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Abstract: The parametrization of stabilizing controllers for systems with multiple delays
is derived. The approach is to reduce the problem to an equivalent finite dimensional
stabilization problem. The resulting controller consists of two blocks: a rational block and
a non-rational block with finite impulse response (FIR}, both of which are implementable.
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1. INTRODUCTION

In the mid 70s, Youla (Youla et aI., 1976} et. al.
and Kucera (Kucera, 1975) independently derived the
parametrization of all stabilizing controller for finite
dimensional systems. Based on a priori knowledge of
one stabilizing controller, they described all stabilizing
controllers parametrized by the set of all stable proper
transfer functions. Although it has the reputation
of being an underutilized tool for practical control
system design. the Youla-Kucera parametrization has
been employed in addressing many control problems,
including Hx and H2 problems (Anderson, 1998).

The problem of stabilizing time-delay systems has
been considered for many years. Smith (Smith, 1957)
managed to reduce the stabilization problem of sta­
ble SISO plants with a delay to a finite dimensional
slabilization problem. The resulting controller later
becanle known as the Smith predictor. Over the years,
there have been a lot of modifications to the Smith
predictor. These include modifying the Smith predic­
tor to an observer-predictor form which has better dis­
I urbance rejection properties than the original Smith
predictor and modifications to allow unstable plants.
For a review of the Smith predictor and its modifica­
tions. the reader is advised to consult (Palmor, 1996)
and the references therein. The Smith predictor has
also been extended to the case of MIMO plants with
multiple delays. The design and analysis of the mul-
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tivariable dead-time compensators are discussed in
(Palmor and Halevi, 1983).

However, in all of the above cases, the controller is
proposed beforehand and then its stabilizing property
is proved. The problem of characterizing all stabilizing
controllers is not considered.

The Youla-Kucera parametrization may be obtained
via coprime factorization of the plant. Kamen, Khar­
gonekar, and Tannenbaum (Kamen et aI., 1986) de­
veloped a method to construct coprime factorizations
of systems with commensurate time-delays. Using this
result the Youla-Kucera parametrization may readily
be obtained. However, the paper does not elaborate
on the state-space realization of the coprime factors.

Mirkin and Raskin (Mirkin and Raskin, 1999) came
up with an elegant way to transform the problem
of stabilizing systems with a single ilo delay to a
finite dimensional stabilization problem. A state-space
parametrization of all stabilizing controllers may then
be obtained using standard finite dimensional systems
theory. The result is then used to solve H2 control
problems and robust stabilization problems.

In this paper, the work in (Mirkin and Raskin, 1999)
is extended to systems with multiple ilo delays, i.e.
different delays in each ilo channel of the controller.

Following (~'Iirkin and Raskin, 1999), the approach
is to reduce the problem to an equivalent finite di-



Notation A transfer matrix F is said to be stable if
FE Hoc, and bistable if both F and F- 1 are stable.

It is proved (Weiss, 1994) that a transfer matrix is
causal if and only if it is proper. Here a transfer matrix
F is said to be proper if there exists p E lR such that

mensional stabilization problem. In the equivalent
problem, the plant is rational and there is no delay
component. A mapping between the signals of the two
closed loop systems is then formulated. Based on this
mapping, we may use results from finite dimensional
systems theory to derive the the parametrization of
stabilizing controllers for systems with multiple de­
lays.

It is shown that the resulting controller consists of
two blocks: a rational block and a non-rational block
with finite impulse response (FIR), both of which are
implementable.

Recently, we learned that Raskin in Chapter 8 of her
PhD thesis (Raskin, 2000) also proposed a similar
solution the problem we consider in this paper.

K(s)

v,

v,

Fig. 1. The standard control system with multiple
delays in stabilization setup

(1)sup IIF(s)1I < 00
Ro(s»p

In addition, F is said to be strictly proper if there is
p E lR such that

The familiar (lower) linear fractional transformation

(LFT) of two transfer matrices M = [z:: z:~] and

U of appropriate dimension is defined as

Fp(M.U):= Mu + M 12 U(l- M22 U)-1 M 21 . (3)

lim IIF(s)1I = o.
s_oo,Re{s»p

(2)

Fig. 2. The equivalent finite dimensional control sys-
tem

controller for the case where it is zero and recover the
controller for the nonzero case by connecting Ay D22 Au

as a feedback to the controller.

3. EQUIVALENT FINITE DIMENSIONAL
SYSTEM

2. PROBLEM FORMULATION

We consider the control system in Figure 1, where we
have multiple delays in both the input and output of
the controller K(s).

