
Reusable Model Transformation Patterns

Maria-Eugenia Iacob
University of Twente

m.e.iacob@utwente.nl

Maarten W. A. Steen
Telematica Instituut

maarten.steen@telin.nl

Lex Heerink
Telematica Instituut
lex.heerink@telin.nl

Abstract

This paper is a reflection of our experience with the
specification and subsequent execution of model
transformations in the QVT Core and Relations
languages. Since this technology for executing
transformations written in high-level, declarative
specification languages is of very recent date, we
observe that there is little knowledge available on how
to write such declarative model transformations.
Consequently, there is a need for a body of knowledge
on transformation engineering. With this paper we
intend to make an initial contribution to this emerging
discipline. Based on our experiences we propose a
number of useful design patterns for transformation
specification. In addition we provide a method for
specifying such transformation patterns in QVT, such
that others can add their own patterns to a catalogue
and the body of knowledge can grow as experience is
built up. Finally, we illustrate how these patterns can
be used in the specification of complex
transformations.

1. Introduction

OMG’s Model-Driven Architecture (MDA) ([9],
[6]) has emerged as a new approach for the design and
realisation of software and has eventually evolved in a
collection of standards that raise the level of
abstraction at which software solutions are specified.
The central idea is that computational independent
models (CIMs), platform independent models (PIMs)
and platform specific models (PSMs) – defined at
different levels of abstraction – are derived (semi-)
automatically from each other through model
transformations. Model transformations are thus a
crucial element in OMG’s vision on MDA.
Transformations relate the different abstractions used
in a model-driven development scenario. Model-to-
model (M2M) transformations relate CIMs to PIMs
and PIMs to PSMs, while Model-to-Text (M2T)

transformations relate the PSMs to code. OMG has
recently adopted standard languages for the
specification of model transformations, for which a
number of implementations are already available. The
availability of these transformation engines, in addition
to the existing metamodelling technology, brings us a
lot closer to the realization of the MDA vision.
Modelling engineers are now able to define their own
Domain-Specific Languages (DSLs) and
transformations between them and existing languages.

Since the technology for executing transformations
written in high-level declarative specification
languages (such as those included in the QVT
standard) is of very recent date, we observe that there
is very little knowledge available on how to write such
declarative model transformations. This led us to the
conclusion that there is a need for a body of
knowledge concerning the emerging discipline of
transformation engineering.

In this paper we aim to make an initial contribution
to this emerging discipline. Recently we have had the
opportunity to experiment with implementations of
both the QVT Core language (from Compuware) and
of the QVT Relations language (from IKV++). Based
on these experiences we propose a number of useful
problem-solution patterns, similar to the well-known
design patterns in software development. In addition
we provide a method for documenting and specifying
such reusable transformation patterns, such that others
can add their own patterns and the body of knowledge
can grow as experience is built up. For this purpose we
have recently started a Wiki catalogue [10] where
transformation patterns can be documented and
discussed.

The paper is organised as follows. In Section 2 and
Section 3 we discuss briefly the QVT model
transformation specification standard and a few
modelling languages we use in this paper. In Section 4
the issue of documenting transformation patterns is
addressed. Section 5 consists of a catalogue of model
transformation patterns we believe to be relevant in the
context of model-driven development. Each pattern is

described using a template that includes (for
illustration purposes) a pattern application example. In
Section 6 we demonstrate how the patterns can be used
combined by specifying a transformation for state chart
models. Finally, Section 7 summarises our conclusions
and gives some pointers to future work.

2. The QVT transformation languages

In order for design patterns to be understood and
useable by a wide audience, they should be expressed
in a well-known, preferably standardized language.
QVT (Query/View/Transformation) provides such
languages for M2M transformation specification. QVT
actually defines three different transformation
languages: Relations, Core and Operational Mappings.
Relations and Core are both declarative languages at
two different levels of abstraction, with a mapping
between them. We briefly present the Relation
language below that has been used for specification
purposes throughout this paper. For a complete
definition of these languages we refer the interested
reader to the standard specifications [8].

