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Abstract

Light Detection and Ranging (LiDAR) and its wide range of derivative products have

become a powerful tool in landslide research, particularly for landslide identification

and landslide inventory mapping. In contrast to the many studies that use expert-based

analysis of LiDAR derivatives to identify landslides, only few studies, all pixel-based,

have attempted to develop computer-aided methods for extracting landslides from LiDAR.

So far, it has not been tested whether object-oriented analysis (OOA) could be an alterna-

tive. Therefore, this study focuses on the application of OOA using LiDAR derivatives

such as slope gradient, curvature, and difference in elevation (2 m resolution). More

specifically, the focus is on the possible use for segmentation and classification of

slow-moving landslides in densely vegetated areas, where spectral data do not allow

accurate landslide inventory mapping. The test areas are the Flemish Ardennes (Belgium)

and Vorarlberg (Austria). In a first phase, a relatively qualitative procedure based on

expert-knowledge and basic statistical analysis was developed for a test area in the

Flemish Ardennes. The procedure was then applied without further modification to a

validation area in the same region. The results obtained show that OOA using LiDAR

derivatives allows recognition and characterization of profound morphologic properties of

deep-seated landslides, because approximately 70 % of the landslides of an expert-based

inventory were also included in the object-oriented inventory. For mountain areas with

bed rock outcrops like Vorarlberg, on the other hand, it is more difficult to create a

transferable model.
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Introduction

Since the availability of Light Detection and Ranging

(LiDAR), shaded-relief, slope, surface roughness and con-

tour maps, and other derivatives have regained popularity

for landslide inventory mapping, especially in forested areas

(Schulz 2004; Van Den Eeckhaut et al. 2007, 2011).

Many studies have used expert-based analysis of LiDAR

derivatives to identify landslides, while only few studies have

attempted to develop computer-aided methods for extracting

landslides from LiDAR data (McKean and Roering 2004;

Booth et al. 2009). Promising results were obtained with
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surface roughness parameters. So far, all these automated

attempts have been carried out in a pixel-based analysis.

However, with high resolution topographical data such

as LiDAR, object-based or object-oriented analysis (OOA)

might provide better results. OOA rests upon two inter-

related methodological steps: (1) segmentation or regionali-

zation of pixels, if necessary on different scales, into

meaningful, homogeneous objects that reduce the noise

inherent in pixel-based analysis, and that facilitate a multi-

scale analysis (Blaschke 2010); and (2) rule-based classifi-

cation incorporating spectral, textural, morphometric and

contextual landslide features. It is clear that the quality

of the segmentation largely controls the classification.

OOA has gained increased attention for (semi-)

automated landslide identification from passive optical

airborne and satellite sensor data (Barlow et al. 2003;

Martha et al. 2010; Stumpf and Kerle 2011; Lu

et al. 2011). These studies have proven the potential for

creation of inventories of recent landslides of different

types. However, until now Digital Terrain Models

(DTMs) have only been used in the second step, the clas-

sification. The identification of old vegetated landslides,

not detectable from passive optical images, has not been

investigated so far. Van Asselen and Seijmonsbergen

(2006) used LiDAR derivatives in an OOA for semi-

automated geomorphological mapping. Their classification

included slopes with mass movement. They did not focus on

individual landslides as separation of individual landslides

was considered difficult. Nevertheless, the objective of this

study is to test OOA for landslide inventory mapping using

only LiDAR data for both the segmentation and classifica-

tion steps. As such we enter in the field of geomorphometry.

More specifically, we will exploit the profound morphologic

manifestation of old, densely vegetated landslides to semi-

automatically map their extent using LiDAR derivatives,

and we will outline the pros and cons of the methodology.

We focus on two study areas: the Flemish Ardennes

(Belgium) and Vorarlberg (Austria).

