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Abstract— Echocardiography is a commonly-used, safe, and
noninvasive method for assessing cardiac dysfunction and re-
lated coronary artery disease. The analysis of echocardiograms,
whether visual or automated, has traditionally been hampered by
the presence of ultrasound artifacts, which obscure the moving
myocardial wall. In this study, a novel method is proposed
for tracking the endocardial surface in 3D ultrasound images.
Artifacts which obscure the myocardium are detected in order
to improve the quality of cardiac boundary segmentation. The
expectation-maximization algorithm is applied in a stationary
and dynamic, cardiac-motion frame-of-reference, and weights are
derived accordingly. The weights are integrated with an optical-
flow based contour tracking method, which incorporates prior
knowledge via a statistical model of cardiac motion. Evaluation
on 35 three-dimensional echocardiographic sequences shows that
this weighed tracking method significantly improves the tracking
results. In conclusion, the proposed weights are able to reduce the
influence of artifacts, resulting in a more accurate quantitative
analysis.

I. INTRODUCTION

A. Artifacts in Cardiac Ultrasound

Echocardiography is a commonly-used, fast, and relatively
inexpensive imaging modality for assessing left ventricular
dysfunction and underlying coronary artery disease. The anal-
ysis of echocardiograms, whether visual or automated, has
traditionally been hampered by the presence of ultrasound arti-
facts and anomalies, such as side-lobe artifacts, reverberations,
shadowing, and near-field clutter [1]. For accurate assessment
of the heart, it is highly desirable to identify such artifacts.

Side-lobes of the main, central ultrasound beam may cause
echoes coming from the side-lobe areas to appear as if they
come from the main beam. This results in an arched ‘edge’
in the image, and can be clearly seen if the object in the
side-lobe has a strong reflection. Reverberations occur when
the sound beam bounces back and forth between reflectors in
the imaged area before it is received by the transducer. This
artifact appears as one or more echo targets directly behind
the reflector. A more troublesome anomaly is shadowing and
drop-outs, which causes loss of signal of the imaged structures.
Shadowing is caused by objects in the ultrasound path which
cause high reflections or attenuation. In transthoracic cardiac
images, this is usually caused by the rib-cage, which prevents
the imaging of the myocardium. Drop-outs occur when the
imaged structure is parallel to the ultrasound beam. Near field
clutter arises from reverberations of high-amplitude signals
close to the transducer. This hampers the imaging of objects

in this area, and is particularly noticeable in echocardiograms
acquired from the apical window, where the near-field clutter
often obscures the left ventricular apex.

For removing ultrasound artifacts, much effort involving
hardware improvements has been described in the literature.
For example, different pulsing schemes and frequencies have
been proposed, such as second harmonic imaging [2] and
coded excitation [3]. To improve the overall visibility of the
myocardium in echocardiograms, contrast agents are often
employed [4]. Image post-processing methods have also been
proposed, e.g. for identifying reverberations [5], [6], near-field
noise [7], and stationary artifacts in general [8].

B. Study Goal

In this study, we aim at tracking the endocardial bor-
ders in 3D echocardiographic sequences. The cardiac motion,
estimated using the image intensity information, is applied
to propagate an end-diastolic (ED) contour throughout the
sequences. The tracking is enhanced by detecting areas in
which the myocardium is obscured by typical artifacts such
as shadowing, near-field clutter, and static reverberations. The
motion is estimated first using a global tracker, which is guided
by a statistical model of cardiac motion. This estimation
is locally refined using a purely data-driven optical flow
approach. The local refinement is applied, depending on the
visibility of the cardiac wall. To determine this, we apply a
fast expectation-maximization (EM) approach in a stationary
and in a dynamic (i.e. based on the initially estimated cardiac
motion) frame-of-reference. The EM algorithm is used to
analyze local temporal intensity profiles in the images, thus
generating weights corresponding with visible and artifact-
obscured myocardium. These weights are then used to give
a better combination of the global and local tracker.

II. METHODS

A. Global and local motion estimation

Previously, we have proposed an optical-flow-based method
for tracking left ventricular endocardial borders throughout the
cardiac cycle [9]. The method consists of a global tracker
which is guided by a statistical cardiac motion model, followed
by a local refinement using purely data-driven tracking.

1427978-1-4244-4390-1/09/$25.00 ©2009 IEEE 2009 IEEE International Ultrasonics Symposium Proceedings

10.1109/ULTSYM.2009.0346



1) Local tracker: The local tracker estimates the cardiac
motion using differential optical flow [10]. The general optical
flow equation describes the velocity v of an object at position
x as a function of the spatial (∇I ≡ ( ∂I

∂x , ∂I
∂y , ∂I

∂z )) and
temporal image gradients ∂I/∂t as follows:

∇I(x, t) · v(x, t) + ∂I(x, t)/∂t = 0. (1)

In this study, we choose to solve equation (1) by assuming
constant velocity in a small region c around x, in which N
gradients are sampled, as proposed in [10]:

min
v

∑
x∈c

w(x) [∇I(x) · v + ∂I(x)/∂t]2 , (2)

where w represents a local pixel weight. For a translation-
only description of v, this can be solved via least-squares,
by differentiating equation (2) with respect to each translation
component v = (vx, vy, vz), and equating the result to zero.