The QVT Operational language extends both
Relations and Core and provides a way of specifying
transformations imperatively. As we focus on
declarative transformation specification, we will not
discuss the Operational language further in this paper.
OMG has recently also approved the MOF Model-to-
Text standard for specifying transformations from
MOF models to text (i.e., code). However, M2T
transformations are of a completely different nature
and therefore also fall outside the scope of this paper.

In the QVT Relations language transformations are
specified by defining the relations that should hold
between source and target domains. Transformation
rules are described in terms of relations that define a
mapping between source and target elements and can
be constrained in the when and where clauses. Only
model elements that satisfy the constraints will be
related. Such constraints typically deal with the
properties of the model element, such as attributes and
associations to other elements. The when-clause
specifies a precondition. Only when all conditions in
this clause evaluate to true the relation between the
specified domains is established. The where-clause
specifies a postcondition. Once the relation is
established then the conditions specified here should
be enforced to hold. When a domain is marked as
enforced, the engine may create or update that domain
in order to establish the relation.

3. Modelling languages

Before addressing the main topic of this paper - the
transformation rule patterns - we briefly describe the
experimental setting in which our results have been
devised. The following modelling languages that have
served as source and target languages in our
transformation pattern specifications:

The shape language is a simple, purely syntactical
language that has been defined in order to illustrate the
model transformation patterns. It does not require any
prior knowledge and it basically has only two
concepts: simple shape and arrow. There are three
types of simple shapes: square, circle and triangle.
Furthermore, the Shape language contains a grouping
concept called Block used to express hierarchy. A
block may contain simple shapes and other blocks.
Each shape model should have a unique root element,
which is an instance of RootBlock, a specialization of
Block. To express relations between simple shapes and
blocks the Arrow concept is used. The Shape
metamodel is given in the Figure 1.

Figure 1. Shape language metamodel
In order to illustrate the transformation patterns

proposed in this paper we have used well known
diagramming notations, namely the UML class,
activity and statechart diagrams (for the complete
specifications see [7]). The used statechart metamodel
can be found in the Figure 2.

4. Transformation design patterns

Since the publication of “Design Patterns” by
Gamma et al. [4], patterns are well known in software
engineering. Patterns describe which problems
software engineers can encounter, the context in which
such problems may appear, and a general solution to
them. Analogously we propose to start a collection of
reusable design patterns for specifying model

transformation. A transformation design pattern, or
transformation pattern for short, is then a reusable
solution to a general model transformation problem.

Figure 2. Statechart diagram metamodel
The need for transformation patterns emerged

almost immediately after we first started writing model
transformations in QVT. Transformations are often
very similar. An existing transformation specification
is often a good starting point for a new one.
Unfortunately, the collection of existing and well-
documented transformations is still very small. We
also noticed that the same transformation can often be
specified in subtly different ways. On the surface it
seems to be just a matter of style, but such a different
‘style’ can have great consequences for performance,
applicability and reusability of the transformation.
Finally, our first solution to a particular transformation
problem often was not entirely correct and had to be
revised several times. A library of reusable
transformation patterns should enable engineers to get
it right more quickly.

4.1. Transformations, transformation rules and
rule patterns

Transformations, transformation rules, transformation
patterns, rule patterns are just a few concepts which are
used with different meanings and sometime
interchangeably in the literature. For example, in [5] a
definition is given for a transformation pattern which
corresponds to what we call a transformation
definition. Somewhat similar definitions to the ones we
propose are given by [3]. Another interesting view on
transformation patterns is that taken by the project
Modelware [1] that considers that a transformation
pattern (as general repeatable solution to a commonly-
occurring model transformation design problem) is not

a finished design that can be transformed directly into
a transformation specification. Although [1] proposes a
catalogue of transformation patterns, their approach is
different in two respects. Firstly, Modelware does not
rely on the QVT standard for the specification of
proposed patterns. Instead, the hybrid
imperative/declarative ATL language is used.
Secondly, the patterns included in [1] do not overlap
with those proposed in this paper.
Therefore, before discussing specific transformation
patterns as mentioned before, we feel compelled to
provide further clarifications concerning the semantics
we have attributed to these concepts and the relations
between them (as depicted in Figure 3). In the
remainder of this paper the following definitions will
be used.

