and have developed effective ways of making graphic designs robust
to such variations (primarily through redundant coding).

• Graphical rather than textual encoding: text is less cognitively effective for en-
coding information and should only be used as a “tool of last resort” [24]. The
more work that can be done by the visual variables, the greater the role of per-
ceptual processes and computational offloading.

4.5 Principle of Graphic Parsimony (Less Is More)

It is not an easy task to determine the graphic complexity of the UML diagram types
as the rules for including symbols on each diagram type are very loosely defined. For
example, there are 6 different types of structure diagrams (Class, Component, Com-
posite Structure, Deployment, Object, Package), but symbols from any of these
diagrams can appear on any other (which explains their very high levels of graphic
complexity in Table 3 below). This means that the graphic complexity of each type of
structure diagram is the union of the symbols defined across all diagram types. The
reason for such flexibility is hard to fathom, as the point of dividing the language into
diagram types should be to partition complexity and to make the visual vocabularies
of each diagram type manageable. Having such a laissez-faire approach places a great
strain on perceptual discriminability and increases the graphic complexity of all dia-
grams. Table 3 summarises the graphic complexity of the UML diagram types (the

Table 3. Graphic Complexity of UML Diagrams

Diagram Graphic Complexity

Activity 31
Class 60
Communication 8
Component 60
Composite structure 60
Deployment 60
Interaction overview 31
Object 60
Package 60

 Sequence 16
State machine 20
Timing 9
Use case 9

 Evaluating the Visual Syntax of UML 31

number of different graphical conventions that can appear on each diagram type).
Most of them exceed human discrimination ability by quite a large margin. A notable
exception is Use Case Diagrams which may explain their effectiveness in communi-
cating with business stakeholders.

Recommendations for Improvement

There are three general strategies for dealing with excessive graphic complexity:

1. Reducing semantic complexity: reducing the number of semantic constructs is an
obvious way of reducing graphic complexity. In UML, a major contributor to
graphic complexity is the level of overlap between the visual vocabularies of dia-
gram types. To reduce this, metamodel constructs could be repartitioned so that
the number of constructs in each diagram type is manageable and there is less
overlap between them.

2. Reducing graphic complexity: graphic complexity can also be reduced directly
(without affecting semantics) by introducing symbol deficit.

3. Increasing visual expressiveness: The span of absolute judgement and therefore
the limits of graphic complexity can be expanded by increasing the number of
perceptual dimensions on which visual stimuli differ. Using multiple visual vari-
ables to differentiate between symbols (Principle of Visual Expressiveness) can
increase the span of absolute judgement in an (almost) additive manner [18].

5 Conclusion

This paper has evaluated the cognitive effectiveness of the 13 UML diagram types
using theory and empirical evidence from a wide range of fields. The conclusion from
our analysis is that radical surgery is required to the UML visual notations to make
them cognitively effective. We have also suggested a number of ways of solving the
problems identified, though these represent only the “tip of the iceberg” in the im-
provements that are possible: space limitations prevent us including more. Of all the
diagram types, Use Case Diagrams and Activity Diagrams are the best from a visual
representation viewpoint, which may explain why they are the most commonly used
for communicating with business stakeholders [6]. Class Diagrams are among the
worst – even though they are the most important diagrams – which may explain why
they are commonly translated into text for communicating with users [36].

Another goal of this paper has been to draw attention to the importance of visual
syntax in the design of UML. Visual syntax is an important determinant of the cogni-
tive effectiveness of software engineering notations, perhaps even more important
than their semantics. We believe that the lack of attention to visual aspects of UML is
a major oversight and that as a result its visual development is lagging behind its
semantic development.

5.1 Theoretical and Practical Significance

Software engineering has developed mature methods for evaluating semantics of
software engineering notations (e.g. ontological analysis). However it lacks compara-
ble methods for evaluating visual notations. The theoretical contribution of this paper
is to demonstrate a scientific approach to evaluating and improving visual notations,

32 D. Moody and J. van Hillegersberg

which provides an alternative to informal approaches that are currently used. This
complements formal approaches such as ontological analysis that are used to evaluate
semantics of notations.