2) Global tracker: To estimate the global cardiac motion,
we use a statistical model of cardiac motion, embedded in
the general optical flow equation [9]. In essence, instead of
assuming constant velocity in a small region, the statistical
model is used to guide the motion estimation, ensuring global
results which are continuous across the whole image C
and all time frames T . The motion model is obtained by
applying Principal Component Analysis (PCA) on frame-to-
frame affine transforms a throughout the whole cardiac cycle,
extracted from a set of training contours. This results in a
linear approximation of the affine parameters into an average
transform ā and eigenvariations Φ, controlled by the PCA
model parameters p:

a ≈ ā + Φp. (3)

The statistical model is embedded in the optical flow equation
by substituting the velocity term with the PCA model, resulting
in a modified equation:

min
p

∑

t∈T

∑

x∈C

w(x, t) [∇I(x, t) · v(a(p)) + ∂I(x, t)/∂t)]2 .

(4)
This is then solved via least-squares, by differentiation with
respect to p.

3) Combining global and local trackers: These trackers are
combined by concatenating the estimated spatial transforms of
the global TG and local TL trackers frame-by-frame. Starting
at end-diastole (ED), the contour position xt at frame t is:

xt = T t−1
L ◦ T t−1

G ◦ . . . ◦ TED
L ◦ TED

G (xED). (5)

In this way, a local refinement is applied after the global mo-
tion estimation. This method generates an initial, reasonably
accurate estimation of the cardiac motion. To improve on this
estimation, it makes sense to apply the local refinement only
in areas where the cardiac wall is clearly visible; in artifact-
obscured areas, a local refinement would degrade the global
tracking result. This motivates us to develop a method which
separates the visible and artifact-obscured cardiac wall.

B. Separating visible cardiac wall from artifacts

1) Categorizing temporal image profiles: To separate vis-
ible from artifact-obscured cardiac wall, we categorize the
temporal image intensity information into ‘stable’ (stationary
to slowly changing), ‘wandering’ (moderately changing), or
‘lost’ (fast changing) components, inspired by the work of
Jepson et al. [11]. The image intensity It at time t is modeled
by the mixture probability density function (pdf), which is
a sum of the stable (ps), wandering (pw), and lost (pl)
components:

p(It) = msps + mwpw + mlpl. (6)

The stable component is modeled by a Gaussian pdf ps:

ps(It|µs, σ
2
s) = e−(It−µs)2/2σ2

s /(σs

√
2π), (7)

where µs and σ2
s are the mean and variance of the stable com-

ponent. The wandering component is drawn from a temporally
varying Gaussian pdf pw, defined as:

pw(It|µw,t, σ
2
w,t) = e−(It−µw,t)

2/2σ2
w,t/(σw,t

√
2π) (8)

The lost component is drawn from a uniform pdf, defined by
the maximum and minimum intensity values over all frames:

pl(It) = 1/(Imax − Imin). (9)

2) Fast EM approach: The unknown model parameters
(i.e. the mixing probabilities (ms,mw, ml) and the mean
and variance of the wandering component (µw,t, σ

2
w,t)) are

estimated with a fast and efficient EM algorithm. This ver-
sion of the EM algorithm generates linear updates for the
parameters per time frame, by considering image intensities in
past frames exponentially less important [11]. Two steps are
computed for each new image frame: an expectation step, in
which the ownership probabilities are estimated using previous
estimates of the unknown parameters, and a maximization
step, in which the unknown parameters are updated using the
ownership probabilities. The ownership probabilities, which
can be viewed as the probability that the current observation
belongs to a certain component, given the current estimates of
the model parameters, are estimated as:

oi,t(It) = mi,tpi/p for i ∈ {s, w, l}. (10)

This makes os,t+ow,t+ol,t = 1 at each time step. The mixing
probabilities are updated using a constant α:

m̂i,t = αoi,t(It) + (1− α)m̂i,t−1 for i ∈ {s, w, l}. (11)

The wandering component is updated with:

µw,t = M̂1,t/M̂0,t and (12)

σw,t = M̂2,t/M̂0,t − µ2
w,t,

where M̂j,t = αIj
t ow,t(It) + (1− α)M̂j,t−1

with M̂j,t denoting the jth-order, ownership weighed data
moment.
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3) Stable component in different frames-of-reference: We
apply the categorization of temporal image profiles in a sta-
tionary frame-of-reference and a dynamic frame-of-reference.
First, the EM ownerships are calculated in a stationary frame-
of-reference, which is simply a voxel-wise analysis over time
(Fig. 1A). The stable component’s ownership os will be high
for the areas where the myocardium is obscured and low for
areas where it is clearly visible. Next, we obtain an initial
estimate of the cardiac motion (section II-A) and apply the EM
calculation in this dynamic, cardiac-motion-based frame-of-
reference (Fig. 1B). Suppose that this cardiac motion estimate
is reasonably accurate. os will now be low for the obscured
areas and high for visible cardiac wall. This motivates us to
define a weight which has high values for the visible areas
and low values for obscured cardiac wall:

w =
1
2
(os,CF − os,SF + 1) (13)

where os,CF is the stable ownership in the dynamic frame-of-
reference and os,SF is the stable ownership in the stationary
frame-of-reference. The weight is defined so that it ranges
from [0, 1] (since os ∈ [0, 1]).