Source
model

Source
metamodel

Target
metamodel

Target
modelTransformation

Transformation
definition

1
*

Rule definitionMapping Relation

1..* 0..* 0..* 1..*

1..* 0..* 0..* 1..*

Rule pattern

Figure 3. Model transformation concepts and
relations between them

A transformation definition is a formal specification
that consists of a set of rule definitions. A rule
definition is a formal specification in the form of a
mapping (in the sense of the QVT - Core language) or
of a relation (in the sense of the QVT - Relations
language). In its simplest form (and in line with the
MDA), a model transformation is the process of
converting a source model that conforms to a source
metamodel into a target model that conforms to a
target metamodel, using an existing transformation
definition between the two metamodels. When a
source model is transformed into the target model the
transformation definition prescribes the manner in
which the different rule definitions that are included in
the transformation definition are “executed”. In this
paper we argue that rule definitions can be created by
instantiating so called rule patterns. More specifically,
we regard a rule pattern as a generic (possibly
parameterized) formal specification that describes at a
higher level of abstraction a whole class of recurring
rule definitions.

4.2. Documenting transformation patterns

A design pattern names, abstracts, and identifies the
key aspects of a common design structure, such that it
can be reused and applied over and over again in
creating new designs. According to [1] and [4], a
pattern description should contain the following four
essential elements: the pattern name, a description of
the problem and the contexts in which it is applicable,
the solution to the problem, and the consequences of
using the pattern. In addition, pattern descriptions
should provide an example to clarify the provided
solution.
Likewise, we use a fixed template for documenting the
transformation patterns, consisting of the following
elements: the name of the pattern, the goal of the
pattern, motivation for the pattern, describing the class
of problems that the pattern solves, specification of
the solution using the QVT Relations language, an
example in which the pattern is applied and
considerations regarding the pattern’s applicability.

5. A catalogue of rule patterns

In this section, we document a number of
transformation patterns using the template described
above. These are: Mapping, Refinement, Abstraction,
Duality and Flattening.

5.1. The Mapping pattern

Goal: Establish one-to-one relations between elements
from the source model and elements from the target
model.
Motivation: Mapping is the most common and
straightforward transformation problem. It occurs
when source and target models use different languages
or syntax, but otherwise express more or less the same
semantics. This pattern is used to a greater or lesser
extent in virtually any transformation.
This is the most basic transformation pattern. Typical
examples of transformation rules that are based on this
pattern are 1-to-1 model transformation rules. It is in
general bidirectional (unless different concepts from
the left domain are mapped onto the same concept in
the right domain). All other transformation patterns
use/include this pattern.
Specification:

top relation XYMapping {
 inm: Str ng;

enforce domain left x: X {
 context = c1 : XContext {},
 name = nm };

enforce domain right y: Y {
 context = c2 : YContext {},
 name = nm };

when {
 ContextMapping(c1,c2);
 }
}

This rule specifies that some element x of type X is
related to some element y of type Y, whenever their
respective contexts are related by ContextMapping and
their names are equal. When the respective model
elements have more properties than a context and a
name, these should also be mapped. Consider for
example the case where the model elements to be
mapped represent associations or relationships
between other model elements, their sources and
targets. The pattern for this case is specified below:

top relation RelationshipMapping {
 inm: Str ng;

enforce domain left a: A {
 context = c1 : AContext {},
 name = nm,
 source = as : AS {},
 target = at : AT {}

};
enforce domain right b: B {

 context = c2 : BContext {},
 name = nm,
 source = bs : BS {},
 target = bt : BT {}
 };

when {
 ContextMapping(c1,c2);
 ElementMapping(as,bs);
 ElementMapping(at,bt);
 }
}

Example: For an example of mapping pattern instance
one may refer to the relation TransitionMapping in
Section 6. Besides, we have applied this pattern to
relate Circles to Squares in the Shape language. The
complete specification of this transformation can be
downloaded from our Wiki catalogue [10].
Applicability: The mapping pattern can be used to:

translate a model from one syntax into
another syntax, e.g. from ecore to XML, or
from UML to Java;
relate concepts one-to-one in source and
target model.