The practical contribution of this paper is that it provides a theoretically and em-
pirically sound basis for improving the cognitive effectiveness of the UML visual
notations. This will improve communication with business stakeholders (which is
currently a major weakness) as well as design and problem solving performance.
Cognitive effectiveness supports both these purposes as it optimises representations
for processing by the human mind.

5.2 UML 3.0: A Golden Opportunity?

The next release of UML represents a golden opportunity to redesign the visual nota-
tions in a cognitively optimal manner. The existing UML notations have been devel-
oped in a bottom up manner, by reusing and synthesising existing notations. However
ideally, visual representations should be designed in a top-down manner based on a
thorough analysis of the information content to be conveyed: form should follow
content [31]. The UML metamodel provides a sound and now relatively stable foun-
dation for doing this. Of course, such change will need to be handled carefully as
practitioners familiar with the existing notation will resist radical change. However
they may be more open to changes if they have a clear design rationale grounded on
theory and empirical evidence, something which is currently lacking from the UML
visual syntax.

References

1. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin
Press, Madison (1983)

2. Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding.
Psychological Review 94(2), 115–147 (1987)

3. Britton, C., Jones, S.: The Untrained Eye: How Languages for Software Specification
Support Understanding by Untrained Users. Human Computer Interaction 14, 191–244
(1999)

4. Britton, C., Jones, S., Kutar, M., Loomes, M., Robinson, B.: Evaluating the intelligibility
of diagrammatic languages used in the specification of software. In: Anderson, M., Cheng,
P., Haarslev, V. (eds.) Diagrams 2000. LNCS, vol. 1889, pp. 376–391. Springer, Heidel-
berg (2000)

5. Cheng, P.C.-H., Lowe, R.K., Scaife, M.: Cognitive Science Approaches To Understanding
Diagrammatic Representations. Artificial Intelligence Review 15(1/2), 79–94 (2001)

6. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49(5), 109–114
(2006)

7. Gehlert, A., Esswein, W.: Towards a Formal Research Framework for Ontological Analy-
ses. Advanced Engineering Informatics 21, 119–131 (2007)

8. Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA. Information Sys-
tems 27, 425–444 (2002)

9. Goodman, N.: Languages of Art: An Approach to a Theory of Symbols. Bobbs-Merrill
Co., Indianapolis (1968)

 Evaluating the Visual Syntax of UML 33

10. Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York
(1966)

11. Gurr, C.A.: Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic
Issues. Journal of Visual Languages and Computing 10, 317–342 (1999)

12. Harel, D.: On Visual Formalisms. Communications of the ACM 31(5), 514–530 (1988)
13. Jonkers, H., van Buuren, R., Hoppenbrouwers, S., Lankhorst, M., Veldhuijzen van Zanten,

G.: ArchiMate Language Reference Manual (Version 4.1). Archimate Consortium, 73
(2007)

14. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11(1) (1987)

15. Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(3), 78–85
(1997)

16. Lohse, G.L.: The Role of Working Memory in Graphical Information Processing. Behav-
iour and Information Technology 16(6), 297–308 (1997)

17. Marr, D.C.: Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. W.H. Freeman and Company, New York (1982)

18. Miller, G.A.: The Magical Number Seven, Plus Or Minus Two: Some Limits On Our Ca-
pacity For Processing Information. The Psychological Review 63, 81–97 (1956)

19. Moody, D.L.: Evidence-based Notation Design: Towards a Scientific Basis for Construct-
ing Visual Notations in Software Engineering. IEEE Transactions on Software Engineer-
ing (under review, 2009)

20. Moody, D.L.: Review of ArchiMate: The Road to International Standardisation, Report
commissioned by the ArchiMate Foundation and BiZZDesign B.V., Enschede, The Neth-
erlands, 77 pages (2007)

21. Moody, D.L., Mueller, R.M., Amrit, C.: Review of ORES Methodology, Notation and
Toolset, Report commissioned by Egon-Sparenberg B.V., Amsterdam, The Netherlands,
53 pages (2007)

22. Niemela, M., Saarinen, J.: Visual Search for Grouped versus Ungrouped Icons in a Com-
puter Interface. Human Factors 42(4), 630–635 (2000)

