

 a, b, c

a, b University of Twente, Department of Geo-Information Processing, Netherlands,
a getfeleke@gmail.com, b aavoinov@gmail.com

c Aarhus University, Department of Agroecology, Denmark, niels.holst@agrsci.dk

Integrating multidisciplinary models requires linking models: that may operate at different
temporal and spatial scales; developed using different methodologies, tools and techniques; different
levels of complexity; calibrated for different ranges of inputs and outputs, etc. On the other hand,
integration of models requires us to address technical, semantic, and dataset aspects of
interoperability. So we need a genuine techniques that enable us to integrate various domain specific
models for interdisciplinary study. In this research work, we investigated best practices of System
Integration, Enterprise Application Integration, and Integration Design Patterns. We developed an
architecture of a multidisciplinary model integration framework that brings these three aspects of
integration together. Service-oriented-based platform independent architecture that enables to
establish loosely coupled dependency among various models is presented.

integration; architecture; SOA; loose coupling; framework; semantics.

Model integration means linking models together into an operational model chain (Knapen 2013),
despite their differences in assumptions and semantics: the models may operate at different temporal
and spatial scales, may have been developed using different methodologies, may have different levels
of complexity, may have been calibrated for different ranges of inputs and outputs, etc. Therefore
model integration requires different levels of interoperability: technically, the models should be able to

, differences in conceptual representation among models need to be
mediated; and at dataset level, the output dataset of one model should be converted to match what is
used as input by the next model in the chain.

Since we are integrating a wide range of independently built models we need to -
 as a basis for loose coupling. Loose coupling

enables late binding, a situation in which components can be swapped with other components
(Seemann 2012). In this research work we would like to establish loose coupling of models using
SOA, since in SOA-based loose coupling,

(Erl 2009). SOA is a design
pattern which is composed of loosely coupled, discoverable, reusable, inter-operable platform
agnostic services in which each of these services follow a well-defined standard. Each of these
services can be bound or unbound at any time and as needed (Jamil 2009). Which implies, SOA is an
appropriate means to implement multidisciplinary model integration to the degree, that it even

Page 1251

dissolves the problem: -
(Erl 2008b).

SOA-based integration can be implemented using either service-based components or web services.

(Erl et al. 2009). -specific development
(Erl 2008a). Web service-based SOA has the benefit that it can resolve

possible problems in message communication by using the 'reliable-messaging feature' of web
services (Bilorusets et al. 2004). Besides, SAWSDL (Semantic Annotations for WSDL and XML
schema) enables us to annotate WSDL descriptions of web services with pointers to semantic
concepts (Kopecky et al. 2007), i.e. operations, parameters, and data types can be annotated using
ontologies (Paulheim 2011). Such feature of incorporating contextual and meta-model information of
models gives SOA based integration framework the potential to link interdisciplinary knowledge.

The SEAMLESS Integrated Framework was developed for an ex-ante, integrated assessment of agro-
environmental policies and agro-technological innovations in the European Union (EU). A Graphical
User Interface based software which reflects the joint knowledge of participating models, was
developed for the technical integration of models. Models were componentized using OpenMI
component standard(Moore & Tindall 2005). A framework that enables the execution of
componentized models in model chains was also provided (Janssen 2009). The Community Surface
Dynamics Modeling System (CSDMS) is another component-based tool for model integration. In
CSDMS, stand-alone models were made plug-and-play components by implementing the Common
Component Architecture (CCA) standard (Armstrong 1999). CSDMS provides a suite of tools
developed for the technical integration of plug-and-play models following this standard (Peckham
2013). Language interoperability among CSDMS componentized models is provided through a
language interoperability tool known as Babel (Babel 2012).

On the other hand, Goodall (2013) had used web services to couple climate and hydrological
models which were deployed on different computing platforms. While it is a good progress, the usage
of SOA benefits was limited to only creating interoperability. Generally, what makes this integration
framework different from other related works is being SOA based framework:

(Schmutz 2010),

 no additional language interoperability tool is required
especially attainable through the use of w (Erl 2009),

 loose coupling is provided through message based communication - which avoids the need for
persistent connections and minimizes coupling requirements,

 semantic mediation and dataset conversion tasks are facilitated by the message based
communication since message contents can be supplemented with activity specific metadata
that can be interpreted and processed separately at runtime. (Erl et al. 2009).