5.2. The Refinement pattern

The refinement pattern is the key design pattern in
stepwise refinement, which is a method to create lower
level (or: concrete) models from models from higher
level (or: abstract) models in a number of successive
refinement steps. Refinement is a key ingredient of
MDA, which advocates the realization of software

systems through systematic stepwise refinement from
models. Depending on the subject, different refinement
types can be distinguished, e.g., relation refinement
and node refinement.

Relation refinement pattern

Goal: To obtain a more detailed target model by
refining an edge to multiple, possibly interrelated,
edges.
Motivation: Relation refinement is typically used to
detail steps (which are often modelled as edges) into
sub steps. An example is e.g., by adding process steps
to an existing UML activity diagram.
Specification: In relation refinement an edge is refined
to (a set of) edges, possibly interleaved with nodes.
The corresponding pattern is characterized by a single
relation mapping on the left and multiple relation
and/or node mapping on the right. The pattern for
relation refinement is straightforward, and closely
resembles the Mapping Pattern. The specification
below demonstrates the mapping of an edge e1 to an
edge-node-edge pattern.

top relation RelationRefinementMapping {
n : String;
enforce domain left e1 : Edge {

 name = n,
 context = c1 : Context {},
 source = s_left : Node {},
 target = t_left : Node {}

};
enforce domain right im_node {

 context = c2 : Context {}
 -- an intermediate node
 };
-- potentially more nodes and edges

enforce domain right e2 : Edge {
 source = s_right : Node {},
 name = s_right.name + '_to_' +
im_node.name,
 context = c2,
 target = im_node

};
enforce domain right e3 : Edge {

 target = t_right : Node {},
 name = im_node.name + '_to_' +
t_right.name,
 block = c2,
 source = im_node
 };

when {
 ContextMapping(c1,c2);
 ElementMapping(s_left,s_right);
 ElementMapping(t_left,t_right);
 }
}
}

Example: An example of relation refinement in the
Shape language is the refinement of any Arrow into an
Arrow-Square-Arrow combination. The corresponding

specification in QVT Relations can be downloaded
from our Wiki catalogue [10].

Node refinement pattern

To obtain a more detailed target model by refining a
node to multiple, possibly interrelated, nodes a node
refinement pattern (similar to the relation pattern) has
been documented. However due to space limitations
has not been included in this paper, but can be found
on our Wiki catalogue [10]. Node refinement is used to
provide more detail to a node. For example, an UML
class diagram that leaves the methods and attributes
unspecified can be refined to class diagrams that do
specify methods and attributes. Another example is to
refine a super state in a hierarchical statechart to
several interrelated sub-states.

5.3. The Node Abstraction pattern

Goal: Abstracts from nodes in the source model while
keeping the incidence relations of these nodes.
Motivation: The node abstraction pattern removes
specific nodes from the source model to create a target
model whilst preserving the incidence relations. The
node abstraction pattern can be used to abstract from
specific information from models. The specification
below shows a simplified node abstraction pattern that
abstracts from a node X and produces an edge between
the incidences. It is assumed that source and target
have the same metamodel, that node X is a subtype of
the abstract type Node, that each node contains
references to its incidence edges, and that each edge
contains references to its source and target nodes. The
pattern below can only handle sequence of X of length
1, multiple in-sequence occurrences of X cannot be
handled.
Specification:

top relation Node_X_Abstraction {
enforce domain left s1 : X {

 inEdge = e_in : Edge {
 name = na_in : String;,
 source = ss1 : Node {}
 },
 outEdge = a_out : Edge {
 name = na_out,
 target = tt1 : Node{}
 }

};
enforce domain right a : Node {

 name = na_in + na_out,
 source = ss2 : Node {},
 target = tt2 : Node {}
 };

when {
 NodeMapping(ss1,ss2);
 NodeMapping(tt1,tt2);

 }
}

Example As node abstraction is quite intuitive we do
not provide a code fragment of node abstraction.
However, specification of example transformations can
be downloaded from our Wiki catalogue [10].
Applicability: Remove model elements from models,
for example, remove processes that conform to certain
criteria from a process diagram.

