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ABSTRACT

The objective of this study is to explore the potential of using
Markov chains to model the changes of vegetative drought
classes. NOAA-AVHRR dekadal NDVI images and fuzzy
functions are used to characterize the drought classes while
capturing the gradual transition between them. The transition
probabilities are estimated using the maximum class mem-
bership values at a location. The Markov transition proba-
bility matrix is then used to model the changes of vegeta-
tive drought classes at selected locations. Future vegetative
drought classes are predicted using the estimated transition
matrix, then compared with actual data. Twenty pixel loca-
tions clustered in four regions of the two main agricultural
type in Kenya are selected to implement this approach. Half
of the pixels are predicted correctly. 5 of them are predicted
either one class higher or lower and 2 of them, two classes
higher. We can conclude that Markov chains applied to fuzzy
numbers have the potential to model the changes of of vege-
tative drought classes at a pixel, hence provide a benefit for
early warning systems.

Index Terms— Remote Sensing, Drought, East Africa,
fuzzy Sets theory.

1. INTRODUCTION

Vegetative drought, i.e. vegetation stress caused by drought,
can be detected from anomalies of the Normalized Difference
Vegetation Index (NDVI). NOAA-AVHRR derived NDVI
data [1], available for almost 30 years cover large geographi-
cal areas, can be used to create a time series that can be used
to model vegetative drought in space and time as well as to
predict the future classes at individual pixel-locations. To do
so, we use Markov chains to model the changes of vegetative
drought classes. In the past, Markov chains have been used
in remote sensing studies for meteorological drought predic-
tion studies [2][3] and for vegetation dynamics studies [4].
Vegetative drought characterisation using NDVI anomaly,
however, is uncertain. Therefore we develop a fuzzy model-
ing approach to define drought classes.

In this study [5] we combine Markov Chains with fuzzy
sets theory to predict the future states of vegetative drought.
The method is applied on 20 pixel-locations clustered in four
different study areas within Kenya [5]: Region 1, centered
at P1 (3.117N, 35.617E); Region 2, centered at P2 (1.75N,
40.067E); Region 3, centered at P3 (0.5S, 37.45E), and Re-
gion 4, centered at P1 (3.4S, 38.567E) respectively, as shown
in Fig.1. The agriculture type of Regions 1 and 2 is pastoral
farming, while in Regions 3 and 4 it is cultivation. NDVI data
from the years 2004 to 2008, as well as the long term mean
calculated from 1982 to 2005 are used.

Fig. 1. Map of Kenya with the twenty pixel locations clus-
tered in four regions
(Source from:
http://www.maplibrary.org/stacks/Africa/Kenya/index.php)

MultiTemp 2011 978-1-4577-1203-6/11/$26.00 ©2011 IEEE 201

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 14,2022 at 13:17:52 UTC from IEEE Xplore.  Restrictions apply. 



2. METHODS

2.1. Correlation between NDVI and RFE

To validate NDVI anomaly as an indicator of vegetative
drought, a Pearson (r) correlation test is performed with dif-
ferent time lag between the mean NDVI values and the mean
Rainfall Estimates (RFE) calculated between 1995 and 2008.
AVHRR derived NDVI images are used to provide data for
this indicator, called NDVIa and calculated by equation (1).

NDV Ia = NDV Ii −NDV Imean (1)

where NDVIi is the current NDVI and NDVImean the
long term mean for the same period

2.2. Fuzzy classification

The number of drought classes is decided following the SPI
based drought classification method, and the categories of
these six classes are: extremely drought, severely drought,
moderately drought, dry, wet and moderately wet. In the fol-
lowing context, these six classes are numbered from 1 to 6
sequentially. In Fig.2, general membership functions of each
drought classes is shown. Range [ai, bi], i ∈ N , with N being
the total number of classes, is the core zone for each mem-
bership function of each drought class, where i represents the
index of drought classes. Range [bi−1, ai] is the transition
zone. As there is no standard vegetative drought classifica-
tion method based on NDV Ia values, in this study, the clas-
sification is based on the same frequency in the whole dataset.
When building the transition matrix for Markov chains, equal
frequencies can ensure that the number of observations per
class is sufficiently high to obtain reasonable estimates [6].
[ai, bi] represents the 95% confidence interval for each orig-
inal class, which is defined as the core, and the rest 5% are
assigned to the linear transition zone.

Fig. 2. Membership functions for drought classes, the range
[a1, b1] is the core zone of the first drought class (i.e. the dri-
est), [ai, bi], i ∈ {2, 3, . . . , N − 1} is the core zone of middle
drought classes, [aN , bN ] is the core zone of last drought class
(i.e. the wettest). The dash lines show the classes’ boundaries
of a crisp classification.