23. Nordbotten, J.C., Crosby, M.E.: The Effect of Graphic Style on Data Model Interpretation.
Information Systems Journal 9(2), 139–156 (1999)

24. Oberlander, J.: Grice for Graphics: Pragmatic Implicature in Network Diagrams. Informa-
tion Design Journal 8(2), 163–179 (1996)

25. OMG Unified Modeling Language Version 2.0: Superstructure. Object Management
Group, OMG (2005)

26. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the
Bunge-Wand-Weber Model. Software and Systems Modelling 1(1), 43–67 (2002)

27. Peirce, C.S.: Charles S. Peirce: The Essential Writings (Great Books in Philosophy). Pro-
metheus Books, Amherst (1998)

28. Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Program-
ming. Communications of the ACM 38(6), 33–44 (1995)

29. Quinlan, P.T.: Visual Feature Integration Theory: Past, Present and Future. Psychological
Bulletin 129(5), 643–673 (2003)

30. Rossion, B., Pourtois, G.: Revisiting Snodgrass and Vanderwart’s object pictorial set: The
role of surface detail in basic-level object recognition. Perception 33, 217–236 (2004)

31. Rubin, E.: Synsoplerede Figuren. Gyldendalske, Copenhagen (1915)
32. Shanks, G.G., Tansley, E., Weber, R.A.: Using Ontology to Validate Conceptual Models.

Communications of the ACM 46(10), 85–89 (2003)

34 D. Moody and J. van Hillegersberg

33. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of
Illinois Press, Urbana (1963)

34. Siau, K.: Informational and Computational Equivalence in Comparing Information Model-
ling Methods. Journal of Database Management 15(1), 73–86 (2004)

35. Siau, K., Cao, Q.: Unified Modeling Language: A Complexity Analysis. Journal of Data-
base Management 12(1), 26–34 (2001)

36. Tasker, D.: Worth 1,000 Words? Ha! Business Rules Journal 3(11) (2002)
37. Treisman, A.: Perceptual Grouping and Attention in Visual Search for Features and for

Objects. Journal of Experimental Psychology: Human Perception and Performance 8, 194–
214 (1982)

38. Treisman, A., Gelade, G.A.: A Feature Integration Theory of Attention. Cognitive Psy-
chology 12, 97–136 (1980)

39. Treisman, A., Gormican, S.: Feature Analysis in Early Vision: Evidence from Search
Asymmetries. Psychological Review 95(1), 15–48 (1988)

40. Wheildon, C.: Type and Layout: Are You Communicating or Just Making Pretty Shapes?
Worsley Press, Hastings (2005)

41. White, A.W.: The Elements of Graphic Design: Space, Unity, Page Architecture and Type.
Allworth Press, New York (2002)

42. Winn, W.D.: An Account of How Readers Search for Information in Diagrams. Contem-
porary Educational Psychology 18, 162–185 (1993)

43. Winn, W.D.: Encoding and Retrieval of Information in Maps and Diagrams. IEEE Trans-
actions on Professional Communication 33(3), 103–107 (1990)

44. Yeh, M., Wickens, C.D.: Attention Filtering in the Design of Electronic Map Displays: A
Comparison of Colour Coding, Intensity Coding and Decluttering Techniques. Human
Factors 43(4), 543–562 (2001)

	Evaluating the Visual Syntax of UML: An Analysis of the Cognitive Effectiveness of the UML Family of Diagrams
	Introduction
	UML: A Visual Language
	What Makes a Good Visual Language?
	How UML Was Developed
	Objectives of This Paper

	Related Research
	Principles for Visual Notation Design
	Principle of Semiotic Clarity
	Principle of Perceptual Discriminability
	Principle of Perceptual Immediacy
	Principle of Visual Expressiveness
	Principle of Graphic Parsimony

	Evaluation of UML
	Principle of Semiotic Clarity
	Principle of Perceptual Discriminability
	Principle of Perceptual Immediacy
	Principle of Visual Expressiveness
	Principle of Graphic Parsimony (Less Is More)

	Conclusion
	Theoretical and Practical Significance
	UML 3.0: A Golden Opportunity?

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