5.4. The Duality pattern

Goal: Given a model, to generate its semantic dual.
Motivation: Various modelling languages exist that
rely on the (acyclic) directed graph formalism to
represent dynamic behaviour (e.g., Petri nets, BPMN
and UML statechart diagrams, sequence diagrams,
collaborations diagrams and activity diagrams).
Nevertheless the semantics attributed to nodes and
arrows in these graph-like models differs. There are
roughly two main categories of such languages:

languages that focus on modelling the procedural
flow of activities that make up a larger activity,
namely a process - in this case vertices generally
represent (branching, assembling) activities, while
arrows depict causality relations between activities
(e.g., BPMN, UML activity diagrams);
languages that focus on modelling the flow of
control from state to state for a particular object
undergoing a process - in this case a vertex
generally represent one state of that object, while
an arrow depict the transition from one state to the
other (i.e., indicating that the object being in the
first state will enter the second state as a result of
reacting to discrete events; e.g., Petri nets, UML
statechart diagrams).

Defining transformations between modelling
languages that belong to these two different categories
requires the application of what we will refer to as
duality pattern (explained in more detail in the sequel).
This pattern is based on the dual character of these two
types of languages. More specifically, an activity (in
the sense of the first category of languages) can be
seen as the procedure that leads to a state change of the
object(s) undergoing a process, that is a transition in
the sense of the second type of languages, while a
causality relationship may be interpreted as the
moment when the object(s) have reached a certain state
as a result of an activity’s completion, which makes
possible the initiation of the subsequent one(s). In
other words, the duality rule pattern will map vertices
from the source model onto arrows in the target model
and arrows from the source model onto vertices in the

target model. However, it should be noted that the
mapping of branching/assembling nodes deserves
special consideration.
Specification: Our transformation strategy is as
follows: All Arrows on the left are related Nodes on
the right using the mapping rule pattern, as indicated
below:

top relation ArrowNodeMapping {
 nm: String;

enforce domain left a: Arrow {
 context = c1: AContext {},
 name=nm

};
enforce domain right v: Vertex {

 context = c2: VContext {},
 name=nm
 };

when {
 ContextMapping(c1, c2);
 }
}

Rules must be defined for relating a node on the left
with one or more arrows on the right for each of the
following cases:

a node on the left, having an incoming arrow e1
and an outgoing arrow e2, is related to an arrow a
on the right if e1 has been related to the source of
a and e2 to the target of a.

top relation NodeArrowMapping {
 inm: Str ng;

enforce domain left v:Vertex {
 context = c1: NContext{},
 incoming = e1: Arrow {},
 outgoing = e2: Arrow {},
 name = nm

};
enforce domain right a:Arrow {

 context = c2: AContext {},
 source = v1: Vertex {},
 target = v2: Vertex {},
 name = nm
 };

when {
 ContextMapping(c1, c2);

v.outgoing->size()=1;
 v.incoming->size()=1;

ArrowNodeMapping(e1, v1);
 ArrowNodeMapping(e2, v2);
 }
}

a node on the left that has an incoming arrow e1
and n (n>1) outgoing arrows (i.e., the node is a
“split node”) will be mapped on n arrows on the
right (one for each outgoing arrow on the left)
using the rule indicated below. As in the case of
the previous rule, the rule fires when contexts
have been related and the incoming arrow e1 has
been related to the source of the arrow a (on the
right) and an outgoing arrow e2 to the target of a.

top relation SplitArrowMapping {
: g; nm, nm2 Strin

enforce domain left e2:Arrow {
 source = v:SplitNode {
 context = c1: SContext
{},
 incoming = e1: Arrow
{},
 name = nm
 },
 name = nm2
 };

enforce domain right a: Arrow {
 context = c2: AContext {},
 source = v1: Vertex {},
 target = v2: Vertext {},
 name = nm.concat(nm2)
 };

when {
 ContextMapping(c1,c2);

v.outgoing->size()>1;
 v.incoming->size()=1;
 ArrowVertexMapping(e1, v1);
 ArrowVertexMapping(e2, v2);

}
}

a similar rules can be defined when the node on
the left is a “join node”;
rules must also be defined when the node on the
left is a start node/final node (no
incoming/outgoing arrows) or the node is
simultaneously join and split node (two or more
incoming arrows and two or more outgoing
arrows). Because of space limitations we do not
provide the specification of these rules, although
for a complete transformation these situations
must be equally considered.