2.3. Markov Chains

A transition matrix is built using transition probabilities be-
tween fuzzy classes, calculated as in equation (2). The maxi-
mum membership values of all classes for each pixel at each
moment of time are used.

P = [pij ] = P (Xt = j|Xt−1 = i) (2)

where pij =
nij∑
nij
≥ 0,

∑
nij = 1 and pij is the element

in the probability transition matrix P, where the pixel is at the
current time t in the fuzzy class j, given that it was at the past
time t − 1 in the fuzzy class i. nij is the number of times a
pixel changes from being in class i to class j from time t− 1
to time t.

2.4. Tests of Markovian properties

The reliability of predicting vegetative drought classes using
Markov chains generally depends on two conditions. First,
the data-generating process must meet the Markovian prop-
erty: time homogeneity and time independence. The test
statistics can be estimated using the Maximum likelihood ra-
tio (LR) criteria and Pearson χ2-tests (Q) under specific null
and alternative hypotheses. Although the LR and Pearson
χ2 statistics are asymptotically equivalent, in cases of poor
asymptotic, they are not equivalent [6]. Therefore, both of the
statistics are tested. Second, the estimates have to be based on
a number of observations, large enough to be able to rely on
the asymptotic properties of the estimators. Otherwise, the
accuracy will be rather poor [5].

2.4.1. Test of time homogeneity

The test of time homogeneity, i.e. time stationarity, is
conducted to decide whether the transition probabilities
are constant over time. The test is done by dividing the
entire sample period into M sub-periods and comparing
each transition matrix of sub-periods with the one esti-
mated from the entire sample. The LR and Pearson χ2-
tests are shown in equation (3) and (4). The null hypothesis
H0 : ∀m : pij|m = pij(m = 1, 2, . . . ,M) and alternative
hypothesis Ha : ∃m : pij|m 6= pij , α = 0.05, where pij =
nij|m
ni|m

,nij|m =
∑

t∈m nij|m(t),ni|m =
∑

t∈m ni|m(t− 1)

LR(M) = 2
M∑

m=1

N∑
i=1

∑
j

nij|m(t) ln
pij|m

pj
(3)

Q(M) =
M∑

m=1

N∑
i=1

∑
j

ni|m
(pij|m − pij)2

pij
(4)

2.4.2. Test of time independence

To test the time independent is required to test that the Markov
chains are at least of order 1. A test of 0-order Markov chain
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versus 1-order Markov chain is conducted for this purpose.
The LR and Pearson χ2-tests as shown in equation (5) and
(6). The null hypothesis H0 : ∀i : pij = pj and alternative
hypothesis Ha : ∃i : pij 6= pj , α = 0.05, where pj = nj/n

LR(0) = 2
N∑
i=1

∑
j

nij(t) ln
pij
pj

(5)

Q(0) =
N∑
i=1

N∑
j=1

ni(t− 1)
(pij − pj)2

pj
(6)

where ni(t− 1) =
∑
nij(t)

2.5. Prediction

The predicted probabilities of vegetative drought classes are
estimated as in equation (7). The predicted probabilities µ of
the pixel x to the classes at time t + 1 are obtained as a row
vector from equation (2), by multiplying the transition matrix
P with the membership value at time t.

µ(x)t+1 = f(x)t ∗P (7)

where f(x)t is a vector with the membership values of
pixel x to the different classes, at time t.

For validation, the predicted values are compared with
the actual (reference) data consisting of membership values
at time t+ 1.

3. RESULTS AND DISCUSSION

Nineteen out of the twenty pixels show a positive correla-
tion between the long-term mean NDVI and the long-term
mean RFE with a minimum lag time of 60 days. Except for
the five pixels in Region 1, where the highest r = 0.4 (with
α = 0.001), there is a strong correlation (r = 0.9, α = 0.001)
between the NDVI and RFE data. Region 1 is arid with a
lower vegetation density than the other regions. This can ex-
plain the lower correlation between the NDVI and RFE in this
region, compared to the others. As NDVI is positively corre-
lated to rainfall in most of the regions, NDVI anomaly can
indicate a lack of rainfall. Hence, they can be used as an indi-
cator of vegetative drought.