The methodology we used to develop the architecture of the integration framework was to investigate
best practices of System Integration, Enterprise Application Integration, and Design Patterns in
general; and SOA Principles and SOA Design Patterns in particular. Design patterns and best
practices served us a means to solve integration challenges based on past experience and on

Page 1252

available alternative solution templates. So we identified techniques, that enable models to express
the input, output, and functionalities they provide, and that limit the dependencies among the models.
Methods to assemble and orchestrate various modules from different models, and to accommodate
semantic and dataset mediation with accompanying utilities. As a result we have come up with a
model integration architecture, that can accommodate a wide range of multidisciplinary models.

Several design patterns already exist for system integration but model integration requires special
attention concerning the technical, semantic, and dataset aspects of integration. In this integration
framework we have tried to intermingle the three aspects of model integration with appropriate, SOA-
based system integration design patterns. The integration architecture (shown in Fig 1) aims at
integrating interdisciplinary, qualitative and quantitative models which can be at various spatial and
temporal scale without the need for rewriting underlying models. It consists of resource layer, legacy
wrapper layer, wrapper web service layer, mediation layer with its accompanying resources, and user
interface layer. The model integration framework enables model integration through file transfer,
shared databases, and message exchange in a loosely coupled way. The integration architecture can
evolve in accordance with future changes of models; it is a vender neutral architecture which can be
implemented with various options, and being a composition centric architecture, it enables the agile
assembly of services.

Figure 1: Conceptual architecture of the model integration framework

The resource layer holds models, databases, and files which need to be integrated to assess
interdisciplinary studies like low carbon economy scenarios. Each of them can be developed using
different tools and techniques, and can be located anywhere in any appropriate hardware and
software computing platforms.

Wrappers, that provide a new calling interface to existing code, can assure language interoperability
and can convert existing models into interoperable components (Peckham 2013). The same
applies to participating databases and files. Every participating model and database is wrapped by
non-standardized legacy wrappers and files by using file gateways. These non-standardized legacy
wrappers and file gateways will serve as foundation for the next level standardized wrappers. They
also serve as a façade logic (Erl 2008a) to accommodate new versions of participating models by
abstracting the changes.

Page 1253

The aim of the web service wrapper layer is to further wrap the underlying non-standardized wrapper
layer with a standardized service contract that extracts, encapsulates, and possibly eliminates legacy
technical details. Basically standardized service wrappers can also be developed by using
components which are developed as services. But when components are built as services (1) the
service contract must be developed using the technologies used to build the component itself (in our
case, with the same technology with the underlying legacy wrapper is developed); (2) the service can
only be used by consumer programs that were developed using the same technology, or we have to
use some bridging and transformation technology (Erl 2008a). However, the service contract should
not be technology coupled, so that wrapper services can be developed using a mixture of different
technologies, e.g. Java, .NET, etc. depending on the ease of implementation. Thus, to achieve
platform neutrality we chose to use web services instead of components to develop wrapper services.
Using SOA with web services as model wrappers furthermore enables us to utilize SOA abstraction
design principles to hide technology, programmatic logic, and the underlying functions used to build
the various models.

In service based system development, although building the service contract ahead of the
implementation logic is the recommended approach, we cannot follow it since we are converting
already built models into services. However, by decoupling the service contract, the service
implementation can be evolved without directly impacting service consumers. This can increase the
amount of refactoring opportunities and the range of potential consumer programs (and corresponding
reuse) (Erl 2008a). The model integration framework is based on the principle of distributed
computing,
problems (Fig 2). To realize this we have to maximize the composability capability of models by
decomposing them into a number of low granularity services, each targeted to solve a clearly defined
problem (the Single Responsibility Principle, Martin, 2006). The service decomposition depends on
the underlying logic of the corresponding functionalities, and it helps us to have a number of clearly
described services instead of one monolithic big service. There may not be planned composition for a
service at hand but wrapper services need to be developed for each responsibilities. In designing
services for better service composition, there are two kinds of couplings we must avoid to assure that
the goals of SOA are fulfilled: (1) Direct consumer-to-implementation coupling must be avoided by
contract centralization, so that service consumers will not access the wrapper components directly, (2)
Indirect coupling of consumers to specific functionalities, technology, and implementation resources
must be avoided by applying the service abstraction principle in service contracts.

Figure 2: Granularity in service decomposition and service composition

The mediation layer consists of services that manage service composition, routing, reliable
messaging, input-output mapping, and data transformation between service based models. It is a

Page 1254

middleware dedicated to provide interoperability. The services on the mediation layer should be
implemented as agnostic and reusable services; to assure this they should be: generic in logic, and
independent from technology and application platforms. Some of the mediation services (like semantic
mediation and dataset integration services) shall be implemented as event-driven service agents (Erl
2008b) that respond automatically to predefined conditions without invocation via a published contract.
This will help to decrease the number of service invocations in service composition and cause less
performance strain.