Example: An example duality pattern application is
the generation of a statechart diagram from an activity
diagram. The corresponding QVT specification can be
downloaded from our Wiki catalogue [10].
Applicability: The duality pattern can be used to
related models expressed in languages between which
a duality relationship can be established (i.e.,
nodes/constructs from the source language can be
semantically related/mapped to arrows/relations in the
target language and, relations/arrows in the source
language can be related/mapped to nodes/constructs in
the target language). For example it can be used to
define transformations between UML activity
diagrams and UML statechart diagrams. It should be
noted, that situations may occur (depending on the
metamodels of the involved languages) when this type
of pattern is not bidirectional.

5.5. The Flattening pattern

Goal: Remove the hierarchy from the source model.
Motivation: Models are often hierarchically
structured. Consider for example package hierarchy in
UML, composite states in Statecharts or Hierarchical
PetriNets. Such hierarchical structuring usually is
intended to make the models easier to understand and
do not have inherent semantics. In order to realize such
hierarchical models in code or formally analyze them
using some tool, it may be necessary to first flatten the
model to a model without hierarchy.
Specification: We make the following assumptions:

Source and target models have the same
metamodel.
Source and target models both have a unique
RootElement, which are related by the
RootMapping relation, an instance of the mapping
pattern.
Model elements in the source model belong to
(have as their context) the RootElement or to a
Composite element, representing the hierarchy.

Our transformation strategy is as follows. All
Composites on the left are related to the RootElement
on the right. The CompositeContext here is either the
RootElement or another Composite. Thus the
CompositeContext c1 should be related to the
RootElement r via RootMapping or
CompositeFlattening itself.

top relation CompositeFlattening {
checkonly domain left c: Composite {

 context = c1 : CompositeContext {} };
enforce domain right r: RootElement{};

when {
 RootMapping(c1,r) or
CompositeFlattening(c1,r);
 }
}

All other elements will be simply copied using
instances of the mapping pattern above. In these rules
the ContextMapping should be replaced by the when
clause of the CompositeFlattening rule.

relation ElementMapping {
 i nm: Str ng;

enforce domain left x: Element {
 name = nm,
 context = c1 : Context {}
 };

enforce domain right y: Element {
 name = nm,
 context = c2 : Context {}
 };

when {
 RootMapping(c1,c2) or
CompositeFlattening(c1,c2);
 }
}

Examples: Below we have applied this pattern to
flatten the Block hierarchy from a Shapes model. The
additional condition
not(RootBlockMapping(b1,b2)) is required
to make sure that the Block b1 is not the RootBlock.

top relation BlockFlattening {
checkonly domain left b1: Block {

 block = c1 : Block {} };
enforce domain right b2: RootBlock {};
when {

not(RootBlockMapping(b1,b2));
RootBlockMapping(c1,b2) or

BlockFlattening(c1,b2);
 }
}

Applicability: The flattening pattern can be used to
remove hierarchical structure from a model.

6. Applying transformation patterns

Transformation specifications are made up of rule
definitions (see Section 4.1). Each rule tackles a small
part of the transformation problem. Transformation
patterns can help to identify solutions to these partial
transformation problems. In this section, we show how
a complete transformation definition can be
constructed and specified by combining rule
definitions, which in turn are obtained by applying the
rule patterns. The example illustrates how several
different rule patterns are combined to provide a
complete solution for a particular transformation
problem. To demonstrate the viability of the approach
the transformation is applied to statecharts, which is a
well-known and frequently used formalism of UML.
The problem statement is:
Given a hierarchical statechart, i.e., a statechart with
composite states, produce a flat statechart without any
hierarchy describing the same behaviour (Figure 4).

Figure 4. Statechart problem definition
We start the transformation specification with the
declaration of the source and target domains. The
source and target models are of the same type here,
i.e., a statechart (see Figure 2 for the statechart
metamodel).