The six classes are produced with an equal frequency clas-
sification. This method results in a series of classes from
Class 1 with a core zone in range [min, -0.072], Class 2 with a
core in range [-0.060, -0.036], Class 3: [-0.024, -0.016], Class
4: [-0.004, 0], Class 5: [0.008, 0.012], Class 6: [0.024, max],
where min and max represent the minimum (-0.376) and max-
imum (0.432) values of the full NDVI anomaly dataset. Fig.3
and Fig.4 show respectively the drought classes of pixels P1
in Region 1 and P2 in Region 2, P3 in Region 3 and P4 in Re-
gion 4 from September 2005 until March 2006, based on the
maximum class membership values. P2 remains mostly dry

from mid-October 2005 (dekad 5) through the end of March
2006, whereas P3 and P4 are dryer from the end of Decem-
ber 2005 (dekad 12 and 13), throughout February 2006 for
P3, and March for P4. P1 is mostly not dry.

Fig. 3. Extreme drought (1) to wet (6) classes values of P1
and P2, in the pastoral areas. Numbers on the X-axis represent
consecutive dekadals from September 2005 through March
2006

Fig. 4. Extreme drought (1) to wet (6) classes values of P3
and P4, in the cultivated areas. Numbers on the X-axis rep-
resent consecutive dekadals from September 2005 through
March 2006

Fig. 5. Comparison for the 10 pixel-locations in Region 1 and
Region 2 between the predicted (Pred) and the reference (Ref)
classes for the second dekadal of January 2009

To test for time homgeneity, two sub-samplesM are used.
In the first step, the sample is divided yearly: M = 5. Re-
sults (LRprob = 0.157, and Qprob = 0.267) show that the
transition probabilities are stationary yearly during the five
years. In the second step, the sample is divided monthly:
M = 12. Results, after excluding the months of February
and September from the data sample (LRprob = 0.517 and
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Fig. 6. Comparison for the 10 pixel-locations in Region 3 and
Region 4 between the predicted (Pred) and the reference (Ref)
classes for the second dekadal of January 2009

Qprob = 0.978) show that transition probabilities are station-
ary during the ten months.

Results of the tests of time independence of order 0
against order 1 (with LRprob and Qprob ¡ 0.05) rejected the
order 0. Hence, the dynamics of vegetative drought can be
modeled as a first order process, i.e. a process depending
on the most recent past. The Markov transition probability
matrix as in equation (8) model the dynamics of vegetative
drought classes, and show that there are higher probabilities
to remain to an existing class.

P =


0.596 0.211 0.059 0.027 0.033 0.074
0.190 0.434 0.175 0.066 0.020 0.115
0.108 0.194 0.324 0.144 0.072 0.158
0.021 0.067 0.163 0.351 0.247 0.151
0.016 0.025 0.061 0.141 0.531 0.227
0.018 0.036 0.032 0.021 0.099 0.793


(8)

For ten out of twenty pixels, and considering the high-
est probabilities, the drought classes for the second dekadal
of 2009 are predicted correctly (see Fig.5 and Fig.6), using
the membership values at the first decadal of January as input
data.

A difference between the predicted and actual values of
more than one class is observed for five pixels, whereas for
the five other classes, the difference is equal one class. Pixel
16 has an actual membership value in class 1 of 0.444 and
in class 2 of 0.556, in the first decadal of January 2009; it
is predicted to be in class 1 with a probability of 0.38, and
class in 2 with a probability of 0.32 at the next time step. Pre-
dicted results show that Pixel 16 has a membership value of
0.49 to class 1 and 0.51 to class 2, which means a difference
of one class between the predicted and reference data. The
positive membership values of Pixel 16 in both classes, and
the small difference between the predicted probability values
can explain the difference between the predicted and the ref-
erence data. A crisp classification is limited in the sense that
it cannot capture this nuance.

4. CONCLUSION AND RECOMMENDATIONS

The Markov chains approach applied to membership values
shows a potential to model the changes between vegetative
drought classes and to the predict vegetative drought classes
at time t + 1. The use of fuzzy functions to model vege-
tative drought classes from NDVI anomaly provides the op-
portunity to account for the gradual changes between these
classes. This can also explain the differences between some
of the predicted and reference class values, such as for Pixel
16 for instance, where any of the first or second class could
be expected.

This study adopts an equal frequency approach to opti-
mize the performance of the transition matrix. The six classes
characterise both drought and non-drought vegetation status.
This classification can be further optimized to relate only to
the status of vegetation stress within a drought context.

Although some pixels classes are correctly predicted, field
data or independent satellite images can be used to further val-
idate the results. Further studies incorporating other parame-
ters such as rainfall data and land use, in the prediction model
can further explain the differences between the predicted and
the actual data.
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