The data transformation task in this model integration framework is broadly divided into semantic
mediation and dataset conversion. Although it is difficult to provide generic data transformation utility
for all kinds of data transformation, we need to dedicate separate services for each kind of data
transformation. These services need to be implemented as service agents with mediating features.
Sometimes the data transformation task may also require action while having only incomplete
knowledge, and with various levels of uncertainty. A data transformation service with artificial
intelligence capability could possibly understand data transformation patterns and handle uncertain
data.

a) : The task of the semantic mediator is to bridge the semantic
differences among models. How? From the meta-model information of the models, the semantic
mediator can get the contexts of the sender and receiver models. Based on the available contextual
information, the semantic mediator will amend a message sent by a model in a way which can be
understood by the receiver model. In some of the cases, the semantic mediation may be variable
mapping, i.e. when simple mapping of a variable is enough to create shared understanding between
models. But in most of the cases we will use an ontology for semantic mediation; since (1) ontologies
facilitate content-based access, communication and integration across different systems (
2005); (2) ontologies are based on first order logic upon which a computer can reason (Janssen
2009) which is
knowledge reuse (Wang et al. 2002). To realize this, a model interface ontology that describes the
parts of the models, that will be involved in the integration process, needs to be developed. The
semantic annotation of every member model can be made available using the corresponding
SAWSDL (Kopecky et al.
2007).

b) : By dataset integration of models, we let
be a meaningful input to another model, usually operating data at a different temporal and spatial

(Knapen et al. 2013). This may require processes, like estimation of missing input data by
interpolation or extrapolation, aggregation, disaggregation, mapping, calibration, transformation,
projection, categorization, and the facilitation of repeated runs of a model for different regions/time
intervals (i.e. for a scaling process). The dataset conversion agent performs such conversions on data,
based on the contextual information of the provider and consumer services, which is made available
through service contracts and the service repository.

After componentization, run-time composition is a major issue since it has significant effect on the
scientific validity of the output of the integration. In this context service composition is the process of
linking a number of services (models) to accomplish the aim of a given integration scenario. The
service composition controller is a service which validates the workflow given by the user against the
integration rule; and it invokes the corresponding series of services accordingly by avoiding point-to-
point connections among them. It is responsible for managing the composition logic and orchestration.

Page 1255

In other words, it is a middleware platform that assures process centralization (Erl 2008a) using the
integration rule. Various runtime challenging scenarios such as error and exception handling are also
addressed by the composition controller.

4.4.3.

In the integration framework, in order to avoid persistent connections and to minimize the coupling
requirement between services, all interaction takes place through messaging. A messaging service is
part of the mediation layer and a service by itself, which is dedicated to reliable delivery of messages
to the appropriate services, which could be located remotely.

Figure 3: Messaging pattern of the proposed framework

As shown in Fig 3 the message exchange pattern between models (target services) and mediation
services is a one-way pattern, (Josuttis 2007) with
acknowledgement. The reason we selected this pattern is, that we are integrating independently built
models, and the response does not necessarily need to go to the one who invokes it. The message
exchange pattern between data transformation services and the messaging service is a
request/callback message pattern, which is a non-blocking request/response type which enables the
data transformation output be delivered asynchronously.

As a rule, service invocation (request) to models always originates from the UI layer and is realized by
the service composition controller; correspondingly, models always deliver their outputs back to the
messaging service. At design time, this rule enables that, whatever the number participating models in
the framework, each wrapper web service will only need to implement only one connection and
interface. During run-time it assures non-blocking communication between models and mediation
services, which will prevent performance problems. Messaging will usually involve supplementing the
message content with metadata, which will be used for semantic and dataset conversion. For reliable
messaging the messaging service uses a state data repository to store relevant information.

Since we are integrating multidisciplinary models, it is obvious that models can come from several
domains. Therefore, developing ontologies for all relevant domains will be unrealistic. On the other
hand, an ontology is crucial for automated semantic mediation. An application ontology, which define
concepts from a domain that are required for one application, as well as, optionally, some specific

 (Paulheim 2011), can be implemented as part of the
integration framework. The scope of application ontology will be delimited by concepts that are
involved in message exchanges.