Materials and Methods

Data

The Flemish Ardennes is a hilly region characterised by

loose tertiary lithology (alternation of clays and more

sandy lithology) affected by more than 200 landslides

(Van Den Eeckhaut et al. 2011). We refer to Van Den

Eeckhaut et al. (2007) for a detailed description of the

LiDAR data used for this region (AGIV 2005).

For Vorarlberg, an Alpine region with bedrock outcrops,

we use more detailed LiDAR data provided by VoGIS

(Rieger 2005). From the LiDAR point data, available in .txt

format for the Flemish Ardennes and in ASCII format for

Vorarlberg, 2 m resolution DTMs were created and after

low pass filtering (kernel size 3) different LiDAR-derivatives

were produced. The maps evaluated in this study (Table 1)

are focussing on the lower order derivatives, which the

human brain also uses for delineating landslide boundaries

and classifying landslide parts (Minar and Evans 2008).

The OOA was carried out in eCognition Developer 8.

Conceptualization of Landslides
and Translation to OOA

The ultimate benchmark of OOA is human perception (Lang

2008). It has been widely recognized that compared to grid

cells, objects are closer to human perception and patterns

better represent real landscapes, if the scale is appropriate

(Goodchild et al. 2007; Drăguţ et al. 2011). Our visual sense

of any kind of object is a common experience, yet not

always easy to communicate and even more difficult to

translate into rule sets. Hence, (semi-)automated classifica-

tion of landslides, almost always represents an attempt

to replicate subjective landslide recognition (e.g. Martha

et al. 2010). Stumpf and Kerle (2011) provide an overview

Table 1 Maps used in the Flemish Ardennes

Map Additional information

Image layer (2 � 2 m resolution)

DTM (m)

Slope gradient (%)

Plan- and profile curvature ()

Edge_slope Map obtained through edge detection (pixel min/max filter in eCognition) on Slope gradient map

Edge_slopecl Expert-based classification of Edge_slope map

Dif_DTM_DTMki (m) with

i ¼ 15, 25, 50, 75

Difference between original DTM and DTMki, where DTMki is a raster map where each grid cell

represents the mean value of a moving window with kernel size ki with i ¼ 15, 25, 50, 75

(best result was obtained with i ¼ 50)

Thematic layer (vector map)

River Derived from the DTM using the hydrology toolbox in ArcGIS
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of image object features previously used in OOA-based

landslide inventory studies. Most of these features are not

solely characteristic for landslides, and many are related to

passive optical images (i.e. spectral information) making

them not very useful in a LiDAR oriented approach where

the focus should be put on identification of geomorpho-

metric features. Figure 1 contains the conceptualisation

of landslides typically found in the Flemish Ardennes,

including old deep-seated rotational/translational slides

with a flow characteristic (i.e. complex slides) and rotational

slides. The figure also shows the conceptualisation of

landslide-free terrain (mainly cropland and pastures) and

possible false positive landslides (road-and riverbanks and

field borders). The ultimate objective is to find a classifica-

tion rule set based on the listed characteristics.

Translation of the landslide concept in eCognition starts

with segmentation. Multiresolution segmentation was used

in combination with Contrast Split segmentation (Fig. 1).

The scale factor is the most important factor influencing

the segmentation (Drăguţ et al. 2010). Although a relatively

high number of studies have focussed on the influence

of scale/resolution in terrain analysis, attempts to produce

strategies for more objective selection of optimal scales

are limited. Only recently several procedures for objective

Fig. 1 Human conceptualisation of landslides and translation to object oriented analysis (S: slope gradient, StDv_Slope: standard deviation

of slope gradient; Plcv: plan curvature)

Mapping of Landslides Under Dense Vegetation Cover Using Object-Oriented Analysis. . . 105



selection of appropriate scales for multiresolution segmen-

tation have been suggested (Martha et al. 2011; Stumpf

and Kerle 2011). For this first analysis we used the estima-

tion of scale parameter tool (ESP; Drăguţ et al. 2010).

