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Abstract The contribution of the paper is on the conceptual design of mounts, us-
ing MiMo state space models describing the spatial flexible multibody system dy-
namics. Furthermore the contribution is on the evaluation of acceleration feedback
versus force-feedback of a hard-mounted metrology frame suspension of a photo-
lithography machine. It includes the modal decoupling controller design. It will be
shown that from a vibration energy flow point of view the use of acceleration sensors
are preferred.

1 Introduction

The paper deals with the mechatronic design of hard-mounts for vibration isolation
in precision equipment. The contribution of the paper is on conceptual design using
adequate MiMo state space models describing the spatial system dynamics and the
evaluation of acceleration feedback versus force-feedback. The conceptual design,
including the modal decoupling controller design, for mounts for a metrology frame
suspension of a lithography machine (waver-stepper) is outlined.

Usually precision equipment is mounted on soft-mounts to provide disturbance
rejection from base vibrations. For this purpose the suspension resonance frequen-
cies are designed to be low (1 Hz). However, the use of soft-mounts may lead to
dynamic instability for equipment with a relatively high center of gravity [1]. An-
other approach is to use hard-mounts [2]. They provide a stiffer support and as a
consequence the suspension resonance frequencies are increased (10–20 Hz). In the
case of hardmounts the transmissibility of base vibrations is actively reduced, using
sensors, actuators and a control system.
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The metrology frame provides the support for the optical device (lens). The lens
and the frame are considered rigid in the frequency region of interest (0–300 Hz).
But due to the their flexible connection the frame-lens combination has internal
modes in the region 80–100 Hz [3]. The idea is to design a hybrid-elastic mount with
a high stiffness (typically 200–400× higher than for pneumatic isolators). The hard-
mount concept discussed is based on an elastic structure and includes per mount 2
piezo-actuators. Three mounts will be used to support the metrology frame.

For evaluation of conceptual designs it is important to model the spatial sys-
tem dynamics of the equipment and to obtain Multiple input and Multiple output
transfer-matrices or state space descriptions. To obtain these MiMo models can be a
tedious task [1]. The multibody system approach is a well-suited method to model
the spatial dynamic behavior. In this approach the mechanical components are con-
sidered as rigid or flexible bodies that interact with each other through a variety of
connections such as hinges and flexible coupling elements.

An implementation of this method is realized in the program SPACAR [4], [5]
which has an interface to MATLAB. The method to obtain state space descriptions
with this program is based on a nonlinear finite element description for multibody
systems and accounts for geometric nonlinear effects of flexible elements due to
axial and transverse displacements. This modelling approach is applied to the de-
scribed setup in Section 2.

In Section 3 we evaluate the transmissibility from base-vibrations to internal
mode excitation. This is not common, but this is the effective transmissibility that
can jeopardize the accuracy of the device. In Section 4 the controller design based
on modal decoupling is described. In Section 5 we evaluate, using the obtained
MiMo state space models, the pros and cons of force feedback as well as acceler-
ation feedback. It will be shown that from a vibration energy flow point of view
acceleration sensors are preferred despite the fact that with these type of sensors co-
located control is not guaranteed [6]. Therefore, this conclusion is contradictive to
the conclusion drawn by Preumont et al. [6] but is drawn from a different viewpoint.
It will also be shown that force sensors can be used if special specifications of the
mechanical structure of the mounts are realized.

2 Modelling

Structural systems have dynamics which in linearized form can be described by
ordinary differential equations of the following form:

M q̈ + Dq̇ + Kq = f (1)

where M,D and K are the usual mass, damping and stiffness matrix, f is the vec-
tor of applied generalized forces. The vector q is used to denote the generalized
displacement vector or degrees of freedom. In [5] it is shown that in case of driving
terms which are not solely forces but are also rheonomic displacements or their time
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Table 1 Inertia properties of the frame and lens and equivalent stiffness properties of a leg.

Mass [kg] Ixx [kg/m2] Iyy [kg/m2] Izz [kg/m2]

frame 742 52.25 52.25 104.5
lens 851.6 72.95 72.95 49.15

length m long. stiffn. bend. stiffn. y bend. stiffn. z torsional stiffn.

0.283 8.389 · 106 N/m 371 Nm 371 Nm 5.84Nm

derivatives, (1) changes to the form:

Md · q̈d + Dd · q̇d + Kd · qd = −Mr · q̈r + B0 · σa (2)

where Md , Dd and Kd are the mass, damping and stiffness matrix corresponding
with the degrees of freedom qd and Mr is the mass-matrix corresponding with the
rheonomic degrees of freedom qr . B0 describes the location of the actuator-forces
σa with respect to the degrees of freedom. The restriction at (2) is that the degrees
of freedom qd are chosen as a vector of relative displacements.