Transformation
StatechartFlattening(left:StateChart,right:Sta
teChart) {}

Obviously, the problem statement is a Flattening
problem. Thus we first apply the Flattening pattern to
define a rule for flattening composite states. Here the
Composite is a CompositeState, the CompositeContext
is a Container (which is another CompositeState or the
StateMachine), and the RootElement is a
StateMachine.
top relation CompositeFlattening {
 enforce domain left cs: CompositeState
 }; {
 container = c1 : Container {}
 enforce domain right sm: StateMachine {};
 when {
 StateMachineMapping(c1,sm) or
 CompositeFlattening(c1,sm);}}

Composite
CompositeContext

RootElement

Flattening pattern

The above rule depends on a mapping between the root
elements, i.e., the encompassing state machines. This
relation is a simple instance of the Mapping pattern, in
which a state machine on the left is related to a state
machine on the right, such that their names are equal.
As StateMachine is the root hierarchical concept no
ContextMapping needs to be specified.

X

Y

Mapping pattern top relation StateMachineMapping {
 nm: String;
 enforce domain left sm1: StateMachine {
 name = nm};
 enforce domain right sm2: StateMachine {

name = nm};}

The remaining elements of the state machine are also
instances of the Mapping pattern. The rule for
transforming SimpleStates, for example, is obtained by
instantiating the Mapping pattern.
Also transitions between states from the source model
are simply mapped onto transitions in the target model
(as shown below), which is an instance of the
Relationship Mapping pattern.

top relation SimpleStateMapping {
 nm: String;

enforce domain left s1: SimpleState {
 container = c1 : Container {},
 name = nm};

enforce domain right s2: SimpleState {
 container = c2 : Container {},
 name = nm};

when {StateMachineMapping(c1,c2) or
CompositeFlattening(c1,c2);}}

X

Mapping pattern

ContextMapping

Y

transformation?

In the statechart metamodel, a Vertex is defined as a
generalization of a State that can be used to distinguish
between different types of states, e.g., Start State or
Final State. It has been introduced to cope with a
deficiency in the transformation execution engine to
handle enumerations.

top relation TransitionMapping {
 nm: String; g: String;
 enforce domain left t1: Transition {
 container = c1 : Container {},
 source = ss1 : Vertex {},
 target = ts1 : Vertex {},
 name = nm,
 guard = g};
 enforce domain right t2: Transition {
 container = c2 : Container {},
 source = ss2 : Vertex {},
 target = ts2 : Vertex {},
 name = nm,
 guard = g};
 when {
 StateMachineMapping(c1,c2) or
 CompositeFlattening(c1,c2);

A
AContext

AS

AT

BContext

B

BS
BT

In order to obtain a semantically correct model, we
additionally need to remove the initial and final states
of all composite states. Moreover, we need to make
sure that transitions that originally had a composite
state as their target are now redirected to the target of
the outgoing transition of the initial state of that
composite state. And, conversely, that transitions that
originally had a composite state as their source are now
moved to the source of incoming transitions of the
final state of that composite state. In principle we can
do this by applying the node abstraction pattern, which
takes a node and replaces it by a simpler structure. This
pattern can be applied twice, first to remove the
composite states and second to remove initial and final
states. The next figure depicts the abstraction of
pseudostates.

top relation InitialStateAbstraction {
 nm1, nm2: String;
 checkonly domain left ps: PseudoState {
 kind = PseudostateKind::pk_initial,
 container = c1 : CompositeState {
 incoming = inc : Transition {
 source = s1 : Vertex {},
 name = nm}},
 outgoing = out : Transition {
 target = t1 : Vertex {},
 name = nm2}};
 enforce domain right t: Transition {
 container = c2 : Container {},
 source = s2 : Vertex {},
 target = t2 : Vertex {},
 name = nm1 + nm2};
 when {CompositeFlattening(c1,c2);

VertexMapping(s1 s2);

X

Abstraction
pattern

The next figure depicts the abstraction of the
FinalState by instantiating the node abstraction pattern.

top relation FinalStateAbstraction {
 nm1, nm2: String;
 checkonly domain left fs: FinalState {
 container = c1 : CompositeState {
 outgoing = tr : Transition {
 target = t1 : Vertex {},
 name = nm1}},
 incoming = inc : Transition {
 source = s1 : Vertex {},
 name = nm2}};
 enforce domain right t: Transition {
 container = c2 : Container {},
 name = nm1 + nm2,
 source = s2 : Vertex {},
 target = t2 : Vertex {}};
 when {CompositeFlattening(c1,c2);

VertexMapping(s1 s2);

X

Abstraction
pattern

By combining all these transformation rules a
transformation specification is obtained that is able to
flatten the statechart.