For the study area in the Flemish Ardennes, the segmenta-

tion and classification procedure was calibrated for a 10 km2

test area. It was then applied to the 50 km2 area surrounding

the test area (Fig. 2a). For the test and validation

area, the existing landslide inventory map obtained through

visual inspection of LiDAR derivative maps and field surveys

(Van Den Eeckhaut et al. 2007) contains 4 and 14 rotational

slides, 10 and 16 complex slides, 4 and 6 possible slides

(less clear geomorphic manifestation) and 2 and 15 shallow

slides, respectively. The latter are not taken into account

in this study.

Results

Landslide Identification

Figure 1 shows the procedure followed for segmentation and

classification. First, landslide-free agricultural fields were

extracted. The segmentation procedure for this included detec-

tion of edges on the slope map and subsequent multiresolution

segmentation using the resulting map (Edge_slopecl). Then,

a sample of landslide-free field segments and landslide-

affected segments was analysed and segments with a standard

deviation of slope gradient below 5.3 were found to be

landslide-free fields.

For extraction of landslides, the most distinct landslide

characteristics, the main scarps, were extracted first, followed

by the flanks and finally the landslide-affected area. Contrast

Split segmentation of the slope map was carried out to sepa-

rate steep (classified scarp candidates) from flatter terrain.

The flatter terrain in this map was subsequently split with

multiresolution segmentation of the Dif_DTM_DTMk50

map (Table 1) and the river map (Fig. 2a).

Main scarp segments were extracted from scarp candidates

using their concave planform. As individual scarps could

consist of several segments a growing procedure was subse-

quently used. Based on their width, large and small main

scarp segments were separated, because during the calibration

procedure more false positives were obtained for smaller

main scarps.

Compared to main scarps, the morphologic manifestation

of flanks is much less clear. No appropriate procedure

has been found for segmentation of flank candidates yet,

and thus the focus was not put on landslide flanks itself

but on segments bordering the sides of the landslides.

Especially for the upper part of the landslide, these segments

are located above the surrounding segments (i.e. have mean

Fig. 2 Test (white rectangle) and validation area in the Flemish

Ardennes: (a) The shaded relief map (LiDAR data # AGIV) is

overlaid with the expert-based landslide inventory map created

by Van Den Eeckhaut et al. (2007); (b) Preliminary landslide inventory

obtained with OOA. Black and purple rectangle represent correctly

identified and missed landslides, respectively

106 M. Van Den Eeckhaut et al.



Dif_DTM_DTMk50 > 0). The classification of the affected

area started from the main scarp (first for the large and

subsequently for the small) in downslope direction. Finally,

the unclassified segments were classified as landslide-free

field. The results obtained are shown Fig. 2b.

Accuracy Assessment

Accuracy assessment of geometric analysis is difficult to

perform. First, there is no “completely perfect landslide

inventory map” to compare the results against, as landslide

inventory maps created from LiDAR analysis by different

experts result in inventory maps with considerable

differences (Van Den Eeckhaut et al. 2007). Second, cur-

rently there is no standard evaluation method for the assess-

ment of the quality of image segmentation, let alone for

multiresolution segmentation (Drăguţ et al. 2011).

A first accuracy assessment can be carried out by comparing

the landslide inventory obtained with OOA (Fig. 2b) with the

expert-based inventory (Fig. 2a). No difference in accuracy

was found for the calibration and validation area. The rota-

tional slides in the central south of the study area (i.e. black

rectangle) are for example in agreement with the expert-

Fig. 3 Landslide under vegetation in Vorarlberg: (a) Orthophoto, (b) LiDAR-derived hillshade map; (c) preliminary result of segmentation and

classification of the landslide (LiDAR data @ VoGIS)
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based inventory. The two large complex slides in the south

(i.e. purple rectangle), however, are not identified with

OOA. Their surface morphology is probably too subdued

and affected by anthropogenic interventions (construction of

houses and roads in the lower deforested part of the landslides).