We assume that the rational plant has a stabilizable
and detectable realization of the form

(4)

connected with a proper controller K(s), and two mul­
tiple delay matrices Ay and Au . The delay matrices are
of the form

:\y = diag(e-·<h"l. e- sh ,/2 .. " e-sh,/m) (5)

Au = diag(e-.<h"" e- sh "2 . ... , e-.<h",,) (6)

where In and p are dimension of y and 11, respectively.

The aim is to find a parametrization of all proper
controllers that internally stabilize the control system
of Figure 1. Internal stability is defined to be the
stability of the transfer functions from (VI, V2, w) to
(y. u . .:).

\\'ithout loss of generality, D22 is assumed to be zero.
Indeed. if D22 is nonzero. we may first compute the

Following the procedure in (Mirkin and Raskin, 1999),
we develop an algorithm for transforming the control
system of Figure 1 to an equivalent finite dimensional
control system.

Let us first define transfer matrices <1>12, <1>21, and <1>22
such that

PI2(S)A u = Fn(s) - <l>12(S) (7)

AyP2 ds) = F2 ds) - <l>21(S) (8)

A y P22 (S)A u = F22 (S) - <l>22(S) (9)

holds, with F12 , F21 and F22 rational, and <1> 12 , <1>21,
and <1>22 stable.

The next two lemmas show that the control system in
Figure 1 may be transformed into an equivalent finite
dimensional system in Figure 2 where

(10)

Here the two control systems are equivalent in the
sense that there is a one to one relation between the
signals in the two systems.

First we show that the controller k in Figure 2 is well
defined. Afterwards we show that the configuration
in Figure 1 and Figure 2 have an equivalent internal
stability property, i.e. internal stability of one config­
uration is equivalent to internal stability of the other.

352



Lemma 1. Let P22 and <1>22 as in (9), with P22 rational
and 4>22 stable. Then

K(s) = (l + K(S)4>22(S))-1 K(s) (11)

is well-defined and proper if and only if K(s) is proper.

(17)

(18)

Pruuf. First notice that P22 and 4>22 are strictly
proper. Now suppose K is proper, then K4>22 is
strictly proper and thus the inverse in (11) is well­
defined and proper. It follows that K is well-defined
and proper. For the converse, suppose K is well­
defined and proper, then necessarily the inverse in
(12) is well-defined and proper. This implies that K
is proper. •

We see that the relation between K and K is a
bijection. In fact, we can infer K from K using the
equation

K(s) = (l- K(S)4>22(S))-1 K(s). (12)

Lemma 2. The controller K internally stabilizes the
system in Figure 1 if and only if K defined in (11)
internally stabilizes the system in Figure 2.

Suppose K stabilizes the control system of Figure 1,
then H is stable. Substituting (14) and (16) to (17)
we obtain the following

[:J [~~r~] (H [~~r ~fJ -[~~f~]) [3]
(19)

showing that iI is stable. Hence K stabilizes P.

The converse can easily be proved in a similar manner.
Hence, we have that K stabilizes the control system of
Figure 1 if and only if K stabilizes the control system
of Figure 2.•

Lemma 2 results in the following corollary, which is
useful for obtaining the conditions for the existence of
a stabilizing controller.

(15)

(16)

Proof. The corollary follows immediately from Lemma
2.•

(27)

(26)

(25)

(24)

(22)

(23)

[

C2.le-AhYl 1
C2 .2 e- Ah ,,2

C2 me~A""",

d· (-shy} -Sh y 2 -sh yrn )Ay = lag e ,e , , e ,
Au = diag(e-shu1 ,e-shu2, ,e- shuJ').

where

Constructing P12 , P21 , and P22 Using Lemma 2, we
can use standard stability theory to obtain the Youla­
Kucera parametrization. What remains is to construct
rational P12 , P21 , and P22 such that (7, 8, 9) holds,
<1>12, <1>21, and <1>22 are stable.

First recall the rational plant P( s) and the delay
matrices All and Ay:

[
PlI (s) P12 ( s) ] [A B1 B2]

P(s) = P21 (S) P22(S) = g~ g~: D~2 , (21)

We propose the following candidate for P12 . P21 , and
P22 :

Corollary 3. Define

p(s) = [Pll PI2Au] (20)
A y P21 A y P22 Au '

then p(s) is stabilizable by a proper controller if and
only if ?(s) is stabilizable.