The control theory uses often systems of first-order differential equations written
in state space form:

ẋ = A · x + B · u (3)

y = C · x + D · u (4)

u = H · y (5)

where y is the vector of sensor output signals, C is the output matrix and D the feed-
through matrix. The vector x is called the state-vector. Output feedback is described
by (5), where H is a frequency dependent gain matrix to satisfy some performance.
The relationship between the physical coordinate description given by (2) and the
state equations (3) is:

A =
[

O I

−M−1
d Kd −M−1

d Dd

]
, B =

[
O

M−1
d [−Mr,B0]

]
, x =

[
qd

q̇d

]
,u =

[
σa

q̈r

]

(6)
where −M−1

d Mr = Tu is a coordinate transformation.
Based on the extended representation as in (2), state space descriptions of the

metrology frame for analyses and active vibration control will be obtained using a
flexible multibody system approach as described in [5]. Table 1 gives an overview of
the inertia properties of the frame and lens. The moments of inertia Ixx , Iyy and Izz

are defined with respect to the center of gravity of the frame and lens respectively.
The frame is supported by mounts. Each mount consists of two legs which will

be modelled by simple flexible beam like structures. These flexible beams represent
the equivalent stiffness properties of the mount. The beam element is modelled as
an active element which provides for the passive elastic properties of the leg and the
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Fig. 1 Stylized view and FEM-model using beams of lens suspension frame of a wafer step-
per/scanner.

Fig. 2 Front and top view of the metrology frame.

longitudinal force of the piezo actuator. Table 1 shows the stiffness properties of the
elastic beam elements.

The metrology frame is modelled using 20 spatial beam elements numbered (1)
to (20) and hereafter simply called beams, see Figure 1(b). The beams (1), (2), (3),
(12), (13), (14) represent the frame. The beams (10) and (11) represent the lens. The
connection between frame and lens is modelled using 6 beams, beams (15), (16),
(17), (18),(19) and (20). Beam-elements (1), (2), (3), (10) (11), (12), (13), (14),
(18), (19) and (20) are rigid. The inertia properties of the rigid beams match the
inertia properties of frame and lens as in Table 1. Beams (4), (5), (6), (7), (8) and
(9) represent the active-elastic beams of the mounts and beams (15), (16) and (17)
represent the flexible connection blocks between frame and lens. All flexible beams
are considered mass-less with respect to the heavy frame and lens.

As dynamic degrees of freedom we choose the longitudinal deformations of the
suspension beams constituting the legs (qs ) and the deformations of one element

318



Mechatronic Design of Hard-Mount Concepts for Precision Equipment

representing a flexible connection blocks (qi) i.e.

qd =
[
e
(4)
1 , e

(5)
1 , e

(6)
1 , e

(7)
1 , e

(8)
1 , e

(9)
1 , e

(15)
1 , e

(15)
2 , e

(15)
3 , e

(15)
4 , e

(15)
5 , e

(15)
6

]T

(7)

where the numbers between the brackets denote the element numbers and the sub-
scripts denote the deformation direction.

The base is modelled as a rigid body configuration built-up by means of rigid
beam elements. Because we are interested in the open loop and later on also in
the closed loop transfer functions between base vibration and frame vibrations, the
base excitations are defined as rheonomic accelerations applied at the nodal points
between legs and base as shown in Figure 1(b). They are defined by the input vec-
tor (8), where the superscript numbers represent the associated node numbers, see
Figure 1(b).

u(floor) =
[
ẍ9, z̈11, ÿ13, z̈15, z̈17, ÿ19

]T

, (8)

u(actuator) =
[
σ (4)

a , σ (5)
a , σ (6)

a , σ (7)
a , σ (8)

a , σ (9)
a

]T

. (9)

y(frame-lens) =
[
ë
(15)
1 , ë

(15)
2 , ë

(15)
3 , ë

(15)
4 , ë

(15)
5 , ë

(15)
6

]T

(10)

y(force) =
[
σ

(4)
1 , σ

(5)
1 , σ

(6)
1 , σ

(7)
1 , σ

(8)
1 , σ

(9)
1

]T

(11)

y(frame) =
[
ẍ3, z̈3, ÿ5, z̈5, z̈7, ÿ7

]T

(12)

The input vector of actuator forces, associated with the active beams numbered (4)–
(9) are defined by (9).