7. Conclusions

Writing model-to-model transformations can be a
tedious undertaking. In most model transformations
there are certain underlying principles that can be used
to facilitate the production of model transformations.
This paper has identified basic transformation patterns
that frequently occur in model-to-model
transformations such as the mapping pattern, the
duality pattern, the refinement/abstraction pattern, the
flattening pattern. These patterns have been described
and specified in QVT Relations, resulting in a
catalogue of basic transformation patterns. A simple
Shape language has been introduced to illustrate most
of the patterns. The catalogue of transformation
patterns provided in this paper is a first attempt to
categorize transformation principles in QVT Relations.
This list is, however, not complete. A natural way to
enrich this collection of pattern, would be to try to join
our approach with similar initiatives in this area, such
that the Modelware project ([1]). It remains however to
investigate to what extent patterns proposed in [1] are
implementable using the declarative QVT languages.
Furthermore, we challenge the community to elaborate
on this kind of work and extend the list of patterns.
Composition of model-to-model transformation should
be guided, in our view, by the usability of the resulting
transformation. In this respect we believe that it is not
always meaningful to compose patterns. In practice,
some particular compositions of patterns will occur
more frequently than others. For example, the mapping
pattern is often composed with many other patterns,
but composition of node refinement with duality seems
to make less sense in practical situations.
Nevertheless, an analysis of pattern compositionality
and parameterization makes the object of future work.

Acknowledgments
The work presented in this paper is part of the
Freeband A-MUSE project (http://a-muse.freeband.nl),
which is sponsored by the Dutch government under
contract BSIK 03025.

References

[1] Allilaire, F., Bézivin, J., Olsen, G., Bailey, T., Bonet,
S., Mantell, K., Vogel, R.: “D1.6-3 Identification of
Transformation Patterns”, FP6-IP 511731
MODELWARE, 04/09/06, http://www.modelware-
ist.org/index.php?option=com_remository&Itemid=79&
func=fileinfo&id=132 (1-2-2008).

[2] Alexander, C., Ishikawa, S., Silverstein, M.: “A Pattern
Language: Towns, Buildings, Construction (Center for
Environmental Structure Series)”, Oxford University
Press, 1977.

[3]Brahe, S. and Bordbar, B.: “A Pattern-based Approach to
Business Process Modeling and Implementation in Web
Services”, In Workshop Proceedings of the 4th
International Conference on Service-Oriented
Computing ICSOC 2006, Chicago, IL, USA, December

4-7, 2006, Lecture Notes in Computer Science, Vol.
4652/2007, pp. 166-177, ISBN 978-3-540-75491-6.

[4]Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design
Patterns: Element of Reusable Object-Oriented
Software”. Published by Addison-Wesley, 1995. ISBN
0201633612. 27th printing, November 2003.

[5]Judson, S.R., Carver, D.L., France, R.B.: “A Meta-
Modelling Approach to Model Transformation”. In:
OOPSLA’03, p. 326-327, October 26-30, 2003,
Anaheim, USA.

[6]Miller, J. and J. Mukerji (eds.): “MDA Guide Version
1.0.1”, Object Management Group, June 2003.

[7]Object Management Group: “OMG Unified Modeling
Language: Superstructure Version 2.1.1”, 2003,
http://www.omg.org/docs/formal/07-02-03.pdf (31-1-
2008).

[8]Object Management Group: “Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification”, Final
Adopted Specification ptc/05-11-01, Nov. 2005,
http://www.omg.org/docs/ptc/05-11-01.pdf (1-2-2008).

[9]Soley, R. and the OMG Staff Strategy Group: “Model
Driven Architecture", Object Management Group White
Paper, Draft 3.2, Nov. 2000.

[10] Wiki patterns catalogue:
https://doc.telin.nl/dsweb/View/Wiki-90/HomePage.