[~] ~ [~ 7 -~,,] [:]
[ ~:1= [~ 4>;2 4>~1] [~~]

lL'J 0 0 I w

The bistable mappings allo\\' us to prove the lemma.
Let us denote H and if as the transfer functions
from :vI.(·2,wlT to [y.u . .:]T in Figure I and from
i1'1. (/2. w]T 10 [y. (J • .:IT ill Figure 2. respectively. i.e.

and conversely we have

[

y ] [I - <1>22 0] [Y] [0 <1>22 0] [VI]u=OIO u+OOO V2.
z 0 -<1>12 I zOO 0 w

(14)
We see that all transfer matrices in the above equa­
tions are stable. There is also a bistable mapping be­
tween the input signals of the two closed loop systems,
as shown by the following equations

Proof. By absorbing the delay matrices to the plant,
we obtain Figure 3(a). Now, observe Figure 3(a)­
(d). In this figure, it is shown that the setup in
Figure 1, through block diagram manipulations, can
be transformed into the setup in Figure 2 with VI =
VI -<I>22v2 -<I>2IW. Z = Z+4>I2U. and ii = y+4>22(U­
V2).

The output signals (fj, u. z) of Figure 2 may be ex­
pressed in terms of the output signals (y, u, z) and the
input signals (VI, V2. w) of Figure 1 by

[~] = [~ <1>;2 ~] [~] + [~ -~22 ~] [~~]
z 0 4>12 I zOO 0 w

(13)
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(c) (d)

Fig. 3. The proof of Lemma 2

(32)
B- - [ -Ah", B -Ah,,2B -Ahu"B]2 - e 2,1 e 2,2 ... e 2,p .

(28)
Note that we have a freedom to choose the D matrix
of ?12, ?21, and ?22. The proof of Proposition 4 shows
that any value will satisfy the requirement.

(HAy P22 A u (t») . . =
t,)

ll(t - hYi - huj )C2,ieA(t-hy, -huj) B 2 ,j

Since <l>22(S) = ?22(S) - A y P22 (S)A u , its impulse
response is given by

We see that H$22 (t) is a finite impulse response
matrix with its (i,j)-th component having support on
[0, h y ; + huj I. It follows that <1>22 E H 00, in fact <1>22 is
an entire function of s. •

(35)Du
o

Hence, the realization of ? is given by

The (i,j)-th component of H4>22(t) is then given by

H4>,,(tf,j =

(ll(t) - ll(t - hyi - huj » C2,ieA(t-hy,-huj) B 2 ,j (34)

C <A('-/'Yl-/'''/,).B ]2,1 2,11

C2,meA(t-hym -JlupJ B
2

.
p

(29)

Proposition 4. Let ?12, ?21, and ?22 be given by (24),
(25). and (26), respectively. Then (7,8, 9) holds, and
<1>12, <1>21, and <1>22 are stable.

Proof. Here we only prove for the case of ?22, since
thE' case of ?12 and ?21 can be proved in a similar
manner. In addition, ?12 and ?21 do not appear in
the final formula of the parametrization.

The impulse response matrix H [>" of ?22 is given by

To show that ?22 satisfies (7), we compute the im­
pulsE' response matrix H Ay P22 A,,(t) of A yP22(S)Au as
folluws.

so that its impulse response matrix is

P22 (s) = [~]

[

C2 1eAt B 2 1 .

H Po, (t) = 1 (t) : .

C2 .m e At B2 . 1 .

(30)

C2 ,le
At

B2 ,p ]

C2 .m eA1 B2 .p

(31 )

4. YOULA-KUCERA PARAMETRIZATION

To obtain the parametrization of all stabilizing con­
troller K(s) for the LFT in figure 1, Lemma 1 and 2
suggest that we first compute the stabilizing controller
K(s) for the plant ?(s), and then use (12), i.e. adding
a positive feedback with feedback gain matrix <1>22, to
obtain K (s). To verify the existence of a stabilizing
controller we use Corollary 3, which results in the
following: the system in Figure 1 is stabilizable if and
only if the pair (A, Eh) is stabilizable and the pair
(62 , A) is detectable.

It follows that the (i, j)-th compunent of the impulse
respunsE' matrix of .!l. Y P22 (s)A u is given by

Note that this condition is equivalent to the condition
that the pairs (A, B 2 ) and (C2 , A) are stabilizable

354



and with Q(s) E Hoc but otherwise arbitrary.