The outputs are defined in two parts as well. The first part contains the output-
signals of so-called virtual performance acceleration sensors which measure the re-
lative acceleration between lens and frame in element number (15). These accel-
erations are included in the output vector as described by (10). The second part
contains the feedback sensors. Which are in the case of force-control the outputs
of force sensors described by (11). These sensors measure the longitudinal stress
resultant σ

(k)
1 of the elastic beams, i.e. the actuator forces summed with the normal

forces due to the elongation of the elastic beams. In the case of acceleration feed-
back control they are the accelerations of the frame in the nodal points 3, 5 and 7.
The feedback accelerations are included in the output vector (12).

3 Mode-Shape and Singular Value Analyses of the Model

Figure 3 shows the result of the mode-shape analysis. The figure shows the shapes
and corresponding frequencies of the suspension modes in which the lens and frame
behave as a rigid body. From Figure 3 it can be concluded that the fourth, fifth and
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Fig. 3 Mode shapes and natural frequencies of the suspension modes.
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Fig. 4 Generalised plant G with 12 inputs and 12 outputs and controller C with 6 inputs and 6
outputs.

sixth mode are two high frequent. It takes quite some actuator force to bring these
modes back to 1 Hz in the closed loop (active) case. As a consequence one has to
design the lens-support frame with a smaller basis. The consequence of a smaller
basis is a decrease in tilt- and torsional stiffness.

Figure 4 shows the 12 × 12 generalised plant G with the in- and output vec-
tors defined by Eqs. (8) to (12). Matrix G is partitioned in four transfer matrices
G11,G12,G21 and G22. Of interest are the singular values of the open loop trans-
fer matrix G11 between base accelerations and the performance accelerations. The
singular values represent the principle gains of the transfer matrix. Especially the
largest singular value is important because it shows the worst-case gain frequency
relationship between an input and an output vector of the given input and output set.
Therefore, in the open loop case this largest singular value gives an impression of
the passive vibration isolation. Figure 5(a) shows the largest singular value versus
frequency (solid line) of the transfer function G11. From this figure we can conclude
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that in the frequency region of the internal modes the transmissibility is close to one.
Assuming the base vibrations as white noise, Figure 5(a) indicates that the internal
modes are excited by the base vibrations.

4 Controller Design

In order to provide isolation of base vibrations from 1 Hz and beyond and to
provide sufficient artificial damping of the suspension modes additional control
forces u(actuator) are applied. These forces are computed on the basis of six accel-
erations, defined in y(frame) (12), or force output signals y(force) (11). The control
strategy is to combine proportional and integral feedback. This is equivalent with
adding virtual mass, which lowers the frequencies of the suspension modes and
adding artificial damping respectively.

The assumptions are the following. The system is considered rigid (no internal
modes) for the control design. Then there are 6 modelled modes. n = 6 relative
degrees of freedom (qs = [e(4)

1 , e
(5)
1 , e

(6)
1 , e

(7)
1 , e

(8)
1 , e

(9)
1 ]T ) have been chosen for

modelling. Demping can be neglected. The equations of motion (2) are then written
as:

Md · q̈s + Kd · qs = −Mr · q̈r + B0 · σa (13)

First we use proportional acceleration and integral acceleration feedback.

σa = −Ka · y(frame) − Kv · Ẏ (14)

in which Ẏ is the integral of the n accelerometer outputs (y(frame)). Equation (14)
can be rewritten as:

σa = −Ka · Tc · q̈s − Kv · Tc · q̇s

= −K ′
a · q̈s − K ′

v · q̇s (15)

in which Tc is some constant geometrical transformation between the degrees of
freedom qs and the positions Y of the accelerometers. Substitution of (15) into (13)
results in:

Md · q̈s + Kd · qs = −Mr · q̈r + B0 · (−K ′
a · q̈s − K ′

v · q̇s) (16)

Using a modal decoupling appoach [7], Eq. (16) can be rewritten in decoupled form
as:

(In + S′B0K
′
aS)z̈ + S′B0K

′
vSż + S′KdSz = −S′Mrq̈r (17)

in which In is the n × n identity matrix, S = M
−1/2
d · P and P is the matrix

whose columns are the normalized eigenvectors of M
−1/2
d KdM

−1/2
d . The left-hand

side of (17) is decoupled. Equation (17) is obtained after a succesive substitution
of q = M