The composition of services is guided by a designated service composition controller (4.4.2). The
service composition controller uses an XML-based integration rule to validate user-proposed

Page 1256

compositions. The integration rule serves as an element for definition of workflow logic that dictates
the flow of action and data in composing services. It enables the definition of inter-capability
interactions between services at design time. The reason we need design-time specification of linking
potential between service capabilities is logical and contextual. Furthermore, input-output data
alignment of service capabilities should be identified, and the accompanying semantic and dataset
mediation functionality should be implemented. Suppose we have a Rainfall Runoff model, which
predicts the amount of runoff; and suppose there is a River model which takes the amount of runoff as
input for its Lateral Flow attribute, i.e. as in Moore (2005). Then, the service composition
potential in the integration rule might look as shown in Fig 4.

Figure 4: Instance of integration rule

One of the objectives of this framework is to make multidisciplinary models available for researchers
and scientists in a way, so that they can easily navigate through existing model inventory and perform
linked model runs to assess different possible scenarios. To realize this objective, detail meta
information of models can be made available through a centralized service repository for design-time
discoverability. And the framework will have querying and filtering utility to discover the available
service alternatives in the service repository.

Regarding state data management, since we are integrating independently built models, we did not
expect a high need of state management between participating models. However, state management
will be needed in relation to mediation services and orchestrated task services. Due to these different
cases and for better performance: (1) database centric state deferral option for mediation services
and orchestrated task services, and (2) message-based state deferral option for maintaining state
data of models can be used (i.e. whenever needed). The message-based state deferral option can be
managed as SOAP attachment.

The user interface layer is the part of the technical integration which interacts with users, and which
shields the underlying technical, semantic and dataset conversion works. It enables users to select
workflow, run simulation, and query data.

Since the proposed framework is comprised of a number of constituents, we suggest the following
points will have crucial effect in the implementation process and on the usability of the framework. The
first major challenge to face in implementing this framework is getting detailed documentation and
meta-model information about participating models. A model with: end user manual, technical
documentation, well commented model source code, sample input-output data, and a cooperative

Page 1257

contact person is an ideal situation for implementing the integration. The less in availability those
resources will be, the more challenging it will be to incorporate the model into the integration
framework.

The other possible major challenges in implementing this architecture is in wrapping models with web
services. For instance: in one scenario a model can be used for vertical integration with another
model, i.e. model 1 finishes its execution and passes its output to model 2. In another scenario model
1 may be required to make horizontal integration with model 2 or model 3, i.e. it has to make two-way
communication with the other model at a certain time steps. During wrapping we need to identify the

ls; the existing input-output points of the model may not be
sufficient points for integration. Even the process can be more challenging when the model involves
several interacting parties in it, e.g. the case of General Equilibrium Models. This may need
understanding the whole implemented code, which may also require learning unfamiliar programming
languages.

Handling human-ware of integration by designing user friendly and intuitive user interface is another
critical challenge in implementation. It is obvious that a framework with minimal installation and
configuration requirement, and with high accessibility and availability feature will have relatively higher
usability. On the other hand, users of the integration framework can be scientists, researchers,
stakeholders, policy makers, etc. A user who is expert in one domain can be layman in another
domain. The technical complexity of the framework should not be deterrent for usage. In addition the
ways, in which input is provided and output is presented in the framework, should be at least
comparable with the user interface of the underlying models.

Application ontology development is the other area in realizing the framework. It is an iterative and
incremental process which will be performed whenever new models join the integration framework.
The process involves: identification of concepts with appropriate granularity, refinement and
structuring of the identified concepts, identifying lexicon, organizing the terms according to conceptual
hierarchies and structuring them with attributes and axioms, and then encode the ontology in a formal
language. We can see that with the current trend of poor documentation of models, identifying
concepts to be involved in the integration process may require huge effort and time. Besides, since
application ontology is to be implemented, a concept which was left out in linking model 1 with model 2
could be found very important when model 3 joins the framework later on. Such issues should be
resolved without disturbing the functioning of the existing semantic network. Another worry is that
semantic mediation by ontology can have side effects on the performance of the system. To minimize
its effect on performance, strategies like fetching relevant semantic content during initialization
together with caching (Weichselbraun 2011) can be used. Generally to avoid the possible
drawback in performance, appropriate data transfer techniques should be considered in serializing
and transporting big data.

In converting the output of one model to make input for another model, there is associated uncertainty.
If the data transformation needs only mapping out variables of the first model to input variables of the
next model, we can be certain in data transformation process. But if besides mapping, the linking of
models requires spatial or temporal up or down scaling, we will definitely have uncertainty. In some
cases the level of uncertainty could possibly force us to decide not to incorporate the model into the
integration framework. Identifying and handling uncertainty in data transformation process will have
significant impact on the acceptance of the integration output. Quantifying the associated uncertainty
can possibly contribute to the reliability of the framework.