Fig. ~. Youla-Kucera parametrization for control sys­
tems with multiple delays

u

Fig. 5. Equivalent stabilization problem with Au = I

Applying Lemma AA.5 of (Green and Limebeer, 1995)
to the realization of ?(s) defined in (35), we obtain
the parametrization of all stabilizing controller k =
Ft(l,Q), where 1 is given by (39) and Q is any stable
transfer function.

Figure 6 shows the resulting closed-loop system.

Observe Figure 6. If we denote x as the state of
P22 , then the undelayed measurements are given by
YP = C2x. Keeping in mind that AyPn + 4>22 = P22 ,
we see that the dotted part of Figure 6 is actually ?22.

driven by the same input u that drives P22 . Since P22

and ?22 have the same A and B matrices, they share
the same state variable x. In fact. the measurements
that are fed to the observer 0 are given by Y = c2 x.

Assuming that a stabilizing controller K exists, it is
known that a controller internally stabilizes a rational
plant P if and only if it stabilizes the plant (2,2)-th
part. Using Lemma 2, it may be shown that this is
still true in the presence of ilo multiple delay matrices.
This configuration with A u = I is depicted in Figure 5.
Since it is a lot simpler than the original configuration
with the full plant, let us analyze how the controller
works in this configuration.

If we apply the parametrization of Theorem 5 to the
delayed plant Au P22 and then set the parameter Q to
zero, we obtain the central controller. It has the form
a feedback interconnection between a rational transfer
function and 4>22. The rational part is given by

It may be shown that le may be written in an
observer-based form consisting an observer O(s) and
a stabilizing feedback F. The observer is of the form

O(s) = [ A - t621~ ~2] . (~2)

5. HOW THE CONTROLLER WORKS

In this section, an insight into how the controller
works is presented. We show that in the absence of the
external input wand the input delay matrix Au , the
central controller estimates the state of the undelayed
plant.

By Lemma 2, all stabilizing controller K for the con­
trol system in Figure 1 is obtained through equation
(12) , i.e. by adding a positive feedback with feedback
gain matrix 4>22 to k. This results in the controller in
Figure 4. Finally, Lemma 1 ensures that K is proper.

•

(39)

(40)

(37)

Theorem S. Consider the control system of Figure L
Recall that the plant is of the form

[
Pll (s) P12(S)] [A B

1
B2]

P(s) = P21 (S) P22 (s) = g~ g~: D~2 . (36)

There exists a proper controller K (s) such that the
control system of Figure 1 is internally stable if and
only if the pair (A, B 2 ) is stabilizable and the pair
(C2 , A) is detectable.

Furthermore, let F and H be state feedback gain
matrices such that (A - thF) and (A - H62 ) are
asymptotically stable with

62 = [ -AT/'!l1CT -ATloymCT]Te 2.1 ... e 2.m

Pr·oof. By corollary 3. the stabilizability of the control
system in Figure 1 is equivalent to the stabilizability
of p(s). The latter is stabilizable if and only if the
pair (..t.lh) is stabilizable and (C2 .A) is detectable

ih = [e-Alou'B2.1 e-AlouPB2.p] (38)

where B2.• and C2., are the i-th column of B2 and i-th
row of C2 , respectively.

Then all proper controllers that internally stabilize
the control system in Figure 1 are parameterized as
described in Figure 4, where

awl detectable. respectively. To see this, consider the
system described by (A,B2 ,C2 ) with input u, output
Y and state x. The pair (C2 ,A) is detectable if and
only if the following holds: If y is zero for all time and
u = 0, then x asymptotically goes to zero. This fact
still holds even if we have delays in the output. Hence
the condition that (C2 , A) is detectable is equivalent
to the condition that (62 , A) is detectable. Using
duality of detectability and stabilizability, we arrive
at the same conclusion for the equivalence of the
stabilizability of the pairs (A, B 2 ) and (A, Eh).

The above discussion results in the following theorem.
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Fig. 6. The central stabilizing controller for !l. y P22 in
an observer-based form

The dynamics of the error between x and the output
of the observer x are given by the familiar equation

1: - i: = (A - H(2 )(x - x). (43)

Since (A - H(2 ) is Hurwitz, the error goes exponen­
tially to zero as time goes to infinity. Hence, x is an
estimate of the state of the undelayed plant Pn .

From the above discussion, we may interprete the
rat.ionale of the controller as follows. Since only the
delayed version of the output YP = C2x is available,
the controller compensates the delayed measurements
using the FIR block cI>n to obtain y = C2x. using the
fact that (C2, A) is detectable, the controller estimates
the state x and uses it to stabilize the plant.
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