time

Stationary frame-of-referenceA

Dynamic frame-of-referenceB

Fig. 1. Pixel-wise application of expectation-maximization algorithm on
temporal intensity profiles, in (A) the stationary frame-of-reference and (B)
the dynamic frame-of-reference (i.e. based on the initial cardiac motion
estimation).

C. Weighed motion estimation

The derived weights w are combined with the motion esti-
mation (section II-A) in two ways. First, the motion estimation
is recalculated with w inserted into equations (2) and (4).
Second, the local refinement is weighed, before concatenation
with the global tracker:

TL,weighed(x) = w(x)TL(x). (14)

In this way, the motion estimation relies more on the local
tracker if the cardiac wall is clearly visible, and more on the
global tracker if the cardiac wall is obscured.

D. Experimental details

1) Data description: The proposed tracking method is
tested on clinically available 3D echocardiographic sequences,
acquired with a Philips Sonos 7500 system (Philips Medical

Systems, Best, The Netherlands), equipped with a X4 matrix
array transducer. Typical spatial dimensions were 160 × 144
× 208 voxels with 1mm × 1mm × 0.7mm resolution.

2) Contour delineation: Left ventricular contours were
needed for training the statistical motion model, as initializa-
tion in ED, and as the ground truth in the validation. Full-cycle
endocardial borders were drawn with a previously developed
semi-automated method, based on pattern matching and dy-
namic programming [12]. For the evaluation, the statistical
motion model was built in a leave-one-out fashion.

3) Experiments: We compared the tracking accuracy of the
weighed motion estimation (section II-C) with the initial mo-
tion estimation used to obtain the dynamic frame-of-reference
(section II-A). Statistical testing was performed using the
paired t-test.

III. RESULTS

An example of tracking can be seen in Fig. 2, showing the
merit of the weighed motion estimation in the drop-out areas
in the anterior wall. Examples of images with artifacts and the
weights are displayed in Fig. 3. The low weights correspond
with regions with typical artifacts, which obscure the cardiac
wall.

Fig. 4 shows the point-to-surface and volume errors across
the cardiac cycle. Much improvement in tracking accuracy
can be seen using the weighed method. Bull’s eye plots of
the local point-to-surface errors are displayed in Fig. 5. The
improvement in areas with typical shadowing and near-field
artifacts is clearly noticeable. Average errors are summarized
in Table I. The proposed weighed estimation outperforms the
initial estimation statistically significantly.

frame
0

(ED)

3

7

(ES)

12

18

(ED-1)

manual initial weighed weights

Fig. 2. Example of tracking results in two-chamber view. Notice the improved
tracking in the drop-out areas, which have lower weights as seen right column.
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A B C

Fig. 3. Examples of images with (A) side lobe artifact, (B) large near-field,
and (C) shadowing artifacts and the corresponding weights. Black denotes
low weights, white denotes high weights.
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Fig. 4. Results of initial and weighed tracking method, showing improved
point-to-surface and volume accuracy.
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Fig. 5. Bull’s eye plots of the point-to-surface errors, showing improved
tracking accuracy using the weighed method, especially of (A) the fast moving
aortic valve (which is hard to track using the local motion estimation), (B) the
anterior region with common shadowing and drop-out, and (C) apical region
with near-field artifacts.

TABLE I
AVERAGE ERRORS IN 35 IMAGE SEQUENCES. * DENOTES STATISTICALLY

SIGNIFICANTLY BETTER THAN THE INITIAL ESTIMATION (p < 0.05).

Point-to- Absolute Absolute
surface volume ejection
(mm) (ml) fraction (%)

Initial estimation 1.49±0.52 6.7±5.8 6.0±3.9
Weighed estimation 1.19±0.47* 5.2±4.5* 3.9±2.9*

IV. CONCLUSION

In this study, a method was proposed to distinguish between
obscured and clearly visible myocardium, for accurate tracking
in echocardiograms. The method categorized temporal inten-
sity profiles in a stationary frame-of-reference and dynamic
frame-of-reference. The weights generated by the method were
shown to improve cardiac motion estimation, resulting in lower
bias and smaller ranges in point and volume errors. The
improvement is especially noticeable in areas with common
ultrasound artifacts. Although the method was applied in 3D
sequences in this study, the method can be used in 2D as well.
Based on these promising results, we think that this method
shows great potential in improving quantitative analysis in 3D
echocardiograms.
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