Error and exception handling is the other area that requires huge effort in implementing the
framework. Error and exception handling is not uniform and standardized among models. How do we
handle error created by a model (inside a model) and error created by the framework? How do we
report exception produced by the underlying models? Which kinds of errors are tolerable and which
should result in interrupting model chain run? To answer these and other related questions we need to
understand how error and exception is managed in each of participating models. We need also to
separate mechanisms for handling error and exception produced by the framework and by the models.

Finally considering the above mentioned implementation related issues, we conclude that the use of
SOA with web services can facilitate the model integration effort since the intrinsically interoperable

Page 1258

nature of web services enables the establishment of loose coupling among disparate multidisciplinary
models. Besides, the discoverable nature of web services makes available the meta-model
information of models for the underlying semantic and dataset mediation tasks. Although both the
semantic and dataset mediation require additional research, the integration can only be realized when
semantic mediation and dataset conversion are made available together with the technical integration
work. In this research work we have shown how the three aspects of model integration can be
smoothly synchronized using SOA based framework by applying appropriate integration design
patterns and best practices.

G. F. Belete and A. Voinov was supported by COMPLEX Knowledge Based Climate Mitigation
Systems for a Low Carbon Economy Project, EU 7th Framework Program, Theme [env.2012.6.1-2],
Grant agreement 308601.

Armstrong R, Gannon D, Geist A, et al. (1999) Toward a common component architecture for high-
performance scientific computing, 115-124.

Babel (2012) Babel: High-Performance Language Interoperability.
http://computation.llnl.gov/casc/components/#page=home

Bilorusets R, Box D, Cabrera LF, et al. (2004) Web services reliable messaging protocol (WS-
ReliableMessaging). BEA Systems, IBM Microsoft, Tibco.

Cal A, Calvanese D, Grau BC, et al. (2005) State of the art survey. Technical Report WP1–Assessment
of Fundamental Ontology Based Tasks, FP6-7603 Thinking ONtologiES (TONES) project.

Erl T (2008a) SOA design patterns Pearson Education.
Erl T (2008b) Soa: principles of service design Prentice Hall Upper Saddle River.
Erl T, Karmarkar A, Walmsley P, et al. (2009) Web service contract design and versioning for SOA

Prentice Hall.
Goodall JL, Saint KD, Ercan MB, et al. (2013) Coupling climate and hydrological models:

Interoperability through Web Services. Environmental Modelling & Software 46, 250-259.
Jamil E (2009) What really is SOA. A comparison with Cloud Computing, Web 2.0, SaaS, WOA, Web

Services, PaaS and others. White Paper, Soalib Incorporated.
Janssen SJ (2009) Managing the Hydra in integration: developing an integrated assessment tool for

agricultural systems Wageningen Universiteit (Wageningen University).
Josuttis N (2007) SOA in Practice O'reilly.
Knapen R, Janssen S, Roosenschoon O, et al. (2013) Evaluating OpenMI as a model integration

platform across disciplines. Environmental Modelling & Software 39, 274-282.
Kopecky J, Vitvar T, Bournez C, Farrell J (2007) Sawsdl: Semantic annotations for wsdl and xml

schema. Internet Computing, IEEE 11, 60-67.
Martin M, Martin RC (2006) Agile principles, patterns, and practices in C# Pearson Education.
Moore RV, Tindall CI (2005) An overview of the open modelling interface and environment (the

OpenMI). Environmental Science & Policy 8, 279-286.
Paulheim H (2011) Ontology-based application integration Springer.
Peckham SD, Hutton EW, Norris B (2013) A component-based approach to integrated modeling in the

geosciences: The design of CSDMS. Computers & Geosciences 53, 3-12.
Schmutz G, Liebhart D, Welkenbach P (2010) Service-oriented Architecture: An Integration Blueprint

Packt Publishing Ltd.
Seemann M (2012) Dependency injection in. NET Manning.
Wang X, Chan CW, Hamilton HJ (2002) Design of knowledge-based systems with the ontology-

domain-system approach, 233-236.
Weichselbraun A, Wohlgenannt G, Scharl A (2011) Applying Optimal Stopping Theory to Improve the
Performance of Ontology Refinement Methods, 1-10.

Page 1259

	Brigham Young University
	BYU ScholarsArchive
	Jun 18th, 10:40 AM - 12:00 PM

	An architecture for integration of multidisciplinary models
	Getachew F. Belete
	Alexey Voinov
	Niels Holst

	Volume 2 (7th iEMSs 2014) 603-1213 page diff.pdf