−1/2
d r

¯
and r

¯
= P · z. Without constraints it can be stated that the new
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modal mass-matrix (In +S′B0K
′
aS) should yield (remark that all these matrices are

diagonal matrices):

(In + S′B0K
′
aS) = 1

ω2
n

· S′KdS (18)

where ωn is the desired corner frequency and therefore:

K ′
a = B−1

0
1

ω2
n

· Kd − B−1
0 Md

Ka = K ′
a · T −1

c

(19)

We define also the following:

S′B0K
′
vS = 2ζnωn · (S′B0K

′
aS + In)

K ′
v = B−1

0 · 2ζnωn · (B0K
′
a + Md)

Kv = K ′
v · T −1

c

(20)

where ζn is the desired relative damping. In here the actuators are delivering forces
in the direction of the degrees of freedom, therefore B0 = In. The consequence of
(19) and (20) is that the acceleration feedback controller is defined by

Hacc(s) = −
(

Ka + Kv · 1

s

)
(21)

Application of an equivalent approach results in the force feedback controller to
read:

KP = (ω2
n · In · Mdd)−1 · Kdd − In

KI = 2ζωn · (In + KP )

Hf (s) = −
(

KP + KI · 1

s

) (22)

In case of force-sensing the sensing is also in the direction of the defined degrees of
freedom making the matrix Tc the identity-matrix.

5 Evaluation of Acceleration versus Force Feedback

Figure 5(a) shows a plot of the largest singular value of the open and closed loop
transfer function matrix between base and internal mode accelerations. The closed
loop is either established by force feedback (dashed line) or by acceleration feed-
back (dotted line). It can be observed that the natural frequencies of all suspension
modes are brought back to 1 Hz by active means and that the suspension modes are
well damped. In the case of acceleration feedback the internal modes are lowered in
frequency and still undamped but the excitation is reduced 50 dB in magnitude. The
decrease in frequency of the internal modes can be understood from the following.
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Fig. 5 (a) Open loop (solid), acc. feedback (dotted), force feedback (dashed), (b) acc. feedback
(dotted), force feedback (dashed), low parasitic stiffness force feedback (solid).

The transfers between actuators and sensors, usually called secondary path, con-
tains zeros. There is no control at the frequencies of the zeros, with the consequence
that new resonances appear at the frequencies of these zero dynamics. The zero dy-
namics of the secondary path transfer, are determined by the dynamics in case the
sensors are blocked (zero output of acceleration sensors). As a consequence, these
zero dynamics correspond with the internal mode dynamics in case the frame is not
moving. These dynamics are lower in frequency then the frequencies of the internal
modes in the uncontrolled case. Therefore, in the acceleration feedback control case
the new internal mode frequencies correspond with the frequencies of the zeros in
the secondary path transfers.

In case of force feedback, Figure 5(a) shows that there is less reduction in excita-
tion of the internal modes by base-vibration compared to the acceleration feedback
case. This is due to the fact that the sensors are only capable of measuring forces
in longitudinal direction in the legs. Forces transmitted to the frame by bending and
torsion are not measured. This force distribution through these so called parasitic
paths can be analyzed again by analyses of the zeros in the secondary path. Since
these zero dynamics, in the case of force feedback, are determined in the situation
where the sensor outputs are zero. This is the case if the actuator forces compensate
the stiffness in longitudinal direction. The zero dynamics are then described by the
residual system dynamics where the longitudinal stiffnesses are set to zero. Say we
make these zero dynamics have passive behavior below the specification of 1 Hz.
Then, the performance in the controlled case is better. See Figure 5(b) (solid line)
for the result of lowering the bending and torsional stiffness to the required amount
such that the residual dynamics and as a consequence the zero dynamics, have fre-
quencies in the region 0.1 Hz to 0.8 Hz. Overall we can conclude that with accel-
eration feedback better performance is obtained then with force feedback. Given
the fact that in both controlled cases the same corner frequency and damping of the
suspension modes is established.
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6 Conclusions

Shown is that a flexible multibody modelling approach can give adequate state space
models for analysis and conceptual design of vibration isolation systems using hard-
mounts. It is shown that using a modal control approach the performance of hard-
mounts can be made comparable to the performance of soft-mounts. The advantage
is however an increased dynamic stability. When using acceleration feedback a bet-
ter performance is obtained then when using force feedback. Given that in both
controlled cases the same corner frequency and damping of the suspension modes
is established.
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