The extent of about 70 % of the landslides was correctly

identified with little differences between the accuracy obtained

for complex and rotational slides. These results are in the

same order as the results obtained by Martha et al. (2010).

False negatives (unidentified landslides) are always landslides

for which the main scarp was not correctly identified. In

most cases the main scarps were initially identified as scarp

candidates though later omitted because of a plan convex

morphology. The observation that these false negatives

generally have smaller main scarps supports the idea of

distinguishing between large and small main scarps.

The OOA landslide inventory contains also about ten

misclassified zones (group of segments incorrectly classified

as main scarp and landslide). These are either steep valley

heads (where some slope failure might not be excluded) or

zones where a road bank or earthen bank bordering a field

was misclassified as a main scarp and subsequently grown

into a landslide. Generally, this last group of false positives

has an irregular form.

Discussion

For (semi-)automatic mapping of densely vegetated landslides,

an alternative to passive optical sensors has to be found

for production of landslide inventory maps. Using LiDAR

derivatives in an OOA we obtain similar accuracy results

(i.e. approximately 70%) compared to previous studies using

OOA and passive optical remote sensing data (e.g. Martha

et al. 2010), and thus it is worthwhile to further exploit the

possibilities of OOA with LiDAR data.

In soil covered areas such as Flanders, landslides are

generally characterized by a much higher surface roughness

compared to the surrounding landslide-free areas, and there-

fore good first results were obtained with slope gradient

and surface roughness (standard deviation of slope gradient)

maps. The downslope part of old landslides, like those

studied here, often has a poor geomorphometric signature.

However, this problem has been reported for expert-based

landslide inventory mapping to (e.g. Schulz 2004). For delin-

eation of landslide boundaries also several edge detection

procedures have been tested, but so far without great success.

In more mountainous areas, such as our second study site

in Vorarlberg (Fig. 3), it is more difficult to distinguish

landslides from non-landslide areas, because stable bed

rock outcrops around landslides also have high topographic

roughness. Additionally, the number of false positive main

scarps is higher due to the presence of steep cliffs. As in the

Flemish Ardennes also in Vorarlberg many landslides have

flanks with a subdued morphologic signature. In some cases

an internal drainage system has developed (Fig. 3), which

further complicates the landslide classification process.

Overall, compared to the case-study in Flanders transferabil-

ity is more difficult. A rule set calibrated for one or two

landslides does not work for many other landslides.

Some differences between the use of passive optical

remote sensing data and active optical remote sensing

data such as LiDAR were observed. The most important

one is that when using passive optical remote sensing data,

fresh landslides generally consist of one or a few segments

only. However, landslides are geomorphologically complex

and consist of different parts with different geomorphologi-

cal characteristics. Hence, they are not represented by one

single segment when obtained from LiDAR derivatives,

and the aggregation from different segments into one final

landslide segment is difficult.

Recent studies have focussed on objective classification

of segments. Martha et al. (2011) used k-Means cluster

analysis and Stumpf and Kerle (2011) random forests. It

should be further investigated whether these approaches

are also useful in the context of this study. Similar to Martha

et al. (2010), so far thresholds were only obtained through

basic statistical analysis of limited samples selected in the

test area, but future research will focus on quantification of

the process and transferability.

Conclusions

The results obtained show that OOA using LiDAR

derivatives (such as slope gradient, curvature and differ-

ence in elevation) and edge detection allows recognition

and characterization of profound morphologic properties

of deep-seated landslides. Main scarp, landslide bound-

ary, and landslide segments were successively classified.

Overall about 70 % of the landslides of an expert-

based inventory were also included in the object-oriented

inventory. Unidentified landslides were misclassified,

because they had a less profound or plan convex main

scarp. Some plan concave road banks or river valley

heads, on the other hand, were incorrectly classified

as landslides.

Ongoing research mainly focuses on improvement of

the segmentation and automating the classification proce-

dure, both with the objective of increasing transferability.
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